Science.gov

Sample records for molecularly targeted therapy

  1. Hepatotoxicity of molecular targeted therapy

    PubMed Central

    Sałek-Zań, Agata

    2014-01-01

    A constant increase in occurrence of neoplasms is observed; hence new methods of therapy are being intensively researched. One of the methods of antineoplastic treatment is molecular targeted therapy, which aims to influence individual processes occurring in cells. Using this type of medications is associated with unwanted effects resulting from the treatment. Liver damage is a major adverse effect diagnosed during targeted therapy. Drug-induced liver damage can occur as necrosis of hepatocytes, cholestatic liver damage and cirrhosis. Hepatotoxicity is evaluated on the basis of International Consensus Criteria. Susceptibility of the liver to injury is connected not only with toxicity of the used medications but also with metastasis, coexistence of viral infections or other chronic diseases as well as the patient's age. It has been proven that in most cases the liver injury is caused by treatment with multikinase inhibitors, in particular tyrosine kinase inhibitors. The Food and Drug Administration (FDA) ordered the inclusion of additional labels – so-called “black box warnings” – indicating increased risk of liver injury when treating with pazopanib, sunitinib, lapatinib and regorafenib. A meta-analysis published in 2013 showed that treating neoplastic patients with tyrosine kinase inhibitors can increase the risk of drug-induced liver damage at least twofold. Below the mechanisms of drug-induced liver injury and hepatotoxic effects of molecular targeted therapy are described. PMID:26034384

  2. Ovarian cancer: emerging molecular-targeted therapies

    PubMed Central

    Sourbier, Carole

    2012-01-01

    With about 22,000 new cases estimated in 2012 in the US and 15,500 related deaths, ovarian cancer is a heterogeneous and aggressive disease. Even though most of patients are sensitive to chemotherapy treatment following surgery, recurring disease is almost always lethal, and only about 30% of the women affected will be cured. Thanks to a better understanding of the molecular mechanisms underlying ovarian cancer malignancy, new therapeutic options with molecular-targeted agents have become available. This review discusses the rationale behind molecular-targeted therapies and examines how newly identified molecular targets may enhance personalized therapies for ovarian cancer patients. PMID:22807625

  3. Molecularly targeted therapies for recurrent glioblastoma: current and future targets

    PubMed Central

    Lau, Darryl; Magill, Stephen T.; Aghi, Manish K.

    2016-01-01

    Object Glioblastoma is the most aggressive and diffusely infiltrative primary brain tumor. Recurrence is expected and is extremely difficult to treat. Over the past decade, the accumulation of knowledge regarding the molecular and genetic profile of glioblastoma has led to numerous molecularly targeted therapies. This article aims to review the literature and highlight the mechanisms and efficacies of molecularly targeted therapies for recurrent glioblastoma. Methods A systematic search was performed with the phrase “(name of particular agent) and glioblastoma” as a search term in PubMed to identify all articles published up until 2014 that included this phrase in the title and/or abstract. The references of systematic reviews were also reviewed for additional sources. The review included clinical studies that comprised at least 20 patients and reported results for the treatment of recurrent glioblastoma with molecular targeted therapies. Results A total of 42 articles were included in this review. In the treatment of recurrent glioblastoma, various targeted therapies have been tested over the past 10–15 years. The targets of interest include epidermal growth factor receptor, vascular endothelial growth factor receptor, platelet-derived growth factor receptor, Ras pathway, protein kinase C, mammalian target of rapamycin, histone acetylation, and integrins. Unfortunately, the clinical responses to most available targeted therapies are modest at best. Radiographic responses generally range in the realm of 5%–20%. Progression-free survival at 6 months and overall survival were also modest with the majority of studies reporting a 10%–20% 6-month progression-free survival and 5- to 8-month overall survival. There have been several clinical trials evaluating the use of combination therapy for molecularly targeted treatments. In general, the outcomes for combination therapy tend to be superior to single-agent therapy, regardless of the specific agent studied

  4. [Molecular alterations in melanoma and targeted therapies].

    PubMed

    Mourah, Samia; Lebbé, Céleste

    2014-12-01

    Melanoma is a skin cancer whose incidence is increasing steadily. The recent discovery of frequent and recurrent genetic alterations in cutaneous melanoma allowed a molecular classification of tumors into distinct subgroups, and paved the way for targeted therapy. Several signaling pathways are involved in the progression of this disease with oncogenic mutations affecting signaling pathways: MAPK, PI3K, cAMP and cyclin D1/CDK4. In each of these pathways, several potential therapeutic targets have been identified and specific inhibitors have already been developed and have shown clinical efficacy. The use of these inhibitors is often conditioned by tumors genotyping. In France, melanomas genotyping is supported by the platforms of the National Cancer Institute (INCA), which implemented a national program ensuring access to innovation for personalized medicine. The identification of new targets in melanoma supplies a very active dynamic development of innovative molecules contributing to changing the therapeutic landscape of this pathology.

  5. [Molecular alterations in melanoma and targeted therapies].

    PubMed

    Mourah, Samia; Lebbé, Céleste

    2014-12-01

    Melanoma is a skin cancer whose incidence is increasing steadily. The recent discovery of frequent and recurrent genetic alterations in cutaneous melanoma allowed a molecular classification of tumors into distinct subgroups, and paved the way for targeted therapy. Several signaling pathways are involved in the progression of this disease with oncogenic mutations affecting signaling pathways: MAPK, PI3K, cAMP and cyclin D1/CDK4. In each of these pathways, several potential therapeutic targets have been identified and specific inhibitors have already been developed and have shown clinical efficacy. The use of these inhibitors is often conditioned by tumors genotyping. In France, melanomas genotyping is supported by the platforms of the National Cancer Institute (INCA), which implemented a national program ensuring access to innovation for personalized medicine. The identification of new targets in melanoma supplies a very active dynamic development of innovative molecules contributing to changing the therapeutic landscape of this pathology. PMID:25776766

  6. Treatment planning for molecular targeted radionuclide therapy.

    PubMed

    Siantar, Christine Hartmann; Vetter, Kai; DeNardo, Gerald L; DeNardo, Sally J

    2002-06-01

    Molecular targeted radionuclide therapy promises to expand the usefulness of radiation to successfully treat widespread cancer. The unique properties of radioactive tags make it possible to plan treatments by predicting the radiation absorbed dose to both tumors and normal organs, using a pre-treatment test dose of radiopharmaceutical. This requires a combination of quantitative, high-resolution, radiation-detection hardware and computerized dose-estimation software, and would ideally include biological dose-response data in order to translate radiation absorbed dose into biological effects. Data derived from conventional (external beam) radiation therapy suggests that accurate assessment of the radiation absorbed dose in dose-limiting normal organs could substantially improve the observed clinical response for current agents used in a myeloablative regimen, enabling higher levels of tumor control at lower tumor-to-normal tissue therapeutic indices. Treatment planning based on current radiation detection and simulations technology is sufficient to impact on clinical response. The incorporation of new imaging methods, combined with patient-specific radiation transport simulations, promises to provide unprecedented levels of resolution and quantitative accuracy, which are likely to increase the impact of treatment planning in targeted radionuclide therapy. PMID:12136519

  7. Potential molecular targets for Ewing's sarcoma therapy.

    PubMed

    Jully, Babu; Rajkumar, Thangarajan

    2012-10-01

    Ewing's sarcoma (ES) is a highly malignant tumor of children and young adults. Modern therapy for Ewing's sarcoma combines high-dose chemotherapy for systemic control of disease, with advanced surgical and/or radiation therapeutic approaches for local control. Despite optimal management, the cure rate for localized disease is only approximately 70%, whereas the cure rate for metastatic disease at presentation is less than 30%. Patients who experience long-term disease-free survival are at risk for significant side-effects of therapy, including infertility, limb dysfunction and an increased risk for second malignancies. The identification of new targets for innovative therapeutic approaches is, therefore, strongly needed for its treatment. Many new pharmaceutical agents have been tested in early phases of clinical trials in ES patients who have recurrent disease. While some agents led to partial response or stable disease, the percentages of drugs eliciting responses or causing an overall effect have been minimal. Furthermore, of the new pharmaceuticals being introduced to clinical practice, the most effective agents also have dose-limiting toxicities. Novel approaches are needed to minimize non-specific toxicity, both for patients with recurrence and at diagnosis. This report presents an overview of the potential molecular targets in ES and highlights the possibility that they may serve as therapeutic targets for the disease. Although additional investigations are required before most of these approaches can be assessed in the clinic, they provide a great deal of hope for patients with Ewing's sarcoma. PMID:23580819

  8. Molecular targeted therapy for advanced gastric cancer

    PubMed Central

    2013-01-01

    Although medical treatment has been shown to improve quality of life and prolong survival, no significant progress has been made in the treatment of advanced gastric cancer (AGC) within the last two decades. Thus, the optimum standard first-line chemotherapy regimen for AGC remains debatable, and most responses to chemotherapy are partial and of short duration; the median survival is approximately 7 to 11 months, and survival at 2 years is exceptionally > 10%. Recently, remarkable progress in tumor biology has led to the development of new agents that target critical aspects of oncogenic pathways. For AGC, many molecular targeting agents have been evaluated in international randomized studies, and trastuzumab, an anti-HER-2 monoclonal antibody, has shown antitumor activity against HER-2-positive AGC. However, this benefit is limited to only ~20% of patients with AGC (patients with HER-2-positive AGC). Therefore, there remains a critical need for both the development of more effective agents and the identification of molecular predictive and prognostic markers to select those patients who will benefit most from specific chemotherapeutic regimens and targeted therapies. PMID:23525404

  9. Targets for molecular therapy of skin cancer.

    PubMed

    Green, Cheryl L; Khavari, Paul A

    2004-02-01

    Cancers of the skin encompass the first and second most common neoplasms in the United States, epidermal basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), respectively, as well as the melanocytic malignancy, malignant melanoma (MM). Recently identified alterations in the function of specific genes in these cancers provide new potential therapeutic targets. These alterations affect conserved regulators of cellular proliferation and viability, including the Sonic Hedgehog, Ras/Raf, ARF/p53, p16(INK4A)/CDK4/Rb and NF-kappaB pathways. New modalities designed to target these specific proteins may represent promising approaches to therapy of human skin cancers.

  10. Molecular Targeted α-Particle Therapy for Oncologic Applications

    PubMed Central

    Wadas, Thaddeus J.; Pandya, Darpan N.; Solingapuram Sai, Kiran Kumar; Mintz, Akiva

    2015-01-01

    OBJECTIVE A significant challenge facing traditional cancer therapies is their propensity to significantly harm normal tissue. The recent clinical success of targeting therapies by attaching them to antibodies that are specific to tumor-restricted biomarkers marks a new era of cancer treatments. CONCLUSION In this article, we highlight the recent developments in α-particle therapy that have enabled investigators to exploit this highly potent form of therapy by targeting tumor-restricted molecular biomarkers. PMID:25055256

  11. Molecular Targeted Therapies of Aggressive Thyroid Cancer

    PubMed Central

    Ferrari, Silvia Martina; Fallahi, Poupak; Politti, Ugo; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro

    2015-01-01

    Differentiated thyroid carcinomas (DTCs) that arise from follicular cells account >90% of thyroid cancer (TC) [papillary thyroid cancer (PTC) 90%, follicular thyroid cancer (FTC) 10%], while medullary thyroid cancer (MTC) accounts <5%. Complete total thyroidectomy is the treatment of choice for PTC, FTC, and MTC. Radioiodine is routinely recommended in high-risk patients and considered in intermediate risk DTC patients. DTC cancer cells, during tumor progression, may lose the iodide uptake ability, becoming resistant to radioiodine, with a significant worsening of the prognosis. The lack of specific and effective drugs for aggressive and metastatic DTC and MTC leads to additional efforts toward the development of new drugs. Several genetic alterations in different molecular pathways in TC have been shown in the past few decades, associated with TC development and progression. Rearranged during transfection (RET)/PTC gene rearrangements, RET mutations, BRAF mutations, RAS mutations, and vascular endothelial growth factor receptor 2 angiogenesis pathways are some of the known pathways determinant in the development of TC. Tyrosine kinase inhibitors (TKIs) are small organic compounds inhibiting tyrosine kinases auto-phosphorylation and activation, most of them are multikinase inhibitors. TKIs act on the aforementioned molecular pathways involved in growth, angiogenesis, local, and distant spread of TC. TKIs are emerging as new therapies of aggressive TC, including DTC, MTC, and anaplastic thyroid cancer, being capable of inducing clinical responses and stabilization of disease. Vandetanib and cabozantinib have been approved for the treatment of MTC, while sorafenib and lenvatinib for DTC refractory to radioiodine. These drugs prolong median progression-free survival, but until now no significant increase has been observed on overall survival; side effects are common. New efforts are made to find new more effective and safe compounds and to personalize the therapy in

  12. Application of Monte Carlo Methods in Molecular Targeted Radionuclide Therapy

    SciTech Connect

    Hartmann Siantar, C; Descalle, M-A; DeNardo, G L; Nigg, D W

    2002-02-19

    Targeted radionuclide therapy promises to expand the role of radiation beyond the treatment of localized tumors. This novel form of therapy targets metastatic cancers by combining radioactive isotopes with tumor-seeking molecules such as monoclonal antibodies and custom-designed synthetic agents. Ultimately, like conventional radiotherapy, the effectiveness of targeted radionuclide therapy is limited by the maximum dose that can be given to a critical, normal tissue, such as bone marrow, kidneys, and lungs. Because radionuclide therapy relies on biological delivery of radiation, its optimization and characterization are necessarily different than for conventional radiation therapy. We have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA treatment planning system. This system calculates patient-specific radiation dose estimates using a set of computed tomography scans to describe the 3D patient anatomy, combined with 2D (planar image) and 3D (SPECT, or single photon emission computed tomography) to describe the time-dependent radiation source. The accuracy of such a dose calculation is limited primarily by the accuracy of the initial radiation source distribution, overlaid on the patient's anatomy. This presentation provides an overview of MINERVA functionality for molecular targeted radiation therapy, and describes early validation and implementation results of Monte Carlo simulations.

  13. Molecular targeting of the lymphovascular system for imaging and therapy.

    PubMed

    Schöder, Heiko; Glass, Edwin C; Pecking, Alain P; Harness, Jay K; Wallace, Anne M; Hirnle, Peter; Alberini, Jean L; Vilain, Didier; Larson, Steven M; Hoh, Carl K; Vera, David R

    2006-06-01

    Progress toward targeting cancer cells is a multi-disciplinary endeavor. In addition to the surgical and oncology specialties, radiologists collaborate with mathematicians, computer scientists, and physicists, in a constant effort to incrementally improve upon the current imaging modalities. Recently, radiologists have formed collaborations with molecular biologists and chemists in order to develop molecular agents that target cancer cells via receptor-substrate or specific physiochemical interactions. In this review, we summarize selected efforts toward molecular targeting of the lymphovascular system. Standard imaging modalities, positron emission tomography, single photon emission tomography, and ultrasound, are reviewed as well as, the targeted introduction of substances for endolymphatic therapy. We also review the current status of sentinel lymph node mapping with radiocolloids and the application of molecular targeting for the development of a radiopharmaceutical specifically designed for sentinel lymph node mapping.

  14. Hepatocellular Carcinoma: Novel Molecular Targets in Carcinogenesis for Future Therapies

    PubMed Central

    Bertino, Gaetano; Demma, Shirin; Ardiri, Annalisa; Proiti, Maria; Gruttadauria, Salvatore; Toro, Adriana; Malaguarnera, Giulia; Bertino, Nicoletta; Malaguarnera, Michele; Malaguarnera, Mariano; Di Carlo, Isidoro

    2014-01-01

    Background. Hepatocellular carcinoma is one of the most common and lethal malignant tumors worldwide. Over the past 15 years, the incidence of HCC has more than doubled. Due to late diagnosis and/or advanced underlying liver cirrhosis, only limited treatment options with marginal clinical benefit are available in up to 70% of patients. During the last decades, no effective conventional cytotoxic systemic therapy was available contributing to the dismal prognosis in patients with HCC. A better knowledge of molecular hepatocarcinogenesis provides today the opportunity for targeted therapy. Materials and Methods. A search of the literature was made using cancer literature, the PubMed, Scopus, and Web of Science (WOS) database for the following keywords: “hepatocellular carcinoma,” “molecular hepatocarcinogenesis,” “targeted therapy,” and “immunotherapy.” Discussion and Conclusion. Treatment decisions are complex and dependent upon tumor staging, presence of portal hypertension, and the underlying degree of liver dysfunction. The knowledge of molecular hepatocarcinogenesis broadened the horizon for patients with advanced HCC. During the last years, several molecular targeted agents have been evaluated in clinical trials in advanced HCC. In the future, new therapeutic options will be represented by a blend of immunotherapy-like vaccines and T-cell modulators, supplemented by molecularly targeted inhibitors of tumor signaling pathways. PMID:25089265

  15. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies

    PubMed Central

    Thaker, Nikhil G; Pollack, Ian F

    2010-01-01

    Median survival of patients with malignant glioma (MG) from time of diagnosis is approximately 1 year, despite surgery, irradiation and conventional chemotherapy. Improving patient outcome relies on our ability to develop more effective therapies that are directed against the unique molecular aberrations within a patient’s tumor. Such molecularly targeted therapies may provide novel treatments that are more effective than conventional chemotherapeutics. Recently developed therapeutic strategies have focused on targeting several core glioma signaling pathways, including pathways mediated by growth-factors, PI3K/Akt/PTEN/mTOR, Ras/Raf/MEK/MAPK and other vital pathways. However, given the molecular diversity, heterogeneity and diverging and converging signaling pathways associated with MG, it is unlikely that any single agent will have efficacy in more than a subset of tumors. Overcoming these therapeutic barriers will require multiple agents that can simultaneously inhibit these processes, providing a rationale for combination therapies. This review summarizes the currently implemented single-agent and combination molecularly targeted therapies for MG. PMID:19951140

  16. Molecular mechanisms for vascular complications of targeted cancer therapies.

    PubMed

    Gopal, Srila; Miller, Kenneth B; Jaffe, Iris Z

    2016-10-01

    Molecularly targeted anti-cancer therapies have revolutionized cancer treatment by improving both quality of life and survival in cancer patients. However, many of these drugs are associated with cardiovascular toxicities that are sometimes dose-limiting. Moreover, the long-term cardiovascular consequences of these drugs, some of which are used chronically, are not yet known. Although the scope and mechanisms of the cardiac toxicities are better defined, the mechanisms for vascular toxicities are only beginning to be elucidated. This review summarizes what is known about the vascular adverse events associated with three classes of novel anti-cancer therapies: vascular endothelial growth factor (VEGF) inhibitors, breakpoint cluster-Abelson (BCR-ABL) kinase inhibitors used to treat chronic myelogenous leukaemia (CML) and immunomodulatory agents (IMiDs) used in myeloma therapeutics. Three of the best described vascular toxicities are reviewed including hypertension, increased risk of acute cardiovascular ischaemic events and arteriovenous thrombosis. The available data regarding the mechanism by which each therapy causes vascular complication are summarized. When data are limited, potential mechanisms are inferred from the known effects of inhibiting each target on vascular cell function and disease. Enhanced understanding of the molecular mechanisms of vascular side effects of targeted cancer therapy is necessary to effectively manage cancer patients and to design safer targeted cancer therapies for the future. PMID:27612952

  17. Molecular targeting agents in cancer therapy: science and society.

    PubMed

    Shaikh, Asim Jamal

    2012-01-01

    The inception of targeted agents has revolutionized the cancer therapy paradigm, both for physicians and patients. A large number of molecular targeted agents for cancer therapy are currently available for clinical use today. Many more are in making, but there are issues that remain to be resolved for the scientific as well as social community before the recommendation of their widespread use in may clinical scenarios can be done, one such issue being cost and cost effectiveness, others being resistance and lack of sustained efficacy. With the current knowledge about available targeted agents, the growing knowledge of intricate molecular pathways and unfolding of wider spectrum of molecular targets that can really matter in the disease control, calls for only the just use of the agents available now, drug companies need to make a serious attempt to reduce the cost of the agents. Research should focus on agents that show sustained responses in preclinical data. More needs to be done in laboratories and by the pharmaceutical industries, before we can truly claim to have entered a new era of targeted therapy in cancer care.

  18. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma.

    PubMed

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  19. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    PubMed Central

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  20. Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones

    PubMed Central

    Jandial, Danielle D.; Blair, Christopher A.; Zhang, Saiyang; Krill, Lauren S.; Zhang, Yan-Bing; Zi, Xiaolin

    2014-01-01

    There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reaction of α, β-unsaturated carbonyl moiety with cysteine residues in proteins, some lead chalcones from both natural products and synthesis have been identified in a variety of screening assays for modulating important pathways or molecular targets in cancers. These pathways and targets that are affected by chalcones include MDM2/p53, tubulin, proteasome, NF-kappa B, TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, STAT3, AP-1, NRF2, AR, ER, PPAR-γ and β-catenin/Wnt. Compared to current cancer targeted therapeutic drugs, chalcones have the advantages of being inexpensive, easily available and less toxic; the ease of synthesis of chalcones from substituted benzaldehydes and acetophenones also makes them an attractive drug scaffold. Therefore, this review is focused on molecular targets of chalcones and their potential implications in cancer prevention and therapy. PMID:24467530

  1. Molecular targeted therapy for the treatment of gastric cancer.

    PubMed

    Xu, Wenting; Yang, Zhen; Lu, Nonghua

    2016-01-04

    Despite the global decline in the incidence and mortality of gastric cancer, it remains one of the most common malignant tumors of the digestive system. Although surgical resection is the preferred treatment for gastric cancer, chemotherapy is the preferred treatment for recurrent and advanced gastric cancer patients who are not candidates for reoperation. The short overall survival and lack of a standard chemotherapy regimen make it important to identify novel treatment modalities for gastric cancer. Within the field of tumor biology, molecular targeted therapy has attracted substantial attention to improve the specificity of anti-cancer efficacy and significantly reduce non-selective resistance and toxicity. Multiple clinical studies have confirmed that molecular targeted therapy acts on various mechanisms of gastric cancer, such as the regulation of epidermal growth factor, angiogenesis, immuno-checkpoint blockade, the cell cycle, cell apoptosis, key enzymes, c-Met, mTOR signaling and insulin-like growth factor receptors, to exert a stronger anti-tumor effect. An in-depth understanding of the mechanisms that underlie molecular targeted therapies will provide new insights into gastric cancer treatment.

  2. [The development history and future perspective of molecularly targeted therapy].

    PubMed

    Mizuki, Masao; Kanakura, Yuzuru

    2014-06-01

    The origin of molecularly targeted drugs dates back to 'magic bullet' theory proposed by Paul Ehrlich. The success of Abl tyrosine kinase inhibitor, imatinib for the treatment of chronic myeloid leukemia realized that small molecules inhibiting ATP binding can become specific inhibitors for the relevant kinases. Subsequently, a number of kinase inhibitors which targets various signal transduction molecules, are in the clinical field or under development. The clinical success of antibody therapeutics has been achieved by the genetic engineering which makes human-mouse chimeric, humanized or human antibody. To augment the therapeutic effects of antibody, radioisotope-conjugate antibody and antibody-drug conjugate have come to the clinical field. In the near future, we have to develop the combination therapy of molecularly targeted drugs and also inhibitors for epigenetic and transcriptional regulators.

  3. Evolving molecularly targeted therapies for advanced-stage thyroid cancers.

    PubMed

    Bible, Keith C; Ryder, Mabel

    2016-07-01

    Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered - and might further refine - patient care, and identify open questions for future research. PMID:26925962

  4. Emerging Molecularly Targeted Therapies in Castration Refractory Prostate Cancer

    PubMed Central

    Patel, Jesal C.; Maughan, Benjamin L.; Agarwal, Archana M.; Batten, Julia A.; Zhang, Tian Y.; Agarwal, Neeraj

    2013-01-01

    Androgen deprivation therapy (ADT) with medical or surgical castration is the mainstay of therapy in men with metastatic prostate cancer. However, despite initial responses, almost all men eventually develop castration refractory metastatic prostate cancer (CRPC) and die of their disease. Over the last decade, it has been recognized that despite the failure of ADT, most prostate cancers maintain some dependence on androgen and/or androgen receptor (AR) signaling for proliferation. Furthermore, androgen independent molecular pathways have been identified as drivers of continued progression of CRPC. Subsequently, drugs have been developed targeting these pathways, many of which have received regulatory approval. Agents such as abiraterone, enzalutamide, orteronel (TAK-700), and ARN-509 target androgen signaling. Sipuleucel-T, ipilimumab, and tasquinimod augment immune-mediated tumor killing. Agents targeting classic tumorogenesis pathways including vascular endothelial growth factor, hepatocyte growth factor, insulin like growth factor-1, tumor suppressor, and those which regulate apoptosis and cell cycles are currently being developed. This paper aims to focus on emerging molecular pathways underlying progression of CRPC, and the drugs targeting these pathways, which have recently been approved or have reached advanced stages of development in either phase II or phase III clinical trials. PMID:23819055

  5. Cytoreductive surgery in the era of targeted molecular therapy

    PubMed Central

    Thomas, Arun Z.; Adibi, Mehrad; Borregales, Leonardo D.; Karam, Jose A.

    2015-01-01

    Cytoreductive nephrectomy (CN) was regarded standard of care for patients with metastatic renal cell carcinoma (mRCC) in the immunotherapy era. With the advent of targeted molecular therapy (TMT) for the treatment of mRCC, the routine use of CN has been questioned. Up to date evidence continues to suggest that CN remains an integral part of treatment in appropriately selected patients. This review details the original context in which the efficacy of CN was established and rationale for the continued use of cytoreductive surgery in the era of TMT. PMID:26815334

  6. Molecular Approach to Targeted Therapy for Multiple Sclerosis.

    PubMed

    Sherbet, Gajanan V

    2016-01-01

    The development and evolution of targeted therapy to any disease require the identification of targets amenable to treatment of patients. Here the pathogenetic signalling systems involved in multiple sclerosis are scrutinised to locate nodes of deregulation and dysfunction in order to devise strategies of drug development for targeted intervention. Oliogoclonal bands (OCB) are isoelectric focusing profiles of immunoglobulins synthesised in the central nervous system. OCBs enable the diagnosis of multiple sclerosis with high sensitivity and specificity and are related to the course of the disease and progression. The OCB patterns can be linked with the expression of angiogenic molecular species. Angiogenic signalling which has also been implicated in demyelination provides the option of using angiogenesis inhibitors in disease control. The PI3K (phosphoinositide 3-kinase)/Akt axis has emerged with a key role in myelination with its demonstrable links with mTOR mediated transcription of downstream target genes. Inflammatory signals and innate and acquired immunity from the activation of NF-κB (nuclear factor κB) responsive genes are considered. NF-κB signalling could be implicated in myelination. The transcription factor STAT (signal transducers and activators of transcription) and the EBV (Epstein- Barr virus) transcription factor BZLF1 contributing significantly to the disease process are a major environmental factor linked to MS. EBV can activate TGF (transforming growth factor) and VEGF (vascular endothelial growth factor) signalling. EBV microRNAs are reviewed as signalling mediators of pathogenesis. Stem cell transplantation therapy has lately gained much credence, so the current status of mesenchymal and hematopoietic stem cell therapy is reviewed with emphasis on the differential expression immune-related genes and operation of signalling systems.

  7. Molecular Pathways: Targeted α-Particle Radiation Therapy

    PubMed Central

    Baidoo, Kwamena E.; Yong, Kwon; Brechbiel, Martin W.

    2012-01-01

    An α-particle, a 4He nucleus, is exquisitely cytotoxic, and indifferent to many limitations associated with conventional chemo- and radiotherapy. The exquisite cytotoxicity of α radiation, the result of its high mean energy deposition (high linear energy transfer, LET) and limited range in tissue, provides for a highly controlled therapeutic modality that can be targeted to selected malignant cells (targeted α-therapy (TAT)) with minimal normal tissue effects. There is a burgeoning interest in the development of TAT that is buoyed by the increasing number of ongoing clinical trials worldwide. The short path length renders α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking, hematological cancers, infections, and compartmental cancers such as ovarian cancer or neoplastic meningitis. Yet, despite decades of study of high-LET radiation, the mechanistic pathways of the effects of this modality remain not well defined. The modality is effectively presumed to follow a simple therapeutic mechanism centered on catastrophic double strand (ds) DNA breaks without full examination of the actual molecular pathways and targets that are activated that directly impact cell survival or death. This Molecular Pathways article provides an overview of the mechanisms and pathways that are involved in the response to and repair of TAT induced DNA damage as currently understood. Finally, this article highlights the current state of clinical translation of TAT as well as other high-LET radionuclide radiation therapy using α-emitters such as 225Ac, 211At, 213Bi, 212Pb and 223Ra. PMID:23230321

  8. Molecular Targeted Therapies Using Botanicals for Prostate Cancer Chemoprevention

    PubMed Central

    Kumar, Nagi; Chornokur, Ganna

    2014-01-01

    In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of pre-neoplastic disease to cancer and using a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of clinical trials. Botanicals have been shown to influence multiple biochemical and molecular cascades that inhibit mutagenesis, proliferation, induce apoptosis, suppress the formation and growth of human cancers, thus modulating several hallmarks of carcinogenesis. These agents appear promising in their potential to make a dramatic impact in cancer prevention and treatment, with a significantly superior safety profile than most agents evaluated to date. The goal of this paper is to provide models of translational research based on the current evidence of promising botanicals with a specific focus on targeted therapies for PCa chemoprevention. PMID:24527269

  9. Hitting the target: where do molecularly targeted therapies fit in the treatment scheduling of neuroendocrine tumours?

    PubMed

    Karpathakis, Anna; Caplin, Martyn; Thirlwell, Christina

    2012-06-01

    Neuroendocrine tumours (NETs) are a rare and heterogeneous group of tumours whose incidence is increasing and their prevalence is now greater than that of any other upper gastrointestinal tumour. Diagnosis can be challenging, and up to 25% of patients present with metastatic disease. Following the recent FDA approval of two new molecularly targeted therapies for the treatment of advanced pancreatic NETs (pNETs), the first in 25 years, we review all systemic therapies and suggest where these newer targeted therapies fit in the treatment schedule for these challenging tumours. Clinical trial data relating to the routine use of sunitinib and everolimus in low-intermediate-grade pNETs are summarised alongside newer molecularly targeted agents undergoing clinical assessment in NETs. We particularly focus on the challenge of optimal scheduling of molecularly targeted treatments around existing systemic and localised treatment such as chemotherapy or radiotargeted therapy. We also discuss application of current evidence to subgroups of patients who have not so far been directly addressed such as those with poorer performance status or patients receiving radical surgery who may benefit from adjuvant treatment.

  10. Review: Molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies

    PubMed Central

    Masui, K.; Cloughesy, T. F.; Mischel, P. S.

    2014-01-01

    The classification of malignant gliomas is moving from a morphology-based guide to a system built on molecular criteria. The development of a genomic landscape for gliomas and a better understanding of its functional consequences have led to the development of internally consistent molecular classifiers. However, development of a biologically insightful classification to guide therapy is still a work in progress. Response to targeted treatments is based not only on the presence of drugable targets, but rather on the molecular circuitry of the cells. Further, tumours are heterogeneous and change and adapt in response to drugs. Therefore, the challenge of developing molecular classifiers that provide meaningful ways to stratify patients for therapy remains a major challenge for the field. In this review, we examine the potential role of MGMT methylation, IDH1/2 mutations, 1p/19q deletions, aberrant epidermal growth factor receptor and PI3K pathways, abnormal p53/Rb pathways, cancer stem-cell markers and microRNAs as prognostic and predictive molecular markers in the setting of adult high-grade gliomas and we outline the clinically relevant subtypes of glioblastoma with genomic, transcriptomic and proteomic integrated analyses. Furthermore, we describe how these advances, especially in epidermal growth factor receptor/PI3K/mTOR signalling pathway, affect our approaches towards targeted therapy, raising new challenges and identifying new leads. PMID:22098029

  11. Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis

    PubMed Central

    Knoff, Jayne; Yang, Benjamin; Hung, Chien-Fu; Wu, T.-C.

    2014-01-01

    It is well known that human papillomavirus (HPV) is the causative agent of cervical cancer. The integration of HPV genes into the host genome causes the upregulation of E6 and E7 oncogenes. E6 and E7 proteins inactivate and degrade tumor suppressors p53 and retinoblastoma, respectively, leading to malignant progression. HPV E6 and E7 antigens are ideal targets for the development of therapies for cervical cancer and precursor lesions because they are constitutively expressed in infected cells and malignant tumors but not in normal cells and they are essential for cell immortalization and transformation. Immunotherapies are being developed to target E6/E7 by eliciting antigen-specific immune responses. siRNA technologies target E6/E7 by modulating the expression of the oncoproteins. Proteasome inhibitors and histone deacetylase inhibitors are being developed to indirectly target E6/E7 by interfering with their oncogenic activities. The ultimate goal for HPV-targeted therapies is the progression through clinical trials to commercialization. PMID:24533233

  12. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms.

    PubMed

    Mooney, Michael A; Simon, Elias D; Little, Andrew S

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment. PMID:27517036

  13. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms

    PubMed Central

    Mooney, Michael A.; Simon, Elias D.; Little, Andrew S.

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment. PMID:27517036

  14. Personalizing therapies for gastric cancer: Molecular mechanisms and novel targeted therapies

    PubMed Central

    Luis, Michael; Tavares, Ana; Carvalho, Liliana S; Lara-Santos, Lúcio; Araújo, António; de Mello, Ramon Andrade

    2013-01-01

    Globally, gastric cancer is the 4th most frequently diagnosed cancer and the 2nd leading cause of death from cancer, with an estimated 990000 new cases and 738000 deaths registered in 2008. In the advanced setting, standard chemotherapies protocols acquired an important role since last decades in prolong survival. Moreover, recent advances in molecular therapies provided a new interesting weapon to treat advanced gastric cancer through anti-human epidermal growth factor receptor 2 (HER2) therapies. Trastuzumab, an anti-HER2 monoclonal antibody, was the first target drug in the metastatic setting that showed benefit in overall survival when in association with platinum-5-fluorouracil based chemotherapy. Further, HER2 overexpression analysis acquired a main role in predict response for trastuzumab in this field. Thus, we conducted a review that will discuss the main points concerning trastuzumab and HER2 in gastric cancer, providing a comprehensive overview of molecular mechanisms and novel trials involved. PMID:24151357

  15. Metastatic cancer stem cells: new molecular targets for cancer therapy.

    PubMed

    Leirós, G J; Balañá, M E

    2011-11-01

    The cancer stem cell (CSC) hypothesis, predicts that a small subpopulation of cancer cells that possess "stem-like" characteristics, are responsible for initiating and maintaining cancer growth. According to the CSC model the many cell populations found in a tumour might represent diverse stages of differentiation. From the cellular point of view metastasis is considered a highly inefficient process and only a subset of tumour cells is capable of successfully traversing the entire metastatic cascade and eventually re-initiates tumour growth at distant sites. Some similar features of both normal and malignant stem cells suggest that CSCs are not only responsible for tumorigenesis, but also for metastases. The CSC theory proposes that the ability of a tumour to metastasize is an inherent property of a subset of CSCs. The similar biological characteristics shared by normal stem cells (NSCs) and CSCs mainly implicate self-renewal and differentiation potential, survival ability, niche-specific microenvironment requirements and specific homing to metastatic sites and may have important implications in terms of new approaches to cancer therapy in the metastatic setting. There are several agents targeting many of these CSC features that have shown to be effective both in vitro and in vivo. Although clinical trials results are still preliminary and continue under investigation, these new therapies are very promising. The identification of new therapeutic targets and drugs based on CSC model constitutes a great challenge. PMID:21470128

  16. Metastatic cancer stem cells: new molecular targets for cancer therapy.

    PubMed

    Leirós, G J; Balañá, M E

    2011-11-01

    The cancer stem cell (CSC) hypothesis, predicts that a small subpopulation of cancer cells that possess "stem-like" characteristics, are responsible for initiating and maintaining cancer growth. According to the CSC model the many cell populations found in a tumour might represent diverse stages of differentiation. From the cellular point of view metastasis is considered a highly inefficient process and only a subset of tumour cells is capable of successfully traversing the entire metastatic cascade and eventually re-initiates tumour growth at distant sites. Some similar features of both normal and malignant stem cells suggest that CSCs are not only responsible for tumorigenesis, but also for metastases. The CSC theory proposes that the ability of a tumour to metastasize is an inherent property of a subset of CSCs. The similar biological characteristics shared by normal stem cells (NSCs) and CSCs mainly implicate self-renewal and differentiation potential, survival ability, niche-specific microenvironment requirements and specific homing to metastatic sites and may have important implications in terms of new approaches to cancer therapy in the metastatic setting. There are several agents targeting many of these CSC features that have shown to be effective both in vitro and in vivo. Although clinical trials results are still preliminary and continue under investigation, these new therapies are very promising. The identification of new therapeutic targets and drugs based on CSC model constitutes a great challenge.

  17. Oncologist’s/haematologist’s view on the roles of pathologists for molecular targeted cancer therapy

    PubMed Central

    Keller, Ulrich; Von Bubnoff, Nikolas; Peschel, Christian; Duyster, Justus

    2010-01-01

    Abstract In the past two decades there has been a tremendous increase in the understanding of the molecular basis of human malignancies. In a variety of neoplasms, specific molecular markers became part of disease classifications and are now routinely used to define specific entities. Molecular analyses discriminate prognostic groups, guide differential treatment strategies and identify targets for molecular defined cancer therapy. A battery of new drugs has been developed to specifically inhibit oncogenic pathways. For an increasing number of solid and haematological malignancies, the availability of molecular targeted drugs has fundamentally changed treatment algorithms. However, the diagnostic, prognostic and therapeutic impact of selected molecular markers is still limited in many cases. After all, the success of a molecular targeted therapy is clearly determined by the significance of the targeted structure for the biology of cancer and the ability of the malignant cell to evade specific inhibition. PMID:20158573

  18. The Challenges and the Promise of Molecular Targeted Therapy in Malignant Gliomas1

    PubMed Central

    Wang, Hongxiang; Xu, Tao; Jiang, Ying; Xu, Hanchong; Yan, Yong; Fu, Da; Chen, Juxiang

    2015-01-01

    Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy. PMID:25810009

  19. Treatment outcome of radiation therapy and concurrent targeted molecular therapy in spinal metastasis from renal cell carcinoma

    PubMed Central

    Park, Sangjoon; Kim, Kyung Hwan; Rhee, Woo Joong; Lee, Jeongshim; Cho, Yeona; Koom, Woong Sub

    2016-01-01

    Purpose: To evaluate the clinical outcomes of patients who underwent radiation therapy with or without targeted molecular therapy for the treatment of spinal metastasis from renal cell carcinoma (RCC). Materials and Methods: A total of 28 spinal metastatic lesions from RCC patients treated with radiotherapy between June 2009 and June 2015 were retrospectively reviewed. Thirteen lesions were treated concurrently with targeted molecular therapy (concurrent group) and 15 lesions were not (nonconcurrent group). Local control was defined as lack of radiographically evident local progression and neurological deterioration. Results: At a median follow-up of 11 months (range, 2 to 58 months), the 1-year local progression-free rate (LPFR) was 67.0%. The patients with concurrent targeted molecular therapy showed significantly higher LPFR than those without (p = 0.019). After multivariate analysis, use of concurrent targeted molecular therapy showed a tendency towards improved LPFR (hazard ratio, 0.13; 95% confidence interval, 0.01 to 1.16). There was no difference in the incidence of systemic progression between concurrent and nonconcurrent groups. No grade ≥2 toxicities were observed during or after radiotherapy. Conclusion: Our study suggests the possibility that concurrent use of targeted molecular therapy during radiotherapy may improve LPFR. Further study with a large population is required to confirm these results. PMID:27306772

  20. NCCN Task Force Report: Optimizing Treatment of Advanced Renal Cell Carcinoma With Molecular Targeted Therapy

    PubMed Central

    Hudes, Gary R.; Carducci, Michael A.; Choueiri, Toni K.; Esper, Peg; Jonasch, Eric; Kumar, Rashmi; Margolin, Kim A.; Michaelson, M. Dror; Motzer, Robert J.; Pili, Roberto; Roethke, Susan; Srinivas, Sandy

    2015-01-01

    The outcome of patients with metastatic renal cell carcinoma has been substantially improved with administration of the currently available molecularly targeted therapies. However, proper selection of therapy and management of toxicities remain challenging. NCCN convened a multidisciplinary task force panel to address the clinical issues associated with these therapies in attempt to help practicing oncologists optimize patient outcomes. This report summarizes the background data presented at the task force meeting and the ensuing discussion. PMID:21335444

  1. Molecular targets in heart failure gene therapy: current controversies and translational perspectives.

    PubMed

    Kairouz, Victor; Lipskaia, Larissa; Hajjar, Roger J; Chemaly, Elie R

    2012-04-01

    Use of gene therapy for heart failure is gaining momentum as a result of the recent successful completion of phase II of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, which showed clinical safety and efficacy of an adeno-associated viral vector expressing sarco-endoplasmic reticulum calcium ATPase (SERCA2a). Resorting to gene therapy allows the manipulation of molecular targets not presently amenable to pharmacologic modulation. This short review focuses on the molecular targets of heart failure gene therapy that have demonstrated translational potential. At present, most of these targets are related to calcium handling in the cardiomyocyte. They include SERCA2a, phospholamban, S100A1, ryanodine receptor, and the inhibitor of the protein phosphatase 1. Other targets related to cAMP signaling are reviewed, such as adenylyl cyclase. MicroRNAs are emerging as novel therapeutic targets and convenient vectors for gene therapy, particularly in heart disease. We propose a discussion of recent advances and controversies in key molecular targets of heart failure gene therapy.

  2. Present Advances and Future Perspectives of Molecular Targeted Therapy for Osteosarcoma

    PubMed Central

    Shaikh, Atik Badshah; Li, Fangfei; Li, Min; He, Bing; He, Xiaojuan; Chen, Guofen; Guo, Baosheng; Li, Defang; Jiang, Feng; Dang, Lei; Zheng, Shaowei; Liang, Chao; Liu, Jin; Lu, Cheng; Liu, Biao; Lu, Jun; Wang, Luyao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Osteosarcoma (OS) is a bone cancer mostly occurring in pediatric population. Current treatment regime of surgery and intensive chemotherapy could cure about 60%–75% patients with primary osteosarcoma, however only 15% to 30% can be cured when pulmonary metastasis or relapse has taken place. Hence, novel precise OS-targeting therapies are being developed with the hope of addressing this issue. This review summarizes the current development of molecular mechanisms and targets for osteosarcoma. Therapies that target these mechanisms with updated information on clinical trials are also reviewed. Meanwhile, we further discuss novel therapeutic targets and OS-targeting drug delivery systems. In conclusion, a full insight in OS pathogenesis and OS-targeting strategies would help us explore novel targeted therapies for metastatic osteosarcoma. PMID:27058531

  3. Targeted Delivery Systems for Molecular Therapy in Skeletal Disorders

    PubMed Central

    Dang, Lei; Liu, Jin; Li, Fangfei; Wang, Luyao; Li, Defang; Guo, Baosheng; He, Xiaojuan; Jiang, Feng; Liang, Chao; Liu, Biao; Badshah, Shaikh Atik; He, Bing; Lu, Jun; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Abnormalities in the integral components of bone, including bone matrix, bone mineral and bone cells, give rise to complex disturbances of skeletal development, growth and homeostasis. Non-specific drug delivery using high-dose systemic administration may decrease therapeutic efficacy of drugs and increase the risk of toxic effects in non-skeletal tissues, which remain clinical challenges in the treatment of skeletal disorders. Thus, targeted delivery systems are urgently needed to achieve higher drug delivery efficiency, improve therapeutic efficacy in the targeted cells/tissues, and minimize toxicities in non-targeted cells/tissues. In this review, we summarize recent progress in the application of different targeting moieties and nanoparticles for targeted drug delivery in skeletal disorders, and also discuss the advantages, challenges and perspectives in their clinical translation. PMID:27011176

  4. Molecular Characterization of Head and Neck Cancer: How Close to Personalized Targeted Therapy?

    PubMed Central

    Worsham, Maria J.; Ali, Haythem; Dragovic, Jadranka; Schweitzer, Vanessa P.

    2013-01-01

    Molecular targeted therapy in squamous head and neck cancer (HNSCC) continues to make strides and holds much promise. Cetuximab remains the sole FDA-approved molecular targeted therapy available for HNSCC, though there are several new biological agents targeting the epidermal growth factor receptor (EGFR) and other pathways in the regulatory approval pipeline. While targeted therapies have the potential to be personalized, their current use in HNSCC is not personalized. This is illustrated for EGFR targeted drugs, where EGFR as a molecular target has yet to be individualized for HNSCC. Future research needs to identify factors that correlate with response (or lack of one) and the underlying genotype-phenotype relationship that dictates this response. Comprehensive exploration of genetic and epigenetic landscapes in HNSCC is opening new frontiers to further enlighten, mechanistically inform, and set a course for eventually translating these discoveries into therapies for patients. This opinion offers a snap shot of the evolution of molecular subytping in HNSCC, its current clinical applicability, as well as new emergent paradigms with implications for controlling this disease in the future. PMID:22873739

  5. ROS1 Kinase Inhibitors for Molecular-Targeted Therapies.

    PubMed

    Al-Sanea, M M; Abdelazem, A Z; Park, B S; Yoo, K H; Sim, T; Kwon, Y J; Lee, S H

    2016-01-01

    ROS1 is a pivotal transmembrane receptor protein tyrosine kinase which regulates several cellular processes like apoptosis, survival, differentiation, proliferation, cell migration, and transformation. There is increasing evidence supporting that ROS1 plays an important role in different malignancies including glioblastoma, colorectal cancer, gastric adenocarcinoma, inflammatory myofibroblastic tumor, ovarian cancer, angiosarcoma, and non small cell lung cancer; thus, ROS1 has become a potential drug discovery target. ROS1 shares about 49% sequence homology with ALK primary structure; therefore, wide range of ALK kinase inhibitors have shown in vitro inhibitory activity against ROS1 kinase. After Crizotinib approval by FDA for the management of ALK-rearranged lung cancer, ROS1-positive tumors have been focused. Although significant advancements have been achieved in understanding ROS1 function and its signaling pathways plus recent discovery of small molecules modulating ROS1 protein, a vital need of medicinal chemistry efforts is still required to produce selective and potent ROS1 inhibitors as an important therapeutic strategy for different human malignancies. This review focuses on the current knowledge about different scaffolds targeting ROS1 rearrangements, methods to synthesis, and some biological data about the most potent compounds that have delivered various scaffold structures. PMID:26438251

  6. Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer

    PubMed Central

    Liu, H; Lu, J; Hua, Y; Zhang, P; Liang, Z; Ruan, L; Lian, C; Shi, H; Chen, K; Tu, Z

    2015-01-01

    -dependent kinase 1 (pCDK1), EGFR and Ki-67 revealed significant differences in ganetespib-treated tumors. Collectively, our data suggest that ganetespib, as a new potent treatment option, can be used for the molecularly targeted therapy of GC patients according to their expression profiles of EGFR. PMID:25590805

  7. Septic acute kidney injury: molecular mechanisms and the importance of stratification and targeting therapy.

    PubMed

    Morrell, Eric D; Kellum, John A; Pastor-Soler, Núria M; Hallows, Kenneth R

    2014-01-01

    The most common cause of acute kidney injury (AKI) in hospitalized patients is sepsis. However, the molecular pathways and mechanisms that mediate septic AKI are not well defined. Experiments performed over the past 20 years suggest that there are profound differences in the pathogenesis between septic and ischemic AKI. Septic AKI often occurs independently of hypoperfusion, and is mediated by a concomitant pro- and anti-inflammatory state that is activated in response to various pathogen-associated molecular patterns, such as endotoxin, as well as damage-associated molecular patterns. These molecular patterns are recognized by Toll-like receptors (TLRs) found in the kidney, and effectuate downstream inflammatory pathways. Additionally, apoptosis has been proposed to play a role in the pathogenesis of septic AKI. However, targeted therapies designed to mitigate the above aspects of the inflammatory state, TLR-related pathways, and apoptosis have failed to show significant clinical benefit. This failure is likely due to the protean nature of septic AKI, whereby different patients present at different points along the immunologic spectrum. While one patient may benefit from targeted therapy at one end of the spectrum, another patient at the other end may be harmed by the same therapy. We propose that a next important step in septic AKI research will be to identify where patients lie on the immunologic spectrum in order to appropriately target therapies at the inflammatory cascade, TLRs, and possibly apoptosis. PMID:25575158

  8. Molecular targeted therapies in advanced or metastatic chordoma patients: facts and hypotheses.

    PubMed

    Lebellec, Loïc; Aubert, Sébastien; Zaïri, Fahed; Ryckewaert, Thomas; Chauffert, Bruno; Penel, Nicolas

    2015-07-01

    Chordomas, derived from undifferentiated notochordal remnants, represent less than 4% of bone primary tumors. Despite surgery followed by radiotherapy, local and metastatic relapses are frequent. In case of locally advanced or metastatic chordomas, medical treatment is frequently discussed. While chemotherapy is ineffective, it would appear that some molecular targeted therapies, in particular imatinib, could slow down the tumor growth in case-reports, retrospective series, and phase I or II trials. Nineteen publications, between January 1990 and September 2014, have been found describing the activity of these targeted therapies. A systematic analysis of these publications shows that the best objective response with targeted therapies was stabilization in 52 to 69% of chordomas. Given the indolent course of advanced chordoma and because of the absence of randomized trial, the level of evidence to treat chordomas with molecular therapy is low (level III), whatever the drug. Furthermore, we could not draw firm conclusion on the activity of imatinib. Other putative targets have also been described. Therefore, further clinical trials are expected, especially with these targets. Nevertheless, it seems essential, in those future studies, to consider the naturally slow course of the disease.

  9. [Molecular biological foundation of targeted therapy for metastatic renal cell carcinoma].

    PubMed

    Lai, Chong; Teng, Xiaodong

    2016-01-01

    The incidence of renal cell carcinoma (RCC) is increasing. Radical cure by surgery can only be achieved in patients with early stage tumors. How to precisely use antineoplastic agents after surgery is an important problem to be solved. Most metastatic RCCs are pathologically identified as clear cell RCC (ccRCC), thus to develop agents targeting ccRCC is critical. Most clinically available targeted therapies are based on targeting some spots in specific pathways; or based on targeting new anti-tumor mechanisms, such as programmed death-1(PD-1), antibody-drug conjugates (ADC) and stem cells. There is still no targeted therapy having definite effect to most RCC patients. Only von Hippel-Lindau (VHL) pathway so far has been confirmed to be related to ccRCC development and progression; the inactivation of VHL gene causes many significant downstream gene changes. The key proteins involved in VHL pathway may be potential therapeutic targets for ccRCC. In this article, we review the current progress of targeted therapy for RCC, focus on the molecular characteristics of ccRCC, its relation to VHL pathway, the potential therapeutic targets and future clinical application for metastatic ccRCC. PMID:27045248

  10. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.

    PubMed

    Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue

    2015-08-01

    Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed.

  11. Molecular Targeted Therapies for the Treatment of Leptomeningeal Carcinomatosis: Current Evidence and Future Directions

    PubMed Central

    Lee, Dae-Won; Lee, Kyung-Hun; Kim, Jin Wook; Keam, Bhumsuk

    2016-01-01

    Leptomeningeal carcinomatosis (LMC) is the multifocal seeding of cerebrospinal fluid and leptomeninges by malignant cells. The incidence of LMC is approximately 5% in patients with malignant tumors overall and the rate is increasing due to increasing survival time of cancer patients. Eradication of the disease is not yet possible, so the treatment goals of LMC are to improve neurologic symptoms and to prolong survival. A standard treatment for LMC has not been established due to low incidences of LMC, the rapidly progressing nature of the disease, heterogeneous populations with LMC, and a lack of randomized clinical trial results. Treatment options for LMC include intrathecal chemotherapy, systemic chemotherapy, and radiation therapy, but the prognoses remain poor with a median survival of <3 months. Recently, molecular targeted agents have been applied in the clinic and have shown groundbreaking results in specific patient groups epidermal growth factor receptor (EGFR)-targeted therapy or an anaplastic lymphoma kinase (ALK) inhibitor in lung cancer, human epidermal growth factor receptor 2 (HER2)-directed therapy in breast cancer, and CD20-targeted therapy in B cell lymphoma). Moreover, there are results indicating that the use of these agents under proper dose and administration routes can be effective for managing LMC. In this article, we review molecular targeted agents for managing LMC. PMID:27399673

  12. Molecularly-Targeted Gold-Based Nanoparticles for Cancer Imaging and Near-Infrared Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Day, Emily Shannon

    2011-12-01

    This thesis advances the use of nanoparticles as multifunctional agents for molecularly-targeted cancer imaging and photothermal therapy. Cancer mortality has remained relatively unchanged for several decades, indicating a significant need for improvements in care. Researchers are evaluating strategies incorporating nanoparticles as exogenous energy absorbers to deliver heat capable of inducing cell death selectively to tumors, sparing normal tissue. Molecular targeting of nanoparticles is predicted to improve photothermal therapy by enhancing tumor retention. This hypothesis is evaluated with two types of nanoparticles. The nanoparticles utilized, silica-gold nanoshells and gold-gold sulfide nanoparticles, can convert light energy into heat to damage cancerous cells. For in vivo applications nanoparticles are usually coated with poly(ethylene glycol) (PEG) to increase blood circulation time. Here, heterobifunctional PEG links nanoparticles to targeting agents (antibodies and growth factors) to provide cell-specific binding. This approach is evaluated through a series of experiments. In vitro, antibody-coated nanoparticles can bind breast carcinoma cells expressing the targeted receptor and act as contrast agents for multiphoton microscopy prior to inducing cell death via photoablation. Furthermore, antibody-coated nanoparticles can bind tissue ex vivo at levels corresponding to receptor expression, suggesting they should bind their target even in the complex biological milieu. This is evaluated by comparing the accumulation of antibody-coated and PEG-coated nanoparticles in subcutaneous glioma tumors in mice. Contrary to expectations, antibody targeting did not yield more nanoparticles within tumors. Nevertheless, these studies established the sensitivity of glioma to photothermal therapy; mice treated with PEG-coated nanoshells experienced 57% complete tumor regression versus no regression in control mice. Subsequent experiments employed intracranial tumors to

  13. The development of molecularly targeted anticancer therapies: an Eli Lilly and Company perspective.

    PubMed

    Perry, William L; Weitzman, Aaron

    2005-03-01

    The ability to identify activated pathways that drive the growth and progression of cancer and to develop specific and potent inhibitors of key proteins in these pathways promises to dramatically change the treatment of cancer: A patient's cancer could be characterized at the molecular level and the information used to select the best treatment options. The development of successful therapies not only requires extensive target validation, but also new approaches to evaluating drug efficacy in animal models and in the clinic compared to the development of traditional cytotoxic agents. This article highlights Eli Lilly and Company's approach to developing targeted therapies, from target identification and validation through evaluation in the clinic. A selection of drugs in the Lilly Oncology pipeline is also discussed.

  14. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  15. MOLECULARLY TARGETED THERAPIES IN NON-SMALL CELL LUNG CANCER ANNUAL UPDATE 2014

    PubMed Central

    Morgensztern, Daniel; Campo, Meghan J.; Dahlberg, Suzanne E.; Doebele, Robert C.; Garon, Edward; Gerber, David E.; Goldberg, Sarah B.; Hammerman, Peter S.; Heist, Rebecca; Hensing, Thomas; Horn, Leora; Ramalingam, Suresh S.; Rudin, Charles M.; Salgia, Ravi; Sequist, Lecia; Shaw, Alice T.; Simon, George R.; Somaiah, Neeta; Spigel, David R.; Wrangle, John; Johnson, David; Herbst, Roy S.; Bunn, Paul; Govindan, Ramaswamy

    2015-01-01

    There have been significant advances in the understanding of the biology and treatment of non-small cell lung cancer (NSCLC) over the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC (Table 1). We are beginning to understand the mechanisms of acquired resistance following exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies and immunotherapy. PMID:25535693

  16. The clinical development of molecularly targeted agents in combination with radiation therapy: a pharmaceutical perspective.

    PubMed

    Ataman, Ozlem U; Sambrook, Sally J; Wilks, Chris; Lloyd, Andrew; Taylor, Amanda E; Wedge, Stephen R

    2012-11-15

    This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the clinicaltrials.gov Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with clinicaltrials.gov protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such trials are

  17. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    SciTech Connect

    Ataman, Ozlem U.; Sambrook, Sally J.; Wilks, Chris; Lloyd, Andrew; Taylor, Amanda E.; Wedge, Stephen R.

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such

  18. [The quality practice of molecular-genetic testing in the era of molecular target therapy in chronic myelogenous leukemia].

    PubMed

    Miyachi, Hayato; Matsushita, Hiromichi; Masukawa, Atsuko; Asai, Satomi

    2012-10-01

    The advent of tyrosine kinase inhibitors as molecular target therapy has resulted in a marked change in the laboratory process for the diagnosis and therapeutic monitoring of chronic myelogenous leukemia. This includes defining the molecular typing of BCR-ABL1 to establish the diagnosis, a quantitative and/or high quality assay for minimal residual disease to evaluate the molecular response, and mutation analysis and chromosomal examination to assess its resistance to inhibitors. These processes should be used where appropriate for each patient. In the ongoing development and clinical use of novel agents for treatment of the leukemia, the quality assurance of each process of molecular-genetic testing, such as specimen handling, measurement, and reporting, has become increasingly important in the quality care of patients.

  19. [International comparison and regulatory issues of the molecular targeted therapy development].

    PubMed

    Iwasaku, Masahiro; Kawakami, Koji

    2015-08-01

    In July 2013 from the Ministry of Health, Labour and Welfare of Japan notified "Approval application for in vitro companion diagnostics and corresponding therapeutic products" (manager notification). They recommended concurrent development of molecular targeted therapies and companion diagnostics. However, there are specific difficulties; cooperation between diagnostic company and pharmaceutical company, indeterminacy of profitability outlook etc. Moreover, it is also a problem how to supervise and to secure the quality and safety of the examination. In the future, multiplex diagnostic examination, which detect multiple molecular targets abnormalities at once, is developed commercially. In this paper, we outline the issues as well as international comparison in the current state of the approval and application system. PMID:26281697

  20. Molecular targeted therapy in enteropancreatic neuroendocrine tumors: from biology to clinical practice.

    PubMed

    Fazio, N; Scarpa, A; Falconi, M

    2014-01-01

    Advanced enteropancreatic (EP) neuroendocrine tumors (NETs) can be treated with several different therapies, including chemotherapy, biotherapy, and locoregional treatments. Over the last few decades, impressive progress has been made in the biotherapy field. Three main druggable molecular targets have been studied and developed in terms of therapy: somatostatin receptor (sstr), mammalian target of rapamycin (mTOR), and angiogenic factors. In particular, research has moved from the old somatostatin analogs (SSAs), such as octreotide (OCT) and lanreotide (LAN), specifically binding to the sstr-2, to the newer pasireotide (PAS), which presents a wider sstr spectrum. Over the last ten years, several molecular targeted agents (MTAs) have been studied in phase II trials, and very few of them have reached phase III. The mTOR inhibitor everolimus and the multitargeted inhibitor sunitinib have been approved for clinical use by the FDA and EMA in advanced well/moderately-differentiated (WD, MD) progressive pancreatic neuroendocrine tumors (PNETs), on the basis of the positive results of two international large randomized phase III trials vs. placebo. Bevacizumab has been studied in a large US phase III trial vs. interferon (IFN)-alfa2b, and results are pending. In this review, the biological and clinical aspects of MTAs introduced into clinical practice or which are currently in an advanced phase of clinical investigation are addressed.

  1. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy

    PubMed Central

    Sahin, Ibrahim H; Iacobuzio-Donahue, Christine A; O’Reilly, Eileen M

    2016-01-01

    Introduction Pancreatic adenocarcinoma remains one of the most clinically challenging cancers despite an in-depth characterization of the molecular underpinnings and biology of this disease. Recent whole-genome-wide studies have elucidated the diverse and complex genetic alterations which generate a unique oncogenic signature for an individual pancreatic cancer patient and which may explain diverse disease behavior in a clinical setting. Areas covered In this review article, we discuss the key oncogenic pathways of pancreatic cancer including RAS-MAPK, PI3KCA and TGF-β signaling, as well as the impact of these pathways on the disease behavior and their potential targetability. The role of tumor suppressors particularly BRCA1 and BRCA2 genes and their role in pancreatic cancer treatment are elaborated upon. We further review recent genomic studies and their impact on future pancreatic cancer treatment. Expert opinion Targeted therapies inhibiting pro-survival pathways have limited impact on pancreatic cancer outcomes. Activation of pro-apoptotic pathways along with suppression of cancer-stem-related pathways may reverse treatment resistance in pancreatic cancer. While targeted therapy or a ‘precision medicine’ approach in pancreatic adenocarcinoma remains an elusive challenge for the majority of patients, there is a real sense of optimism that the strides made in understanding the molecular underpinnings of this disease will translate into improved outcomes. PMID:26439702

  2. From molecular classification to targeted therapeutics: the changing face of systemic therapy in metastatic gastroesophageal cancer.

    PubMed

    Murphy, Adrian; Kelly, Ronan J

    2015-01-01

    Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1) or mismatch repair genes (Lynch syndrome) were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician's therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients.

  3. From Molecular Classification to Targeted Therapeutics: The Changing Face of Systemic Therapy in Metastatic Gastroesophageal Cancer

    PubMed Central

    Kelly, Ronan J.

    2015-01-01

    Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1) or mismatch repair genes (Lynch syndrome) were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician's therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients. PMID:25784931

  4. New molecular targeted therapies for advanced non-small-cell lung cancer

    PubMed Central

    Méndez, Míriam; Custodio, Ana; Provencio, Mariano

    2011-01-01

    Non-small-cell lung cancer (NSCLC) is a uniformly fatal disease and most patients will present with advanced stage. Treatment outcomes remain unsatisfactory, with low long-term survival rates. Standard treatment, such as palliative chemotherapy and radiotherapy, offers a median survival not exceeding 1 year. Hence, considerable efforts have started to be made in order to identify new biological agents which may safely and effectively be administered to advanced NSCLC patients. Two cancer cell pathways in particular have been exploited, the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR) pathways. However, novel targeted therapies that interfere with other dysregulated pathways in lung cancer are already in the clinic. This review outlines the most promising research approaches to the treatment of NSCLC, discussed according to the specific molecular pathway targeted. PMID:22263060

  5. Molecular-targeted therapy for chemotherapy-refractory gastric cancer: a case report and literature review.

    PubMed

    Kuo, Hung-Yang; Yeh, Kun-Huei

    2014-07-01

    The prognosis of advanced gastric cancer (AGC) remains poor despite therapeutic advances in recent decades. Several recent positive phase III trials established the efficacy of second-line chemotherapy for metastatic gastric cancer in prolonging overall survival. However, malnutrition and poor performance of AGC in late stages usually preclude such patients from intensive treatment. Many targeted-therapies failed to show a significant survival benefit in AGC, but have regained attention after the positive result of ramucirumab was announced last year. Among all targeted agents, only trastuzumab, a monoclonal antibody against Human epidermal growth factor receptor-2 (HER2) protein, has been proven as having survival benefit by addition to first-line chemotherapy. Herein we reported a patient who benefited from adding trastuzumab to the same second-line combination chemotherapy (paclitaxel, 5-fluorouracil, and leucovorin) upon progression of bulky liver metastases. At least five months of progression-free survival were achieved without any additional toxicity. We also reviewed literature of molecularly-targeted therapy for chemotherapy-refractory gastric cancer, including several large phase III trials (REGARD, GRANITE-1, EXPAND, and REAL-3) published in 2013-2014. PMID:24982389

  6. Molecular-targeted therapy for chemotherapy-refractory gastric cancer: a case report and literature review.

    PubMed

    Kuo, Hung-Yang; Yeh, Kun-Huei

    2014-07-01

    The prognosis of advanced gastric cancer (AGC) remains poor despite therapeutic advances in recent decades. Several recent positive phase III trials established the efficacy of second-line chemotherapy for metastatic gastric cancer in prolonging overall survival. However, malnutrition and poor performance of AGC in late stages usually preclude such patients from intensive treatment. Many targeted-therapies failed to show a significant survival benefit in AGC, but have regained attention after the positive result of ramucirumab was announced last year. Among all targeted agents, only trastuzumab, a monoclonal antibody against Human epidermal growth factor receptor-2 (HER2) protein, has been proven as having survival benefit by addition to first-line chemotherapy. Herein we reported a patient who benefited from adding trastuzumab to the same second-line combination chemotherapy (paclitaxel, 5-fluorouracil, and leucovorin) upon progression of bulky liver metastases. At least five months of progression-free survival were achieved without any additional toxicity. We also reviewed literature of molecularly-targeted therapy for chemotherapy-refractory gastric cancer, including several large phase III trials (REGARD, GRANITE-1, EXPAND, and REAL-3) published in 2013-2014.

  7. Targeted therapies for cancer

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000902.htm Targeted therapies for cancer To use the sharing features on ... cells so they cannot spread. How Does Targeted Therapy Work? Targeted therapy drugs work in a few ...

  8. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    NASA Astrophysics Data System (ADS)

    Ferro-Flores, Guillermina; Torres-García, Eugenio; Gonz&Ález-v&Ázquez, Armando; de Murphy, Consuelo Arteaga

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99mTc-HYNIC-TOC has shown high stability both in vitro and in vivo and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non-Hodgkin's lymphoma (NHL). The aim of this study was to establish biokinetic models for 99mTc-HYNIC-TOC and 188Re-anti-CD20 and to evaluate their dosimetry as target-specific radiopharmaceuticals. The OLINDA/EXM code was used to calculate patient-specific internal radiation dose estimates. 99mTc-HYNIC-TOC images showed an average tumor/blood ratio of 4.3±0.7 in receptor-positive tumors with an average effective dose of 4.4 mSv. Dosimetric studies indicated that after administration of 5.8 to 7.5 GBq of 188Re-anti-CD20 the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies.

  9. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy

    PubMed Central

    Chen, Chuan; Wang, Ge

    2015-01-01

    The incidence and mortality of hepatocellular carcinoma (HCC) have fallen dramatically in China and elsewhere over the past several decades. Nonetheless, HCC remains a major public health issue as one of the most common malignant tumors worldwide and one of the leading causes of death caused by cancer in China. Hepatocarcinogenesis is a very complex biological process associated with many environmental risk factors and factors in heredity, including abnormal activation of cellular and molecular signaling pathways such as Wnt/β-catenin, hedgehog, MAPK, AKT, and ERK signaling pathways, and the balance between the activation and inactivation of the proto-oncogenes and anti-oncogenes, and the differentiation of liver cancer stem cells. Molecule-targeted therapy, a new approach for the treatment of liver cancer, blocks the growth of cancer cells by interfering with the molecules required for carcinogenesis and tumor growth, making it both specific and selective. However, there is no one drug completely designed for liver cancer, and further development in the research of liver cancer targeted drugs is now almost stagnant. The purpose of this review is to discuss recent advances in our understanding of the molecular mechanisms underlying the development of HCC and in the development of novel strategies for cancer therapeutics. PMID:26244070

  10. Model-specific selection of molecular targets for heart failure gene therapy

    PubMed Central

    Katz, Michael G.; Fargnoli, Anthony S.; Tomasulo, Catherine E.; Pritchette, Louella A.; Bridges, Charles R.

    2013-01-01

    Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca2+ handling proteins and angiogenesis in the most common extrinsic models of HF. PMID:21954055

  11. Model-specific selection of molecular targets for heart failure gene therapy.

    PubMed

    Katz, Michael G; Fargnoli, Anthony S; Tomasulo, Catherine E; Pritchette, Louella A; Bridges, Charles R

    2011-10-01

    Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca(2+) handling proteins and angiogenesis in the most common extrinsic models of HF.

  12. Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies

    PubMed Central

    Rajkumar, Shivshankari; Watson, Ian R

    2016-01-01

    Large-scale genomic analyses of cutaneous melanoma have revealed insights into the aetiology and heterogeneity of this disease, as well as opportunities to further personalise treatment for patients with targeted and immune therapies. Herein, we review the proposed genomic classification of cutaneous melanoma from large-scale next-generation sequencing studies, including the largest integrative analysis of melanoma from The Cancer Genome Atlas (TCGA) Network. We examine studies that have identified molecular features of melanomas linked to immune checkpoint inhibitor response. In addition, we draw attention to low-frequency actionable mutations and highlight frequent non-coding mutations in melanoma where little is known about their biological function that may provide novel avenues for the development of treatment strategies for melanoma patients. PMID:27336610

  13. Molecular Targeted Agents for Gastric Cancer: A Step Forward Towards Personalized Therapy

    PubMed Central

    Cidon, Esther Una; Ellis, Sara G; Inam, Yasir; Adeleke, Sola; Zarif, Sara; Geldart, Tom

    2013-01-01

    Gastric cancer (GC) represents a major cancer burden worldwide, and remains the second leading cause of cancer-related death. Due to its insidious nature, presentation is usually late and often carries a poor prognosis. Despite having improved treatment modalities over the last decade, for most patients only modest improvements have been seen in overall survival. Recent progress in understanding the molecular biology of GC and its signaling pathways, offers the hope of clinically significant promising advances for selected groups of patients. Patients with Her-2 overexpression or amplification have experienced benefit from the integration of monoclonal antibodies such as trastuzumab to the standard chemotherapy. Additionally, drugs targeting angiogenesis (bevacizumab, sorafenib, sunitinib) are under investigation and other targeted agents such as mTOR inhibitors, anti c-MET, polo-like kinase 1 inhibitors are in preclinical or early clinical development. Patient selection and the development of reliable biomarkers to accurately select patients most likely to benefit from these tailored therapies is now key. Future trials should focus on these advances to optimize the treatment for GC patients. This article will review recent progress and current status of targeted agents in GC. PMID:24216699

  14. Oncogenic fusion tyrosine kinases as molecular targets for anti-cancer therapy.

    PubMed

    Gunby, Rosalind H; Sala, Elisa; Tartari, Carmen J; Puttini, Miriam; Gambacorti-Passerini, Carlo; Mologni, Luca

    2007-11-01

    Deregulated activation of protein tyrosine kinases (PTKs) is a frequent event underlying malignant transformation in many types of cancer. The formation of oncogenic fusion tyrosine kinases (FTKs) resulting from genomic rearrangements, represents a common mechanism by which kinases escape the strict controls that normally regulate their expression and activation. FTKs are typically composed of an N-terminal dimerisation domain, provided by the fusion partner protein, fused to the kinase domain of receptor or non-receptor tyrosine kinases (non-RTKs). Since FTKs do not contain extracellular domains, they share many characteristics with non-RTKs in terms of their properties and approaches for therapeutic targeting. FTKs are cytoplasmic or sometimes nuclear proteins, depending on the normal distribution of their fusion partner. FTKs no longer respond to ligand and are instead constitutively activated by dimerisation induced by the fusion partner. Unlike RTKs, FTKs cannot be targeted by therapeutic antibodies, instead they require agents that can cross the cell membrane as with non-RTKs. Here we review the PTKs known to be expressed as FTKs in cancer and the strategies for molecularly targeting these FTKs in anti-cancer therapy. PMID:18045055

  15. Molecular profiling of patients with colorectal cancer and matched targeted therapy in phase I clinical trials.

    PubMed

    Dienstmann, Rodrigo; Serpico, Danila; Rodon, Jordi; Saura, Cristina; Macarulla, Teresa; Elez, Elena; Alsina, Maria; Capdevila, Jaume; Perez-Garcia, Jose; Sánchez-Ollé, Gessamí; Aura, Claudia; Prudkin, Ludmila; Landolfi, Stefania; Hernández-Losa, Javier; Vivancos, Ana; Tabernero, Josep

    2012-09-01

    Clinical experience increasingly suggests that molecular prescreening and biomarker enrichment strategies in phase I trials with targeted therapies will improve the outcomes of patients with cancer. In keeping with the exigencies of a personalized oncology program, tumors from patients with advanced chemorefractory colorectal cancer were analyzed for specific aberrations (KRAS/BRAF/PIK3CA mutations, PTEN and pMET expression). Patients were subsequently offered phase I trials with matched targeted agents (MTA) directed at the identified anomalies. During 2010 and 2011, tumor molecular analysis was conducted in 254 patients: KRAS mutations (80 of 254, 31.5%), BRAF mutations (24 of 196, 12.2%), PIK3CA mutations (15 of 114, 13.2%), KRAS and PIK3CA mutations (9 of 114, 7.9%), low PTEN expression (97 of 183, 53.0%), and high pMET expression (38 of 64, 59.4%). In total, 68 patients received 82 different MTAs: phosphoinositide 3-kinase (PI3K) pathway inhibitor (if PIK3CA mutation, n = 10; or low PTEN, n = 32), PI3K pathway inhibitor plus MEK inhibitor (if KRAS mutation, n = 10; or BRAF mutation, n = 1), second-generation anti-EGF receptor monoclonal antibodies (if wild-type KRAS, n = 11), anti-hepatocyte growth factor monoclonal antibody (if high pMET, n = 10), mTOR inhibitor plus anti-insulin-like growth factor-1 receptor monoclonal antibody (if low PTEN, n = 5), and BRAF inhibitor (if BRAF mutation, n = 3). Median time-to-treatment failure on MTA was 7.9 versus 16.3 weeks for their prior systemic antitumor therapy (P < 0.001). Partial response was seen in 1 patient [1.2%, PI3K inhibitor with PIK3CA mutation] and stable disease >16 weeks in 10 cases (12.2%). These results suggest that matching chemorefractory patients with colorectal cancer with targeted agents in phase I trials based on the current molecular profile does not confer a significant clinical benefit.

  16. Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation.

    PubMed

    Sulaiman, Ibrahim; Lim, Jonathan Chee Woei; Soo, Hon Liong; Stanslas, Johnson

    2016-10-01

    Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of

  17. Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation.

    PubMed

    Sulaiman, Ibrahim; Lim, Jonathan Chee Woei; Soo, Hon Liong; Stanslas, Johnson

    2016-10-01

    Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of

  18. Anti-VEGF molecular targeted therapies in common solid malignancies: comprehensive update for radiologists.

    PubMed

    Tirumani, Sree Harsha; Fairchild, Alexandra; Krajewski, Katherine M; Nishino, Mizuki; Howard, Stephanie A; Baheti, Akshay D; Rosenthal, Michael H; Jagannathan, Jyothi P; Shinagare, Atul B; Ramaiya, Nikhil H

    2015-01-01

    Angiogenesis is an essential component of the growth and dissemination of solid malignancies and is mediated by several proangiogenic factors. The most widely studied proangiogenic factor is vascular endothelial growth factor (VEGF). A major class of molecular targeted therapies (MTTs) inhibit the VEGF axis and are referred to as antiangiogenic MTTs. There are two main types of anti-VEGF MTTs: drugs targeting circulating VEGF and drugs interfering with the activity of the VEGF receptors. The cancers against which antiangiogenic MTTs have had the greatest effect are gliomas, non-small cell lung cancer, colorectal cancer, hepatocellular carcinoma, renal cell carcinoma, and gastrointestinal stromal tumor. These cancers respond to antiangiogenic MTTs in a different way than they respond to conventional chemotherapy. Instead of the traditional Response Evaluation Criteria in Solid Tumors (RECIST), each of these cancers therefore requires its own individualized treatment response criteria (TRC). Examples of individualized TRC include the Response Assessment in Neuro-oncology (RANO) criteria for gliomas, modified RECIST for hepatocellular carcinoma, and Morphology, Attenuation, Size, and Structure (MASS) criteria for renal cell carcinoma. Furthermore, antiangiogenic MTTs have a unique spectrum of class-specific and drug-specific toxic effects, some of which can be detected at imaging. Increasing use of antiangiogenic MTTs in clinical practice necessitates that radiologists be aware of these drugs, their response patterns, and TRC as well as their toxic effect profiles.

  19. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer

    PubMed Central

    Dal Pra, Alan; Locke, Jennifer A.; Borst, Gerben; Supiot, Stephane; Bristow, Robert G.

    2016-01-01

    Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa. PMID:26909338

  20. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer.

    PubMed

    Dal Pra, Alan; Locke, Jennifer A; Borst, Gerben; Supiot, Stephane; Bristow, Robert G

    2016-01-01

    Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa. PMID:26909338

  1. Molecular targeted therapy to improve radiotherapeutic outcomes for non-small cell lung carcinoma

    PubMed Central

    Bhardwaj, Bhaskar; Bhardwaj, Himanshu; Balusu, Sree; Shwaiki, Ali

    2016-01-01

    Effective treatments for non-small cell lung carcinoma (NSCLC) remain elusive. The use of concurrent chemotherapy with radiotherapy (RT) has improved outcomes, but a significant proportion of NSCLC patients are too frail to be able to tolerate an intense course of concurrent chemoradiotherapy. The development of targeted therapies ignited new hope in enhancing radiotherapeutic outcomes. The use of targeted therapies against the epidermal growth factor receptor (EGFR) has offered slight but significant benefits in concurrent use with RT for certain patients in certain situations. However, despite theoretical promise, the use of anti-angiogenics, such as bevacizumab and endostatin, has not proven clinically safe or useful in combination with RT. However, many new targeted agents against new targets are being experimented for combined use with RT. It is hoped that these agents may provide a significant breakthrough in the radiotherapeutic management of NSCLC. The current review provides a brief discussion about the targets, the targeted therapies, the rationale for the use of targeted therapies in combination with RT, and a brief review of the existing data on the subject. PMID:26904572

  2. [Frontier researches for the development of molecular-targeted therapies for familial Parkinson disease].

    PubMed

    Imai, Yuzuru; Takahashi, Ryosuke

    2009-08-01

    Parkinson disease (PD), is a movement disorder pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the inherited forms of PD account for only 5 to 10% of PD cases, the identification of gene mutations in the genes implicated in familial PD in the past 10 years, including the findings regarding the a-synuclein, Parkin, ubiquitin-C-terminal hydrolase-L1 (UCH-L1), PINK1, DJ-1 and the ATP13A2 genes, has advanced understanding of the molecular mechanisms in each case of genetic PD. Most familial forms of PD develop at an early onset. However, recent identification of the leucine-rich repeat kinase (LRRK) 2 gene for a late-onset PD, the clinicopathological feature of which closely resembles that of sporadic PD, is expected to enable the clarification of the underlying causes of general PD. Recent studies on the physiological and pathological functions of these identified gene products have revealed overlapping pathogenetic pathways. The common features of these aberrant pathways are impaired protein degradation/quality control, mitochondrial dysfunction, and altered vesicle transport. Several attempts have been made towards developing molecular-targeted therapies directed against mitochondria (e.g., antioxidants, permeability transition pore modulators, and mitochondrial biogenesis stimulators), protein quality control and vesicle transport (e.g., gene silencing, immunization of asynuclein, and protofibril-destabilizing reagents). To ensure the successful implementation of such strategies, it is important to understand the events occuring at an early stage of PD. Further, studies using mammalian PD models for pharmacological analysis combined with studies employing lower organisms for genetic analyses such as worm, fly, and yeast will be helpful to determine effective prevention and treatment strategies for PD, which will replace the conventional symptomatic treatments for PD. PMID:19697879

  3. Molecular targeted therapies in advanced gastric cancer: does tumor histology matter?

    PubMed Central

    Wong, Hilda

    2013-01-01

    It is increasingly recognized that gastric cancer is a heterogeneous disease which may be divided into subgroups based on histological, anatomical, epidemiological and molecular classifications. Distinct molecular drivers and tumor biology, and thus different treatment targets and predictive biomarkers, may be implicated in each subtype. However, there is little evidence in the literature regarding the correlation among these different classifications, and particularly the molecular aberrations present in each subtype. In this review, we approach advanced gastric cancer (AGC) by presenting aberrant molecular pathways and their potential therapeutic targets in gastric cancer according to histological and anatomical classification, dividing gastric cancer into proximal nondiffuse, distal nondiffuse and diffuse disease. Several pathways are involved predominantly, although not exclusively, in different subtypes. This may help to explain the disappointing results of many published AGC trials in which study populations were heterogeneous regardless of clinicopathological characteristics of the primary tumor. Histological and anatomical classification may provide insights into tumor biology and facilitate selection of an enriched patient population for targeted agents in future studies and in the clinic. However, some molecular pathways implicated in gastric cancer have not been studied in correlation with histological or anatomical subtypes. Further studies are necessary to confirm the suggestion that such classification may predict tumor biology and facilitate selection of an enriched patient population for targeted agents in future studies and in the clinic. PMID:23320047

  4. Molecular phenotypes in triple negative breast cancer from African American patients suggest targets for therapy.

    PubMed

    Lindner, Robert; Sullivan, Catherine; Offor, Onyinye; Lezon-Geyda, Kimberly; Halligan, Kyle; Fischbach, Neal; Shah, Mansi; Bossuyt, Veerle; Schulz, Vincent; Tuck, David P; Harris, Lyndsay N

    2013-01-01

    suggest that targeted therapy choices should be considered in the context of race.

  5. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy.

    PubMed

    Fan, Ping; Maximov, Philipp Y; Curpan, Ramona F; Abderrahman, Balkees; Jordan, V Craig

    2015-12-15

    During the past 20 years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed "morning after pill", was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite "antiestrogen" resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women's health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term hormone replacement therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells.

  6. Current Molecular Targeted Therapy in Advanced Gastric Cancer: A Comprehensive Review of Therapeutic Mechanism, Clinical Trials, and Practical Application

    PubMed Central

    Li, Kaichun; Li, Jin

    2016-01-01

    Despite the great progress in the treatment of gastric cancer, it is still the third leading cause of cancer death worldwide. Patients often miss the opportunity for a surgical cure, because the cancer has already developed into advanced cancer when identified. Compared to best supportive care, chemotherapy can improve quality of life and prolong survival time, but the overall survival is often short. Due to the molecular study of gastric cancer, new molecular targeted drugs have entered the clinical use. Trastuzumab, an antibody targeting human epidermal growth factor receptor 2 (HER2), can significantly improve survival in advanced gastric cancer patients with HER2 overexpression. Second-line treatment of advanced gastric cancer with ramucirumab, an antibody targeting VEGFR-2, alone or in combination with paclitaxel, has been proved to provide a beneficial effect. The VEGFR-2 tyrosine kinase inhibitor, apatinib, can improve the survival of advanced gastric cancer patients after second-line chemotherapy failure. Unfortunately, none of the EGFR targeting antibodies (cetuximab or panitumumab), VEGF targeting monoclonal antibodies (bevacizumab), mTOR inhibitor (everolimus), or HGF/MET pathway targeting drugs has a significant survival benefit. Many other clinical trials based on molecular markers are underway. This review will summarize targeted therapies for advanced gastric cancer. PMID:26880889

  7. Transfer of genetic therapy across human populations: molecular targets for increasing patient coverage in repeat expansion diseases.

    PubMed

    Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A

    2016-02-01

    Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.

  8. Targeted radionuclide therapy

    SciTech Connect

    Williams, Lawrence E.; DeNardo, Gerald L.; Meredith, Ruby F.

    2008-07-15

    Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT/CT and PET/CT scanners.

  9. Targeted radionuclide therapy

    PubMed Central

    Williams, Lawrence E.; DeNardo, Gerald L.; Meredith, Ruby F.

    2008-01-01

    Targeted radionuclide therapy (TRT) seeks molecular and functional targets within patient tumor sites. A number of agents have been constructed and labeled with beta, alpha, and Auger emitters. Radionuclide carriers spanning a broad range of sizes; e.g., antibodies, liposomes, and constructs such as nanoparticles have been used in these studies. Uptake, in percent-injected dose per gram of malignant tissue, is used to evaluate the specificity of the targeting vehicle. Lymphoma (B-cell) has been the primary clinical application. Extension to solid tumors will require raising the macroscopic absorbed dose by several-fold over values found in present technology. Methods that may effect such changes include multistep targeting, simultaneous chemotherapy, and external sequestration of the agent. Toxicity has primarily involved red marrow so that marrow replacement can also be used to enhance future TRT treatments. Correlation of toxicities and treatment efficiency has been limited by relatively poor absorbed dose estimates partly because of using standard (phantom) organ sizes. These associations will be improved in the future by obtaining patient-specific organ size and activity data with hybrid SPECT∕CT and PET∕CT scanners. PMID:18697529

  10. Metastasis promoter S100A4 is a potentially valuable molecular target for cancer therapy.

    PubMed

    Sherbet, G V

    2009-07-18

    The growth, invasion and metastatic spread of cancer have been identified with the deregulation of cell proliferation, altered intercellular and cell-substratum adhesion and enhanced motility and the deposition of disseminated cancer cells at distant sites. The identification of therapeutic targets for cancer is crucial to human welfare. Drug development, molecular modelling and design of effective drugs greatly depend upon the identification of suitable therapeutic targets. Several genetic determinants relating to proliferation and growth, invasion and metastasis have been identified. S100A4 appears to be able to activate and integrate pathways to generate the phenotypic responses that are characteristic of cancer. S100A4 signalling can focus on factors associated with normal and aberrant proliferation, apoptosis and growth, and differentiation. It is able to activate signalling pathways leading to the remodelling of the cell membrane and the extracellular matrix; modulation of cytoskeletal dynamics, acquisition of invasiveness and induction of angiogenesis. Therefore S100A4 is arguably a molecular target of considerable potential possessing a wide ranging biological activity that can alter and regulate the major phenotypic features of cancer. The evolution of an appropriate strategy that permits the identification of therapeutic targets most likely to be effective in the disease process without unduly affecting normal biological processes and function is an incontrovertible imperative. By virtue of its ability to activate interacting and multi-functional signalling systems, S100A4 appears to offer suitable targets for developing new therapeutic procedures. Some effectors of the S100A4-activated pathways might also lend themselves as foci of therapeutic interest.

  11. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy

    PubMed Central

    Espinoza, Jaime A.; Weber, Helga; García, Patricia; Nervi, Bruno; Garrido, Marcelo; Corvalán, Alejandro H.; Roa, Juan Carlos; Bizama, Carolina

    2015-01-01

    Gastric cancer (GC) is the third leading cause of cancer mortality worldwide. Although surgical resection is a potentially curative approach for localized cases of GC, most cases of GC are diagnosed in an advanced, non-curable stage and the response to traditional chemotherapy is limited. Fortunately, recent advances in our understanding of the molecular mechanisms that mediate GC hold great promise for the development of more effective treatment strategies. In this review, an overview of the morphological classification, current treatment approaches, and molecular alterations that have been characterized for GC are provided. In particular, the most recent molecular classification of GC and alterations identified in relevant signaling pathways, including ErbB, VEGF, PI3K/AKT/mTOR, and HGF/MET signaling pathways, are described, as well as inhibitors of these pathways. An overview of the completed and active clinical trials related to these signaling pathways are also summarized. Finally, insights regarding emerging stem cell pathways are described, and may provide additional novel markers for the development of therapeutic agents against GC. The development of more effective agents and the identification of biomarkers that can be used for the diagnosis, prognosis, and individualized therapy for GC patients, have the potential to improve the efficacy, safety, and cost-effectiveness for GC treatments. PMID:26267324

  12. In vitro prediction of the efficacy of molecularly targeted cancer therapy by Raman spectral imaging.

    PubMed

    Yosef, Hesham K; Mavarani, Laven; Maghnouj, Abdelouahid; Hahn, Stephan; El-Mashtoly, Samir F; Gerwert, Klaus

    2015-11-01

    Mutational acquired resistance is a major challenge in cancer therapy. Somatic tumours harbouring some oncogenic mutations are characterised by a high mortality rate. Surprisingly, preclinical evaluation methods do not show clearly resistance of mutated cancers to some drugs. Here, we implemented Raman spectral imaging to investigate the oncogenic mutation resistance to epidermal growth factor receptor targeting therapy. Colon cancer cells with and without oncogenic mutations such as KRAS and BRAF mutations were treated with erlotinib, an inhibitor of epidermal growth factor receptor, in order to detect the impact of these mutations on Raman spectra of the cells. Clinical studies suggested that oncogenic KRAS and BRAF mutations inhibit the response to erlotinib therapy in patients, but this effect is not observed in vitro. The Raman results indicate that erlotinib induces large spectral changes in SW-48 cells that harbour wild-type KRAS and BRAF. These spectral changes can be used as a marker of response to therapy. HT-29 cells (BRAF mutated) and SW-480 cells (KRAS mutated) display a smaller and no significant response, respectively. However, the erlotinib effect on these cells is not observed when phosphorylation of extracellular-signal-regulated kinase and AKT is monitored by Western blot, where this phosphorylation is the conventional in vitro test. Lipid droplets show a large response to erlotinib only in the case of cells harbouring wild-type KRAS and BRAF, as indicated by Raman difference spectra. This study shows the great potential of Raman spectral imaging as an in vitro tool for detecting mutational drug resistance.

  13. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy

    PubMed Central

    Reddy, Doodipala Samba

    2016-01-01

    Catamenial epilepsy is a type of refractory epilepsy characterized by seizure clusters around perimenstrual or periovulatory period. The pathophysiology of catamenial epilepsy still remains unclear, yet there are few animal models to study this gender-specific disorder. The pathophysiology of perimenstrual catamenial epilepsy involves the withdrawal of the progesterone-derived GABAergic neurosteroids due to the decline in progesterone level at the time of menstruation. These manifestations can be faithfully reproduced in rodents by specific neuroendocrine manipulations. Since mice and rats, like humans, have ovarian cycles with circulating hormones, they appear to be suitable animal models for studies of perimenstrual seizures. Recently, we created specific experimental models to mimic perimenstrual seizures. Studies in rat and mouse models of catamenial epilepsy show enhanced susceptibility to seizures or increased seizure exacerbations following neurosteroid withdrawal. During such a seizure exacerbation period, there is a striking decrease in the anticonvulsant effect of commonly prescribed antiepileptics, such as benzodiazepines, but an increase in the anticonvulsant potency of exogenous neurosteroids. We discovered an extrasynaptic molecular mechanism of catamenial epilepsy. In essence, extrasynaptic δGABA-A receptors are upregulated during perimenstrual-like neuroendocrine milieu. Consequently, there is enhanced antiseizure efficacy of neurosteroids in catamenial models because δGABA-A receptors confer neurosteroid sensitivity and greater seizure protection. Molecular mechanisms such as these offer a strong rationale for the clinical development of a neurosteroid replacement therapy for catamenial epilepsy. PMID:27147973

  14. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy.

    PubMed

    Gill, Harinder; Leung, Anskar Y H; Kwong, Yok-Lam

    2016-01-01

    Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal hematopoietic stem cell disorders characterized by cytopenia, ineffective hematopoiesis, and progression to secondary acute myeloid leukemia in high-risk cases. Conventional prognostication relies on clinicopathological parameters supplemented by cytogenetic information. However, recent studies have shown that genetic aberrations also have critical impacts on treatment outcome. Moreover, these genetic alterations may themselves be a target for treatment. The mutation landscape in MDS is shaped by gene aberrations involved in DNA methylation (TET2, DNMT3A, IDH1/2), histone modification (ASXL1, EZH2), the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1/2), transcription (RUNX1, TP53, BCOR, PHF6, NCOR, CEBPA, GATA2), tyrosine kinase receptor signaling (JAK2, MPL, FLT3, GNAS, KIT), RAS pathways (KRAS, NRAS, CBL, NF1, PTPN11), DNA repair (ATM, BRCC3, DLRE1C, FANCL), and cohesion complexes (STAG2, CTCF, SMC1A, RAD21). A detailed understanding of the pathogenetic mechanisms leading to transformation is critical for designing single-agent or combinatorial approaches in target therapy of MDS.

  15. The transcriptional modulator BCL6 as a molecular target for breast cancer therapy

    PubMed Central

    Walker, Sarah R.; Liu, Suhu; Xiang, Michael; Nicolais, Maria; Hatzi, Katerina; Giannopoulou, Eugenia; Elemento, Olivier; Cerchietti, Leandro; Melnick, Ari; Frank, David A.

    2014-01-01

    Inappropriate expression or activation of transcription factors can drive patterns of gene expression leading to the malignant behavior of breast cancer cells. We have found that the transcriptional repressor BCL6 is highly expressed in breast cancer cell lines, and its locus is amplified in about half of primary breast cancers. To understand how BCL6 regulates gene expression in breast cancer cells, we utilized ChIP-seq to identify the BCL6 binding sites on a genomic scale. This revealed that BCL6 regulates a unique cohort of genes in breast cancer cell lines compared to B cell lymphomas. Furthermore, BCL6 expression promotes the survival of breast cancer cells, and targeting BCL6 with a peptidomimetic inhibitor leads to apoptosis of these cells. Finally, combining a BCL6 inhibitor and a STAT3 inhibitor provided enhanced cell killing in triple negative breast cancer cell lines, suggesting that combination therapy may be particularly useful. Thus, targeting BCL6 alone or in conjunction with other signaling pathways may be a useful therapeutic strategy for treating breast cancer. PMID:24662818

  16. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy.

    PubMed

    Gill, Harinder; Leung, Anskar Y H; Kwong, Yok-Lam

    2016-01-01

    Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal hematopoietic stem cell disorders characterized by cytopenia, ineffective hematopoiesis, and progression to secondary acute myeloid leukemia in high-risk cases. Conventional prognostication relies on clinicopathological parameters supplemented by cytogenetic information. However, recent studies have shown that genetic aberrations also have critical impacts on treatment outcome. Moreover, these genetic alterations may themselves be a target for treatment. The mutation landscape in MDS is shaped by gene aberrations involved in DNA methylation (TET2, DNMT3A, IDH1/2), histone modification (ASXL1, EZH2), the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1/2), transcription (RUNX1, TP53, BCOR, PHF6, NCOR, CEBPA, GATA2), tyrosine kinase receptor signaling (JAK2, MPL, FLT3, GNAS, KIT), RAS pathways (KRAS, NRAS, CBL, NF1, PTPN11), DNA repair (ATM, BRCC3, DLRE1C, FANCL), and cohesion complexes (STAG2, CTCF, SMC1A, RAD21). A detailed understanding of the pathogenetic mechanisms leading to transformation is critical for designing single-agent or combinatorial approaches in target therapy of MDS. PMID:27023522

  17. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy

    PubMed Central

    Gill, Harinder; Leung, Anskar Y. H.; Kwong, Yok-Lam

    2016-01-01

    Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal hematopoietic stem cell disorders characterized by cytopenia, ineffective hematopoiesis, and progression to secondary acute myeloid leukemia in high-risk cases. Conventional prognostication relies on clinicopathological parameters supplemented by cytogenetic information. However, recent studies have shown that genetic aberrations also have critical impacts on treatment outcome. Moreover, these genetic alterations may themselves be a target for treatment. The mutation landscape in MDS is shaped by gene aberrations involved in DNA methylation (TET2, DNMT3A, IDH1/2), histone modification (ASXL1, EZH2), the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1/2), transcription (RUNX1, TP53, BCOR, PHF6, NCOR, CEBPA, GATA2), tyrosine kinase receptor signaling (JAK2, MPL, FLT3, GNAS, KIT), RAS pathways (KRAS, NRAS, CBL, NF1, PTPN11), DNA repair (ATM, BRCC3, DLRE1C, FANCL), and cohesion complexes (STAG2, CTCF, SMC1A, RAD21). A detailed understanding of the pathogenetic mechanisms leading to transformation is critical for designing single-agent or combinatorial approaches in target therapy of MDS. PMID:27023522

  18. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy?

    PubMed

    Gonda, Tamas A; Varro, Andrea; Wang, Timothy C; Tycko, Benjamin

    2010-02-01

    It is increasingly recognized that the non-neoplastic stromal compartment in most solid cancers plays an active role in tumor proliferation, invasion and metastasis. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types in the tumor stroma, and these cells are pro-tumorigenic. Evidence that CAFs are epigenetically and possibly also genetically distinct from normal fibroblasts is beginning to define these cells as potential targets of anti-cancer therapy. Here, we review the cell-of-origin and molecular biology of CAFs, arguing that such knowledge provides a rational basis for designing therapeutic strategies to coordinately and synergistically target both the stromal and malignant epithelial component of human cancers.

  19. Targeted molecular therapy of head and neck squamous cell carcinoma with the tyrosine kinase inhibitor vandetanib in a mouse model

    PubMed Central

    Sano, Daisuke; Fooshee, David R.; Zhao, Mei; Andrews, Genevieve A.; Frederick, Mitchell J.; Galer, Chad; Milas, Zvonimir L.; Morrow, Phuong Khanh H.; Myers, Jeffrey N.

    2010-01-01

    Background We investigated the effects of vandetanib, an inhibitor of vascular endothelial growth factor receptor 2 (VEGFR-2) and epidermal growth factor receptor (EGFR), alone and in combination with paclitaxel in an orthotopic mouse model of human head and neck squamous cell carcinoma (HNSCC). Methods The in vitro effects of vandetanib (ZACTIMA™) were assessed in two HNSCC cell lines on cell growth, apoptosis, and receptor and downstream signaling morecule expression and phosphorylation levels. We assessed in vivo effects of vandetanib and/or paclitaxel by measuring tumor cell apoptosis, endothelial cell apoptosis, microvessel density, tumor size, and animal survival. Results In vitro, vandetanib inhibited the phosphorylation of EGFR and its downstream targets in HNSCC cells and inhibited proliferation and induced apoptosis of HNSCC cells and extended survival and inhibited tumor growth in nude mice orthotopically injected with human HNSCC. Conclusion Vandetanib has the potential to be a novel molecular targeted therapy for HNSCC. PMID:20629091

  20. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment.

    PubMed

    Willis, Rudolph E

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  1. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    PubMed Central

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  2. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  3. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  4. Molecular Profiling to Optimize Treatment in Non-Small Cell Lung Cancer: A Review of Potential Molecular Targets for Radiation Therapy by the Translational Research Program of the Radiation Therapy Oncology Group

    SciTech Connect

    Ausborn, Natalie L.; Le, Quynh Thu; Bradley, Jeffrey D.; Choy, Hak; Dicker, Adam P.; Saha, Debabrata; Simko, Jeff; Story, Michael D.; Torossian, Artour; Lu, Bo

    2012-07-15

    Therapeutic decisions in non-small cell lung cancer (NSCLC) have been mainly based on disease stage, performance status, and co-morbidities, and rarely on histological or molecular classification. Rather than applying broad treatments to unselected patients that may result in survival increase of only weeks to months, research efforts should be, and are being, focused on identifying predictive markers for molecularly targeted therapy and determining genomic signatures that predict survival and response to specific therapies. The availability of such targeted biologics requires their use to be matched to tumors of corresponding molecular vulnerability for maximum efficacy. Molecular markers such as epidermal growth factor receptor (EGFR), K-ras, vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), and anaplastic lymphoma kinase (ALK) represent potential parameters guide treatment decisions. Ultimately, identifying patients who will respond to specific therapies will allow optimal efficacy with minimal toxicity, which will result in more judicious and effective application of expensive targeted therapy as the new paradigm of personalized medicine develops.

  5. Molecular and Clinical Aspects of the Target Therapy with the Calcimimetic Cinacalcet in the Treatment of Parathyroid Tumors.

    PubMed

    Mingione, Alessandra; Verdelli, Chiara; Terranegra, Annalisa; Soldati, Laura; Corbetta, Sabrina

    2015-01-01

    Parathyroid tumors are almost invariably associated with parathormone (PTH) hypersecretion resulting in primary (PHPT) or secondary (SHPT) hyperparathyroidism. PHPT is the third most common endocrine disorder with a prevalence of 1-2% in post-menopausal women; SHPT is a major complication of chronic kidney failure, the prevalence of which is increasing. The calciumsensing receptor (CASR) is the key molecule regulating PTH synthesis and release from the parathyroid cells in response to changes in extracellular calcium concentrations. A potent calcimimetic, cinacalcet, has been developed in the last ten years and made available for medical treatment of both PHPT and SHPT. Cinacalcet has been demonstrated to be effective in inhibiting PTH secretion, though the drug fails to normalize PTH release, both in PHPT and SHPT patients with different degrees of disease severity, including patients with parathyroid carcinomas and with MEN1-related parathyroid tumors. Here we reviewed the molecular aspects of CASR target therapy and the effect of the CASR gene single nucleotide polymorphisms. Clinical data concerning the efficacy and safety of cinacalcet in controlling hyperparathyroidism are reported, focusing on the treatment of the different types of parathyroid tumors. Finally, limits of this target therapy are analyzed, pointing out the lack of efficacy in improving kidney and bone morbidities in PHPT and cardiovascular diseases in SHPT. Though cinacalcet is a target therapeutic option for parathyroid tumors, further approaches are warranted to fully control these metabolic disorders and the underlying tumors. PMID:26033088

  6. Inhibitors of apoptosis proteins (IAPs) as potential molecular targets for therapy of hematological malignancies.

    PubMed

    Smolewski, P; Robak, T

    2011-11-01

    Apoptosis, a programmed cell death, plays a key role in the regulation of tissue homeostasis. However, impairment of its regulation may promote formation and progression of malignancy. An important part of the apoptotic machinery are the inhibitor of apoptosis protein (IAP) family, regulating caspase activity, cell division or cell survival pathways through binding to their baculovirus AIP repeat (BIR) domains and/or by their ubiquitin-ligase RING zinc finger (RZF) activity. The following IAPs have been described so far: NAIP (neuronal apoptosis inhibitory protein; BIRC1), cIAP1 and cIAP2 (cellular inhibitor of apoptosis 1 and 2; BIRC2 and BIRC3, respectively), XIAP (X-chromosome binding IAP; BIRC4), survivin (BIRC5), BRUCE (Apollon; BIRC6), livin (BIRC7) and Ts-IAP (testis-specific IAP; BIRC8). Several studies suggested a potential contribution of IAPs to oncogenesis and resistance to anti-tumor treatment. Increased IAP expression was found in variety of human cancers, including hematological malignancies, such as leukemias and B-cell lymphomas. A correlation between the progression of those diseases and high levels of survivin or XIAP has been reported. Overexpression of XIAP in acute myeloid leukemia or survivin in acute lymphoblastic leukemia and diffuse large B-cell lymphoma have been indicated as an unfavorable prognostic factors. Elevated cellular levels of cIAP1, cIAP2, XIAP and survivin correlated with a progressive course of chronic lymphocytic leukemia. Thus, targeting IAPs with small-molecule inhibitors by their antisense approaches or natural IAP antagonist mimetics, may be an attractive strategy of anti-cancer treatment. Such agents can either directly induce apoptosis of tumor cells or sensitize them to other cytotoxic agents, hence overcoming drug-resistance. This review demonstrates the current knowledge on IAP molecular biology, as well as the mechanisms of action and the development of IAP-targeting agents for treatment of hematological

  7. Genomic and molecular aberrations in malignant peripheral nerve sheath tumor and their roles in personalized target therapy.

    PubMed

    Yang, Jilong; Du, Xiaoling

    2013-09-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors with a high rate of local recurrence and a significant tendency to metastasize. Its dismal outcome points to the urgent need to establish better therapeutic strategies for patients harboring MPNSTs. The investigations of genomic and molecular aberrations in MPNSTs which detect many chromosomal aberrations, pathway abnormalities, and specific molecular aberrant events would supply multiple potential therapy targets and contribute to achievement of personalized medicine. The involved genes in the significant gains aberrations include BIRC5, CCNE2, DAB2, DDX15, EGFR, DAB2, MSH2, CDK6, HGF, ITGB4, KCNK12, LAMA3, LOXL2, MET, and PDGFRA. The involved genes in the significant deletion aberrations include CDH1, GLTSCR2, EGR1, CTSB, GATA3, SULT2A1, GLTSCR2, HMMR/RHAMM, LICAM2, MMP13, p16/INK4a, RASSF2, NM-23H1, and TP53. These genetic aberrations involve in several important signaling pathways such as TFF, EGFR, ARF, IGF1R signaling pathways. The genomic and molecular aberrations of EGFR, IGF1R, SOX9, EYA4, TOP2A, ETV4, and BIRC5 exhibit great promise as personalized therapeutic targets for MPNST patients. PMID:23830351

  8. Delivery of Molecularly Targeted Therapy to Malignant Glioma, a Disease of the Whole Brain

    PubMed Central

    Agarwal, Sagar; Sane, Ramola; Oberoi, Rajneet; Ohlfest, John R.; Elmquist, William

    2016-01-01

    Glioblastoma multiforme, due to its invasive nature, can be considered a disease of the entire brain. Despite recent advances in surgery, radiotherapy and chemotherapy, current treatment regimens have only a marginal impact on patient survival. A crucial challenge faced by cancer researchers is to effectively deliver drugs to invasive glioma cells residing in a sanctuary within the central nervous system. The blood–brain barrier (BBB) restricts delivery of many small and large molecules into the brain. Drug delivery to the brain is further restricted by active efflux transporters present at the BBB, which transport drugs out of the brain back into the blood. Current clinical assessment of drug delivery and hence efficacy is based on the measured drug levels in the bulk tumor mass that is usually removed by surgery. Mounting evidence suggests that the inevitable relapse and lethality of glioblastoma multiforme is due to a failure to effectively treat invasive glioma cells. These invasive cells hide in areas of the brain that are shielded by an intact BBB where they continue to grow and give rise to the recurrent tumor. Effective delivery of chemotherapeutics to the invasive glioma cells is therefore critical, and long-term efficacy will depend upon the ability of a molecularly targeted agent to penetrate an intact and functional BBB throughout the entire brain. This review highlights the various aspects of the BBB, and also the brain–tumor-cell barrier, a barrier due to expression of efflux transporters in tumor cells, that together can significantly influence drug response. It then discusses the special challenge of glioma as a disease of the whole brain, which lends particular emphasis to the need to effectively deliver drugs across the BBB to reach both the central tumor and the invasive glioma cells. PMID:21676290

  9. A 2015 update on predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance.

    PubMed

    Dietel, M; Jöhrens, K; Laffert, M V; Hummel, M; Bläker, H; Pfitzner, B M; Lehmann, A; Denkert, C; Darb-Esfahani, S; Lenze, D; Heppner, F L; Koch, A; Sers, C; Klauschen, F; Anagnostopoulos, I

    2015-09-01

    In April 2013 our group published a review on predictive molecular pathology in this journal. Although only 2 years have passed many new facts and stimulating developments have happened in diagnostic molecular pathology rendering it worthwhile to present an up-date on this topic. A major technical improvement is certainly given by the introduction of next-generation sequencing (NGS; amplicon, whole exome, whole genome) and its application to formalin-fixed paraffin-embedded (FFPE) tissue in routine diagnostics. Based on this 'revolution' the analyses of numerous genetic alterations in parallel has become a routine approach opening the chance to characterize patients' malignant tumors much more deeply without increasing turn-around time and costs. In the near future this will open new strategies to apply 'off-label' targeted therapies, e.g. for rare tumors, otherwise resistant tumors etc. The clinically relevant genetic aberrations described in this review include mutation analyses of RAS (KRAS and NRAS), BRAF and PI3K in colorectal cancer, KIT or PDGFR alpha as well as BRAF, NRAS and KIT in malignant melanoma. Moreover, we present several recent advances in the molecular characterization of malignant lymphoma. Beside the well-known mutations in NSCLC (EGFR, ALK) a number of chromosomal aberrations (KRAS, ROS1, MET) have become relevant. Only very recently has the clinical need for analysis of BRCA1/2 come up and proven as a true challenge for routine diagnostics because of the genes' special structure and hot-spot-free mutational distribution. The genetic alterations are discussed in connection with their increasingly important role in companion diagnostics to apply targeted drugs as efficient as possible. As another aspect of the increasing number of druggable mutations, we discuss the challenges personalized therapies pose for the design of clinical studies to prove optimal efficacy particularly with respect to combination therapies of multiple targeted drugs and

  10. Targeted Radionuclide Therapy of Human Tumors

    PubMed Central

    Gudkov, Sergey V.; Shilyagina, Natalya Yu.; Vodeneev, Vladimir A.; Zvyagin, Andrei V.

    2015-01-01

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed. PMID:26729091

  11. Targeted Radionuclide Therapy of Human Tumors.

    PubMed

    Gudkov, Sergey V; Shilyagina, Natalya Yu; Vodeneev, Vladimir A; Zvyagin, Andrei V

    2015-12-28

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.

  12. TARGETED THERAPIES FOR PANCREATIC CANCER

    PubMed Central

    Danovi, S A; Wong, H H; Lemoine, N R

    2010-01-01

    Introduction Pancreatic cancer is a devastating malignancy and a leading cause of cancer mortality. Furthermore, early diagnosis represents a serious hurdle for clinicians as symptoms are non-specific and usually manifest in advanced, treatment-resistant stages of the disease. Sources of data Here, we review the rationale and progress of targeted therapies currently under investigation. Areas of agreement At present, chemoradiation regimes are administered palliatively, and produce only marginal survival benefits, underscoring a desperate need for more effective treatment modalities. Areas of controversy Questions have been raised as to whether erlotinib, the only targeted therapy to attain a statistically significant increase in median survival, is cost-effective. Growing points The last decade of research has provided us with a wealth of information regarding the molecular nature of pancreatic cancer, leading to the identification of signalling pathways and their respective components which are critical for the maintenance of the malignant phenotype. Areas timely for developing research These proteins thus represent ideal targets for novel molecular therapies which embody an urgently needed novel treatment strategy. PMID:18753179

  13. Gastric Carcinoma: Recent Trends in Diagnostic Biomarkers and Molecular Targeted Therapies.

    PubMed

    Majeed, Wafa; Iftikhar, Asra; Khaliq, Tanweer; Aslam, Bilal; Muzaffar, Humaira; Atta, Komal; Mahmood, Aisha; Waris, Shahid

    2016-01-01

    Gastric cancer is generally associated with poor survival rates and accounts for a remarkable proportion of global cancer mortality. The prevalence of gastric carcinoma varies in different regions of world and across teh various ethnic groups. On the basis of pathological assessment, gastric cancer can be categorized as intestinal and diffuse carcinomas. The etiology is diverse, including chemical carcinogen exposure, and high salt intake Helicobacter pylori also plays a vital role in the pathogenesis of certain gastric carcinomas. The development of gastric cancer involves various alterations in mRNAs, genes (GOLPH3, MTA2) and proteins (Coronins). miRNAs, Hsamir135b, MiR21, miR106b, miR17, miR18a, MiR21, miR106b, miR17, miR18a and MiRNA375, miRNA1955p are the latest diagnostic biomarkers which can facilitate the early diagnosis of gastric carcinomas. Recent development in the treatment strategies for gastric carcinoma include the introduction of monoclonal antibodies, TKI inhibitors, inhibitors of PDGFR β, VEGFR1, VEGFR2, AntiEGFR and antiHER2 agents which can be applied along with conventional therapies. PMID:27509928

  14. Basal Cell Carcinoma: From the Molecular Understanding of the Pathogenesis to Targeted Therapy of Progressive Disease

    PubMed Central

    Göppner, Daniela; Leverkus, Martin

    2011-01-01

    Due to intensified research over the past decade, the Hedgehog (HH) pathway has been identified as a pivotal defect implicated in roughly 25% of all cancers. As one of the most frequent cancer worldwide, the development of Basal cell carcinoma (BCC) due to activation of the HH pathway has been convincingly demonstrated. Thus the discovery of this central tumor-promoting signalling pathway has not only revolutionized the understanding of BCC carcinogenesis but has also enabled the development of a completely novel therapeutic approach. Targeting just a few of several potential mutations, HH inhibitors such as GDC-0449 achieved already the first promising results in metastatic or locally advanced BCC. This paper summarizes the current understanding of BCC carcinogenesis and describes the current “mechanism-based” therapeutic strategies. PMID:21253551

  15. What makes y family pols potential candidates for molecular targeted therapies and novel biotechnological applications.

    PubMed

    Tomasso, A; Casari, G; Maga, G

    2014-01-01

    Nature has evolved DNA polymerases (Pols) with different replication fidelity with the purpose of maintaining and faithfully propagating the genetic information. Besides the four classical Pols (Pol α, δ, ε, γ), mammalian cells contain at least twelve specialized Pols whose functions have been discovered recently and are still not completely elucidated. Among them, Pols belonging to the Y family contribute to cell survival by promoting DNA damage tolerance. They are primarily involved in the translesion synthesis (TLS) pathway, incorporating dNTPs in an error-free or error-prone manner, depending on the nature of the DNA lesion. From an evolutionary point of view, their high mutagenic potential seems to guarantee the proper flexibility of vital importance for both adaptation to a changeable environment and evolution of the species. These Pols are subjected to a complex network of regulation, since their uncontrolled access to DNA might promote mutagenesis and neoplastic transformation. Altered expression of Y family is a hallmark of several tumor types. In recent years, the unique structure and properties of Y family Pols have been exploited to design molecules that selectively interfere with the Pol of interest with minimal effect on normal cells. In addition, their distinctive properties have been applied to innovative techniques, such as compartmentalized self-replication (CSR), short-patch CSR, phage display and molecular breeding. These approaches are based on mutant Pols provided with novel and ameliorated features and find applications in various fields, from biotechnology to diagnostics, paleontology and forensic analysis.

  16. What makes y family pols potential candidates for molecular targeted therapies and novel biotechnological applications.

    PubMed

    Tomasso, A; Casari, G; Maga, G

    2014-01-01

    Nature has evolved DNA polymerases (Pols) with different replication fidelity with the purpose of maintaining and faithfully propagating the genetic information. Besides the four classical Pols (Pol α, δ, ε, γ), mammalian cells contain at least twelve specialized Pols whose functions have been discovered recently and are still not completely elucidated. Among them, Pols belonging to the Y family contribute to cell survival by promoting DNA damage tolerance. They are primarily involved in the translesion synthesis (TLS) pathway, incorporating dNTPs in an error-free or error-prone manner, depending on the nature of the DNA lesion. From an evolutionary point of view, their high mutagenic potential seems to guarantee the proper flexibility of vital importance for both adaptation to a changeable environment and evolution of the species. These Pols are subjected to a complex network of regulation, since their uncontrolled access to DNA might promote mutagenesis and neoplastic transformation. Altered expression of Y family is a hallmark of several tumor types. In recent years, the unique structure and properties of Y family Pols have been exploited to design molecules that selectively interfere with the Pol of interest with minimal effect on normal cells. In addition, their distinctive properties have been applied to innovative techniques, such as compartmentalized self-replication (CSR), short-patch CSR, phage display and molecular breeding. These approaches are based on mutant Pols provided with novel and ameliorated features and find applications in various fields, from biotechnology to diagnostics, paleontology and forensic analysis. PMID:24160487

  17. Development and Characterization of Bladder Cancer Patient-Derived Xenografts for Molecularly Guided Targeted Therapy

    PubMed Central

    Lin, Tzu-yin; Davis, Ryan R.; Keck, James; Ghosh, Paramita M.; Gill, Parkash; Airhart, Susan; Bult, Carol; Gandara, David R.; Liu, Edison; de Vere White, Ralph W.

    2015-01-01

    Background The overarching goal of this project is to establish a patient-derived bladder cancer xenograft (PDX) platform, annotated with deep sequencing and patient clinical information, to accelerate the development of new treatment options for bladder cancer patients. Herein, we describe the creation, initial characterization and use of the platform for this purpose. Methods and Findings Twenty-two PDXs with annotated clinical information were established from uncultured unselected clinical bladder cancer specimens in immunodeficient NSG mice. The morphological fidelity was maintained in PDXs. Whole exome sequencing revealed that PDXs and parental patient cancers shared 92–97% of genetic aberrations, including multiple druggable targets. For drug repurposing, an EGFR/HER2 dual inhibitor lapatinib was effective in PDX BL0440 (progression-free survival or PFS of 25.4 days versus 18.4 days in the control, p = 0.007), but not in PDX BL0269 (12 days versus 13 days in the control, p = 0.16) although both expressed HER2. To screen for the most effective MTT, we evaluated three drugs (lapatinib, ponatinib, and BEZ235) matched with aberrations in PDX BL0269; but only a PIK3CA inhibitor BEZ235 was effective (p<0.0001). To study the mechanisms of secondary resistance, a fibroblast growth factor receptor 3 inhibitor BGJ398 prolonged PFS of PDX BL0293 from 9.5 days of the control to 18.5 days (p<0.0001), and serial biopsies revealed that the MAPK/ERK and PIK3CA-AKT pathways were activated upon resistance. Inhibition of these pathways significantly prolonged PFS from 12 day of the control to 22 days (p = 0.001). To screen for effective chemotherapeutic drugs, four of the first six PDXs were sensitive to the cisplatin/gemcitabine combination, and chemoresistance to one drug could be overcome by the other drug. Conclusion The PDX models described here show good correlation with the patient at the genomic level and known patient response to treatment. This supports further

  18. Development and Evaluation of a Fluorescent Antibody-Drug Conjugate for Molecular Imaging and Targeted Therapy of Pancreatic Cancer.

    PubMed

    Knutson, Steve; Raja, Erum; Bomgarden, Ryan; Nlend, Marie; Chen, Aoshuang; Kalyanasundaram, Ramaswamy; Desai, Surbhi

    2016-01-01

    Antibodies are widely available and cost-effective research tools in life science, and antibody conjugates are now extensively used for targeted therapy, immunohistochemical staining, or in vivo diagnostic imaging of cancer. Significant advances in site-specific antibody labeling technologies have enabled the production of highly characterized and homogenous conjugates for biomedical purposes, and some recent studies have utilized site-specific labeling to synthesize bifunctional antibody conjugates with both imaging and drug delivery properties. While these advances are important for the clinical safety and efficacy of such biologics, these techniques can also be difficult, expensive, and time-consuming. Furthermore, antibody-drug conjugates (ADCs) used for tumor treatment generally remain distinct from conjugates used for diagnosis. Thus, there exists a need to develop simple dual-labeling methods for efficient therapeutic and diagnostic evaluation of antibody conjugates in pre-clinical model systems. Here, we present a rapid and simple method utilizing commercially available reagents for synthesizing a dual-labeled fluorescent ADC. Further, we demonstrate the fluorescent ADC's utility for simultaneous targeted therapy and molecular imaging of cancer both in vitro and in vivo. Employing non-site-specific, amine-reactive chemistry, our novel biopharmaceutical theranostic is a monoclonal antibody specific for a carcinoembryonic antigen (CEA) biomarker conjugated to both paclitaxel and a near-infrared (NIR), polyethylene glycol modified (PEGylated) fluorophore (DyLight™ 680-4xPEG). Using in vitro systems, we demonstrate that this fluorescent ADC selectively binds a CEA-positive pancreatic cancer cell line (BxPC-3) in immunofluorescent staining and flow cytometry, exhibits efficient internalization kinetics, and is cytotoxic. Model studies using a xenograft of BxPC-3 cells in athymic mice also show the fluorescent ADC's efficacy in detecting tumors in vivo and

  19. Development and Evaluation of a Fluorescent Antibody-Drug Conjugate for Molecular Imaging and Targeted Therapy of Pancreatic Cancer

    PubMed Central

    Knutson, Steve; Raja, Erum; Bomgarden, Ryan; Nlend, Marie; Chen, Aoshuang; Kalyanasundaram, Ramaswamy; Desai, Surbhi

    2016-01-01

    Antibodies are widely available and cost-effective research tools in life science, and antibody conjugates are now extensively used for targeted therapy, immunohistochemical staining, or in vivo diagnostic imaging of cancer. Significant advances in site-specific antibody labeling technologies have enabled the production of highly characterized and homogenous conjugates for biomedical purposes, and some recent studies have utilized site-specific labeling to synthesize bifunctional antibody conjugates with both imaging and drug delivery properties. While these advances are important for the clinical safety and efficacy of such biologics, these techniques can also be difficult, expensive, and time-consuming. Furthermore, antibody-drug conjugates (ADCs) used for tumor treatment generally remain distinct from conjugates used for diagnosis. Thus, there exists a need to develop simple dual-labeling methods for efficient therapeutic and diagnostic evaluation of antibody conjugates in pre-clinical model systems. Here, we present a rapid and simple method utilizing commercially available reagents for synthesizing a dual-labeled fluorescent ADC. Further, we demonstrate the fluorescent ADC’s utility for simultaneous targeted therapy and molecular imaging of cancer both in vitro and in vivo. Employing non-site-specific, amine-reactive chemistry, our novel biopharmaceutical theranostic is a monoclonal antibody specific for a carcinoembryonic antigen (CEA) biomarker conjugated to both paclitaxel and a near-infrared (NIR), polyethylene glycol modified (PEGylated) fluorophore (DyLight™ 680-4xPEG). Using in vitro systems, we demonstrate that this fluorescent ADC selectively binds a CEA-positive pancreatic cancer cell line (BxPC-3) in immunofluorescent staining and flow cytometry, exhibits efficient internalization kinetics, and is cytotoxic. Model studies using a xenograft of BxPC-3 cells in athymic mice also show the fluorescent ADC’s efficacy in detecting tumors in vivo and

  20. Evaluation of Three Small Molecular Drugs for Targeted Therapy to Treat Nonsmall Cell Lung Cancer

    PubMed Central

    Ni, Jun; Zhang, Li

    2016-01-01

    Objective: To guide the optimal selection among first-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in clinical practice. This review attempted to provide a thorough comparison among three first-generation EGFR-TKIs, namely icotinib, erlotinib, and gefitinib, with regard to their molecular structure, pharmacokinetic parameters, clinical data, adverse reactions, and contraindications. Data Sources: An electronic literature search of the PubMed database and Google Scholar for all the available articles regarding gefitinib, icotinib, and erlotinib in the English language from January 2005 to December 2014 was used. Study Selection: The search terms or keywords included but not limited to “lung cancer”, “nonsmall cell lung cancer (NSCLC)”, “epidemiology”, “EGFR”, “TKIs”, and “optimal selection”. Results: As suggested by this review, even though the three first-generation EGFR-TKIs share the quinazoline structure, erlotinib had the strongest apoptosis induction activity because of its use of a different side-chain. The pharmacokinetic parameters indicated that both erlotinib and icotinib are affected by food. The therapeutic window of erlotinib is narrow, and the recommended dosage is close to the maximum tolerable dosage. Icotinib enjoys a wider therapeutic window, and its concentration in the blood is within a safe dosage range even if it is administered with food. Based on multiple large-scale clinical trials, erlotinib is universally applied as the first-line treatment. In marked contrast, icotinib is available only in China as the second- or third-line therapeutic approach for treating advanced lung cancer. In addition, it exhibits a similar efficacy but better safety profile than gefitinib. Conclusions: Although there is a paucity of literature regarding whether icotinib is superior to erlotinib, its superior toxicity profile, noninferior efficacy, and lower cost indicate that it is a better alternative

  1. TNF-α in a molecularly targeted therapy of psoriasis and psoriatic arthritis.

    PubMed

    Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Mazurek, Urszula

    2016-03-01

    Psoriasis is a chronic immunological skin disease and patients with this disorder typically experience a significant decrease in their quality of life. The disease is traditionally managed with topical and systemic agents (retinoids, ciclosporin A, methotrexate), but these treatment options are often long-term and their effects can be inconsistent and not ideal. The use of biological drugs in dermatological treatment is relatively new and began in the early 2000s. It should be noted that, in most countries, in order for biological treatment to be administered, specific criteria must be met. The current treatment options for psoriasis and psoriatic arthritis include tumour necrosis factor alpha (TNF-α) blockers, interleukin (IL)-12 and IL-23 inhibitors, T cell inhibitors and B cell inhibitors. These classes of biological drugs are characterised by protein structure as well as high molecular weight and their effectiveness is evaluated based on the Psoriasis Area and Severity Index (PASI), Body Surface Area (BSA) and the Dermatology Life Quality Index (DLQI). TNF-α antagonists are one such class of biological drugs which includes infliximad, etanercept and adalimumab. Infliximab is a chimeric protein that is administered via intravenous infusions as a monotherapy in psoriasis vulgaris. Etanercept is indicated for use in both psoriasis vulgaris and psoriatic arthritis and it is the only drug that can be used as a treatment for children under the age of 8 with psoriasis. The drug is administered subcutaneously. Finally, adalimumab is a fully human monoclonal antibody that neutralises both free and membrane-bound TNF-α and is used in the treatment of psoriasis vulgaris and psoriatic arthritis. This article reviews the latest research in the use of TNF-α for the treatment of moderate to severe psoriasis and psoriatic arthritis. The results of research in this field are promising and confirm the effectiveness and safety of biological drugs as dermatological treatments

  2. TNF-α in a molecularly targeted therapy of psoriasis and psoriatic arthritis.

    PubMed

    Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Mazurek, Urszula

    2016-03-01

    Psoriasis is a chronic immunological skin disease and patients with this disorder typically experience a significant decrease in their quality of life. The disease is traditionally managed with topical and systemic agents (retinoids, ciclosporin A, methotrexate), but these treatment options are often long-term and their effects can be inconsistent and not ideal. The use of biological drugs in dermatological treatment is relatively new and began in the early 2000s. It should be noted that, in most countries, in order for biological treatment to be administered, specific criteria must be met. The current treatment options for psoriasis and psoriatic arthritis include tumour necrosis factor alpha (TNF-α) blockers, interleukin (IL)-12 and IL-23 inhibitors, T cell inhibitors and B cell inhibitors. These classes of biological drugs are characterised by protein structure as well as high molecular weight and their effectiveness is evaluated based on the Psoriasis Area and Severity Index (PASI), Body Surface Area (BSA) and the Dermatology Life Quality Index (DLQI). TNF-α antagonists are one such class of biological drugs which includes infliximad, etanercept and adalimumab. Infliximab is a chimeric protein that is administered via intravenous infusions as a monotherapy in psoriasis vulgaris. Etanercept is indicated for use in both psoriasis vulgaris and psoriatic arthritis and it is the only drug that can be used as a treatment for children under the age of 8 with psoriasis. The drug is administered subcutaneously. Finally, adalimumab is a fully human monoclonal antibody that neutralises both free and membrane-bound TNF-α and is used in the treatment of psoriasis vulgaris and psoriatic arthritis. This article reviews the latest research in the use of TNF-α for the treatment of moderate to severe psoriasis and psoriatic arthritis. The results of research in this field are promising and confirm the effectiveness and safety of biological drugs as dermatological treatments

  3. Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance

    PubMed Central

    Jotte, Robert M; Spigel, David R

    2015-01-01

    Molecularly targeted therapies, directed against the features of a given tumor, have allowed for a personalized approach to the treatment of advanced non-small-cell lung cancer (NSCLC). The reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib had undergone turbulent clinical development until it was discovered that these agents have preferential activity in patients with NSCLC harboring activating EGFR mutations. Since then, a number of phase 3 clinical trials have collectively shown that EGFR-TKI monotherapy is more effective than combination chemotherapy as first-line therapy for EGFR mutation-positive advanced NSCLC. The next generation of EGFR-directed agents for EGFR mutation-positive advanced NSCLC is irreversible TKIs against EGFR and other ErbB family members, including afatinib, which was recently approved, and dacomitinib, which is currently being tested in phase 3 trials. As research efforts continue to explore the various proposed mechanisms of acquired resistance to EGFR-TKI therapy, agents that target signaling pathways downstream of EGFR are being studied in combination with EGFR TKIs in molecularly selected advanced NSCLC. Overall, the results of numerous ongoing phase 3 trials involving the EGFR TKIs will be instrumental in determining whether further gains in personalized therapy for advanced NSCLC are attainable with newer agents and combinations. This article reviews key clinical trial data for personalized NSCLC therapy with agents that target the EGFR and related pathways, specifically based on molecular characteristics of individual tumors, and mechanisms of resistance. PMID:26310719

  4. Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance.

    PubMed

    Jotte, Robert M; Spigel, David R

    2015-11-01

    Molecularly targeted therapies, directed against the features of a given tumor, have allowed for a personalized approach to the treatment of advanced non-small-cell lung cancer (NSCLC). The reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib had undergone turbulent clinical development until it was discovered that these agents have preferential activity in patients with NSCLC harboring activating EGFR mutations. Since then, a number of phase 3 clinical trials have collectively shown that EGFR-TKI monotherapy is more effective than combination chemotherapy as first-line therapy for EGFR mutation-positive advanced NSCLC. The next generation of EGFR-directed agents for EGFR mutation-positive advanced NSCLC is irreversible TKIs against EGFR and other ErbB family members, including afatinib, which was recently approved, and dacomitinib, which is currently being tested in phase 3 trials. As research efforts continue to explore the various proposed mechanisms of acquired resistance to EGFR-TKI therapy, agents that target signaling pathways downstream of EGFR are being studied in combination with EGFR TKIs in molecularly selected advanced NSCLC. Overall, the results of numerous ongoing phase 3 trials involving the EGFR TKIs will be instrumental in determining whether further gains in personalized therapy for advanced NSCLC are attainable with newer agents and combinations. This article reviews key clinical trial data for personalized NSCLC therapy with agents that target the EGFR and related pathways, specifically based on molecular characteristics of individual tumors, and mechanisms of resistance. PMID:26310719

  5. Targeted molecular imaging in oncology.

    PubMed

    Yang, David J; Kim, E Edmund; Inoue, Tomio

    2006-01-01

    Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional pharmaceuticals have been developed. Application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of ongoing research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled radiotracers. 99mTc- and 68Ga-labeled agents using ethylenedicysteine (EC) as a chelator were synthesized and their potential uses to assess tumor targets were evaluated. 99mTc (t1/2 = 6 hr, 140 keV) is used for SPECT and 68Ga (t1/2 = 68 min, 511 keV) for PET. Molecular targets labeled with Tc-99m and Ga-68 can be utilized for prediction of therapeutic response, monitoring tumor response to treatment and differential diagnosis. Molecular targets for oncological research in (1) cell apoptosis, (2) gene and nucleic acid-based approach, (3) angiogenesis (4) tumor hypoxia, and (5) metabolic imaging are discussed. Numerous imaging ligands in these categories have been developed and evaluated in animals and humans. Molecular targets were imaged and their potential to redirect optimal cancer diagnosis and therapeutics were demonstrated. PMID:16485568

  6. HER2-targeted therapies in breast cancer

    PubMed Central

    Nahta, Rita

    2013-01-01

    HER2 was acknowledged as an important therapeutic target in breast cancer more than twenty-five years ago. Subsequently, significant basic science and translational discoveries have resulted in the approval of four HER2-targeted therapies over the past fifteen years. This editorial discusses future challenges regarding selection and development of treatments for HER2-positive breast cancer, which can only be met by continuing to support research efforts into the basic mechanisms by which cancer cells escape targeted therapies. Identifying specific molecular mechanisms underlying the sensitivity or resistance to each HER2-targeted agent will ultimately allow individualized therapy for each patient. PMID:23565676

  7. Targeting tumor suppressor genes for cancer therapy.

    PubMed

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  8. The rationale for targeted therapies in medulloblastoma.

    PubMed

    MacDonald, Tobey J; Aguilera, Dolly; Castellino, Robert C

    2014-01-01

    Medulloblastoma (MB) is the most frequent malignant brain tumor in children. Patients with MB who are classified as having high-risk disease or those with recurrent disease respond poorly to current therapies and have an increased risk of MB-related mortality. Preclinical studies and molecular profiling of MB tumors have revealed upregulation or activation of several key signaling pathways such as the sonic hedgehog and WNT pathways. Although the exact mechanisms underlying MB tumorigenesis remain poorly understood, inhibiting these key pathways with molecularly targeted therapies represents an important approach to improving MB outcomes. Several molecularly targeted therapies are already under clinical investigation in MB patients. We discuss current preclinical and clinical data, as well as data from clinical trials of targeted therapies that are either ongoing or in development for MB. PMID:24305711

  9. Potentiating the efficacy of molecular targeted therapy for hepatocellular carcinoma by inhibiting the insulin-like growth factor pathway.

    PubMed

    Ou, Da-Liang; Lee, Bin-Shyun; Chang, Ya-Chi; Lin, Liang-In; Liou, Jun-Yang; Hsu, Chiun; Cheng, Ann-Lii

    2013-01-01

    Insulin-like growth factor (IGF) signaling pathway is an important regulatory mechanism of tumorigenesis and drug resistance in many cancers. The present study explored the potential synergistic effects between IGF receptor (IGFR) inhibition and other molecular targeted agents (MTA) in HCC cells. HCC cell lines (Hep3B, PLC5, and SK-Hep1) and HUVECs were tested. The MTA tested included sorafenib, sunitinib, and the IGFR kinase inhibitor NVP-AEW541. The potential synergistic antitumor effects were tested by median dose effect analysis and apoptosis assay in vitro and by xenograft models in vivo. The activity and functional significance of pertinent signaling pathways and expression of apoptosis-related proteins were measured by RNA interference and Western blotting. We found that IGF can activate IGFR and downstream AKT signaling activities in all the HCC cells tested, but the growth-stimulating effect of IGF was most prominent in Hep3B cells. NVP-AEW541 can abrogate IGF-induced activation of IGFR and AKT signaling in HCC cells. IGF can increase the resistance of HCC cells to sunitinib. The apoptosis-inducing effects of sunitinib, but not sorafenib, were enhanced when IGFR signaling activity was inhibited by NVP-AEW541 or IGFR knockdown. Chk2 kinase activation was found contributory to the synergistic anti-tumor effects between sunitinib and IGFR inhibition. Our data indicate that the apoptosis-potentiating effects of IGFR inhibition for HCC may be drug-specific. Combination therapy of IGFR inhibitors with other MTA may improve the therapeutic efficacy in HCC.

  10. Type of Cancer Treatment: Targeted Therapy

    Cancer.gov

    Information about the role that targeted therapies play in cancer treatment. Includes how targeted therapies work against cancer, who receives targeted therapies, common side effects, and what to expect when having targeted therapies.

  11. Cardiotoxicity associated with targeted cancer therapies

    PubMed Central

    CHEN, ZI; AI, DI

    2016-01-01

    Compared with traditional chemotherapy, targeted cancer therapy is a novel strategy in which key molecules in signaling pathways involved in carcinogenesis and tumor spread are inhibited. Targeted cancer therapy has fewer adverse effects on normal cells and is considered to be the future of chemotherapy. However, targeted cancer therapy-induced cardiovascular toxicities are occasionally critical issues in patients who receive novel anticancer agents, such as trastuzumab, bevacizumab, sunitinib and imatinib. The aim of this review was to discuss these most commonly used drugs and associated incidence of cardiotoxicities, including left ventricular dysfunction, heart failure, hypertension and thromboembolic events, as well as summarize their respective molecular mechanisms of cardiovascular adverse effects. PMID:27123262

  12. Molecular therapy for glioblastoma.

    PubMed

    Karpati, G; Li, H; Nalbantoglu, J

    1999-10-01

    Glioblastoma (GB), the relatively frequent and most malignant form of primary brain tumor, is fatal within 1 to 2 years of onset of symptoms, despite conventional therapy. Molecular therapy promises to be an effective and possibly curative treatment. Several molecular strategies have been tested, either in animal models or clinical trials. These include: prodrug activating systems, introduction of tumor suppressor or cell-cycle-related genes, inhibition of growth factors and/or their receptors, inhibition of neovascularization, immunomodulatory maneuvers, oncolytic viruses and inhibition of matrix metalloproteinases. Of special interest for the development of optimal molecular therapy of GB, is the choice of the most efficient and least toxic gene vectors (adenovirus, retrovirus, herpes simplex virus), the route of administration of the therapeutic agent (intratumoral with or without debulking and intracarotid), avoidance of collateral damage to the perineoplastic neuropil and adequate preclinical studies. The ultimate molecular therapy will probably involve the application of multiple simultaneous (combinatorial) therapeutic modalities. The safety and efficiency of these in humans can only be judged by properly controlled therapeutic trials. PMID:11249660

  13. Molecular therapy of pancreatic cancer.

    PubMed

    Plentz, R R; Manns, M P; Greten, T F

    2010-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of mortality and morbidity. The 5-year survival rate remains less than 5% and in contrast to other solid tumors, survial has changed only little in the last decade. Overall PDAC treatment shows only limited response to conventional chemotherapeutic agents. Several trials on therapy are ongoing and new targeted agents are in development to improve the treatment outcome of this deadly disease. However, our review presents the current developments of molecular therapies, supports the translational PDAC research and encourage you to take part in further clinical studies. PMID:20386525

  14. Targeted therapy for sarcomas

    PubMed Central

    Forscher, Charles; Mita, Monica; Figlin, Robert

    2014-01-01

    Sarcomas are tumors of mesenchymal origin that make up approximately 1% of human cancers. They may arise as primary tumors in either bone or soft tissue, with approximately 11,280 soft tissue tumors and 2,650 bone tumors diagnosed each year in the United States. There are at least 50 different subtypes of soft tissue sarcoma, with new ones described with ever-increasing frequency. One way to look at sarcomas is to divide them into categories on the basis of their genetic make-up. One group of sarcomas has an identifiable, relatively simple genetic signature, such as the X:18 translocation seen in synovial sarcoma or the 11:22 translocation seen in Ewing’s sarcoma. These specific abnormalities often lead to the presence of fusion proteins, such as EWS-FLI1 in Ewing’s sarcoma, which are helpful as diagnostic tools and may become therapeutic targets in the future. Another group of sarcomas is characterized by complex genetic abnormalities as seen in leiomyosarcoma, osteosarcoma, and undifferentiated sarcoma. It is important to keep these distinctions in mind when contemplating the development of targeted agents for sarcomas. Different abnormalities in sarcoma could be divided by tumor subtype or by the molecular or pathway abnormality. However, some existing drugs or drugs in development may interfere with or alter more than one of the presented pathways. PMID:24669185

  15. The molecular basis for novel therapies.

    PubMed

    Hu, Jethro; Kesari, Santosh

    2012-01-01

    The era of targeted therapy for glioblastoma has arrived, but results have been modest thus far. This review highlights the challenges inherent to treating glioblastoma with targeted therapy and delves into the complex signaling networks that form the molecular basis of novel therapies. Past failures, current challenges, and future possibilities are discussed in the context of the classic "oncogenic" signaling network, as well as the "nononcogenic" stress response network.

  16. Targeted Therapies for Hepatocellular Carcinoma

    PubMed Central

    Villanueva, Augusto; Llovet, Josep M.

    2013-01-01

    Unlike most solid tumors, incidence and mortality of hepatocellular carcinoma (HCC) have increased in the US and Europe in the last decade. Most patients are diagnosed at advanced stages, so there is an urgent need for new systemic therapies. Sorafenib, a tyrosine kinase inhibitor (TKI), has demonstrated clinical efficacy in patients with HCC. Studies in patients with lung, breast, or colorectal cancers indicated that the genetic heterogeneity of cancer cells within a tumor affect its response to therapeutics designed to target specific molecules. When tumor progression requires alterations in specific oncogenes (oncogene addiction), drugs that selectively block their products might slow tumor growth. However, no specific oncogene alterations are yet known to be implicated in HCC progression, so it is important to improve our understanding of its molecular pathogenesis. There are currently many clinical trials evaluating TKIs for HCC, including those tested in combination with (e.g., erlotinib) or compared to (e.g., linifanib) sorafenib as a first-line therapy. For patients that do not respond or are intolerant to sorafenib, TKIs such as brivanib, everolimus, and monoclonal antibodies (e.g. ramucirumab) are being tested as second-line therapies. There are early-stage trials investigating the efficacy for up to 60 reagents for HCC. Together, these studies might change the management strategy for HCC, and combination therapies might be developed for patients with advanced HCC. Identification of oncogenes that mediate progression of HCC, and trials that monitor their products as biomarkers, might lead to personalized therapy; reagents that interfere with signaling pathways required for HCC progression might be used to treat selected populations, and thereby maximize the efficacy and cost-benefit. PMID:21406195

  17. Molecular and cellular targets.

    PubMed

    Bode, Ann M; Dong, Zigang

    2006-06-01

    Carcinogenesis is a multistage process consisting of initiation, promotion, and progression stages and each stage may be a possible target for chemopreventive agents. A significant outcome of these investigations on the elucidation of molecular and cellular mechanisms is the explication of signal transduction pathways induced by tumor promoters in cancer development. The current belief today is that cancer may be prevented or treated by targeting specific cancer genes, signaling proteins, and transcription factors. The molecular mechanisms explaining how normal cells undergo neoplastic transformation induced by tumor promoters are rapidly being clarified. Accumulating research evidence suggests that many of dietary factors, including tea compounds, may be used alone or in combination with traditional chemotherapeutic agents to prevent or treat cancer. The potential advantage of many natural or dietary compounds seems to focus on their potent anticancer activity combined with low toxicity and very few adverse side effects. This review summarizes some of our recent work regarding the effects of the various tea components on signal transduction pathways involved in neoplastic cell transformation and carcinogenesis. PMID:16688728

  18. Molecular and Cellular Targets

    PubMed Central

    Bode, Ann M.; Dong, Zigang

    2008-01-01

    Carcinogenesis is a multistage process consisting of initiation, promotion and progression stages and each stage may be a possible target for chemopreventive agents. A significant outcome of these investigations on the elucidation of molecular and cellular mechanisms is the explication of signal transduction pathways induced by tumor promoters in cancer development. The current belief today is that cancer may be prevented or treated by targeting specific cancer genes, signaling proteins and transcription factors. The molecular mechanisms explaining how normal cells undergo neoplastic transformation induced by tumor promoters are rapidly being clarified. Accumulating research evidence suggests that many of dietary factors, including tea compounds, may be used alone or in combination with traditional chemotherapeutic agents to prevent or treat cancer. The potential advantage of many natural or dietary compounds seems to focus on their potent anticancer activity combined with low toxicity and very few adverse side effects. This review summarizes some of our recent work regarding the effects of the various tea components on signal transduction pathways involved in neoplastic cell transformation and carcinogenesis. PMID:16688728

  19. Targeted Cancer Therapy Systems: An In Silico Study of Radiohalogenated Ligands in the Estrogen Receptor and the Synthesis of a Molecular Toolkit for the Fabrication of Customizable Nanoparticles

    NASA Astrophysics Data System (ADS)

    Barnsley, Kelton K.

    Chemotherapy is often limited by off-target toxicity and the development of multi-drug resistance in response to treatment. Strategies which reduce off-target toxicity by passively or actively targeting cancer cells may improve the efficacy of chemotherapy. Herein, two projects relating to targeted therapy are described. In the first project, the binding modes of 1,1-bis(4-hydroxyphenyl)-2-phenylethylenes (THPEs), a class of synthetic estrogens previously developed by our group, in the human estrogen receptor alpha-ligand binding domain were studied using molecular modeling programs YASARA AutoDock and Schrodinger Glide. The results were internally consistent and supported the observation that a bromine or iodine atom at the 2-position of the THPEs contributes positively to their binding in the estrogen receptor. In the second project, a "molecular toolkit" approach to the synthesis of multifunctional nanoparticles was envisioned. Our hypothesis was that the physical and chemical properties of the final product could be defined by controlling the types and relative amounts of prefunctionalized polymer units (PPUs) as well as the emulsification conditions. The design and syntheses of heterobifunctional linkers and other components for a preliminary molecular toolkit are reported, and the literature on select heterobifunctional aliphatic linkers is examined.

  20. Modeling leukocyte trafficking at the human blood-nerve barrier in vitro and in vivo geared towards targeted molecular therapies for peripheral neuroinflammation.

    PubMed

    Greathouse, Kelsey M; Palladino, Steven P; Dong, Chaoling; Helton, Eric S; Ubogu, Eroboghene E

    2016-01-01

    Peripheral neuroinflammation is characterized by hematogenous mononuclear leukocyte infiltration into peripheral nerves. Despite significant clinical knowledge, advancements in molecular biology and progress in developing specific drugs for inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis, there are currently no specific therapies that modulate pathogenic peripheral nerve inflammation. Modeling leukocyte trafficking at the blood-nerve barrier using a reliable human in vitro model and potential intravital microscopy techniques in representative animal models guided by human observational data should facilitate the targeted modulation of the complex inflammatory cascade needed to develop safe and efficacious therapeutics for immune-mediated neuropathies and chronic neuropathic pain. PMID:26732309

  1. Targeted therapies in gastroesophageal cancer.

    PubMed

    Kasper, Stefan; Schuler, Martin

    2014-05-01

    Gastroesophageal cancers comprising gastric cancer (GC), and cancers of the distal oesophagus and gastroesophageal junction (GEJ) are a global health threat. In Western populations the incidence of GC is declining which has been attributed to effective strategies of eradicating Helicobacter pylori infection. To the contrary, GEJ cancers are on the rise, with obesity and reflux disease being viewed as major risk factors. During the past decade perioperative chemotherapy, pre- or postoperative radio-chemotherapy, and, in Asian populations, adjuvant chemotherapy have been shown to improve the outcome of patients with advanced GC and GEJ cancers suited for surgery. Less progress has been made in the treatment of metastatic disease. The introduction of trastuzumab in combination with platinum/fluoropyrimidine-based chemotherapy for patients with HER2-positive disease has marked a turning point. Recently, several novel agents targeting growth factor receptors, angiogenic pathways, adhesion molecules and mediators of intracellular signal transduction have been clinically explored. Here we summarise the current status and future developments of molecularly targeted therapies in GC and GEJ cancer.

  2. New targeted therapies in pancreatic cancer

    PubMed Central

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-01-01

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways. PMID:26034349

  3. Oral targeted therapy for cancer

    PubMed Central

    Carrington, Christine

    2015-01-01

    SUMMARY Oral targeted therapies are increasingly being used to treat cancer. They work by interfering with specific molecules or pathways involved in tumour growth. It is essential that health professionals managing patients taking these drugs have appropriate training and skills. They should be aware of potential adverse effects and drug interactions, and be able to manage toxicities when they occur. Despite the selectivity of these targeted therapies, they still have serious adverse effects including skin reactions, diarrhoea and altered organ function. PMID:26648656

  4. [Perspectives of the stomach cancer treatment: the introduction of molecular targeted therapy and the hope for cure].

    PubMed

    Cheung, Dae Young; Kim, Jae Kwang

    2013-03-25

    The overall survival of patients with gastric cancer has increased markedly in Korea, even higher than those of developed nations in Western world. It is due to the virtue of Korean National Cancer Screening Program and nowadays more than half of patients are diagnosed at the early stage of gastric cancer. However, for patients with unresectable gastric cancer, the outcomes of traditional cytotoxic chemotherapy regimens stay at a median survival of 9-11 months. The knowledge of cancer biology and the data from gene expression profiling has explosively expanded. Alternations in the expression of receptor tyrosine kinases pathways including Human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), phosphatydyl inositol 3 kinase/mammalian target of rapamycin (PI3K/mTOR), hepatocyte growth factor receptor (HGFR/MET), and fibroblast growth factor receptor (FGFR) were proved to be critical in cancer cell survival and biological agents targeting those altered receptor tyrosine kinases, their ligands and downstream effector molecules are developed for anti-cancer purpose. Until now, only trastuzumab succeeded to significantly increase overall survival of patients with HER2 overexpressing gastric cancer. Other agents including bevacizumab, gefitinib, erlotinib, and lapatinib failed to achieve the efficacy in survival gain over standard chemotherapy. Insights about the variations between regions, races, and individuals call for the effort to find reliable predictive biomarkers for drug efficacy and to design finely stratified clinical trials. Compared to current treatment paradigms, it is hoped that molecularly targeted treatment along with conventional cytotoxic chemotherapy will lead to significant gains in survival.

  5. [Molecular based targets and endometrial cancer].

    PubMed

    Stoyanov, St; Ananiev, J; Ivanova, K; Velev, V; Todorova, M; Gulubova, M

    2015-01-01

    In recent years, increasing attention has been paid to the rate of spread of endometrial carcinoma, especially in the postmenopausal period. Along with routine diagnostic methods, giving information on the location and progression of the disease, there are some morphological methods determining very accurately the correlations in the development of this type of cancer and his prognosis. Moreover--in recent years, the accumulated information about the molecular profile of this type of cancer made it possible to implement a number of new drugs against the so-called molecular therapy -'targets' in the neoplastic process. Significant proportion of cases show response rates, it is more hope in the development of more successful formulas and target -based therapy. In this review, we present and discuss the role of certain molecular markers as potential indicators of prognosis and development, as well as determining the target treatment of endometrial carcinoma.

  6. [Molecular based targets and endometrial cancer].

    PubMed

    Stoyanov, St; Ananiev, J; Ivanova, K; Velev, V; Todorova, M; Gulubova, M

    2015-01-01

    In recent years, increasing attention has been paid to the rate of spread of endometrial carcinoma, especially in the postmenopausal period. Along with routine diagnostic methods, giving information on the location and progression of the disease, there are some morphological methods determining very accurately the correlations in the development of this type of cancer and his prognosis. Moreover--in recent years, the accumulated information about the molecular profile of this type of cancer made it possible to implement a number of new drugs against the so-called molecular therapy -'targets' in the neoplastic process. Significant proportion of cases show response rates, it is more hope in the development of more successful formulas and target -based therapy. In this review, we present and discuss the role of certain molecular markers as potential indicators of prognosis and development, as well as determining the target treatment of endometrial carcinoma. PMID:25909140

  7. Optimizing Molecular-Targeted Therapies in Ovarian Cancer: The Renewed Surge of Interest in Ovarian Cancer Biomarkers and Cell Signaling Pathways

    PubMed Central

    Hiss, Donavon

    2012-01-01

    The hallmarks of ovarian cancer encompass the development of resistance, disease recurrence and poor prognosis. Ovarian cancer cells express gene signatures which pose significant challenges for cancer drug development, therapeutics, prevention and management. Despite enhancements in contemporary tumor debulking surgery, tentative combination regimens and abdominal radiation which can achieve beneficial response rates, the majority of ovarian cancer patients not only experience adverse effects, but also eventually relapse. Therefore, additional therapeutic possibilities need to be explored to minimize adverse events and prolong progression-free and overall response rates in ovarian cancer patients. Currently, a revival in cancer drug discovery is devoted to identifying diagnostic and prognostic ovarian cancer biomarkers. However, the sensitivity and reliability of such biomarkers may be complicated by mutations in the BRCA1 or BRCA2 genes, diverse genetic risk factors, unidentified initiation and progression elements, molecular tumor heterogeneity and disease staging. There is thus a dire need to expand existing ovarian cancer therapies with broad-spectrum and individualized molecular targeted approaches. The aim of this review is to profile recent developments in our understanding of the interrelationships among selected ovarian tumor biomarkers, heterogeneous expression signatures and related molecular signal transduction pathways, and their translation into more efficacious targeted treatment rationales. PMID:22481932

  8. Tamoxifen Resistance: Emerging Molecular Targets.

    PubMed

    Rondón-Lagos, Milena; Villegas, Victoria E; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM's biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein-coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  9. Tamoxifen Resistance: Emerging Molecular Targets

    PubMed Central

    Rondón-Lagos, Milena; Villegas, Victoria E.; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G.

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  10. Runx1 regulation of Pu.1 corepressor/coactivator exchange identifies specific molecular targets for leukemia differentiation therapy.

    PubMed

    Gu, Xiaorong; Hu, Zhenbo; Ebrahem, Quteba; Crabb, John S; Mahfouz, Reda Z; Radivoyevitch, Tomas; Crabb, John W; Saunthararajah, Yogen

    2014-05-23

    Gene activation requires cooperative assembly of multiprotein transcription factor-coregulator complexes. Disruption to cooperative assemblage could underlie repression of tumor suppressor genes in leukemia cells. Mechanisms of cooperation and its disruption were therefore examined for PU.1 and RUNX1, transcription factors that cooperate to activate hematopoietic differentiation genes. PU.1 is highly expressed in leukemia cells, whereas RUNX1 is frequently inactivated by mutation or translocation. Thus, coregulator interactions of Pu.1 were examined by immunoprecipitation coupled with tandem mass spectrometry/Western blot in wild-type and Runx1-deficient hematopoietic cells. In wild-type cells, the NuAT and Baf families of coactivators coimmunoprecipitated with Pu.1. Runx1 deficiency produced a striking switch to Pu.1 interaction with the Dnmt1, Sin3A, Nurd, CoRest, and B-Wich corepressor families. Corepressors of the Polycomb family, which are frequently inactivated by mutation or deletion in myeloid leukemia, did not interact with Pu.1. The most significant gene ontology association of Runx1-Pu.1 co-bound genes was with macrophages, therefore, functional consequences of altered corepressor/coactivator exchange were examined at Mcsfr, a key macrophage differentiation gene. In chromatin immunoprecipitation analyses, high level Pu.1 binding to the Mcsfr promoter was not decreased by Runx1 deficiency. However, the Pu.1-driven shift from histone repression to activation marks at this locus, and terminal macrophage differentiation, were substantially diminished. DNMT1 inhibition, but not Polycomb inhibition, in RUNX1-translocated leukemia cells induced terminal differentiation. Thus, RUNX1 and PU.1 cooperate to exchange corepressors for coactivators, and the specific corepressors recruited to PU.1 as a consequence of RUNX1 deficiency could be rational targets for leukemia differentiation therapy.

  11. Androgen deprivation induces phenotypic plasticity and promotes resistance to molecular targeted therapy in a PTEN-deficient mouse model of prostate cancer.

    PubMed

    De Velasco, Marco A; Tanaka, Motoyoshi; Yamamoto, Yutaka; Hatanaka, Yuji; Koike, Hiroyuki; Nishio, Kazuto; Yoshikawa, Kazuhiro; Uemura, Hirotsugu

    2014-09-01

    Castration-resistant prostate cancer is an incurable heterogeneous disease that is characterized by a complex multistep process involving different cellular and biochemical changes brought on by genetic and epigenetic alterations. These changes lead to the activation or overexpression of key survival pathways that also serve as potential therapeutic targets. Despite promising preclinical results, molecular targeted therapies aimed at such signaling pathways have so far been dismal. In the present study, we used a PTEN-deficient mouse model of prostate cancer to show that plasticity in castration-resistant tumors promotes therapeutic escape. Unlike castration-naïve tumors which depend on androgen receptor and PI3K/AKT signal activation for growth and survival, castration-resistant tumors undergo phenotypic plasticity leading to increased intratumoral heterogeneity. These tumors attain highly heterogeneous phenotypes that are characterized by cancer cells relying on alternate signal transduction pathways for growth and survival, such as mitogen-activated protein kinase and janus kinase/signal transducer and activator of transcription, and losing their dependence on PI3K signaling. These features thus enabled castration-resistant tumors to become insensitive to the therapeutic effects of PI3K/AKT targeted therapy. Overall, our findings provide evidence that androgen deprivation drives phenotypic plasticity in prostate cancer cells and implicate it as a crucial contributor to therapeutic resistance in castration-resistant prostate cancer. Therefore, incorporating intratumoral heterogeneity in a dynamic tumor model as a part of preclinical efficacy determination could improve prediction for response and provide better rationale for the development of more effective therapies. PMID:24986896

  12. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance.

    PubMed

    Gao, Yan; Shen, Jacson K; Milane, Lara; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-01-01

    Recent advances in cancer molecular biology have resulted in parallel and unprecedented progress in the development of targeted cancer therapy. Targeted therapy can provide higher efficacy and lower toxicity than conventional chemotherapy for cancer. However, like traditional chemotherapy, molecularly targeted cancer therapy also faces the challenge of drug resistance. Multiple mechanisms are responsible for chemotherapy resistance in tumors, including over-expression of efflux transporters, somatic alterations of drug targets, deregulation of apoptosis, and numerous pharmacokinetic issues. Nanotechnology based approaches are proving to be efficacious in overcoming drug resistance in cancer. Combination of targeted therapies with nanotechnology approaches is a promising strategy to overcome targeted therapy drug resistance in cancer treatment. This review discusses the mechanisms of targeted drug resistance in cancer and discusses nanotechnology approaches to circumvent this resistance.

  13. Female Adnexal Tumor of Probable Wolffian Origin (FATWO) With Recurrence 3 Years Postsurgery: C-kit Gene Analysis and a Possibility of a New Molecular Targeted Therapy

    PubMed Central

    Syriac, Susanna; Durie, Nicole; Kesterson, Joshua; Lele, Shashrikant; Mhawech-Fauceglia, Paulette

    2016-01-01

    Summary This is the case report of a 38-year-old woman who presented with a mass of the right broad ligament that was diagnosed as a female adnexal tumor of probable Wollfian origin (FATWO). The patient was treated with a simple mass excision. Three years after the excision, the patient presented with uterine bleeding. A total abdominal hysterectomy was advised. Intraoperative histologic consultation showed a poorly differentiated tumor on the surface of the left ovary. After extensive immunohistochemistry analysis and after reviewing the histology slides from the primary tumor, the final diagnosis was concluded to be recurrent FATWO on the surface of the ovary. C-kit immunohistochemistry was found to be strongly positive. Polymerase chain reaction amplification of C-kit genes on exons 9, 11, 13, and 17 and of PDGFR gene on exons 12 and 18 showed no mutational changes. Owing to the limited options in treating recurrent disease and the lack of prognostic factors for recurrence or metastasis, the patient was started on 400 mg of imatinib mesylate therapy for 6 months. In addition, the patient is undergoing continuous follow-up by computed tomographic imaging every 6 months. As chemotherapy and radiation therapy for recurrent or metastatic FATWO are most often unsuccessful, a molecular targeted therapy, such as tyrosine kinase inhibitor, could be considered. However, collective data are needed from multiple centers to determine its effectiveness in these patients. PMID:21464731

  14. Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies.

    PubMed

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-06-01

    Accumulating evidence suggests that cancer can be envisioned as a "signaling disease", in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to "targeted" agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here, we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in haematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects.

  15. Overcoming resistance to molecularly targeted anticancer therapies: rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies

    PubMed Central

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-01-01

    Accumulating evidence suggests that cancer can be envisioned as a “signaling disease”, in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to “targeted” agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in hematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects. PMID:17482503

  16. Molecularly Targeted Therapy of Human Hepatocellular Carcinoma Xenografts with Radio-iodinated Anti-VEGFR2 Murine-Human Chimeric Fab

    PubMed Central

    Huang, Jianfei; Tang, Qi; Wang, Changjun; Yu, Huixin; Feng, Zhenqing; Zhu, Jin

    2015-01-01

    Vascular endothelial growth factor receptor 2 (VEGFR2) is traditionally regarded as an important therapeutic target in a wide variety of malignancies, such as hepatocellular carcinoma (HCC). We previously generated a murine-human anti-VEGFR2 chimeric Fab (cFab), named FA8H1, which has the potential to treat VEGFR2-overexpressing solid tumors. Here, we investigated whether FA8H1 can be used as a carrier in molecularly targeted therapy in HCC xenograft models. FA8H1 was labeled with 131I, and two HCC xenograft models were generated using BEL-7402 (high VEGFR2-expressing) and SMMC-7721 (low VEGFR2-expressing) cells, which were selected from five HCC cell lines. The biodistribution of 131I-FA8H1 was determined in both models by Single-Photon Emission Computed Tomography and therapeutic effects were monitored in nude mice bearing BEL-7402 xenografts. Finally, we determined the involvement of necrosis and apoptotic pathways in treated mice using immunohistochemistry. 131I-FA8H1 levels were dramatically reduced in blood and other viscera. The therapeutic effect of 131I-labeled FA8H1 in the BEL-7402 model was significantly better than that by 131I and FA8H1 alone. We observed extensive necrosis in the treated tumors, and both FasL and caspase 3 were up-regulated. Thus, 131I-anti-VEGFR2 cFab has the potential to be used for molecularly targeted treatment of HCC overexpressing VEGFR2. PMID:26021484

  17. Targeted Therapy for Hepatocellular Carcinoma.

    PubMed

    Ohri, Nitin; Kaubisch, Andreas; Garg, Madhur; Guha, Chandan

    2016-10-01

    Hepatocellular cancer (HCC) is a leading cause of cancer death worldwide, and most patients who are diagnosed with HCC are ineligible for curative local therapy. The targeted agent sorafenib provides modest survival benefits in the setting of advanced disease. Novel systemic treatment options for HCC are sorely needed. In this review, we identify and categorize the drugs and targets that are in various phases of testing for use against HCC. We also focus on the potential for combining these agents with radiotherapy. This would help identify directions for future study that are likely to yield positive findings and improve outcomes for patients with HCC. PMID:27619254

  18. Targeted Radionuclide Therapy of Melanoma.

    PubMed

    Norain, Abdullah; Dadachova, Ekaterina

    2016-05-01

    An estimated 60,000 individuals in the United States and 132,000 worldwide are yearly diagnosed with melanoma. Until recently, treatment options for patients with stages III-IV metastatic disease were limited and offered marginal, if any, improvement in overall survival. The situation changed with the introduction of B-RAF inhibitors and anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1 immunotherapies into the clinical practice. With only some patients responding well to the immune therapies and with very serious side effects and high costs of immunotherapy, there is still room for other approaches for the treatment of metastatic melanoma. Targeted radionuclide therapy of melanoma could be divided into the domains of radioimmunotherapy (RIT), radiolabeled peptides, and radiolabeled small molecules. RIT of melanoma is currently experiencing a renaissance with the clinical trials of alpha-emitter (213)Bi-labeled and beta-emitter (188)Rhenium-labeled monoclonal antibodies in patients with metastatic melanoma producing encouraging results. The investigation of the mechanism of efficacy of melanoma RIT points at killing of melanoma stem cells by RIT and involvement of immune system such as complement-dependent cytotoxicity. The domain of radiolabeled peptides for targeted melanoma therapy has been preclinical so far, with work concentrated on radiolabeled peptide analogues of melanocyte-stimulating hormone receptor and on melanin-binding peptides. The field of radiolabeled small molecule produced radioiodinated benzamides that cross the cellular membrane and bind to the intracellular melanin. The recent clinical trial demonstrated measurable antitumor effects and no acute or midterm toxicities. We are hopeful that the targeted radionuclide therapy of metastatic melanoma would become a clinical reality as a stand-alone therapy or in combination with the immunotherapies such as anti-PD1 programmed cell death protein 1 monoclonal antibodies

  19. Renal Toxicities of Targeted Therapies.

    PubMed

    Abbas, Anum; Mirza, Mohsin M; Ganti, Apar Kishor; Tendulkar, Ketki

    2015-12-01

    With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. This review will focus on these renal toxicities from commonly used targeted agents. This review discusses the mechanisms of these side effects and management strategies. Anti-vascular endothelial growth factor (VEGF) agents including the monoclonal antibody bevacizumab, aflibercept (VEGF trap), and anti-VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) all cause hypertension, whereas some of them result in proteinuria. Monoclonal antibodies against the human epidermal growth factor receptor (HER) family of receptors, such as cetuximab and panitumumab, cause electrolyte imbalances including hypomagnesemia and hypokalemia due to the direct nephrotoxic effect of the drug on renal tubules. Cetuximab may also result in renal tubular acidosis. The TKIs, imatinib and dasatinib, can result in acute or chronic renal failure. Rituximab, an anti-CD20 monoclonal antibody, can cause acute renal failure following initiation of therapy because of the onset of acute tumor lysis syndrome. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, can result in proteinuria. Discerning the renal adverse effects resulting from these agents is essential for safe treatment strategies, particularly in those with pre-existing renal disease.

  20. Renal Toxicities of Targeted Therapies.

    PubMed

    Abbas, Anum; Mirza, Mohsin M; Ganti, Apar Kishor; Tendulkar, Ketki

    2015-12-01

    With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. This review will focus on these renal toxicities from commonly used targeted agents. This review discusses the mechanisms of these side effects and management strategies. Anti-vascular endothelial growth factor (VEGF) agents including the monoclonal antibody bevacizumab, aflibercept (VEGF trap), and anti-VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) all cause hypertension, whereas some of them result in proteinuria. Monoclonal antibodies against the human epidermal growth factor receptor (HER) family of receptors, such as cetuximab and panitumumab, cause electrolyte imbalances including hypomagnesemia and hypokalemia due to the direct nephrotoxic effect of the drug on renal tubules. Cetuximab may also result in renal tubular acidosis. The TKIs, imatinib and dasatinib, can result in acute or chronic renal failure. Rituximab, an anti-CD20 monoclonal antibody, can cause acute renal failure following initiation of therapy because of the onset of acute tumor lysis syndrome. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, can result in proteinuria. Discerning the renal adverse effects resulting from these agents is essential for safe treatment strategies, particularly in those with pre-existing renal disease. PMID:25922090

  1. Targeted Therapy for Acute Lymphocytic Leukemia

    MedlinePlus

    ... Monoclonal antibodies to treat acute lymphocytic leukemia Targeted therapy for acute lymphocytic leukemia In recent years, new ... These drugs are often referred to as targeted therapy. Some of these drugs can be useful in ...

  2. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects

    PubMed Central

    Hong, Ming; Li, Sha; Tan, Hor Yue; Wang, Ning; Tsao, Sai-Wah; Feng, Yibin

    2015-01-01

    Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study. PMID:26633388

  3. Emerging targets for antidepressant therapies

    PubMed Central

    Rakofsky, Jeffrey J; Holtzheimer, Paul E; Nemeroff, Charles B

    2015-01-01

    Despite adequate antidepressant monotherapy, the majority of depressed patients do not achieve remission. Even optimal and aggressive therapy leads to a substantial number of patients who show minimal and often only transient improvement. In order to address this substantial problem of treatment-resistant depression, a number of novel targets for antidepressant therapy have emerged as a consequence of major advances in the neurobiology of depression. Three major approaches to uncover novel therapeutic interventions are: first, optimizing the modulation of monoaminergic neurotransmission; second, developing medications that act upon neurotransmitter systems other than monoaminergic circuits; and third, using focal brain stimulation to directly modulate neuronal activity. We review the most recent data on novel therapeutic compounds and their antidepressant potential. These include triple monoamine reuptake inhibitors, atypical antipsychotic augmentation, and dopamine receptor agonists. Compounds affecting extra-monoamine neurotransmitter systems include CRF1 receptor antagonists, glucocorticoid receptor antagonists, substance P receptor antagonists, NMDA receptor antagonists, nemifitide, omega-3 fatty acids, and melatonin receptor agonists. Focal brain stimulation therapies include vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS), magnetic seizure therapy (MST), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). PMID:19501541

  4. Targeted radionuclide therapy--an overview.

    PubMed

    Dash, Ashutosh; Knapp, F F Russ; Pillai, M R A

    2013-09-01

    Radionuclide therapy (RNT) based on the concept of delivering cytotoxic levels of radiation to disease sites is one of the rapidly growing fields of nuclear medicine. Unlike conventional external beam therapy, RNT targets diseases at the cellular level rather than on a gross anatomical level. This concept is a blend of a tracer moiety that mediates a site specific accumulation followed by induction of cytotoxicity with the short-range biological effectiveness of particulate radiations. Knowledge of the biochemical reactions taking place at cellular levels has stimulated the development of sophisticated molecular carriers, catalyzing a shift towards using more specific targeting radiolabelled agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides based on availability, the types of emissions, linear energy transfer (LET), and physical half-life. This article discusses the applications of radionuclide therapy for treatment of cancer as well as other diseases. The primary objective of this review is to provide an overview on the role of radionuclide therapy in the treatment of different diseases such as polycythaemia, thyroid malignancies, metastatic bone pain, radiation synovectomy, hepatocellular carcinoma (HCC), neuroendocrine tumors (NETs), non-Hodgkin's lymphoma (NHL) and others. In addition, recent developments on the systematic approach in designing treatment regimens as well as recent progress, challenges and future perspectives are discussed. An examination of the progress of radionuclide therapy indicates that although a rapid stride has been made for treating hematological tumors, the development for treating solid tumors has, so far, been limited. However, the emergence of novel tumor-specific targeting agents coupled with successful characterization of new target structures would be expected to pave the way for future treatment for such tumors.

  5. Targeted therapy using nanotechnology: focus on cancer

    PubMed Central

    Sanna, Vanna; Pala, Nicolino; Sechi, Mario

    2014-01-01

    Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication. PMID:24531078

  6. The evolution of combined molecular targeted therapies to advance the therapeutic efficacy in melanoma: a highlight of vemurafenib and cobimetinib

    PubMed Central

    Medina, Theresa M; Lewis, Karl D

    2016-01-01

    Metastatic melanoma is an aggressive, rapidly progressive disease which historically had very few effective treatment options. However, since 2011, the therapeutic landscape of melanoma has undergone a dramatic transformation with two distinct approaches and has catalyzed the successful advancement in the clinical field of immuno-oncology. In addition, the recognition of a key oncogenic driver mutation in melanoma, BRAF, stimulated the development of multiple potent kinase inhibitors which has also influenced the expansion and use of targeted agents in the practice of oncology. Vemurafenib, the initial BRAF inhibitor approved for the treatment of melanoma, was the first agent to demonstrate rapid clinical responses and significantly improved survival which was a clinical breakthrough in the treatment of melanoma. Although exciting and practice changing, the unparalleled responses with vemurafenib are usually not sustained. Further investigations delineated several mechanisms of acquired resistance which are most often mediated by the upregulation of the MAPK pathway. MEK inhibitors, another class of small-molecule inhibitors, were developed as an alternative agent to suppress the MAPK pathway downstream, independent from BRAF activation. Multiple studies have demonstrated the improvement in antitumor activity when MEK inhibitors are used in combination with BRAF inhibitors in the treatment of metastatic melanoma. This is a review of the investigations that led to the US Food and Drug Administration approval in 2015 of the combination of vemurafenib and cobimetinib, adding to the quickly growing armament for the treatment of advanced or metastatic melanoma with a BRAF V600 mutation. PMID:27382311

  7. Design of Targeted Cardiovascular Molecular Imaging Probes

    PubMed Central

    Anderson, Carolyn J.; Bulte, Jeff W.M.; Chen, Kai; Chen, Xiaoyuan; Khaw, Ban-An; Shokeen, Monica; Wooley, Karen L.; VanBrocklin, Henry F.

    2013-01-01

    Molecular imaging relies on the development of sensitive and specific probes coupled with imaging hardware and software to provide information about the molecular status of a disease and its response to therapy, which are important aspects of disease management. As genomic and proteomic information from a variety of cardiovascular diseases becomes available, new cellular and molecular targets will provide an imaging readout of fundamental disease processes. A review of the development and application of several cardiovascular probes is presented here. Strategies for labeling cells with superparamagnetic iron oxide nanoparticles enable monitoring of the delivery of stem cell therapies. Small molecules and biologics (e.g., proteins and antibodies) with high affinity and specificity for cell surface receptors or cellular proteins as well as enzyme substrates or inhibitors may be labeled with single-photon–emitting or positron-emitting isotopes for nuclear molecular imaging applications. Labeling of bispecific antibodies with single-photon–emitting isotopes coupled with a pretargeting strategy may be used to enhance signal accumulation in small lesions. Emerging nanomaterials will provide platforms that have various sizes and structures and that may be used to develop multimeric, multimodal molecular imaging agents to probe one or more targets simultaneously. These platforms may be chemically manipulated to afford molecules with specific targeting and clearance properties. These examples of molecular imaging probes are characteristic of the multidisciplinary nature of the extraction of advanced biochemical information that will enhance diagnostic evaluation and drug development and predict clinical outcomes, fulfilling the promise of personalized medicine and improved patient care. PMID:20395345

  8. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies. PMID:17199015

  9. Targeted therapy in gastroesophageal cancers: past, present and future.

    PubMed

    Woo, Janghee; Cohen, Stacey A; Grim, Jonathan E

    2015-11-01

    Gastroesophageal cancer is a significant global problem that frequently presents at an incurable stage and has very poor survival with standard chemotherapy approaches. This review will examine the epidemiology and molecular biology of gastroesophageal cancer and will focus on the key deregulated signaling pathways that have been targeted in the clinic. A comprehensive overview of clinical data highlighting successes and failures with targeted agents will be presented. Most notably, HER2-targeted therapy with the monoclonal antibody trastuzumab has proven beneficial in first-line therapy and has been incorporated into standard practice. Targeting the VEGF pathway has also proven beneficial, and the VEGFR-targeted monoclonal antibody ramucirumab is now approved for second-line therapy. In contrast to these positive results, agents targeting the EGFR and MET pathways have been evaluated extensively in gastroesophageal cancer but have repeatedly failed to show benefit. An increased understanding of the molecular predictors of response to targeted therapies is sorely needed. In the future, improved molecular pathology approaches should subdivide this heterogeneous disease entity to allow individualization of cancer therapy based on integrated and global identification of deregulated signaling pathways. Better patient selection, rational combinations of targeted therapies and incorporation of emerging immunotherapeutic approaches should further improve the treatment of this deadly disease.

  10. Targeted therapy in gastroesophageal cancers: past, present and future

    PubMed Central

    Woo, Janghee; Cohen, Stacey A.; Grim, Jonathan E.

    2015-01-01

    Gastroesophageal cancer is a significant global problem that frequently presents at an incurable stage and has very poor survival with standard chemotherapy approaches. This review will examine the epidemiology and molecular biology of gastroesophageal cancer and will focus on the key deregulated signaling pathways that have been targeted in the clinic. A comprehensive overview of clinical data highlighting successes and failures with targeted agents will be presented. Most notably, HER2-targeted therapy with the monoclonal antibody trastuzumab has proven beneficial in first-line therapy and has been incorporated into standard practice. Targeting the VEGF pathway has also proven beneficial, and the VEGFR-targeted monoclonal antibody ramucirumab is now approved for second-line therapy. In contrast to these positive results, agents targeting the EGFR and MET pathways have been evaluated extensively in gastroesophageal cancer but have repeatedly failed to show benefit. An increased understanding of the molecular predictors of response to targeted therapies is sorely needed. In the future, improved molecular pathology approaches should subdivide this heterogeneous disease entity to allow individualization of cancer therapy based on integrated and global identification of deregulated signaling pathways. Better patient selection, rational combinations of targeted therapies and incorporation of emerging immunotherapeutic approaches should further improve the treatment of this deadly disease. PMID:26510453

  11. Introduction to Radiobiology of Targeted Radionuclide Therapy

    PubMed Central

    Pouget, Jean-Pierre; Lozza, Catherine; Deshayes, Emmanuel; Boudousq, Vincent; Navarro-Teulon, Isabelle

    2015-01-01

    During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRTs) are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT) and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors, which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure, and low absorbed dose rate) differ from those of conventional EBRT (homogeneous irradiation, short exposure, and high absorbed dose rate), and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose–effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related) and non-targeted effects (assumed to be non-dose-related) of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main challenges of

  12. Targeted therapy using alpha emitters.

    PubMed

    Vaidyanathan, G; Zalutsky, M R

    1996-10-01

    Radionuclides such as 211At and 212Bi which decay by the emission of alpha-particles are attractive for certain applications of targeted radiotherapy. The tissue penetration of 212Bi and 211At alpha-particles is equivalent to only a few cell diameters, offering the possibility of combining cell-specific targeting with radiation of similar range. Unlike the beta-particles emitted by radionuclides such as 131I and 90Y, alpha-particles are radiation of high linear energy transfer and thus greater biological effectiveness. Several approaches have been explored for targeted radiotherapy with 212Bi- and 211At-labelled substances including colloids, monoclonal antibodies, metabolic precursors, receptor-avid ligands and other lower molecular weight molecules. An additional agent which exemplifies the promise of alpha-emitting radiopharmaceuticals is meta-[211At]astatobenzylguanidine. The toxicity of this compound under single-cell conditions, determined both by [3H]thymidine incorporation and by limiting dilution clonogenic assays, for human neuroblastoma cells is of the order of 1000 times higher than that of meta-[131I] iodobenzylguanidine. For meta-[211At] astatobenzylguanidine, the Do value was equivalent to only 6-7 211At atoms bound per cell. These results suggest that meta-[211At] astatobenzylguanidine might be valuable for the targeted radiotherapy of micrometastatic neuroblastomas.

  13. Targeted therapies in hepatocellular carcinoma.

    PubMed

    Bronte, F; Bronte, G; Cusenza, S; Fiorentino, E; Rolfo, C; Cicero, G; Bronte, E; Di Marco, V; Firenze, A; Angarano, G; Fontana, T; Russo, A

    2014-01-01

    The onset of hepatocellular carcinoma (HCC) is related to the development of non-neoplastic liver disease, such as viral infections and cirrhosis. Even though patients with chronic liver diseases undergo clinical surveillance for early diagnosis of HCC, this cancer is often diagnosed in advanced stage. In this case locoregional treatment is not possible and systemic therapies are the best way to control it. Until now sorafenib, a Raf and multi-kinase inhibitor has been the best, choice to treat HCC systemically. It showed a survival benefit in multicenter phase III trials. However the proper patient setting to treat is not well defined, since the results in Child-Pugh B patients are conflicting. To date various new target drugs are under developed and other biological treatments normally indicated in other malignancies are under investigation also for HCC. These strategies aim to target the different biological pathways implicated in HCC development and progression. The target drugs studied in HCC include anti-VEGF and anti-EGFR monoclonal antibodies, tyrosine kinase inhibitors and mTOR inhibitors. The most important challenge is represented by the best integration of these drugs with standard treatments to achieve improvement in overall survival and quality of life.

  14. Bone Sarcomas: From Biology to Targeted Therapies

    PubMed Central

    Gaspar, Nathalie; Di Giannatale, Angela; Geoerger, Birgit; Redini, Françoise; Corradini, Nadège; Enz-Werle, Natacha; Tirode, Franck; Marec-Berard, Perrine; Gentet, Jean-Claude; Laurence, Valérie; Piperno-Neumann, Sophie; Oberlin, Odile; Brugieres, Laurence

    2012-01-01

    Primary malignant bone tumours, osteosarcomas, and Ewing sarcomas are rare diseases which occur mainly in adolescents and young adults. With the current therapies, some patients remain very difficult to treat, such as tumour with poor histological response to preoperative CT (or large initial tumour volume for Ewing sarcomas not operated), patients with multiple metastases at or those who relapsed. In order to develop new therapies against these rare tumours, we need to unveil the key driving factors and molecular abnormalities behind the malignant characteristics and to broaden our understanding of the phenomena sustaining the metastatic phenotype and treatment resistance in these tumours. In this paper, starting with the biology of these tumours, we will discuss potential therapeutic targets aimed at increasing local tumour control, limiting metastatic spread, and finally improving patient survival. PMID:23226965

  15. How have advances in our understanding of the molecular genetics of paediatric leukaemia led to improved targeted therapies for these diseases?

    PubMed

    Szychot, Elwira; Brodkiewicz, Andrzej; Peregud-Pogorzelski, Jarosław

    2014-01-01

    The term "leukaemia" refers to a large and heterogenous group of diseases, with treatment response and outcome dependent on the specific type of malignancy. New molecular methods allow us to specifically evaluate the type of disorder, and provide treatment of necessary intensity. The aim of this review is to provide insight into the progress in leukaemia treatment that had been possible due to advances in molecular genetics over the last few decades. Those new sophisticated diagnostic methods have allowed us not only to predict patients' prognosis but also to provide a specific therapy depending on the molecular and genetic characteristics of patients. Our review is based on 25 articles regarding novel diagnostic and therapeutic methods as well as prognostic factors, released between 1992 and 2011. Those articles focus mostly on molecular and cytogenetic testing allowing revolutionary methods of patient classification and individual therapy for this highly heterogeneous group of disorders. Implementation of molecular genetic testing to evaluate the type of leukaemia allowed paediatric oncologists and haematologists to adjust the intensity of treatment, improve outcome, minimize toxicity of therapies and considerably lower the risk of side effects. In the last few decades there has been a great improvement in survival among children suffering from haematopoietic malignancies. Progress made in molecular genetics allowed the creation of new treatment protocols that are designed to maintain a high cure rate for children with leukaemia while reducing toxicity.

  16. Molecular imaging of oncolytic viral therapy

    PubMed Central

    Haddad, Dana; Fong, Yuman

    2015-01-01

    Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy. PMID:27119098

  17. Molecular Pathophysiology of Priapism: Emerging Targets

    PubMed Central

    Anele, Uzoma A.; Morrison, Belinda F.; Burnett, Arthur L.

    2015-01-01

    Priapism is an erectile disorder involving uncontrolled, prolonged penile erection without sexual purpose, which can lead to erectile dysfunction. Ischemic priapism, the most common of the variants, occurs with high prevalence in patients with sickle cell disease. Despite the potentially devastating complications of this condition, management of recurrent priapism episodes historically has commonly involved reactive treatments rather than preventative strategies. Recently, increasing elucidation of the complex molecular mechanisms underlying this disorder, principally involving dysregulation of nitric oxide signaling, has allowed for greater insights and exploration into potential therapeutic targets. In this review, we discuss the multiple molecular regulatory pathways implicated in the pathophysiology of priapism. We also identify the roles and mechanisms of molecular effectors in providing the basis for potential future therapies. PMID:25392014

  18. Targeting the EGF Receptor for Ovarian Cancer Therapy

    PubMed Central

    Zeineldin, Reema; Muller, Carolyn Y.; Stack, M. Sharon; Hudson, Laurie G.

    2010-01-01

    Ovarian carcinoma is the leading cause of death from gynecologic malignancy in the US. Factors such as the molecular heterogeneity of ovarian tumors and frequent diagnosis at advanced stages hamper effective disease treatment. There is growing emphasis on the identification and development of targeted therapies to disrupt molecular pathways in cancer. The epidermal growth factor (EGF) receptor is one such protein target with potential utility in the management of ovarian cancer. This paper will discuss contributions of EGF receptor activation to ovarian cancer pathogenesis and the status of EGF receptor inhibitors and EGF receptor targeted therapies in ovarian cancer treatment. PMID:20066160

  19. Targeting antioxidants for cancer therapy.

    PubMed

    Glasauer, Andrea; Chandel, Navdeep S

    2014-11-01

    Cancer cells are characterized by an increase in the rate of reactive oxygen species (ROS) production and an altered redox environment compared to normal cells. Furthermore, redox regulation and redox signaling play a key role in tumorigenesis and in the response to cancer therapeutics. ROS have contradictory roles in tumorigenesis, which has important implications for the development of potential anticancer therapies that aim to modulate cellular redox levels. ROS play a causal role in tumor development and progression by inducing DNA mutations, genomic instability, and aberrant pro-tumorigenic signaling. On the other hand, high levels of ROS can also be toxic to cancer cells and can potentially induce cell death. To balance the state of oxidative stress, cancer cells increase their antioxidant capacity, which strongly suggests that high ROS levels have the potential to actually block tumorigenesis. This fact makes pro-oxidant cancer therapy an interesting area of study. In this review, we discuss the controversial role of ROS in tumorigenesis and especially elaborate on the advantages of targeting ROS scavengers, hence the antioxidant capacity of cancer cells, and how this can be utilized for cancer therapeutics.

  20. Novel targeted therapies in chordoma: an update

    PubMed Central

    Di Maio, Salvatore; Yip, Stephen; Al Zhrani, Gmaan A; Alotaibi, Fahad E; Al Turki, Abdulrahman; Kong, Esther; Rostomily, Robert C

    2015-01-01

    Chordomas are rare, locally aggressive skull base neoplasms known for local recurrence and not-infrequent treatment failure. Current evidence supports the role of maximal safe surgical resection. In addition to open skull-base approaches, the endoscopic endonasal approach to clival chordomas has been reported with favorable albeit early results. Adjuvant radiation is prescribed following complete resection, alternatively for gross residual disease or at the time of recurrence. The modalities of adjuvant radiation therapy reported vary widely and include proton-beam, carbon-ion, fractionated photon radiotherapy, and photon and gamma-knife radiosurgery. As of now, no direct comparison is available, and high-level evidence demonstrating superiority of one modality over another is lacking. While systemic therapies have yet to form part of any first-line therapy for chordomas, a number of targeted agents have been evaluated to date that inhibit specific molecules and their respective pathways known to be implicated in chordomas. These include EGFR (erlotinib, gefitinib, lapatinib), PDGFR (imatinib), mTOR (rapamycin), and VEGF (bevacizumab). This article provides an update of the current multimodality treatment of cranial base chordomas, with an emphasis on how current understanding of molecular pathogenesis provides a framework for the development of novel targeted approaches. PMID:26097380

  1. Targeted therapy in HER2-positive breast cancer

    PubMed Central

    LI, SHU GUANG; LI, LI

    2013-01-01

    Treatment options for breast cancer vary based on tumor surface markers and clinical factors, including cytotoxic chemotherapy, hormonal therapy, biological therapy or a combination thereof. An important molecular determinant of therapy is the human epidermal growth factor receptor 2 (HER2) positivity of the tumor, which has been identified in 20–25% of breast cancers and is a prognostic marker of poor outcome. The advent of HER2-targeted therapies has significantly improved the survival of patients with HER2-positive breast cancer. This review focuses on current HER2-targeted therapeutic options for patients with HER2-positive breast cancer, including monoclonal antibodies and tyrosine kinase inhibitors (TKIs). PMID:24648975

  2. Targeted therapy in head and neck cancer.

    PubMed

    Ward, Brent B

    2013-02-01

    The desire to target therapies to specific cancers while leaving the host unharmed remains an ongoing quest for scientists, surgeons, radiation oncologists, and medical oncologists. In recent years, great scientific progress has been made in targeted therapies. Although many modalities remain in preclinical validation, some advances affect patient care today. This article summarizes the concepts of targeting and explores current examples of successful targeting and emerging targeting technologies in head and neck oncology. PMID:23399398

  3. Recent Advances in Molecular Image-Guided Cancer Radionuclide Therapy.

    PubMed

    Gao, Duo; Sun, Xianlei; Gao, Liquan; Liu, Zhaofei

    2015-01-01

    Cancer-targeted radionuclide therapy is a promising approach for the treatment of a wide variety of malignancies, especially those resistant to conventional therapies. However, to improve the use of targeted radionuclide therapy for the management of cancer patients, the in vivo behaviors, dosimetry, and efficacy of radiotherapeutic agents need to be well characterized and monitored. Molecular imaging, which is a powerful tool for the noninvasive characterization and quantification of biological processes in living subjects at the cellular and molecular levels, plays an important role in the guidance of cancer radionuclide therapy. In this review, we introduce the radiotherapeutics for cancer-targeted therapy and summarize the most recent evidence supporting the use of molecular imaging to guide cancer radionuclide therapy.

  4. Targeted Therapy of Ewing's Sarcoma

    PubMed Central

    Subbiah, Vivek; Anderson, Pete

    2011-01-01

    Refractory and/or recurrent Ewing's sarcoma (EWS) remains a clinical challenge because the disease's resistance to therapy makes it difficult to achieve durable results with standard treatments that include chemotherapy, radiation, and surgery. Recently, insulin-like-growth-factor-1-receptor (IGF1R) antibodies have been shown to have a modest single-agent activity in EWS. Patient selection using biomarkers and understanding response and resistance mechanisms in relation to IGF1R and mammalian target of rapamycin pathways are areas of active research. Since EWS has a unique tumor-specific EWS-FLI1 t(11;22) translocation and oncogenic fusion protein, inhibition of EWS-FLI1 transcription, translation, and/or protein function may be key to eradicating EWS at the stem-cell level. Recently, a small molecule that blocks the protein-protein interaction of EWS-FLI1 with RNA helicase A has been shown in preclinical models to inhibit EWS growth. The successful application of this first-in-class protein-protein inhibitor in the clinic could become a model system for translocation-associated cancers such as EWS. PMID:21052545

  5. Targeting Perciytes for Angiogenic Therapies

    PubMed Central

    Kelly-Goss, Molly R.; Sweat, Rick S.; Stapor, Peter C.; Peirce, Shayn M.; Murfee, Walter L.

    2014-01-01

    In pathological scenarios, such as tumor growth and diabetic retinopathy, blocking angiogenesis would be beneficial. In others, such as myocardial infarction and hypertension, promoting angiogenesis might be desirable. Due to their putative influence on endothelial cells, vascular pericytes have become a topic of growing interest and are increasingly being evaluated as a potential target for angioregulatory therapies. For example, the strategy of manipulating pericyte recruitment to capillaries could result in anti- or pro-angiogenic effects. However, our current understanding of pericytes is limited by knowledge gaps regarding pericyte identity and lineage. To use a music analogy, this review is a “mash-up” that attempts to integrate what we know about pericyte functionality and expression with what is beginning to be elucidated regarding their regenerative potential. We explore the lingering questions regarding pericyte phenotypic identity and lineage. The expression of different pericyte markers (e.g., SMA, Desmin, NG2 and PDGFR-β) varies for different subpopulations and tissues. Previous use of these markers to identify pericytes has suggested potential phenotypic overlaps and plasticity toward other cell phenotypes. Our review chronicles the state of the literature, identifies critical unanswered questions, and motivates future research aimed at understanding this intriguing cell type and harnessing its therapeutic potential. PMID:24267154

  6. Molecular tweezers targeting transthyretin amyloidosis.

    PubMed

    Ferreira, Nelson; Pereira-Henriques, Alda; Attar, Aida; Klärner, Frank-Gerrit; Schrader, Thomas; Bitan, Gal; Gales, Luís; Saraiva, Maria João; Almeida, Maria Rosário

    2014-04-01

    Transthyretin (TTR) amyloidoses comprise a wide spectrum of acquired and hereditary diseases triggered by extracellular deposition of toxic TTR aggregates in various organs. Despite recent advances regarding the elucidation of the molecular mechanisms underlying TTR misfolding and pathogenic self-assembly, there is still no effective therapy for treatment of these fatal disorders. Recently, the "molecular tweezers", CLR01, has been reported to inhibit self-assembly and toxicity of different amyloidogenic proteins in vitro, including TTR, by interfering with hydrophobic and electrostatic interactions known to play an important role in the aggregation process. In addition, CLR01 showed therapeutic effects in animal models of Alzheimer's disease and Parkinson's disease. Here, we assessed the ability of CLR01 to modulate TTR misfolding and aggregation in cell culture and in an animal model. In cell culture assays we found that CLR01 inhibited TTR oligomerization in the conditioned medium and alleviated TTR-induced neurotoxicity by redirecting TTR aggregation into the formation of innocuous assemblies. To determine whether CLR01 was effective in vivo, we tested the compound in mice expressing TTR V30M, a model of familial amyloidotic polyneuropathy, which recapitulates the main pathological features of the human disease. Immunohistochemical and Western blot analyses showed a significant decrease in TTR burden in the gastrointestinal tract and the peripheral nervous system in mice treated with CLR01, with a concomitant reduction in aggregate-induced endoplasmic reticulum stress response, protein oxidation, and apoptosis. Taken together, our preclinical data suggest that CLR01 is a promising lead compound for development of innovative, disease-modifying therapy for TTR amyloidosis.

  7. Bioengineering Strategies for Designing Targeted Cancer Therapies

    PubMed Central

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  8. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy

    SciTech Connect

    Ohkawa, Mayumi; Ohno, Yoshiya; Masuko, Kazue; Takeuchi, Akiko; Suda, Kentaro; Kubo, Akihiro; Kawahara, Rieko; Okazaki, Shogo; Tanaka, Toshiyuki; Saya, Hideyuki; Seki, Masayuki; Enomoto, Takemi; Yagi, Hideki; Hashimoto, Yoshiyuki; Masuko, Takashi

    2011-03-25

    Highlights: {yields} We established LAT1 amino-acid transporter-disrupted DT40 cells. {yields} LAT1-disrupted cells showed slow growth and lost the oncogenicity. {yields} siRNA and mAb inhibited human tumor growth in vitro and in vivo. {yields} LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1{sup -/-}) cell clones, derived from a heterozygous LAT1{sup +/-} clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1{sup -/-} DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1{sup -/-} cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1{sup -/-} DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1{sup -/-} DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1{sup +/-} DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.

  9. Bladder cancer: molecular determinants of personalized therapy.

    PubMed

    Lopez-Beltran, Antonio; Santoni, Matteo; Massari, Francesco; Ciccarese, Chiara; Tortora, Giampaolo; Cheng, Liang; Moch, Holger; Scarpelli, Marina; Reymundo, Carlos; Montironi, Rodolfo

    2015-01-01

    Several molecular and genetic studies have provided new perspectives on the histologic classification of bladder tumors. Recent developments in the field of molecular mutational pathway analyses based on next generation sequencing technology together with classic data derived from the description of mutations in the FGFR3 (fibroblast growth factor receptor 3) gene, mutations on TP53 gene, and cDNA technology profiling data gives support to a differentiated taxonomy of bladder cancer. All these changes are behind the use of non-traditional approach to therapy of bladder cancer patients and are ready to change our daily practice of uro-oncology. The observed correlation of some molecular alterations with tumor behavior and the identification of their targets at cellular level might support the use of molecular changes together with morphological data to develop new clinical and biological strategies to manage patients with urothelial cancer. The current review provides comprehensive data to support personalized therapy for bladder cancer based on an integrated approach including pathologic and clinical features and molecular biology.

  10. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  11. Targeted therapy using alpha emitters

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Ganesan; Zalutsky, Michael R.

    1996-10-01

    Radionuclides such as and which decay by the emission of -particles are attractive for certain applications of targeted radiotherapy. The tissue penetration of and -particles is equivalent to only a few cell diameters, offering the possibility of combining cell-specific targeting with radiation of similar range. Unlike the -particles emitted by radionuclides such as and , -particles are radiation of high linear energy transfer and thus greater biological effectiveness. Several approaches have been explored for targeted radiotherapy with - and -labelled substances including colloids, monoclonal antibodies, metabolic precursors, receptor-avid ligands and other lower molecular weight molecules. An additional agent which exemplifies the promise of -emitting radiopharmaceuticals is meta-[]astatobenzylguanidine. The toxicity of this compound under single-cell conditions, determined both by [Engineering targeted viral vectors for gene therapy.

    PubMed

    Waehler, Reinhard; Russell, Stephen J; Curiel, David T

    2007-08-01

    To achieve therapeutic success, transfer vehicles for gene therapy must be capable of transducing target cells while avoiding impact on non-target cells. Despite the high transduction efficiency of viral vectors, their tropism frequently does not match the therapeutic need. In the past, this lack of appropriate targeting allowed only partial exploitation of the great potential of gene therapy. Substantial progress in modifying viral vectors using diverse techniques now allows targeting to many cell types in vitro. Although important challenges remain for in vivo applications, the first clinical trials with targeted vectors have already begun to take place.

  12. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets. PMID:27221289

  13. Molecular profiling of a case of advanced pancreatic cancer identifies an active and tolerable combination of targeted therapy with backbone chemotherapy

    PubMed Central

    Vanderwalde, Ari; Javadi, Nader; Feldman, Rebecca; Reddy, Sandeep Bobby

    2016-01-01

    Typical survival with common 1st-line regimens for pancreatic cancer range from 6-11 months. We report a case of a patient with stage IVB pancreatic adenocarcinoma treated with gemcitabine and erlotinib who stopped therapy after 3 months without achieving a response due to intolerance. To decide upon additional treatment options, molecular analysis was performed on liver metastasis which revealed KRAS, FBXW7, APC, and ATM mutations, with thymidylate synthase (TS) negativity and PD-1 positivity. Based on this profile of TS negativity and ATM mutation, a combination strategy was devised consisting of capecitabine, oxaliplatin, bevacizumab and vorinostat. The patient had a near complete response to therapy with this regimen. In refractory metastatic pancreatic cancer, responses of this magnitude are rarely seen. To our knowledge, this represents the first demonstrated activity of this combination in the metastatic setting which could prompt further investigation of its use in large scale clinical trials. PMID:27034805

  14. Changing strategies for target therapy in gastric cancer

    PubMed Central

    Lee, Suk-young; Oh, Sang Cheul

    2016-01-01

    In spite of a worldwide decrease in the incidence of gastric cancer, this malignancy still remains one of the leading causes of cancer mortality. Great efforts have been made to improve treatment outcomes in patients with metastatic gastric cancer, and the introduction of trastuzumab has greatly improved the overall survival. The trastuzumab treatment took its first step in opening the era of molecular targeted therapy, however several issues still need to be resolved to increase the efficacy of targeted therapy. Firstly, many patients with metastatic gastric cancer who receive trastuzumab in combination with chemotherapeutic agents develop resistance to the targeted therapy. Secondly, many clinical trials testing novel molecular targeted agents with demonstrated efficacy in other malignancies have failed to show benefit in patients with metastatic gastric cancer, suggesting the importance of the selection of appropriate indications according to molecular characteristics in application of targeted agents. Herein, we review the molecular targeted agents currently approved and in use, and clinical trials in patients with metastatic gastric cancer, and demonstrate the limitations and future direction in treatment of advanced gastric cancer. PMID:26811656

  15. Cytotoxic and targeted therapy for hereditary cancers.

    PubMed

    Iyevleva, Aglaya G; Imyanitov, Evgeny N

    2016-01-01

    There is a number of drugs demonstrating specific activity towards hereditary cancers. For example, tumors in BRCA1/2 mutation carriers usually arise via somatic inactivation of the remaining BRCA allele, which makes them particularly sensitive to platinum-based drugs, PARP inhibitors (PARPi), mitomycin C, liposomal doxorubicin, etc. There are several molecular assays for BRCA-ness, which permit to reveal BRCA-like phenocopies among sporadic tumors and thus extend clinical indications for the use of BRCA-specific therapies. Retrospective data on high-dose chemotherapy deserve consideration given some unexpected instances of cure from metastatic disease among BRCA1/2-mutated patients. Hereditary non-polyposis colorectal cancer (HNPCC) is characterized by high-level microsatellite instability (MSI-H), increased antigenicity and elevated expression of immunosuppressive molecules. Recent clinical trial demonstrated tumor responses in HNPCC patients treated by the immune checkpoint inhibitor pembrolizumab. There are successful clinical trials on the use of novel targeted agents for the treatment or rare cancer syndromes, e.g. RET inhibitors for hereditary medullary thyroid cancer, mTOR inhibitors for tumors arising in patients with tuberous sclerosis (TSC), and SMO inhibitors for basal-cell nevus syndrome. Germ-line mutation tests will be increasingly used in the future for the choice of the optimal therapy, therefore turnaround time for these laboratory procedures needs to be significantly reduced to ensure proper treatment planning. PMID:27555886

  16. Targeted therapies in gastric cancer and future perspectives

    PubMed Central

    Yazici, Ozan; Sendur, M Ali Nahit; Ozdemir, Nuriye; Aksoy, Sercan

    2016-01-01

    Advanced gastric cancer (AGC) is associated with a high mortality rate and, despite multiple new chemotherapy options, the survival rates of patients with AGC remains poor. After the discovery of targeted therapies, research has focused on the new treatment options for AGC. In the last two decades, many targeted molecules were developed against AGC. Currently, two targeted therapy molecules have been approved for patients with AGC. In 2010, trastuzumab was the first molecule shown to improve survival in patients with HER2-positive AGC as part of a first-line combination regimen. In 2014, ramucirumab was the second targeted molecule to improve survival rates and was suggested as treatment for patients with AGC who had progressed after first-line platinum plus fluoropyrimidine with or without anthracycline chemotherapy. Ramucirumab was the first targeted therapy acting as a single agent in patients with advanced gastroesophageal cancers. Although these two molecules were introduced into clinical use, many other promising molecules have been tested in phase I-II trials. It is obvious that in the near future many different targeted therapies will be in use for treatment of AGC. In this review, the current status of targeted therapies in the treatment of AGC and gastroesophageal junction tumors, including HER (2-3) inhibitors, epidermal growth factor receptor inhibitors, tyrosine kinase inhibitors, antiangiogenic agents, c-MET inhibitors, mammalian target of rapamycin inhibitors, agents against other molecular pathways fibroblast growth factor, Claudins, insulin-like growth factor, heat shock proteins, and immunotherapy, will be discussed. PMID:26811601

  17. Molecular profiling of childhood cancer: Biomarkers and novel therapies

    PubMed Central

    Saletta, Federica; Wadham, Carol; Ziegler, David S.; Marshall, Glenn M.; Haber, Michelle; McCowage, Geoffrey; Norris, Murray D.; Byrne, Jennifer A.

    2014-01-01

    Background Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. Scope of review This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. Major conclusions There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. General significance The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations. PMID:26675306

  18. Comprehensive transcriptomic analysis of molecularly targeted drugs in cancer for target pathway evaluation

    PubMed Central

    Mashima, Tetsuo; Ushijima, Masaru; Matsuura, Masaaki; Tsukahara, Satomi; Kunimasa, Kazuhiro; Furuno, Aki; Saito, Sakae; Kitamura, Masami; Soma-Nagae, Taeko; Seimiya, Hiroyuki; Dan, Shingo; Yamori, Takao; Tomida, Akihiro

    2015-01-01

    Targeted therapy is a rational and promising strategy for the treatment of advanced cancer. For the development of clinical agents targeting oncogenic signaling pathways, it is important to define the specificity of compounds to the target molecular pathway. Genome-wide transcriptomic analysis is an unbiased approach to evaluate the compound mode of action, but it is still unknown whether the analysis could be widely applicable to classify molecularly targeted anticancer agents. We comprehensively obtained and analyzed 129 transcriptomic datasets of cancer cells treated with 83 anticancer drugs or related agents, covering most clinically used, molecularly targeted drugs alongside promising inhibitors of molecular cancer targets. Hierarchical clustering and principal component analysis revealed that compounds targeting similar target molecules or pathways were clustered together. These results confirmed that the gene signatures of these drugs reflected their modes of action. Of note, inhibitors of oncogenic kinase pathways formed a large unique cluster, showing that these agents affect a shared molecular pathway distinct from classical antitumor agents and other classes of agents. The gene signature analysis further classified kinome-targeting agents depending on their target signaling pathways, and we identified target pathway-selective signature gene sets. The gene expression analysis was also valuable in uncovering unexpected target pathways of some anticancer agents. These results indicate that comprehensive transcriptomic analysis with our database (http://scads.jfcr.or.jp/db/cs/) is a powerful strategy to validate and re-evaluate the target pathways of anticancer compounds. PMID:25911996

  19. The influence of subclonal resistance mutations on targeted cancer therapy

    PubMed Central

    Schmitt, Michael W.; Loeb, Lawrence A.; Salk, Jesse J.

    2016-01-01

    Clinical oncology is being revolutionized by the increasing use of molecularly targeted therapies. This paradigm holds great promise for improving cancer treatment; however, allocating specific therapies to the patients who are most likely to derive a durable benefit continues to represent a considerable challenge. It is becoming increasingly clear that cancers are characterized by extensive intratumour genetic heterogeneity, and that patients being considered for treatment with a targeted agent might, therefore, already possess resistance to the drug in a minority of cells. Indeed, multiple examples of pre-existing subclonal resistance mutations to various molecularly targeted agents have been described, which we review herein. Early detection of pre-existing or emerging drug resistance could enable more personalized use of targeted cancer therapy, as patients could be stratified to receive the therapies that are most likely to be effective. We consider how monitoring of drug resistance could be incorporated into clinical practice to optimize the use of targeted therapies in individual patients. PMID:26483300

  1. Targeting ubiquitination for cancer therapies

    PubMed Central

    Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing

    2015-01-01

    Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin–proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family. PMID:26630263

  2. SCF ubiquitin ligase targeted therapies

    PubMed Central

    Skaar, Jeffrey R.; Pagan, Julia K.; Pagano, Michele

    2015-01-01

    Summary The recent clinical successes of inhibitors of the proteasome for the treatment of cancer have highlighted the therapeutic potential of this protein degradation system. Proteasome inhibitors prevent the degradation of numerous proteins, so increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a large number of processes at the cellular and organismal levels, and their misregulation is implicated in many pathologies. SCF ligases are characterized by a high specificity for their substrates, so they represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This review will explore and discuss potential strategies to target SCF-mediated biology to treat human diseases. PMID:25394868

  3. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  4. Targeted polymeric nanoparticles for cancer gene therapy.

    PubMed

    Kim, Jayoung; Wilson, David R; Zamboni, Camila G; Green, Jordan J

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.

  5. Imaging approaches to optimize molecular therapies.

    PubMed

    Weissleder, Ralph; Schwaiger, Markus C; Gambhir, Sanjiv Sam; Hricak, Hedvig

    2016-09-01

    Imaging, including its use for innovative tissue sampling, is slowly being recognized as playing a pivotal role in drug development, clinical trial design, and more effective delivery and monitoring of molecular therapies. The challenge is that, while a considerable number of new imaging technologies and new targeted tracers have been developed for cancer imaging in recent years, the technologies are neither evenly distributed nor evenly implemented. Furthermore, many imaging innovations are not validated and are not ready for widespread use in drug development or in clinical trial designs. Inconsistent and often erroneous use of terminology related to quantitative imaging biomarkers has also played a role in slowing their development and implementation. We examine opportunities for, and challenges of, the use of imaging biomarkers to facilitate development of molecular therapies and to accelerate progress in clinical trial design. In the future, in vivo molecular imaging, image-guided tissue sampling for mutational analyses ("high-content biopsies"), and noninvasive in vitro tests ("liquid biopsies") will likely be used in various combinations to provide the best possible monitoring and individualized treatment plans for cancer patients. PMID:27605550

  6. Conventional chemotherapy and emerging targeted therapy for advanced adrenocortical carcinoma.

    PubMed

    Xu, Yun-Ze; Zhu, Yu

    2013-02-01

    Adrenocortical carcinoma (ACC) is a rare but typically aggressive malignancy. Radical surgery remains the potentially curative option. However, about one third of patients initially present with distant metastases. Regarding to chemotherapy, mitotane alone or in combination with cytotoxic drugs should be the first selection. Meanwhile, a phase lll clinical trial of etoposide, doxorubicin, cisplatin plus mitotane or streptozotocin plus mitotane is currently undergoing worldwide. The study on molecular pathogenesis of ACC is progressing. A lot of targeted therapies are also enrolled in preclinical investigations and clinical trials, including small-molecule tyrosine kinase inhibitors, antiangiogenic compounds. This article introduced the conventional chemotherapy, newly developed targeted therapy for advanced ACC.

  7. Targeted photodynamic therapy--a promising strategy of tumor treatment.

    PubMed

    Bugaj, Andrzej M

    2011-07-01

    Targeted therapy is a new promising therapeutic strategy, created to overcome growing problems of contemporary medicine, such as drug toxicity and drug resistance. An emerging modality of this approach is targeted photodynamic therapy (TPDT) with the main aim of improving delivery of photosensitizer to cancer tissue and at the same time enhancing specificity and efficiency of PDT. Depending on the mechanism of targeting, we can divide the strategies of TPDT into "passive", "active" and "activatable", where in the latter case the photosensitizer is activated only in the target tissue. In this review, contemporary strategies of TPDT are described, including new innovative concepts, such as targeting assisted by peptides and aptamers, multifunctional nanoplatforms with navigation by magnetic field or "photodynamic molecular beacons" activatable by enzymes and nucleic acid. The imperative of introducing a new paradigm of PDT, focused on the concepts of heterogeneity and dynamic state of tumor, is also called for. PMID:21547329

  8. Targeting angiogenesis with integrative cancer therapies.

    PubMed

    Yance, Donald R; Sagar, Stephen M

    2006-03-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiological pathways that support tumor development while minimizing normal tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The authors will focus on natural health products (NHPs) that have a high degree of antiangiogenic activity but also describe some of their many other interactions that can inhibit tumor progression and reduce the risk of metastasis. NHPs target various molecular pathways besides angiogenesis, including epidermal growth factor receptor (EGFR), the HER-2/neu gene, the cyclooxygenase-2 enzyme, the NF-kB transcription factor, the protein kinases, Bcl-2 protein, and coagulation pathways. The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are confirming the knowledge that is already documented in traditional texts. The following herbs are traditionally used for anticancer treatment and are antiangiogenic through multiple interdependent processes that include effects on gene expression, signal processing, and enzyme activities: Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (turmeric), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinale (ginger), Panax ginseng, Rabdosia rubescens (rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking on clinical trials. More data are required on dose response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations

  9. Overexpression of CRM1: A Characteristic Feature in a Transformed Phenotype of Lung Carcinogenesis and a Molecular Target for Lung Cancer Adjuvant Therapy.

    PubMed

    Gao, Weimin; Lu, Chuanwen; Chen, Lixia; Keohavong, Phouthone

    2015-05-01

    Our previous study showed that chromosome region maintenance 1 (CRM1), a nuclear export receptor for various cancer-associated "cargo" proteins, was important in regulating lung carcinogenesis in response to a tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The objectives of this study are to comprehensively evaluate the significance of CRM1 in lung cancer development and investigate the therapeutic potential of targeting CRM1 for lung cancer treatment using both in vitro and in vivo models. We showed that CRM1 was overexpressed not only in lung tumor tissues from both lung cancer patients and mice treated with NNK but also in NNK-transformed BEAS-2B human bronchial epithelial cells. Furthermore, stable overexpression of CRM1 in BEAS-2B cells by plasmid vector transfection led to malignant cellular transformation. Moreover, a decreased CRM1 expression level in A549 cells by short hairpin siRNA transfection led to a decreased tumorigenic activity both in vitro and in nude mice, suggesting the potential to target CRM1 for lung cancer treatment. Indeed, we showed that the cytotoxic effects of cisplatin on A549 cells with CRM1 down-regulated by short hairpin siRNA were significantly increased, compared with A549 cells, and the cytotoxic effects of cisplatin became further enhanced when the drug was used in combination with leptomycin B, a CRM1 inhibitor, in both in vitro and in vivo models. Cancer target genes were significantly involved in these processes. These data suggest that CRM1 plays an important role in lung carcinogenesis and provides a novel target for lung cancer adjuvant therapy.

  10. Antihyperlipidemic therapies targeting PCSK9.

    PubMed

    Weinreich, Michael; Frishman, William H

    2014-01-01

    Hyperlipidemia is a major cause of cardiovascular disease despite the availability of first-line cholesterol-lowering agents such as statins. A new therapeutic approach to lowering low-density lipoprotein-cholesterol (LDL-C) acts by blocking LDL-receptor degradation by serum proprotein convertase subtilisin kexin 9 (PCSK9). Human monoclonal antibodies that target PCSK9 and its interaction with the LDL receptor are now in clinical trials (REGN727/SAR23653, AMG145, and RN316). These agents are administered by either subcutaneous or intravenous routes, and have been shown to have major LDL-C and apolipoprotein B effects when combined with statins. A phase III clinical trial program evaluating clinical endpoints is now in progress. Other PCSK9-targeted approaches are in early stages of investigation, including natural inhibitors of PCSK9, RNA interference, and antisense inhibitors.

  11. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  12. Application of MINERVA Monte Carlo simulations to targeted radionuclide therapy.

    PubMed

    Descalle, Marie-Anne; Hartmann Siantar, Christine L; Dauffy, Lucile; Nigg, David W; Wemple, Charles A; Yuan, Aina; DeNardo, Gerald L

    2003-02-01

    Recent clinical results have demonstrated the promise of targeted radionuclide therapy for advanced cancer. As the success of this emerging form of radiation therapy grows, accurate treatment planning and radiation dose simulations are likely to become increasingly important. To address this need, we have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA system. The goal of the MINERVA dose calculation system is to provide 3-D Monte Carlo simulation-based dosimetry for radiation therapy, focusing on experimental and emerging applications. For molecular targeted radionuclide therapy applications, MINERVA calculates patient-specific radiation dose estimates using computed tomography to describe the patient anatomy, combined with a user-defined 3-D radiation source. This paper describes the validation of the 3-D Monte Carlo transport methods to be used in MINERVA for molecular targeted radionuclide dosimetry. It reports comparisons of MINERVA dose simulations with published absorbed fraction data for distributed, monoenergetic photon and electron sources, and for radioisotope photon emission. MINERVA simulations are generally within 2% of EGS4 results and 10% of MCNP results, but differ by up to 40% from the recommendations given in MIRD Pamphlets 3 and 8 for identical medium composition and density. For several representative source and target organs in the abdomen and thorax, specific absorbed fractions calculated with the MINERVA system are generally within 5% of those published in the revised MIRD Pamphlet 5 for 100 keV photons. However, results differ by up to 23% for the adrenal glands, the smallest of our target organs. Finally, we show examples of Monte Carlo simulations in a patient-like geometry for a source of uniform activity located in the kidney. PMID:12667310

  13. Multimodality Therapy: Bone-Targeted Radioisotope Therapy of Prostate Cancer

    PubMed Central

    Tu, Shi-Ming; Lin, Sue-Hwa; Podoloff, Donald A.; Logothetis, Christopher J.

    2016-01-01

    Accumulating data suggest that bone-seeking radiopharmaceuticals can be used to treat prostate cancer bone metastasis and improve the clinical outcome of patients with advanced prostate cancer. It remains to be elucidated whether radiopharmaceuticals enhance the disruption of the onco-niche or the eradication of micrometastatic cells in the bone marrow. The purpose of this review is to investigate the role of bone-targeted radioisotope therapy in the setting of multimodality therapy for advanced prostate cancer. We examine available data and evaluate whether dose escalation, newer generations, or repeated dosing of radiopharmaceuticals enhance their antitumor effects and whether their combination with hormone ablative therapy, chemotherapy, or novel targeted therapy can improve clinical efficacy. PMID:20551894

  14. Systemic sclerosis: from pathogenesis to targeted therapy.

    PubMed

    Denton, Christopher P

    2015-01-01

    Systemic sclerosis (scleroderma) leads to morbidity and mortality through a combination of inflammation, fibrosis and vascular damage leading to internal organ complications affecting the heart, lung, kidneys and bowel. More than half of those diagnosed ultimately die from the disease. Current treatments focus on broad spectrum immunosuppression or organ-based therapy for complication such as lung fibrosis, pulmonary or systemic hypertension. Targeting peptide mediators such as endothelin-1 have already led to licensed effective therapies for SSc vasculopathy. Outcomes are improving but as well as providing a major clinical challenge there are great opportunities for research translation that can be expected to improve understanding of the pathogenesis of SSc and also develop better and more targeted therapy. Key pathways and mediators can be identified within the skin and blood vessels and these are now being examined in early stage clinical trials. Promising results are emerging from targeting cytokine signalling, including IL-6, and from other immune-inflammatory therapies including lipid mediators such as LPA1. Other approaches to modulate TGFbeta and other profibrotic pathways also have potential although safety and toxicity remain to be determined. Since many profibrotic pathways have important physiological roles the assessment of safety and toxicity will be paramount. Nevertheless, advances in understanding the interplay between different pathological processes and progress in clinical trial design and patients stratification mean that targeted therapies are emerging and likely to be further developed and refined to have application in other important clinical contexts such as lung fibrosis.

  15. Targeting Herpetic Keratitis by Gene Therapy

    PubMed Central

    Elbadawy, Hossein Mostafa; Gailledrat, Marine; Desseaux, Carole; Ponzin, Diego; Ferrari, Stefano

    2012-01-01

    Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis. PMID:23326647

  16. Strategies for targeted antimicrobial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Verma, Sarika; Sallum, Ulysses; Zheng, Xiang; Hasan, Tayyaba

    2009-06-01

    The photophysics and mechanisms of cell killing by photodynamic therapy (PDT) have been extensively studied in recent years, and PDT has received regulatory approval for the treatment of a number of diseases worldwide. As the application of this treatment modality expands with regard to both anatomical sites and diseases, it is important to develop strategies for enhancing PDT outcomes. Our group has focused on developing targeting strategies to enhance PDT for both cancerous as well as anti-microbial applications. In this article, we will discuss photosensitizer modification and conjugation strategies for targeted antimicrobial photodynamic therapy.

  17. Target marketing strategies for occupational therapy entrepreneurs.

    PubMed

    Kautzmann, L N; Kautzmann, F N; Navarro, F H

    1989-01-01

    Understanding marketing techniques is one of the skills needed by successful entre renews. Target marketing is an effective method for occupational therapy entrepreneurs to use in determining when and where to enter the marketplace. The two components of target marketing, market segmentation and the development of marketing mix strategies for each identified market segment, are described. The Profife of Attitudes Toward Health Care (PATH) method of psychographic market segmentation of health care consumers is presented. Occupational therapy marketing mix strategies for each PATH consumer group are delineated and compatible groupings of market segments are suggested.

  18. Molecular targets of luteolin in cancer

    PubMed Central

    2016-01-01

    Many food-derived phytochemical compounds and their derivatives represent a cornucopia of new anticancer compounds. Despite extensive study of luteolin, the literature has no information on the exact mechanisms or molecular targets through which it deters cancer progression. This review discusses existing data on luteolin’s anticancer activities and then offers possible explanations for and molecular targets of its cancer-preventive action. Luteolin prevents tumor development largely by inactivating several signals and transcription pathways essential for cancer cells. This review also offers insights into the molecular mechanisms and targets through which luteolin either prevents cancer or mediates cancer cell death. PMID:25714651

  19. Mitochondria: a target for cancer therapy

    PubMed Central

    Armstrong, Jeffrey S

    2005-01-01

    Mitochondria, the cells powerhouses, are essential for maintaining cell life, and they also play a major role in regulating cell death, which occurs upon permeabilization of their membranes. Once mitochondrial membrane permeabilization (MMP) occurs, cells die either by apoptosis or necrosis. Key factors regulating MMP include calcium, the cellular redox status (including levels of reactive oxygen species) and the mobilization and targeting to mitochondria of Bcl-2 family members. Contemporary approaches to targeting mitochondria in cancer therapy use strategies that either modulate the action of Bcl-2 family members at the mitochondrial outer membrane or use specific agents that target the mitochondrial inner membrane and the mitochondrial permeability transition (PT) pore. The aim of this review is to describe the major mechanisms regulating MMP and to discuss, with examples, mitochondrial targeting strategies for potential use in cancer therapy. PMID:16331284

  20. The progress of targeted therapy in advanced gastric cancer

    PubMed Central

    2013-01-01

    Although palliative chemotherapy has been shown to prolong survival and improve quality of life, the survival of advanced gastric cancer (AGC) patients remains poor. With the advent of targeted therapy, many molecular targeted agents have been evaluated in clinical studies. Trastuzumab, an anti-HER2 monoclonal antibody, has shown activity against HER2-positive AGC and becomes the first targeted agent approved in AGC. Drugs that target epidermal growth factor receptor, including monoclonal antibody and tyrosine kinase inhibitor, do not bring survival benefit to patients with AGC. Additionally, vascular endothelial growth factor inhibitors are also under investigation. Ramucirumab has shown promising result. Other targeted agents are in preclinical or early clinical development, such as mammalian target of rapamycinm inhibitors and c-MET inhibitors. PMID:24330856

  1. [Molecular targeted drugs for soft tissue sarcoma and neuroendocrine tumor].

    PubMed

    Kato, Shunsuke

    2015-08-01

    Both the soft tissue sarcomas and the neuroendocrine tumors are rare diseases. Therefore the recruiting of these patients was more difficult than other cancer species, and the development of the new therapy for these diseases did not readily advance. However, the identification of driver molecules for each sub-type enabled us to the development of the molecular targeted drugs. As for the GIST, several TKIs are used, but in late years it is found that susceptibility of TKIs varies according to difference in second mutation. In this chapter, the molecular target drug for the soft tissue sarcoma and the neuroendocrine tumor is reviewed. PMID:26281696

  2. The molecular targets of approved treatments for pulmonary arterial hypertension

    PubMed Central

    Humbert, Marc; Ghofrani, Hossein-Ardeschir

    2016-01-01

    Until recently, three classes of medical therapy were available for the treatment of pulmonary arterial hypertension (PAH)—prostanoids, endothelin receptor antagonists and phosphodiesterase type 5 (PDE5) inhibitors. With the approval of the soluble guanylate cyclase stimulator riociguat, an additional drug class has become available targeting a distinct molecular target in the same pathway as PDE5 inhibitors. Treatment recommendations currently include the use of all four drug classes to treat PAH, but there is a lack of comparative data for these therapies. Therefore, an understanding of the mechanistic differences between these agents is critical when making treatment decisions. Combination therapy is often used to treat PAH and it is therefore important that physicians understand how the modes of action of these drugs may interact to work as complementary partners, or potentially with unwanted consequences. Furthermore, different patient phenotypes mean that patients respond differently to treatment; while a certain monotherapy may be adequate for some patients, for others it will be important to consider alternating or combining compounds with different molecular targets. This review describes how the four currently approved drug classes target the complex pathobiology of PAH and will consider the distinct target molecules of each drug class, their modes of action, and review the pivotal clinical trial data supporting their use. It will also discuss the rationale for combining drugs (or not) from the different classes, and review the clinical data from studies on combination therapy. PMID:26219978

  3. Lung cancer biomarkers, targeted therapies and clinical assays

    PubMed Central

    Ersek, Jennifer L.; Kim, Edward S.

    2015-01-01

    Until recently, the majority of genomic cancer research has been in discovery and validation; however, as our knowledge of tumor molecular profiling improves, the idea of genomic application in the clinic becomes increasingly tangible, paralleled with the drug development of newer targeted therapies. A number of profiling methodologies exist to identify biomarkers found within the patient (germ-line DNA) and tumor (somatic DNA). Subsequently, commercially available clinical assays to test for both germ-line and somatic alterations that are prognostic and/or predictive of disease outcome, toxicity or treatment response have significantly increased. This review aims to summarize clinically relevant cancer biomarkers that serve as targets for therapy and their potential relationship to lung cancer. In order to realize the full potential of genomic cancer medicine, it is imperative that clinicians understand these intricate molecular pathways, the therapeutic implication of mutations within these pathways, and the availability of clinical assays to identify such biomarkers. PMID:26629419

  4. Molecular Approaches to Sarcoma Therapy

    PubMed Central

    Olsen, R. J.; Tarantolo, S. R.

    2002-01-01

    Soft tissue sarcomas comprise a heterogeneous group of aggressive tumors that have a relatively poor prognosis. Although conventional therapeutic regimens can effectively cytoreduce the overall tumor mass, they fail to consistently achieve a curative outcome. Alternative gene-based approaches that counteract the underlying neoplastic process by eliminating the clonal aberrations that potentiate malignant behavior have been proposed. As compared to the accumulation of gene alterations associated with epithelial carcinomas, sarcomas are frequently characterized by the unique presence of a single chromosomal translocation in each histological subtype. Similar to the Philadelphia chromosome associated with CML, these clonal abnormalities result in the fusion of two independent unrelated genes to generate a unique chimeric protein that displays aberrant activity believed to initiate cellular transformation. Secondary gene mutations may provide an additional growth advantage that further contributes to malignant progression. The recent clinical success of the tyrosine kinase inhibitor, STI571, suggests that therapeutic approaches specifically directed against essential survival factors in sarcoma cells may be effective. This review summarizes published approaches targeting a specific molecular mechanism associated with sarcomagenesis. The strategy and significance of published translational studies in six distinct areas are presented. These include: (1) the disruption of chimeric transcription factor activity; (2) inhibition of growth stimulatory post-translational modifications; (3) restoration of tumor suppressor function; (4) interference with angiogenesis; (5) induction of apoptotic pathways; and (6) introduction of toxic gene products. The potential for improving outcomes in sarcoma patients and the conceptual obstacles to be overcome are discussed. PMID:18521343

  5. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies

    PubMed Central

    Agathangelidis, Andreas; Darzentas, Nikos; Hadzidimitriou, Anastasia; Brochet, Xavier; Murray, Fiona; Yan, Xiao-Jie; Davis, Zadie; van Gastel-Mol, Ellen J.; Tresoldi, Cristina; Chu, Charles C.; Cahill, Nicola; Giudicelli, Veronique; Tichy, Boris; Pedersen, Lone Bredo; Foroni, Letizia; Bonello, Lisa; Janus, Agnieszka; Smedby, Karin; Anagnostopoulos, Achilles; Merle-Beral, Helene; Laoutaris, Nikolaos; Juliusson, Gunnar; di Celle, Paola Francia; Pospisilova, Sarka; Jurlander, Jesper; Geisler, Christian; Tsaftaris, Athanasios; Lefranc, Marie-Paule; Langerak, Anton W.; Oscier, David Graham; Chiorazzi, Nicholas; Belessi, Chrysoula; Davi, Frederic; Rosenquist, Richard; Stamatopoulos, Kostas

    2012-01-01

    Mounting evidence indicates that grouping of chronic lymphocytic leukemia (CLL) into distinct subsets with stereotyped BCRs is functionally and prognostically relevant. However, several issues need revisiting, including the criteria for identification of BCR stereotypy and its actual frequency as well as the identification of “CLL-biased” features in BCR Ig stereotypes. To this end, we examined 7596 Ig VH (IGHV-IGHD-IGHJ) sequences from 7424 CLL patients, 3 times the size of the largest published series, with an updated version of our purpose-built clustering algorithm. We document that CLL may be subdivided into 2 distinct categories: one with stereotyped and the other with nonstereotyped BCRs, at an approximate ratio of 1:2, and provide evidence suggesting a different ontogeny for these 2 categories. We also show that subset-defining sequence patterns in CLL differ from those underlying BCR stereotypy in other B-cell malignancies. Notably, 19 major subsets contained from 20 to 213 sequences each, collectively accounting for 943 sequences or one-eighth of the cohort. Hence, this compartmentalized examination of VH sequences may pave the way toward a molecular classification of CLL with implications for targeted therapeutic interventions, applicable to a significant number of patients assigned to the same subset. PMID:22415752

  6. Targeted therapies in pulmonary arterial hypertension.

    PubMed

    Montani, David; Chaumais, Marie-Camille; Guignabert, Christophe; Günther, Sven; Girerd, Barbara; Jaïs, Xavier; Algalarrondo, Vincent; Price, Laura C; Savale, Laurent; Sitbon, Olivier; Simonneau, Gérald; Humbert, Marc

    2014-02-01

    Pulmonary arterial hypertension (PAH) is a rare disorder characterized by progressive obliteration of small pulmonary arteries that leads to elevated pulmonary arterial pressure and right heart failure. During the last decades, an improved understanding of the pathophysiology of the disease has resulted in the development of effective therapies targeting endothelial dysfunction (epoprostenol and derivatives, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors). These drugs allow clinical, functional and hemodynamic improvement. Even though, no cure exists for PAH and prognosis remains poor. Recently, several additional pathways have been suggested to be involved in the pathogenesis of PAH, and may represent innovative therapies. In this summary, we review conventional therapy, pharmacological agents currently available for the treatment of PAH and the benefit/risk ratio of potential future therapies. PMID:24134901

  7. Advances in targeted therapies and new promising targets in esophageal cancer

    PubMed Central

    Belkhiri, Abbes; El-Rifai, Wael

    2015-01-01

    Esophageal cancer, comprising squamous carcinoma and adenocarcinoma, is a leading cause of cancer-related death in the world. Notably, the incidence of esophageal adenocarcinoma has increased at an alarming rate in the Western world. Unfortunately, the standard first-line chemo-radiotherapeutic approaches are toxic and of limited efficacy in the treatment of a significant number of cancer patients. The molecular analysis of cancer cells has uncovered key genetic and epigenetic alterations underlying the development and progression of tumors. These discoveries have paved the way for the emergence of targeted therapy approaches. This review will highlight recent progress in the development of targeted therapies in esophageal cancer. This will include a review of drugs targeting receptor tyrosine kinases and other kinases in esophageal cancer. Additional studies will be required to develop a rational integration of these targeted agents with respect to histologic types of esophageal cancer and the optimal selection of cancer patients who would most likely benefit from targeted therapy. Identification of AURKA and AXL as key molecular players in esophageal tumorigenesis and drug resistance strongly justifies the evaluation of the available drugs against these targets in clinical trials. PMID:25593196

  8. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  9. Conotoxins: Molecular and Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Lewis, Richard J.

    Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.

  10. Neoadjuvant chemotherapy and targeted therapies: a promising strategy.

    PubMed

    Metzger-Filho, Otto; de Azambuja, Evandro

    2011-01-01

    Neoadjuvant therapy in breast cancer has emerged as an important setting for the development of targeted drugs. Because tumor material is available before treatment, at the moment of surgery, and possibly during treatment, precise correlations can be made between target identification, target blockade, and tumor response. Significant improvements have already been achieved by introducing targeted agents to neoadjuvant modalities. In the HER2 patient population, anti-HER2 targeted therapies have consistently demonstrated increased rates of pathological complete response. In the hormone receptor-positive setting, identifying early surrogate markers able to predict response to treatment has the potential to accelerate the development of targeted therapies. Ongoing neoadjuvant research programs such as NeoBIG and I-SPY 2 (Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis 2) are scientifically strong and will most likely demonstrate that the "neoadjuvant step" can lead directly to large, phase III adjuvant registration trials. This implies that the time between drug discovery and regulatory approval can be significantly shortened, which ultimately benefits patients.

  11. Targeted radionuclide therapies for pancreatic cancer.

    PubMed

    Shah, M; Da Silva, R; Gravekamp, C; Libutti, S K; Abraham, T; Dadachova, E

    2015-08-01

    Pancreatic malignancies, the fourth leading cause of cancer deaths, have an aggressive behavior with poor prognosis, resulting in a 5-year survival rate of only 4%. It is typically a silent malignancy until patients develop metastatic disease. Targeted radionuclide therapies of cancer such as radiolabeled peptides, which bind to the receptors overexpressed by cancer cells and radiolabeled antibodies to tumor-specific antigens provide a viable alternative to chemotherapy and external beam radiation of metastatic cancers. Multiple clinical trials of targeted radionuclide therapy of pancreatic cancer have been performed in the last decade and demonstrated safety and potential efficacy of radionuclide therapy for treatment of this formidable disease. Although a lot of progress has been made in treatment of pancreatic neuroendocrine tumors with radiolabeled (90)Y and (177)Lu somatostatin peptide analogs, pancreatic adenocarcinomas remain a major challenge. Novel approaches such as peptides and antibodies radiolabeled with alpha emitters, pre-targeting, bispecific antibodies and biological therapy based on the radioactive tumorlytic bacteria might offer a potential breakthrough in treatment of pancreatic adenocarcinomas.

  12. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer. PMID:27461603

  13. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  14. Tumor therapy with targeted atomic nanogenerators.

    PubMed

    McDevitt, M R; Ma, D; Lai, L T; Simon, J; Borchardt, P; Frank, R K; Wu, K; Pellegrini, V; Curcio, M J; Miederer, M; Bander, N H; Scheinberg, D A

    2001-11-16

    A single, high linear energy transfer alpha particle can kill a target cell. We have developed methods to target molecular-sized generators of alpha-emitting isotope cascades to the inside of cancer cells using actinium-225 coupled to internalizing monoclonal antibodies. In vitro, these constructs specifically killed leukemia, lymphoma, breast, ovarian, neuroblastoma, and prostate cancer cells at becquerel (picocurie) levels. Injection of single doses of the constructs at kilobecquerel (nanocurie) levels into mice bearing solid prostate carcinoma or disseminated human lymphoma induced tumor regression and prolonged survival, without toxicity, in a substantial fraction of animals. Nanogenerators targeting a wide variety of cancers may be possible.

  15. Molecular targeted agents for gastric and gastroesophageal junction cancer.

    PubMed

    Oshima, Takashi; Masuda, Munetaka

    2012-04-01

    Despite recent improvements in surgical techniques and chemotherapy, advanced cancers of the stomach and gastroesophageal junction (GEJ) continue to have poor clinical outcomes. However, molecules intimately related to cancer cell proliferation, invasion, and metastasis have been studied as candidates for molecular targeted agents. Target molecules, such as the epidermal growth factor receptor, vascular endothelial growth factor receptor, and P13k/Akt/mTor pathway, as well as the insulin-like growth factor receptor, c-Met pathways, fibroblast growth factor receptor, and other pathways are considered to be promising candidates for molecular targeted therapy for gastric and GEJ cancer. In this review we focus on the recent developments in targeting relevant pathways in these types of cancer.

  16. Molecular Targets of Cannabidiol in Neurological Disorders.

    PubMed

    Ibeas Bih, Clementino; Chen, Tong; Nunn, Alistair V W; Bazelot, Michaël; Dallas, Mark; Whalley, Benjamin J

    2015-10-01

    Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD's beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular pharmacology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD's relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeutics, the results were variable. In some cases

  17. Molecular Targets of Cannabidiol in Neurological Disorders.

    PubMed

    Ibeas Bih, Clementino; Chen, Tong; Nunn, Alistair V W; Bazelot, Michaël; Dallas, Mark; Whalley, Benjamin J

    2015-10-01

    Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD's beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular pharmacology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD's relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeutics, the results were variable. In some cases

  18. Targeted Therapy for Cancer in the Genomic Era.

    PubMed

    Afghahi, Anosheh; Sledge, George W

    2015-01-01

    The advent of cancer genomics has led to the development of many highly successful targeted therapies, primarily inhibitors of growth factor receptors and related kinases, including imatinib for chronic myeloid leukemia and trastuzumab for HER2-positive breast cancer. This approach has become highly successful for certain cancers. However, as the list of targeted therapies expands, their efficacy becomes more limited, and toxicity accumulates. What we have learned in the past decades is that while the targeted therapeutics approach may be highly successful in less complex tumors, cancers defined by carcinogen-induced genomic chaos, such a UV-induced melanoma or tobacco-induced lung cancer, are driven by a multitude of competing molecular pathways and, as such, are not as successfully managed by a similar approach. Luckily, in the past years, the field of cancer immunotherapy has become more fully developed with the emergence of checkpoint blockade inhibitor therapy. These promising new agents are particularly well suited for tumors with a high mutational burden due to underlying genomic disarray. While still in its infancy, we predict that cancer immunotherapy will offer a better alternative to our current targeted approach and eagerly await the results of several ongoing clinical trials that will elucidate this new direction in cancer therapy.

  19. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  20. Targeted therapy: a new hope for thyroid carcinomas.

    PubMed

    Perri, Francesco; Pezzullo, Luciano; Chiofalo, Maria Grazia; Lastoria, Secondo; Di Gennaro, Francesca; Scarpati, Giuseppina Della Vittoria; Caponigro, Francesco

    2015-04-01

    Thyroid carcinomas are rare and heterogeneous diseases representing less than 1% of all malignancies. The majority of thyroid carcinomas are differentiated entities (papillary and folliculary carcinomas) and are characterized by good prognosis and good response to surgery and radioiodine therapy. Nevertheless, about 10% of differentiated carcinomas recur and become resistant to all therapies. Anaplastic and medullary cancers are rare subtypes of thyroid cancer not suitable for radioiodine therapy. A small percentage of differentiated and all the anaplastic and medullary thyroid carcinomas often recur after primary treatments and are no longer suitable for other therapies. In the last years, several advances have been made in the field of molecular biology and tumorigenesis mechanisms of thyroid carcinomas. Starting from these issues, the targeted therapy may be employed as a new option. The MAP-Kinase pathway has been found often dysregulated in thyroid carcinomas and several upstream signals have been recognized as responsible for this feature. RET/PTC mutations are often discovered both in papillary and in medullary carcinomas, while B-RAF mutation is typical of papillary and anaplastic histologies. Also mTOR disruptions and VEGFR pathway disruption are common features in all advanced thyroid cancers. Some angiogenesis inhibitors and a number of RET/PTC pathway blocking agents are yet present in the clinical armamentarium. Vandetanib, cabozatinib and sorafenib have reached clinical use. A number of other biological compounds have been tested in phase II and III trials. Understanding the biology of thyroid cancers may help us to design a well shaped targeted therapy.

  1. Targets for therapy in sarcomeric cardiomyopathies

    PubMed Central

    Tardiff, Jil C.; Carrier, Lucie; Bers, Donald M.; Poggesi, Corrado; Ferrantini, Cecilia; Coppini, Raffaele; Maier, Lars S.; Ashrafian, Houman; Huke, Sabine; van der Velden, Jolanda

    2015-01-01

    To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics. PMID:25634554

  2. The molecular targets of resveratrol.

    PubMed

    Kulkarni, Sameer S; Cantó, Carles

    2015-06-01

    Resveratrol has emerged in recent years as a compound conferring strong protection against metabolic, cardiovascular and other age-related complications, including neurodegeneration and cancer. This has generated the notion that resveratrol treatment acts as a calorie-restriction mimetic, based on the many overlapping health benefits observed upon both interventions in diverse organisms, including yeast, worms, flies and rodents. Though studied for over a decade, the molecular mechanisms governing the therapeutic properties of resveratrol still remain elusive. Elucidating how resveratrol exerts its effects would provide not only new insights in its fundamental biological actions but also new avenues for the design and development of more potent drugs to efficiently manage metabolic disorders. In this review we will cover the most recent advances in the field, with special focus on the metabolic actions of resveratrol and the potential role of SIRT1 and AMPK. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.

  3. Crizotinib for the Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: A Success Story to Usher in the Second Decade of Molecular Targeted Therapy in Oncology

    PubMed Central

    Bartlett, Cynthia Huang; Mino-Kenudson, Mari; Cui, Jean; Iafrate, A. John

    2012-01-01

    Crizotinib, an ALK/MET/ROS1 inhibitor, was approved by the U.S. Food and Drug Administration for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) in August 2011, merely 4 years after the first publication of ALK-rearranged NSCLC. The crizotinib approval was accompanied by the simultaneous approval of an ALK companion diagnostic fluorescent in situ hybridization assay for the detection of ALK-rearranged NSCLC. Crizotinib continued to be developed as an ALK and MET inhibitor in other tumor types driven by alteration in ALK and MET. Crizotinib has recently been shown to be an effective ROS1 inhibitor in ROS1-rearranged NSCLC, with potential future clinical applications in ROS1-rearranged tumors. Here we summarize the heterogeneity within the ALK- and ROS1-rearranged molecular subtypes of NSCLC. We review the past and future clinical development of crizotinib for ALK-rearranged NSCLC and the diagnostic assays to detect ALK-rearranged NSCLC. We highlight how the success of crizotinib has changed the paradigm of future drug development for targeted therapies by targeting a molecular-defined subtype of NSCLC despite its rarity and affected the practice of personalized medicine in oncology, emphasizing close collaboration between clinical oncologists, pathologists, and translational scientists. PMID:22989574

  4. Targeting the cancer epigenome for therapy.

    PubMed

    Jones, Peter A; Issa, Jean-Pierre J; Baylin, Stephen

    2016-09-15

    Next-generation sequencing has revealed that more than 50% of human cancers harbour mutations in enzymes that are involved in chromatin organization. Tumour cells not only are activated by genetic and epigenetic alterations, but also routinely use epigenetic processes to ensure their escape from chemotherapy and host immune surveillance. Hence, a growing emphasis of recent drug discovery efforts has been on targeting the epigenome, including DNA methylation and histone modifications, with several new drugs being tested and some already approved by the US Food and Drug Administration (FDA). The future will see the increasing success of combining epigenetic drugs with other therapies. As epigenetic drugs target the epigenome as a whole, these true 'genomic medicines' lessen the need for precision approaches to individualized therapies. PMID:27629931

  5. Targeting DNA Methylation for Epigenetic Therapy

    PubMed Central

    Yang, Xiaojing; Lay, Fides; Han, Han; Jones, Peter A.

    2010-01-01

    DNA methylation patterns are established during embryonic development and faithfully copied through somatic cell divisions. Based on our understanding of DNA methylation and other interrelated epigenetic modifications, a comprehensive view of the epigenetic landscape and cancer epigenome is evolving. The cancer methylome is highly disrupted, making DNA methylation an excellent target for anti-cancer therapies. During the last few decades, an increasing number of drugs targeting DNA methylation have been developed in an effort to increase efficacy, stability and to decrease toxicity. The earliest and the most successful epigenetic drug to date, 5-Azacytidine, is currently recommended as the first-line treatment for high risk myelodysplastic syndromes (MDS) patients. Encouraging results from clinical trials have prompted further efforts to elucidate epigenetic alterations in cancer and subsequently develop new epigenetic therapies. This review delineates the latest cancer epigenetic models, recent discovery of hypomethylation agents and their application in the clinic. PMID:20846732

  6. Chromatin-regulating proteins as targets for cancer therapy

    PubMed Central

    Oike, Takahiro; Ogiwara, Hideaki; Amornwichet, Napapat; Nakano, Takashi; Kohno, Takashi

    2014-01-01

    Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy. PMID:24522270

  7. Targeting mitochondria metabolism for cancer therapy

    PubMed Central

    Weinberg, Samuel E; Chandel, Navdeep S

    2015-01-01

    Mitochondria have a well-recognized role in the production of ATP and the intermediates needed for macromolecule biosynthesis, such as nucleotides. Mitochondria also participate in the activation of signaling pathways. Overall, accumulating evidence now suggests that mitochondrial bioenergetics, biosynthesis and signaling are required for tumorigenesis. Thus, emerging studies have begun to demonstrate that mitochondrial metabolism is potentially a fruitful arena for cancer therapy. In this Perspective, we highlight recent developments in targeting mitochondrial metabolism for the treatment of cancer. PMID:25517383

  8. Emerging targets for glioblastoma stem cell therapy

    PubMed Central

    Safa, Ahmad R.; Saadatzadeh, Mohammad Reza; Cohen-Gadol, Aaron A.; Pollok, Karen E.; Bijangi-Vishehsaraei, Khadijeh

    2016-01-01

    Abstract Glioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/β-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells. PMID:26616589

  9. Targeted Therapy: Can It Substitute for Chemotherapy?

    PubMed

    Schütz, Florian

    2008-01-01

    Every oncologist has a dream - doing more with less toxicity. Targeted therapies seem to be the key for an oncologist's dreams by defining subgroups of those patients who benefit more from a specific treatment and those who do not. For a few years now, targeted therapies have played a major role in the treatment of primary as well as metastatic breast cancer. In this article, we describe targeted therapies that already play an important role in clinical decisions in the treatment of metastatic as well as primary breast cancer. The humanised monoclonal antibody trastuzumab is a very effective agent in primary and metastatic breast cancer, but only for those patients whose tumours are overexpressing HER2/neu. Bevacizumab is an antibody directed against vascular epidermal growth factor ligand A which plays a role in angiogenesis. Up to now there is no predictive factor known for this treatment. Furthermore, we would like to give an impression of new agents and strategies under investigation like tyrosine kinase inhibitors and other small molecules.

  10. Targeted Therapy in Nonmelanoma Skin Cancers

    PubMed Central

    Spallone, Giulia; Botti, Elisabetta; Costanzo, Antonio

    2011-01-01

    Nonmelanoma skin cancer (NMSC) is the most prevalent cancer in light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC), representing around 75% of NMSC and Squamous Cell Carcinomas (SCC). The incidence of these tumors is continuously growing. It was found that the overall number of procedures for NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although mortality from NMSC tends to be very low, clearly the morbidity related to these skin cancers is very high. Treatment options for NMSC include both surgical and nonsurgical interventions. Surgery was considered the gold standard therapy, however, advancements in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key targets for drug intervention and to the consequent development of several targeted therapies. These represent the future in treatment of these common forms of cancer ensuring a high cure rate, preservation of the maximal amount of normal surrounding tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC targeted therapies focusing on BCC and SCC. PMID:24212808

  11. [50 years of hepatology - from therapeutic nihilism to targeted therapies].

    PubMed

    Manns, Michael P

    2013-04-01

    Over the past 50 years significant progress has been made in the whole field of hepatology. Part of this is translation of basic research (biochemistry, immunology, virology, molecular biology and others) into clinical hepatology. This enabled us to understand more about the pathogenesis of liver diseases and led to the discovery of the five major hepatotropic viruses, the identification of hepatocellular autoantigens, and to the development of specific therapies for chronic hepatitis B, C and D. In addition, the molecular basis of most genetic liver diseases has been identified. Significant progress was made in the development of medical therapies for various liver diseases with different underlying etiologies. Surgery significantly contributed to the progress in the management of liver diseases; examples are laparoscopic cholecystectomy and the development of liver transplantation. A multimodal therapeutic algorithm has been established for the therapy of hepatocelluar carcinoma (HCC); with Sorafenib "targeted therapy" has entered the area of HCC. The progress made over the last 50 years not only led to an aetiological differentiation of acute and chronic liver diseases but also to specific therapies based on the identification and understanding of the underlying etiology. PMID:23585265

  12. Circulating biomarker panels for targeted therapy in brain tumors.

    PubMed

    Tanase, Cristiana; Albulescu, Radu; Codrici, Elena; Popescu, Ionela Daniela; Mihai, Simona; Enciu, Ana Maria; Cruceru, Maria Linda; Popa, Adrian Claudiu; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Neagu, Monica

    2015-01-01

    An important goal of oncology is the development of cancer risk-identifier biomarkers that aid early detection and target therapy. High-throughput profiling represents a major concern for cancer research, including brain tumors. A promising approach for efficacious monitoring of disease progression and therapy could be circulating biomarker panels using molecular proteomic patterns. Tailoring treatment by targeting specific protein-protein interactions and signaling networks, microRNA and cancer stem cell signaling in accordance with tumor phenotype or patient clustering based on biomarker panels represents the future of personalized medicine for brain tumors. Gathering current data regarding biomarker candidates, we address the major challenges surrounding the biomarker field of this devastating tumor type, exploring potential perspectives for the development of more effective predictive biomarker panels.

  13. Novel harmine derivatives for tumor targeted therapy

    PubMed Central

    Gu, Fan; Wang, Zhaohui; Tian, Caiping; Qian, Zhiyu; Tang, Liping; Gu, Yueqing

    2015-01-01

    Harmine is a beta-carboline alkaloid found in medicinal plant PeganumHarmala, which has served as a folk anticancer medicine. However, clinical applications of harmine were limited by its low pharmacological effects and noticeable neurotoxicity. In this study, we modified harmine to increase the therapeutic efficacy and to decrease the systemic toxicity. Specifically, two tumor targeting harmine derivatives 2DG-Har-01 and MET-Har-02 were synthesized by modifying substituent in position-2, -7 and -9 of harmine ring with two different targeting group2-amino-2-deoxy-D-glucose (2DG) and Methionine (Met), respectively. Their therapeutic efficacy and toxicity were investigated both in vitro and in vivo. Results suggested that the two newharmine derivatives displayed much higher therapeutic effects than non-modified harmine. In particular, MET-Har-02 was more potent than 2DG-Har-01 with promising potential for targeted cancer therapy. PMID:25940702

  14. Targeted Radiolabeled Compounds in Glioma Therapy.

    PubMed

    Cordier, Dominik; Krolicki, Leszek; Morgenstern, Alfred; Merlo, Adrian

    2016-05-01

    Malignant gliomas of World Health Organization (WHO) grades II-IV represent the largest entity within the group of intrinsic brain tumors and are graded according to their pathophysiological features with survival times between more than 10 years (WHO II) and only several months (WHO IV). Gliomas arise from astrocytic or oligodendrocytic precursor cells and exhibit an infiltrative growth pattern lacking a clearly identifiable tumor border. The development of effective treatment strategies of the invasive tumor cell front represents the main challenge in glioma therapy. The therapeutic standard consists of surgical resection and, depending on the extent of resection and WHO grade, adjuvant external beam radiotherapy or systemic chemotherapy. Within the last decades, there has been no major improvement of the prognosis of patients with glioma. The consistent overexpression of neurokinin type 1 receptors in gliomas WHO grades II-IV has been used to develop a therapeutic substance P-based targeting system. A substance P-analogue conjugated to the DOTA or DOTAGA chelator has been labeled with different alpha-particle or beta-particle emitting radionuclides for targeted glioma therapy. The radiopharmaceutical has been locally injected into the tumors or the resection cavity. In several clinical studies, the methodology has been examined in adjuvant and neoadjuvant clinical settings. Although no large controlled series have so far been generated, the results of radiolabeled substance P-based targeted glioma therapy compare favorably with standard therapy. Recently, labeling with the alpha particle emitting Bi-213 has been found to be promising due to the high linear energy transfer and the very short tissue range of 0.08 mm. Further development needs to focus on the improvement of the stability of the compound and the application by dedicated catheter systems to improve the intratumoral distribution of the radiopharmaceutical within the prognostically critical

  15. Targeted Radiolabeled Compounds in Glioma Therapy.

    PubMed

    Cordier, Dominik; Krolicki, Leszek; Morgenstern, Alfred; Merlo, Adrian

    2016-05-01

    Malignant gliomas of World Health Organization (WHO) grades II-IV represent the largest entity within the group of intrinsic brain tumors and are graded according to their pathophysiological features with survival times between more than 10 years (WHO II) and only several months (WHO IV). Gliomas arise from astrocytic or oligodendrocytic precursor cells and exhibit an infiltrative growth pattern lacking a clearly identifiable tumor border. The development of effective treatment strategies of the invasive tumor cell front represents the main challenge in glioma therapy. The therapeutic standard consists of surgical resection and, depending on the extent of resection and WHO grade, adjuvant external beam radiotherapy or systemic chemotherapy. Within the last decades, there has been no major improvement of the prognosis of patients with glioma. The consistent overexpression of neurokinin type 1 receptors in gliomas WHO grades II-IV has been used to develop a therapeutic substance P-based targeting system. A substance P-analogue conjugated to the DOTA or DOTAGA chelator has been labeled with different alpha-particle or beta-particle emitting radionuclides for targeted glioma therapy. The radiopharmaceutical has been locally injected into the tumors or the resection cavity. In several clinical studies, the methodology has been examined in adjuvant and neoadjuvant clinical settings. Although no large controlled series have so far been generated, the results of radiolabeled substance P-based targeted glioma therapy compare favorably with standard therapy. Recently, labeling with the alpha particle emitting Bi-213 has been found to be promising due to the high linear energy transfer and the very short tissue range of 0.08 mm. Further development needs to focus on the improvement of the stability of the compound and the application by dedicated catheter systems to improve the intratumoral distribution of the radiopharmaceutical within the prognostically critical

  16. Targeted Therapies for Advanced Ewing Sarcoma Family of Tumours

    PubMed Central

    Jiang, Yunyun; Ludwig, Joseph; Janku, Filip

    2015-01-01

    The prognosis of adolescent and young adult patients battling metastatic Ewing Sarcoma Family of Tumours (ESFT) remains less than 30% despite the development of systemic therapies. In the era of personalized medicine, novel molecular targets have been tested in preclinical or clinical settings in ESFT. In this review, we focus on early clinical and translational research that identified multiple molecular targets, including IGF-1R; mTOR; tyrosine kinase inhibitors; EWS-FLI1-related targets, and others. Overall, novel targeted therapies demonstrated modest efficacy; however pronounced and durable antineoplastic responses have been observed in small subsets of treated patients, for example with IGF-1R antibodies. Identifying outcome-predicting biomarkers and overcoming treatment resistance remain major challenges. Due to the rarity of ESFT, multi-institutional collaboration efforts of clinicians, basic and translational scientists are needed in order to understand biology of therapeutic response or resistance, which can lead to development of novel therapeutic methods and improved patient outcomes. PMID:25869102

  17. Role of targeted therapy in metastatic colorectal cancer

    PubMed Central

    Ohhara, Yoshihito; Fukuda, Naoki; Takeuchi, Satoshi; Honma, Rio; Shimizu, Yasushi; Kinoshita, Ichiro; Dosaka-Akita, Hirotoshi

    2016-01-01

    Colorectal cancer (CRC) is a significant cause of cancer-related morbidity and mortality all over the world. Improvements of cytotoxic and biologic agents have prolonged the survival in metastatic CRC (mCRC), with a median overall survival of approximately 2 years and more in the past two decades. The biologic agents that have proven clinical benefits in mCRC mainly target vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). In particular, bevacizumab targeting VEGF and cetuximab and panitumumab targeting EGFR have demonstrated significant survival benefits in combination with cytotoxic chemotherapy in the first-line, second-line, or salvage setting. Aflibercept, ramucirumab, and regorafenib are also used in second-line or salvage therapy. Recent retrospective analyses have shown that KRAS or NRAS mutations were negative predictive markers for anti-EGFR therapy. Based on the evidence from large randomized clinical trials, personalized therapy is necessary for patients with mCRC according to their tumor biology and characteristics. The aim of this paper was to summarize the results of the major randomized clinical trials and highlight the benefits of the molecular targeted agents in patients with mCRC. PMID:27672422

  18. Role of targeted therapy in metastatic colorectal cancer.

    PubMed

    Ohhara, Yoshihito; Fukuda, Naoki; Takeuchi, Satoshi; Honma, Rio; Shimizu, Yasushi; Kinoshita, Ichiro; Dosaka-Akita, Hirotoshi

    2016-09-15

    Colorectal cancer (CRC) is a significant cause of cancer-related morbidity and mortality all over the world. Improvements of cytotoxic and biologic agents have prolonged the survival in metastatic CRC (mCRC), with a median overall survival of approximately 2 years and more in the past two decades. The biologic agents that have proven clinical benefits in mCRC mainly target vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). In particular, bevacizumab targeting VEGF and cetuximab and panitumumab targeting EGFR have demonstrated significant survival benefits in combination with cytotoxic chemotherapy in the first-line, second-line, or salvage setting. Aflibercept, ramucirumab, and regorafenib are also used in second-line or salvage therapy. Recent retrospective analyses have shown that KRAS or NRAS mutations were negative predictive markers for anti-EGFR therapy. Based on the evidence from large randomized clinical trials, personalized therapy is necessary for patients with mCRC according to their tumor biology and characteristics. The aim of this paper was to summarize the results of the major randomized clinical trials and highlight the benefits of the molecular targeted agents in patients with mCRC. PMID:27672422

  19. Role of targeted therapy in metastatic colorectal cancer

    PubMed Central

    Ohhara, Yoshihito; Fukuda, Naoki; Takeuchi, Satoshi; Honma, Rio; Shimizu, Yasushi; Kinoshita, Ichiro; Dosaka-Akita, Hirotoshi

    2016-01-01

    Colorectal cancer (CRC) is a significant cause of cancer-related morbidity and mortality all over the world. Improvements of cytotoxic and biologic agents have prolonged the survival in metastatic CRC (mCRC), with a median overall survival of approximately 2 years and more in the past two decades. The biologic agents that have proven clinical benefits in mCRC mainly target vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). In particular, bevacizumab targeting VEGF and cetuximab and panitumumab targeting EGFR have demonstrated significant survival benefits in combination with cytotoxic chemotherapy in the first-line, second-line, or salvage setting. Aflibercept, ramucirumab, and regorafenib are also used in second-line or salvage therapy. Recent retrospective analyses have shown that KRAS or NRAS mutations were negative predictive markers for anti-EGFR therapy. Based on the evidence from large randomized clinical trials, personalized therapy is necessary for patients with mCRC according to their tumor biology and characteristics. The aim of this paper was to summarize the results of the major randomized clinical trials and highlight the benefits of the molecular targeted agents in patients with mCRC.

  20. Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha

    PubMed Central

    Cai, Weibo; Kerner, Zachary J.; Hong, Hao; Sun, Jiangtao

    2013-01-01

    Tumor necrosis factor-alpha (TNF-α), a member of the TNF superfamily, was the first cytokine to be evaluated for cancer biotherapy. However, the clinical use of TNF-α is severely limited by its toxicity. Currently, TNF-α is administered only through locoregional drug delivery systems such as isolated limb perfusion and isolated hepatic perfusion. To reduce the systemic toxicity of TNF-α, various strategies have been explored over the last several decades. This review summarizes current state-of-the-art targeted cancer therapy using TNF-α. Passive targeting, cell-based therapy, gene therapy with inducible or tissue-specific promoters, targeted polymer-DNA complexes, tumor pre-targeting, antibody-TNF-α conjugate, scFv/TNF-α fusion proteins, and peptide/TNF-α fusion proteins have all been investigated to combat cancer. Many of these agents are already in advanced clinical trials. Molecular imaging, which can significantly speed up the drug development process, and nanomedicine, which can integrate both imaging and therapeutic components, has the potential to revolutionize future cancer patient management. Cooperative efforts from scientists within multiple disciplines, as well as close partnerships among many organizations/entities, are needed to quickly translate novel TNF-α-based therapeutics into clinical investigation. PMID:24115841

  1. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  2. Targeted therapy of gastrointestinal stromal tumours

    PubMed Central

    Jakhetiya, Ashish; Garg, Pankaj Kumar; Prakash, Gaurav; Sharma, Jyoti; Pandey, Rambha; Pandey, Durgatosh

    2016-01-01

    Gastrointestinal stromal tumours (GISTs) are mesenchymal neoplasms originating in the gastrointestinal tract, usually in the stomach or the small intestine, and rarely elsewhere in the abdomen. The malignant potential of GISTs is variable ranging from small lesions with a benign behaviour to fatal sarcomas. The majority of the tumours stain positively for the CD-117 (KIT) and discovered on GIST-1 (DOG-1 or anoctamin 1) expression, and they are characterized by the presence of a driver kinase-activating mutation in either KIT or platelet-derived growth factor receptor α. Although surgery is the primary modality of treatment, almost half of the patients have disease recurrence following surgery, which highlights the need for an effective adjuvant therapy. Traditionally, GISTs are considered chemotherapy and radiotherapy resistant. With the advent of targeted therapy (tyrosine kinase inhibitors), there has been a paradigm shift in the management of GISTs in the last decade. We present a comprehensive review of targeted therapy in the management of GISTs. PMID:27231512

  3. Targeting gene therapy to cancer: a review.

    PubMed

    Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J

    1997-01-01

    In recent years the idea of using gene therapy as a modality in the treatment of diseases other than genetically inherited, monogenic disorders has taken root. This is particularly obvious in the field of oncology where currently more than 100 clinical trials have been approved worldwide. This report will summarize some of the exciting progress that has recently been made with respect to both targeting the delivery of potentially therapeutic genes to tumor sites and regulating their expression within the tumor microenvironment. In order to specifically target malignant cells while at the same time sparing normal tissue, cancer gene therapy will need to combine highly selective gene delivery with highly specific gene expression, specific gene product activity, and, possibly, specific drug activation. Although the efficient delivery of DNA to tumor sites remains a formidable task, progress has been made in recent years using both viral (retrovirus, adenovirus, adeno-associated virus) and nonviral (liposomes, gene gun, injection) methods. In this report emphasis will be placed on targeted rather than high-efficiency delivery, although those would need to be combined in the future for effective therapy. To date delivery has been targeted to tumor-specific and tissue-specific antigens, such as epithelial growth factor receptor, c-kit receptor, and folate receptor, and these will be described in some detail. To increase specificity and safety of gene therapy further, the expression of the therapeutic gene needs to be tightly controlled within the target tissue. Targeted gene expression has been analyzed using tissue-specific promoters (breast-, prostate-, and melanoma-specific promoters) and disease-specific promoters (carcinoembryonic antigen, HER-2/neu, Myc-Max response elements, DF3/MUC). Alternatively, expression could be regulated externally with the use of radiation-induced promoters or tetracycline-responsive elements. Another novel possibility that will be

  4. Targeting RNA splicing for disease therapy.

    PubMed

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.

  5. Targeted Cancer Therapy Using Engineered Salmonella typhimurium

    PubMed Central

    Zheng, Jin Hai

    2016-01-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy. PMID:27689027

  6. Targeted Cancer Therapy Using Engineered Salmonella typhimurium.

    PubMed

    Zheng, Jin Hai; Min, Jung-Joon

    2016-09-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy. PMID:27689027

  7. Targeted Cancer Therapy Using Engineered Salmonella typhimurium

    PubMed Central

    Zheng, Jin Hai

    2016-01-01

    Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy.

  8. Targeted approaches to induce immune tolerance for Pompe disease therapy

    PubMed Central

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease. PMID:26858964

  9. Targeted approaches to induce immune tolerance for Pompe disease therapy.

    PubMed

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease. PMID:26858964

  10. Temozolomide Nanoparticles for Targeted Glioblastoma Therapy

    PubMed Central

    Fang, Chen; Wang, Kui; Stephen, Zachary R.; Mu, Qingxin; Kievit, Forrest M.; Chiu, Daniel T.; Press, Oliver W.; Zhang, Miqin

    2015-01-01

    Glioblastoma (GBM) is a deadly and debilitating brain tumor with an abysmal prognosis. The standard therapy for GBM is surgery followed by radiation and chemotherapy with temozolomide (TMZ). Treatment of GBMs remains a challenge, largely due to the fast degradation of TMZ, inability to deliver an effective dose of TMZ to tumors, and lack of target specificity which may cause systemic toxicity. Here, we present a simple method to synthesize a nanoparticle-based carrier that can protect TMZ from rapid degradation in physiological solutions and can specifically deliver them to GBM cells through the mediation of a tumor targeting peptide chlorotoxin (CTX). Our nanoparticle, namely NP-TMZ-CTX, had a hydrodynamic size of less than 100 nm, exhibited sustained stability in cell culture media for up to two weeks, and could accommodate stable drug loading. TMZ bound to nanoparticles showed much higher stability at physiological pH, with a half-life 7-fold greater than free TMZ. NP-TMZ-CTX was able to target GBM cells and achieved 2–6-fold higher uptake and 50–90% reduction of IC50 at 72 h post-treatment as compared to non-targeted NP-TMZ. NP-TMZ-CTX showed great promise in its ability to deliver a high therapeutic dose of TMZ to GBM cells, and could serve as a template for targeted delivery of other therapeutics. PMID:25751368

  11. Targeting gene therapy vectors to CNS malignancies.

    PubMed

    Spear, M A; Herrlinger, U; Rainov, N; Pechan, P; Weissleder, R; Breakefield, X O

    1998-04-01

    Gene therapy offers significant advantages to the field of oncology with the addition of specifically and uniquely engineered mechanisms of halting malignant proliferation through cytotoxicity or reproductive arrest. To confer a true benefit to the therapeutic ratio (the relative toxicity to tumor compared to normal tissue) a vector or the transgene it carries must selectively affect or access tumor cells. Beyond the selective toxicities of many transgene products, which frequently parallel that of contemporary chemotherapeutic agents, lies the potential utility of targeting the vector. This review presents an overview of current and potential methods for designing vectors targeted to CNS malignancies through selective delivery, cell entry, transport or transcriptional regulation. The topic of delivery encompasses physical and pharmaceutic means of increasing the relative exposure of tumors to vector. Cell entry based methodologies are founded on increasing relative uptake of vector through the chemical or recombinant addition of ligand and antibody domains which selectively bind receptors expressed on target cells. Targeted transport involves the potential for using cells to selectively carry vectors or transgenes into tumors. Finally, promoter and enhancer systems are discussed which have potential for selectivity activating transcription to produce targeted transgene expression or vector propagation. PMID:9584951

  12. Emerging targeted drug therapies in skeletal dysplasias.

    PubMed

    Yap, Patrick; Savarirayan, Ravi

    2016-10-01

    Quantum advances have occurred in the field of human genetics in the six decades since Watson and Crick expressed their "wish to suggest a structure for the salt of deoxyribose nucleic acid." These culminated with the human genome project, which has opened up myriad possibilities, including that of individualized genetic medicine, the ability to deliver medical advice, management, and therapy tailored to an individual's genetic blueprint. Advances in genetic diagnostic capabilities have been rapid, to the point where the genome can be sequenced for several thousand dollars. Crucially, it has facilitated the identification of targets for "precision" treatments to combat genetic diseases at their source. This manuscript will review the innovative, pathogenesis-based therapies that are revolutionizing management of skeletal dysplasias, giving patients and families new options and outcomes. © 2016 Wiley Periodicals, Inc. PMID:27155200

  13. Liposarcoma: Multimodality Management and Future Targeted Therapies.

    PubMed

    Crago, Aimee M; Dickson, Mark A

    2016-10-01

    There are 3 biologic groups of liposarcoma: well-differentiated and dedifferentiated liposarcoma, myxoid/round cell liposarcoma, and pleomorphic liposarcoma. In all 3 groups, complete surgical resection is central in treatment aimed at cure and is based on grade. Radiation can reduce risk of local recurrence in high-grade lesions or minimize surgical morbidity in the myxoid/round cell liposarcoma group. The groups differ in chemosensitivity, so adjuvant chemotherapy is selectively used in histologies with metastatic potential but not in the resistant subtype dedifferentiated liposarcoma. Improved understanding of the genetic aberrations that lead to liposarcoma initiation is allowing for the rapid development of targeted therapies for liposarcoma. PMID:27591497

  14. Integrating the molecular background of targeted therapy and immunotherapy in lung cancer: a way to explore the impact of mutational landscape on tumor immunogenicity

    PubMed Central

    Pilotto, Sara; Molina-Vila, Miguel Angel; Karachaliou, Niki; Carbognin, Luisa; Viteri, Santiago; González-Cao, Maria; Bria, Emilio; Tortora, Giampaolo

    2015-01-01

    The results of randomized clinical trials employing immune checkpoint inhibitors for pre-treated advanced non-small-cell lung cancer (NSCLC) have recently revolutionised the standard available option for this disease setting. Nevertheless, the validation of reliable predictive biomarkers, able to define that proportion of patients most likely to benefit from immunotherapy, represents a crucial and still unsolved issue. This intensive research aimed at selecting potentially predictive biomarkers for immunotherapy is developed together with a wide range of analyses investigating the molecular profiling of lung cancer, leading to the spontaneous question of how these two parallel aspects of the same disease may coexist and influence one another. The potential impact of the mutational landscape of lung cancer on tumor immunogenicity (in both oncogene-addicted and molecularly unselected disease) will be explored and discussed in this review in order to begin to answer the unsolved questions. PMID:26798581

  15. Integrating the molecular background of targeted therapy and immunotherapy in lung cancer: a way to explore the impact of mutational landscape on tumor immunogenicity.

    PubMed

    Pilotto, Sara; Molina-Vila, Miguel Angel; Karachaliou, Niki; Carbognin, Luisa; Viteri, Santiago; González-Cao, Maria; Bria, Emilio; Tortora, Giampaolo; Rosell, Rafael

    2015-12-01

    The results of randomized clinical trials employing immune checkpoint inhibitors for pre-treated advanced non-small-cell lung cancer (NSCLC) have recently revolutionised the standard available option for this disease setting. Nevertheless, the validation of reliable predictive biomarkers, able to define that proportion of patients most likely to benefit from immunotherapy, represents a crucial and still unsolved issue. This intensive research aimed at selecting potentially predictive biomarkers for immunotherapy is developed together with a wide range of analyses investigating the molecular profiling of lung cancer, leading to the spontaneous question of how these two parallel aspects of the same disease may coexist and influence one another. The potential impact of the mutational landscape of lung cancer on tumor immunogenicity (in both oncogene-addicted and molecularly unselected disease) will be explored and discussed in this review in order to begin to answer the unsolved questions.

  16. Bone Targeted Therapies for Bone Metastasis in Breast Cancer

    PubMed Central

    Razaq, Wajeeha

    2013-01-01

    Cancer metastasis to the bone develops commonly in patients with various malignancies, and is a major cause of morbidity and diminished quality of life in many affected patients. Emerging treatments for metastatic bone disease have arisen from advances in our understanding of the unique cellular and molecular mechanisms that contribute to the bone metastasis. The tendency of cancer cells to metastasize to bone is probably the end result of many factors including vascular pathways, the highly vascular nature of the bone marrow (which increases the probability that cancer cells will be deposited in bone marrow capillaries), and molecular characteristics of the cancer cells that allow them to adapt to the bone marrow microenvironment. The goals of treating osseous metastases are manifold. Proper treatment can lead to significant improvements in pain control and function, and maintain skeletal integrity. The treatment plan requires a multidisciplinary approach. Widespread metastatic disease necessitates systemic therapy, while a localized problem is best managed with surgery, external beam radiotherapy, or both. Patients with bone metastasis can have prolonged survival, and proper management can have a significant impact on their quality of life. We will review the factors in this article that are promising molecular bone-targeted therapies or will be likely targets for future therapeutic intervention to restore bone remodeling and suppress tumor growth. PMID:26237142

  17. Microdosimetry for Targeted Alpha Therapy of Cancer

    PubMed Central

    Huang, Chen-Yu; Guatelli, Susanna; Oborn, Bradley M.; Allen, Barry J.

    2012-01-01

    Targeted alpha therapy (TAT) has the advantage of delivering therapeutic doses to individual cancer cells while reducing the dose to normal tissues. TAT applications relate to hematologic malignancies and now extend to solid tumors. Results from several clinical trials have shown efficacy with limited toxicity. However, the dosimetry for the labeled alpha particle is challenging because of the heterogeneous antigen expression among cancer cells and the nature of short-range, high-LET alpha radiation. This paper demonstrates that it is inappropriate to investigate the therapeutic efficacy of TAT by macrodosimetry. The objective of this work is to review the microdosimetry of TAT as a function of the cell geometry, source-target configuration, cell sensitivity, and biological factors. A detailed knowledge of each of these parameters is required for accurate microdosimetric calculations. PMID:22988479

  18. Targeted PRINTRTM nanoparticles for effective cancer therapy

    NASA Astrophysics Data System (ADS)

    McGowan, Kelly Marie

    Conventional therapeutics for the treatment of cancer are often faced with challenges such as systemic biodistribution within the body, drug degradation in vivo, low bioavailability at the site of disease, and off-target toxicity. As such, particulate drug delivery systems have been developed with the aim of minimizing these limitations of current therapies. Through the PRINTRTM (Particle Replication in Non-wetting Templates) technology, hydrogel nanoparticles, prepared from biocompatible poly(ethylene glycol) and acid-sensitive silyl ether crosslinkers, were functionalized and conjugated with targeting ligands for the folate receptor (FR), HER2 receptor, and transferrin receptor (TfR). By conjugating specific ligands to nanoparticles to impart specificity, highly selective targeting and internalization (>80%) of nanoparticles were demonstrated in various cancer cell lines. The extent of cellular uptake of targeted nanoparticles was dependent on the surface characteristics of the nanoparticles, particle concentration, and kinetics. Because a negative surface charge reduces nonspecific cellular uptake, attaching monoclonal antibodies to the surface of negatively charged PRINT nanoparticles facilitated specific binding of the antibodies to cellular surface receptors that subsequently triggered receptor-mediated endocytosis. Additionally, the multivalent nature of nanoparticles influenced cellular uptake. Specifically, nanoparticles with a higher valence internalized more rapidly and efficiently than those with a lower valence. Nanoparticles that selectively target and accumulate within diseased cells have the potential of minimizing drug degradation under physiological conditions, enhancing bioavailability at the tumor, improving the efficacy of the drug, and reducing toxicity from systemic biodistribution. Drug delivery through targeted nanoparticles was achieved by loading nanoparticles with silyl ether-modified gemcitabine prodrugs. Covalently reacting the prodrug

  19. Temozolomide nanoparticles for targeted glioblastoma therapy.

    PubMed

    Fang, Chen; Wang, Kui; Stephen, Zachary R; Mu, Qingxin; Kievit, Forrest M; Chiu, Daniel T; Press, Oliver W; Zhang, Miqin

    2015-04-01

    Glioblastoma (GBM) is a deadly and debilitating brain tumor with an abysmal prognosis. The standard therapy for GBM is surgery followed by radiation and chemotherapy with Temozolomide (TMZ). Treatment of GBMs remains a challenge, largely because of the fast degradation of TMZ, the inability to deliver an effective dose of TMZ to tumors, and a lack of target specificity that may cause systemic toxicity. Here, we present a simple method for synthesizing a nanoparticle-based carrier that can protect TMZ from rapid degradation in physiological solutions and can specifically deliver them to GBM cells through the mediation of a tumor-targeting peptide chlorotoxin (CTX). Our nanoparticle, namely NP-TMZ-CTX, had a hydrodynamic size of <100 nm, exhibited sustained stability in cell culture media for up to 2 weeks, and could accommodate stable drug loading. TMZ bound to nanoparticles showed a much higher stability at physiological pH, with a half-life 7-fold greater than that of free TMZ. NP-TMZ-CTX was able to target GBM cells and achieved 2-6-fold higher uptake and a 50-90% reduction of IC50 72 h post-treatment as compared to nontargeted NP-TMZ. NP-TMZ-CTX showed great promise in its ability to deliver a large therapeutic dose of TMZ to GBM cells and could serve as a template for targeted delivery of other therapeutics.

  20. HDL drug carriers for targeted therapy.

    PubMed

    Liu, Xing; Suo, Rong; Xiong, Sheng-Lin; Zhang, Qing-Hai; Yi, Guang-Hui

    2013-01-16

    Plasma concentrations of high-density lipoprotein cholesterol (HDL-C) are strongly and inversely associated with cardiovascular risk. HDL is not a simple lipid transporter, but possesses multiple anti-atherosclerosis activities because it contains special proteins, signaling lipid, and microRNAs. Natural or recombinant HDLs have emerged as potential carriers for delivering a drug to a specified target. However, HDL function also depends on enzymes that alter its structure and composition, as well as cellular receptors and membrane micro-domains that facilitate interactions with the microenvironment. In this review, four mechanisms predicted to enhance functions or targeted therapy of HDL in vivo are discussed. The first involves caveolae-mediated recruitment of HDL signal to bind their receptors. The second involves scavenger receptor class B type I (SR-BI) mediating anchoring and fluidity for signal-lipid of HDL. The third involves lecithin-cholesterol acyltransferase (LCAT) concentrating the signaling lipid at the surface of the HDL particle. The fourth involves microRNAs (miRNAs) being delivered in the blood to special targets by HDL. Exploitation of these four mechanisms will promote HDL to carry targeted drugs and increase HDL's clinical value. PMID:23063777

  1. Oncolytic viral therapy: targeting cancer stem cells

    PubMed Central

    Smith, Tyrel T; Roth, Justin C; Friedman, Gregory K; Gillespie, G Yancey

    2014-01-01

    Cancer stem cells (CSCs) are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression. PMID:24834430

  2. Molecular Targeted Intervention for Pancreatic Cancer

    PubMed Central

    Mohammed, Altaf; Janakiram, Naveena B.; Pant, Shubham; Rao, Chinthalapally V.

    2015-01-01

    Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies. PMID:26266422

  3. Therapies targeting cancer stem cells: Current trends and future challenges

    PubMed Central

    Dragu, Denisa L; Necula, Laura G; Bleotu, Coralia; Diaconu, Carmen C; Chivu-Economescu, Mihaela

    2015-01-01

    Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers. PMID:26516409

  4. Molecular targets in arthritis and recent trends in nanotherapy

    PubMed Central

    Roy, Kislay; Kanwar, Rupinder Kaur; Kanwar, Jagat Rakesh

    2015-01-01

    Due to its severity and increasing epidemiology, arthritis needs no description. There are various forms of arthritis most of which are disabling, very painful, and common. In spite of breakthroughs in the field of drug discovery, there is no cure for arthritis that can eliminate the disease permanently and ease the pain. The present review focuses on some of the most successful drugs in arthritis therapy and their side effects. Potential new targets in arthritis therapy such as interleukin-1β, interleukin-17A, tumor necrosis factor alpha, osteopontin, and several others have been discussed here, which can lead to refinement of current therapeutic modalities. Mechanisms for different forms of arthritis have been discussed along with the molecules that act as potential biomarkers for arthritis. Due to the difficulty in monitoring the disease progression to detect the advanced manifestations of the diseases, drug-induced cytotoxicity, and problems with drug delivery; nanoparticle therapy has gained the attention of the researchers. The unique properties of nanoparticles make them highly attractive for the design of novel therapeutics or diagnostic agents for arthritis. The review also focuses on the recent trends in nanoformulation development used for arthritis therapy. This review is, therefore, important because it describes the relevance and need for more arthritis research, it brings forth a critical discussion of successful drugs in arthritis and analyses the key molecular targets. The review also identifies several knowledge gaps in the published research so far along with the proposal of new ideas and future directions in arthritis therapy. PMID:26345140

  5. Targeting DNA Replication Stress for Cancer Therapy.

    PubMed

    Zhang, Jun; Dai, Qun; Park, Dongkyoo; Deng, Xingming

    2016-01-01

    The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit "replication stress" -a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress. PMID:27548226

  6. Targeting DNA Replication Stress for Cancer Therapy

    PubMed Central

    Zhang, Jun; Dai, Qun; Park, Dongkyoo; Deng, Xingming

    2016-01-01

    The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress. PMID:27548226

  7. Targeted Immune Therapy of Ovarian Cancer

    PubMed Central

    Knutson, Keith L.; Karyampudi, Lavakumar; Lamichhane, Purushottam; Preston, Claudia

    2014-01-01

    Clinical outcomes, such as recurrence free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies. PMID:25544369

  8. Targeting DNA Replication Stress for Cancer Therapy.

    PubMed

    Zhang, Jun; Dai, Qun; Park, Dongkyoo; Deng, Xingming

    2016-08-19

    The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit "replication stress" -a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  9. Denosumab for bone diseases: translating bone biology into targeted therapy.

    PubMed

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  10. RET-targeting molecular stratified non-small-cell lung cancers

    PubMed Central

    2013-01-01

    Recent advances in lung cancer genomics have successfully characterized therapeutic targets of lung cancer. RET fusion gene products are among the newest target molecules for lung adenocarcinoma. Preclinical findings and preliminary reports regarding potential tumor control by RET-targeting multi-kinase inhibitors encourage further clinical trials. The infrequent prevalence of RET fusion gene-positive cases may be a major obstacle hindering the development of RET-targeted therapy. Thus, it is necessary to recruit appropriate participants for trials to develop an efficient RET fusion gene detection system to achieve targeted therapy for lung adenocarcinomas stratified by this molecular target. PMID:25806272

  11. MR Molecular Imaging of Tumor Vasculature and Vascular Targets

    PubMed Central

    Pathak, Arvind P.; Penet, Marie-France; Bhujwalla, Zaver M.

    2016-01-01

    Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from “bench to bedside”. The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI. PMID:20807600

  12. Modulation of photosensitization processes for an improved targeted photodynamic therapy.

    PubMed

    Verhille, M; Couleaud, P; Vanderesse, R; Brault, D; Barberi-Heyob, M; Frochot, C

    2010-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality involving the combination of light, a photosensitizer (PS) and molecular oxygen, which results in the production of cytotoxic reactive oxygen species (ROS). Singlet oxygen ((1)O(2)) is one of the most important of these ROS. Because the lifetime and diffusion of (1)O(2) is very limited, a controllable singlet oxygen generation with high selectivity and localization would lead to more efficient and reliable PDT. The lack of selective accumulation of the PS within tumour tissue is a major problem in PDT. Targeted PDT would offer the advantage to enhance photodynamic efficiency by directly targeting diseased cells or tissues. Many attempts have been made to either selectively deliver light to diseased tissues or increase the uptake of the photoactive compounds by the target cells. The review will survey the literature regarding the multi-level control of (1)O(2) production for PDT applications. The mechanisms of ROS formation are described. The different strategies leading to targeted formation of (1)O(2) are developed. Some active PDT agents have been based on energy transfer between PS by control of the aggregation/ disaggregation. The concept of molecular beacon based on quenching-dequenching upon protease cleavage is capable of precise control of (1)O(2) by responding to specific cancer-associated biomarkers.

  13. Systemically Administered, Target Organ-Specific Therapies for Regenerative Medicine

    PubMed Central

    Järvinen, Tero A. H.; May, Ulrike; Prince, Stuart

    2015-01-01

    Growth factors and other agents that could potentially enhance tissue regeneration have been identified, but their therapeutic value in clinical medicine has been limited for reasons such as difficulty to maintain bioactivity of locally applied therapeutics in the protease-rich environment of regenerating tissues. Although human diseases are treated with systemically administered drugs in general, all current efforts aimed at enhancing tissue repair with biological drugs have been based on their local application. The systemic administration of growth factors has been ruled out due to concerns about their safety. These concerns are warranted. In addition, only a small proportion of systemically administered drugs reach their intended target. Selective delivery of the drug to the target tissue and use of functional protein domains capable of penetrating cells and tissues could alleviate these problems in certain circumstances. We will present in this review a novel approach utilizing unique molecular fingerprints (“Zip/postal codes”) in the vasculature of regenerating tissues that allows target organ-specific delivery of systemically administered therapeutic molecules by affinity-based physical targeting (using peptides or antibodies as an “address tag”) to injured tissues undergoing repair. The desired outcome of targeted therapies is increased local accumulation and lower systemic concentration of the therapeutic payload. We believe that the physical targeting of systemically administered therapeutic molecules could be rapidly adapted in the field of regenerative medicine. PMID:26437400

  14. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    PubMed Central

    Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek

    2014-01-01

    Introduction Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells’ guided gene therapy. Review of therapeutic strategies in preclinical and clinical trials Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for

  15. Bone defects: molecular and cellular therapeutic targets.

    PubMed

    Desiderio, Vincenzo; Tirino, Virginia; Papaccio, Gianpaolo; Paino, Francesca

    2014-06-01

    Bone defects are one of the most serious pathologies that need tissue regeneration therapies. Studies on mesenchymal stem cells are changing the way we treat bone diseases. MSCs have been used for the treatment of osteogenesis imperfecta, hypophosphatasia, osteonecrosis of the femoral head, osteoporosis, rheumatoid arthritis and osteoarthritis. In this context, it is becoming ever more clear that the future of therapies will be based on the use of stem cells. In this concise review, we highlight the importance of the use of MSCs in bone diseases, focusing on the role of histone deacetylases and Wnt pathways involved in osteogenesis. A better understanding of MSC biology and osteogenesis is needed in order to develop new and targeted therapeutic strategies for the treatment of bone diseases/disorders.

  16. Central and Peripheral Molecular Targets for Anti-Obesity Pharmacotherapy

    PubMed Central

    Valentino, Michael A.; Lin, Jieru E.; Waldman, Scott A.

    2011-01-01

    Obesity has emerged as one of the principle worldwide health concerns of the modern era, and there exists a tremendous unmet clinical need for safe and effective therapies to combat this global pandemic. The prevalence of obesity and its associated co-morbidities, including cardiovascular and metabolic diseases, has focused drug discovery and development on generating effective modalities for the treatment and prevention of obesity. Early efforts in the field of obesity pharmacotherapy centered on agents with indeterminate mechanisms of action producing treatment paradigms characterized by significant off-target effects. During the past two decades, new insights have been made into the physiologic regulation of energy balance and the subordinate central and peripheral circuits coordinating appetite, metabolism, and lipogenesis. These studies have revealed previously unrecognized molecular targets for controlling appetite and managing weight from which has emerged a new wave of targeted pharmacotherapies to prevent and control obesity. PMID:20445536

  17. Targeting hypoxic response for cancer therapy

    PubMed Central

    Paolicchi, Elisa; Gemignani, Federica; Krstic-Demonacos, Marija; Dedhar, Shoukat; Mutti, Luciano; Landi, Stefano

    2016-01-01

    Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells. PMID:26859576

  18. Nanomedicine engulfed by macrophages for targeted tumor therapy

    PubMed Central

    Li, Siwen; Feng, Song; Ding, Li; Liu, Yuxi; Zhu, Qiuyun; Qian, Zhiyu; Gu, Yueqing

    2016-01-01

    Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N′-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation for tumor-targeted therapy.

  19. Nanomedicine engulfed by macrophages for targeted tumor therapy.

    PubMed

    Li, Siwen; Feng, Song; Ding, Li; Liu, Yuxi; Zhu, Qiuyun; Qian, Zhiyu; Gu, Yueqing

    2016-01-01

    Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N'-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC-paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC-PTX are a promising pharmaceutical preparation for tumor-targeted therapy.

  20. Nanomedicine engulfed by macrophages for targeted tumor therapy

    PubMed Central

    Li, Siwen; Feng, Song; Ding, Li; Liu, Yuxi; Zhu, Qiuyun; Qian, Zhiyu; Gu, Yueqing

    2016-01-01

    Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N′-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation for tumor-targeted therapy. PMID:27601898

  1. Nanomedicine engulfed by macrophages for targeted tumor therapy.

    PubMed

    Li, Siwen; Feng, Song; Ding, Li; Liu, Yuxi; Zhu, Qiuyun; Qian, Zhiyu; Gu, Yueqing

    2016-01-01

    Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N'-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC-paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC-PTX are a promising pharmaceutical preparation for tumor-targeted therapy. PMID:27601898

  2. Investigational EGFR-targeted therapies in HNSCC

    PubMed Central

    Cassell, Andre; Grandis, Jennifer R.

    2010-01-01

    Importance of the Field The epidermal growth factor receptor (EGFR) is an established therapeutic target in head and neck squamous cell carcinoma (HNSCC). The EGFR-targeting monoclonal antibody cetuximab (™Erbitux) was FDA-approved for use in HNSCC in 2006. The molecular basis for the efficacy of an antibody approach compared with inhibition of EGFR tyrosine kinase function using small molecule inhibitors, or downregulation of protein expression via antisense strategies remains incompletely understood. Areas covered in this review A literature search was performed to identify studies elucidating mechanisms of action of several approaches to targeting EGFR in HNSCC (monoclonal antibodies, tyrosine kinase inhibitors, antisense approaches, and ligand toxin conjugates). What the reader will gain Monoclonal antibodies decrease tumor growth via receptor endocytosis and recruitment of host immune defenses. Tyrosine kinase inhibitors bind to the ATP binding pocket of the tyrosine kinase domain, inhibiting signaling. Antisense approaches decrease EGFR expression with high specificity although drug delivery remains problematic. Ligand-toxin conjugates facilitate the entry of toxin and the ADP-ribosylation of the ribosome, thereby inhibiting translation. Take home message Elucidation mechanisms by which these different strategies inhibit EGFR function may enhance the development of more effective treatments for HNSCC and enable prospective identification of individuals who will benefit from EGFR inhibition. PMID:20415598

  3. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    PubMed

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  4. Targeted therapies in systemic lupus erythematosus.

    PubMed

    Grech, P; Khamashta, Ma

    2013-09-01

    Systemic lupus erythematosus (SLE) is a chronic, multisystem disorder characterised by loss of tolerance to endogenous nuclear antigens and autoantibody formation. Recent insight into the immunopathogenesis of lupus has provided the foundation for a novel class of agents which target specific, dysregulated components of the immune system. Efforts have focused predominantly on B-cell depleting therapies, of which belimumab was the first to demonstrate success in phase III studies and thus receive marketing authorisation. Off-label prescribing of rituximab in refractory cases is common and supported by uncontrolled studies, which suggest a favourable risk:benefit profile. However, two placebo-controlled trials failed to show benefit, possibly because of inappropriate patient selection and other aspects of trial methodology. Inhibition of dysregulated co-stimulatory signals and cytokines are other therapeutic strategies currently under investigation. Some candidate drugs failed to meet primary endpoints in early-phase clinical trials, yet demonstrated clinical benefit when alternative assessment criteria were applied or specific patient sub-groups analysed. Well-designed studies of greater size and duration are needed to clarify the therapeutic utility of these agents. Future immunomodulatory strategies targeting interferon-alpha, T cells, oxidative stress and epigenetic abnormalities may reduce multisystem disease activity and prolong survival in this complex and heterogeneic disease. PMID:23963429

  5. Optimizing Trial Designs for Targeted Therapies

    PubMed Central

    Beckman, Robert A.; Burman, Carl-Fredrik; König, Franz; Stallard, Nigel; Posch, Martin

    2016-01-01

    An important objective in the development of targeted therapies is to identify the populations where the treatment under consideration has positive benefit risk balance. We consider pivotal clinical trials, where the efficacy of a treatment is tested in an overall population and/or in a pre-specified subpopulation. Based on a decision theoretic framework we derive optimized trial designs by maximizing utility functions. Features to be optimized include the sample size and the population in which the trial is performed (the full population or the targeted subgroup only) as well as the underlying multiple test procedure. The approach accounts for prior knowledge of the efficacy of the drug in the considered populations using a two dimensional prior distribution. The considered utility functions account for the costs of the clinical trial as well as the expected benefit when demonstrating efficacy in the different subpopulations. We model utility functions from a sponsor’s as well as from a public health perspective, reflecting actual civil interests. Examples of optimized trial designs obtained by numerical optimization are presented for both perspectives. PMID:27684573

  6. Therapies targeting inflammation after stent implantation.

    PubMed

    Okura, Hiroyuki; Takagi, Tsutomu; Yoshida, Kiyoshi

    2013-07-01

    Since the introduction of coronary vessel scaffold by metallic stent, percutaneous coronary intervention has become widely performed all over the world. Although drug-eluting stent technology has further decrease the incidence of in-stent restenosis, there still remaining issues related to stent implantation. Vessel inflammation is one of the causes that may be related to stent restenosis as well as stent thrombosis. Therefore, systemic therapies targeting inflammation emerged as adjunctive pharmacological intervention to improve outcome. Statins, corticosteroids, antiplatelets, and immunosuppresive or anti-cancer drugs are reported to favorably impact outcome after bare-metal stent implantation. In type 2 diabetic patients, pioglitazone may be the most promising drug that can lower neointimal proliferation and, as a result, lower incidence of restenosis and target lesion revascularization. On the other hand, several new stent platforms that might decrease inflammatory response after drug-eluting stent implantation have been introduced. Because durable polymer used in the first generation drug-eluting stents are recognized to be responsible for unfavorable vessel response, biocompatible or bioabsorbable polymer has been introduce and already used clinically. Furthermore, polymer-free drug-eluting stent and bioresorbable scaffold are under investigation. Although vessel inflammation may be reduced by using these new drug-eluting stents or scaffold, long-term impact needs to be investigated further. PMID:23905635

  7. New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery.

    PubMed

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhang, Jin-Shan; Qiu, Ri-Xiang; Jiang, Lan; Zhou, Xing-Xing; Yu, Jiang-Xiu

    2013-08-01

    Ultrasound is a common used technique for clinical imaging. In recent years, with the advances in preparation technology of microbubbles and the innovations in ultrasound imaging, ultrasound is no longer confined to detection of tissue perfusion, but extends to specific ultrasound molecular imaging and target therapy gradually. With the development of research, ultrasound molecular imaging and target therapy have made great progresses. Targeted microbubbles for molecular imaging are achieved by binding target molecules, specific antibody or ligand to the surface of microbubbles to obtain specific imaging by attaching to target tissues. Meanwhile, it can also achieve targeting gene therapy or drug delivery by ultrasound targeted microbubble destruction (UTMD) mediating genes or drugs to specific target sites. UTMD has a number of advantages, such as target-specific, highly effective, non-invasivity, relatively low-cost and no radiation, and has broad application prospects, which is regarded as one hot spot in medical studies. We reviewed the new development and application of UTMD in gene therapy and drug delivery in this paper. With further development of technology and research, the gene or drug delivery system and related methods will be widely used in application and researches.

  8. Promise and failure of targeted therapy in breast cancer.

    PubMed

    Giordano, Antonio; Tagliabue, Elda; Pupa, Serenella M

    2012-01-01

    The current molecular targets in breast cancer (BC) clinical trials were identified before the advent of the genomic era and their relevance was confirmed and validated by the introduction of gene profiling. Pioneering molecular analyses and repeated data validations on different gene platforms have thus far served to define 5 subtypes of BC based on their gene signature: luminal A, luminal B, normal-like, HER2-positive, and basal. Luminal A and B tumors are estrogen receptor (ER)-positive, while basal-like are mostly negative for ER, progesterone receptor, and HER2, i.e., triple-negative. Normal-like tumors resemble normal breast tissue and the HER2 subtype is characterized by HER2 overexpression. Here, we summarize current targeted therapeutic options for the luminal, HER2-positive, and basal-like BC subtypes with respect to results observed in clinical trials as a step toward optimizing their appropriate application in the different clinical settings. We give particular consideration to the ER- and HER2-targeted therapies approved for clinical practice with respect to their merits and shortcomings in early and advanced disease, and mention the therapeutic options currently available and potentially promising for the basal-like subtype.

  9. Targeted therapy for genetic cancer syndromes: Fanconi anemia, medullary thyroid cancer, tuberous sclerosis, and RASopathies.

    PubMed

    Agarwal, Rishi; Liebe, Sarah; Turski, Michelle L; Vidwans, Smruti J; Janku, Filip; Garrido-Laguna, Ignacio; Munoz, Javier; Schwab, Richard; Rodon, Jordi; Kurzrock, Razelle; Subbiah, Vivek

    2015-02-01

    With the advent of genomics-based treatment in recent years, the use of targeted therapies in the treatment of various malignancies has increased exponentially. Though much data is available regarding the efficacy of targeted therapies for common malignancies, genetic cancer syndromes remain a somewhat unexplored topic with comparatively less published literature. This review seeks to characterize targeted therapy options for the following genetic cancer syndromes: Fanconi anemia, inherited medullary thyroid cancer, tuberous sclerosis, and RASopathies. By understanding the pathophysiology of these conditions as well as available molecularly targeted therapies, oncologists, in collaboration with geneticists and genetic counsellors, can begin to develop effective clinical management options and therapy regimens for the patients with these genetic syndromes that they may encounter in their practice. PMID:25725224

  10. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  11. Multifunctional gold nanostars for molecular imaging and cancer therapy

    PubMed Central

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Register, Janna K.; Vo-Dinh, Tuan

    2015-01-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL), and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy (PDT). This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed. PMID:26322306

  12. Targeted Therapies in Hematology and Their Impact on Patient Care: Chronic and Acute Myeloid Leukemia

    PubMed Central

    Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop

    2014-01-01

    Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694

  13. Targets for medical therapy in obesity.

    PubMed

    Baretić, Maja

    2012-01-01

    Obesity has more than doubled since 1980 all over the world, and in the European perspective it does not seem to be better. Obesity-related diseases like diabetes, hypertension, coronary heart disease, stroke and hyperlipidemia are the main cause of mortality and morbidity in developed countries. These are the reasons for continuous search for efficient treatment of obesity. One of the options is medical therapy. Over history, many anti-obesity drugs were introduced and subsequently removed from the market due to various side effects. Unfortunately, there is still no ideal drug for the treatment of obesity, and the current ones are very strictly evaluated. The anti-obesity drug should target patients that have previously failed to lose weight with lifestyle interventions, with body mass index (BMI) ≥30, or those with BMI ≥27 plus concomitant obesity-related risk factors or diseases. The only drug currently approved in Europe is orlistat, a pancreatic lipase inhibitor. Sibutramine, an appetite suppressant (serotonin-norepinephrine reuptake inhibitor), has been off the market since 2010 due to cardiovascular side effects. There is a large group of drugs used for other indications with weight loss effects, e.g. incretin mimetics or analogues used in the treatment of diabetes type 2, topiramate used as an anticonvulsant, and fluoxetine and sertraline used in the treatment of depression. PMID:22722433

  14. Boswellic acids: biological actions and molecular targets.

    PubMed

    Poeckel, Daniel; Werz, Oliver

    2006-01-01

    Gum resin extracts of Boswellia species have been traditionally applied in folk medicine for centuries to treat various chronic inflammatory diseases, and experimental data from animal models and studies with human subjects confirmed the potential of B. spec extracts for the treatment of not only inflammation but also of cancer. Analysis of the ingredients of these extracts revealed that the pentacyclic triterpenes boswellic acids (BAs) possess biological activities and appear to be responsible for the respective pharmacological actions. Approaches in order to elucidate the molecular mechanisms underlying the biological effects of BAs identified 5-lipoxygenase, human leukocyte elastase, toposiomerase I and II, as well as IkappaB kinases as molecular targets of BAs. Moreover, it was shown that depending on the cell type and the structure of the BAs, the compounds differentially interfere with signal transduction pathways including Ca(2+/-) and MAPK signaling in various blood cells, related to functional cellular processes important for inflammatory reactions and tumor growth. This review summarizes the biological actions of BAs on the cellular and molecular level and attempts to put the data into perspective of the beneficial effects manifested in animal studies and trials with human subjects related to inflammation and cancer.

  15. Molecular Targets in Alzheimer's Disease: From Pathogenesis to Therapeutics.

    PubMed

    Cheng, Xuan; Zhang, Lu; Lian, Ya-Jun

    2015-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD. PMID:26665008

  16. Molecular Targets in Alzheimer's Disease: From Pathogenesis to Therapeutics.

    PubMed

    Cheng, Xuan; Zhang, Lu; Lian, Ya-Jun

    2015-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  17. Molecular Targets in Alzheimer's Disease: From Pathogenesis to Therapeutics

    PubMed Central

    Cheng, Xuan; Zhang, Lu; Lian, Ya-Jun

    2015-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD. PMID:26665008

  18. Molecular Targets for Radiation Oncology in Prostate Cancer

    PubMed Central

    Wang, Tao; Languino, Lucia R.; Lian, Jane; Stein, Gary; Blute, Michael; FitzGerald, Thomas J.

    2011-01-01

    Recent selected developments of the molecular science of prostate cancer (PrCa) biology and radiation oncology are reviewed. We present potential targets for molecular integration treatment strategies with radiation therapy (RT), and highlight potential strategies for molecular treatment in combination with RT for patient care. We provide a synopsis of the information to date regarding molecular biology of PrCa, and potential integrated research strategy for improved treatment of PrCa. Many patients with early-stage disease at presentation can be treated effectively with androgen ablation treatment, surgery, or RT. However, a significant portion of men are diagnosed with advanced stage/high-risk disease and these patients progress despite curative therapeutic intervention. Unfortunately, management options for these patients are limited and are not always successful including treatment for hormone refractory disease. In this review, we focus on molecules of extracellular matrix component, apoptosis, androgen receptor, RUNX, and DNA methylation. Expanding our knowledge of the molecular biology of PrCa will permit the development of novel treatment strategies integrated with RT to improve patient outcome PMID:22645712

  19. Biomarker-directed Targeted Therapy in Colorectal Cancer

    PubMed Central

    Carethers, John M.

    2015-01-01

    With advances in the understanding of the biology and genetics of colorectal cancer (CRC), diagnostic biomarkers that may predict the existence or future presence of cancer or a hereditary condition, and prognostic and treatment biomarkers that may direct the approach to therapy have been developed. Biomarkers can be ascertained and assayed from any tissue that may demonstrate the diagnostic or prognostic value, including from blood cells, epithelial cells via buccal swab, fresh or archival cancer tissue, as well as from cells shed into fecal material. For CRC, current examples of biomarkers for screening and surveillance include germline testing for suspected hereditary CRC syndromes, and stool DNA tests for screening average at-risk patients. Molecular biomarkers for CRC that may alter patient care and treatment include the presence or absence of microsatellite instability, the presence or absence of mutant KRAS, BRAF or PIK3CA, and the level of expression of 15-PGDH in the colorectal mucosa. Molecularly targeted therapies and some general therapeutic approaches rely on biomarker information. Additional novel biomarkers are on the horizon that will undoubtedly further the approach to precision or individualized medicine. PMID:26609516

  20. Factor XI and Contact Activation as Targets for Antithrombotic Therapy

    PubMed Central

    Gailani, David; Bane, Charles E.; Gruber, Andras

    2015-01-01

    Summary The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa, or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and factor X. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally-induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on factor XII, the zymogen of a protease (factor XIIa) that initiates contact activation when blood is exposed to foreign surfaces; and factor XI, the zymogen of the protease factor XIa, which links contact activation to the thrombin generation mechanism. In the case of factor XI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of factor XI may be more effective than low-molecular-weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here we review data on the role of factor XI and factor XII in thrombosis, and results of pre-clinical and human trials for therapies targeting these proteins. PMID:25976012

  1. Targeting protein kinase A in cancer therapy: an update

    PubMed Central

    Sapio, Luigi; Di Maiolo, Francesca; Illiano, Michela; Esposito, Antonietta; Chiosi, Emilio; Spina, Annamaria; Naviglio, Silvio

    2014-01-01

    Protein Kinase A (PKA) is a well known member of the serine-threonin protein kinase superfamily. PKA, also known as cAMP-dependent protein kinase, is a multi-unit protein kinase that mediates signal transduction of G-protein coupled receptors through its activation upon cAMP binding. The widespread expression of PKA subunit genes, and the myriad of mechanisms by which cAMP is regulated within a cell suggest that PKA signaling is one of extreme importance to cellular function. It is involved in the control of a wide variety of cellular processes from metabolism to ion channel activation, cell growth and differentiation, gene expression and apoptosis. Importantly, since it has been implicated in the initiation and progression of many tumors, PKA has been proposed as a novel biomarker for cancer detection, and as a potential molecular target for cancer therapy. Here, we highlight some features of cAMP/PKA signaling that are relevant to cancer biology and present an update on targeting PKA in cancer therapy. PMID:26417307

  2. Targeting Neuroendocrine Prostate Cancer: Molecular and Clinical Perspectives

    PubMed Central

    Vlachostergios, Panagiotis J.; Papandreou, Christos N.

    2015-01-01

    Neuroendocrine prostate carcinoma, either co-present with the local adenocarcinoma disease or as a result of transdifferentiation later in time, was described as one major process of emerging resistance to androgen deprivation therapies, and at the clinical level it is consistent with the development of rapidly progressive visceral disease, often in the absence of elevated serum prostate-specific antigen level. Until present, platinum-based chemotherapy has been the only treatment modality, able to produce a fair amount of responses but of short duration. Recently, several efforts for molecular characterization of this lethal phenotype have resulted in identification of novel signaling factors involved in microenvironment interactions, mitosis, and neural reprograming as potential therapeutic targets. Ongoing clinical testing of specific inhibitors of these targets, for example, Aurora kinase A inhibitors, in carefully selected patients and exploitation of expression changes of the target before and after manipulation is anticipated to increase the existing data and facilitate therapeutic decision making at this late stage of the disease when hormonal manipulations, even with the newest androgen-directed therapies are no longer feasible. PMID:25699233

  3. Molecular Targeted Approaches in Mantle Cell lymphoma.

    PubMed Central

    Weniger, Marc A.; Wiestner, Adrian

    2011-01-01

    Mantle cell lymphoma (MCL) is a malignancy of mature B cells characterized by the translocation t(11;14) that leads to aberrant expression of cyclin D1. Response to first-line chemotherapy is good but most patients relapse resulting in a median survival of 5-7 years. The important PI3K/AKT/mTOR pathway can be targeted with small molecules. mTOR inhibitors have clinical activity and temsirolimus has been approved in Europe. Second generation mTOR inhibitors and the PI3K inhibitor CAL-101 offer additional means to target the pathway. Promising results with the BTK inhibitor PCI-32765 suggest that B-cell receptor signaling could play a role. For unknown reasons, MCL appears to be particularly sensitive to disruption of protein homeostasis. The proteasome inhibitor bortezomib achieves responses in up to 50% of relapsed patients. Much work has been done in elucidating the mechanism of its cytotoxicity, its incorporation into combination therapies, and the development of second generation proteasome inhibitors. Deacetylase and HSP90 inhibitors are also promising classes of drugs that can synergize with proteasome inhibitors. Finally, BH3 mimetics are emerging as tools to sensitize tumor cells to chemotherapy. Participation in clinical trials offers patients an immediate chance to benefit from these advances and is essential to maintain the momentum of progress. PMID:21782064

  4. Traditional Chinese medicine targeting apoptotic mechanisms for esophageal cancer therapy

    PubMed Central

    Zhang, Yu-shuang; Shen, Qiang; Li, Jing

    2016-01-01

    Esophageal cancer is one of the most common types of cancer in the world, and it demonstrates a distinct geographical distribution pattern in China. In the last decade, inducing apoptosis with traditional Chinese medicine (TCM) has become an active area in both fundamental and clinical research on cancer therapy. In this review, we summarize the molecular mechanisms by which TCM induces apoptosis in esophageal cancer cells. These mechanisms are generally related but not limited to targeting the extrinsic death receptor pathway, the intrinsic mitochondrial pathway, and the endoplasmic reticulum (ER) stress pathway. By using different monomers and composite prescriptions of TCM, it is possible to modulate the ratio of Bcl-2/Bax, regulate the expression of caspase proteases and mitochondrial transmembrane potential, increase the expression of Fas and p53, down-regulate NF-κB pathway and the expression of Chop and survivin, and block cell cycle progression. PMID:26707140

  5. Traditional Chinese medicine targeting apoptotic mechanisms for esophageal cancer therapy.

    PubMed

    Zhang, Yu-shuang; Shen, Qiang; Li, Jing

    2016-03-01

    Esophageal cancer is one of the most common types of cancer in the world, and it demonstrates a distinct geographical distribution pattern in China. In the last decade, inducing apoptosis with traditional Chinese medicine (TCM) has become an active area in both fundamental and clinical research on cancer therapy. In this review, we summarize the molecular mechanisms by which TCM induces apoptosis in esophageal cancer cells. These mechanisms are generally related but not limited to targeting the extrinsic death receptor pathway, the intrinsic mitochondrial pathway, and the endoplasmic reticulum (ER) stress pathway. By using different monomers and composite prescriptions of TCM, it is possible to modulate the ratio of Bcl-2/Bax, regulate the expression of caspase proteases and mitochondrial transmembrane potential, increase the expression of Fas and p53, down-regulate NF-κB pathway and the expression of Chop and survivin, and block cell cycle progression.

  6. The importance of molecular markers for diagnosis and selection of targeted treatments in patients with cancer.

    PubMed

    Tobin, N P; Foukakis, T; De Petris, L; Bergh, J

    2015-12-01

    The past 30 years have seen the introduction of a number of cancer therapies with the aim of restricting the growth and spread of primary and metastatic tumours. A shared commonality among these therapies is their targeting of various aspects of the cancer hallmarks, that is traits that are essential to successful tumour propagation and dissemination. The evolution of molecular-scale technology has been central to the identification of new cancer targets, and it is not a coincidence that improved therapies have emerged at the same time as gene expression arrays and DNA sequencing have enhanced our understanding of cancer genetics. Modern tumour pathology is now viewed at the molecular level ranging from IHC biomarkers, to gene signature classifiers and gene mutations, all of which provide crucial information about which patients will respond to targeted therapy regimens. In this review, we briefly discuss the general types of targeted therapies used in a clinical setting and provide a short background on immunohistochemical, gene expression and DNA sequencing technologies, before focusing on three tumour types: breast, lung and colorectal cancers. For each of these cancer types, we provide a background to the disease along with an overview of the current standard therapies and then focus on the relevant targeted therapies and the pathways they inhibit. Finally, we highlight several strategies that are pivotal to the successful development of targeted anti-cancer drugs.

  7. Protein-targeted corona phase molecular recognition.

    PubMed

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D; Iverson, Nicole M; Ahn, Jiyoung; Nelson, Justin T; Landry, Markita P; Kruss, Sebastian; Strano, Michael S

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890

  8. Protein-targeted corona phase molecular recognition

    PubMed Central

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890

  9. Mutation testing for directing upfront targeted therapy and post-progression combination therapy strategies in lung adenocarcinoma

    PubMed Central

    Salgia, Ravi

    2016-01-01

    ABSTRACT Introduction: Advances in the biology of non-small-cell lung cancer, especially adenocarcinoma, reveal multiple molecular subtypes driving oncogenesis. Accordingly, individualized targeted therapeutics are based on mutational diagnostics. Areas covered: Advances in strategies and techniques for individualized treatment, particularly of adenocarcinoma, are described through literature review. Approved therapies are established for some molecular subsets, with new driver mutations emerging that represent increasing proportions of patients. Actionable mutations are de novo oncogenic drivers or acquired resistance mediators, and mutational profiling is important for directing therapy. Patients should be monitored for emerging actionable resistance mutations. Liquid biopsy and associated multiplex diagnostics will be important means to monitor patients during treatment. Expert commentary: Outcomes with targeted agents may be improved by integrating mutation screens during treatment to optimize subsequent therapy. In order for this to be translated into impactful patient benefit, appropriate platforms and strategies need to be optimized and then implemented universally. PMID:27139190

  10. Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination With Immunotherapy

    PubMed Central

    Wargo, Jennifer A.; Reuben, Alexandre; Cooper, Zachary A.; Oh, Kevin S.; Sullivan, Ryan J.

    2016-01-01

    There have been significant advances in cancer treatment over the past several years through the use of chemotherapy, radiation therapy, molecularly targeted therapy, and immunotherapy. Despite these advances, treatments such as monotherapy or monomodality have significant limitations. There is increasing interest in using these strategies in combination; however, it is not completely clear how best to incorporate molecularly targeted and immune-targeted therapies into combination regimens. This is particularly pertinent when considering combinations with immunotherapy, as other types of therapy may have significant impact on host immunity, the tumor microenvironment, or both. Thus, the influence of chemotherapy, radiation therapy, and molecularly targeted therapy on the host anti-tumor immune response and the host anti-host response (ie, autoimmune toxicity) must be taken into consideration when designing immunotherapy-based combination regimens. We present data related to many of these combination approaches in the context of investigations in patients with melanoma and discuss their potential relationship to management of patients with other tumor types. Importantly, we also highlight challenges of these approaches and emphasize the need for continued translational research. PMID:26320064

  11. Targeted Therapies in Non-Small Cell Lung Cancer-Beyond EGFR and ALK.

    PubMed

    Rothschild, Sacha I

    2015-01-01

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called "driver mutations") for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed. PMID:26018876

  12. Cardiovascular Toxicity and Management of Targeted Cancer Therapy.

    PubMed

    Bossaer, John B; Geraci, Stephen A; Chakraborty, Kanishka

    2016-05-01

    The advent of effective oral, molecular-targeted drugs in oncology has changed many incurable malignancies such as chronic myeloid leukemia into chronic diseases similar to coronary artery disease and diabetes mellitus. Oral agents including monoclonal antibodies, kinase inhibitors and hormone receptor blockers offer patients with cancer incremental improvements in both overall survival and quality of life. As it is imperative to recognize and manage side effects of platelet inhibitors, beta blockers, statins, human immunodeficiency virus drugs and fluoroquinolones by all healthcare providers, the same holds true for these newer targeted therapies; patients may present to their generalist or other subspecialist with drug-related symptoms. Cardiovascular adverse events are among the most frequent, and potentially serious, health issues in outpatient clinics, and among the most frequent side effects of targeted chemotherapy. Data support improved patient outcomes and satisfaction when primary care and other providers are cognizant of chemotherapy side effects, allowing for earlier intervention and reduction in morbidity and healthcare costs. With the implementation of accountable care and pay for performance, improved communication between generalists and subspecialists is essential to deliver cost-effective patient care. PMID:27140715

  13. Therapeutic targeting of the phosphatidylinositol 3-kinase signaling pathway: novel targeted therapies and advances in the treatment of colorectal cancer

    PubMed Central

    Yu, Ming

    2012-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the USA, and more effective treatment of CRC is therefore needed. Advances in our understanding of the molecular pathogenesis of this malignancy have led to the development of novel molecule-targeted therapies. Among the most recent classes of targeted therapies being developed are inhibitors targeting the phosphatidylinositol 3-kinase (PI3K) signaling pathway. As one of the most frequently deregulated pathways in several human cancers, including CRC, aberrant PI3K signaling plays an important role in the growth, survival, motility and metabolism of cancer cells. Targeting this pathway therefore has considerable potential to lead to novel and more effective treatments for CRC. Preclinical and early clinical studies have revealed the potential efficacy of drugs that target PI3K signaling for the treatment of CRC. However, a major challenge that remains is to study these agents in phase III clinical trials to see whether these early successes translate into better patient outcomes. In this review we focus on providing an up-to-date assessment of our current understanding of PI3K signaling biology and its deregulation in the molecular pathogenesis of CRC. Advances in available agents and challenges in targeting the PI3K signaling pathway in CRC treatment will be discussed and placed in the context of the currently available therapies for CRC. PMID:22973417

  14. Targeting mTOR network in colorectal cancer therapy

    PubMed Central

    Wang, Xiao-Wen; Zhang, Yan-Jie

    2014-01-01

    The mechanistic target of rapamycin (mTOR) integrates growth factor signals with cellular nutrient and energy levels and coordinates cell growth, proliferation and survival. A regulatory network with multiple feedback loops has evolved to ensure the exquisite regulation of cell growth and division. Colorectal cancer is the most intensively studied cancer because of its high incidence and mortality rate. Multiple genetic alterations are involved in colorectal carcinogenesis, including oncogenic Ras activation, phosphatidylinositol 3-kinase pathway hyperactivation, p53 mutation, and dysregulation of wnt pathway. Many oncogenic pathways activate the mTOR pathway. mTOR has emerged as an effective target for colorectal cancer therapy. In vitro and preclinical studies targeting the mTOR pathway for colorectal cancer chemotherapy have provided promising perspectives. However, the overall objective response rates in major solid tumors achieved with single-agent rapalog therapy have been modest, especially in advanced metastatic colorectal cancer. Combination regimens of mTOR inhibitor with agents such as cytotoxic chemotherapy, inhibitors of vascular endothelial growth factor, epidermal growth factor receptor and Mitogen-activated protein kinase kinase (MEK) inhibitors are being intensively studied and appear to be promising. Further understanding of the molecular mechanism in mTOR signaling network is needed to develop optimized therapeutic regimens. In this paper, oncogenic gene alterations in colorectal cancer, as well as their interaction with the mTOR pathway, are systematically summarized. The most recent preclinical and clinical anticancer therapeutic endeavors are reviewed. New players in mTOR signaling pathway, such as non-steroidal anti-inflammatory drug and metformin with therapeutic potentials are also discussed here. PMID:24764656

  15. A targeted approach to cancer imaging and therapy

    NASA Astrophysics Data System (ADS)

    Li, Chun

    2014-02-01

    Nanoparticle-based imaging plays a crucial role in cancer diagnosis and treatment. Here, we discuss the modalities used for molecular imaging of the tumour microenvironment and image-guided interventions including drug delivery, surgery and ablation therapy.

  16. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics

    PubMed Central

    Hellebust, Anne; Richards-Kortum, Rebecca

    2012-01-01

    Over the last three decades, our understanding of the molecular changes associated with cancer development and progression has advanced greatly. This has led to new cancer therapeutics targeted against specific molecular pathways; such therapies show great promise to reduce mortality, in part by enabling physicians to tailor therapy for patients based on a molecular profile of their tumor. Unfortunately, the tools for definitive cancer diagnosis – light microscopic examination of biopsied tissue stained with nonspecific dyes – remain focused on the analysis of tissue ex vivo. There is an important need for new clinical tools to support the molecular diagnosis of cancer. Optical molecular imaging is emerging as a technique to help meet this need. Targeted, optically active contrast agents can specifically label extra-and intracellular biomarkers of cancer. Optical images can be acquired in real time with high spatial resolution to image-specific molecular targets, while still providing morphologic context. This article reviews recent advances in optical molecular imaging, highlighting the advances in technology required to improve early cancer detection, guide selection of targeted therapy and rapidly evaluate therapeutic efficacy. PMID:22385200

  17. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    PubMed

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  18. Autophagy- An emerging target for melanoma therapy.

    PubMed

    Ndoye, Abibatou; Weeraratna, Ashani T

    2016-01-01

    Melanoma accounts for only 5% of all cancers but is the leading cause of skin cancer death due to its high metastatic potential. Patients with metastatic melanoma have a 10-year survival rate of less than 10%. While the clinical landscape for melanoma is evolving rapidly, lack of response to therapies, as well as resistance to therapy remain critical obstacles for treatment of this disease. In recent years, a myriad of therapy resistance mechanisms have been unravelled, one of which is autophagy, the focus of this review. In advanced stages of malignancy, melanoma cells hijack the autophagy machinery in order to alleviate drug-induced and metabolic stress in the tumor microenvironment, thereby promoting resistance to multiple therapies, tumor cell survival, and progression.  Autophagy is an essential cellular process that maintains cellular homeostasis through the recycling of intracellular constituents. Early studies on the role of autophagy in cancer generated controversy as to whether autophagy was pro- or anti-tumorigenic. Currently, there is a consensus that autophagy is tumor-suppressive in the early stages of cancer and tumor-promoting in established tumors.  This review aims to highlight current understandings on the role of autophagy in melanoma malignancy, and specifically therapy resistance; as well as to evaluate recent strategies for therapeutic autophagy modulation. PMID:27583134

  19. Autophagy- An emerging target for melanoma therapy

    PubMed Central

    Ndoye, Abibatou; Weeraratna, Ashani T.

    2016-01-01

    Melanoma accounts for only 5% of all cancers but is the leading cause of skin cancer death due to its high metastatic potential. Patients with metastatic melanoma have a 10-year survival rate of less than 10%. While the clinical landscape for melanoma is evolving rapidly, lack of response to therapies, as well as resistance to therapy remain critical obstacles for treatment of this disease. In recent years, a myriad of therapy resistance mechanisms have been unravelled, one of which is autophagy, the focus of this review. In advanced stages of malignancy, melanoma cells hijack the autophagy machinery in order to alleviate drug-induced and metabolic stress in the tumor microenvironment, thereby promoting resistance to multiple therapies, tumor cell survival, and progression.  Autophagy is an essential cellular process that maintains cellular homeostasis through the recycling of intracellular constituents. Early studies on the role of autophagy in cancer generated controversy as to whether autophagy was pro- or anti-tumorigenic. Currently, there is a consensus that autophagy is tumor-suppressive in the early stages of cancer and tumor-promoting in established tumors.  This review aims to highlight current understandings on the role of autophagy in melanoma malignancy, and specifically therapy resistance; as well as to evaluate recent strategies for therapeutic autophagy modulation. PMID:27583134

  20. Proteinase-activated receptors (PARs) as targets for antiplatelet therapy.

    PubMed

    Cunningham, Margaret; McIntosh, Kathryn; Bushell, Trevor; Sloan, Graeme; Plevin, Robin

    2016-04-15

    Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date.

  1. Epigenetic aberrations and targeted epigenetic therapy of esophageal cancer.

    PubMed

    Zhao, Ronghua; Casson, Alan G

    2008-09-01

    Squamous cell carcinoma of the esophagus is one of the ten most frequent malignancies worldwide, characterized by a striking geographic variation in incidence. In North America and Europe, there has recently been a marked change in the epidemiology of this disease, where incidence rates for primary esophageal adenocarcinoma have increased in excess of any other human solid tumor. Although the reasons for this are largely unknown, several molecular genetic alterations have been associated with esophageal tumor progression. In recent years, epigenetic aberrations have been increasingly recognized as an important alternative mechanism of carcinogenesis and it is anticipated that substantial progress in the treatment of esophageal malignancy will likely only be made with a clearer understanding of esophageal tumor biology. Whereas genetic mutations, deletions, or allelic losses are fixed and irreversible, epigenetic abnormalities can potentially be corrected without interfering with the fundamental sequence of the target gene. Our current understanding of epigenetics in esophageal cancer, and the potential for targeted epigenetic therapy, will be the subject of this review.

  2. Targeted therapy for non-small-cell lung cancer: past, present and future

    PubMed Central

    Forde, Patrick M; Ettinger, David S

    2013-01-01

    Therapy for advanced non-small-cell lung cancer has developed significantly with new awareness of histologic subtype as an important factor in guiding treatment and the development of targeted agents for molecular subgroups harboring critical mutations that spur on cancer growth. In this comprehensive review, we look back at developments in targeted therapy for advanced non-small-cell lung cancer, reviewing in detail efforts, both successful and in some cases less so, to target EGFR, VEGF and ALK. This review provides an overview of where the field stands at present and the areas we feel are most likely to provide challenges and potential successes in the next 5 years including immune checkpoint inhibition, epigenetic therapy and driver mutation targeting. PMID:23773106

  3. Hitting the target with antithrombotic therapy.

    PubMed

    Fritsma, Margaret G; Rodak, Bernadette F

    2007-05-01

    Thrombus treatment and prevention can be regulated by a number of intravenous or subcutaneous drugs, as well as oral warfarin. Many therapies require laboratory monitoring for efficacy and for detection of dangerous sequelae, such as bleeding, thrombosis, or heparin induced thrombocytopenia.

  4. [Targeted therapy in inflammatory disease: cytokines].

    PubMed

    von Frenckell, C; Malaise, M G

    2012-01-01

    Summarizing 15 years of therapeutic development of a discipline into a few lines is not an easy thing to do. There are many potential targets involved in the inflammatory of auto-immune diseases. Due to the development of biotherapies the choice has become larger, and it is now possible to target practically any molecule (cytokine, chemokine or surface receptor for example). Cytokines represent the first example of therapeutic target that played a major role in the revolution of our discipline. The first part of presentation will focus on the pro-inflammatory cytokines (TNFalpha, and interleukines 1 and 6). We shall then, detail the development of a new cytokinic target: BLyS (B lymphocyte stimulator) whose role in the autoimmune diseases appeared recently.

  5. Death receptors: Targets for cancer therapy

    SciTech Connect

    Mahmood, Zafar; Shukla, Yogeshwer

    2010-04-01

    Apoptosis is the cell's intrinsic program to death, which plays an important role in physiologic growth control and homeostasis. Apoptosis can be triggered by death receptors (DRs), without any adverse effects. DRs are the members of tumor necrosis factor (TNF) receptor superfamily, known to be involved in apoptosis signaling, independent of p53 tumor-supressor gene. Selective triggering of DR-mediated apoptosis in cancer cells is a novel approach in cancer therapy. So far, the best characterized DRs are CD95 (Fas/Apo1), TNF-related apoptosis-inducing ligand receptor (TRAILR) and tumor necrosis factor receptor (TNFR). Among these, TRAILR is emerging as most promising agent for cancer therapy, because it induces apoptosis in a variety of tumor and transformed cells without any toxicity to normal cells. TRAIL treatment in combination with chemotherapy or radiotherapy enhances TRAIL sensitivity or reverses TRAIL resistance by regulating downstream effectors. This review covers the current knowledge about the DRs, summarizes main signaling in DRs and also summarizes the preclinical approaches of these DRs in cancer therapy.

  6. Targeting Enterococcus faecalis biofilms with phage therapy.

    PubMed

    Khalifa, Leron; Brosh, Yair; Gelman, Daniel; Coppenhagen-Glazer, Shunit; Beyth, Shaul; Poradosu-Cohen, Ronit; Que, Yok-Ai; Beyth, Nurit; Hazan, Ronen

    2015-04-01

    Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment.

  7. The management of gastrointestinal stromal tumors: a model for targeted and multidisciplinary therapy of malignancy.

    PubMed

    Joensuu, Heikki; DeMatteo, Ronald P

    2012-01-01

    Gastrointestinal stromal tumor (GIST) has become a model for targeted therapy in cancer. The vast majority of GISTs contain an activating mutation in either the KIT or platelet-derived growth factor A (PDGFRA) gene. GIST is highly responsive to several selective tyrosine kinase inhibitors. In fact, this cancer has been converted to a chronic disease in some patients. Considerable progress has been made recently in our understanding of the natural history and molecular biology of GIST, risk stratification, and drug resistance. Despite the efficacy of targeted therapy, though, surgery remains the only curative primary treatment and cures >50% of GIST patients who present with localized disease. Adjuvant therapy with imatinib prolongs recurrence-free survival and may improve overall survival. Combined or sequential use of tyrosine kinase inhibitors with other agents following tumor molecular subtyping is an attractive next step in the management of GIST. PMID:22017446

  8. Targeting primary afferent nerves for novel antitussive therapy.

    PubMed

    Undem, Bradley J; Carr, Michael J

    2010-01-01

    The best available data support the hypothesis that there are at least two types of vagal nerves responsible for initiating coughing reflexes. One type of nerve conducts action potentials in the A-range and is characterized by rapidly adapting responses to mechanical probing or acidification of the large airway epithelium. Stimulation of these nerves can evoke cough in unconscious experimental animals and humans. These nerves are important in immediate cough evoked by aspiration and as such perform a critical role in airway defense. The other type of primary afferent nerve involved in cough is the vagal C-fiber. Inhalation of selective C-fiber stimulants leads to cough only in conscious animals. In clinical studies, inhalation of a low concentration of a C-fiber stimulant causes an irritating, itchy urge-to-cough sensation that mimics the urge-to-cough sensations associated with respiratory tract infection, post-infection, gastroesophageal reflux disorders, and inflammatory airway diseases. Here we discuss the recent advances in sensory neurobiology that allow for the targeting of vagal C-fibers for novel antitussive therapy. No attempts are made to be all-inclusive with respect to the numerous possible molecular targets being considered to accomplish this goal. Rather, two general strategies are discussed: decreasing generator potential amplitude and decreasing the efficiency by which a generator potential evokes action-potential discharge. For the first category we focus on two targets, transient receptor potential vanilloid 1 and transient receptor potential A1. For the latter category we focus on recent advances in voltage-gated sodium (Na(V)) channel biology.

  9. The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics.

    PubMed

    Scott, Jessica M; Lakoski, Susan; Mackey, John R; Douglas, Pamela S; Haykowsky, Mark J; Jones, Lee W

    2013-01-01

    Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies.

  10. Development of targeted therapies in treatment of glioblastoma

    PubMed Central

    Xu, Yuan-Yuan; Gao, Pei; Sun, Ying; Duan, You-Rong

    2015-01-01

    Glioblastoma (GBM) is a type of tumor that is highly lethal despite maximal therapy. Standard therapeutic approaches provide modest improvement in progression-free and overall survival, necessitating the investigation of novel therapies. Oncologic therapy has recently experienced a rapid evolution toward “targeted therapy”, with drugs directed against specific targets which play essential roles in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Inhibitors of these molecules have already entered or are undergoing clinical trials. However, significant challenges in their development remain because several preclinical and clinical studies present conflicting results. In this article, we will provide an up-to-date review of the current targeted therapies in GBM. PMID:26487967

  11. Molecular Hydrogen Therapy Ameliorates Organ Damage Induced by Sepsis.

    PubMed

    Zheng, Yijun; Zhu, Duming

    2016-01-01

    Since it was proposed in 2007, molecular hydrogen therapy has been widely concerned and researched. Many animal experiments were carried out in a variety of disease fields, such as cerebral infarction, ischemia reperfusion injury, Parkinson syndrome, type 2 diabetes mellitus, metabolic syndrome, chronic kidney disease, radiation injury, chronic hepatitis, rheumatoid arthritis, stress ulcer, acute sports injuries, mitochondrial and inflammatory disease, and acute erythema skin disease and other pathological processes or diseases. Molecular hydrogen therapy is pointed out as there is protective effect for sepsis patients, too. The impact of molecular hydrogen therapy against sepsis is shown from the aspects of basic vital signs, organ functions (brain, lung, liver, kidney, small intestine, etc.), survival rate, and so forth. Molecular hydrogen therapy is able to significantly reduce the release of inflammatory factors and oxidative stress injury. Thereby it can reduce damage of various organ functions from sepsis and improve survival rate. Molecular hydrogen therapy is a prospective method against sepsis. PMID:27413421

  12. Evolving targets for lipid-modifying therapy

    PubMed Central

    Do, Rose Q; Nicholls, Stephen J; Schwartz, Gregory G

    2014-01-01

    The pathogenesis and progression of atherosclerosis are integrally connected to the concentration and function of lipoproteins in various classes. This review examines existing and emerging approaches to modify low-density lipoprotein and lipoprotein (a), triglyceride-rich lipoproteins, and high-density lipoproteins, emphasizing approaches that have progressed to clinical evaluation. Targeting of nuclear receptors and phospholipases is also discussed. PMID:25172365

  13. Nanoparticles for tumor targeted therapies and their pharmacokinetics.

    PubMed

    Wang, Jianqiu; Sui, Meihua; Fan, Weimin

    2010-02-01

    Various types of nanoparticles, such as liposomes, polymeric micelles, dendrimers, superparamagnetic iron oxide crystals, and colloidal gold, have been employed in targeted therapies for cancer. Both passive and active targeting strategies can be utilized for nano-drug delivery. Passive targeting is based on the enhanced permeability and retention (EPR) effect of the vasculature surrounding tumors. Active targeting relies on ligand-directed binding of nanoparticles to receptors expressed by tumor cells. Release of loaded drugs from nanoparticles may be controlled in response to changes in environmental condition such as temperature and pH. Biodistribution profiles and anticancer efficacy of nano-drugs in vivo would be different depending upon their size, surface charge, PEGylation and other biophysical properties. This review focuses on the recent development of nanoparticles for tumor targeted therapies, including physicochemical properties, tumor targeting, control of drug release, pharmacokinetics, anticancer efficacy and safety. Future perspectives are discussed as well.

  14. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  15. Targeted Therapies in Breast Cancer: Implications for Advanced Oncology Practice

    PubMed Central

    Bourdeanu, Laura; Luu, Thehan

    2014-01-01

    The systemic therapeutic management of breast cancer has undergone significant transformation in the past decade. Without targeted therapies, conventional treatment with cytotoxic agents has reached the limit of its potential in terms of patient survival for most types of cancer. Enhanced understanding of the pathogenesis of tumor cell growth and metastasis has led to the identification of signaling growth pathways as targets for these directed therapies. Novel therapies targeted to HER2/neu, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), poly(ADP ribose) polymerase (PARP), mammalian target of rapamycin (mTOR), histone deacetylase (HDAC), the heat shock protein, and cyclin-dependent kinase (CDK) inhibitors have been developed and have demonstrated some efficacy in breast cancer. Recognition and management of the toxicities associated with targeted therapies is imperative. This review will describe the clinical development and utilization of targeted therapies currently in use or in clinical trials, with a focus on considerations for the oncology advanced practitioner. PMID:26110069

  16. Vascular Endothelial Growth Factor as an Anti-angiogenic Target for Cancer Therapy

    PubMed Central

    Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    New blood vessel formation (angiogenesis) is fundamental to tumor growth, invasion, and metastatic dissemination. The vascular endothelial growth factor (VEGF) signaling pathway plays pivotal roles in regulating tumor angiogenesis. VEGF as a therapeutic target has been validated in various types of human cancers. Different agents including antibodies, aptamers, peptides, and small molecules have been extensively investigated to block VEGF and its pro-angiogenic functions. Some of these agents have been approved by FDA and some are currently in clinical trials. Combination therapies are also being pursued for better tumor control. By providing comprehensive real-time information, molecular imaging of VEGF pathway may accelerate the drug development process. Moreover, the imaging will be of great help for patient stratification and therapeutic effect monitoring, which will promote effective personalized molecular cancer therapy. This review summarizes the current status of tumor therapeutic agents targeting to VEGF and the applications of VEGF related molecular imaging. PMID:20426765

  17. Targeted therapy for advanced gastric cancer: A review of current status and future prospects

    PubMed Central

    Kanat, Ozkan; O’Neil, Bert; Shahda, Safi

    2015-01-01

    In the West in particular, the vast majority of gastric cancer (GC) patients present with advanced-stage disease. Although combination chemotherapy is still the most important component of treatment for these patients, it confers a modest survival advantage. Recently, increased knowledge of the key molecular signaling pathways involved in gastric carcinogenesis has led to the discovery of specific molecular-targeted therapeutic agents. Some of these agents such as trastuzumab and ramucirumab have changed the treatment paradigm for this disease. In this paper, we will summarize the current clinical status of targeted drug therapy in the management of GC. PMID:26690491

  18. Nutraceuticals: Potential for Chondroprotection and Molecular Targeting of Osteoarthritis

    PubMed Central

    Leong, Daniel J.; Choudhury, Marwa; Hirsh, David M.; Hardin, John A.; Cobelli, Neil J.; Sun, Hui B.

    2013-01-01

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals—food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease—offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment. PMID:24284399

  19. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis.

    PubMed

    Leong, Daniel J; Choudhury, Marwa; Hirsh, David M; Hardin, John A; Cobelli, Neil J; Sun, Hui B

    2013-01-01

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals-food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease-offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment. PMID:24284399

  20. Identification of Molecular Targets for Predicting Colon Adenocarcinoma

    PubMed Central

    Wang, Yansheng; Zhang, Jun; Li, Li; Xu, Xin; Zhang, Yong; Teng, Zhaowei; Wu, Feihu

    2016-01-01

    Background Colon adenocarcinoma mostly happens at the junction of the rectum and is a common gastrointestinal malignancy. Accumulated evidence has indicated that colon adenocarcinoma develops by genetic alterations and is a complicated disease. The aim of this study was to screen differentially expressed miRNAs (DEMs) and genes with diagnostic and prognostic potentials in colon adenocarcinoma. Material/Methods In this study we screened DEMs and their target genes (DEGs) between 100 colon adenocarcinoma and normal samples in The Cancer Genome Atlas (TCGA) database by using the DEseq toolkit in Bioconductor. Then Go enrichment and KEGG pathway analysis were performed on the selected differential genes by use of the DAVID online tool. A regulation network of miRNA-gene was constructed and analyzed by Cytoscape. Finally, we performed ROC analysis of 8 miRNAs and ROC curves were drawn. Results A total of 159 DEMs and 1921 DEGs were screened, and 1881 pairs of miRNA-target genes with significant negative correlations were also obtained. A regulatory network of miRNA-gene, including 60 cancer-related genes and 47 miRNAs, was successfully constructed. In addition, 5 clusters with several miRNAs regulating a set of target genes simultaneously were identified through cluster analysis. There were 8 miRNAs involved in these 5 clusters, and these miRNAs could serve as molecular biomarkers to distinguish colon adenocarcinoma and normal samples indicated by ROC analysis. Conclusions The identified 8 miRNAs were closely associated with colon adenocarcinoma, which may have great clinical value as diagnostic and prognostic biomarkers and provide new ideas for targeted therapy. PMID:26868022

  1. Update on rational targeted therapy in AML.

    PubMed

    Shafer, Danielle; Grant, Steven

    2016-07-01

    Acute myeloid leukemia (AML) remains a challenge to both patients and clinicians. Despite improvements in our understanding of the disease, treatment has changed minimally and outcomes remain poor for the majority of patients. Within the last decade, there have been an increasing number of potential targets and pathways identified for development in AML. The classes of agents described in this review include but are not limited to epigenetic modifiers such as IDH inhibitors, BET inhibitors, and HDAC inhibitors as well as cell cycle and signaling inhibitors such as Aurora kinase inhibitors and CDK inhibitors. While the developments are encouraging, it is unlikely that targeting a single pathway will result in long-term disease control. Accordingly, we will also highlight potential rational partners for the novel agents described herein. PMID:26972558

  2. Update on rational targeted therapy in AML

    PubMed Central

    Shafer, Danielle; Grant, Steven

    2016-01-01

    Acute myeloid leukemia (AML) remains a challenge to both patients and clinicians. Despite improvements in our understanding of the disease, treatment has changed minimally and outcomes remain poor for the majority of patients. Within the last decade, there have been an increasing number of potential targets and pathways identified for development in AML. The classes of agents described in this review include but are not limited to epigenetic modifiers such as IDH inhibitors, BET inhibitors, and HDAC inhibitors as well as cell cycle and signaling inhibitors such as Aurora kinase inhibitors and CDK inhibitors. While the developments are encouraging, it is unlikely that targeting a single pathway will result in long-term disease control. Accordingly, we will also highlight potential rational partners for the novel agents described herein. PMID:26972558

  3. Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment.

    PubMed

    Scott, Clare L; Becker, Marc A; Haluska, Paul; Samimi, Goli

    2013-12-04

    Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer (OC) patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDXs) are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy. PDX models have been applied to pre-clinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast, and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations, and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC) remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial OC PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues addressed in PDX models.

  4. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  5. KLK-targeted Therapies for Prostate Cancer

    PubMed Central

    Johanna, Mattsson; Ulf-Håkan, Stenman

    2014-01-01

    Alternative treatments are urgently needed for prostate cancer, especially to address the aggressive metastatic castration-resistant disease. Proteolytic enzymes are involved in cancer growth and progression. The prostate produces several proteases, the most abundant ones being two members of the kallikrein-related peptidase (KLK) family, prostate-specific antigen (PSA) and KLK2. Despite the wide use of PSA as a clinical marker, the function(s) of PSA and other KLKs in prostate cancer are poorly known. Hypothetic roles of KLKs in prostate cancer include activities that may both promote and inhibit cancer growth and metastasis, including the antiangiogenic activity of PSA. Thus it may be possible to control prostate cancer growth by modulating the proteolytic activities of KLKs. PSA and KLK2 are especially attractive targets for prostate cancer treatment because of their proposed roles in tumor development and inhibition of angiogenesis in combination with their prostate selective expression. So far the number of molecules affecting selectively the activity of KLKs is limited and none of these are used to treat prostate cancer. Prodrugs that, after cleavage of the peptide part by PSA or KLK2, release active drug molecules, and PSA-targeted therapeutic vaccines have already been tested clinically in humans and the first results have been encouraging. Although KLKs are attractive targets for prostate cancer treatment, much remains to be done before their potential can be fully elucidated. The objective of this review is to address the current state of the KLKs as novel therapeutic targets for prostate cancer treatment.

  6. Targeted Antiscarring Therapy for Tissue Injuries

    PubMed Central

    Järvinen, Tero A.H.; Ruoslahti, Erkki

    2013-01-01

    Significance The healing of injuries, such as those caused by ischemia (myocardial infarction, stroke), trauma, surgery, and inflammation, tends to happen through undesirable and harmful scarring. Current options in reducing scar formation are largely limited to local intervention in accessible tissues. Recent Advances We have designed a systemically administered, injury-targeted decorin for scar prevention. The delivery of decorin to injured tissues is achieved by fusing recombinant decorin to a 9-amino acid peptide, CARSKNKDC (CAR), which specifically recognizes the vessels in injured tissues and extravasates into the tissue, delivering decorin with it. Critical Issues Decorin is known to prevent tissue fibrosis and promote tissue regeneration. This activity of decorin is based on inhibition of TGF-β and some other regulatory activities. In addition to serving as a delivery vehicle, the CAR component endowed decorin with much stronger neutralizing activity against TGF-β1 in vitro than is obtained with nontargeted decorin. The CAR–decorin fusion protein promoted wound healing in a mouse skin wound model and suppressed scar formation at doses at which nontargeted decorin was inactive. These results show that selective targeting enhances specificity and potency of an antiscarring compound. Future Directions Targeted decorin provides a new, systemic option for the treatment of scarring and fibrotic diseases. PMID:24527325

  7. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  8. Targeted therapy for hereditary cancer syndromes: neurofibromatosis type 1, neurofibromatosis type 2, and Gorlin syndrome.

    PubMed

    Agarwal, Rishi; Liebe, Sarah; Turski, Michelle L; Vidwans, Smruti J; Janku, Filip; Garrido-Laguna, Ignacio; Munoz, Javier; Schwab, Richard; Rodon, Jordi; Kurzrock, Razelle; Subbiah, Vivek

    2014-12-01

    Hereditary cancer syndromes are well known in the oncology community, typically affecting children, adolescents, and young adults and thereby resulting in great cumulative morbidity and mortality. These syndromes often lag behind their de novo counterparts in the development of approved novel treatment options due to their rarity in the general population. Recent work has allowed the identification of molecular aberrations and associated targeted therapies that may effectively treat these conditions. In this review, we seek to characterize some of the involved aberrations and associated targeted therapies for several germline malignancies, including neurofibromatosis types 1 and 2, and Gorlin syndrome. Though patients with hereditary cancer syndromes may be too rare to effectively include in large clinical trials, by understanding the pathophysiology of these diseases, clinicians can attain insights into the use of targeted therapies in their own practice when treating affected individuals. PMID:25549703

  9. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy.

    PubMed

    Zhou, Jiehua; Rossi, John J

    2014-06-17

    One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.

  10. Nanoparticle-based targeted gene therapy for lung cancer

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  11. Jeremiah Metzger Lecture. Targeted cancer therapy.

    PubMed Central

    Mendelsohn, J.

    2000-01-01

    I have reviewed here and elsewhere the preclinical data and the clinical trials which have demonstrated the efficacy of therapy with monoclonal antibodies that block activation of receptors for growth factors (12). Herceptin is now in clinical use. Our own antibody, C225 against the EGF receptor, shows great promise, but phase III trials need to be completed to prove its efficacy. The research efforts with C225 have involved scientists in academia, the pharmaceutical industry, and the National Cancer Institute, and contributions were made by many collaborators. I believe it is highly likely that blockade of growth factor-mediated signal transduction pathways, in combination with chemotherapy or radiotherapy, will enhance our ability to inhibit, and in some cases to eradicate, many of the common epithelial human malignancies (60). Images Fig. 2 PMID:10881335

  12. Co-Development of Diagnostic Vectors to Support Targeted Therapies and Theranostics: Essential Tools in Personalized Cancer Therapy

    PubMed Central

    Nicolaides, Nicholas C.; O’Shannessy, Daniel J.; Albone, Earl; Grasso, Luigi

    2014-01-01

    Novel technologies are being developed to improve patient therapy through the identification of targets and surrogate molecular signatures that can help direct appropriate treatment regimens for efficacy and drug safety. This is particularly the case in oncology whereby patient tumor and biofluids are routinely isolated and analyzed for genetic, immunohistochemical, and/or soluble markers to determine if a predictive biomarker signature (i.e., mutated gene product, differentially expressed protein, altered cell surface antigen, etc.) exists as a means for selecting optimal treatment. These biomarkers may be drug-specific targets and/or differentially expressed nucleic acids, proteins, or cell lineage profiles that can directly affect the patient’s disease tissue or immune response to a therapeutic regimen. Improvements in diagnostics that can prescreen predictive response biomarker profiles will continue to optimize the ability to enhance patient therapy via molecularly defined disease-specific treatment. Conversely, patients lacking predictive response biomarkers will no longer needlessly be exposed to drugs that are unlikely to provide clinical benefit, thereby enabling patients to pursue other therapeutic options and lowering overall healthcare costs by avoiding futile treatment. While patient molecular profiling offers a powerful tool to direct treatment options, the difficulty in identifying disease-specific targets or predictive biomarker signatures that stratify a significant fraction within a disease indication remains challenging. A goal for drug developers is to identify and implement new strategies that can rapidly enable the development of beneficial disease-specific therapies for broad patient-specific targeting without the need of tedious predictive biomarker discovery and validation efforts, currently a bottleneck for development timelines. Successful strategies may gain an advantage by employing repurposed, less-expensive existing agents while

  13. Biomarkers and Targeted Therapy in Pancreatic Cancer

    PubMed Central

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers. PMID:27147897

  14. Vasculogenic mimicry: a novel target for glioma therapy.

    PubMed

    Chen, Yin-Sheng; Chen, Zhong-Ping

    2014-02-01

    Anti-angiogenic therapy has shown promising but insufficient efficacy on gliomas. Recent studies suggest that vasculogenic mimicry (VM), or the formation of non-endothelial, tumor-cell-lined microvascular channels, occurs in aggressive tumors, including gliomas. There is also evidence of a physiological connection between the endothelial-lined vasculature and VM channels. Tumor cells, by virtue of their high plasticity, can form vessel-like structures themselves, which may function as blood supply networks. Our previous study on gliomas showed that microvessel density was comparably less in VM-positive tumors than in VM-negative tumors. Thus, VM may act as a complement to ensure tumor blood supply, especially in regions with less microvessel density. Patients with VM-positive gliomas survived a shorter period of time than did patients with VM-negative gliomas. Although the detailed molecular mechanisms for VM are not fully understood, glioma stem cells might play a key role, since they are involved in tumor tissue remodeling and contribute to neovascularization via transdifferentiation. In the future, successful treatment of gliomas should involve targeting both VM and angiogenesis. In this review, we summarize the progress and challenges of VM in gliomas. PMID:23816560

  15. Bioenergetics breakdown in Alzheimer's disease: targets for new therapies.

    PubMed

    Saxena, Uday

    2011-01-01

    Alzheimer's disease is rapidly growing worldwide and yet there is no cure for it. Currently available drugs only provide symptomatic relief and do not intervene in disease process sufficiently enough to prevent or cure it. Characteristic features of this disease are decline in neuronal mass and cognitive functions. The most dominant hypothesis proposed for pathogenesis of this disease is called "amyloid hypothesis". It states that excessive production of amyloid peptides called abeta peptides (Aβ) is the underlying cause of neuronal death and dysfunction. However, recent drugs designed based on amyloid hypothesis have failed in clinical trails, demanding fresh assessment. Early and persistent molecular events in this disease progression are energy deficiency and high oxidative stress in the neurons. Our review will put together a disease model based on known human and animal data with regards to breakdown in neuronal energy generation. The model will integrate energy deficits as the cause of neuronal dysfunction and abeta peptide production culminating in catastrophic loss of cognitive functions. Finally, based on this model, we will also suggest enzyme targets in neuronal bioenergetics pathway for design and development of new disease modifying therapies. PMID:21760971

  16. Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy.

    PubMed

    Kim, B; Wang, S; Lee, J M; Jeong, Y; Ahn, T; Son, D-S; Park, H W; Yoo, H-s; Song, Y-J; Lee, E; Oh, Y M; Lee, S B; Choi, J; Murray, J C; Zhou, Y; Song, P H; Kim, K-A; Weiner, L M

    2015-02-26

    Met is a receptor tyrosine kinase that promotes cancer progression. In addition, Met has been implicated in resistance of tumors to various targeted therapies such as epidermal growth factor receptor inhibitors in lung cancers, and has been prioritized as a key molecular target for cancer therapy. However, the underlying mechanism of resistance to Met-targeting drugs is poorly understood. Here, we describe screening of 1310 genes to search for key regulators related to drug resistance to an anti-Met therapeutic antibody (SAIT301) by using a small interfering RNA-based synthetic lethal screening method. We found that knockdown of 69 genes in Met-amplified MKN45 cells sensitized the antitumor activity of SAIT301. Pathway analysis of these 69 genes implicated fibroblast growth factor receptor (FGFR) as a key regulator for antiproliferative effects of Met-targeting drugs. Inhibition of FGFR3 increased target cell apoptosis through the suppression of Bcl-xL expression, followed by reduced cancer cell growth in the presence of Met-targeting drugs. Treatment of cells with the FGFR inhibitors substantially restored the efficacy of SAIT301 in SAIT301-resistant cells and enhanced the efficacy in SAIT301-sensitive cells. In addition to FGFR3, integrin β3 is another potential target for combination treatment with SAIT301. Suppression of integrin β3 decreased AKT phosphorylation in SAIT301-resistant cells and restored SAIT301 responsiveness in HCC1954 cells, which are resistant to SAIT301. Gene expression analysis using CCLE database shows that cancer cells with high levels of FGFR and integrin β3 are resistant to crizotinib treatment, suggesting that FGFR and integrin β3 could be used as predictive markers for Met-targeted therapy and provide a potential therapeutic option to overcome acquired and innate resistance for the Met-targeting drugs. PMID:24662823

  17. Targeting nucleocytoplasmic transport in cancer therapy

    PubMed Central

    de Pedro, Nuria

    2014-01-01

    The intracellular location and regulation of proteins within each cell is critically important and is typically deregulated in disease especially cancer. The clinical hypothesis for inhibiting the nucleo-cytoplasmic transport is based on the dependence of certain key proteins within malignant cells. This includes a host of well-characterized tumor suppressor and oncoproteins that require specifc localization for their function. This aberrant localization of tumour suppressors and oncoproteins results in their their respective inactivation or over-activation. This incorrect localization occurs actively via the nuclear pore complex that spans the nuclear envelope and is mediated by transport receptors. Accordingly, given the signifcant need for novel, specifc disease treatments, the nuclear envelope and the nuclear transport machinery have emerged as a rational therapeutic target in oncology to restore physiological nucleus/cytoplasmic homeostasis. Recent evidence suggests that this approach might be of substantial therapeutic use. This review summarizes the mechanisms of nucleo-cytoplasmic transport, its role in cancer biology and the therapeutic potential of targeting this critical cellular process PMID:24429466

  18. Biliverdin reductase: a target for cancer therapy?

    PubMed Central

    Gibbs, Peter E. M.; Miralem, Tihomir; Maines, Mahin D.

    2015-01-01

    Biliverdin reductase (BVR) is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s) of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1, and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ, and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation. PMID:26089799

  19. Barriers Prevent Patient Access to Personalized Therapies Identified by Molecular Tumor Profiling of Gynecologic Malignancies

    PubMed Central

    Hillman, R. Tyler; Ward, Kristy; Saenz, Cheryl; McHale, Michael; Plaxe, Steven

    2015-01-01

    Objective. This study was designed to evaluate the ability of commercial molecular tumor profiling to discover actionable mutations and to identify barriers that might prevent patient access to personalized therapies. Methods. We conducted an IRB-approved retrospective review of 26 patients with gynecologic malignancies who underwent commercial tumor profiling at our institution during the first 18 months of test availability. Tumor profiles reported targeted therapies and clinical trials matched to patient-specific mutations. Data analysis consisted of descriptive statistics. Results. Most patients who underwent tumor profiling had serous epithelial ovarian, primary peritoneal, or fallopian tube carcinoma (46%). Patients underwent profiling after undergoing a median of two systemic therapies (range 0 to 13). A median of one targeted therapy was suggested per patient profile. Tumor profiling identified no clinically actionable mutations for seven patients (27%). Six patients sought insurance approval for a targeted therapy and two were declined (33%). One patient (4%) received a targeted therapy and this was discontinued due to tumor progression. Conclusions. There are formidable barriers to targeted therapy for patients with gynecologic malignancies. These barriers include a dearth of FDA-approved targeted agents for gynecologic malignancies, lack of third party insurance coverage and limited geographic availability of clinical trials. PMID:26011384

  20. Translational research: precision medicine, personalized medicine, targeted therapies: marketing or science?

    PubMed

    Marquet, Pierre; Longeray, Pierre-Henry; Barlesi, Fabrice; Ameye, Véronique; Augé, Pascale; Cazeneuve, Béatrice; Chatelut, Etienne; Diaz, Isabelle; Diviné, Marine; Froguel, Philippe; Goni, Sylvia; Gueyffier, François; Hoog-Labouret, Natalie; Mourah, Samia; Morin-Surroca, Michèle; Perche, Olivier; Perin-Dureau, Florent; Pigeon, Martine; Tisseau, Anne; Verstuyft, Céline

    2015-01-01

    Personalized medicine is based on: 1) improved clinical or non-clinical methods (including biomarkers) for a more discriminating and precise diagnosis of diseases; 2) targeted therapies of the choice or the best drug for each patient among those available; 3) dose adjustment methods to optimize the benefit-risk ratio of the drugs chosen; 4) biomarkers of efficacy, toxicity, treatment discontinuation, relapse, etc. Unfortunately, it is still too often a theoretical concept because of the lack of convenient diagnostic methods or treatments, particularly of drugs corresponding to each subtype of pathology, hence to each patient. Stratified medicine is a component of personalized medicine employing biomarkers and companion diagnostics to target the patients likely to present the best benefit-risk balance for a given active compound. The concept of targeted therapy, mostly used in cancer treatment, relies on the existence of a defined molecular target, involved or not in the pathological process, and/or on the existence of a biomarker able to identify the target population, which should logically be small as compared to the population presenting the disease considered. Targeted therapies and biomarkers represent important stakes for the pharmaceutical industry, in terms of market access, of return on investment and of image among the prescribers. At the same time, they probably represent only the first generation of products resulting from the combination of clinical, pathophysiological and molecular research, i.e. of translational research.

  1. Targeting T cell metabolism for therapy

    PubMed Central

    O’Sullivan, David

    2015-01-01

    In the past several years, a wealth of evidence has emerged illustrating how metabolism supports many aspects of T cell biology, as well as how metabolic changes drive T cell differentiation and fate. Here we outline developing principles in the regulation of T cell metabolism, and discuss how these processes are impacted in settings of inflammation and cancer. In this context we discuss how metabolic pathways might be manipulated for the treatment of human disease, including how metabolism may be targeted to prevent T cell dysfunction in inhospitable microenvironments, to generate more effective adoptive cellular immunotherapies in cancer, and to direct T cell differentiation and function towards non-pathogenic phenotypes in settings of autoimmunity. PMID:25601541

  2. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    PubMed Central

    Sun, Hongguang; Zhu, Xun; Lu, Patrick Y; Rosato, Roberto R; Tan, Wen; Zu, Youli

    2014-01-01

    Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy. PMID:25093706

  3. Noninvasive and real-time monitoring of molecular targeting therapy for lymph node and peritoneal metastasis in nude mice bearing xenografts of human colorectal cancer cells tagged with GFP and DsRed

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hayao; Hara, Masayasu; Ikehara, Yuzuru; Tatematsu, Masae

    2007-02-01

    We have developed an in vivo imaging system consisting of GFP- and DsRed-tagged human colonic cancer cell line, which has peritoneal and lymph node metastatic potential and show high sensitivity to EGFR targeting drugs, and convenient detection devices for GFP and DsRed. The latter includes a small handy fluorescence detection device for external monitoring of the therapeutic effect of the drug and a convenient stereo fluorescent microscope for internal visualization of micrometastases. We applied this imaging system to investigate anti-metastatic effects of EGFR targeting drugs such as gefitinib (Iressa). This system allowed sensitive detection of the development of peritoneal and lymph node metastases from the micrometastasis stage at the cellular level and also permited noninvasive, non-anesthetic monitoring of anti-metastatic effect of the drug in an animal facility without any pretreatment. Significant decreases in the intraabdominal metastatic tumor growth and prevention of inguinal lymph node metastasis by gefitinib treatment could be clearly monitored. These results suggest that convenient, low-cost, true real-time monitoring of therapeutic effect using such a fluorescence-mediated whole body imaging system seems to enhance the speed of preclinical study for novel anti-cancer agents and will allow us to understand the action mechanism of molecular targeting drugs.

  4. The hair follicle as a target for gene therapy.

    PubMed

    Gupta, S; Domashenko, A; Cotsarelis, G

    2001-01-01

    The hair follicle possesses progenitor cells for continued hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be targeted by topical gene delivery to mouse skin. Using a combination of liposomes and DNA, we demonstrated the feasibility of targeting hair follicle cells in human scalp xenografts as well. We defined liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection occurred only during anagen onset. Considerations and obstacles for using gene therapy to treat alopecias and skin disease are discussed. A theoretical framework for future gene therapy treatments for cutaneous and systemic disorders is presented.

  5. Beyond histology: translating tumor genotypes into clinically effective targeted therapies.

    PubMed

    Meador, Catherine B; Micheel, Christine M; Levy, Mia A; Lovly, Christine M; Horn, Leora; Warner, Jeremy L; Johnson, Douglas B; Zhao, Zhongming; Anderson, Ingrid A; Sosman, Jeffrey A; Vnencak-Jones, Cindy L; Dahlman, Kimberly B; Pao, William

    2014-05-01

    Increased understanding of intertumoral heterogeneity at the genomic level has led to significant advancements in the treatment of solid tumors. Functional genomic alterations conferring sensitivity to targeted therapies can take many forms, and appropriate methods and tools are needed to detect these alterations. This review provides an update on genetic variability among solid tumors of similar histologic classification, using non-small cell lung cancer and melanoma as examples. We also discuss relevant technological platforms for discovery and diagnosis of clinically actionable variants and highlight the implications of specific genomic alterations for response to targeted therapy.

  6. Antiobesity therapy: emerging drugs and targets.

    PubMed

    Das, Saibal Kumar; Chakrabarti, Ranjan

    2006-01-01

    Obesity and its associated morbidities and mortalities are the effects of imbalance between energy intake and expenditure. The healthcare burden for the treatment of obesity is significantly high, due to increased risk of secondary chronic diseases such as hypertension and associated co-morbidities such as diabetes and cardiovascular disease. Lack of physical activity, high fat diets and sedentary life styles are major factors contributing to obesity. However, genetic predisposition and ethnicity are increasingly found to cause obesity. Till date, approved therapeutics have addressed excess energy intake by acting on central neural circuits that regulate feeding or on peripheral mechanisms to reduce nutrient absorption from the gut. These approaches have met with moderate success; and recently with safety concerns, leaving an unmet medical need for effective and safe pharmacotherapy for obesity thereby posing a significant challenge to pharmaceutical industry. Potential antiobesity drugs, which are being investigated by different companies, can be classified in 4 broad categories: 1) Agents that primarily decrease appetite through central action; 2) Agents that primarily increase metabolic rate or affect metabolism through peripheral action; 3) Agents that act on gastrointestinal tract; and 4) Agents that not only affect obesity but also overall Metabolic Syndrome. The current review will deal mainly with different molecules, which are under development for the above-mentioned targets and also their potential benefits and disadvantages.

  7. Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies

    PubMed Central

    Matsuoka, Tasuku; Yashiro, Masakazu

    2016-01-01

    Pancreatic cancer is the fourth most common cause of cancer deaths worldwide. Although recent therapeutic developments for patients with pancreatic cancer have provided survival benefits, the outcomes for patients with pancreatic cancer remain unsatisfactory. Molecularly targeted cancer therapy has advanced in the past decade with the use of a number of pathways as candidates of therapeutic targets. This review summarizes the molecular features of this refractory disease while focusing on the recent clinical and experimental findings on pancreatic cancer. It also discusses the data supporting current standard clinical outcomes, and offers conclusions that may improve the management of pancreatic cancer in the future. PMID:26811624

  8. Novel molecular approaches to cystic fibrosis gene therapy

    PubMed Central

    Lee, Tim W. R.; Matthews, David A.; Blair, G. Eric

    2005-01-01

    Gene therapy holds promise for the treatment of a range of inherited diseases, such as cystic fibrosis. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of cystic fibrosis pulmonary disease has proved elusive. There are many reasons for this lack of progress, both macroscopically in terms of airway defence mechanisms and at the molecular level with regard to effective cDNA delivery. This review of approaches to cystic fibrosis gene therapy covers these areas in detail and highlights recent progress in the field. For gene therapy to be effective in patients with cystic fibrosis, the cDNA encoding the cystic fibrosis transmembrane conductance regulator protein must be delivered effectively to the nucleus of the epithelial cells lining the bronchial tree within the lungs. Expression of the transgene must be maintained at adequate levels for the lifetime of the patient, either by repeat dosage of the vector or by targeting airway stem cells. Clinical trials of gene therapy for cystic fibrosis have demonstrated proof of principle, but gene expression has been limited to 30 days at best. Results suggest that viral vectors such as adenovirus and adeno-associated virus are unsuited to repeat dosing, as the immune response reduces the effectiveness of each subsequent dose. Nonviral approaches, such as cationic liposomes, appear more suited to repeat dosing, but have been less effective. Current work regarding non-viral gene delivery is now focused on understanding the mechanisms involved in cell entry, endosomal escape and nuclear import of the transgene. There is now increasing evidence to suggest that additional ligands that facilitate endosomal escape or contain a nuclear localization signal may enhance liposome-mediated gene delivery. Much progress in this area has been informed by advances in our understanding of the mechanisms by which viruses deliver their genomes to the nuclei of host

  9. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  10. Back to the future: oral targeted therapy for RA and other autoimmune diseases.

    PubMed

    O'Shea, John J; Laurence, Arian; McInnes, Iain B

    2013-03-01

    The molecular biology revolution coupled with the development of monoclonal antibody technology enabled remarkable progress in rheumatology therapy, comprising an array of highly effective biologic agents. With advances in understanding of the molecular nature of immune cell receptors came elucidation of intracellular signalling pathways downstream of these receptors. These discoveries raise the question of whether selective targeting of key intracellular factors with small molecules would add to the rheumatologic armamentarium. In this Review, we discuss several examples of this therapeutic strategy that seem to be successful, and consider their implications for the future of immune-targeted treatments. We focus on kinase inhibitors, primarily those targeting Janus kinase family members and spleen tyrosine kinase, given their advanced status in clinical development and application. We also summarize other targets involved in signalling pathways that might offer promise for therapeutic intervention in the future. PMID:23419429

  11. Anaplastic lymphoma kinase and its signalling molecules as novel targets in lymphoma therapy.

    PubMed

    Coluccia, A M L; Gunby, R H; Tartari, C J; Scapozza, L; Gambacorti-Passerini, C; Passoni, Lorena

    2005-06-01

    A crucial issue in the development of molecularly-targeted anticancer therapies is the identification of appropriate molecules whose targeting would result in tumour regression with a minimal level of systemic toxicity. Anaplastic lymphoma kinase (ALK) is a transmembrane receptor tyrosine kinase, normally expressed at low levels in the nervous system. As a consequence of chromosomal translocations involving the alk gene (2p23), ALK is also aberrantly expressed and constitutively activated in approximately 60% of CD30+ anaplastic large cell lymphomas (ALCLs). Due to the selective overexpression of ALK in tumour cells, its direct involvement in the process of malignant transformation and its frequent expression in ALCL patients, the authors recognise ALK as a suitable candidate for the development of molecularly targeted strategies for the therapeutic treatment of ALK-positive lymphomas. Strategies targeting ALK directly or indirectly via the inhibition of the protein networks responsible for ALK oncogenic signalling are discussed. PMID:15948671

  12. Glycan-Targeted Virus-like Nanoparticles for Photodynamic Therapy

    PubMed Central

    Rhee, Jin-Kyu; Baksh, Michael; Nycholat, Corwin; Paulson, James C.; Kitagishi, Hiroaki; Finn, M.G.

    2012-01-01

    Virus-like particles (VLPs) have proven to be versatile platforms for chemical and functionalization for a variety of purposes in biomedicine, catalysis, and materials science. We here the simultaneous modification of the bacteriophage Qβ VLP with a metalloporphyrin derivative photodynamic therapy and a glycan ligand for specific targeting of cells bearing the CD-22 receptor. This application benefits from the presence of the targeting function and the delivery of a high local concentration of singlet oxygen-generating payload. PMID:22827531

  13. Targeted therapies in breast cancer: are heart and vessels also being targeted?

    PubMed Central

    2012-01-01

    The concept of 'targeted' therapies implies that such drugs only act on cells that specifically express the particular target, therefore giving rise to a low incidence of side effects. However, targeted therapies currently approved for the treatment of breast cancer have demonstrated a relatively high incidence of cardiovascular events. The anti-HER2 agents trastuzumab and lapatinib may cause left ventricular dysfunction or even congestive heart failure. Bevacizumab, an antiangiogenic drug, has been shown to increase the risk of hypertension, cardiovascular dysfunction and thromboembolic events. In addition, several anti-human epidermal growth factor receptor 2 (HER2) and antiangiogenic agents plus their combinations are currently being developed and evaluated for the treatment of breast cancer. In this review, we aim to assess the incidence of cardiac adverse events associated with targeted therapies designed to block HER2 and angiogenic pathways. PMID:22713170

  14. Molecular Pharming: future targets and aspirations.

    PubMed

    Paul, Mathew; van Dolleweerd, Craig; Drake, Pascal M W; Reljic, Rajko; Thangaraj, Harry; Barbi, Tommaso; Stylianou, Elena; Pepponi, Ilaria; Both, Leonard; Hehle, Verena; Madeira, Luisa; Inchakalody, Varghese; Ho, Sammy; Guerra, Thais; Ma, Julian K-C

    2011-03-01

    Molecular Pharming represents an unprecedented opportunity to manufacture affordable modern medicines and make these available at a global scale. The area of greatest potential is in the prevention of infectious diseases, particular in underdeveloped countries where access to medicines and vaccines has historically been limited. This is why, at St. George's, we focus on diseases such as HIV, TB and rabies, and aim to develop production strategies that are simple and potentially easy to transfer to developing countries.

  15. Molecular Pharming: future targets and aspirations.

    PubMed

    Paul, Mathew; van Dolleweerd, Craig; Drake, Pascal M W; Reljic, Rajko; Thangaraj, Harry; Barbi, Tommaso; Stylianou, Elena; Pepponi, Ilaria; Both, Leonard; Hehle, Verena; Madeira, Luisa; Inchakalody, Varghese; Ho, Sammy; Guerra, Thais; Ma, Julian K-C

    2011-03-01

    Molecular Pharming represents an unprecedented opportunity to manufacture affordable modern medicines and make these available at a global scale. The area of greatest potential is in the prevention of infectious diseases, particular in underdeveloped countries where access to medicines and vaccines has historically been limited. This is why, at St. George's, we focus on diseases such as HIV, TB and rabies, and aim to develop production strategies that are simple and potentially easy to transfer to developing countries. PMID:21368584

  16. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy.

    PubMed

    Du, Wei; Tao, Hongyan; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2015-09-01

    Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Molecular imaging techniques provide valuable information at cellular and molecular level, as opposed to anatomical and structural layers acquired from traditional imaging modalities. More specifically, molecular imaging employs imaging probes which interact with specific molecular targets and therefore makes it possible to visualize biological processes in vivo. Molecular imaging technology is now progressing towards preclinical and clinical application that gives an integral and comprehensive guidance for the investigation of cardiovascular disease. In addition, cardiac stem cell therapy holds great promise for clinical translation. Undoubtedly, combining stem cell therapy with molecular imaging technology will bring a broad prospect for the study and treatment of cardiac disease. This review will focus on the progresses of molecular imaging strategies in cardiovascular disease and cardiac stem cell therapy. Furthermore, the perspective on the future role of molecular imaging in clinical translation and potential strategies in defining safety and efficacy of cardiac stem cell therapies will be discussed.

  17. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  18. Targeted therapies in bladder cancer: an overview of in vivo research.

    PubMed

    van Kessel, Kim E M; Zuiverloon, Tahlita C M; Alberts, Arnout R; Boormans, Joost L; Zwarthoff, Ellen C

    2015-12-01

    Survival of patients with muscle-invasive bladder cancer is poor and new therapies are needed. Currently, none of the targeted agents that are approved for cancer therapy have been approved for the treatment of bladder cancer and the few clinical trials that have been performed had limited success, often owing to a lack of efficacy and toxic effects. However, many other novel targeted agents have been investigated in animal models of bladder cancer. EGFR, FGFR-3, VEGF, mTOR, STAT3, the androgen receptor and CD24 are molecular targets that could be efficiently inhibited, resulting in reduced tumour growth, and that have been investigated in multiple independent studies. Several other targets, for example COX-2, IL-12, Bcl-xL, livin and choline kinase α, have also been observed to inhibit tumour growth, but these findings have not been replicated to date. Limitations of several studies include the use of cell lines with mutations downstream of the target, providing resistance to the tested therapy. Furthermore, certain technologies, such as interfering RNAs, although effective in vitro, are not yet ready for clinical applications. Further preclinical research is needed to discover and evaluate other possible targets, but several validated targets are now available to be studied in clinical trials.

  19. Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery across Biological Barriers

    PubMed Central

    Kievit, Forrest M.; Zhang, Miqin

    2012-01-01

    Cancer nanotheranostics aims to combine imaging and therapy of cancer through use of nanotechnology. The ability to engineer nanomaterials to interact with cancer cells at the molecular level can significantly improve the effectiveness and specificity of therapy to cancers that are currently difficult to treat. In particular, metastatic cancers, drug-resistant cancers, and cancer stem cells impose the greatest therapeutic challenge that requires targeted therapy to treat effectively. Targeted therapy can be achieved with appropriate designed drug delivery vehicles such as nanoparticles, adult stem cells, or T cells in immunotherapy. In this article, we first review the different types of materials commonly used to synthesize nanotheranostic particles and their use in imaging. We then discuss biological barriers that these nanoparticles encounter and must bypass to reach the target cancer cells, including the blood, liver, kidneys, spleen, and particularly the blood-brain barrier. We then review how nanotheranostics can be used to improve targeted delivery and treatment of cancer cells using nanoparticles, adult stem cells, and T cells in immunotherapy. Finally, we discuss development of nanoparticles to overcome current limitations in cancer therapy. PMID:21842473

  20. Targeted Radionuclide Therapy: Practical Applications and Future Prospects

    PubMed Central

    Zukotynski, Katherine; Jadvar, Hossein; Capala, Jacek; Fahey, Frederic

    2016-01-01

    In recent years, there has been a proliferation in the development of targeted radionuclide cancer therapy. It is now possible to use baseline clinical and imaging assessments to determine the most effective therapy and to tailor this therapy during the course of treatment based on radiation dosimetry and tumor response. Although this personalized approach to medicine has the advantage of maximizing therapeutic effect while limiting toxicity, it can be challenging to implement and expensive. Further, in order to use targeted radionuclide therapy effectively, there is a need for multidisciplinary awareness, education, and collaboration across the scientific, industrial, and medical communities. Even more important, there is a growing understanding that combining radiopharmaceuticals with conventional treatment such as chemotherapy and external beam radiotherapy may limit patient morbidity while improving survival. Developments in radiopharmaceuticals as biomarkers capable of predicting therapeutic response and targeting disease are playing a central role in medical research. Adoption of a practical approach to manufacturing and delivering radiopharmaceuticals, assessing patient eligibility, optimizing post-therapy follow-up, and addressing reimbursement issues will be essential for their success. PMID:27226737

  1. New Molecular Targets in Mantle Cell lymphoma

    PubMed Central

    Parekh, Samir; Weniger, Marc A.; Wiestner, Adrian

    2011-01-01

    Mantle cell lymphoma (MCL) is a malignancy of mature B cells characterized by aberrant expression of cyclin D1 due to the translocation t(11;14). Epigenomic and genomic lesions in pathways regulating B-cell activation, cell cycle progression, protein homeostasis, DNA damage response, cell proliferation and apoptosis contribute to its pathogenesis. While patients typically respond to first-line chemotherapy, relapse is the rule resulting in a median survival of 5–7 years. The PI3K/AKT/mTOR appears as a key pathway in the pathogenesis and can be targeted with small molecules. Most experience is with mTOR inhibitors of the rapamycin class. Second-generation mTOR inhibitors and the PI3K inhibitor CAL-101 are novel options to more effectively target this pathway. Bruton’s tyrosine kinase inhibition by PCI-32765 has promising activity and indicates immunoreceptor signaling as a novel therapeutic target. Up to 50% of relapsed patients respond to the proteasome inhibitor bortezomib suggesting that MCL may be particularly sensitive to disruption of protein homeostasis and/or induction of oxidative stress. Recent work has focused on elucidating the mechanism of bortezomib-induced cytotoxicity and the development of second-generation proteasome inhibitors. DNA hypomethylating agents and histone deacetylase inhibitors effect epigenetic de-repression of aberrantly silenced genes. These epigenetic pharmaceuticals and HSP90 inhibitors can synergize with proteasome inhibitors. Finally, BH3 mimetics are emerging as tools to sensitize tumor cells to chemotherapy. Participation in clinical trials offers patients a chance to benefit from these advances and is essential to maintain the momentum of progress. Innovative trial designs may be needed to expedite the clinical development of these targeted agents. PMID:21945517

  2. Molecular mechanisms of membrane targeting antibiotics.

    PubMed

    Epand, Richard M; Walker, Chelsea; Epand, Raquel F; Magarvey, Nathan A

    2016-05-01

    The bacterial membrane provides a target for antimicrobial peptides. There are two groups of bacteria that have characteristically different surface membranes. One is the Gram-negative bacteria that have an outer membrane rich in lipopolysaccharide. Several antimicrobials have been found to inhibit the synthesis of this lipid, and it is expected that more will be developed. In addition, antimicrobial peptides can bind to the outer membrane of Gram-negative bacteria and block passage of solutes between the periplasm and the cell exterior, resulting in bacterial toxicity. In Gram-positive bacteria, the major bacterial lipid component, phosphatidylglycerol can be chemically modified by bacterial enzymes to convert the lipid from anionic to cationic or zwitterionic form. This process leads to increased levels of resistance of the bacteria against polycationic antimicrobial agents. Inhibitors of this enzyme would provide protection against the development of bacterial resistance. There are antimicrobial agents that directly target a component of bacterial cytoplasmic membranes that can act on both Gram-negative as well as Gram-positive bacteria. Many of these are cyclic peptides with a rigid binding site capable of binding a lipid component. This binding targets antimicrobial agents to bacteria, rather than being toxic to host cells. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  3. Prospects in Folate Receptor-Targeted Radionuclide Therapy

    PubMed Central

    Müller, Cristina; Schibli, Roger

    2013-01-01

    Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD < 10−9 M) the vitamin folic acid has emerged as an almost ideal targeting agent. Therefore, a variety of folic acid radioconjugates for nuclear imaging have been developed. However, in spite of the large number of cancer patients who could benefit of a folate-based radionuclide therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic

  4. Transductional targeting of adenovirus vectors for gene therapy

    PubMed Central

    Glasgow, JN; Everts, M; Curiel, DT

    2007-01-01

    Cancer gene therapy approaches will derive considerable benefit from adenovirus (Ad) vectors capable of self-directed localization to neoplastic disease or immunomodulatory targets in vivo. The ablation of native Ad tropism coupled with active targeting modalities has demonstrated that innate gene delivery efficiency may be retained while circumventing Ad dependence on its primary cellular receptor, the coxsackie and Ad receptor. Herein, we describe advances in Ad targeting that are predicated on a fundamental understanding of vector/cell interplay. Further, we propose strategies by which existing paradigms, such as nanotechnology, may be combined with Ad vectors to form advanced delivery vehicles with multiple functions. PMID:16439993

  5. Antibody-targeted biodegradable nanoparticles for cancer therapy.

    PubMed

    Shargh, Vahid Heravi; Hondermarck, Hubert; Liang, Mingtao

    2016-01-01

    The use of nanotechnology has great potentials to revolutionize the future cancer diagnosis and therapy. In this context, various nanoparticles (NPs) have been developed for targeted delivery of diagnostic/therapeutic agents to the tumor sites, which thus result in greater efficacy and much less side effects. The targeting property of NPs is often achieved by functionalizing their surface with tumor-specific ligands, such as antibodies, peptides, small molecules and oligonucleotides. In this review, we will discuss recent progress in the multifunctional design of antibody-targeted NPs with a special focus on liposomal, polymeric and protein-based delivery systems.

  6. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle

    PubMed Central

    Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick

    2016-01-01

    ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158

  7. Onconephrology: What Should the Internist Know About Targeted Therapy in Solid Tumors?

    PubMed

    El Rassy, Elie; El Karak, Fadi; Rizkallah, Jamale; Chelala, Dania

    2016-07-01

    Advances in medical oncology has led cancer patients to live longer. Moreover, the field of molecular oncology is rapidly evolving, new therapies emerge, and drugs are approved quickly. This has led nephrologists to encounter new and partially unrecognized treatments of the targeted therapy agents with kidney adverse effects. These agents fall mainly into 2 categories affecting the vascular endothelial growth factor and endothelial growth factor pathways. This review covers the incidence of kidney disease induced by these agents, pathophysiologic mechanisms, and clinical presentation, and is the first to recommend an adequate management for each pathophysiology. PMID:27514761

  8. Photodynamic therapy: Biophysical mechanisms and molecular responses

    NASA Astrophysics Data System (ADS)

    Mitra, Soumya

    In photodynamic therapy (PDT), photochemical reactions induced by optical activation of sensitizer molecules cause destruction of the target tissue. In this thesis we present results of several related studies, which investigated the influence of photophysical properties and photobleaching mechanisms of sensitizers and oxygen-dependent tissue optical properties on PDT treatment efficacy. The bleaching mechanism of the sensitizer meso-tetra hydroxyphenyl chlorin (mTHPC) is examined indirectly using measurements of photochemical oxygen consumption during PDT irradiation of multicell tumor spheroids. Analysis of the results with a theoretical model of oxygen diffusion that incorporates the effects of sensitizer photobleaching shows that mTHPC is degraded via a singlet-oxygen (1O2)-mediated bleaching process. The analysis allows us to extract photophysical parameters of mTHPC which are used to account for its enhanced clinical photodynamic potency in comparison to that of Photofrin. Evaluation of the spatially-resolved fluorescence in confocal optical sections of intact spheroids during PDT irradiation allows for the direct experimental verification of mTHPC's 1O2-mediated bleaching mechanism. The technique is also used to investigate the complex bleaching kinetics of Photofrin. The results allow us to successfully reconcile apparently contradictory experimental observations and to confirm the predictions of a new theoretical model in which both 1O2 and excited triplet sensitizer molecules are allowed to contribute to photobleaching. Based on studies performed in tissue-simulating erythrocyte phantoms and in a murine tumor model in vivo, we present clinically relevant results which indicate that a shift toward increased hemoglobin-oxygen saturation due to improved tissue oxygenation reduces PDT treatment beam attenuation and may allow for more effective treatment of deeper lesions. Finally, we investigate the induction of the stress protein, heat shock protein 70 (HSP

  9. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach

    PubMed Central

    Chen, Lian; Cui, Hengmin

    2015-01-01

    Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy. PMID:26402672

  10. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    PubMed Central

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  11. Recent developments in receptor tyrosine kinases targeted anticancer therapy

    PubMed Central

    Raval, Samir H.; Singh, Ratn D.; Joshi, Dilip V.; Patel, Hitesh B.; Mody, Shailesh K.

    2016-01-01

    Novel concepts and understanding of receptors lead to discoveries and optimization of many small molecules and antibodies as anti-cancerous drugs. Receptor tyrosine kinases (RTKs) are such a promising class of receptors under the investigation in past three decades. RTKs are one of the essential mediators of cell signaling mechanism for various cellular processes. Transformations such as overexpression, dysregulation, or mutations of RTKs may result into malignancy, and thus are an important target for anticancer therapy. Numerous subfamilies of RTKs, such as epidermal growth factor receptor, vascular endothelial growth factor receptor, fibroblast growth factor receptors, insulin-like growth factor receptor, and hepatocyte growth factor receptor, have been being investigated in recent years as target for anticancer therapy. The present review focuses several small molecules drugs as well as monoclonal antibodies targeting aforesaid subfamilies either approved or under investigation to treat the various cancers. PMID:27051190

  12. Personalized targeted therapy for esophageal squamous cell carcinoma

    PubMed Central

    Kang, Xiaozheng; Chen, Keneng; Li, Yicheng; Li, Jianying; D'Amico, Thomas A; Chen, Xiaoxin

    2015-01-01

    Esophageal squamous cell carcinoma continues to heavily burden clinicians worldwide. Researchers have discovered the genomic landscape of esophageal squamous cell carcinoma, which holds promise for an era of personalized oncology care. One of the most pressing problems facing this issue is to improve the understanding of the newly available genomic data, and identify the driver-gene mutations, pathways, and networks. The emergence of a legion of novel targeted agents has generated much hope and hype regarding more potent treatment regimens, but the accuracy of drug selection is still arguable. Other problems, such as cancer heterogeneity, drug resistance, exceptional responders, and side effects, have to be surmounted. Evolving topics in personalized oncology, such as interpretation of genomics data, issues in targeted therapy, research approaches for targeted therapy, and future perspectives, will be discussed in this editorial. PMID:26167067

  13. Twist: a molecular target in cancer therapeutics.

    PubMed

    Khan, Md Asaduzzaman; Chen, Han-chun; Zhang, Dianzheng; Fu, Junjiang

    2013-10-01

    Twist, the basic helix-loop-helix transcription factor, is involved in the process of epithelial to mesenchymal transitions (EMTs), which play an essential role in cancer metastasis. Overexpression of Twist or its promoter methylation is a common scenario in metastatic carcinomas. Twist is activated by a variety of signal transduction pathways, including Akt, signal transducer and activator of transcription 3, mitogen-activated protein kinase, Ras, and Wnt signaling. Activated Twist upregulates N-cadherin and downregulates E-cadherin, which are the hallmarks of EMT. Moreover, Twist plays an important role in some physiological processes involved in metastasis, like angiogenesis, invadopodia, extravasation, and chromosomal instability. Twist also protects cancer cells from apoptotic cell death. In addition, Twist is responsible for the stemness of cancer cells and the generation of drug resistance. Recently, targeting Twist has gained significant interests in cancer therapeutics. The inactivation of Twist by small RNA technology or chemotherapeutic approach has been proved successful. Moreover, several inhibitors which are antagonistic to the upstream or downstream molecules of Twist signaling pathways have also been identified. Development of potential treatment strategies by targeting Twist has a great promise in cancer therapeutics.

  14. [Characterization of principal predictive biomarkers of targeted therapies in thoracic cancer].

    PubMed

    Eberlé, F

    2013-11-01

    Among non-small cell lung carcinomas, adenocarcinomas are historically the first histological sub-group for which necessary and sufficient mutations driving to cancer can be targeted by tyrosine kinase inhibitors in patients with locally advanced or metastatic forms. In 2013, targeted therapies with a marketing authorization in thoracic oncology are indicated in patients whose tumor has an EGFR-positive or ALK-positive status. Biomarkers KRAS, BRAF, HER2, PI3K, and MET can account for resistance mechanisms to these treatments and are themselves subject to development of new therapeutic inhibitors. Because the systematic detection (or in the process of being) of these biomarkers has become in the last three years an essential task for pathologists and biologists working in hospital platforms of molecular genetics of cancer supported by INCa, this article aims to describe the physiological and pathophysiological role of the main predictive biomarkers of response to targeted therapies indicated in lung adenocarcinomas.

  15. Adipocyte transdifferentiation and its molecular targets.

    PubMed

    Rajan, Sujith; Gupta, Abhishek; Beg, Muheeb; Shankar, Kripa; Srivastava, Ankita; Varshney, Salil; Kumar, Durgesh; Gaikwad, Anil Nilkanth

    2014-06-01

    According to the World Health Organization obesity is defined as the excessive accumulation of fat, which increases risk of other metabolic disorders such as insulin resistance, dyslipidemia, hypertension, cardiovascular diseases, etc. There are two types of adipose tissue, white and brown adipose tissue (BAT) and the latter has recently gathered interest of the scientific community. Discovery of BAT has opened avenues for a new therapeutic strategy for the treatment of obesity and related metabolic syndrome. BAT utilizes accumulated fatty acids for energy expenditure; hence it is seen as one of the possible alternates to the current treatment. Moreover, browning of white adipocyte on exposure to cold, as well as with some of the pharmacological agents presents exciting outcomes and indicates the feasibility of transdifferentiation. A better understanding of molecular pathways and differentiation factors, those that play a key role in transdifferentiation are of extreme importance in designing novel strategies for the treatment of obesity and associated metabolic disorders. PMID:25130315

  16. Targeted cytotoxic therapy kills persisting HIV infected cells during ART.

    PubMed

    Denton, Paul W; Long, Julie M; Wietgrefe, Stephen W; Sykes, Craig; Spagnuolo, Rae Ann; Snyder, Olivia D; Perkey, Katherine; Archin, Nancie M; Choudhary, Shailesh K; Yang, Kuo; Hudgens, Michael G; Pastan, Ira; Haase, Ashley T; Kashuba, Angela D; Berger, Edward A; Margolis, David M; Garcia, J Victor

    2014-01-01

    Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA(+) cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies.

  17. Molecular Communication Model for Targeted Drug Delivery in Multiple Disease Sites With Diversely Expressed Enzymes.

    PubMed

    Chude-Okonkwo, Uche A K; Malekian, Reza; Maharaj, B T Sunil

    2016-04-01

    Targeted drug delivery (TDD) for disease therapy using liposomes as nanocarriers has received extensive attention in the literature. The liposome's ability to incorporate capabilities such as long circulation, stimuli responsiveness, and targeting characteristics, makes it a versatile nanocarrier. Timely drug release at the targeted site requires that trigger stimuli such as pH, light, and enzymes be uniquely overexpressed at the targeted site. However, in some cases, the targeted sites may not express trigger stimuli significantly, hence, achieving effective TDD at those sites is challenging. In this paper, we present a molecular communication-based TDD model for the delivery of therapeutic drugs to multiple sites that may or may not express trigger stimuli. The nanotransmitter and nanoreceiver models for the molecular communication system are presented. Here, the nanotransmitter and nanoreceiver are injected into the targeted body system's blood network. The compartmental pharmacokinetics model is employed to model the transportation of these therapeutic nanocarriers to the targeted sites where they are meant to anchor before the delivery process commences. We also provide analytical expressions for the delivered drug concentration. The effectiveness of the proposed model is investigated for drug delivery on tissue surfaces. Results show that the effectiveness of the proposed molecular communication-based TDD depends on parameters such as the total transmitter volume capacity, the receiver radius, the diffusion characteristic of the microenvironment of the targeted sites, and the concentration of the enzymes associated with the nanotransmitter and the nanoreceiver designs.

  18. Targeting Hyaluronic Acid Family for Cancer Chemoprevention and Therapy

    PubMed Central

    Lokeshwar, Vinata B.; Mirza, Summan; Jordan, Andre

    2016-01-01

    Hyaluronic acid or hyaluronan (HA) is perhaps one of the most uncomplicated large polymers that regulates several normal physiological processes and, at the same time, contributes to the manifestation of a variety of chronic and acute diseases, including cancer. Members of the HA signaling pathway (HA synthases, HA receptors, and HYAL-1 hyaluronidase) have been experimentally shown to promote tumor growth, metastasis, and angiogenesis, and hence each of them is a potential target for cancer therapy. Furthermore, as these members are also overexpressed in a variety of carcinomas, targeting of the HA family is clinically relevant. A variety of targeted approaches have been developed to target various HA family members, including small-molecule inhibitors and antibody and vaccine therapies. These treatment approaches inhibit HA-mediated intracellular signaling that promotes tumor cell proliferation, motility, and invasion, as well as induction of endothelial cell functions. Being nontoxic, nonimmunogenic, and versatile for modifications, HA has been used in nanoparticle preparations for the targeted delivery of chemotherapy drugs and other anticancer compounds to tumor cells through interaction with cell-surface HA receptors. This review discusses basic and clinical translational aspects of targeting each HA family member and respective treatment approaches that have been described in the literature. PMID:25081525

  19. Exploiting Gene Expression Kinetics in Conventional Radiotherapy, Hyperfractionation, and Hypofractionation for Targeted Therapy.

    PubMed

    Makinde, Adeola Y; Eke, Iris; Aryankalayil, Molykutty J; Ahmed, Mansoor M; Coleman, C Norman

    2016-10-01

    The dramatic changes in the technological delivery of radiation therapy, the repertoire of molecular targets for which pathway inhibitors are available, and the cellular and immunologic responses that can alter long-term clinical outcome provide a potentially unique role for using the radiation-inducible changes as therapeutic targets. Various mathematical models of dose and fractionation are extraordinarily useful in guiding treatment regimens. However, although the model may fit the clinical outcome, a deeper understanding of the molecular and cellular effect of the individual dose size and the adaptation to repeated exposure, called multifraction (MF) adaptation, may provide new therapeutic targets for use in combined modality treatments using radiochemotherapy and radioimmunotherapy. We discuss the potential of using different radiation doses and MF adaptation for targeting transcription factors, immune and inflammatory response, and cell "stemness." Given the complex genetic composition of tumors before treatment and their adaptation to drug treatment, innovative combinations using both the pretreatment molecular data and also the MF-adaptive response to radiation may provide an important role for focused radiation therapy as an integral part of precision medicine and immunotherapy.

  20. Exploiting Gene Expression Kinetics in Conventional Radiotherapy, Hyperfractionation, and Hypofractionation for Targeted Therapy.

    PubMed

    Makinde, Adeola Y; Eke, Iris; Aryankalayil, Molykutty J; Ahmed, Mansoor M; Coleman, C Norman

    2016-10-01

    The dramatic changes in the technological delivery of radiation therapy, the repertoire of molecular targets for which pathway inhibitors are available, and the cellular and immunologic responses that can alter long-term clinical outcome provide a potentially unique role for using the radiation-inducible changes as therapeutic targets. Various mathematical models of dose and fractionation are extraordinarily useful in guiding treatment regimens. However, although the model may fit the clinical outcome, a deeper understanding of the molecular and cellular effect of the individual dose size and the adaptation to repeated exposure, called multifraction (MF) adaptation, may provide new therapeutic targets for use in combined modality treatments using radiochemotherapy and radioimmunotherapy. We discuss the potential of using different radiation doses and MF adaptation for targeting transcription factors, immune and inflammatory response, and cell "stemness." Given the complex genetic composition of tumors before treatment and their adaptation to drug treatment, innovative combinations using both the pretreatment molecular data and also the MF-adaptive response to radiation may provide an important role for focused radiation therapy as an integral part of precision medicine and immunotherapy. PMID:27619247

  1. The metabolic state of cancer stem cells-a valid target for cancer therapy?

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-02-01

    In the 1920s Otto Warburg first described high glucose uptake, aerobic glycolysis, and high lactate production in tumors. Since then high glucose uptake has been utilized in the development of PET imaging for cancer. However, despite a deepened understanding of the molecular underpinnings of glucose metabolism in cancer, this fundamental difference between normal and malignant tissue has yet to be employed in targeted cancer therapy in the clinic. In this review, we highlight attempts in the recent literature to target cancer cell metabolism and elaborate on the challenges and controversies of these strategies in general and in the context of tumor cell heterogeneity in cancer.

  2. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  3. Targeting high-density lipoproteins: update on a promising therapy.

    PubMed

    Verdier, Céline; Martinez, Laurent O; Ferrières, Jean; Elbaz, Meyer; Genoux, Annelise; Perret, Bertrand

    2013-11-01

    Numerous epidemiological studies have demonstrated the atheroprotective roles of high density lipoproteins (HDL), so that HDL is established as an independent negative risk factor. The protective effect of HDL against atherosclerosis is mainly attributed to their capacity to bring peripheral excess cholesterol back to the liver for further elimination into the bile. In addition, HDL can exert other protective functions on the vascular wall, through their anti-inflammatory, antioxidant, antithrombotic and cytoprotective properties. HDL-targeted therapy is thus an innovative approach against cardiovascular risk and atherosclerosis. These pleiotropic atheroprotective properties of HDL have led experts to believe that "HDL-related therapies" represent the most promising next step in fighting against atherosclerosis. However, because of the heterogeneity of HDL functions, targeting HDL is not a simple task and HDL therapies that lower cardiovascular risk are NOT yet available. In this paper, an overview is presented about the therapeutic strategies currently under consideration to raise HDL levels and/or functions. Recently, clinical trials of drugs targeting HDL-C levels have disappointingly failed, suggesting that HDL functions through specific mechanisms should be targeted rather than increasing per se HDL levels. PMID:24074699

  4. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  5. Anticipated classes of new medications and molecular targets for pulmonary arterial hypertension

    PubMed Central

    Morrell, Nicholas W.; Archer, Stephen L.; DeFelice, Albert; Evans, Steven; Fiszman, Monica; Martin, Thomas; Saulnier, Muriel; Rabinovitch, Marlene; Schermuly, Ralph; Stewart, Duncan; Truebel, Hubert; Walker, Gennyne; Stenmark, Kurt R.

    2013-01-01

    Pulmonary arterial hypertension (PAH) remains a life-limiting condition with a major impact on the ability to lead a normal life. Although existing therapies may improve the outlook in some patients there remains a major unmet need to develop more effective therapies in this condition. There have been significant advances in our understanding of the genetic, cell and molecular basis of PAH over the last few years. This research has identified important new targets that could be explored as potential therapies for PAH. In this review we discuss whether further exploitation of vasoactive agents could bring additional benefits over existing approaches. Approaches to enhance smooth muscle cell apotosis and the potential of receptor tyrosine kinase inhibition are summarised. We evaluate the role of inflammation, epigenetic changes and altered glycolytic metabolism as potential targets for therapy, and whether inherited genetic mutations in PAH have revealed druggable targets. The potential of cell based therapies and gene therapy are also discussed. Potential candidate pathways that could be explored in the context of experimental medicine are identified. PMID:23662201

  6. Molecular targets of aspirin and cancer prevention.

    PubMed

    Alfonso, L; Ai, G; Spitale, R C; Bhat, G J

    2014-07-01

    Salicylates from plant sources have been used for centuries by different cultures to treat a variety of ailments such as inflammation, fever and pain. A chemical derivative of salicylic acid, aspirin, was synthesised and mass produced by the end of the 19th century and is one of the most widely used drugs in the world. Its cardioprotective properties are well established; however, recent evidence shows that it can also act as a chemopreventive agent. Its antithrombotic and anti-inflammatory actions occur through the inhibition of cyclooxygenases. The precise mechanisms leading to its anticancer effects are not clearly established, although multiple mechanisms affecting enzyme activity, transcription factors, cellular signalling and mitochondrial functions have been proposed. This review presents a brief account of the major COX-dependent and independent pathways described in connection with aspirin's anticancer effects. Aspirin's unique ability to acetylate biomolecules besides COX has not been thoroughly investigated nor have all the targets of its primary metabolite, salicylic acid been identified. Recent reports on the ability of aspirin to acetylate multiple cellular proteins warrant a comprehensive study to investigate the role of this posttranslational modification in its anticancer effects. In this review, we also raise the intriguing possibility that aspirin may interact and acetylate cellular molecules such as RNA, and metabolites such as CoA, leading to a change in their function. Research in this area will provide a greater understanding of the mechanisms of action of this drug. PMID:24874482

  7. Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation.

    PubMed

    Kubiak, Tomasz

    2016-10-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called "cyclinacs", are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs.

  8. Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation.

    PubMed

    Kubiak, Tomasz

    2016-10-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called "cyclinacs", are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs. PMID:27376637

  9. Management of advanced bladder cancer in the era of targeted therapies.

    PubMed

    Soave, A; Engel, O; Von Amsberg, G; Becker, A; Dahlem, R; Shariat, S F; Fisch, M; Rink, M

    2015-06-01

    Systemic chemotherapy is the standard treatment of advanced and metastatic urothelial carcinoma of the bladder (UCB). Unfortunately, systemic chemotherapy is ineffective in a significant number of patients, while side effects occur frequently. Detailed molecular-genetic investigations revealed a broad heterogeneity of underlying genomic mutations in UCB and led to the detection of cancer-specific therapeutic targets. These findings may allow a more tailored and individualized patient-based therapy, focusing on specific genomic variations, which may cause chemo-resistance in patients progressing or relapsing after standard chemotherapy. Targeted therapies hold the potential to be more effective in inhibiting cancer cell growth and progression, as well as to cause fewer side effects. While targeted therapies have been successfully established in the treatment of various malignancies including renal cell carcinoma, the clinical impact of these modern treatment strategies still remains unsettled for UCB. In this review, we comprehensively summarize the most current and relevant findings on targeted therapy in advanced and metastatic UCB, elucidating chances and limitations and discussing future perspectives.

  10. Targeted therapy for genetic cancer syndromes: Von Hippel-Lindau disease, Cowden syndrome, and Proteus syndrome.

    PubMed

    Agarwal, Rishi; Liebe, Sarah; Turski, Michelle L; Vidwans, Smruti J; Janku, Filip; Garrido-Laguna, Ignacio; Munoz, Javier; Schwab, Richard; Rodon, Jordi; Kurzrock, Razelle; Subbiah, Vivek

    2015-02-01

    Von Hippel-Lindau disease, Cowden syndrome, and Proteus syndrome are cancer syndromes which affect multiple organs and lead to significant decline in quality of life in affected patients. These syndromes are rare and typically affect the adolescent and young adult population, resulting in greater cumulative years of life lost. Improved understanding of the underpinnings of the genetic pathways underlying these syndromes and the rapid evolution of targeted therapies in general have made it possible to develop therapeutic options for these patients and other genetic cancer syndromes. Targeted therapies especially antiangiogenics and inhibitors of the PIK3CA/AKT/mTOR signaling pathway have shown activity in selected group of patients affected by these syndromes or in patients harboring specific sporadic mutations which are otherwise characteristic of these syndromes. Unfortunately due to the rare nature, patients with these syndromes are not the focus of clinical trials and unique results seen in these patients can easily go unnoticed. Most of the data suggesting benefits of targeted therapies are either case reports or small case series. Thus, a literature review was indicated. In this review we explore the use of molecularly targeted therapy options in Von Hippel-Lindau disease, Cowden syndrome, and Proteus syndrome. PMID:25725225

  11. Intermittent targeted therapies and stochastic evolution in patients affected by chronic myeloid leukemia

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Persano Adorno, D.; Valenti, D.; Spagnolo, B.

    2016-05-01

    Front line therapy for the treatment of patients affected by chronic myeloid leukemia (CML) is based on the administration of tyrosine kinase inhibitors, namely imatinib or, more recently, axitinib. Although imatinib is highly effective and represents an example of a successful molecular targeted therapy, the appearance of resistance is observed in a proportion of patients, especially those in advanced stages. In this work, we investigate the appearance of resistance in patients affected by CML, by modeling the evolutionary dynamics of cancerous cell populations in a simulated patient treated by an intermittent targeted therapy. We simulate, with the Monte Carlo method, the stochastic evolution of initially healthy cells to leukemic clones, due to genetic mutations and changes in their reproductive behavior. We first present the model and its validation with experimental data by considering a continuous therapy. Then, we investigate how fluctuations in the number of leukemic cells affect patient response to the therapy when the drug is administered with an intermittent time scheduling. Here we show that an intermittent therapy (IT) represents a valid choice in patients with high risk of toxicity, despite an associated delay to the complete restoration of healthy cells. Moreover, a suitably tuned IT can reduce the probability of developing resistance.

  12. Diverse Molecular Targets for Chalcones with Varied Bioactivities

    PubMed Central

    Zhou, Bo; Xing, Chengguo

    2015-01-01

    Natural or synthetic chalcones with different substituents have revealed a variety of biological activities that may benefit human health. The underlying mechanisms of action, particularly with respect to the direct cellular targets and the modes of interaction with the targets, have not been rigorously characterized, which imposes challenges to structure-guided rational development of therapeutic agents or chemical probes with acceptable target-selectivity profile. This review summarizes literature evidence on chalcones’ direct molecular targets in the context of their biological activities. PMID:26798565

  13. MOLECULAR TARGETS AND MECHANISMS FOR ETHANOL ACTION IN GLYCINE RECEPTORS

    PubMed Central

    Perkins, Daya I.; Trudell, James R.; Crawford, Daniel K.; Alkana, Ronald L.; Davies, Daryl L.

    2010-01-01

    Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed. PMID:20399807

  14. Nanomedicine strategies for molecular targets with MRI and optical imaging

    PubMed Central

    Pan, Dipanjan; Caruthers, Shelton D; Chen, Junjie; Winter, Patrick M; SenPan, Angana; Schmieder, Anne H; Wickline, Samuel A

    2010-01-01

    The science of ‘theranostics’ plays a crucial role in personalized medicine, which represents the future of patient management. Over the last decade an increasing research effort has focused on the development of nanoparticle-based molecular-imaging and drug-delivery approaches, emerging as a multidisciplinary field that shows promise in understanding the components, processes, dynamics and therapies of a disease at a molecular level. The potential of nanometer-sized agents for early detection, diagnosis and personalized treatment of diseases is extraordinary. They have found applications in almost all clinically relevant biomedical imaging modality. In this review, a number of these approaches will be presented with a particular emphasis on MRI and optical imaging-based techniques. We have discussed both established molecular-imaging approaches and recently developed innovative strategies, highlighting the seminal studies and a number of successful examples of theranostic nanomedicine, especially in the areas of cardiovascular and cancer therapy. PMID:20485473

  15. Mechanisms of resistance to HER2 target therapy.

    PubMed

    Tortora, Giampaolo

    2011-01-01

    In the past years, several agents targeting signaling proteins critical for breast cancer growth and dissemination entered clinical evaluation. They include drugs directed against the HER/ErbB family of receptor tyrosine kinases, especially HER2; several downstream signal transducers; and proteins involved in tumor angiogenesis and dissemination. Unfortunately, resistance to targeted agents is a quite common feature, and understanding of the molecular mechanisms predicting response or failure has become a crucial issue to optimize treatment and select patients who are the best candidates to respond. The neoadjuvant setting offers unique opportunities allowing tumor sampling and search for molecular determinants of response. A variety of tumor and host factors may account for the onset of resistance. Major progress has been made in the understanding of the mechanisms involved in the primary and acquired resistance to targeted agents, especially the anti-HER2 drugs, which play a pivotal role in the weaponry against breast cancer.

  16. Companion diagnostics for the targeted therapy of gastric cancer.

    PubMed

    Yoo, Changhoon; Park, Young Soo

    2015-10-21

    Gastric cancer is the fourth most common type of cancer and represents a major cause of cancer-related deaths worldwide. With recent biomedical advances in our understanding of the molecular characteristics of gastric cancer, many genetic alterations have been identified as potential targets for its treatment. Multiple novel agents are currently under development as the demand for active agents that improve the survival of gastric cancer patients constantly increases. Based on lessons from previous trials of targeted agents, it is now widely accepted that the establishment of an optimal diagnostic test to select molecularly defined patients is of equal importance to the development of active agents against targetable genetic alterations. Herein, we highlight the current status and future perspectives of companion diagnostics in the treatment of gastric cancer.

  17. Targeted Therapy of HER2-Negative Breast Cancer.

    PubMed

    Schütz, Florian; Domschke, Christoph; Schneeweiss, Andreas

    2016-01-01

    Personalized and targeted treatments are the most discussed topics in oncology. However, how much personalized medicine is standard of care nowadays and how much is part of our hope for a better future? So far, only a few targeted therapies are available in daily practice for the treatment of human epidermal growth factor receptor 2 (HER2)-negative breast cancer. And even for these few targeted agents - besides those targeting the estrogen receptor (ER) for endocrine treatment - thus far, predictive factors are missing. There are many new drugs and strategies under evaluation but, unfortunately, they are being developed without any cross-comparison. What drug will we choose for which patient in the future? Without answering this question oncologists will not be able to individualize treatment. Predictive factors for every new splendid drug are eagerly needed before it comes to an approval.

  18. Targeted therapies and immune checkpoint inhibitors in the treatment of metastatic melanoma patients: a guide and update for pathologists.

    PubMed

    Kakavand, Hojabr; Wilmott, James S; Long, Georgina V; Scolyer, Richard A

    2016-02-01

    The previously dismal prospects for patients with advanced stage metastatic melanoma have greatly improved in recent years. Enhanced understanding of both the pathogenesis of melanoma and its molecular drivers, as well as the importance and regulation of anti-tumour immune responses, have provided new therapeutic opportunities for melanoma patients. There are two major distinct categories of systemic treatments with activity for patients with metastatic melanoma: (1) targeted therapies, which act to inhibit the oncogenes that drive the aberrant growth and dissemination of the tumour; and (2) immune checkpoint inhibitor therapies, which act to enhance anti-tumour immune responses by blocking negative regulators of immunity. Pathologists play a critical and expanding role in the selection of the most appropriate treatment for individual metastatic melanoma patients in the modern era of personalised/precision medicine. The molecular pathology testing of melanoma tumour tissue for the presence of targetable oncogenic mutations is already part of routine practice in many institutions. In addition, other potential oncogenic therapeutic targets continue to be identified and pathology testing techniques must readily adapt to this rapidly changing field. Recent research findings suggest that pathological assessment of tumour associated immune cells and immunosuppressive ligand expression of the tumour are likely to be important in identifying patients most likely to benefit from immune checkpoint inhibitors. Similarly, pathological and molecular observations of on-treatment tumour tissue biopsies taken from patients on targeted therapies have provided new insights into the mechanisms of action of targeted molecular therapies, have contributed to the identification of resistance mechanisms to these novel therapies and may be of higher value for selecting patients most likely to benefit from therapies. These data have already provided a rational biological basis for the

  19. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer.

  20. Recent advances in targeted therapy for Ewing sarcoma.

    PubMed

    Pishas, Kathleen I; Lessnick, Stephen L

    2016-01-01

    Ewing sarcoma is an aggressive, poorly differentiated neoplasm of solid bone that disproportionally afflicts the young. Despite intensive multi-modal therapy and valiant efforts, 70% of patients with relapsed and metastatic Ewing sarcoma will succumb to their disease. The persistent failure to improve overall survival for this subset of patients highlights the urgent need for rapid translation of novel therapeutic strategies. As Ewing sarcoma is associated with a paucity of mutations in readily targetable signal transduction pathways, targeting the key genetic aberration and master regulator of Ewing sarcoma, the EWS/ETS fusion, remains an important goal. PMID:27635231

  1. Recent advances in targeted therapy for Ewing sarcoma

    PubMed Central

    Pishas, Kathleen I.; Lessnick, Stephen L.

    2016-01-01

    Ewing sarcoma is an aggressive, poorly differentiated neoplasm of solid bone that disproportionally afflicts the young. Despite intensive multi-modal therapy and valiant efforts, 70% of patients with relapsed and metastatic Ewing sarcoma will succumb to their disease. The persistent failure to improve overall survival for this subset of patients highlights the urgent need for rapid translation of novel therapeutic strategies. As Ewing sarcoma is associated with a paucity of mutations in readily targetable signal transduction pathways, targeting the key genetic aberration and master regulator of Ewing sarcoma, the EWS/ETS fusion, remains an important goal. PMID:27635231

  2. Recent advances in targeted therapy for Ewing sarcoma

    PubMed Central

    Pishas, Kathleen I.; Lessnick, Stephen L.

    2016-01-01

    Ewing sarcoma is an aggressive, poorly differentiated neoplasm of solid bone that disproportionally afflicts the young. Despite intensive multi-modal therapy and valiant efforts, 70% of patients with relapsed and metastatic Ewing sarcoma will succumb to their disease. The persistent failure to improve overall survival for this subset of patients highlights the urgent need for rapid translation of novel therapeutic strategies. As Ewing sarcoma is associated with a paucity of mutations in readily targetable signal transduction pathways, targeting the key genetic aberration and master regulator of Ewing sarcoma, the EWS/ETS fusion, remains an important goal.

  3. Biologic therapy for psoriasis - still searching for the best target*

    PubMed Central

    Pinto-Almeida, Teresa; Torres, Tiago

    2014-01-01

    Psoriasis is a chronic skin disease that results from the complex interaction between genetic and environmental factors. Over the last few decades, scientific evidence has redirected the focus of therapeutic studies to the immunologic pathways underlying its pathogenesis. This led to the biologic boom that we are currently experiencing, with the development and approval of targeted progressively more selective biological therapies and ongoing clinical trials of increasingly specific drugs, given their important implications for long-term efficacy and safety. Nevertheless, the search for the optimal biologic is still ongoing, and the best target has yet to be found. PMID:24770527

  4. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer. PMID:15607913

  5. [Targeted radionuclide therapy for castration-resistant prostate cancer].

    PubMed

    Nakamura, Katsumasa; Ohga, Saiji; Sasaki, Tomonari; Baba, Shingo; Honda, Hiroshi

    2014-12-01

    Although patients with castration-resistant prostate cancer frequently have metastases to the bone, they have a relatively favorable prognosis. Therefore, it is important to keep or improve the level of patient's quality of life. The use of strontium-89 for the management of the pain from bone metastasis was approved in 2007 in Japan. A new bone-targeting radiopharmaceuticals using radium-223 is also promising, because a randomized trial showed an overall survival advantage of radium-223 in prostate patients with bone metastases. In this review, we summarize the role of targeted radionuclide therapy for castration-resistant prostate cancer, focusing on strontium-89 and radium-223.

  6. [The hair follicle as a target for gene therapy].

    PubMed

    Cotsarelis, G

    2002-05-01

    The hair follicle possesses progenitor cells required for continuous hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be the target of topical gene delivery in the skin of the mouse. Using a combination of liposomes and DNA, we demonstrate the feasibility of targeting hair follicle cells in human scalp xenografts. We consider liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection is possible only during the early anagen phase. Factors and obstacles for the use of gene therapy in treating alopecia and skin diseases are discussed. A theoretical framework for future treatment of cutaneous and systemic disorders using gene therapy is presented.

  7. Dengue Virus Entry as Target for Antiviral Therapy

    PubMed Central

    Alen, Marijke M. F.; Schols, Dominique

    2012-01-01

    Dengue virus (DENV) infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry inhibitors are discussed. PMID:22529868

  8. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy

    PubMed Central

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-01-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of a variety of diseases, including cancer. The unique properties of nanoparticles, such as large surface-to volume ratio, small size, the ability to encapsulate a variety of drugs, and tunable surface chemistry, gives them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make nanoparticles a mode of treatment potentially superior to conventional cancer therapies. This article highlights the most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles, including promising opportunities in targeted and combination therapy. PMID:25656384

  9. Tumor-colonizing bacteria: a potential tumor targeting therapy.

    PubMed

    Zu, Chao; Wang, Jiansheng

    2014-08-01

    In 1813, Vautier published his observation of tumor regression in patients who had suffered from gas gangrene. Since then, many publications have described the use of bacteria as antitumor therapy. For example, Bifidobacterium and Clostridium have been shown to selectively colonize tumors and to reduce tumor size. In addition, recent studies have focused on the use of genetic engineering to induce the expression of pro-drug converting enzymes, cytokines, specific antibodies, or suicide genes in tumor-colonizing bacteria. Moreover, some animal experiments have reported the treatment of tumors with engineered bacteria, and few side effects were observed. Therefore, based on these advances in tumor targeting therapy, bacteria may represent the next generation of cancer therapy.

  10. Adoptive T Cell Therapy Targeting CD1 and MR1

    PubMed Central

    Guo, Tingxi; Chamoto, Kenji; Hirano, Naoto

    2015-01-01

    Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential. PMID:26052329

  11. Immunotherapy and lung cancer: current developments and novel targeted therapies.

    PubMed

    Domingues, Duarte; Turner, Alice; Silva, Maria Dília; Marques, Dânia Sofia; Mellidez, Juan Carlos; Wannesson, Luciano; Mountzios, Giannis; de Mello, Ramon Andrade

    2014-01-01

    Non-small-cell lung cancer (NSCLC) is a highly prevalent and aggressive disease. In the metastatic setting, major advances include the incorporation of immunotherapy and targeted therapies into the clinician's therapeutic armamentarium. Standard chemotherapeutic regimens have long been reported to interfere with the immune response to the tumor; conversely, antitumor immunity may add to the effects of those therapies. The aim of immunotherapy is to specifically enhance the immune response directed to the tumor. Recently, many trials addressed the role of such therapies for metastatic NSCLC treatment: ipilimumab, tremelimumab, nivolumab and lambrolizumab are immunotherapeutic agents of main interest in this field. In addition, anti-tumor vaccines, such as MAGE-A3, Tecetomide, TG4010, CIMAvax, ganglioside vaccines, tumor cell vaccines and dendritic cell vaccines, emerged as potent inducers of immune response against the tumor. The current work aims to address the most recent developments regarding these innovative immunotherapies and their implementation in the treatment of metastatic NSCLC.

  12. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  13. Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy.

    PubMed

    Distler, Oliver; Cozzio, Antonio

    2016-01-01

    Systemic sclerosis (SSc) is a chronic autoimmune disease with a high morbidity and mortality. Skin and organ fibrosis are key manifestations of SSc, for which no generally accepted therapy is available. Thus, there is a high unmet need for novel anti-fibrotic therapeutic strategies in SSc. At the same time, important progress has been made in the identification and characterization of potential molecular targets in fibrotic diseases over the recent years. In this review, we have selected four targeted therapies, which are tested in clinical trials in SSc, for in depths discussion of their preclinical characterization. Soluble guanylate cyclase (sGC) stimulators such as riociguat might target both vascular remodeling and tissue fibrosis. Blockade of interleukin-6 might be particularly promising for early inflammatory stages of SSc. Inhibition of serotonin receptor 2b signaling links platelet activation to tissue fibrosis. Targeting simultaneously multiple key molecules with the multityrosine kinase-inhibitor nintedanib might be a promising approach in complex fibrotic diseases such as SSc, in which many partially independent pathways are activated. Herein, we also give a state of the art overview of the current classification, clinical presentation, diagnostic approach, and treatment options of localized scleroderma. Finally, we discuss whether the novel targeted therapies currently tested in SSc could be used for localized scleroderma.

  14. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer

    PubMed Central

    D’Huyvetter, Matthias; Xavier, Catarina; Caveliers, Vicky; Lahoutte, Tony; Muyldermans, Serge; Devoogdt, Nick

    2014-01-01

    Introduction: The integration of diagnostic testing for the presence of a molecular target is of interest to predict successful targeted radionuclide therapy (TRNT). This so-called ‘theranostic’ approach aims to improve personalized treatment based on the molecular characteristics of cancer cells. Moreover, it offers new insights in predicting adverse effects and provides appropriate tools to monitor therapy responses. Recent findings using nanobodies emphasize their potential as theranostic tools in cancer treatment. Nanobodies are recombinant, small antigen-binding fragments that are derived from camelid heavy-chain-only antibodies. Areas covered: We review the current status of theranostic approaches in TRNT, with a focus on antibodies, peptides, scaffold proteins and emerging nanobodies. In recent years, nanobodies have been evaluated intensively for molecular imaging. In addition, novel data on TRNT using radiolabeled nanobodies for carcinomas and multiple myeloma highlight their promising opportunities in cancer treatment. Expert opinion: We trust that radiolabeled nanobodies will have a future potential as theranostic tools in cancer therapy, both for diagnosis as well as for TRNT. PMID:25035968

  15. Frontotemporal dementia: from molecular mechanisms to therapy.

    PubMed

    Haass, Christian; Neumann, Manuela

    2016-08-01

    Frontotemporal dementia (FTD) is a heterogeneous clinical syndrome characterized by frontotemporal lobar degeneration (FTLD). Neuropathologically, FTLD is characterized by abnormal protein deposits and almost all cases can now be classified into three major molecular subgroups based on specific accumulating proteins with the most common being FTLD-tau and FTLD-TDP (accounting for ~40% and 50%, respectively) and FTLD-FET (accounting for ~5-10%). In this special issue, the molecular and genetic basics as well as clinical approaches and therapeutics are reviewed in a series of articles. This article is part of the Frontotemporal Dementia special issue. PMID:27502123

  16. Genomic signatures in non-small-cell lung cancer: targeting the targeted therapies.

    PubMed

    Dressman, Holly K; Bild, Andrea; Garst, Jennifer; Harpole, David; Potti, Anil

    2006-07-01

    Despite major developments in targeted biologic agents, patients with advanced non-small-cell lung cancer have a poor prognosis. Recent development of targeted biologic agents have given us insight into possibilities of matching therapy with disease; however, the success of these agents has been marginal. In this article, we discuss the use of genomic signatures that have been developed to identify unique aspects of individual lung tumors and provide insight on how novel strategies can be used to identify populations susceptible to specific targeted agents. PMID:17254524

  17. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy

    PubMed Central

    D’Eliseo, Donatella; Velotti, Francesca

    2016-01-01

    Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy. PMID:26821053

  18. BI-14GENOMIC PROFILING OF A PREDICTIVE SIGNATURE FOR MET-TARGETED THERAPY IN GLIOBLASTOMA

    PubMed Central

    Johnson, Jennifer; Ascierto, Maria Libera; Newsome, David; Mittal, Sandeep; Kang, Liang; Briggs, Michael; Tanner, Kirk; Berens, Michael E.; Marincola, Francesco M.; Vande Woude, George F.; Xie, Qian

    2014-01-01

    The success of molecular targeted therapy against cancer depends on discovering the tumor driver genes and the molecular determinants that control the pathway activity. Glioblastoma (GBM) is one of the most devastating cancers due to its highly infiltrating nature, and MET pathway activation is a major cause of invasion in both primary and recurrent tumors. Because MET inhibitors are in clinical trials against GBM, there may be clinical utility from developing more effective patient enrollment strategies tailored to targeted therapeutics. Previously, we reported (Xie et al., PNAS 2012) that GBM tumors with high levels of hepatocyte growth factor (HGF) often display HGF-autocrine activation through its receptor MET, which is a key molecular feature in sensitivity to MET inhibitors. In this study, we sought to develop a molecular signature that can be used as a biomarker to identify GBM patients whose tumor would be vulnerable to treatment with MET inhibitors. Because GBM is a heterogeneous disease in which drug response in the individual patient can be influenced by a variety of different mechanisms, the expression of a single gene was not anticipated to be sufficient to pinpoint sensitivity to the drug; rather, a hypothesis-driven, biomarker-based molecular signature would likely be of a higher value. We analyzed genomic data from GBM patients in The Cancer Genome Atlas (TCGA) Network as well as from preclinical tumor models. We found that GBM tumors sensitive to MET inhibitors share common genomic profiles. More importantly, using patient-derived xenograft models, a 25-gene molecular signature was identified that predicted sensitivity to MET inhibitors. Our findings are a proof-of-concept for the use of genomic signatures to identify GBM patients with greater vulnerability for MET-targeted therapy.

  19. Molecularly Targeted Agents as Radiosensitizers in Cancer Therapy—Focus on Prostate Cancer

    PubMed Central

    Alcorn, Sara; Walker, Amanda J.; Gandhi, Nishant; Narang, Amol; Wild, Aaron T.; Hales, Russell K.; Herman, Joseph M.; Song, Danny Y.; DeWeese, Theodore L.; Antonarakis, Emmanuel S.; Tran, Phuoc T.

    2013-01-01

    As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer. PMID:23863691

  20. [Research advances of K-ras mutation in the prognosis and targeted therapy of gastric cancer].

    PubMed

    Huang, Y; Wei, J; Liu, B R

    2016-02-01

    K-ras mutations have been described in 30% of human cancers with significantly different mutation frequencies. High K-ras mutation frequency is found in many cancers such as pancreas and lung cancers, whereas, gastric cancer has a relatively low K-ras mutation frequency. In recent years, numerous researches have focused on the K-ras mutation in gastric cancer. This review summarizes the K-ras mutation frequency in gastric cancer, the relationship of K-ras mutation with clinicopathologic features and prognosis of gastric cancer patients, targeted therapy for K-ras mutated gastric cancer, some small-molecular inhibitors of K-ras, and development of targeted therapy drugs for K-ras signaling pathway in gastric cancer.

  1. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    PubMed Central

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839

  2. Multifunctional magnetic nanoparticles for targeted imaging and therapy

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2008-01-01

    Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials. PMID:18508157

  3. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed.

  4. Inhibition of tumor energy pathways for targeted esophagus cancer therapy.

    PubMed

    Shafaee, Abbas; Dastyar, Davood Zarei; Islamian, Jalil Pirayesh; Hatamian, Milad

    2015-10-01

    Interest in targeting cancer metabolism has been renewed in recent years with the discovery that many cancer related pathways have a profound effect on metabolism and that many tumors become dependent on specific metabolic processes. Accelerated glucose uptake during anaerobic glycolysis and loss of regulation between glycolytic metabolism and respiration, are the major metabolic changes found in malignant cells. The non-metabolizable glucose analog, 2-deoxy-D-glucose inhibits glucose synthesis and adenosine triphosphate production. The adenosine monophosphate-activated protein kinase (AMPK) is a key sensor of cellular energy and AMPK is a potential target for cancer prevention and/or treatment. Metformin is an activator of AMPK which inhibits protein synthesis and gluconeogenesis during cellular stress. This article reviews the status of clinical and laboratory researches exploring targeted therapies via metabolic pathways for treatment of esophageal cancer.

  5. Targeting SR-BI for Cancer Diagnostics, Imaging and Therapy

    PubMed Central

    Rajora, Maneesha A.; Zheng, Gang

    2016-01-01

    Scavenger receptor class B type I (SR-BI) plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumors and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents. PMID:27729859

  6. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. PMID:26706565

  7. A novel immunomodulatory and molecularly targeted strategy for refractory Hodgkin's lymphoma

    PubMed Central

    McGuire, Mary F.; Buryanek, Jamie; Janku, Filip; Younes, Anas; Hong, David

    2014-01-01

    Although Hodgkin's lymphoma (HL) was one of the first human cancers to be cured by chemotherapy, no new agents other than brentuximab vedotin (Adcetris®, CD 30 directed antibody drug conjugate) have received US Food and Drug Administration (FDA) approval for HL since 1977. Subsets of young adult patients with HL continue to relapse, even after stem cell transplantation, warranting new approaches. Against this background, we report a dramatic response in a young patient with advanced HL refractory to the standard treatment who responded to the combination of a pan-histone deacetylase inhibitor (vorinostat, suberoylanilide hydroxamic acid, SAHA) and mammalian target of rapamycin (mTOR) inhibitor therapy (sirolimus,rapamume). In-depth immunohistochemical and morphoproteomic analyses of this exceptional responder to targeted therapy have yielded potential insights into the biology of advanced HL. The PI3K/AKT/mTOR pathway is a commonly activated pathway in multiple tumor types including HL. The patient was treated using therapy based on mechanistic in vitro data demonstrating that combined histone deacetylase (HDAC) and mTOR inhibition act together on this pathway, resulting in inhibition of reciprocal feedback networks, leading to better anti-proliferative activity. The in vivo response signature from this patient's tissue sample sheds light on immune dysregulation in HL. We describe the response signature achieved from targeting immune dysregulation in addition to targeting the key oncogenic PI3K/AKT/mTOR pathway. We also expand on the role of rapamycin analogs in oncology. This study supports a role for an immune-type pathogenesis that is amenable to immune modulating targeted therapy in refractory HL. Significance: We report an exceptional responder to molecularly targeted and immune modulator therapy in advanced Hodgkin's lymphoma. The morphoproteomic/morphometric findings in this “unusual responder” patient's relapsed HL that correlate best, as a response

  8. Tamoxifen: catalyst for the change to targeted therapy

    PubMed Central

    Jordan, V. Craig

    2008-01-01

    In the early 1970’s, a failed postcoital contraceptive, ICI 46,474, was reinvented as tamoxifen, the first targeted therapy for breast cancer. A cluster of papers published in the European Journal of Cancer described the idea of targeting tamoxifen to patients with oestrogen receptor positive tumours, and proposed the strategic value of using long-term tamoxifen therapy in an adjuvant setting with a consideration of the antitumour properties of the hydroxylated metabolites of tamoxifen. At the time, these laboratory results were slow to be embraced by the clinical community. Today, it is estimated that hundreds of thousands of breast cancer patients are alive today because of targeted long-term adjuvant tamoxifen therapy. Additionally, the first laboratory studies for the use of tamoxifen as a chemopreventive were published. Eventually, the worth of tamoxifen was tested as a chemopreventive and the drug is now known to have an excellent risk benefit ratio in high risk premenopausal women. Overall, the rigorous investigation of the pharmacology of tamoxifen facilitated tamoxifen’s ubiquitous use for the targeted treatment of breast cancer, chemoprevention and pioneered the exploration of selective estrogen receptor modulators (SERMs). This new concept subsequently heralded the development of raloxifene, a failed breast cancer drug, for the prevention of osteoporosis and breast cancer without the troublesome side effect of endometrial cancer noted in postmenopausal women who take tamoxifen. Currently, the pharmaceutical industry is exploiting the SERM concept for all members of the nuclear receptor superfamily so that medicines can now be developed for diseases once thought impossible. PMID:18068350

  9. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy

    PubMed Central

    McCarthy, Jason R.; Sazonova, Irina Y.; Erdem, S. Sibel; Hara, Tetsuya; Thompson, Brian D.; Patel, Purvish; Botnaru, Ion; Lin, Charles P.; Reed, Guy L.; Weissleder, Ralph; Jaffer, Farouc A.

    2011-01-01

    Aims Current thrombolytic therapies rely upon exogenous plasminogen activators (PA) to effectively lyse clots, thereby restoring blood flow and preventing tissue and organ death. Yet, these PAs may also impair normal hemostasis which may lead to life-threatening bleeding, including intracerebral hemorrhage. Thus, the aim of this current study is to develop new thrombus-targeted fibrinolytic agents that harness the multifunctional theranostic capabilities of nanomaterials, potentially allowing for the generation of efficacious thrombolytics while minimizing deleterious side effects. Materials and Methods A thrombus-targeted nano-fibrinolytic agent (CLIO-FXIII-PEG-tPA) was synthesized using a magnetofluorescent crosslinked dextran-coated iron oxide (CLIO) nanoparticle platform that was conjugated to recombinant tissue plasminogen activator (tPA). Thrombus-targeting was achieved by derivatizing the nanoparticle with an activated factor XIII (FXIIIa)-sensitive peptide based on the amino terminus of α2-antiplasmin. Human plasma clot binding ability of the targeted and control agents was assessed by fluorescence reflectance imaging. Next, the in vitro enzymatic activity of the agents was assessed by S2288-based amidolytic activity, and an ELISA D-dimer assay for fibrinolysis. In vivo targeting of the nanoagent was next examined by intravital fluorescence microscopy of murine arterial and venous thrombosis. The fibrinolytic activity of the targeted nanoagent compared to free tPA was then evaluated in vivo in murine pulmonary embolism. Results In vitro, the targeted thrombolytic nanoagent demonstrated binding to fresh frozen plasma (FFP) clots superior to control nanoagents (ANOVA p < 0.05). On a weight (mg) basis, the S2288 amidolytic efficiency of the targeted nanoagent was approximately 15% reduced compared to free tPA. When normalized by S2288-based activity, targeted, control, and free tPA samples demonstrated equivalent in vitro fibrinolytic activity against human

  10. Molecular approach to allergy diagnosis and therapy.

    PubMed

    Ferreira, Fatima; Wolf, Martin; Wallner, Michael

    2014-07-01

    Presently, allergy diagnosis and therapy procedures are undergoing a transition phase in which allergen extracts are being step-by-step replaced by molecule-based products. The new developments will allow clinicians to obtain detailed information on sensitization patterns, more accurate interpretation of allergic symptoms, and thus improved patients' management. In this respect, recombinant technology has been applied to develop this new generation of molecule-based allergy products. The use of recombinant allergens allows full validation of identity, quantity, homogeneity, structure, aggregation, solubility, stability, IgE-binding and the biologic potency of the products. In contrast, such parameters are extremely difficult to assay and standardize for extract-based products. In addition to the possibility of bulk production of wild type molecules for diagnostic purposes, recombinant technology opened the possibility of developing safer and more efficacious products for allergy therapy. A number of molecule-based hypoallergenic preparations have already been successfully evaluated in clinical trials, bringing forward the next generation of allergy vaccines. In this contribution, we review the latest developments in allergen characterization, molecule-based allergy diagnosis, and the application of recombinant allergens in therapeutic setups. A comprehensive overview of clinical trials using recombinant allergens as well as synthetic peptides is presented.

  11. Molecular Approach to Allergy Diagnosis and Therapy

    PubMed Central

    Wolf, Martin; Wallner, Michael

    2014-01-01

    Presently, allergy diagnosis and therapy procedures are undergoing a transition phase in which allergen extracts are being step-by-step replaced by molecule-based products. The new developments will allow clinicians to obtain detailed information on sensitization patterns, more accurate interpretation of allergic symptoms, and thus improved patients' management. In this respect, recombinant technology has been applied to develop this new generation of molecule-based allergy products. The use of recombinant allergens allows full validation of identity, quantity, homogeneity, structure, aggregation, solubility, stability, IgE-binding and the biologic potency of the products. In contrast, such parameters are extremely difficult to assay and standardize for extract-based products. In addition to the possibility of bulk production of wild type molecules for diagnostic purposes, recombinant technology opened the possibility of developing safer and more efficacious products for allergy therapy. A number of molecule-based hypoallergenic preparations have already been successfully evaluated in clinical trials, bringing forward the next generation of allergy vaccines. In this contribution, we review the latest developments in allergen characterization, molecule-based allergy diagnosis, and the application of recombinant allergens in therapeutic setups. A comprehensive overview of clinical trials using recombinant allergens as well as synthetic peptides is presented. PMID:24954310

  12. Bacterial targeted tumour therapy-dawn of a new era.

    PubMed

    Wei, Ming Q; Mengesha, Asferd; Good, David; Anné, Jozef

    2008-01-18

    Original observation of patients' spontaneous recovery from advanced tumours after an infection or a "fever" inspired extensive research. As a result, Coley's toxin for the therapy of sarcomas and live Bacillus Calmette-Guerin (BCG) for bladder cancer were born. In addition, three genera of anaerobic bacteria have been shown to specifically and preferentially target solid tumours and cause significant tumour lyses. Initial research had focused on determining the best tumour colonizing bacteria, and assessing the therapeutic efficacy of different strategies either as a single or combination treatment modalities. However, although clinical trials were carried out as early as the 1960s, lack of complete tumour lyses with injection of Clostridial spores had limited their further use. Recent progress in the field has highlighted the rapid development of new tools for genetic manipulation of Clostridia which have otherwise been a hurdle for a long time, such as plasmid transformation using electroporation that bore the problems of inefficiency, instability and plasmid loss. A new Clostridium strain, C. novyi-NT made apathogenic by genetic modification, is under clinical trials. New genetic engineering tools, such as the group II intron has shown promise for genetic manipulation of bacteria and forecast the dawn of a new era for a tumour-targeted bacterial vector system for gene therapy of solid tumours. In this review we will discuss the potential of genetically manipulated bacteria that will usher in the new era of bacterial therapy for solid tumours, and highlight strategies and tools used to improve the bacterial oncolytic capability.

  13. Targeted therapy for HER2 positive breast cancer

    PubMed Central

    2013-01-01

    Introduction Breast cancer is the second most common cause of death for women behind lung cancer and the most common cause of cancer deaths for women aged 45–55 years old (CDC.gov 2012). Although there continue to be enormously large numbers of disease incidence, deaths have been declining due to the disease with two hallmark time frames. The first occurred during the mid to late 1980’s when hormonal therapy was introduced as a treatment for ER/PR positive breast cancer. The second occurred in the late 1990’s when trastuzumab was introduced in treating HER2 positive breast cancer. These remarkable accomplishments in developing novel targeted therapies for breast cancer, along with a better understanding of the disease biology have improved disease outcome over the past 20 years. This article reviews the data presented at 2012 American Society of Clinical Oncology and 2012 San Antonio Breast Cancer Symposium regarding progress made in the field of HER2 positive breast cancer and examines the future of HER2 targeted therapy. PMID:23731980

  14. Stable and Efficient Paclitaxel Nanoparticles for Targeted Glioblastoma Therapy

    PubMed Central

    Mu, Qingxin; Jeon, Mike; Hsiao, Meng-Hsuan; Patton, Victoria K.; Wang, Kui; Press, Oliver W.

    2015-01-01

    Development of efficient nanoparticles (NPs) for cancer therapy remains a challenge. NPs are required to have high stability, uniform size, sufficient drug loading, targeting capability, and ability to overcome drug resistance. In this study, we report the development of a nanoparticle formulation that can meet all these challenging requirements for targeted glioblastoma multiform (GBM) therapy. This multifunctional nanoparticle is composed of a polyethylene glycol (PEG) coated magnetic iron oxide NP conjugated with cyclodextrin (CD) and chlorotoxin (CTX) and loaded with fluorescein and paclitaxel (PTX) (IONP-PTX-CTX-FL). The physicochemical properties of the IONP-PTX-CTX-FL were characterized by TEM, dynamic light scattering (DLS), and HPLC. The cellular uptake of NPs was studied using flow cytometry and confocal microscopy. Cell viability and apoptosis were assessed with the Alamar Blue viability assay and flow cytometry, respectively. The IONP-PTX-CTX-FL had a uniform size of ~44 nm and high stability in cell culture medium. Importantly, the presence of CTX on NPs enhanced the uptake of the NPs by GBM cells and improved the efficacy of PTX in killing both GBM and GBM drug-resistant cells. The IONP-PTX-CTX-FL has demonstrated its great potential for brain cancer therapy and may also be used to deliver PTX to treat other cancers. PMID:25761648

  15. Stable and efficient Paclitaxel nanoparticles for targeted glioblastoma therapy.

    PubMed

    Mu, Qingxin; Jeon, Mike; Hsiao, Meng-Hsuan; Patton, Victoria K; Wang, Kui; Press, Oliver W; Zhang, Miqin

    2015-06-01

    Development of efficient nanoparticles (NPs) for cancer therapy remains a challenge. NPs are required to have high stability, uniform size, sufficient drug loading, targeting capability, and ability to overcome drug resistance. In this study, the development of a NP formulation that can meet all these challenging requirements for targeted glioblastoma multiform (GBM) therapy is reported. This multifunctional NP is composed of a polyethylene glycol-coated magnetic iron oxide NP conjugated with cyclodextrin and chlorotoxin (CTX) and loaded with fluorescein and paclitaxel (PTX) (IONP-PTX-CTX-FL). The physicochemical properties of the IONP-PTX-CTX-FL are characterized by transmission electron microscope, dynamic light scattering, and high-performance liquid chromatography. The cellular uptake of NPs is studied using flow cytometry and confocal microscopy. Cell viability and apoptosis are assessed with the Alamar Blue viability assay and flow cytometry, respectively. The IONP-PTX-CTX-FL had a uniform size of ≈44 nm and high stability in cell culture medium. Importantly, the presence of CTX on NPs enhanced the uptake of the NPs by GBM cells and improved the efficacy of PTX in killing both GBM and GBM drug-resistant cells. The IONP-PTX-CTX-FL demonstrated its great potential for brain cancer therapy and may also be used to deliver PTX to treat other cancers.

  16. Targeted radionuclide therapy for solid tumors: An overview

    SciTech Connect

    De Nardo, Sally J.

    2006-10-01

    Although radioimmunotherapy (RIT) has been effective in non-Hodgkin's lymphoma (NHL) as a single agent, solid tumors have shown less clinically significant therapeutic response to RIT alone. The clinical impact of RIT or other forms of targeted radionuclide therapy for solid tumors depends on the development of a high therapeutic index (TI) for the tumor vs. normal tissue effect, and the implementation of RIT as part of synergistic combined modality therapy (CMRIT). Preclinical and clinical studies have provided a wealth of information, and new prototypes or paradigms have shed light on future possibilities in many instances. Evidence suggests that combination and sequencing of RIT in CMRIT appropriately can provide effective treatment for many solid tumors. Vascular targets provide RIT enhancement opportunities and nanoparticles may prove to be effective carriers for RIT combined with intracellular drug delivery or alternating magnetic frequency (AMF) induced thermal tumor necrosis. The sequence and timing of combined modality treatments will be of critical importance to achieve synergy for therapy while minimizing toxicity. Fortunately, the radionuclide used for RIT also provides a signal useful for nondestructive quantitation of the influence of sequence and timing of CMRIT on events in animals and patients. This can be readily accomplished clinically using quantitative high-resolution imaging (e.g., positron emission tomography [PET])

  17. Smart functional nucleic acid chimeras: Enabling tissue specific RNA targeting therapy

    PubMed Central

    Aaldering, Lukas J; Tayeb, Hossam; Krishnan, Shilpa; Fletcher, Susan; Wilton, Stephen D; Veedu, Rakesh N

    2015-01-01

    A major obstacle for effective utilization of therapeutic oligonucleotides such as siRNA, antisense, antimiRs etc. is to deliver them specifically to the target tissues. Toward this goal, nucleic acid aptamers are re-emerging as a prominent class of biomolecules capable of delivering target specific therapy and therapeutic monitoring by various molecular imaging modalities. This class of short oligonucleotide ligands with high affinity and specificity are selected from a large nucleic acid pool against a molecular target of choice. Poor cellular uptake of therapeutic oligonucleotides impedes gene-targeting efficacy in vitro and in vivo. In contrast, aptamer-oligonucleotide chimeras have shown the capacity to deliver siRNA, antimiRs, small molecule drugs etc. toward various targets and showed very promising results in various studies on different diseases models. However, to further improve the bio-stability of such chimeric conjugates, it is important to introduce chemically-modified nucleic acid analogs. In this review, we highlight the applications of nucleic acid aptamers for target specific delivery of therapeutic oligonucleotides. PMID:25849197

  18. [Molecular targeting agents for advanced or recurrent gastric cancer patients].

    PubMed

    Fuse, Nozomu

    2012-10-01

    The combination of fluoropyrimidine and platinum with or without epirubicin or docetaxel has been regarded as standard chemotherapy for advanced or recurrent gastric cancer patients. Recently, trastuzumab with conventional chemotherapy for human epidermal growth factor receptor(HER)2 positive gastric cancer patients was proved to be effective in terms of survival benefit and has become one of standard treatment options. Other molecular target agents, such as HER1, HER2, vascular endothelial growth factor, hepatocyte growth factor/c-Met, fibroblast growth factor and mammalian target of rapamycin inhibitors were and are being evaluated in clinical trials. However, no agents other than trastuzumab have shown clear survival benefit. The predictive biomarker seems to be necessary for developing new molecular targeting agents for gastric cancer with heterogeneity.

  19. The role of targeted therapy for gastrointestinal tumors.

    PubMed

    Rolfo, Christian; Bronte, Giuseppe; Sortino, Giovanni; Papadimitriou, Konstantinos; Passiglia, Francesco; Fiorentino, Eugenio; Marogy, Ghada; Russo, Antonio; Peeters, Marc

    2014-11-01

    Many targeted drugs have been studied to target the molecular pathways involved in the development of gastrointestinal cancers. Anti-VEGF, anti-EGFR agents, and recently also multi-kinase inhibitor regorafenib, have already been available for the treatment of metastatic colorectal cancer patients. To date, Her-2 positive, gastric cancer patients, are also treated with trastuzumab, while the multi-targeted inhibitor, sorafenib, represents the standard treatment for hepatocellular carcinoma patients. Finally, sunitinib and everolimus, have been approved for the treatment of the neuroendocrine gastroenteropancreatic tumors. Actually a great number of further drugs are under preclinical and clinical development. The aim of this review is to provide a comprehensive overview of the state of art, focusing on the new emerging strategies in the personalized treatment of gastrointestinal tumors.

  20. DNA repair in cancer: emerging targets for personalized therapy

    PubMed Central

    Abbotts, Rachel; Thompson, Nicola; Madhusudan, Srinivasan

    2014-01-01

    Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer. PMID:24600246

  1. Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy

    PubMed Central

    Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2015-01-01

    Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment. PMID:25699094

  2. Heat-Shock Protein 90-Targeted Nano Anticancer Therapy.

    PubMed

    Rochani, Ankit K; Ravindran Girija, Aswathy; Borah, Ankita; Maekawa, Toru; Sakthi Kumar, D

    2016-04-01

    Suboptimal chemotherapy of anticancer drugs may be attributed to a variety of cellular mechanisms, which synergize to dodge the drug responses. Nearly 2 decades of heat-shock protein 90 (Hsp90)-targeted drug discovery has shown that the mono-therapy with Hsp90 inhibitors seems to be relatively ineffective compared with combination treatment due to several cellular dodging mechanisms. In this article, we have tried to analyze and review the Hsp90 and mammalian target of rapamycin (m-TOR)-mediated drug resistance mechanisms. By using this information we have discussed about the rationale behind use of drug combinations that includes both or any one of these inhibitors for cancer therapy. Currently, biodegradable nano vector (NV)-loaded novel drug delivery systems have shown to resolve the problems of poor bioavailability. NVs of drugs such as paclitaxel, doxorubicin, daunorubicin, and others have been successfully introduced for medicinal use. Hence, looking at the success of NVs, in this article we have also discussed the progress made in the delivery of biodegradable NV-loaded Hsp90 and m-TOR-targeted inhibitors in multiple drug combinations. We have also discussed the possible ways by which the market success of biodegradable NVs can positively impact the clinical trials of anti-Hsp90 and m-TOR combination strategy. PMID:26886301

  3. Siglecs as targets for therapy in immune cell mediated disease

    PubMed Central

    O’Reilly, Mary K.; Paulson, James C.

    2010-01-01

    The sialic acid-binding immunoglobulin-like lectins (siglecs) comprise a family of receptors that are differentially expressed on leukocytes and other immune cells. The restricted expression of several siglecs to one or a few cell types makes them attractive targets for cell-directed therapies. The anti-CD33 (Siglec-3) antibody Gemtuzumab (Mylotarg™) is approved for treatment of acute myeloid leukemia (AML), and antibodies targeting CD22 (Siglec-2) are currently in clinical trials for treatment of B cell non-Hodgkins lymphomas and autoimmune diseases. Because siglecs are endocytic receptors, they are well suited for a ‘Trojan horse’ strategy, whereby therapeutic agents conjugated to an antibody, or multimeric glycan ligand, bind to the siglec and are efficiently carried into the cell. Although the rapid internalization of unmodified siglec antibodies reduces their utility for induction of antibody-dependent cellular cytotoxicity (ADCC) or complement-mediated cytotoxicity (CDC), antibody binding of Siglec-8, Siglec-9, and CD22 have been demonstrated to induce apoptosis of eosinophils, neutrophils, and depletion of B cells, respectively. Here we review the properties of siglecs that make them attractive for cell-targeted therapies. PMID:19359050

  4. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly imped