Science.gov

Sample records for molecularly thin alkane

  1. Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time.

    PubMed

    Pithan, Linus; Meister, Eduard; Jin, Chenyu; Weber, Christopher; Zykov, Anton; Sauer, Katrein; Brütting, Wolfgang; Riegler, Hans; Opitz, Andreas; Kowarik, Stefan

    2015-10-28

    We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C44H90) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.

  2. Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time.

    PubMed

    Pithan, Linus; Meister, Eduard; Jin, Chenyu; Weber, Christopher; Zykov, Anton; Sauer, Katrein; Brütting, Wolfgang; Riegler, Hans; Opitz, Andreas; Kowarik, Stefan

    2015-10-28

    We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C44H90) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors. PMID:26520543

  3. Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time

    SciTech Connect

    Pithan, Linus; Weber, Christopher; Zykov, Anton; Sauer, Katrein; Opitz, Andreas; Kowarik, Stefan; Meister, Eduard; Brütting, Wolfgang; Jin, Chenyu; Riegler, Hans

    2015-10-28

    We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C{sub 44}H{sub 90}) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.

  4. Indirect molecular epitaxy: deposition of n-alkane thin films on Au coated NaCl(001) and HOPG(0001) surfaces.

    PubMed

    Masnadi, Mitra; Urquhart, Stephen G

    2013-05-28

    The epitaxial growth of organic molecules can lead to the formation of complex orientated morphologies. In previous work, we studied the kinetic and thermodynamic factors that drive the epitaxial growth of n-alkane thin films on HOPG(0001) and NaCl(001) by physical vapor deposition. A wide variety of morphologies are observed as a function of deposition conditions (substrate temperature, n-alkane chain length, etc.). In the current study we examine how a modified substrate (Au deposited on a HOPG(0001) or NaCl(001) substrate) affects the epitaxial growth of n-C36H74 (50 nm thick) relative to the uncoated substrates. This "indirect epitaxy", in which the patterned attractive forces of the substrate are transferred through a thin metal film, can tailor the conditions for epitaxial growth. The observation of fourfold symmetry for n-alkane growth on Au/NaCl(001) and sixfold symmetry for n-alkane growth on Au/HOPG(0001) demonstrates indirect epitaxy over a wide range of substrate temperatures during deposition.

  5. Surface crystallization and thin film melting in normal alkanes

    SciTech Connect

    Wu, X.Z. |; Shao, H.H. |; Ocko, B.M.; Deutsch, M.; Sinha, S.K.; Kim, M.W.; King, H.E. Jr.; Sirota, E.B.

    1994-12-31

    Normal alkanes of carbon number n > 14 exhibit surface crystallization at their liquid-vapor interface. This has been investigated with x-ray reflectivity, grazing incidence scattering and surface tension measurements. The structure and thermodynamics of the surface layer is consistent with a monolayer of the bulk rotator phase occurring at the surface above the bulk melting temperature. On the other hand, thin films of alkanes on SiO{sub 2}, exhibit a reduction of the melting temperature. The surface crystalline phase is observed for carbon number n > 14. The vanishing of surface phase for small n may be due to a transition from surface freezing to surface melting behavior. These measurements can yield the relative surface energies of the various phases. 41 refs.

  6. Accelerated Molecular Dynamics Simulation of Alkane Desorption

    NASA Astrophysics Data System (ADS)

    McLaughlin, Kelly; Fichthorn, Kristen

    2006-03-01

    Thermal desorption has been the focus of much surface science research. Studies of alkanes on graphite^1 and gold^2 have shown prefactors that are constant with alkane chain length but vary by over six orders of magnitude. Other studies on magnesium oxide^3 and gold^4 show a prefactor that increases with increasing chain length. We have developed an all-atom model to study alkane desorption from graphite. Transition state theory is used to obtain rate constants from the simulation. Accelerated MD is used to extend the desorption simulation to experimentally relevant temperatures. Our results show a prefactor that increases with increasing chain length. We predict that it will become constant as internal conformational changes occur significantly. We examine the effect of desorption environment through varying the alkane surface coverage. 1. K.R. Paserba and A.J. Gellman, J. Chem. Phys. 115, 6737 (2001). 2. S.M. Wetterer et al., J. Phys. Chem. 102, 9266 (1998). 3. S.L. Tait et al., J. Chem. Phys. 122, 164707 (2005). 4. K.A. Fichthorn and R.A. Miron, Phys. Rev. Lett. 89, 196103 (2002).

  7. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates.

    PubMed

    West, Ryan M; Liu, Zhen Y; Peter, Maximilian; Dumesic, James A

    2008-01-01

    Liquid transportation fuels must burn cleanly and have high energy densities, criteria that are currently fulfilled by petroleum, a non-renewable resource, the combustion of which leads to increasing levels of atmospheric CO(2). An attractive approach for the production of transportation fuels from renewable biomass resources is to convert carbohydrates into alkanes with targeted molecular weights, such as C(8)-C(15) for jet-fuel applications. Targeted n-alkanes can be produced directly from fructose by an integrated process involving first the dehydration of this C(6) sugar to form 5-hydroxymethylfurfural, followed by controlled formation of C-C bonds with acetone to form C(9) and C(15) compounds, and completed by hydrogenation and hydrodeoxygenation reactions to form the corresponding n-alkanes. Analogous reactions are demonstrated starting with 5-methylfurfural or 2-furaldehyde, with the latter leading to C(8) and C(13) n-alkanes. PMID:18702136

  8. Molecular mobility depending on chain length and thermally induced molecular motion of n-alkane/urea inclusion compounds

    NASA Astrophysics Data System (ADS)

    Nakaoki, Takahiko; Nagano, Hiromasa; Yanagida, Toshinori

    2004-08-01

    Solid-state high resolution 13C NMR was used to analyze the end group conformation and molecular mobility of n-alkanes in a urea host as a function of the carbon number of the n-alkane. It was shown that the chemical shift of the inner methylenes could be interpreted by the γ- gauche effect. Of further interest is our finding that the chemical shift of 3-methylene is independent of both chain length and temperature, a result indicating that the torsional rotation of the bond ω 3 between the 4-methylene and 5-methylene carbons is so inhibited that there is little gauche conformation. The chemical shift of the inner methylenes indicated a different tendency between the even- and the odd-numbered n-alkanes. The fact that the signals of the even-numbered n-alkanes were observed at a comparatively more upfield location than those of the odd-numbered ones indicated that the even-numbered n-alkane had a higher molecular mobility and tended to adopt a more gauche conformation. The decomposition temperature obtained by thermal analysis also suggested a difference between the even- and odd-numbered n-alkanes. The decomposition temperature of the even-numbered n-alkane/urea inclusion compounds was a little lower than that of the odd-numbered ones, a disparity corresponding to the higher molecular mobility of the n-alkane in the urea host. The spin-lattice relaxation time ( T1C) increased with increasing chain length for chains with less than the 14 carbon atoms but reached a constant value for all longer chains. This result is completely different from that for the n-alkane crystal, which gave a longer T1C depending on the chain length, and can be explained by a reduced intermolecular interaction between the n-alkane and the urea host. Clearly, T1C measurements can be applied to confirm the formation of inclusion compounds. However, the different T1C values between the methyl, 2-, 3-, and inner methylene carbons indicates that the n-alkane molecule does not rotate so fast

  9. Second virial coefficients, critical temperatures, and the molecular shapes of long n-alkanes

    NASA Astrophysics Data System (ADS)

    Vega, Carlos; López Rodríguez, Antonio

    1996-09-01

    The second virial coefficient for a molecular model of n-alkanes with up to 200 carbon atoms has been computed for temperatures in the range of 1000 Kalkanes. The Boyle temperature of n-alkanes is not much affected by the length of the chain for n-alkanes with more than 100 carbon atoms. According to the Flory theory, for infinitely long chains the Boyle temperature and the critical temperature, denoted as the θ temperature are the same. On this basis using the present model we find θ=1620 K as the critical temperature of polymethylene. Scaling laws for the square of the end-to-end distance and for the radius of gyration at several temperatures are analyzed. For high temperatures, the scaling laws correspond to good solvent conditions whereas at the θ temperature the scaling laws are those of an ideal chain. The shape of long n-alkanes at several temperatures is also analyzed. We find that the polymethylene chains present an anisotropy similar to that of a parallelepiped with a ratio of sizes of 1:1.7:3.6.

  10. Fully atomistic molecular-mechanical model of liquid alkane oils: Computational validation.

    PubMed

    Zahariev, Tsvetan K; Slavchov, Radomir I; Tadjer, Alia V; Ivanova, Anela N

    2014-04-15

    Fully atomistic molecular dynamics simulations were performed on liquid n-pentane, n-hexane, and n-heptane to derive an atomistic model for middle-chain-length alkanes. All simulations were based on existing molecular-mechanical parameters for alkanes. The computational protocol was optimized, for example, in terms of thermo- and barostat, to reproduce properly the properties of the liquids. The model was validated by comparison of thermal, structural, and dynamic properties of the normal alkane liquids to experimental data. Two different combinations of temperature and pressure coupling algorithms were tested. A simple differential approach was applied to evaluate fluctuation-related properties with sufficient accuracy. Analysis of the data reveals a satisfactory representation of the hydrophobic systems behavior. Thermodynamic parameters are close to the experimental values and exhibit correct temperature dependence. The observed intramolecular geometry corresponds to extended conformations domination, whereas the intermolecular structure demonstrates all characteristics of liquid systems. Cavity size distribution function was calculated from coordinates analysis and was applied to study the solubility of gases in hexane and heptane oils. This study provides a platform for further in-depth research on hydrophobic solutions and multicomponent systems.

  11. Fully atomistic molecular-mechanical model of liquid alkane oils: Computational validation.

    PubMed

    Zahariev, Tsvetan K; Slavchov, Radomir I; Tadjer, Alia V; Ivanova, Anela N

    2014-04-15

    Fully atomistic molecular dynamics simulations were performed on liquid n-pentane, n-hexane, and n-heptane to derive an atomistic model for middle-chain-length alkanes. All simulations were based on existing molecular-mechanical parameters for alkanes. The computational protocol was optimized, for example, in terms of thermo- and barostat, to reproduce properly the properties of the liquids. The model was validated by comparison of thermal, structural, and dynamic properties of the normal alkane liquids to experimental data. Two different combinations of temperature and pressure coupling algorithms were tested. A simple differential approach was applied to evaluate fluctuation-related properties with sufficient accuracy. Analysis of the data reveals a satisfactory representation of the hydrophobic systems behavior. Thermodynamic parameters are close to the experimental values and exhibit correct temperature dependence. The observed intramolecular geometry corresponds to extended conformations domination, whereas the intermolecular structure demonstrates all characteristics of liquid systems. Cavity size distribution function was calculated from coordinates analysis and was applied to study the solubility of gases in hexane and heptane oils. This study provides a platform for further in-depth research on hydrophobic solutions and multicomponent systems. PMID:24554590

  12. Liquid-vapor equilibria and interfacial properties of n-alkanes and perfluoroalkanes by molecular simulation.

    PubMed

    Amat, Miguel A; Rutledge, Gregory C

    2010-03-21

    A molecular dynamics study is presented to assess the performance of a united-atom model in the prediction of liquid-vapor interfacial properties for short-chain perfluoroalkanes and their alkane counterparts. In particular, the ability of this model to discriminate between the surface-energy values of these two types of compounds was investigated over a wide temperature range corresponding to the liquid-vapor region. Comparisons with available experimental data and surface-tension predictions given by other force-field parameterizations, including those based on the more computationally demanding all-atom method, were performed to gauge the viability of this model. It was found that the model used in this study captures qualitatively the expected behavior of surface energy between alkanes and perfluoroalkanes and yields values that are in excellent agreement with experimental data, especially in the high-temperature limit as the critical temperature is approached. PMID:20331313

  13. Liquid-vapor equilibria and interfacial properties of n-alkanes and perfluoroalkanes by molecular simulation

    NASA Astrophysics Data System (ADS)

    Amat, Miguel A.; Rutledge, Gregory C.

    2010-03-01

    A molecular dynamics study is presented to assess the performance of a united-atom model in the prediction of liquid-vapor interfacial properties for short-chain perfluoroalkanes and their alkane counterparts. In particular, the ability of this model to discriminate between the surface-energy values of these two types of compounds was investigated over a wide temperature range corresponding to the liquid-vapor region. Comparisons with available experimental data and surface-tension predictions given by other force-field parameterizations, including those based on the more computationally demanding all-atom method, were performed to gauge the viability of this model. It was found that the model used in this study captures qualitatively the expected behavior of surface energy between alkanes and perfluoroalkanes and yields values that are in excellent agreement with experimental data, especially in the high-temperature limit as the critical temperature is approached.

  14. Liquid-vapor equilibria and interfacial properties of n-alkanes and perfluoroalkanes by molecular simulation.

    PubMed

    Amat, Miguel A; Rutledge, Gregory C

    2010-03-21

    A molecular dynamics study is presented to assess the performance of a united-atom model in the prediction of liquid-vapor interfacial properties for short-chain perfluoroalkanes and their alkane counterparts. In particular, the ability of this model to discriminate between the surface-energy values of these two types of compounds was investigated over a wide temperature range corresponding to the liquid-vapor region. Comparisons with available experimental data and surface-tension predictions given by other force-field parameterizations, including those based on the more computationally demanding all-atom method, were performed to gauge the viability of this model. It was found that the model used in this study captures qualitatively the expected behavior of surface energy between alkanes and perfluoroalkanes and yields values that are in excellent agreement with experimental data, especially in the high-temperature limit as the critical temperature is approached.

  15. Molecular dynamics simulations of layers of linear and branched alkanes under shear

    NASA Astrophysics Data System (ADS)

    Soza, P.; Hansen, F. Y.; Taub, H.; Volkmann, U. G.

    2008-03-01

    We have previously studied the equilibrium structure and dynamical excitations in films of the linear alkane tetracosane (n-C24H50) and the branched alkane squalane (C30H62) in great detail^2. Here we report the results of nonequilibrium molecular dynamics simulations of these systems in order to compare the rheological properties of alkanes of the same length but with different architecture. The simulations were done in the NVT ensemble using the reverse nonequilibrium algorithm proposed by F. Müller-Plathe et al.^3. The viscosity was calculated for different shear rates and compared with experimental values. Different structural parameters such as the mean end-to-end distance, the radius of gyration, and the angle of alignment of the molecules with the flow were studied as a function of the shear rate. ^2A.D. Enevoldsen et al., J. Chem. Phys. 126, 104703-10 (2007); 126, 104704-17 (2007). ^3F. Müller-Plathe et al., Phys. Rev. E, 59, 4894 (1998)

  16. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    SciTech Connect

    Rastogi, Monisha; Vaish, Rahul

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  17. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Vaish, Rahul

    2015-05-01

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  18. Thermodiffusion, molecular diffusion and Soret coefficients of aromatic+n-alkane binary mixtures

    NASA Astrophysics Data System (ADS)

    Larrañaga, Miren; Bou-Ali, M. Mounir; Lapeira, Estela; Lizarraga, Ion; Santamaría, Carlos

    2016-10-01

    In the present work, we have measured the thermodiffusion coefficient of 51 binary liquid mixtures at 25 oC. These mixtures correspond to the series of the aromatics toluene and 1-methylnaphthalene with n-alkanes nCi (i = 6, 8, 10, 12, and 14) at different mass fractions in the whole range. For that, we have used the thermogravitational technique. It is shown that the thermodiffusion coefficient is a linear function of the mass fraction in all the mixtures. Extrapolating the lines, we obtain the thermodiffusion coefficient in dilute solutions of n-alkanes for both toluene and 1-methylnaphthalene. These limiting values show a linear dependence with the inverse of the product of the molecular weights. In addition, we have measured the molecular diffusion coefficient of all the mixtures at 0.5 of mass fraction and at 25 oC, by the sliding symmetric tubes technique. It is observed that the product of this coefficient with the viscosity at the same concentrations takes a constant value for each of the series considered. Finally, we have also determined the Soret coefficient of the equimass mixtures by the combination of the measurements of thermodiffusion and molecular diffusion coefficients.

  19. Molecular simulations of intermediate and long alkanes adsorbed on graphite: tuning of non-bond interactions.

    PubMed

    Firlej, Lucyna; Kuchta, Bogdan; Roth, Michael W; Wexler, Carlos

    2011-04-01

    The interplay between the torsional potential energy and the scaling of the 1-4 van der Waals and Coulomb interactions determines the stiffness of flexible molecules. In this paper we demonstrate for the first time that the precise value of the nonbond scaling factor (SF)--often a value assumed without justification--has a significant effect on the critical properties and mechanisms of systems undergoing a phase transition, and that, for accurate simulations, this scaling factor is highly dependent on the system under consideration. In particular, by analyzing the melting of n-alkanes (hexane C6, dodecane C12, tetracosane C24) on graphite, we show that the SF is not constant over varying alkane chain lengths when the structural correlated transformations are concerned. Instead, monotonic decrease of SF with the molecular length drives a cross-over between two distinct mechanisms for melting in such systems. In a broad sense we show that the choice for SF in any simulation containing adsorbed or correlated long molecules needs to be carefully considered.

  20. Controlling Morphology and Molecular Packing of Alkane Substituted Phthalocyanine Blend Bulk Heterojunction Solar Cells†

    PubMed Central

    Jurow, Matthew J.; Hageman, Brian A.; Nam, Chang-Yong; Pabon, Cesar; Black, Charles T.

    2013-01-01

    Systematic changes in the exocyclic substiution of core phthalocyanine platform tune the absorption properties to yield commercially viable dyes that function as the primary light absorbers in organic bulk heterojunction solar cells. Blends of these complementary phthalocyanines absorb a broader portion of the solar spectrum compared to a single dye, thereby increasing solar cell performance. We correlate grazing incidence small angle x-ray scattering structural data with solar cell performance to elucidate the role of nanomorphology of active layers composed of blends of phthalocyanines and a fullerene derivative. A highly reproducible device architecture is used to assure accuracy and is relevant to films for solar windows in urban settings. We demonstrate that the number and structure of the exocyclic motifs dictate phase formation, hierarchical organization, and nanostructure, thus can be employed to tailor active layer morphology to enhance exciton dissociation and charge collection efficiencies in the photovoltaic devices. These studies reveal that disordered films make better solar cells, short alkanes increase the optical density of the active layer, and branched alkanes inhibit unproductive homogeneous molecular alignment. PMID:23589766

  1. Semifluorinated Alkanes at the Air-Water Interface: Tailoring Structure and Rheology at the Molecular Scale.

    PubMed

    Theodoratou, Antigoni; Jonas, Ulrich; Loppinet, Benoit; Geue, Thomas; Stangenberg, Rene; Keller, Rabea; Li, Dan; Berger, Rüdiger; Vermant, Jan; Vlassopoulos, Dimitris

    2016-04-01

    Semifluorinated alkanes form monolayers with interesting properties at the air-water interface due to their pronounced amphi-solvophobic nature and the stiffness of the fluorocarbons. In the present work, using a combination of structural and dynamic probes, we investigated how small molecular changes can be used to control the properties of such an interface, in particular its organization, rheology, and reversibility during compression-expansion cycles. Starting from a reference system perfluor(dodecyl)dodecane, we first retained the linear structure but changed the linkage groups between the alkyl chains and the fluorocarbons, by introducing either a phenyl group or two oxygens. Next, the molecular structure was changed from linear to branched, with four side chains (two fluorocarbons and two hydrocarbons) connected to extended aromatic cores. Neutron reflectivity at the air-water interface and scanning force microscopy on deposited films show how the changes in the molecular structure affect molecular arrangement relative to the interface. Rheological and compression-expansion measurements demonstrate the significant consequences of these changes in molecular structure and interactions on the interfacial properties. Remarkably, even with these simple molecules, a wide range of surface rheological behaviors can be engineered, from viscous over viscoelastic to brittle solids, for very similar values of the surface pressure.

  2. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains.

    PubMed

    Smits, T H; Röthlisberger, M; Witholt, B; van Beilen, J B

    1999-08-01

    We have developed highly degenerate oligonucleotides for polymerase chain reaction (PCR) amplification of genes related to the Pseudomonas oleovorans GPo1 and Acinetobacter sp. ADP1 alkane hydroxylases, based on a number of highly conserved sequence motifs. In all Gram-negative and in two out of three Gram-positive strains able to grow on medium- (C6-C11) or long-chain n-alkanes (C12-C16), PCR products of the expected size were obtained. The PCR fragments were cloned and sequenced and found to encode peptides with 43.2-93.8% sequence identity to the corresponding fragment of the P. oleovorans GPo1 alkane hydroxylase. Strains that were unable to grow on n-alkanes did not yield PCR products with homology to alkane hydroxylase genes. The alkane hydroxylase genes of Acinetobacter calcoaceticus EB104 and Pseudomonas putida P1 were cloned using the PCR products as probes. The two genes allow an alkane hydroxylase-negative mutant of Acinetobacter sp. ADP1 and an Escherichia coli recombinant containing all P. oleovorans alk genes except alkB, respectively, to grow on n-alkanes, showing that the cloned genes do indeed encode alkane hydroxylases. PMID:11207749

  3. The influence of molecular structure and aerosol phase on the heterogeneous oxidation of normal and branched alkanes by OH.

    PubMed

    Ruehl, Christopher R; Nah, Theodora; Isaacman, Gabriel; Worton, David R; Chan, Arthur W H; Kolesar, Katheryn R; Cappa, Christopher D; Goldstein, Allen H; Wilson, Kevin R

    2013-05-16

    Insights into the influence of molecular structure and thermodynamic phase on the chemical mechanisms of hydroxyl radical-initiated heterogeneous oxidation are obtained by identifying reaction products of submicrometer particles composed of either n-octacosane (C28H58, a linear alkane) or squalane (C30H62, a highly branched alkane) and OH. A common pattern is observed in the positional isomers of octacosanone and octacosanol, with functionalization enhanced toward the end of the molecule. This suggests that relatively large linear alkanes are structured in submicrometer particles such that their ends are oriented toward the surface. For squalane, positional isomers of first-generation ketones and alcohols also form in distinct patterns. Ketones are favored on carbons adjacent to tertiary carbons, while hydroxyl groups are primarily found on tertiary carbons but also tend to form toward the end of the molecule. Some first-generation products, viz., hydroxycarbonyls and diols, contain two oxygen atoms. These results suggest that alkoxy radicals are important intermediates and undergo both intramolecular (isomerization) and intermolecular (chain propagation) hydrogen abstraction reactions. Oxidation products with carbon number less than the parent alkane's are observed to a much greater extent for squalane than for n-octacosane oxidation and can be explained by the preferential cleavage of bonds involving tertiary carbons.

  4. Quantitative Vapor-phase IR Intensities and DFT Computations to Predict Absolute IR Spectra based on Molecular Structure: I. Alkanes

    SciTech Connect

    Williams, Stephen D.; Johnson, Timothy J.; Sharpe, Steven W.; Yavelak, Veronica; Oats, R. P.; Brauer, Carolyn S.

    2013-11-13

    Recently recorded quantitative IR spectra of a variety of gas-phase alkanes are shown to have integrated intensities in both the C-H stretching and C-H bending regions that depend linearly on the molecular size, i.e. the number of C-H bonds. This result is well predicted from CH4 to C15H32 by DFT computations of IR spectra at the B3LYP/6-31+G(d,p) level of DFT theory. A simple model predicting the absolute IR band intensities of alkanes based only on structural formula is proposed: For the C-H stretching band near 2930 cm-1 this is given by (in km/mol): CH¬_str = (34±3)*CH – (41±60) where CH is number of C-H bonds in the alkane. The linearity is explained in terms of coordinated motion of methylene groups rather than the summed intensities of autonomous -CH2- units. The effect of alkyl chain length on the intensity of a C-H bending mode is explored and interpreted in terms of conformer distribution. The relative intensity contribution of a methyl mode compared to the total C-H stretch intensity is shown to be linear in the number of terminal methyl groups in the alkane, and can be used to predict quantitative spectra a priori based on structure alone.

  5. Origins of n-alkanes, carbonyl compounds and molecular biomarkers in atmospheric fine and coarse particles of Athens, Greece.

    PubMed

    Andreou, G; Rapsomanikis, S

    2009-10-15

    The abundance and origin of aliphatic hydrocarbons, carbonyl compounds and molecular biomarkers found in the aliphatic fraction of PM(10-2.5) and PM(2.5) in the centre of Athens Greece are discussed in an attempt to reveal seasonal air pollution characteristics of the conurbation. Each extract was fractionated into individual compound classes and was analyzed using gas chromatography coupled to mass spectrometry. Normal alkanes, ranging from C(14) to C(35), were abundant in PM(10-2.5) and PM(2.5) samples during both sampling campaigns. The daily concentration of total n-alkanes was up to 438 ng m(-3) for PM(10-2.5) and up to 511 ng m(-3) for PM(2.5). Additionally, gaseous concentrations of n-alkanes were calculated, revealing that the relative proportions between gaseous and particle phases of individual compounds may differ significantly between summer and late winter. Normal alkanals and alkan-2-ones were only detected in the fine fraction of particulate matter and their concentrations were much lower than the n-alkane concentrations. Several geochemical parameters were used to qualitatively reconcile the sources of organic aerosol. The carbon preference index (CPI) of the coarse particles in August had the highest value, while in March the leaf wax contribution decreased significantly and the CPI value was very close to unity for both sites. Maximum concentrations of carbonyl compounds were reported in the range of C(15)-C(20), demonstrating that they were formed from anthropogenic activity or from atmospheric oxidative processes. 6, 10, 14-trimethylpentadecan-2-one, a marker of biogenic input, was also detected in our samples. Molecular biomarker compounds confirmed that ca. 60% of the aliphatic fraction on the sampled atmospheric particles originated from petroleum and not from any contemporary biogenic sources. Pristane and phytane were detected in the fine fraction with their presence indicating sources of fossil fuel in the range of C(16)-C(20). At all

  6. Molecular dynamics simulation of diffusion and structure of some n-alkanes in near critical and supercritical carbon dioxide at infinite dilution.

    PubMed

    Feng, Huajie; Gao, Wei; Sun, Zhenfan; Lei, Bingxin; Li, Gaonan; Chen, Liuping

    2013-10-17

    The diffusion coefficients of n-alkanes (from CH4 to C14H30) in near critical and supercritical carbon dioxide at infinite dilution have been studied by molecular dynamics simulation. The simulation results agree well with experiment, which suggests that the simulation method is a powerful tool to obtain diffusion coefficients of solutes in fluids at high pressures. The local structures of such fluids are further investigated by calculating radial distribution functions and coordination numbers. Meanwhile, the dihedral, end-to-end distance and radius of gyration, which are calculated to characterize the flexibility of n-alkanes, are used to reasonably explain the abnormal trends on radial distribution functions and coordination numbers. Moreover, it is found that the flexibility effects on diffusion in pure n-alkanes and infinitely dilute n-alkane/CO2 system are different. The differences in MD simulation results of molecular diffusion in such systems could be qualitatively explained by the flexibility.

  7. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.

    PubMed

    Savage, Kristen N; Krumholz, Lee R; Gieg, Lisa M; Parisi, Victoria A; Suflita, Joseph M; Allen, Jon; Philp, R Paul; Elshahed, Mostafa S

    2010-06-01

    We evaluated the ability of the native microbiota in a low-temperature, sulfidic natural hydrocarbon seep (Zodletone) to metabolize short-chain hydrocarbons. n-Propane and n-pentane were metabolized under sulfate-reducing conditions in initial enrichments and in sediment-free subcultures. Carbon isotope analysis of residual propane in active enrichments showed that propane became enriched in (13)C by 6.7 (+/-2.0) per thousand, indicating a biological mechanism for propane loss. The detection of n-propylsuccinic and isopropylsuccinic acids in active propane-degrading enrichments provided evidence for anaerobic biodegradation via a fumarate addition pathway. A eubacterial 16S rRNA gene survey of sediment-free enrichments showed that the majority of the sequenced clones were phylogenetically affiliated within the Deltaproteobacteria. Such sequences were most closely affiliated with clones retrieved from hydrocarbon-impacted marine ecosystems, volatile fatty acid metabolizers, hydrogen users, and with a novel Deltaproteobacterial lineage. Other cloned sequences were affiliated with the Firmicutes and Chloroflexi phyla. The sequenced clones were only distantly (<95%) related to other reported low-molecular-weight alkane-degrading sulfate-reducing populations. This work documents the potential for anaerobic short-chain n-alkane metabolism for the first time in a terrestrial environment, provides evidence for a fumarate addition mechanism for n-propane activation under these conditions, and reveals microbial community members present in such enrichments.

  8. Molecular theory of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Meng, Shihong

    A molecular theory has been developed to describe the isotropic-nematic transitoon of model nematogens in bulk and in thin films. The surfaces of thin films can be hard surfaces or coated with surfactant monolayers. The theory only includes hard body interactions between all molecule species: solvent, nematogens and surfactants. We have studied the influence of the separation between confining walls, concentration of nematogens, as well as the surface anchoring and areal density of surfactant at the interface upon the phases of nematogens. We have explained the possible existence of planar degenerate phase through entropic pictures and have confirmed close to the bulk isotropic-nematic transition point, the order of the phases of nematogens from isotropic to nematic then back to isotropic when varying the areal density of surfactant monolayers at interfaces. From the results obtained, we believe that we have captured the main competing interactions between surfactants and nematogens and our molecular level theory is capable of describing these two interactions of different natures. Our results can provide a guideline for molecular design of biosensors. We have modeled the molecular systems with as much simplification as possible while retaining the main features. The thesis is arranged into introduction, results on bulk, thin films confined between hard walls and between surfactant monolayers.

  9. Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes

    SciTech Connect

    Satoshi Endo; Peter Grathwohl; Stefan B. Haderlein; Torsten C. Schmidt

    2009-01-15

    Nonspecific interactions and modes (i.e., adsorption vs absorption) of sorption by noncondensed, amorphous organic phases (here termed organic matter; OM) in soils and by rigid, aromatic, and condensed phases (termed carbonaceous geosorbents; CGs) were investigated using n-alkanes and cycloalkanes as molecular probes. Sorption isotherms of and cyclooctane from water for seven CGs (charcoal, lignite coke, activated carbon, graphite, partially oxidized graphite, diesel soot, bituminous coal), four sorbents with a predominance of OM (lignite, peat, two sapric soils), and two soils containing OM and high amounts of CGs were measured in batch systems. The peat and the sapric soils showed extensively linear sorption, while the CGs exhibited highly nonlinear and strong (K{sub oc} values being up to 105 times those for the OM-rich materials at low concentrations) sorption for the alkanes studied, showing that enhanced sorption by CGs can occur to completely apolar sorbates that do not undergo any specific interaction. The n-octane-to-cyclooctane sorption coefficient ratios for adsorption to CGs were {ge}1, being distinctly different from those for absorption to the OM-rich materials. The measured sorption isotherms and the CG compositions in the soils determined by quantitative petrography analysis suggest, however, that CGs occurring in soils may be far less effective sorbents than the reference CGs used in the sorption experiments at least for nonspecifically interacting sorbates, probably because of competitive sorption and/or pore blocking by natural OM. The presented approaches and results offer a basis for interpreting sorption data for other organic compounds, as nonspecific interactions and sorption modes are relevant for any compound. 47 refs., 4 figs., 2 tabs.

  10. A molecular dynamics study of the effect of thermal boundary conductance on thermal transport of ideal crystal of n-alkanes with different number of carbon atoms

    NASA Astrophysics Data System (ADS)

    Rastgarkafshgarkolaei, Rouzbeh; Zeng, Yi; Khodadadi, J. M.

    2016-05-01

    Phase change materials such as n-alkanes that exhibit desirable characteristics such as high latent heat, chemical stability, and negligible supercooling are widely used in thermal energy storage applications. However, n-alkanes have the drawback of low thermal conductivity values. The low thermal conductivity of n-alkanes is linked to formation of randomly oriented nano-domains of molecules in their solid structure that is responsible for excessive phonon scattering at the grain boundaries. Thus, understanding the thermal boundary conductance at the grain boundaries can be crucial for improving the effectiveness of thermal storage systems. The concept of the ideal crystal is proposed in this paper, which describes a simplified model such that all the nano-domains of long-chain n-alkanes are artificially aligned perfectly in one direction. In order to study thermal transport of the ideal crystal of long-chain n-alkanes, four (4) systems (C20H42, C24H50, C26H54, and C30H62) are investigated by the molecular dynamics simulations. Thermal boundary conductance between the layers of ideal crystals is determined using both non-equilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) simulations. Both NEMD and EMD simulations exhibit no significant change in thermal conductance with the molecular length. However, the values obtained from the EMD simulations are less than the values from NEMD simulations with the ratio being nearly three (3) in most cases. This difference is due to the nature of EMD simulations where all the phonons are assumed to be in equilibrium at the interface. Thermal conductivity of the n-alkanes in three structures including liquid, solid, and ideal crystal is investigated utilizing NEMD simulations. Our results exhibit a very slight rise in thermal conductivity values as the number of carbon atoms of the chain increases. The key understanding is that thermal transport can be significantly altered by how the molecules and the

  11. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China.

    PubMed

    Fang, Jidun; Wu, Fengchang; Xiong, Yongqiang; Li, Fasheng; Du, Xiaoming; An, Da; Wang, Lifang

    2014-03-01

    The distribution and compound-specific carbon isotope ratios of n-alkanes and fatty acids in a sediment core (63 cm) collected from Lake Dianchi were examined to investigate organic matter sources in the eutrophic lake. Fatty acids included free and bound fatty acids. The carbon isotope compositions of individual n-alkanes and fatty acids from Lake Dianchi sediments were determined using gas chromatography/isotope ratio mass spectrometry (GC-IRMS). The δ(13)C values of individual n-alkanes (C16-C31) varied between -24.1‰ and -35.6‰, suggesting a dominance of (13)C-depleted n-alkanes that originated from C3 plants and lacustrine algae. Fatty acids from the sediment extracts were analyzed for their abundances and carbon isotopic compositions. Molecular and isotopic evidence indicates that most of the short-chain fatty acids from Lake Dianchi sediment extracts are sourced from intense microbial recycling and resynthesis of organic matter. Long-chain free fatty acids are mainly derived from terrestrial sources. However, long-chain bound fatty acids are sourced from a combination of terrestrial organic matter, bacteria and algae, with the contribution from algal sources higher in the hypereutrophic stage.

  12. Preface: Thin films of molecular organic materials

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  13. Examination of surface nucleation during the growth of long alkane crystals by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Bourque, Alexander; Rutledge, Gregory

    2015-03-01

    Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation using a validated united atom model. By quenching below the melting temperature of C50 (370 K), propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface was observed. By tracking the location of the midpoint in the orientational order parameter profile between the crystal and melt, crystal growth rates between 0.015-0.040 m/s were observed, for quench depths of 10 to 70 K below the melting point. In this work, surface nucleation is identified with the formation of 2D clusters of crystalline sites within layers parallel to the propagating growth front, by analogy to the formation of 3D clusters in primary, homogeneous nucleation. These surface nucleation events were tracked over several layers and numerous simulations, and a mean first passage time analysis was employed to estimate critical nucleus sizes, induction times and rates for surface nucleation. Based on new insights provided by the detailed molecular trajectories obtained from simulation, the classical theory proposed by Lauritzen and Hoffman is re-examined.

  14. Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm

    NASA Astrophysics Data System (ADS)

    Edberg, Roger; Evans, Denis J.; Morriss, G. P.

    1986-06-01

    We present a new algorithm for molecular dynamics simulation involving holonomic constraints. Constrained equations of motion are derived using Gauss' principle of least constraint. The algorithm uses a fast, exact solution for constraint forces and a new procedure to correct for accumulating numerical errors. We report several simulations of liquid n-butane and n-decane performed with the new algorithm. We obtain an average trans population of 60.6±1.5% in liquid butane at T=291 K and ρ=0.583 g/ml. This result essentially agrees with that from an earlier simulation by Ryckaert and Bellemans [Discuss. Faraday Soc. 66, 95 (1978)]. However, our simulations are substantially more precise; our run lengths are typically ˜20 times longer than those of Ryckaert and Bellemans. Our result also agrees with that from a recent simulation by Wielopolski and Smith (following paper). Thermodynamic and structural data from our simulations also agree well with results from the simulations discussed in the above articles.

  15. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling the degree of molecular mixing, the solar selective coatings can be tailored to have the combined properties of high solar absorptance, alpha, and low infrared emittance, epsilon. On orbit, these combined properties would simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. Mini-satellites equipped with solar collectors coated with these cermet coatings may utilize the captured heat energy to power a heat engine to generate electricity, or to power a thermal bus that directs heat to remote regions of the spacecraft. Early work in this area identified the theoretical boundary conditions needed to operate a Carnot cycle in space, including the need for a solar concentrator, a solar selective coating at the heat inlet of the engine, and a radiator. A solar concentrator that can concentrate sunlight by a factor of 100 is ideal. At lower values, the temperature of the solar absorbing surface becomes too low for efficient heat engine operation, and at higher values, cavity type heat receivers become attractive. In designing the solar selective coating, the wavelength region yielding high solar absorptance must be separated from the wavelength region yielding low infrared emittance by establishing a sharp transition in optical properties. In particular, a sharp transition in reflectance is desired in the infrared to achieve the desired optical performance. For a heat engine operating at 450C, a sharp transition at 1.8 micrometers is desired. The radiator completes the heat flow through the Carnot cycle. Additional work has been done supporting the use of molecular mixtures for terrestrial applications. Sputter deposition provides a means to apply coatings to the tubes that carry a working fluid at the focus of trough

  16. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S

    2013-04-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).

  17. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.

    2003-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling the degree of molecular mixing, the solar selective coatings can be tailored to have the combined properties of high solar absorptance, , and low infrared emittance, . On orbit, these combined properties would simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. Mini-satellites equipped with solar collectors coated with these cermet coatings may utilize the captured heat energy to power a heat engine to generate electricity, or to power a thermal bus that directs heat to remote regions of the spacecraft. Early work in this area identified the theoretical boundary conditions needed to operate a Carnot cycle in space, including the need for a solar concentrator, a solar selective coating at the heat inlet of the engine, and a radiator.1 A solar concentrator that can concentrate sunlight by a factor of 100 is ideal. At lower values, the temperature of the solar absorbing surface becomes too low for efficient heat engine operation, and at higher values, cavity type heat receivers become attractive. In designing the solar selective coating, the wavelength region yielding high solar absorptance must be separated from the wavelength region yielding low infrared emittance by establishing a sharp transition in optical properties. In particular, a sharp transition in reflectance is desired in the infrared to achieve the desired optical performance. For a heat engine operating at 450 C, a sharp transition at 1.8 micrometers is desired.2 The radiator completes the heat flow through the Carnot cycle.

  18. Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography. Experiment and molecular simulation.

    PubMed

    Wick, Collin D; Siepman, J Ilja; Klotz, Wendy L; Schure, Mark R

    2002-04-19

    Experiments and molecular simulations were carried out to study temperature effects (in the range of 323 to 383 K) on the absolute and relative retention of n-hexane, n-heptane, n-octane, benzene, toluene and the three xylene isomers in gas-liquid chromatography. Helium and squalane were used as the carrier gas and retentive phase, respectively. Both the experiments and the simulations show a markedly different temperature dependence of the retention for the n-alkanes compared to the arenes. For example, over the 60 K temperature range studied, the Kovats retention index of benzene is found to increase by about 16 or 18+/-10 retention index units determined from the experiments or simulations, respectively. For toluene and the xylenes, the experimentally measured increases are similar in magnitude and range from 14 to 17 retention index units for m-xylene to o-xylene. The molecular simulation data provide an independent method of obtaining the transfer enthalpies and entropies. The change in retention indices is shown to be the result of the larger entropic penalty and the larger heat capacity for the transfer of the alkane molecules.

  19. Patterns and conformations in molecularly thin films

    NASA Astrophysics Data System (ADS)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  20. Molecular dynamics study of solubilization of immiscible solutes by a micelle: Free energy of transfer of alkanes from water to the micelle core by thermodynamic integration method.

    PubMed

    Fujimoto, K; Yoshii, N; Okazaki, S

    2010-08-21

    Free energy of transfer, DeltaG(w-->m), from water phase to a sodium dodecyl sulfate (SDS) micelle core has been calculated for a series of hydrophobic solutes originally immiscible with water by thermodynamic integration method combined with molecular dynamics calculations. The calculated free energy of transfer is in good correspondence to the experiment as well as the theoretical free energy of transfer. The calculated DeltaG(w-->m)'s are all negative, implying that the alkane molecules are more stable in the micelle than in the water phase. It decreases almost linearly as a function of the number of carbon atoms of the alkanes longer than methane with a decrement of 3.3 kJ mol(-1) per one methylene group. The calculated free energy of transfer indicates that, for example, at the micelle concentration of 50 CMC (critical micelle concentration), about only 1 of 6 micelles or 1 of 32 000 micelles does not contain a solute methane or n-octane molecule, respectively. PMID:20726656

  1. Molecular dynamics study of solubilization of immiscible solutes by a micelle: Free energy of transfer of alkanes from water to the micelle core by thermodynamic integration method

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Yoshii, N.; Okazaki, S.

    2010-08-01

    Free energy of transfer, ΔGw→m, from water phase to a sodium dodecyl sulfate (SDS) micelle core has been calculated for a series of hydrophobic solutes originally immiscible with water by thermodynamic integration method combined with molecular dynamics calculations. The calculated free energy of transfer is in good correspondence to the experiment as well as the theoretical free energy of transfer. The calculated ΔGw→m's are all negative, implying that the alkane molecules are more stable in the micelle than in the water phase. It decreases almost linearly as a function of the number of carbon atoms of the alkanes longer than methane with a decrement of 3.3 kJ mol-1 per one methylene group. The calculated free energy of transfer indicates that, for example, at the micelle concentration of 50 CMC (critical micelle concentration), about only 1 of 6 micelles or 1 of 32 000 micelles does not contain a solute methane or n-octane molecule, respectively.

  2. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    NASA Astrophysics Data System (ADS)

    Gastegger, Michael; Kauffmann, Clemens; Behler, Jörg; Marquetand, Philipp

    2016-05-01

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system's total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy is constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.

  3. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    SciTech Connect

    Perahia, Dvora, Dr.; Pierce, Flint; Tsige, Mesfin; Grest, Gary Stephen, Dr.

    2008-08-01

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  4. Structure and Phase Transitions of Monolayers of Intermediate-length n-alkanes on Graphite Studied by Neutron Diffraction and Molecular Dynamics Simulation

    SciTech Connect

    Taub, H.; Hansen, F.Y.; Diama, Amand; Matthies, Blake; Criswell, Leah; Mo, Haiding; Bai, M; Herwig, Kenneth W

    2009-01-01

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C(24)H(50) denoted as C24) and dotriacontane (n-C(32)H(66) denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 A=sqrt[3a(g)], where a(g)=2.46 A is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a 'smectic' phase in which the inter-row spacing within a lamella expands by approximately 10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  5. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation.

    PubMed

    Diama, A; Matthies, B; Herwig, K W; Hansen, F Y; Criswell, L; Mo, H; Bai, M; Taub, H

    2009-08-28

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C(24)H(50) denoted as C24) and dotriacontane (n-C(32)H(66) denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 A=sqrt[3a(g)], where a(g)=2.46 A is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by approximately 10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  6. The origin of alkanes found in human skin surface lipids

    SciTech Connect

    Bortz, J.T.; Wertz, P.W.; Downing, D.T. )

    1989-12-01

    Lipids extracted from human skin contain variable amounts of paraffin hydrocarbons. Although the composition of these alkanes strongly resembles petroleum waxes, it has been proposed that they are biosynthetic products of human skin. To investigate this question, skin surface lipids from 15 normal subjects were analyzed for the amount and composition of alkanes, using quantitative thin-layer chromatography and quartz capillary gas chromatography. The alkanes were found to constitute 0.5% to 1.7% of the skin lipids. Subjects differed greatly in the chain length distribution of their alkanes between 15 and 35 carbon atoms, and in the relative amounts of normal alkanes (like those in petroleum waxes) and branched chain alkanes (like those in petroleum lubricating oils). In 6 subjects, the alkane content of cerumen from each ear was examined to investigate whether alkanes arrive at the skin surface by a systemic route or by direct contact with environmental surfaces. No trace of alkanes was found in 11 of the 12 cerumen samples. Using a tandem accelerator mass spectrometer for carbon-14 dating, a combined sample of the skin surface alkanes was found to have a theoretical age of 30,950 years, similar to that of a sample of petrolatum. These analyses indicate that the alkanes found on the surface of human skin are mixtures of a variety of petroleum distillation fractions that are acquired by direct contamination from the environment.

  7. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases

    PubMed Central

    Ji, Yurui; Mao, Guannan; Wang, Yingying; Bartlam, Mark

    2013-01-01

    Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini) depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps, and compare typical enzymes from various classes with regard to their three-dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyzes, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments. PMID:23519435

  8. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  9. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  10. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces.

    PubMed

    Liyana-Arachchi, Thilanga P; Zhang, Zenghui; Ehrenhauser, Franz S; Avij, Paria; Valsaraj, Kalliat T; Hung, Francisco R

    2014-01-01

    Potential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.e., the standard anionic surfactant sodium dodecyl sulfate (SDS), and three model dispersants similar to the Tween and Span species present in Corexit 9500A] at air/salt water interfaces. This study was motivated by the 2010 Deepwater Horizon (DWH) oil spill, and our simulation results show that, from the thermodynamic point of view, the n-alkanes and the model dispersants have a strong preference to remain at the air/salt water interface, as indicated by the presence of deep free energy minima at these interfaces. The free energy minimum of these n-alkanes becomes deeper as their chain length increases, and as the concentration of surfactant species at the interface increases. The n-alkanes tend to adopt a flat orientation and form aggregates at the bare air/salt water interface. When this interface is coated with surfactants, the n-alkanes tend to adopt more tilted orientations with respect to the vector normal to the interface. These simulation results are consistent with the experimental findings reported in the accompanying paper [Ehrenhauser et al., Environ. Sci.: Processes Impacts 2013, in press, (DOI: 10.1039/c3em00390f)]. The fact that these long-chain n-alkanes show a strong thermodynamic preference to remain at the air/salt water interfaces, especially if these interfaces are coated with surfactants, makes these species very likely to adsorb at the surface of bubbles or droplets and be ejected to the atmosphere by sea surface processes such as whitecaps (breaking waves) and bubble bursting. Finally, the experimental finding that more oil hydrocarbons are ejected when Corexit 9500A is present in the system is consistent with the deeper free energy minima observed for the n-alkanes at the air/salt water

  11. Molecular, 13C, and 14C evidence for the allochthonous and ancient origin of C 16C 18n-alkanes in modern soils

    NASA Astrophysics Data System (ADS)

    Lichtfouse, Éric; Bardoux, Gerard; Mariotti, Andre; Balesdent, Jerome; Ballentine, Donna C.; Macko, Stephen A.

    1997-05-01

    The heterogeneous isotopic composition of C 3 and C 4 plants can be used to to follow the fate of plant carbon into soil organic molecules. Thus, after 23 years of maize cropping (C 4) on a soil which was previously under C 3 vegetation, C 25C 33 soil n-alkanes are 13C-enriched up to 9ℵ. relatively to the initial C 3 soil, reflecting the input of 13C-enriched n-alkanes from maize waxes. In sharp contrast, C 16C 18 soil n-alkanes do not show any significant 13C/ 12C variation over the same time interval. This absence of isotopic variation, along with consideration of their relative concentration, absolute concentration, and biodegradability, demonstrate that these substances must represent a regular input from an external source. Evidence of a large contribution of an ancient source, amounting to more than 65% of the alkane fraction, is given by a 14C-age of 8510 yrs BP. Moreover, short-chain n-alkanes from soils, diesel fuel, diesel automobile exhaust, and petroleum products exhibit similar distributions and δ 13C values. These findings suggests that C 16C 18 soil n-alkanes represent a non-point source pollution of ancient hydrocarbons either carried by aerosols or entering the soil via continuous hydrocarbon seepage from the deep sedimentary rocks of the Paris basin.

  12. SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.

    PubMed

    Avendaño, Carlos; Lafitte, Thomas; Adjiman, Claire S; Galindo, Amparo; Müller, Erich A; Jackson, George

    2013-03-01

    In the first paper of this series [C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B2011, 115, 11154] we introduced the SAFT-γ force field for molecular simulation of fluids. In our approach, a molecular-based equation of state (EoS) is used to obtain coarse-grained (CG) intermolecular potentials that can then be employed in molecular simulation over a wide range of thermodynamic conditions of the fluid. The macroscopic experimental data for the vapor-liquid equilibria (saturated liquid density and vapor pressure) of a given system are represented with the SAFT-VR Mie EoS and used to estimate effective intermolecular parameters that provide a good description of the thermodynamic properties by exploring a wide parameter space for models based on the Mie (generalized Lennard-Jones) potential. This methodology was first used to develop a simple single-segment CG Mie model of carbon dioxide (CO2) which allows for a reliable representation of the fluid-phase equilibria (for which the model was parametrized), as well as an accurate prediction of other properties such as the enthalpy of vaporization, interfacial tension, supercritical density, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thomson coefficient, and speed of sound). In our current paper, the methodology is further applied and extended to develop effective SAFT-γ CG Mie force fields for some important greenhouse gases including carbon tetrafluoride (CF4) and sulfur hexafluoride (SF6), modeled as simple spherical molecules, and for long linear alkanes including n-decane (n-C10H22) and n-eicosane (n-C20H42), modeled as homonuclear chains of spherical Mie segments. We also apply the SAFT-γ methodology to obtain a CG homonuclear two-segment Mie intermolecular potential for the more challenging polar and asymmetric compound 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), a novel replacement

  13. Temperature-dependent rotational relaxation in a viscous alkane: Interplay of shape factor and boundary condition on molecular rotation

    NASA Astrophysics Data System (ADS)

    Dutt, G. B.; Sachdeva, A.

    2003-05-01

    Rotational relaxation of three organic solutes, coumarin 6 (C6), 2,5-dimethyl-1, 4-dioxo3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP), and nile red (NR), that are similar in size but distinct in shape has been studied in a nonpolar solvent, squalane as a function of temperature to find out how the mechanical friction experienced by the solute molecule is influenced by its shape. It has been observed that C6 rotates slowest followed by NR and DMDPP. The results are analyzed using Stokes-Einstein-Debye (SED) hydrodynamic theory and also quasihydrodynamic theories of Gierer and Wirtz, and Dote, Kivelson, and Schwartz. Analysis of the data using the SED theory reveals that the measured reorientation times of C6 and DMDPP follow subslip behavior whereas those of NR are found to match slip predictions. While no single model could mimic the observed trend even in a qualitative manner, the reorientation times of C6 and DMDPP when normalized by their respective shape factors and boundary-condition parameters can be scaled on a common curve over the entire range of temperature studied. The probable reasons for the distinctive rotational behavior of NR as compared to C6 and DMDPP are explained in terms of its molecular shape and how this in turn influences the boundary-condition parameter are discussed.

  14. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    NASA Astrophysics Data System (ADS)

    MacDermaid, Christopher M.; Kashyap, Hemant K.; DeVane, Russell H.; Shinoda, Wataru; Klauda, Jeffery B.; Klein, Michael L.; Fiorin, Giacomo

    2015-12-01

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  15. Alkane-modified low-molecular-weight polyethylenimine with enhanced gene silencing for siRNA delivery.

    PubMed

    Guo, Gaoyang; Zhou, Li; Chen, Zhifei; Chi, Weilin; Yang, Xiuqun; Wang, Wei; Zhang, Biliang

    2013-06-25

    Small interfering RNA (siRNA) has tremendous potential as a therapeutic agent for diverse diseases; however, due to its susceptibility to degradation and poor cellular uptake, the low efficiency of administration has been the most important limiting factor for clinical applications of siRNA. Herein, we synthesized alkyl chain modified low-molecular-weight polyethylenimines (LMW PEIs) and found that hydrophobically modified PEIs displayed enhanced efficiency in siRNA-mediated knockdown of target genes. To elucidate the mechanism for increased delivery, we characterized the polymers' physicochemical properties and bioactivity via nuclear magnetic resonance (NMR), gel retardation assay, dynamic laser scattering (DLS) analysis, confocal laser scanning microscopy and flow cytometry. The hydrophobic modification reduced siRNA binding affinity but facilitated the formation of nanoparticles in contrast to the original PEI. The PEIs with eight and thirteen alkyl tails were able to self-assemble into nanoparticles and yielded higher cellular uptake, which leaded to even similar efficiencies of 80-90% knockdown as Lipofectamine™ 2000 control. These results suggested that the status of polymers in aqueous solution, which depended on the degree of hydrophobic modification, played an important role in the uptake of siRNA. Therefore, we provided new information on the role of hydrophobic content in the enhanced gene silencing activity.

  16. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    SciTech Connect

    MacDermaid, Christopher M. Klein, Michael L.; Fiorin, Giacomo; Kashyap, Hemant K.; DeVane, Russell H.; Shinoda, Wataru; Klauda, Jeffery B.

    2015-12-28

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  17. Molecular release from patterned nanoporous gold thin films

    NASA Astrophysics Data System (ADS)

    Kurtulus, Ozge; Daggumati, Pallavi; Seker, Erkin

    2014-05-01

    Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy, fluorospectrometry, and electrochemical surface characterization to study loading capacity and molecular release kinetics as a function of film properties and discuss underlying mechanisms. The sub-micron-thick sputter-coated nanoporous gold films provide small-molecule loading capacities up to 1.12 μg cm-2 and molecular release half-lives between 3.6 hours to 12.8 hours. A systematic set of studies reveals that effective surface area of the np-Au thin films on glass substrates plays the largest role in determining loading capacity. The release kinetics on the other hand depends on a complex interplay of micro- and nano-scale morphological features.Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy

  18. Molecular Dynamic Simulation of Thin Film Growth Stress Evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Haifeng

    2011-12-01

    With the increasing demand for thin films across a wide range of technology, especially in electronic and magnetic applications, controlling the stresses in deposited thin films has become one of the more important challenges in modern engineering. It is well known that large intrinsic stress---in the magnitude of several gigapascals---can result during the thin film preparation. The magnitude of stress depends on the deposition technique, film thickness, types and structures of materials used as films and substrates, as well as other factors. Such large intrinsic stress may lead to film cracking and peeling in case of tensile stress, and delamination and blistering in case of compression. However it may also have beneficial effects on optoelectronics and its applications. For example, intrinsic stresses can be used to change the electronic band gap of semiconducting materials. The far-reaching fields of microelectronics and optoelectronics depend critically on the properties, behavior, and reliable performance of deposited thin films. Thus, understanding and controlling the origins and behavior of such intrinsic stresses in deposited thin films is a highly active field of research. In this study, on-going tensile stress evolution during Volmer-Weber growth mode was analyzed through numerical methods. A realistic model with semi-cylinder shape free surfaces was used and molecular dynamics simulations were conducted. Simulations were at room temperature (300 K), and 10 nanometer diameter of islands were used. A deposition rate that every 3 picoseconds deposit one atom was chosen for simulations. The deposition energy was and lattice orientation is [0 0 1]. Five different random seeds were used to ensure average behaviors. In the first part of this study, initial coalescence stress was first calculated by comparing two similar models, which only differed in the distance between two neighboring islands. Three different substrate thickness systems were analyzed to

  19. Molecular tailoring of interfaces for thin film on substrate systems

    NASA Astrophysics Data System (ADS)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  20. Untypical even-to-odd predominance in the low-molecular n-alkanes of water, suspended matter, and bottom sediments in some regions of the Arctic Basin

    NASA Astrophysics Data System (ADS)

    Drozdova, Anastasia; Belyaev, Nikolay; Ponyaev, Mikhail

    2014-05-01

    Over the years, several studies have shown an unusual predominance of even-carbon number n-alkanes in dissolved and particulate phase samples and sediment samples from various regions of the World Ocean [Nachman, 1985; Nishimura and Baker, 1985; Elias et al., 1997]. Different possible sources were proposed such as diagenesis (diagenetic origin from co-occurring fatty acids and alcohols), direct microbial input, microbial degradation of algal detritus, etc. Some researchers, however, are incredulous about this phenomenon and consider relatively high content of even-carbon number n-alkanes as contamination during the experiments. We report here the results of GC and GC-MS analysis of water, suspended particulate matter and sediment samples collected during 7 marine and coastal scientific expeditions to the White and Kara Seas, and to the central Arctic Basin (2004-2013). Many of the above samples (more than 30) present n-alkane distribution with a strong even-carbon number predominance of n-C14H30, and n-C16H34. Maximum enrichment was observed in some suspended matter samples with predominance of n-C16H34. The origin of even-carbon number n-alkanes in marine ecosystems is still not clear. In Antarctic region n-C16 and n-C18 and other even chain n-alkanes were reported to be dominant in the samples of the sea-ice algae, zooplankton and fish [Green et al. 1997] however in the Arctic region this phenomenon has not been demonstrated yet. Increasing of bacteria number and δ13C values observed in course of the accompanying studies [Lein et al., 2013] suggest existence of mechanism of phytoplankton bacterial destruction in the Arctic ecosystems, leading to formation of even-carbon number n-alkanes. R.J. Nachman - Lipids, Vol. 20, No 9, pp. 629-633 (1985). M. Nishimura, E.W. Baker - Geochim. et Cosmochim. Acta, Vol. 50, pp. 299-305 (1986). V.O. Elias, B.R.T. Simoneit, J.N. Cardoso - Naturwissenschaften, Vol. 84, pp. 415-420 (1997). G. Green et al. - Marine Pollution

  1. Preparation of Robust, Thin Zeolite Membrane Sheet for Molecular Separation

    SciTech Connect

    Liu, Wei; Zhang, Jian; Canfield, Nathan L.; Saraf, Laxmikant V.

    2011-10-19

    This paper reports a feasibility study on the preparation of zeolite membrane films on a thin, porous metal support sheet (50-{micro}m thick). Zeolite sodium A (NaA) and silicalite zeolite frameworks are chosen to represent synthesis of respective hydrophilic-type and hydrophobic-type zeolite membranes on this new support. It is found that a dense, continuous inter-grown zeolite crystal layer at a thickness less than 2 {micro}m can be directly deposited on such a support by using direct and secondary growth techniques. The resulting membrane shows excellent adhesion on the metal sheet. Molecular-sieving functions of the prepared membranes are characterized with ethanol/water separation, CO2 separation, and air dehumidification. The results show great potential to make flexible metal-foil-like zeolite membranes for a range of energy conversion and environmental applications.

  2. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    PubMed

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    stable solid metal oxides as the olefin-metathesis catalysts. Both the pincer complexes and the alkylidene complexes have been supported on alumina via adsorption through basic para-substituents. This process does not significantly affect catalyst activity, and in some cases it increases both the catalyst lifetime and the compatibility of the co-catalysts. These molecular catalysts are the first systems that effect alkane metathesis with molecular-weight selectivity, particularly for the conversion of C(n)n-alkanes to C(2n-2)n-alkanes plus ethane. This molecular-weight selectivity offers a critical advantage over the few previously reported alkane metathesis systems. We have studied the factors that determine molecular-weight selectivity in depth, including the isomerization of the olefinic intermediates and the regioselectivity of the pincer-iridium catalyst for dehydrogenation at the terminal position of the n-alkane. Our continuing work centers on the development of co-catalysts with improved interoperability, particularly olefin-metathesis catalysts that are more robust at high temperature and dehydrogenation catalysts that are more active at low temperature. We are also designing dehydrogenation catalysts based on metals other than iridium. Our ongoing mechanistic studies are focused on the apparently complex combination of factors that determine molecular-weight selectivity. PMID:22584036

  3. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  4. Light-emitting diodes from molecularly thin porphyrin derivative: Effect of molecular packing

    NASA Astrophysics Data System (ADS)

    Chowdhury, A.; Chowdhury, J.; Pal, P.; Pal, A. J.

    1998-08-01

    Light-emitting diodes based on the molecularly thin film of a porphyrin derivative have been fabricated. Langmuir-Blodgett (LB) films at two different surface pressures have been used as active materials of the device and their characteristics have been studied and compared. Devices with LB films deposited at a higher pressure show rectifying behaviour and electroluminescence (EL) was observed only in the forward bias. The other type of devices with LB films deposited at a lower pressure, yields EL in both bias directions. The effect of thickness of the active layers has been investigated. The turn-on currents for both the cases have also been compared.

  5. Molecular dynamics simulation of VN thin films under indentation

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Peng, Xianghe; Huang, Cheng; Yin, Deqiang; Li, Qibin; Wang, Zhongchang

    2015-12-01

    We investigated with molecular dynamics simulation the mechanical responses of VN (0 0 1) thin films subjected to indentation with a diamond columnar indenter. We calculated the generalized stacking-fault energies as a function of the displacement in the rbond2 1 1 0lbond2 directions on the {0 0 1}, {1 1 0}, and {1 1 1} planes, and analyzed systematically the microstructures and their evolution during the indentation with the centro-symmetry parameters and the slices of the VN films. We found the slips on {1 1 0}rbond2 1 1 0lbond2 of the VN film under indentation at the initial stage. With the increase of indentation depth, slips are also activated on {1 1 1}rbond2 1 1 0lbond2 and {1 0 0}rbond2 0 1 1lbond2 systems. We further found that the slip system is determined by the stacking-fault energy rather than the layer spacing. The indentations with other different parameters were also performed, and the results further prove the validity of the conclusion.

  6. Supercritical fluid molecular spray thin films and fine powders

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  7. Molecularly Oriented Polymeric Thin Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C.; Stoakley, Diane M.; St.Clair, Anne K.

    1997-01-01

    The increased commitment from NASA and private industry to the exploration of outer space and the use of orbital instrumentation to monitor the earth has focused attention on organic polymeric materials for a variety of applications in space. Some polymeric materials have exhibited short-term (3-5 yr) space environmental durability; however, future spacecraft are being designed with lifetimes projected to be 10-30 years. This gives rise to concern that material property change brought about during operation may result in unpredicted spacecraft performance. Because of their inherent toughness and flexibility, low density, thermal stability, radiation resistance and mechanical strength, aromatic polyimides have excellent potential use as advanced materials on large space structures. Also, there exists a need for high temperature (200-300 C) stable, flexible polymeric films that have high optical transparency in the 300-600nm range of the electromagnetic spectrum. Polymers suitable for these space applications were fabricated and characterized. Additionally, these polymers were molecularly oriented to further enhance their dimensional stability, stiffness, elongation and strength. Both unoriented and oriented polymeric thin films were also cryogenically treated to temperatures below -184 C to show their stability in cold environments and determine any changes in material properties.

  8. The vapor-particle partitioning of n-alkanes

    SciTech Connect

    Doskey, P.V.

    1994-04-01

    A mixed-phase partitioning model has been proposed to predict the distribution of n-alkanes between the vapor and particle phases in the atmosphere. n-Alkanes having terrestrial plant wax and petroleum origins are assumed to be associated with atmospheric particles as microcrystalline solids and subcooled liquids, respectively. The fraction of n-alkanes on atmospheric particles having plant wax and petroleum origins is estimated with carbon preference indices. Hypothetical terrestrial plant wax and petroleum mixtures are used to estimate the mole fractions of the n-alkanes in each phase and the molecular weights of the phases. Solid and subcooled liquid phase n-alkane vapor pressures are used in the model to predict the fraction of n-alkanes associated with particles in the atmosphere. Trends in the prediction of vapor-particle partitioning using these assumptions agree well with field observations. However, the fraction of particle phase n-alkanes predicted by the model was significantly different from the field observations.

  9. Molecular solution processing of metal chalcogenide thin film solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Wenbing

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (CISS) and kesterite Cu2ZnSn(S,Se) 4 organized in chronological order. Chalcopyrite CISS is a very promising material. It has been demonstrated to achieve the highest efficiency among thin film solar cells. Scaled-up industry production at present has reached the giga-watt per year level. The process however mainly relies on vacuum systems which account for a significant percentage of the manufacturing cost. In the first section of this dissertation, hydrazine based solution processed CISS has been explored. The focus of the research involves the procedures to fabricate devices from solution. The topics covered in Chapter 2 include: precursor solution synthesis with a focus on understanding the solution chemistry, CISS absorber formation from precursor, properties modification toward favorable device performance, and device structure innovation toward tandem device. For photovoltaics to have a significant impact toward meeting energy demands, the annual production capability needs to be on TW-level. On such a level, raw materials supply of rare elements (indium for CIS or tellurium for CdTe) will be the bottleneck limiting the scalability. Replacing indium with zinc and tin, earth abundant kesterite CZTS exhibits great potential to reach the goal of TW-level with no limitations on raw material availability. Chapter 3 shows pioneering work towards solution processing of CZTS film at low temperature. The solution processed devices show performances which rival vacuum

  10. Self-diffusion in molecular liquids: Medium-chain n-alkanes and coenzyme Q10 studied by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Smuda, Christoph; Busch, Sebastian; Gemmecker, Gerd; Unruh, Tobias

    2008-07-01

    A systematic time-of-flight quasielastic neutron scattering (TOF-QENS) study on diffusion of n-alkanes in a melt is presented for the first time. As another example of a medium-chain molecule, coenzyme Q10 is investigated in the same way. The data were evaluated both in the frequency and in the time domain. TOF-QENS data can be satisfactorily described by different models, and it turned out that the determined diffusion coefficients are largely independent of the applied model. The derived diffusion coefficients are compared with values measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR). With increasing chain length, an increasing difference between the TOF-QENS diffusion coefficient and the PFG-NMR diffusion coefficient is observed. This discrepancy in the diffusion coefficients is most likely due to a change of the diffusion mechanism on a nanometer length scale for molecules of medium-chain length.

  11. Molecular Aspects of Transport in Thin Films of Controlled Architecture

    SciTech Connect

    Paul W. Bohn

    2009-04-16

    Our laboratory focuses on developing spatially localized chemistries which can produce structures of controlled architecture on the supermolecular length scale -- structures which allow us to control the motion of molecular species with high spatial resolution, ultimately on nanometer length scales. Specifically, nanocapillary array membranes (NCAMs) contain an array of nanometer diameter pores connecting vertically separated microfluidic channels. NCAMs can manipulate samples with sub-femtoliter characteristic volumes and attomole sample amounts and are opening the field of chemical analysis of mass-limited samples, because they are capable of digital control of fluid switching down to sub-attoliter volumes; extension of analytical “unit operations” down to sub-femtomole sample sizes; and exerting spatiotemporal control over fluid mixing to enable studies of reaction dynamics. Digital flow switching mediated by nanocapillary array membranes can be controlled by bias, ionic strength, or pore diameter and is being studied by observing the temporal characteristics of transport across a single nanopore in thin PMMA membranes. The control of flow via nanopore surface characteristics, charge density and functional group presentation, is being studied by coupled conductivity and laser-induced fluorescence (LIF) measurements. Reactive mixing experiments previously established low millisecond mixing times for NCAM-mediated fluid transfer, and this has been exploited to demonstrate capture of mass-limited target species by Au colloids. Voltage and thermally-activated polymer switches have been developed for active control of transport in NCAMs. Thermally-switchable and size-selective transport was achieved by grafting poly(N-isopropylacrylamide) brushes onto the exterior surface of a Au-coated polycarbonate track-etched membrane, while the voltage-gated properties of poly(hydroxyethylmethacrylate) were characterized dynamically. Electrophoretic separations have been

  12. Vibrational studies of molecular organization in evaporated phthalocyanine thin solid films

    SciTech Connect

    Aroca, R.; Thedchanamoorthy, A.

    1995-01-01

    This report presents results on the study of the molecular organization, utilizing transmission and reflection absorption FTIR spectroscopy, of thin films of phthalocyanine complexes and metal free phthalocyanine. The spatial anisotropy was probed.

  13. Enhanced Rates of Photoinduced Molecular Orientation in a Series of Molecular Glassy Thin Films.

    PubMed

    Snell, Kristen E; Hou, Renjie; Ishow, Eléna; Lagugné-Labarthet, François

    2015-07-01

    Photoinduced orientation in a series of molecular glasses made of small push-pull azo derivatives is dynamically investigated for the first time. Birefringence measurements at 632.8 nm are conducted with a temporal resolution of 100 ms to probe the fast rate of the azo orientation induced under polarized light and its temporal stability over several consecutive cycles. To better evaluate the influence of the azo chemical substituents and their electronic properties on the orientation of the whole molecule, a series of push-pull azo derivatives involving a triphenylaminoazo core substituted with distinct electron-withdrawing moieties is studied. All resulting thin films are probed using polarization modulation infrared spectroscopy that yields dynamical linear dichroism measurements during a cycle of orientation followed by relaxation. We show here in particular that the orientation rates of small molecule-based azo materials are systematically increased up to 7-fold compared to those of a reference polymer counterpart. For specific compounds, the percentage of remnant orientation is also higher, which makes these materials of great interest and promising alternatives to azobenzene-containing polymers for a variety of applications requiring a fast response and absolute control over the molecular weight.

  14. Enhanced Rates of Photoinduced Molecular Orientation in a Series of Molecular Glassy Thin Films.

    PubMed

    Snell, Kristen E; Hou, Renjie; Ishow, Eléna; Lagugné-Labarthet, François

    2015-07-01

    Photoinduced orientation in a series of molecular glasses made of small push-pull azo derivatives is dynamically investigated for the first time. Birefringence measurements at 632.8 nm are conducted with a temporal resolution of 100 ms to probe the fast rate of the azo orientation induced under polarized light and its temporal stability over several consecutive cycles. To better evaluate the influence of the azo chemical substituents and their electronic properties on the orientation of the whole molecule, a series of push-pull azo derivatives involving a triphenylaminoazo core substituted with distinct electron-withdrawing moieties is studied. All resulting thin films are probed using polarization modulation infrared spectroscopy that yields dynamical linear dichroism measurements during a cycle of orientation followed by relaxation. We show here in particular that the orientation rates of small molecule-based azo materials are systematically increased up to 7-fold compared to those of a reference polymer counterpart. For specific compounds, the percentage of remnant orientation is also higher, which makes these materials of great interest and promising alternatives to azobenzene-containing polymers for a variety of applications requiring a fast response and absolute control over the molecular weight. PMID:26072966

  15. A Comparison of the Monolayer Dynamics of the Branched Alkane Squalane and the Normal Alkane Tetracosane Adsorbed on Graphite

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Taub, H.

    2004-03-01

    Squalane is a branched alkane (C_30H_62) with 24 carbon atoms in its backbone, like the normal alkane tetracosane ( n-C_24H_50), and six symmetrically placed methyl side groups. In general, branched alkanes such as squalane are better lubricants than n-alkanes. We have studied the dynamics of the squalane and tetracosane monolayers by quasielastic neutron scattering and molecular dynamics (MD) simulations on two different time scales. Both experiments and simulations showed that diffusion at 260 K is about 2.5 times faster in the squalane than in the tetracosane system. It is somewhat surprising that the diffusion in a system with a branched alkane is faster than with a normal alkane. A possible explanation is that the squalane molecule does not bind as strongly to the surface as tetracosane, because the MD simulations have shown that the adsorbed molecules have a distorted backbone. This may also explain why the slow intramolecular motions associated with conformational changes are seen at lower temperatures in the squalane than the tetracosane monolayer where they are only observed near melting.

  16. Vibrational modes and changing molecular conformation of perfluororubrene in thin films and solution

    NASA Astrophysics Data System (ADS)

    Anger, F.; Scholz, R.; Gerlach, A.; Schreiber, F.

    2015-06-01

    We investigate the vibrational properties of perfluororubrene (PF-RUB) in thin films on silicon wafers with a native oxide layer as well as on silicon wafers covered with a self-assembled monolayer and in dichloromethane solution. In comparison with computed Raman and IR spectra, we can assign the molecular modes and identify two molecular conformations with twisted and planar tetracene backbones of the molecule. Moreover, we employ Raman imaging techniques to study the morphology and distribution of the molecular conformation in PF-RUB thin films.

  17. Dewetting dynamics of nickel thin film on alpha-quartz substrate: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Maekawa, Yuki; Shibuta, Yasushi

    2016-08-01

    Dewetting dynamics of the nickel thin film on the alpha-quartz substrate is closely investigated by molecular dynamics simulation. Morphology after the spontaneous dewetting of thin films changes from multi-droplets, single-droplet and cylindrical structure as the film thickness increases. In the thin cylindrical structure, a neck is induced to break into the droplet due to the Plateau-Rayleigh instability whereas the thick cylindrical structure does not break. Nucleation and subsequent solidification happen only in the large droplet after the dewetting due to the size effect, which is dominated by the kinetic factor of nucleation in the small system.

  18. Anomalous scaling behavior and surface roughening in molecular thin-film deposition

    SciTech Connect

    Yim, S.; Jones, T. S.

    2006-04-15

    The thin film growth dynamics of a molecular semiconductor, free-base phthalocyanine (H{sub 2}Pc), deposited by organic molecular beam deposition, has been studied by atomic force microscopy (AFM) and height difference correlation function (HDCF) analysis. The measured dynamic scaling components ({alpha}{sub loc}=0.61{+-}0.12, {beta}=1.02{+-}0.08, and 1/z=0.72{+-}0.13) are consistent with rapid surface roughening and anomalous scaling behavior. A detailed analysis of AFM images and simple growth models suggest that this behavior arises from the pronounced upward growth of crystalline H{sub 2}Pc mounds during the initial stages of thin film growth.

  19. Free-electron laser induced processes in thin molecular ice.

    PubMed

    Siemer, Björn; Roling, Sebastian; Frigge, Robert; Hoger, Tim; Mitzner, Rolf; Zacharias, Helmut

    2014-01-01

    Intermolecular reactions in and on icy films on silicate and carbonaceous grains constitute a major route for the formation of new molecular constituents in interstellar molecular clouds. In more diffuse regions and in protoplanetary discs, energetic radiation can trigger reaction routes far from thermal equilibrium. As an analog of interstellar ice-covered dust grains, highly-oriented pyrolytic graphite (HOPG) covered with D2O, NO, and H atoms is irradiated by ultrashort XUV pulses and the desorbing ionic and neutral products are analysed. The yields of several products show a nonlinear intensity dependence and thus enable the elucidation of reaction dynamics by two-pulse correlated desorption.

  20. Role of Molecular Conformations in Rubrene Thin Film Growth

    SciTech Connect

    Kaefer, D.; Ruppel, L.; Witte, G.; Woell, Ch.

    2005-10-14

    A systematic analysis of the growth of rubrene (C{sub 42}H{sub 28}), an organic molecule that currently attracts considerable attention with regard to its application in molecular electronics, is carried out by using x-ray absorption spectroscopy and thermal desorption spectroscopy. The results allow us to unravel a fundamental mechanism that effectively limits organic epitaxy for a large class of organic molecules. If the structure of the free molecule differs substantially from that of the corresponding molecular structure in the bulk, the crystallization is severely hampered.

  1. Surface freezing in binary alkane-alcohol mixtures

    SciTech Connect

    Ofer, E.; Sloutskin, E.; Tamam, L.; Deutsch, M.; Ocko, B. M.

    2006-08-15

    Surface freezing was detected and studied in mixtures of alcohol and alkane molecules, using surface tensiometry and surface-specific x-ray scattering methods. Considering that surface freezing in pure alkanes forms an ordered monolayer and in alcohols it forms an ordered bilayer, the length mismatch repulsion was minimized by varying the carbon number of the alkane component around 2n, where n is the carbon number of the alcohol molecule. A solutionlike behavior was found for all mixtures, where the ideal liquid mixture phase-separates upon freezing both in the bulk and the surface. The solid exhibits a herringbone crystalline phase below an alkane mole fraction {phi}{sub t}{approx_equal}0.8 and a rotator phase above it. The surface frozen film below {phi}{sub t} is an alkane monolayer exhibiting a next-nearest neighbor molecular tilt of a composition-dependent magnitude. Above {phi}{sub t}, no diffraction peaks were observed. This could be explained by the intrinsically shorter-range order of the rotator phase and a possible proliferation of defects.

  2. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  3. Adsorption and dissociation kinetics of alkanes on CaO(100)

    NASA Astrophysics Data System (ADS)

    Chakradhar, A.; Liu, Y.; Schmidt, J.; Kadossov, E.; Burghaus, U.

    2011-08-01

    The adsorption kinetics of ethane, butane, pentane, and hexane on CaO(100) have been studied by multi-mass thermal desorption (TDS) spectroscopy. The sample cleanliness was checked by Auger electron spectroscopy. A molecular and dissociative adsorption pathway was evident for the alkanes, except for ethane, which does not undergo bond activation. Two TDS peaks appeared when recording the parent mass, which are assigned to different adsorption sites/configurations of the molecularly adsorbed alkanes. Bond activation leads to desorption of hydrogen and several alkane fragments assigned to methane and ethylene formation. Only one TDS feature is seen in this case. Formation of carbon residuals was absent.

  4. Intrinsic viscoelasticity in thin high-molecular-weight polymer films.

    PubMed

    Sheng, Xiaoyuan; Wintzenrieth, Frédéric; Thomas, Katherine R; Steiner, Ullrich

    2014-06-01

    The rheology of 44-75-nm-thick polystyrene films were probed by destabilization in an electric field. The non-cross-linked films showed the hallmark of viscoelasiticy; they exhibited elastic behavior at high shear rates and viscous rheology at low shear rates for stationary applied fields. These results are interpreted in terms of surface adhesion of chain segments in contact with the substrate surface, which substantially reduces reptative molecular motion of nearly all chains within the film.

  5. Modeling Ellipsometry Measurements of Molecular Thin-Film Contamination on Genesis Array Samples

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The discovery of a molecular thin-film contamination on Genesis flown array samples changed the course of preliminary assessment strategies. Analytical techniques developed to measure solar wind elemental abundances must now compensate for a thin-film contamination. Currently, this is done either by experimental cleaning before analyses or by depth-profiling techniques that bypass the surface contamination. Inside Johnson Space Center s Genesis dedicated ISO Class 4 (Class 10) cleanroom laboratory, the selection of collector array fragments allocated for solar wind analyses are based on the documentation of overall surface quality, visible surface particle contamination greater than 1 m, and the amount of thin film contamination measured by spectroscopic ellipsometry. Documenting the exact thickness, surface topography, and chemical composition of these contaminates is also critical for developing accurate cleaning methods. However, the first step in characterization of the molecular film is to develop accurate ellipsometry models that will determine an accurate thickness measurement of the contamination film.

  6. Molecular layer-by-layer assembled thin-film composite membranes for water desalination.

    PubMed

    Gu, Joung-Eun; Lee, Seunghye; Stafford, Christopher M; Lee, Jong Suk; Choi, Wansuk; Kim, Bo-Young; Baek, Kyung-Youl; Chan, Edwin P; Chung, Jun Young; Bang, Joona; Lee, Jung-Hyun

    2013-09-14

    Molecular layer-by-layer (mLbL) assembled thin-film composite membranes fabricated by alternating deposition of reactive monomers on porous supports exhibit both improved salt rejection and enhanced water flux compared to traditional reverse osmosis membranes prepared by interfacial polymerization. Additionally, the well-controlled structures achieved by mLbL deposition further lead to improved antifouling performance.

  7. σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors

    PubMed Central

    Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J.

    2005-01-01

    Very thin (2.3-5.5 nm) self-assembled organic dielectric multilayers have been integrated into organic thin-film transistor structures to achieve sub-1-V operating characteristics. These new dielectrics are fabricated by means of layer-by-layer solution phase deposition of molecular silicon precursors, resulting in smooth, nanostructurally well defined, strongly adherent, thermally stable, virtually pinhole-free, organosiloxane thin films having exceptionally large electrical capacitances (up to ≈2,500 nF·cm-2), excellent insulating properties (leakage current densities as low as 10-9 A·cm-2), and single-layer dielectric constant (k)of ≈16. These 3D self-assembled multilayers enable organic thin-film transistor function at very low source-drain, gate, and threshold voltages (<1 V) and are compatible with a broad variety of vapor- or solution-deposited p- and n-channel organic semiconductors. PMID:15781860

  8. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  9. Robust high-κ response in molecularly thin perovskite nanosheets.

    PubMed

    Osada, Minoru; Akatsuka, Kosho; Ebina, Yasuo; Funakubo, Hiroshi; Ono, Kanta; Takada, Kazunori; Sasaki, Takayoshi

    2010-09-28

    Size-induced suppression of permittivity in perovskite thin films is a fundamental problem that has remained unresolved for decades. This size-effect issue becomes increasingly important due to the integration of perovskite nanofilms into high-κ capacitors, as well as concerns that intrinsic size effects may limit their device performance. Here, we report a new approach to produce robust high-κ nanodielectrics using perovskite nanosheet (Ca2Nb3O10), a new class of nanomaterials that is derived from layered compounds by exfoliation. By a solution-based bottom-up approach using perovskite nanosheets, we have successfully fabricated multilayer nanofilms directly on SrRuO3 or Pt substrates without any interfacial dead layers. These nanofilms exhibit high dielectric constant (>200), the largest value seen so far in perovskite films with a thickness down to 10 nm. Furthermore, the superior high-κ properties are a size-effect-free characteristic with low leakage current density (<10(-7) A cm(-2)). Our work provides a key for understanding the size effect and also represents a step toward a bottom-up paradigm for future high-κ devices.

  10. Shear Viscous Response of Molecularly Thin Liquid Films

    NASA Astrophysics Data System (ADS)

    Tschirhart, Charles; Troian, Sandra

    2014-11-01

    Fluids that exhibit Newtonian response at the macroscale can display interesting deviations at the nanoscale caused by internal fluid microstructure or conformational entropy reduction near an adjacent solid boundary. Such deviations signal the breakdown of the continuum and isotropic fluid approximations at molecular length scales. These effects are particularly pronounced near the interface separating a liquid film from a supporting solid substrate where molecular layering in the fluid can result in inhomogeneity in the shear viscosity. Here we describe ellipsometric measurements of the surface deformation of non-volatile liquid nanofilms subject to a constant interfacial shear stress. For simple Newtonian response, the slope of the deformation can be used to extract the value of the shear viscosity in ultrathin films, which in our experiments range from 2 - 200 nm in thickness. For complex films, we observe deviations from linear deformation which require augmentation of the analytic model normally used to describe the viscous response. These findings may be helpful for improved parametrization of the shear response of supported free surface films as well as course grained models for nanofluidic applications. Support from the Fred and Jean Felberg and Winifred and Robert Gardner Summer Undergraduate Research Fellowships is gratefully acknowledged.

  11. An Ultra-Thin Molecular Superconductor Made from Charge Transfer Complexes

    NASA Astrophysics Data System (ADS)

    Clark, Kendal; Hassenien, A.; Khan, S.; Braun, K.-F.; Tanaka, H.; Hla, S.-W.

    2010-03-01

    A class of charge transfer molecular systems having a D2A arrangement (D = donor, A = accepter) exhibit superconductivity in the bulk and are often termed ``unusual superconductors'' based on the different nature of their superconducting states as compared to convention BCS superconductors. In this study we have formed an ultra-thin (BETS)2-GaCl4 molecular superconductor consisting of a single sheet of layered molecules composed of individual GaCl4 sandwiched between the chains of a double domino stacked BETS on a Ag(111) surface. Amazingly, the superconducting gap can still be detected in such an ultra-thin molecular layer, and the shape of the gap reveals a d-wave pairing symmetry. Moreover, real space STM spectroscopic images provide direct evidence of the superconducting site as the BETS chains. In stark contrast to the high Tc superconductors, the spectroscopic maps clearly display nanoscale electronic order indicating robust superconducting properties at this extreme spatial limit..

  12. Development of Layered Multiscale Porous Thin Films by Tuning Deposition Time and Molecular Weight of Polyelectrolytes.

    PubMed

    Yu, Jing; Sanyal, Oishi; Izbicki, Andrew P; Lee, Ilsoon

    2015-09-01

    This work focuses on the design of porous polymeric films with nano- and micro-sized pores existing in distinct zones. The porous thin films are fabricated by the post-treatment of layer-by-layer assembled poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayers. In order to improve the processing efficiency, the deposition time is shortened to ≈ 10 s. It is found that fine porous structures can be created even by significantly reducing the processing time. The effect of using polyelectrolytes with widely different molecular weights is also studied. The pore size is increased by using high molecular weight PAH, while high molecular weight PAA minimizes the pore size to nanometer scale. Having gained a precise control over the pore size, layered multiscale porous thin films are further built up with either a microsized porous zone on top of a nanosized porous zone or vice versa.

  13. Simulation studies of the tribological behavior of molecularly thin films

    NASA Astrophysics Data System (ADS)

    He, Gang

    2002-09-01

    In this thesis I used molecular dynamics simulations to study two nanotribological problems. The first is the frictional behavior of adsorbed molecules. Macroscopic objects almost always exhibit a finite static friction and a kinetic friction that is slightly smaller at low velocities. However, molecular scale theories of friction between bare surfaces predict that the static friction almost always vanishes and is not closely related to the kinetic friction. Of course most real surfaces are not bare, but are coated with a layer of adsorbed molecules. Our simulation results show that these molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. We found that parameters that are not controlled in experiments, i.e., crystalline alignment, sliding direction, and the number of adsorbed molecules have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The kinetic friction is found to rise logarithmically with velocity as in many experimental systems. Variations in static and kinetic friction are highly correlated. This correlation is understood through analogy with the Tomlinson model and the trends are explained with a hard-sphere picture. We also studied the microscopic flow boundary condition due to rough surfaces: Generally slip at the interface can be quantified by a slip length S that represents the additional width of fluid that would be needed to accommodate any velocity difference at the interface. Previous simulations with atomically flat surfaces show that S can be very large in certain limits. A dramatic divergence of S as shear rate increases has also been reported. We have extended these simulations to surfaces with random roughness, steps, and angled facets typical of twin boundaries. In all cases, S decreases rapidly as the roughness increases. When peak-to-peak roughness is only two atomic diameters, values of S have dropped from

  14. Removal of alkanes from drinking water using membrane technologies

    SciTech Connect

    Fronk, C.A.

    1995-10-01

    Increasingly, the public is concerned about the quality of its drinking water. The chlorinated alkanes are saturated, aliphatic, synthetic organic compounds (SOC`s). When hydrocarbon feedstocks are chlorinated, a wide variety of chlorocarbons and chlorohydrocarbons are produced that are used as industrial solvents, degreasers and intermediaries. Because compounds such as Carbon Tetrachloride and 1,2-Dichloroethane are widely used, they often find their way into drinking water, particularly groundwaters. Surface waters are somewhat less affected bemuse of the high volatility of many chlorinated alkanes. The Drinking Water Research Division is responsible for evaluating various membrane technologies that may be feasible for meeting Maximum Contaminant Levels. Several membrane processes are under investigation to determine their effectiveness in removing SOC`s from drinking water. One study addressed the removal of a variety of alkanes from spiked groundwater by six reverse osmosis membranes: a cellulose acetate, a polyamide (hollow fiber), and four different types of thin-film composite membranes. Progressive chlorination of methanes, ethanes and propanes produces compounds that exhibit differing physicochemical properties. The differences in compound properties have an effect on the removal of these compounds by reverse osmosis membranes. For example only 25% of the methylene chloride (Dichloromethane) was removed by one thin-film composite versus 90% removal of the carbon tetrachloride. In addition, the various membranes are made of different polymeric materials and showed a wide range of removals. Generally, the thin-film composite membranes out performed the other membranes and the more highly chlorinated the compound the better the removal. Pervaporation is yet another membrane process that may prove effective in removal of alkanes and future studies will address its usefulness as a drinking water.

  15. A molecular beacon approach to measuring the DNA permeability of thin films.

    PubMed

    Johnston, Angus P R; Caruso, Frank

    2005-07-20

    A new method for determining the permeability of thin films has been developed. A molecular beacon immobilized inside a porous silica particle that is subsequently encapsulated within a thin film can be used to determine the size of DNA that can permeate through the film. Using this technique, it has been determined that over 3 h, molecules larger than 4.7 nm do not permeate 15-nm thick polyelectrolyte multilayers and after 75 h molecules larger than 6 nm were excluded. This technique has applications for determining the permeability of films used for controlled drug and gene delivery.

  16. Surface freezing and molecular miscibility of binary alkane-alkane and fluoroalkane-alkane liquid mixtures.

    PubMed

    Takiue, Takanori; Shimasaki, Mayuko; Tsuura, Miyako; Sakamoto, Hiroyasu; Matsubara, Hiroki; Aratono, Makoto

    2014-02-13

    The surface freezing (SF) of liquid n-heptadecane (C17)-n-octadecane (C18) and 1-perfluorooctyl decane (F8H10)-C18 mixtures were studied by surface tension and external reflection absorption FTIR (ERA-FTIR) measurements. The surface tension versus temperature curves of all pure liquids show a sharp break point at Ts corresponding to a surface liquid (SL)-SF transition. The entropy of surface formation is very negative, indicating a well-ordered structure of the SF layer. The ERA-FTIR spectra in the SF state suggested that the C18 molecules are densely packed in the solid state, while the packing of the hydrocarbon (HC) part of F8H10 is a little looser than the fluorocarbon (FC) part because of the difference in the cross-sectional area. In the C17-C18 mixture, the SL-SF transition was found at all bulk compositions. The estimation of the surface composition suggested that two components are miscible both in SL and SF states. The excess entropy of the surface is almost zero in both states, and thus, it was concluded that the two components are mixed almost ideally at the surface. In the case of the F8H10-C18 system, on the other hand, the SL layer is enriched in F8H10 with lower surface tension than C18 compared to bulk liquid. The surface composition in the SF state is almost zero or unity, indicating that F8H10 and C18 molecules are practically immiscible mainly due to the weak interaction between different components. Furthermore, the negative excess entropy in the SL layer suggests domain formation of F8H10 molecules at the surface. PMID:24447215

  17. Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth

    NASA Astrophysics Data System (ADS)

    Yang, Junliang; Yim, Sanggyu; Jones, Tim S.

    2015-03-01

    We study the roughening process and morphology transition of organic semiconductor thin film induced by molecular orientation in the model of molecular semiconductor copper hexadecafluorophthalocyanine (F16CuPc) using both experiment and simulation. The growth behaviour of F16CuPc thin film with the thickness, D, on SiO2 substrate takes on two processes divided by a critical thickness: (1) D <= 40 nm, F16CuPc thin films are composed of uniform caterpillar-like crystals. The kinetic roughening is confirmed during this growth, which is successfully analyzed by Kardar-Parisi-Zhang (KPZ) model with scaling exponents α = 0.71 +/- 0.12, β = 0.36 +/- 0.03, and 1/z = 0.39 +/- 0.12; (2) D > 40 nm, nanobelt crystals are formed gradually on the caterpillar-like crystal surface and the film growth shows anomalous growth behaviour. These new growth behaviours with two processes result from the gradual change of molecular orientation and the formation of grain boundaries, which conversely induce new molecular orientation, rapid roughening process, and the formation of nanobelt crystals.

  18. Histological Stratification of Thick and Thin Plaque Psoriasis Explores Molecular Phenotypes with Clinical Implications

    PubMed Central

    Kim, Dong Joo; Brodmerkel, Carrie; Correa da Rosa, Joel; Krueger, James G.; Suárez-Fariñas, Mayte

    2015-01-01

    Psoriasis, which presents as red, scaly patches on the body, is a common, autoimmune skin disease that affects 2 to 3 percent of the world population. To leverage recent molecular findings into the personalized treatment of psoriasis, we need a strategy that integrates clinical stratification with molecular phenotyping. In this study, we sought to stratify psoriasis patients by histological measurements of epidermal thickness, and to compare their molecular characterizations by gene expression, serum cytokines, and response to biologics. We obtained histological measures of epidermal thickness in a cohort of 609 psoriasis patients, and identified a mixture of two subpopulations—thick and thin plaque psoriasis—from which they were derived. This stratification was verified in a subcohort of 65 patients from a previously published study with significant differences in inflammatory cell infiltrates in the psoriatic skin. Thick and thin plaque psoriasis shared 84.8% of the meta-analysis-derived psoriasis transcriptome, but a stronger dysregulation of the meta-analysis-derived psoriasis transcriptome was seen in thick plaque psoriasis on microarray. RT-PCR revealed that gene expression in thick and thin plaque psoriasis was different not only within psoriatic lesional skin but also in peripheral non-lesional skin. Additionally, differences in circulating cytokines and their changes in response to biologic treatments were found between the two subgroups. All together, we were able to integrate histological stratification with molecular phenotyping as a way of exploring clinical phenotypes with different expression levels of the psoriasis transcriptome and circulating cytokines. PMID:26176783

  19. Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth

    PubMed Central

    Yang, Junliang; Yim, Sanggyu; Jones, Tim S.

    2015-01-01

    We study the roughening process and morphology transition of organic semiconductor thin film induced by molecular orientation in the model of molecular semiconductor copper hexadecafluorophthalocyanine (F16CuPc) using both experiment and simulation. The growth behaviour of F16CuPc thin film with the thickness, D, on SiO2 substrate takes on two processes divided by a critical thickness: (1) D ≤ 40 nm, F16CuPc thin films are composed of uniform caterpillar-like crystals. The kinetic roughening is confirmed during this growth, which is successfully analyzed by Kardar-Parisi-Zhang (KPZ) model with scaling exponents α = 0.71 ± 0.12, β = 0.36 ± 0.03, and 1/z = 0.39 ± 0.12; (2) D > 40 nm, nanobelt crystals are formed gradually on the caterpillar-like crystal surface and the film growth shows anomalous growth behaviour. These new growth behaviours with two processes result from the gradual change of molecular orientation and the formation of grain boundaries, which conversely induce new molecular orientation, rapid roughening process, and the formation of nanobelt crystals. PMID:25801646

  20. Histological Stratification of Thick and Thin Plaque Psoriasis Explores Molecular Phenotypes with Clinical Implications.

    PubMed

    Kim, Jaehwan; Nadella, Pranay; Kim, Dong Joo; Brodmerkel, Carrie; Correa da Rosa, Joel; Krueger, James G; Suárez-Fariñas, Mayte

    2015-01-01

    Psoriasis, which presents as red, scaly patches on the body, is a common, autoimmune skin disease that affects 2 to 3 percent of the world population. To leverage recent molecular findings into the personalized treatment of psoriasis, we need a strategy that integrates clinical stratification with molecular phenotyping. In this study, we sought to stratify psoriasis patients by histological measurements of epidermal thickness, and to compare their molecular characterizations by gene expression, serum cytokines, and response to biologics. We obtained histological measures of epidermal thickness in a cohort of 609 psoriasis patients, and identified a mixture of two subpopulations-thick and thin plaque psoriasis-from which they were derived. This stratification was verified in a subcohort of 65 patients from a previously published study with significant differences in inflammatory cell infiltrates in the psoriatic skin. Thick and thin plaque psoriasis shared 84.8% of the meta-analysis-derived psoriasis transcriptome, but a stronger dysregulation of the meta-analysis-derived psoriasis transcriptome was seen in thick plaque psoriasis on microarray. RT-PCR revealed that gene expression in thick and thin plaque psoriasis was different not only within psoriatic lesional skin but also in peripheral non-lesional skin. Additionally, differences in circulating cytokines and their changes in response to biologic treatments were found between the two subgroups. All together, we were able to integrate histological stratification with molecular phenotyping as a way of exploring clinical phenotypes with different expression levels of the psoriasis transcriptome and circulating cytokines.

  1. [Sources, Migration and Conversion of Dissolved Alkanes, Dissolved Fatty Acids in a Karst Underground River Water, in Chongqing Area].

    PubMed

    Liang, Zuo-bing; Sun, Yu-chuan; Wang, Zun-bo; Shi, Yang; Jiang, Ze-li; Zhang, Mei; Xie, Zheng-Lan; Liao, Yu

    2015-09-01

    Dissolved alkanes and dissolved fatty acids were collected from Qingmuguan underground river in July, October 2013. By gas chromatography-mass spectrometer (GC-MS), alkanes and fatty acids were quantitatively analyzed. The results showed that average contents of alkanes and fatty acids were 1 354 ng.L-1, 24203 ng.L-1 in July, and 667 ng.L-1, 2526 ng.L-1 in October respectively. With the increasing migration distance of dissolved alkanes and dissolved fatty acids in underground river, their contents decreased. Based on the molecular characteristic indices of alkanes, like CPI, OEP, Paq and R, dissolved alkanes were mainly originated from microorganisms in July, and aquatic plants in October. Saturated straight-chain fatty acid had the highest contents in all samples with the dominant peak in C16:0, combined with the characteristics of carbon peak, algae or bacteria might be the dominant source of dissolved fatty acids. PMID:26717680

  2. Measuring long chain alkanes in diesel engine exhaust by thermal desorption PTR-MS

    NASA Astrophysics Data System (ADS)

    Erickson, M. H.; Gueneron, M.; Jobson, B. T.

    2013-07-01

    A method using thermal desorption sampling and analysis by PTR-MS to measure long chain alkanes (C12-C18) and other larger organics associated with diesel engine exhaust emissions is described. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Fragment ion distribution and sensitivity is a function of drift conditions. At 80 Td the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The mass spectrum of gasoline and diesel fuel at 80 Td displayed ion group patterns that can be related to known fuel constituents, such as alkanes, alkylbenzenes and cycloalkanes, and other compound groups that are inferred from molecular weight distributions such as dihydronapthalenes and naphthenic monoaromatics. It is shown that thermal desorption sampling of gasoline and diesel engine exhausts at 80 Td allows for discrimination against light alkanes and alkenes which are a major constituent of both exhausts, allowing for quantification of higher molecular weight alkanes from the abundance of CnH2n+1 fragment ions. Using this approach, the molar abundance of C12-C18 alkanes in diesel engine exhaust was found to be 75% that of the total C1-C4 alkylbenzene abundance. While the PTR-MS mass spectra of gasoline and diesel exhaust looked similar, the abundance of higher molecular weight compounds relative to that of C4-alkylbenzenes was much greater in diesel engine exhaust. The abundance patterns of compounds determined by thermal desorption sampling may allow for emission profiles to be developed to better quantify the relative contributions of diesel and gasoline exhaust emissions of larger organic compounds to urban air concentrations.

  3. Fabrication of Mn_12-acetate Molecular Magnet Thin Films by the Dip-and-Dry Method

    NASA Astrophysics Data System (ADS)

    Seo, D. M.; Viswanathan, M.; Teizer, W.; Zhao, H.; Dunbar, K. R.

    2004-03-01

    We have succeeded in fabricating Mn_12-acetate ([Mn_12O_12(CH_3COO)_16(H_2O)_4]ot2CH_3COOHot4H_2O) thin films on a Si/SiO_2-substrate by the Dip-and-Dry method, an unconventional thin film deposition method, which uses a drying effect of a Mn_12-acetate solution. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterizations show that homogeneous, thin films with smoothness at the molecular level are deposited. The solution concentration and the number of DAD cycles were varied to change the film thickness and the surface roughness. The films were stable against exposure to ambient conditions for several months, as verified by AFM and XPS. This work was supported by the National Science Foundation, the Texas Higher Education Coordinating Board and Texas A University.

  4. Facile nucleation of gold nanoparticles on graphene-based thin films from Au144 molecular precursors

    NASA Astrophysics Data System (ADS)

    Venter, Andrei; Hesari, Mahdi; Shafiq Ahmed, M.; Bauld, Reg; Workentin, Mark S.; Fanchini, Giovanni

    2014-04-01

    We demonstrate a facile and cost effective method to obtain gold nanoparticles on graphene by dispersing Au144 molecular nanoclusters by spin coating them in thin layers on graphene-based films and subsequent annealing in a controlled atmosphere. The graphene-based thin films used for these experiments are prepared by solvent-assisted exfoliation of graphite in water in the presence of ribonucleic acid as a surfactant and by subsequent vacuum filtration of the resulting graphene-containing suspensions. Not only is this method easily reproducible, but it leads to gold nanoparticles that are not dependent in size on the number of graphene layers beneath them. This is a distinct advantage over other methods. Plasmonic effects have been detected in our gold nanoparticle-decorated graphene layers, indicating that these thin films may be useful in applications such as plasmonic solar cells and optical memory devices.

  5. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  6. Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films.

    PubMed

    Wieland, Maria B; Slater, Anna G; Mangham, Barry; Champness, Neil R; Beton, Peter H

    2014-01-01

    We show that thin films of C60 with a thickness ranging from 10 to 100 nm can promote adhesion between a Au thin film deposited on mica and a solution-deposited layer of the elastomer polymethyldisolaxane (PDMS). This molecular adhesion facilitates the removal of the gold film from the mica support by peeling and provides a new approach to template stripping which avoids the use of conventional adhesive layers. The fullerene adhesion layers may also be used to remove organic monolayers and thin films as well as two-dimensional polymers which are pre-formed on the gold surface and have monolayer thickness. Following the removal from the mica support the monolayers may be isolated and transferred to a dielectric surface by etching of the gold thin film, mechanical transfer and removal of the fullerene layer by annealing/dissolution. The use of this molecular adhesive layer provides a new route to transfer polymeric films from metal substrates to other surfaces as we demonstrate for an assembly of covalently-coupled porphyrins.

  7. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    SciTech Connect

    Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael; Matheson, Michael A

    2014-01-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.

  8. Molecular layer-by-layer assembled thin-film composite membranes for water desalination.

    PubMed

    Gu, Joung-Eun; Lee, Seunghye; Stafford, Christopher M; Lee, Jong Suk; Choi, Wansuk; Kim, Bo-Young; Baek, Kyung-Youl; Chan, Edwin P; Chung, Jun Young; Bang, Joona; Lee, Jung-Hyun

    2013-09-14

    Molecular layer-by-layer (mLbL) assembled thin-film composite membranes fabricated by alternating deposition of reactive monomers on porous supports exhibit both improved salt rejection and enhanced water flux compared to traditional reverse osmosis membranes prepared by interfacial polymerization. Additionally, the well-controlled structures achieved by mLbL deposition further lead to improved antifouling performance. PMID:23847127

  9. Discrimination of molecular thin films by surface-sensitive time-resolved optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Peli, Simone; Nembrini, Nicola; Damin, Francesco; Chiari, Marcella; Giannetti, Claudio; Banfi, Francesco; Ferrini, Gabriele

    2015-10-01

    An optical discrimination technique, tailored to nanometric-sized, low optical absorbance molecular complexes adhering to thin metal films, is proposed and demonstrated. It is based on a time-resolved evanescent-wave detection scheme in conjunction with hierarchical cluster analysis and principal value decomposition. The present approach aims to differentiate among molecular films based on statistical methods, without using previous detailed knowledge of the physical mechanisms responsible for the detected signal. The technique is open to integration in lab-on-a-chip architectures and nanoscopy platforms for applications ranging from medical screening to material diagnostics.

  10. Thickness determination of molecularly thin lubricant films by angle-dependent X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Chongjun; Bai, Mingwu

    2007-03-01

    An angle-dependent X-ray photoelectron spectroscopy (XPS) method used to measure the thickness of molecularly thin lubricants was developed. The method was built based on an island model of patched overlayer on a flat substrate by using the photoemission signal solely from the lubricant film. Typical molecularly thin Zdol films on the CHx overcoat of unused commercial magnetic disks were measured to verify the metrology. The lubricant thickness determined by the metrology was equal to the recent result by thermostatic high vacuum atomic force microscopy. The measured deduction in the thickness of the molecularly thin lubricant films, successively irradiated by the monochromatic source operated at 14 kV/250 W, was as low as 1 Ǻ during the first irradiation hour. XPS spectra showed that no hydrocarbons, water or oxygen were adsorbed over the Zdol outer surfaces in the tested XPS conditions. The inelastic mean free path (IMFP) of C 1s in Zdol or in CHx was found to be independent of take off angle (TOA) when TOA < 40°. The IMFP of C 1s in Zdol was ˜63.5 Ǻ and the lubricant island thickness was ˜35 Ǻ.

  11. Crystallization features of normal alkanes in confined geometry.

    PubMed

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D

  12. Highly-oriented molecular arrangements and enhanced magnetic interactions in thin films of CoTTDPz using PTCDA templates.

    PubMed

    Eguchi, Keitaro; Nanjo, Chihiro; Awaga, Kunio; Tseng, Hsiang-Han; Robaschik, Peter; Heutz, Sandrine

    2016-07-14

    In the present work, the templating effect of thin layers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on the growth of cobalt tetrakis(thiadiazole)porphyrazine (CoTTDPz) thin films was examined. X-ray diffraction and optical absorption spectra indicate that while CoTTDPz forms amorphous thin films on the bare substrates, it forms crystalline thin films on the PTCDA templates, in which the molecular planes of CoTTDPz are considered to be parallel to the substrates. Magnetic measurements reveal a significantly enhanced antiferromagnetic interaction of CoTTDPz in the templated thin films, with values reaching over 13 K. The ability to generate crystalline films and to control their orientation using molecular templates is an important strategy in the fields of organic electronics and spintronics in order to tailor the physical properties of organic thin films to suit their intended application. PMID:27183955

  13. Molecular orientation transition of organic thin films on graphite: the effect of intermolecular electrostatic and interfacial dispersion forces.

    PubMed

    Chen, Wei; Huang, Han; Thye, Andrew; Wee, Shen

    2008-09-28

    In situ low-temperature scanning tunnelling microscopy investigation reveals a molecular orientation transition of organic thin films of pentacene and p-sexiphenyl on graphite, arising from the delicate balance between the intermolecular electrostatic and interfacial dispersion forces.

  14. Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications.

    PubMed

    Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin

    2016-03-21

    Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.

  15. Growth-related properties and postgrowth phenomena in organic molecular thin films

    NASA Astrophysics Data System (ADS)

    Campione, M.; Borghesi, A.; Laicini, M.; Sassella, A.; Goletti, C.; Bussetti, G.; Chiaradia, P.

    2007-12-01

    The problem of monitoring the structural and morphological evolutions of thin films of organic molecular materials during their growth by organic molecular beam epitaxy and in the postgrowth stage is addressed here by a combination of in situ optical reflectance anisotropy measurements, ex situ optical and morphological investigations, and theoretical simulation of the material optical response. For α-quaterthiophene, a representative material in the class of organic molecular semiconductors, the results show that molecules crystallize in the first stage of growth in metastable structures, even when deposition is carried out at room temperature. In the postdeposition stage, the film structure evolves within a few days to the known equilibrium structure of the low temperature polymorph. When deposition is carried out at low substrate temperatures, an evolution of the film morphology is also demonstrated.

  16. Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications.

    PubMed

    Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin

    2016-03-21

    Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported. PMID:26907953

  17. Synthesis, characterization, and pulsed laser ablation of molecular sieves for thin film applications

    NASA Astrophysics Data System (ADS)

    Munoz, Trinidad, Jr.

    1998-12-01

    Molecular sieves are one class of crystalline low density metal oxides which are made up of one-, two-, and three dimensional pores and/or cages. We have investigated the synthesis and characterization of metal substituted aluminophosphates and all silica molecular sieves for thin film applications. A new copper substituted aluminophosphate, CuAPO-5 has been synthesized and characterized using x-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy. Electron spin resonance and electron spin echo modulation provided supporting evidence of framework incorporation of Cu(II) ions. Thus, an exciting addition has been added to the family of metal substituted aluminophosphates where substitution of the metal has been demonstrated as framework species. Also presented here is the synthesis and characterization of an iron substituted aluminophosphate, FeAPO-5, and an all silica zeolite, UTD-1 for thin film applications. Pulsed laser ablation has been employed as the technique to generate thin films. Here an excimer laser (KrFsp*, 248 nm) was used to deposit the molecular sieves on a variety of substrates including polished silicon, titanium nitride, and porous stainless steel disks. The crystallinity of the deposited films was enhanced by a post hydrothermal treatment. A vapor phase treatment of the laser deposited FeAPO-5 films has been shown to increase the crystallinity of the film without increasing film thickness. Thin films of the FeAPO-5 molecular sieves were subsequently used as the dielectric phase in capacitive type chemical sensors. The capacitance change of the FeAPO-5 devices to the relative moisture makes them potential humidity sensors. The all silica zeolite UTD-1 thin films were deposited on polished silicon and porous supports. A brief post hydrothermal treatment of the laser deposited films deposited on polished silicon and porous metal supports resulted in oriented film growth lending these films to applications in gas separations

  18. Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae).

    PubMed

    Mukherjee, A; Sarkar, N; Barik, A

    2013-08-01

    Extraction, thin-layer chromatography, and gas chromatography-mass spectrophotometry analyses revealed 15 alkanes representing 97.14% of the total alkanes in the surface waxes of Momordica cochinchinensis Spreng flowers. Nonacosane was the prevailing alkane followed by hexatriacontane, nonadecane, heptacosane, and hentriacontane, accounting for 39.08%, 24.24%, 13.52%, 6.32%, and 5.12%, respectively. The alkanes from flower surface waxes followed by a synthetic mixture of alkanes mimicking alkanes of flower surface waxes elicited attraction of the female insect, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) between 2 and 10-μg/mL concentrations in a Y-shaped glass tube olfactometer bioassay under laboratory conditions. Synthetic nonadecane from 178.28-891.37 ng, heptacosane from 118.14-590.72 ng, and nonacosane at 784.73 ng showed attraction of the insect. A synthetic mixture of 534.82 ng nonadecane, 354.43 ng heptacosane, and 2,354.18 ng nonacosane elicited highest attraction of A. foveicollis. PMID:23949856

  19. Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae).

    PubMed

    Mukherjee, A; Sarkar, N; Barik, A

    2013-08-01

    Extraction, thin-layer chromatography, and gas chromatography-mass spectrophotometry analyses revealed 15 alkanes representing 97.14% of the total alkanes in the surface waxes of Momordica cochinchinensis Spreng flowers. Nonacosane was the prevailing alkane followed by hexatriacontane, nonadecane, heptacosane, and hentriacontane, accounting for 39.08%, 24.24%, 13.52%, 6.32%, and 5.12%, respectively. The alkanes from flower surface waxes followed by a synthetic mixture of alkanes mimicking alkanes of flower surface waxes elicited attraction of the female insect, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) between 2 and 10-μg/mL concentrations in a Y-shaped glass tube olfactometer bioassay under laboratory conditions. Synthetic nonadecane from 178.28-891.37 ng, heptacosane from 118.14-590.72 ng, and nonacosane at 784.73 ng showed attraction of the insect. A synthetic mixture of 534.82 ng nonadecane, 354.43 ng heptacosane, and 2,354.18 ng nonacosane elicited highest attraction of A. foveicollis.

  20. Alkane-Based Urethane Potting Compounds

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  1. Morphological Behavior of Thin Polyhedral Oligomeric Silsesquioxane Films at the Molecular Scale

    SciTech Connect

    G Evmenenko; B Stripe; P Dutta

    2011-12-31

    Synchrotron X-ray reflectivity (XRR) was used to study the structure of thin films of polyhedral oligomeric silsesquioxanes (POSS) with side organic chains of different flexibility and containing terminal epoxy groups. POSS films were deposited from volatile solvents on hydroxylated and hydrogen-passivated silicon surfaces. The XRR data show a variety of structural morphologies, including autophobic molecular monolayers and bilayers as well as uniform films. The role of conformational and energetic factors governing the development of different morphologies in a restricted geometry is discussed.

  2. Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy.

    PubMed

    Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge

    2015-06-21

    We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.

  3. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  4. Imaging the condensation and evaporation of molecularly thin ethanol films with surface forces apparatus

    SciTech Connect

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Zhang, Di; Ni, Zhonghua E-mail: yunfeichen@seu.edu.cn; Yi, Hong; Chen, Yunfei E-mail: yunfeichen@seu.edu.cn

    2014-01-15

    A new method for imaging condensation and evaporation of molecularly thin ethanol films is reported. It is found that the first adsorbed layer of ethanol film on mica surface behaves as solid like structure that cannot flow freely. With the increase of exposure time, more ethanol molecules condense over the mica surface in the saturated ethanol vapor condition. The first layer of adsorbed ethanol film is about 3.8 Å thick measured from the surface forces apparatus, which is believed to be the average diameter of ethanol molecules while they are confined in between two atomically smooth mica surfaces.

  5. Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore.

    PubMed

    Severin, N; Sokolov, I M; Rabe, J P

    2014-04-01

    The structure of multicomponent fluids in confined geometries is a key to understanding their properties. However, it remains an experimental challenge to gain molecular-scale resolution information on this structure. Here we show that mono- and multilayers of graphene, conforming to heterogeneous monolayers of molecules in a flexible slit pore between a mica surface and the graphene layers, allow for mapping the phase separation of water and ethanol within such a slit pore. Employing scanning force microscopy, we readily distinguish clusters of ethanol and water molecules due their different sizes, and we show that the phase separated water-ethanol structures become coarser under thicker graphenes. Moreover, we obtain a lower bound for the two-dimensional diffusion coefficient of ethanol in water of D ≥ 2 × 10(-14) m(2) s(-1). Thus, the molecularly thin slit pore provides a powerful tool to control and to investigate mixed fluids in self-adjusting nanopores.

  6. Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings

    SciTech Connect

    Long, Rong; Dunn, Martin L.

    2014-06-21

    Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

  7. Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Shen, J. L.; Chou, W. C.

    2016-07-01

    We have investigated the luminescence characteristics of Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system. The temperature-dependent photoluminescence (PL) and excitation power-dependent PL spectra were measured to clarify the luminescence mechanisms of the Zn1-xCdxO thin films. The peak energy of the Zn1-xCdxO thin films with increasing the Cd concentration is observed as redshift and can be fitted by the quadratic function of alloy content. The broadened full-width at half-maximum (FWHM) estimated from the 15 K PL spectra as a function of Cd content shows a larger deviation between the experimental values and theoretical curve, which indicates that experimental FWHM values are affected not only by alloy compositional disorder but also by localized excitons occupying states in the tail of the density of states. The Urbach energy determined from an analysis of the lineshape of the low-energy side of the PL spectrum and the degree of localization effect estimated from the temperature-induced S-shaped PL peak position described an increasing mean exciton-localization effects in ZnCdO films with increasing the Cd content. In addition, the PL intensity and peak position as a function of excitation power are carried out to clarify the types of radiative recombination and the effects of localized exciton in the ZnCdO films with different Cd contents.

  8. Growth of SrVO{sub 3} thin films by hybrid molecular beam epitaxy

    SciTech Connect

    Eaton, Craig; Brahlek, Matthew; Engel-Herbert, Roman; Moyer, Jarrett A.; Alipour, Hamideh M.; Grimley, Everett D.; LeBeau, James M.

    2015-11-15

    The authors report the growth of stoichiometric SrVO{sub 3} thin films on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (001) substrates using hybrid molecular beam epitaxy. This growth approach employs a conventional effusion cell to supply elemental A-site Sr and the metalorganic precursor vanadium oxytriisopropoxide (VTIP) to supply vanadium. Oxygen is supplied in its molecular form through a gas inlet. An optimal VTIP:Sr flux ratio has been identified using reflection high-energy electron-diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy, demonstrating stoichiometric SrVO{sub 3} films with atomically flat surface morphology. Away from the optimal VTIP:Sr flux, characteristic changes in the crystalline structure and surface morphology of the films were found, enabling identification of the type of nonstoichiometry. For optimal VTIP:Sr flux ratios, high quality SrVO{sub 3} thin films were obtained with smallest deviation of the lattice parameter from the ideal value and with atomically smooth surfaces, indicative of the good cation stoichiometry achieved by this growth technique.

  9. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

    PubMed Central

    Sundberg, Pia

    2014-01-01

    Summary The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. PMID:25161845

  10. Solar Selective Coatings Prepared From Thin-Film Molecular Mixtures and Evaluated

    NASA Technical Reports Server (NTRS)

    Jaworske, Don A.

    2003-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling molecular mixing during ion-beam sputter deposition, researchers can tailor the solar selective coatings to have the combined properties of high solar absorptance and low infrared emittance. On orbit, these combined properties simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. The solar selective coatings are envisioned for use on minisatellites, for applications where solar energy is used to power heat engines or to heat remote regions in the interior of the spacecraft. Such systems may be useful for various missions, particularly those to middle Earth orbit. Sunlight must be concentrated by a factor of 100 or more to achieve the desired heat inlet operating temperature. At lower concentration factors, the temperature of the heat inlet surface of the heat engine is too low for efficient operation, and at high concentration factors, cavity type heat receivers become attractive. The an artist's concept of a heat engine, with the annular heat absorbing surface near the focus of the concentrator coated with a solar selective coating is shown. In this artist's concept, the heat absorbing surface powers a small Stirling convertor. The astronaut's gloved hand is provided for scale. Several thin-film molecular mixtures have been prepared and evaluated to date, including mixtures of aluminum and aluminum oxide, nickel and aluminum oxide, titanium and aluminum oxide, and platinum and aluminum oxide. For example, a 2400- Angstrom thick mixture of titanium and aluminum oxide was found to have a solar absorptance of 0.93 and an infrared emittance of 0.06. On the basis of tests performed under flowing nitrogen at temperatures as high as 680 C, the coating appeared to be durable at elevated temperatures. Additional durability

  11. ClogP(alk): a method for predicting alkane/water partition coefficient.

    PubMed

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M

    2013-05-01

    Alkane/water partition coefficients (P(alk)) are less familiar to the molecular design community than their 1-octanol/water equivalents and access to both data and prediction tools is much more limited. A method for predicting alkane/water partition coefficient from molecular structure is introduced. The basis for the ClogP(alk) model is the strong (R² = 0.987) relationship between alkane/water partition coefficient and molecular surface area (MSA) that was observed for saturated hydrocarbons. The model treats a molecule as a perturbation of a saturated hydrocarbon molecule with the same MSA and uses increments defined for functional groups to quantify the extent to which logP(alk) is perturbed by the introduction each functional group. Interactions between functional groups, such as intramolecular hydrogen bonds are also parameterized within a perturbation framework. The functional groups and interactions between them are specified substructurally in a transparent and reproducible manner using SMARTS notation. The ClogP(alk) model was parameterized using data measured for structurally prototypical compounds that dominate the literature on alkane/water partition coefficients and then validated using an external test set of 100 alkane/water logP measurements, the majority of which were for drugs.

  12. Measuring long chain alkanes in diesel engine exhaust by thermal desorption PTR-MS

    NASA Astrophysics Data System (ADS)

    Erickson, M. H.; Gueneron, M.; Jobson, B. T.

    2014-01-01

    A method using thermal desorption sampling and analysis by proton transfer reaction mass spectrometry (PTR-MS) to measure long chain alkanes (C12-C18) and other larger organics associated with diesel engine exhaust emissions is described. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Fragment ion distribution and sensitivity is a function of drift conditions. At 80 Td the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The mass spectrum of gasoline and diesel fuel at 80 Td displayed ion group patterns that can be related to known fuel constituents, such as alkanes, alkylbenzenes and cycloalkanes, and other compound groups that are inferred from molecular weight distributions such as dihydronapthalenes and naphthenic monoaromatics. It is shown that thermal desorption sampling of gasoline and diesel engine exhausts at 80 Td allows for discrimination against volatile organic compounds, allowing for quantification of long chain alkanes from the abundance of CnH2n+1 fragment ions. The total abundance of long chain alkanes in diesel engine exhaust was measured to be similar to the total abundance of C1-C4 alkylbenzene compounds. The abundance patterns of compounds determined by thermal desorption sampling may allow for emission profiles to be developed to better quantify the relative contributions of diesel and gasoline exhaust emissions on organic compounds concentrations in urban air.

  13. Morphological Transformations in Solid Domains of Alkanes on Surfactant Solutions.

    PubMed

    Matsubara, Hiroki; Takaichi, Tetsumasa; Takiue, Takanori; Aratono, Makoto; Toyoda, Aya; Iimura, Kenichi; Ash, Philip A; Bain, Colin D

    2013-03-21

    Alkanes on surfactant solutions can form three distinct phases at the air-solution interface, a liquid phase (L), a solid monolayer phase (S1), and a hybrid bilayer phase (S2). Phase coexistence between any two, or all three, of these phases has been observed by Brewster angle microscopy of tetradecane, hexadecane, and their mixtures on solutions of tetradecyltrimethylammonium bromide. The morphologies of the domains depend on the competition between line tension and electrostatic interactions, which are essentially different depending on the pair of phases in contact. Domains of S1 in the L phase are long and thin; however, long, thin domains of L in an S1 phase are not stable but break up into a string of small circular domains. The bilayer S2 domains are always circular, owing to the dominance of line tension on the morphology. PMID:26291344

  14. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  15. Fundamentals of photoelectric effects in molecular electronic thin film devices: applications to bacteriorhodopsin-based devices.

    PubMed

    Hong, F T

    1995-01-01

    This tutorial lecture focuses on the fundamental mechanistic aspects of light-induced charge movements in pigment-containing membranes. The topic is relevant to molecular electronics because many prototypes optoelectronic devices are configured as pigment-containing thin films. We use reconstituted bacteriorhodopsin membranes as an example to illustrate the underlying principle of measurements and data interpretation. Bacteriorhodopsin, a light-driven proton pump, is the only protein component in the purple membrane of Halobacterium halobium. It resembles the visual pigment rhodopsin chemically but performs the function of photosynthesis. Bacteriorhodopsin thus offers an unprecedented opportunity for us to compare the visual photoreceptor and the photosynthetic apparatus from a mechanistic point of view. Bacteriorhodopsin, well known for its exceptional chemical and mechanical stability, is also a popular advanced biomaterial for molecular device construction. The tutorial approaches the subject from two angles. First, the fundamental photoelectric properties are exploited for device construction. Second, basic design principles for photosensors and photon energy converters can be elucidated via 'reverse engineering'. The concept of molecular intelligence and the principle of biomimetic science are discussed.

  16. Lipoate-based imprinted self-assembled molecular thin films for biosensor applications.

    PubMed

    Tappura, Kirsi; Vikholm-Lundin, Inger; Albers, Willem M

    2007-01-15

    Lipoate derivatives were used for the formation of imprinted self-assembled molecular thin films for the recognition of morphine. A large collection of lipoate derivatives was screened by molecular dynamics simulations in various solvents. A set of ligands showing favourable interactions with morphine in aqueous environment was selected for synthesis. Morphine-imprinted layers were then produced on gold substrates in mixed monolayers with morphine added as the template. The binding of ligands and morphine to gold, as well as the association/dissociation of morphine to the formed layers were studied with Surface Plasmon Resonance. Imprinted factors were highly variable and were dependent on ligand/morphine mixing ratio, lipoate derivative and monolayer preparation method. The imprinted factors were as high as 100 and 600 for one of the ligands. The results show that the simulations are able to provide correct information of the relative strengths of the molecular interactions between the ligand and morphine molecules in different solutions. The liquid phase simulations are, however, not able to predict the imprinted factors (i.e. distinguish between specific and non-specific binding), because the specificity is not formed before self-assembly on the surface.

  17. Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Shtein, Max; Peumans, Peter; Benziger, Jay B.; Forrest, Stephen R.

    2003-04-01

    Using both analytical and experimental methods, we show that micron scale patterned growth of small molecular weight organic semiconductor thin films can be achieved by the recently demonstrated process of organic vapor phase deposition (OVPD). In contrast to the conventional process of vacuum thermal evaporation, the background gas pressure during OVPD is typically 0.1-10 Torr, resulting in a molecular mean free path (mfp) of from 100 to 1 μm, respectively. Monte Carlo simulations of film growth through apertures at these gas densities indicate that when the mfp is on the order of the mask-to-substrate separation, deposit edges can become diffuse. The simulations and deposition experiments discussed here indicate that the deposited feature shape is controlled by the mfp, the aperture geometry, and the mask-to-substrate separation. Carefully selected process conditions and mask geometries can result in features as small as 1 μm. Furthermore, based on continuum and stochastic models of molecular transport in confined geometries, we propose the in situ direct patterning growth technique of organic vapor jet printing. The high pattern definition obtained by OVPD makes this process attractive for the growth of a wide range of structures employed in modern organic electronic devices.

  18. Supported organoiridium catalysts for alkane dehydrogenation

    SciTech Connect

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  19. Diffusion Coefficients of n-Alkanes and Polyethylenes Filled with Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ozisik, Rahmi; Mattice, Wayne L.; von Meerwall, Ernst

    2003-03-01

    The diffusion coefficients of various n-alkane and polyethylene samples filled with zinc oxide nanoparticles were measured with pulsed-gradient spin-echo (PGSE) NMR technique. The n-alkanes used in this study had carbon numbers ranging between 12 and 60. The number average molecular weights of the two polyethylene samples were 6200 and 13900 g/mol. The different size of zinc oxide used with spherical geometry. The experiments were performed with three different zinc oxide nanoparticles that had differing sizes. This study investigates the effects of the nanoparticle size and the molecular weight on the diffusion coefficient of the polymer chains. The results account for the restriction to diffusion due to detour and tortuosity effects, which differ for n-alkanes and polyethylene. Because the effective diffusion distance in the PGSE NMR experiments is larger than the size of the nanoparticles, the observed diffusivities represent asymptotic averages over multiple encounters between the diffusing molecules and the nanoparticles.

  20. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular Passivation

    SciTech Connect

    Rajachidambaram, Meena Suhanya; Pandey, Archana; Vilayur Ganapathy, Subramanian; Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2013-10-21

    The role of back channel surface chemistry on amorphous zinc tin oxide (ZTO) bottom gate thin film transistors (TFT) have been characterized by positive bias-stress measurements and x-ray photoelectron spectroscopy. Positive bias-stress turn-on voltage shifts for ZTO-TFTs were significantly reduced by passivation of back channel surfaces with self-assembled monolayers of n-hexylphosphonic acid (n-HPA) when compared to ZTO-TFTs with no passivation. These results indicate that adsorption of molecular species on exposed back channel of ZTO-TFTs strongly influence observed turn-on voltage shifts, as opposed to charge injection into the dielectric or trapping due to oxygen vacancies.

  1. Thin film growth of CaFe2As2 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  2. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  3. Highly Ordered Organic Molecular Thin Films on Silicon Studied by STM and LEED

    NASA Astrophysics Data System (ADS)

    Wagner, Sean; Zhang, Pengpeng

    2014-03-01

    Achieving growth of long-range ordered organic molecular thin films on inorganic substrates continues to be a significant challenge for organic electronics applications. Here, we report the growth of highly ordered zinc phthalocyanine (ZnPc) thin films both in-plane and out-of-plane on the deactivated Si(111) surface by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). By adjusting the substrate temperature during deposition, the anisotropic step-flow growth mode can be accessed causing a reduction in the substrate symmetry which allows for the long-range in-plane ordering as well as the decrease of grain boundary density. Additionally, the ZnPc molecules are able to maintain a highly ordered configuration in multi-layers despite a gradual decrease in the molecule-substrate interaction, which is attributed to the strong interlayer π- π interaction. We appreciate the fruitful discussion with Prof. Richard Lunt. This research is funded by the DOE Office of Science Early Career Research Program (Grant number DE-SC0006400) through the Office of Basic Energy Sciences.

  4. Determination of the n-alkane profile of epicuticular wax extracted from mature leaves of Cestrum nocturnum (Solanaceae: Solanales).

    PubMed

    Chowdhury, Nandita; Ghosh, Anupam; Bhattacharjee, Indranil; Laskar, Subrata; Chandra, Goutam

    2010-09-01

    An n-hexane extract of fresh, mature leaves of Cestrum nocturnum (Solanales: Solanaceae) containing thin layer epicuticular waxes was analysed by thin-layer chromatography, infrared and gas liquid chromatography using standard hydrocarbons. Seventeen long chain alkanes (n-C(18) to n-C(34)) were identified and quantified. Hentriacontane (n-C(31)) was established as the major n-alkane, while nonadecane (n-C(19)) was the least abundant component of the extracted wax fraction. The carbon preference index calculated for the sample was 1.30, showing an odd to even carbon number predominance.

  5. Simulation of the energy spectra of original versus recombined H{sub 2}{sup +} molecular ions transmitted through thin foils

    SciTech Connect

    Barriga-Carrasco, Manuel D.; Garcia-Molina, Rafael

    2004-09-01

    This work presents the results of computer simulations for the energy spectra of original versus recombined H{sub 2}{sup +} molecular ions transmitted through thin amorphous carbon foils, for a broad range of incident energies. A detailed description of the projectile motion through the target has been done, including nuclear scattering and Coulomb repulsion as well as electronic self-retarding and wake forces; the two latter are calculated in the dielectric formalism framework. Differences in the energy spectra of recombined and original transmitted H{sub 2}{sup +} molecular ions clearly appear in the simulations, in agreement with the available experimental data. Our simulation code also differentiates the contributions due to original and to recombined H{sub 2}{sup +} molecular ions when the energy spectra contain both contributions, a feature that could be used for experimental purposes in estimating the ratio between the number of original and recombined H{sub 2}{sup +} molecular ions transmitted through thin foils.

  6. Solar photothermochemical alkane reverse combustion

    PubMed Central

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.

    2016-01-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  7. Solar photothermochemical alkane reverse combustion.

    PubMed

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H; MacDonnell, Frederick M

    2016-03-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180-200 °C) and pressures (1-6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical-thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions.

  8. Defect-free thin InAs nanowires grown using molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2016-01-21

    In this study, we designed a simple method to achieve the growth of defect-free thin InAs nanowires with a lateral dimension well below their Bohr radius on different substrate orientations. By depositing and annealing a thin layer of Au thin film on a (100) substrate surface, we have achieved the growth of defect-free uniform-sized thin InAs nanowires. This study provides a strategy to achieve the growth of pure defect-free thin nanowires.

  9. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle

    PubMed Central

    Hooper, Scott L.; Hobbs, Kevin H.; Thuma, Jeffrey B.

    2008-01-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vetebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca++ binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved. PMID:18616971

  10. Molecular beam epitaxy deposition of Gd2O3 thin films on SrTiO3 (100) substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jinxing; Hao, Jinghua; Zhang, Yangyang; Wei, Hongmei; Mu, Juyi

    2016-06-01

    Gd2O3 thin films are grown on the SrTiO3 (100) substrate by molecular beam epitaxy (MBE) deposition. X-ray diffraction (XRD) analysis, conventional transmission electron microscopy (TEM) and aberration-corrected scanning transmission electron microscopy (STEM) are performed to investigate the microstructure of deposited thin films. It is found that the as-deposited thin film possesses a very uniform thickness of ∼40 nm and is composed of single cubic phase Gd2O3 grains. STEM and TEM observations reveal that Gd2O3 thin film grows epitaxially on the SrTiO3 (100) substrate with (001)Gd2O3//(100)STO and [110]Gd2O3//[001]STO orientations. Furthermore, the Gd atoms are found to diffuse into the SrTiO3 substrate for a depth of one unit cell and substitute for the Sr atoms near the interface.

  11. Long-range correlated dynamics in ultra-thin molecular glass films

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Glor, Ethan C.; Li, Mu; Liu, Tianyi; Wahid, Kareem; Zhang, William; Riggleman, Robert A.; Fakhraai, Zahra

    2016-09-01

    It has been previously shown that the free surface of molecular glasses has enhanced surface diffusion compared to the bulk. However, the degree by which the glass dynamics are affected by the free surface remains unexplored. Here, we measure enhanced dynamics in ultra-thin molecular glass films as a function of film thickness. We demonstrate that these films exhibit a sharp transition from glassy solid to liquid-like behavior when the thickness is reduced below 30 nm. This liquid-like behavior persists even at temperatures well below the glass transition temperature, Tg. The enhanced dynamics in these films can produce large scale morphological features during physical vapor deposition and lead to a dewetting instability in films held at temperatures as low as Tg - 35 K. The effective viscosity of these films are measured by monitoring the dewetting kinetics. These measurements combined with cooling-rate dependent Tg measurements show that the apparent activation barrier for rearrangement decreases sharply in films thinner than 30 nm. This sharp transition in the dynamics suggests that long-range correlated dynamics exists in these films such that the enhancement induced by the free surface can strongly affect the dynamics of the film over a length scale that is ten times larger than the size of the molecules.

  12. Molecular Interactions Between Alcohols and Metal Phthalocyanine Thin Films for Optical Gas Sensor Applications

    NASA Astrophysics Data System (ADS)

    Uttiya, Sureeporn; Kladsomboon, Sumana; Chamlek, Onanong; Suwannet, Wiriya; Osotchan, Tanakorn; Kerdcharoen, Teerakiat; Brinkmann, Martin; Pratontep, Sirapat

    Optically active organic gas sensors represent a promising molecular sensing device with low power consumption. We report experimental and computational investigations into the molecular interactions of metal phthalocyanine thin films with alcohol vapor. In the gas-sensing regime, the interactions of zinc phthalocyanine and alcohol molecules were studied by the Density Functional Theory (DFT) calculations, in comparison to the x-ray absorption spectroscopy. The DFT results reveal a reversible charge interaction mechanism between the zinc atom and the oxygen atom in the alcohol OH group, which corresponds to a shift in the x-ray absorption edge of the zinc atom. In the irreversible interaction regime, the effect of saturated alcohol vapor on spin-coated zinc phthalocyanine films was studied by the phase contrast microscopy, the optical absorption spectroscopy, and the transmission electron microscopy. Annealing the spin-coated films in saturated methanol vapor was found to induce an irreversible structural transformation from an amorphous to a crystalline phase, similar to the effect of a thermal annealing process. These crystallization processes of the zinc phthalocyanine films were also found to enhance their stability and alcohol sensing performance.

  13. Phases, line tension and pattern formation in molecularly thin films at the air-water interface

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam

    A Langmuir film, which is a molecularly thin insoluble film on a liquid substrate, is one practical realization of a quasi-two dimensional matter. The major advantages of this system for the study of phase separation and phase co-existence are (a) it allows accurate control of the components and molecular area of the film and (b) it can be studied by various methods that require very flat films. Phase separation in molecularly thin films plays an important role in a range of systems from biomembranes to biosensors. For example, phase-separated lipid nano-domains in biomembranes are thought to play crucial roles in membrane function. I use Brewster Angel Microscopy (BAM) coupled with Fluorescence Microscopy (FM) and static Light Scattering Microscopy (LSM) to image phases and patterns within Langmuir films. The three microscopic techniques --- BAM, FM and LSM --- are complimentary to each other, providing distinct sets of information. They allow direct comparison with literature results in lipid systems. I have quantitatively validated the use of detailed hydrodynamic simulations to determine line tension in monolayers. Line tension decreases as temperature rises. This decrease gives us information on the entropy associated with the line, and thus about line structure. I carefully consider the thermodynamics of line energy and entropy to make this connection. In the longer run, LSM will be exploited to give us further information about line structure. I have also extended the technique by testing it on domains within the curved surface of a bilayer vesicle. I also note that in the same way that the presence of surface-active agents, known as surfactants, affects surface energy, the addiction of line active agents alters the inter-phase line energy. Thus my results set to stage to systematically study the influence of line active agents ---'linactants' --- on the inter-phase line energy. Hierarchal self-assembled chiral patterns were observed as a function of

  14. Supramolecular Scaffold for Tailoring the Two-Dimensional Assembly of Functional Molecular Units into Organic Thin Films.

    PubMed

    Leung, Franco King-Chi; Ishiwari, Fumitaka; Kajitani, Takashi; Shoji, Yoshiaki; Hikima, Takaaki; Takata, Masaki; Saeki, Akinori; Seki, Shu; Yamada, Yoichi M A; Fukushima, Takanori

    2016-09-14

    Tailoring structurally anisotropic molecular assemblies while controlling their orientation on solid substrates is an important subject for advanced technologies that use organic thin films. Here we report a supramolecular scaffold based on tripodal triptycene assemblies, which enables functional molecular units to assemble into a highly oriented, multilayered two-dimensional (2D) structure on solid substrates. The triptycene building block carries an ethynyl group and three flexible side chains at the 10- and 1,8,13-positions, respectively. These bridgehead-substituted tripodal triptycenes self-assembled on solid substrates to form a well-defined "2D hexagonal + 1D lamellar" structure, which developed parallel to the surface of the substrates. Remarkably, the assembling properties of the triptycene building blocks, particularly for a derivative with tri(oxyethylene)-containing side chains, were not impaired when the alkyne terminal was functionalized with a large molecular unit such as C60, which is comparable in diameter to the triptycene framework. Consequently, thin films with a multilayered 2D assembly of the C60 unit were obtained. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed that the C60 film exhibits highly anisotropic charge-transport properties. Bridgehead-substituted tripodal triptycenes may provide a versatile supramolecular scaffold for tailoring the 2D assembly of molecular units into a highly oriented thin film, and in turn for exploiting the full potential of anisotropic molecular functions. PMID:27549349

  15. Molecular dynamic simulations of surface morphology and pulsed laser deposition growth of lithium niobate thin films on silicon substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Zhu, Hao-Nan; Pei, Zi-Dong; Kong, Yong-Fa; Xu, Jing-Jun

    2015-05-01

    The molecular dynamic simulation of lithium niobate thin films deposited on silicon substrate is carried out by using the dissipative particle dynamics method. The simulation results show that the Si (111) surface is more suitable for the growth of smooth LiNbO3 thin films compared to the Si(100) surface, and the optimal deposition temperature is around 873 K, which is consistent with the atomic force microscope results. In addition, the calculation molecular number is increased to take the electron spins and other molecular details into account. Project supported by the National Basic Research Program of China (Grant No. 2011CB922003), the International S&T Cooperation Program of China (Grant No. 2013DFG52660), the Taishan Scholar Construction Project Special Fund, China, and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 65030091 and 65010961).

  16. Growth mechanism of CuZnInSe2 thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, Ya Hsin; Yang, Chu Shou; Wu, Chia Hsing; Chiu, Jai Wei; Yang, Min De; Wu, Chih-Hung

    2013-09-01

    CuZnInSe2 (CZIS) has potential application in solar cell for absorption layer, and give an advantage to change the band gap from CuInSe2 (1.02 eV) to ZnSe (2.67 eV). Using molecular beam epitaxy technology, the CZIS thin films were grown via CuInSe (CIS) and ZnSe base. In the case of CIS, thin films were grown on Mo-coated soda lime glass with various zinc flux. CIS was transformed into chalcopyrite and sphalerite coexisting CZIS easily but it is difficult to transform into the pure sphalerite CZIS. Zn/(Zn+In+Cu) ratio has limited to approximate 36 at% and the excess-Zn played a catalyst role. In the case of ZnSe base, which was grown on GaAs (001), various In and Cu flux defined as the TIn series and TCu series, respectively. There are four types of compound in the TIn series and TCu series, including ZnSe, InxSey, ZnIn2Se4 (ZIS) and CZIS. In the TIn series under the lowest In and Cu flux, selenium (Se) were randomly combined with cations to form the CZIS. When TIn is increased in this moment, the CZIS was transformed into ZIS. In the TCu series, CZIS demonstrated via In-rich ZIS (Zn(In, Cu)Se) and InxSey base ((Zn, Cu)InSe). It is chalcopyrite and sphalerite coexisting structure in the medium TCu region. In the high TCu region, it is transformed into the Zn-poor and Cu-rich CZIS.

  17. Mass effect on the Soret coefficient in n-alkane mixtures.

    PubMed

    Alonso de Mezquia, David; Bou-Ali, M Mounir; Madariaga, J Antonio; Santamaría, Carlos

    2014-02-28

    We have determined the Soret coefficient of different equimolar and non equimolar n-alkane mixtures from measurements of the molecular diffusion and thermal diffusion coefficients. It is shown that equimolar mixtures behave as isotopic-like mixtures in which only the mass effect contributes to the Soret effect. In non equimolar mixtures, a small linear dependence with the molar fraction is observed. Finally, we have obtained a new correlation, which allows the determination of the Soret coefficient of n-alkane mixtures using the data of viscosity, the thermal expansion coefficient of the pure components, and the density of the equimolar mixture. PMID:24588181

  18. Mass effect on the Soret coefficient in n-alkane mixtures

    SciTech Connect

    Alonso de Mezquia, David; Mounir Bou-Ali, M.; Madariaga, J. Antonio; Santamaría, Carlos

    2014-02-28

    We have determined the Soret coefficient of different equimolar and non equimolar n-alkane mixtures from measurements of the molecular diffusion and thermal diffusion coefficients. It is shown that equimolar mixtures behave as isotopic-like mixtures in which only the mass effect contributes to the Soret effect. In non equimolar mixtures, a small linear dependence with the molar fraction is observed. Finally, we have obtained a new correlation, which allows the determination of the Soret coefficient of n-alkane mixtures using the data of viscosity, the thermal expansion coefficient of the pure components, and the density of the equimolar mixture.

  19. Molecular beam epitaxy and characterization of thin Bi2Se3 films on Al2O3 (110)

    NASA Astrophysics Data System (ADS)

    Tabor, Phillip; Keenan, Cameron; Urazhdin, Sergei; Lederman, David

    2011-07-01

    The structural and electronic properties of thin Bi2Se3 films grown on Al2O3 (110) by molecular beam epitaxy are investigated. The epitaxial films grow in the Frank-van der Merwe mode and are c-axis oriented. They exhibit the highest crystallinity, the lowest carrier concentration, and optimal stoichiometry at a substrate temperature of 200 °C determined by the balance between surface kinetics and desorption of Se. The crystallinity of the films improves with increasing Se/Bi flux ratio. Our results enable studies of thin topological insulator films on inert, non-conducting substrates that allow optical access to both film surfaces.

  20. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.

    PubMed

    Karimi, M; Biria, D

    2016-06-01

    The impact of adding soluble starch on biodegradation of n-alkanes (C10-C14) by Bacillus subtilis TB1 was investigated. Gas chromatography was employed to measure the residual hydrocarbons in the system. It was observed that the efficiency of biodegradation improved with the presence of starch and the obtained residual hydrocarbons in the system were 53% less than the samples without starch. The produced bacterial enzymes were studied through electrophoresis and reverse zymography for explaining the observations. The results indicated that the produced amylase by the bacteria can degrade hydrocarbons and the same was obtained by the application of a commercial alpha amylase sample. In addition, in silico docking of alpha-amylase with n-alkanes with different molecular weights was studied by Molegro virtual docker which showed high negative binding energies and further substantiated the experimental observations. Overall, the findings confirmed the catalytic effect of alpha amylase on n-alkanes degradation.

  1. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    NASA Astrophysics Data System (ADS)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  2. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.

    PubMed

    Karimi, M; Biria, D

    2016-06-01

    The impact of adding soluble starch on biodegradation of n-alkanes (C10-C14) by Bacillus subtilis TB1 was investigated. Gas chromatography was employed to measure the residual hydrocarbons in the system. It was observed that the efficiency of biodegradation improved with the presence of starch and the obtained residual hydrocarbons in the system were 53% less than the samples without starch. The produced bacterial enzymes were studied through electrophoresis and reverse zymography for explaining the observations. The results indicated that the produced amylase by the bacteria can degrade hydrocarbons and the same was obtained by the application of a commercial alpha amylase sample. In addition, in silico docking of alpha-amylase with n-alkanes with different molecular weights was studied by Molegro virtual docker which showed high negative binding energies and further substantiated the experimental observations. Overall, the findings confirmed the catalytic effect of alpha amylase on n-alkanes degradation. PMID:26971168

  3. The hydrodeoxygenation of bioderived furans into alkanes

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew D.; Waldie, Fraser D.; Wu, Ruilian; Schlaf, Marcel; ‘Pete' Silks, Louis A.; Gordon, John C.

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.

  4. The hydrodeoxygenation of bioderived furans into alkanes.

    PubMed

    Sutton, Andrew D; Waldie, Fraser D; Wu, Ruilian; Schlaf, Marcel; Silks, Louis A Pete; Gordon, John C

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons. PMID:23609095

  5. Frictional Response of Molecularly Thin Liquid Polymer Films Subject to Constant Shear Stress

    NASA Astrophysics Data System (ADS)

    Tschirhart, Charles; Troian, Sandra

    2014-03-01

    Measurements of the frictional response of nanoscale viscous films are typically obtained using the surface force apparatus in which a fluid layer is confined between smooth solid substrates approaching at constant speed or force. The squeezing pressure causes lateral flow from which the shear viscosity can be deduced. Under these conditions however, molecularly thin films tend to solidify wholly or partially and estimates of the shear viscosity can exceed those in macroscale films by many orders of magnitude. This problem can be avoided altogether by examining the response of an initially flat, supported, free surface film subject to comparable values of surface shear stress by application of an external inert gas stream. This method was first conceived by Derjaguin in 1944; more recent studies by Mate et al. at IBM Almaden on complex polymeric systems have uncovered fluid layering and other interesting behaviors. The only drawback is that this alternative technique requires an accurate model for interface distortion. We report on ellipsometric measurements of ultrathin polymeric films in efforts to determine whether the usual interface equations for free surface films based purely on continuum models can be properly extended to nanoscale films. Supported by a Fred and Jean Felberg Fellowship and G. W. Housner Student Discovery Fund.

  6. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography.

    PubMed

    Winter, Gregory T; Wilhide, Joshua A; LaCourse, William R

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot. PMID:26471042

  7. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    NASA Astrophysics Data System (ADS)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  8. Adhesion and friction properties of molecularly thin perfluoropolyether liquid films on solid surface.

    PubMed

    Tani, Hiroshi; Tagawa, Norio

    2012-02-28

    The adhesion and friction properties of molecularly thin perfluoropolyether (PFPE) lubricant films dip-coated on a diamond-like carbon (DLC) overcoat of magnetic disks were studied using a pin-on-disk-type micro-tribotester that we developed. The load and friction forces were simultaneously measured on a rotating disk surface under an increasing/decreasing load cycle and slow sliding conditions. Experiments were performed using two types of PFPE lubricants: Fomblin Z-tetraol2000S with functional end-groups and Fomblin Z-03 without any end-group. The curves of the friction force as a function of the applied load agree with the curves estimated using the Johnson-Kendall-Roberts (JKR) model. The friction forces on the Z-03 films having different thicknesses were not found to decrease drastically; however, the friction forces on the Z-tetraol film were found to decrease drastically when the film thickness is more than ~1.2 nm. This drastic change in the case of the Z-tetraol film is estimated to be affected by the coverage of the lubricant film. PMID:22292931

  9. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dangwal Pandey, A.; Krausert, K.; Franz, D.; Grânäs, E.; Shayduk, R.; Müller, P.; Keller, T. F.; Noei, H.; Vonk, V.; Stierle, A.

    2016-08-01

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  10. A new molecular silver precursor for the preparation of thin conductive silver films

    NASA Astrophysics Data System (ADS)

    Fritsch, Julia; Wisser, Florian M.; Eckhardt, Kai; Bon, Volodymyr; Mondin, Giovanni; Schumm, Benjamin; Grothe, Julia; Kaskel, Stefan

    2013-11-01

    The synthesis and characterization of a new molecular silver precursor is reported. The presented complex [Ag(DioxoNic)2]NO3 (DioxoNic=(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl nicotinate) can be obtained by the reaction of silver(I) nitrate and (2,2-Dimethyl-1,3-dioxolan-4-yl)methyl nicotinate in ethanol. The product crystallizes in the monoclinic space group P21/c (No. 14). Concentrated ethanolic solutions allow the fabrication of thin films via dip coating. Using UV-irradiation and subsequent moderate temperature treatment compact films of elemental silver can be obtained. The resulting silver films show excellent electrical properties with sheet resistances down to 0.7 Ω/sq at a film thickness of 25 nm corresponding to a specific electrical resistance of 1.75×10-8 Ωm very close to the value of bulk silver. For the potential application in optoelectronic devices, the complex was tested as an ink in a soft printing process for the preparation of patterned silver films.

  11. Measuring molecular order in poly(3-alkylthiophene) thin films with polarizing spectroscopies.

    PubMed

    Gurau, Marc C; Delongchamp, Dean M; Vogel, Brandon M; Lin, Eric K; Fischer, Daniel A; Sambasivan, Sharadha; Richter, Lee J

    2007-01-16

    We measured the molecular order of poly(3-alkylthiophene) chains in thin films before and after melting through the combination of several polarized photon spectroscopies: infrared (IR) absorption, variable angle spectroscopic ellipsometry (SE), and near-edge X-ray absorption fine structure (NEXAFS). The data from the various techniques can be uniformly treated in the context of the dielectric constant tensor epsilon for the film. The combined spectroscopies allow determination of the orientation distribution of the main-chain axis (SE and IR), the conjugated pi system normal (NEXAFS), and the side-chain axis (IR). We find significant improvement in the backbone order of the films after recrystallization of the material at temperatures just below the melting temperature. Less aggressive thermal treatments are less effective. IR studies show that the changes in backbone structure occur without significant alteration of the structure of the alkyl side chains. The data indicate that the side chains exhibit significant disorder for all films regardless of the thermal history of the sample.

  12. Atomically-thin molecular layers for electrode modification of organic transistors.

    PubMed

    Gim, Yuseong; Kang, Boseok; Kim, BongSoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-09-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm(2) V(-1) s(-1) and electron mobility of 0.17 cm(2) V(-1) s(-1) in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.

  13. Atomically-thin molecular layers for electrode modification of organic transistors.

    PubMed

    Gim, Yuseong; Kang, Boseok; Kim, BongSoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-09-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm(2) V(-1) s(-1) and electron mobility of 0.17 cm(2) V(-1) s(-1) in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs. PMID:26243510

  14. Molecular dynamics study of deformation and fracture in a tantalum nano-crystalline thin film

    NASA Astrophysics Data System (ADS)

    Smith, Laura; Zimmerman, Jonathan A.; Hale, Lucas M.; Farkas, Diana

    2014-06-01

    We present results from molecular dynamics simulations of two nano-crystalline tantalum thin films that illuminate the variety of atomic-scale mechanisms of incipient plasticity. Sample 1 contains approximately 500 K atoms and 3 grains, chosen to facilitate study at 105 s-1 strain rate; sample 2 has 4.6 M atoms and 30 grains. The samples are loaded in uniaxial tension at deformation rates of 105-109 s-1, and display phenomena including emission of perfect 1/2<1 1 1>-type dislocations and the formation and migration of twin boundaries. It was found that screw dislocation emission is the first deformation mechanism activated at strain rates below 108 s-1. Deformation twins emerge as a deformation mechanism at higher strains, with twins observed to cross grain boundaries as larger strains are reached. At high strain rates atoms are displaced with the characteristic twin vector at a ratio of 3 : 1 (108 s-1) or 4 : 1 (109 s-1) to characteristic dislocation vectors. Fracture is nucleated through a nano-void growth process. Grain boundary sliding does not scale with increasing strain rate. Detailed analysis of nano-scale deformation using these tools enhances our understanding of deformation mechanisms in tantalum.

  15. Producing and imaging a thin line of He*₂ molecular tracers in helium-4.

    PubMed

    Gao, J; Marakov, A; Guo, W; Pawlowski, B T; Van Sciver, S W; Ihas, G G; McKinsey, D N; Vinen, W F

    2015-09-01

    Cryogenic helium-4 has long been recognized as a useful material in fluids research. The unique properties of helium-4 in the gaseous phase and the normal liquid phase allow for the generation of turbulent flows with exceptionally high Reynolds and Rayleigh numbers. In the superfluid phase, helium-4 exhibits two-fluid hydrodynamics and possesses fascinating properties due to its quantum nature. However, studying the flows in helium-4 has been very challenging largely due to the lack of effective visualization and velocimetry techniques. In this article, we discuss the development of novel instrumentation for flow-visualization in helium based on the generation and imaging of thin lines of metastable He*₂ tracer molecules. These molecular tracers are created via femtosecond-laser field-ionization of helium atoms and can be imaged using a laser-induced fluorescence technique. By observing the displacement and distortion of the tracer lines in helium, quantitative information about the flow field can be extracted. We present experimental results in the study of thermal counterflow in superfluid helium that validate the concept of this technique. We also discuss anticipated future developments of this powerful visualization technique.

  16. Structural and Magnetic Phase Transitions in Manganese Arsenide Thin-Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Jaeckel, Felix Till

    Phase transitions play an important role in many fields of physics and engineering, and their study in bulk materials has a long tradition. Many of the experimental techniques involve measurements of thermodynamically extensive parameters. With the increasing technological importance of thin-film technology there is a pressing need to find new ways to study phase transitions at smaller length-scales, where the traditional methods are insufficient. In this regard, the phase transitions observed in thin-films of MnAs present interesting challenges. As a ferromagnetic material that can be grown epitaxially on a variety of technologically important substrates, MnAs is an interesting material for spintronics applications. In the bulk, the first order transition from the low temperature ferromagnetic alpha-phase to the beta-phase occurs at 313 K. The magnetic state of the beta-phase has remained controversial. A second order transition to the paramagnetic gamma-phase takes place at 398 K. In thin-films, the anisotropic strain imposed by the substrate leads to the interesting phenomenon of coexistence of alpha- and beta-phases in a regular array of stripes over an extended temperature range. In this dissertation these phase transitions are studied in films grown by molecular beam epitaxy on GaAs (001). The films are confirmed to be of high structural quality and almost purely in the A0 orientation. A diverse set of experimental techniques, germane to thin-film technology, is used to probe the properties of the film: Temperature-dependent X-ray diffraction and atomic-force microscopy (AFM), as well as magnetotransport give insights into the structural properties, while the anomalous Hall effect is used as a probe of magnetization during the phase transition. In addition, reflectance difference spectroscopy (RDS) is used as a sensitive probe of electronic structure. Inductively coupled plasma etching with BCl3 is demonstrated to be effective for patterning MnAs. We show

  17. Enzymes and genes involved in aerobic alkane degradation

    PubMed Central

    Wang, Wanpeng; Shao, Zongze

    2013-01-01

    Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes, transport across cell membrane of alkanes, the regulation of alkane degradation gene and initial oxidation. PMID:23755043

  18. Solvent-vapor concentration imparts selectivity on the propagation front during polymorphic transformation in molecular-semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Purdum, Geoffrey; Gessner, Thomas; Weitz, R. Thomas; Loo, Yueh-Lin

    Post-deposition processing allows precise control over the structural development of molecular-semiconductor thin films. In particular, solvent-vapor annealing converts thin films of a core-chlorinated naphthalene diimide from its triclinic polymorph to its monoclinic polymorph. By tuning the concentration of solvent vapor, we can simultaneously impact the morphology of the resulting monoclinic thin film. At low solvent-vapor concentrations, transformation in-plane is isotropic; we observe comparable transformation rates along the b- and c-axes, resulting in plate-like domains. At high solvent-vapor concentrations, transformation along the c-axis is instead favored, resulting in the formation of needle-like domains. Extended solvent-vapor annealing at these conditions can lead to isolated needles in the active channels of field-effect transistors; these devices exhibit electron mobilities exceeding 1 cm2/Vs.

  19. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  20. Molecular Packing Structure of Mesogenic Octa-Hexyl Substituted Phthalocyanine Thin Film by X-ray Diffraction Analysis.

    PubMed

    Ohmori, Masashi; Higashi, Takuya; Fujii, Akihiko; Ozaki, Masanori

    2016-04-01

    The molecular packing structure in a thin film of the liquid crystalline phthalocyanine, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), which is a promising small-molecular material for solution-processable organic thin-film solar cells, has been investigated by X-ray diffraction (XRD) measurement. The crystal structure of C6PcH2 in the spin-coated film was determined to be a centered rectangular structure (a = 36.4 Å, b = 20.3 Å). The tilt angle of the phthalocyanine core normal vector was 34-39° from the column axis, and the shortest intermolecular distance was 3.9-4.0 A. The crystal structure determined by XRD analysis was ascertained to be consistent with that calculated by Fourier analvsis. PMID:27451624

  1. RESEARCH ON THE ELECTRONIC AND OPTICAL PROPERTIES OF POLYMER AND OTHER ORGANIC MOLECULAR THIN FILMS

    SciTech Connect

    ALEXEI G. VITUKHNOVSKY; IGOR I. SOBELMAN - RUSSIAN ACADEMY OF SCIENCES

    1995-09-06

    Optical properties of highly ordered films of poly(p-phenylene) (PPP) on different substrates, thin films of mixtures of conjugated polymers, of fullerene and its composition with polymers, molecular J-aggregates of cyanine dyes in frozen matrices have been studied within the framework of the Agreement. Procedures of preparation of high-quality vacuum deposited PPP films on different substrates (ITO, Si, GaAs and etc.) were developed. Using time-correlated single photon counting technique and fluorescence spectroscopy the high quality of PPP films has been confirmed. Dependence of structure and optical properties on the conditions of preparation were investigated. The fluorescence lifetime and spectra of highly oriented vacuum deposited PPP films were studied as a function of the degree of polymerization. It was shown for the first time that the maximum fluorescence quantum yield is achieved for the chain length approximately equal to 35 monomer units. The selective excitation of luminescence of thin films of PPP was performed in the temperature range from 5 to 300 K. The total intensity of luminescence monotonically decreases with decreasing temperature. Conditions of preparation of highly cristallyne fullerene C{sub 60} films by the method of vacuum deposition were found. Composites of C{sub 60} with conjugated polymers PPV and polyacetylene (PA) were prepared. The results on fluorescence quenching, IR and resonant Raman spectroscopy are consistent with earlier reported ultrafast photoinduced electron transfer from PPV to C{sub 60} and show that the electron transfer is absent in the case of the PA-C{sub 60} composition. Strong quenching of PPV fluorescence was observed in the PPV-PA blends. The electron transfer from PPV to PA can be considered as one of the possible mechanisms of this quenching. The dynamics of photoexcitations in different types of J-aggregates of the carbocyanine dye was studied at different temperatures in frozen matrices. The optical

  2. Low molecular weight protein enrichment on mesoporous silica thin films for biomarker discovery.

    PubMed

    Fan, Jia; Gallagher, James W; Wu, Hung-Jen; Landry, Matthew G; Sakamoto, Jason; Ferrari, Mauro; Hu, Ye

    2012-04-17

    The identification of circulating biomarkers holds great potential for non invasive approaches in early diagnosis and prognosis, as well as for the monitoring of therapeutic efficiency.(1-3) The circulating low molecular weight proteome (LMWP) composed of small proteins shed from tissues and cells or peptide fragments derived from the proteolytic degradation of larger proteins, has been associated with the pathological condition in patients and likely reflects the state of disease.(4,5) Despite these potential clinical applications, the use of Mass Spectrometry (MS) to profile the LMWP from biological fluids has proven to be very challenging due to the large dynamic range of protein and peptide concentrations in serum.(6) Without sample pre-treatment, some of the more highly abundant proteins obscure the detection of low-abundance species in serum/plasma. Current proteomic-based approaches, such as two-dimensional polyacrylamide gel-electrophoresis (2D-PAGE) and shotgun proteomics methods are labor-intensive, low throughput and offer limited suitability for clinical applications.(7-9) Therefore, a more effective strategy is needed to isolate LMWP from blood and allow the high throughput screening of clinical samples. Here, we present a fast, efficient and reliable multi-fractionation system based on mesoporous silica chips to specifically target and enrich LMWP.(10,11) Mesoporous silica (MPS) thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different polymer templates and polymer concentrations in the precursor solution, various pore size distributions, pore structures, connectivity and surface properties were determined and applied for selective recovery of low mass proteins. The selective parsing of the enriched peptides into different subclasses according to their physicochemical properties will enhance the efficiency of recovery and detection of low abundance species. In combination with mass

  3. Molecular dynamics simulations of the adhesion of a thin annealed film of oleic acid onto crystalline cellulose.

    PubMed

    Quddus, Mir A A R; Rojas, Orlando J; Pasquinelli, Melissa A

    2014-04-14

    Molecular dynamics simulations were used to characterize the wetting behavior of crystalline cellulose planes in contact with a thin oily film of oleic acid. Cellulose crystal planes with higher molecular protrusions and increased surface area produced stronger adhesion if compared to other crystal planes due to enhanced wetting and hydrogen bonding. The detailed characteristics of crystal plane features and the contribution of directional hydrogen bonding was investigated. Similarly, oleophilicity of the cellulose planes increased with the increase in surface roughness and number of directional hydrogen bonds. These results correlate with conclusions drawn from experimental studies such as adhesion of an ink vehicle on cellulose surface.

  4. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  5. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  6. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  7. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    PubMed

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-03-30

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

  8. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    PubMed

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-01-01

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898

  9. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

    PubMed Central

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F.; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-01-01

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898

  10. Atomically-thin molecular layers for electrode modification of organic transistors

    NASA Astrophysics Data System (ADS)

    Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-08-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically

  11. Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2012-10-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  12. Reprint of "Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects"

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2013-06-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  13. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  14. Ultrafast structural dynamics of LaVO3 thin films grown by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brahlek, Matthew; Lapano, Jason; Stoica, Vladimir; Zhang, Lei; Zhang, Hai-Tian; Akamatsu, Hirofumi; Eaton, Craig; Gopalan, Venkatraman; Freeland, John; Wen, Haidan; Engel-Herbert, Roman

    LaVO3, with a partially full d-shell is expected to be metallic, but due to electron-electron interactions a gap emerges and the ground state is a Mott insulator. Such effects are a strong function of the bonding geometry, and particularly the V-O-V bond angle. Controlling these structural effects on the ultrafast time scale can lead to control over the underlying electronic ground state. Here we report the ultrafast structural dynamics of 25 and 50 nm thick LaVO3 thin films grown by the hybrid molecular beam epitaxy technique on SrTiO3 when excited across the bandgap by 800 nm light. Using time-resolved x-ray diffraction on the 100 ps time scale at Sector 7 of the Advanced Photon Source, we directly measured the structural changes with atomic accuracy by monitoring integer Bragg diffraction peaks and find a large out-of-plane strain of 0.18% upon optical excitation; the recovery time is ~1 ns for the 25 nm film and ~2 ns for the 50 nm film, consistent with the thermal transport from the film to the substrate. Further, we will discuss the response of the oxygen octahedral rotation patterns indicated by changes of the half-order diffraction peaks. Understanding such ultrafast structural deformation is important for optimizing optical excitations to create new metastable phases starting from a Mott insulator. This work was supported by the Department of Energy under Grant DE-SC0012375, and DE-AC02-06CH11357.

  15. Dip-pen microarraying of molecular beacon probes on microgel thin-film substrates.

    PubMed

    Dai, Xiaoguang; Libera, Matthew

    2014-11-01

    The integration of microarray-based nucleic acid detection technologies and microfluidics is attractive, because the combination of small sample volumes, relatively short diffusion distances, and solid-phase detection enhances the development of multiplexed assays with improved sensitivity and minimal sample size. However, traditional microarray spotting methods typically create probe spot sizes of ∼50-100 μm diameter, comparable to the dimensions of many microfluidic channels. In addition, detection of hybridization events typically requires a post-hybridization labeling step. We address both issues by exploring the use of dip-pen nanolithography (DPN) to pattern linear oligonucleotides and self-reporting molecular beacon (MB) probes on streptavidin-functionalized poly(ethylene glycol) microgel thin-film substrates. In contrast to many systems involving DPN deposition, the fluorescence of the labeled probes enables their amount and spatial distribution to be characterized by optical microscopy. Their deposition rate decreases with increasing DPN dwell time, consistent with a Langmuir adsorption model, but the linear relationship between spot diameter and time(1/2) indicates that spot size is diffusion controlled. We then use DPN to pattern MB probes for the mecA and spa genes in Staphylococcus aureus as a 2-column array with 1 μm spot sizes and 5 μm spot spacings, and we use this array to differentiate targets characteristic of methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus. This duplexed self-reporting gel-tethered MB microarray not only shows high specificity but also a high signal-to-background ratio.

  16. Immunogenecity of Modified Alkane Polymers Is Mediated through TLR1/2 Activation

    PubMed Central

    Crisi, Giovanna M.; Cobelli, Neil; Santambrogio, Laura

    2008-01-01

    Background With the advancement of biomedical technology, artificial materials have been developed to replace diseased, damaged or nonfunctional body parts. Among such materials, ultra high molecular weight alkane or modified alkyl polymers have been extensively used in heart valves, stents, pacemakers, ear implants, as well as total joint replacement devices. Although much research has been undertaken to design the most non-reactive biologically inert polyethylene derivatives, strong inflammatory responses followed by rejection and failure of the implant have been noted. Methodology/Principal Findings Purification of the alkane polymers from the site of inflammation revealed extensive “in vivo” oxidation as detected by fourier transformed infra-red spectroscopy. Herein, we report the novel observation that oxidized alkane polymers induced activation of TLR1/2 pathway as determined by ligand dependent changes in intrinsic tyrosine fluorescence intensity and NF-κΒ luciferase gene assays. Oxidized polymers were very effective in activating dendritic cells and inducing secretion of pro-inflammatory cytokines. Molecular docking of the oxidized alkanes designated ligand specificity and polymeric conformations fitting into the TLR1/2 binding grooves. Conclusion/Significance This is the first report of a synthetic polymer activating immune responses through TLR binding. PMID:18560588

  17. Structure and Mass Transport Characteristics at the Intrinsic Liquid-Vapor Interfaces of Alkanes.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2016-07-28

    In this paper, an instantaneous interface definition has been used to study the intrinsic structure and self-diffusion coefficient in the vicinity of the liquid-vapor interfaces of decane and tetracosane at three different temperatures using molecular dynamics simulations, and the results have been compared with those obtained on the basis of the conventional Gibbs dividing surface (time- and space-averaged interface). The alkane molecules were modeled using the united atom NERD force field. Partial layered structures of alkane molecules at the liquid-vapor interface are observed as a pinned structure of alkane liquids based on the intrinsic interface. This kind of characteristic has not been observed in the density profiles obtained based on the Gibbs dividing surface. By examining the orientation order parameter and radius of gyration of the alkane molecules, it was observed that the alkane molecules were preferentially oriented to be more parallel to the intrinsic interface than to the Gibbs dividing surface, and the shape of the alkane molecules is slightly changed in the vicinity of the liquid-vapor interfaces. The self-diffusion coefficient parallel to the intrinsic interface was examined using the Green-Kubo relation, where the projection of the velocity in the parallel direction to the local intrinsic interface is used in the velocity correlation function. It was found that the self-diffusion coefficient in the direction parallel to the intrinsic interface changes as the position approaches the interface in a more obvious manner as compared with the self-diffusion coefficient obtained with respect to the Gibbs dividing surface. These results suggest that the use of an instantaneous interface definition allowed us to capture sharp variations in transport properties which are originating due to steeper structure at the liquid-vapor interfaces.

  18. Structure and Mass Transport Characteristics at the Intrinsic Liquid-Vapor Interfaces of Alkanes.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2016-07-28

    In this paper, an instantaneous interface definition has been used to study the intrinsic structure and self-diffusion coefficient in the vicinity of the liquid-vapor interfaces of decane and tetracosane at three different temperatures using molecular dynamics simulations, and the results have been compared with those obtained on the basis of the conventional Gibbs dividing surface (time- and space-averaged interface). The alkane molecules were modeled using the united atom NERD force field. Partial layered structures of alkane molecules at the liquid-vapor interface are observed as a pinned structure of alkane liquids based on the intrinsic interface. This kind of characteristic has not been observed in the density profiles obtained based on the Gibbs dividing surface. By examining the orientation order parameter and radius of gyration of the alkane molecules, it was observed that the alkane molecules were preferentially oriented to be more parallel to the intrinsic interface than to the Gibbs dividing surface, and the shape of the alkane molecules is slightly changed in the vicinity of the liquid-vapor interfaces. The self-diffusion coefficient parallel to the intrinsic interface was examined using the Green-Kubo relation, where the projection of the velocity in the parallel direction to the local intrinsic interface is used in the velocity correlation function. It was found that the self-diffusion coefficient in the direction parallel to the intrinsic interface changes as the position approaches the interface in a more obvious manner as compared with the self-diffusion coefficient obtained with respect to the Gibbs dividing surface. These results suggest that the use of an instantaneous interface definition allowed us to capture sharp variations in transport properties which are originating due to steeper structure at the liquid-vapor interfaces. PMID:27387788

  19. Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film

    NASA Technical Reports Server (NTRS)

    Gruhlke, R. W.; Holland, W. R.; Hall, D. G.

    1968-01-01

    Surface plasmons on opposite sides of a thin metal film can cross couple in the presence of a surface corrugation, or grating. The observation of this cross-coupling phenomenon as a radiative-decay mechanism for molecules near a corrugated thin metal film is reported.

  20. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Tieu, A. Kiet; Liu, Qiang; Hagiwara, Ichiro; Lu, Cheng

    2007-07-01

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters.

  1. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    PubMed

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes. PMID:26924078

  2. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    hydrocarbon species characteristic of these metalliferous sediments. These systems are also characterized by sharp physicochemical gradients that have been shown to have a pronounced effect on microbial ecology and activity. Sediments were collected from a Middle Valley field with relatively high concentrations of short-chain alkanes and incubated in anaerobic batch reactors with each individual alkane (C1, C2, C3 and C4, respectively) at a range of temperatures (25, 55 and 75 °C) to mimic environmental physico-chemical conditions in a closed system. Stable carbon isotope ratios and radiotracer incubations provide clear evidence for C2-C4 alkane oxidation in the sediments over time. Upon identifying sediments with anaerobic alkane oxidation activity, microbial communities were screened via 16S rRNA pyrosequencing, and key phylotypes were then quantified using both molecular and microscopic methods. There were shifts in overall community composition and putative alkane-oxidizing phylotypes after the incubation period with the alkane substrates. These are the first evidence to date indicating that anaerobic C2-C4 alkane oxidation occurs across a broad range of temperatures in metalliferous sediments.

  3. Fidelity of fossil n-alkanes from leaf to paleosol and applications to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.; Baczynski, A. A.; Wing, S. L.

    2011-12-01

    modern plant data. These results suggest that n-alkanes extracted directly from a fossil leaf provide a true signature of an individual leaf fossil rather than a mixture from the entire plant community. Therefore, comparisons between fossil morphotypes and between fossil and related modern taxa should be robust. Furthermore, by placing fossil leaf data within the context of the chemostratigraphy of Bighorn Basin sediments across the P-E boundary, fossil leaf n-alkanes can be used to bridge the gap between our understanding of modern plant lipids and bulk lipid data from sediments across the PETM. It has been hypothesized that changes in the both the molecular distribution and carbon isotope composition of n-alkanes across the PETM were due to changes in the local plant community, which included a large proportion of deciduous gymnosperms before and after-but not during-the PETM. Analysis of fossils such as Ginkgo and angiosperms provides the opportunity to compare and distinguish the molecular and isotopic signatures of gymnosperms and angiosperms. These comparisons shed light on the dynamics of climate and ecosystem changes as they are recorded in the signatures of lipid biomarkers.

  4. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  5. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  6. The Structure of Ice Nanoclusters and Thin-films of Water Ice: Implications for Icy Grains in Cold Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Blake, David; Uffindell, Christine; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The cubic to hexagonal phase transformation in water ice (I(sub c) yields I(sub h)) is used to measure the extent to which surface structure and impurities control bulk properties. In pure crystalline (I(sub c)) water ice nanoclusters and in thin-films of impure water ice, I(sub c) yields I(sub h) occurs at lower temperatures than in thin-films of pure water ice. The disordered surface of the 20 nm diameter nanoclusters promotes transformations or reactions which would otherwise be kinetically hindered. Likewise, impurities such as methanol introduce defects into the ice network, thereby allowing sluggish structural transitions to proceed. Such surface-related phenomena play an important role in promoting chemical reactions on interstellar ice grains within cold molecular clouds, where the first organic compounds are formed.

  7. Self-regulated growth of LaVO{sub 3} thin films by hybrid molecular beam epitaxy

    SciTech Connect

    Zhang, Hai-Tian; Engel-Herbert, Roman; Dedon, Liv R.; Martin, Lane W.

    2015-06-08

    LaVO{sub 3} thin films were grown on SrTiO{sub 3} (001) by hybrid molecular beam epitaxy. A volatile metalorganic precursor, vanadium oxytriisopropoxide (VTIP), and elemental La were co-supplied in the presence of a molecular oxygen flux. By keeping the La flux fixed and varying the VTIP flux, stoichiometric LaVO{sub 3} films were obtained for a range of cation flux ratios, indicating the presence of a self-regulated growth window. Films grown under stoichiometric conditions were found to have the largest lattice parameter, which decreased monotonically with increasing amounts of excess La or V. Energy dispersive X-ray spectroscopy and Rutherford backscattering measurements were carried out to confirm film compositions. Stoichiometric growth of complex vanadate thin films independent of cation flux ratios expands upon the previously reported self-regulated growth of perovskite titanates using hybrid molecular beam epitaxy, thus demonstrating the general applicability of this growth approach to other complex oxide materials, where a precise control over film stoichiometry is demanded by the application.

  8. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Skarlinski, Michael D.; Quesnel, David J.

    2015-12-01

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu2O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films

  9. [Composition of n-alkanes in soils of the Yellow River Estuary Wetlands and their potential as organic matter source indicators].

    PubMed

    Yao, Peng; Yin, Hong-Zhen; Yao, Qing-Zhen; Chen, Hong-Tao; Liu, Yue-Liang

    2012-10-01

    Abstract: Surface soil samples from the Yellow River Estuary Wetlands were analyzed for total organic carbon (TOC) and n-alkanes. Molecular indicators of n-alkanes were calculated and their potential as organic matter source indicators was discussed and compared among different sampling areas and times. C25-C33 n-alkanes with odd-to-even predominance were observed in most surface soils of the wetlands, suggesting the dominant contribution of terrestrial higher plants for the soil organic matter (SOM), and the ubiquitous presence of unresolved complex mixture indicated the presence of petroleum contamination. Total n-alkane concentrations in soils varied from 0.57 microg x g(-1) to 3.90 microg x g(-1), and distinct spatial and temporal differences were observed. In April 2009 (dry season), total n-alkane concentration was higher than that in June 2009 (during water-sediment regulation) with the maximum concentration observed at the core area of the wetlands, followed by the north side of the Yellow River after the last pontoon bridge, and the abandoned channel area of the Yellow River. The opposite trend of total n-alkane concentration was observed in June. The variation of total n-alkane concentration at two sampling time points were positively correlated with TOC and negatively correlated with sediment grain size, suggesting the influence of hydro-environment on the accumulation of soil organic matter. Molecular indicators of n-alkanes, such as average chain length (ACL), odd-even predominance (OEP), alkane index (AI), carbon preference index (CPI) and Terrigenous/ Aquatic Ratio (TAR) indicated that the maturity of organic matter in soils of the wetlands was low, and the dominant source of the SOM was terrestrial higher plants and mainly herbaceous plants. Compared with other indicators, TAR is better in reflecting the variation of hydro-environment.

  10. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hirama, Kazuyuki; Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-01

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp3-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N2+ and Ar+ ions is a key to selectively discriminate non-sp3 BN phases. At low acceleration voltage values, the sp2-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  11. Effect of molecular coverage on the electric conductance of a multi-walled carbon nanotube thin film

    NASA Astrophysics Data System (ADS)

    Kokabu, Takuya; Inoue, Shuhei; Matsumura, Yukihiko

    2016-06-01

    We investigated the influence of water adsorption on a CNT thin film. When we assumed that the magnitude of the change in electrical resistance was correlated with the surface coverage of the adsorbed molecules, this phenomenon could be explained by two-layer adsorption. The first layer was expressed by Langmuir adsorption and that on the second layer was expressed by Fowler-Guggenheim adsorption, which was derived by Bragg-Williams approximation and involved a lateral molecular interaction. The adsorption energy estimated by this assumption was on the same order as derived by DFT calculation.

  12. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films

    SciTech Connect

    Yang, R; Goktekin, E; Wang, MH; Gleason, KK

    2014-08-08

    Biofouling is a universal problem in various applications ranging from water purification to implantable biomedical devices. Recent advances in surface modification have created a rich library of antifouling surface chemistries, many of which can be categorized into one of the two groups: hydrophilic surfaces or amphiphilic surfaces. We report the straightforward preparation of antifouling thin film coatings in both categories via initiated chemical vapor deposition. A molecular force spectroscopy-based method is demonstrated as a rapid and quantitative assessment tool for comparing the differences in antifouling characteristics. The fouling propensity of single molecules, as opposed to bulk protein solution or bacterial culture, is assessed. This method allows for the interrogation of molecular interaction without the complication resulted from protein conformational change or micro-organism group interactions. The molecular interaction follows the same trend as bacterial adhesion results obtained previously, demonstrating that molecular force probe is a valid method for the quantification and mechanistic examination of fouling. In addition, the molecular force spectroscopy-based method is able to distinguish differences in antifouling capability that is not resolvable by traditional static protein adsorption tests. To lend further insight into the intrinsic fouling resistance of zwitterionic and amphiphilic surface chemistries, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, advancing and receding water contact angles, and atomic force microscopy are used to elucidate the film properties that are relevant to their antifouling capabilities.

  13. Characterization of the non-uniform reaction in chemically-amplified calix[4]resorcinarene molecular resist thin films

    SciTech Connect

    Prabhu, Vivek M.; Kang, Shuhui; Kline, R. Joseph; DeLongchamp, Dean M.; Fischer, Daniel A.; Wu, Wen-li; Satija, Sushil K.; Bonnesen, Peter V; Sha, Jing; Ober, Christoper K.

    2011-01-01

    The ccc stereoisomer-purified tert-butoxycarbonyloxy (t-Boc) protected calix[4]resorcinarene molecular resists blended with photoacid generator exhibit a non-uniform photoacid catalyzed reaction in thin films. The surface displays a reduced reaction extent, compared to the bulk, with average surface-layer thickness (7.0 1.8) nm determined by neutron reflectivity with deuterium-labeled t-Boc groups. Ambient impurities (amines and organic bases) are known to quench surface reactions and contribute, but grazing incidence X-ray diffraction shows an additional effect that the protected molecular resist are preferentially oriented at the surface, while the bulk of the film displayed diffuse scattering representative of amorphous packing. The surface deprotection reaction and presence of photoacid was quantified by near-edge X-ray absorption fine structure measurements.

  14. Water at a hydrophilic solid surface probed by ab-initio molecular dynamics: inhomogeneous thin layers of dense fluid

    SciTech Connect

    Cicero, G; Grossman, J; Galli, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interface between liquid water and a hydrophilic, solid surface, as obtained from ab-initio molecular dynamics simulations. In particular, we focused on the (100)surface of cubic SiC, a leading candidate semiconductor for bio-compatible devices. Our results show that, in the liquid in contact with the clean substrate, molecular dissociation occurs in a manner unexpectedly similar to that observed in the gas phase. After full hydroxylation takes place, the formation of a thin ({approx}3 {angstrom})interfacial layer is observed, which has higher density than bulk water and forms stable hydrogen bonds with the substrate. The liquid does not uniformly wet the surface, rather molecules preferably bind along directions parallel to the Si dimer rows. Our calculations also predict that one dimensional confinement between two hydrophilic surfaces at about 1.3 nm distance does not affect the structural and electronic properties of the whole water sample.

  15. Coexistence of spinodal instability and thermal nucleation in thin-film rupture:Insights from molecular levels

    SciTech Connect

    Nguyen, Trung D; Fuentes-Cabrera, Miguel A; Fowlkes, Jason Davidson; Rack, Philip D

    2014-01-01

    Despite extensive investigation using hydrodynamic models and experiments over the past decades, there remain open questions regarding the origin of the initial rupture of thin liquid films. One of the reasons that makes it difficult to identify the rupture origin is the coexistence of two dewettingmechanisms, namely, thermal nucleation and spinodal instability, as observed in many experimental studies. Using a coarse-grained model and large-scale molecular dynamics simulations, we are able to characterize the very early stage of dewetting in nanometer-thick liquid-metal films wetting a solid substrate. We observe the features characteristic of both spinodal instability and thermal nucleation in the spontaneously dewetting films and show that these two macroscopic mechanisms share a common origin at molecular levels.

  16. Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition.

    PubMed

    Cao, Yan-Qiang; Zhu, Lin; Li, Xin; Cao, Zheng-Yi; Wu, Di; Li, Ai-Dong

    2015-09-01

    Ti-based fumaric acid hybrid thin films were successfully prepared using inorganic TiCl4 and organic fumaric acid as precursors by molecular layer deposition (MLD). The effect of deposition temperature from 180 °C to 350 °C on the growth rate, composition, chemical state, and topology of hybrid films has been investigated systematically by means of a series of analytical tools such as spectroscopic ellipsometry, atomic force microscopy (AFM), high resolution X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The MLD process of the Ti-fumaric acid shows self-limiting surface reaction with a reasonable growth rate of ∼0.93 Å per cycle and small surface roughness of ∼0.59 nm in root-mean-square value at 200 °C. A temperature-dependent growth characteristic has been observed in the hybrid films. On increasing the temperature from 180 °C to 300 °C, the growth rate decreases from 1.10 to 0.49 Å per cycle and the XPS composition of the film's C : O : Ti ratio changes from 8.35 : 7.49 : 1.00 to 4.66 : 4.80 : 1.00. FTIR spectra indicate that the hybrid films show bridging bonding mode at a low deposition temperature of 200 °C and bridging/bidentate mixed bonding mode at elevated deposition temperatures of 250 and 300 °C. The higher C and O amounts deviating from the ideal composition may be ascribed to increased organic incorporation into the hybrid films at lower deposition temperature and temperature-dependent density of reactive sites (-OH). The composition of hybrid films grown at 350 °C shows a dramatic decrease in C and O elemental composition (C : O : Ti = 1.97 : 2.76 : 1.00) due to the thermal decomposition of the fumaric acid precursor. The produced by-product H2O changes the structure of the hybrid films, resulting in the formation of more Ti-O bonds at high temperatures. The stability of the hybrid films against chemical and thermal treatment, and long-term storage by

  17. Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films.

    PubMed

    Liu, Jun; Yoon, Byunghoon; Kuhlmann, Eli; Tian, Miao; Zhu, Jie; George, Steven M; Lee, Yung-Cheng; Yang, Ronggui

    2013-01-01

    Atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques with atomic level control enable a new class of hybrid organic-inorganic materials with improved functionality. In this work, the cross-plane thermal conductivity and volumetric heat capacity of three types of hybrid organic-inorganic zincone thin films enabled by MLD processes and alternate ALD-MLD processes were measured using the frequency-dependent time-domain thermoreflectance method. We revealed the critical role of backbone flexibility in the structural morphology and thermal conductivity of MLD zincone thin films by comparing the thermal conductivity of MLD zincone films with an aliphatic backbone to that with aromatic backbone. Much lower thermal conductivity values were obtained in ALD/MLD-enabled hybrid organic-inorganic zincone thin films compared to that of the ALD-enabled W/Al2O3 nanolaminates reported by Costescu et al. [Science 2004, 303, 989-990], which suggests that the dramatic material difference between organic and inorganic materials may provide a route for producing materials with ultralow thermal conductivity.

  18. Molecular dynamics simulations of irradiation of α-Fe thin films with energetic Fe ions under channeling conditions

    NASA Astrophysics Data System (ADS)

    Aliaga, M. J.; Prokhodtseva, A.; Schaeublin, R.; Caturla, M. J.

    2014-09-01

    Using molecular dynamics simulations with recent interatomic potentials developed for Fe, we have studied the defects in thin films of pure bcc Fe induced by the displacement cascade produced by Fe atoms of 50, 100, and 150 keV impinging under a channeling incident angle of 6° to a [0 0 1] direction. The thin films have a thickness between 40 and 100 nm, to reproduce the thickness of the samples used in transmission electron microscope in situ measurements during irradiation. In the simulations we focus mostly on the effect of channeling and free surfaces on damage production. The results are compared to bulk cascades. The comparison shows that the primary damage in thin films of pure Fe is quite different from that originated in the volume of the material. The presence of near surfaces can lead to a variety of events that do not occur in bulk collisional cascades, such as the production of craters and the glide of self-interstitial defects to the surface. Additionally, in the range of energies and the incident angle used, channeling is a predominant effect that significantly reduces damage compared to bulk cascades.

  19. Vapor-phase molecular layer deposition of self-assembled multilayers for organic thin-film transistor.

    PubMed

    Lee, Byoung H; Lee, Kwang H; Im, Seongil; Sung, Myung M

    2009-12-01

    We report a vapor-phase molecular layer deposition (MLD) of self-assembled multilayer thin films for organic thin-film transistor. In the present MLD process, alkylsiloxane self-assembled multilayers (SAMs) were grown under vacuum by repeated sequential adsorptions of C=C-terminated alkylsilane and aluminum hydroxide with ozone activation. The MLD method is a self-controlled layer-by-layer growth process, and is perfectly compatible with the atomic layer deposition (ALD) method. The SAMs films prepared exhibited good mechanical flexibility and stability, excellent insulating properties, and relatively high dielectric capacitances of 374 nF/cm2 with a high dielectric strength of 4 MV/cm. They were then used as a 12 nm-thick dielectric for pentacene-based thin-film transistors (TFTs), which showed a maximum field effect mobility of 0.57 cm2/V s, operating at -4 V with an on/off current ratio of approximately 10(3).

  20. Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes.

    PubMed

    Nisula, Mikko; Karppinen, Maarit

    2016-02-10

    We demonstrate the fabrication of high-quality electrochemically active organic lithium electrode thin films by the currently strongly emerging combined atomic/molecular layer deposition (ALD/MLD) technique using lithium terephthalate, a recently found anode material for lithium-ion battery (LIB), as a proof-of-the-concept material. Our deposition process for Li-terephthalate is shown to well comply with the basic principles of ALD-type growth including the sequential self-saturated surface reactions, a necessity when aiming at micro-LIB devices with three-dimensional architectures. The as-deposited films are found crystalline across the deposition temperature range of 200-280 °C, which is a trait highly desired for an electrode material but rather unusual for hybrid inorganic-organic thin films. Excellent rate capability is ascertained for the Li-terephthalate films with no conductive additives required. The electrode performance can be further enhanced by depositing a thin protective LiPON solid-state electrolyte layer on top of Li-terephthalate; this yields highly stable structures with capacity retention of over 97% after 200 charge/discharge cycles at 3.2 C.

  1. Theoretical investigation about secondary deposition of thin-film formation by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Hagiwara, Ichiro; Kiet Tieu, A.; Kishimoto, Kikuo; Liu, Qiang

    2007-05-01

    The thin-film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin-film in short time as gas fluids through surface of substrate. Such growth mechanism has been mainly investigated on the basis of experiment. Due to immense cost of the experimental equipment and low level of current measurement technology, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin-film. In this simulation, three different cluster sizes of 203, 653, and 1563 atoms with different velocities (0, 10, 100, 1000, and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. To increase initial velocity not only enhanced the speed of epitaxial growth, adhesion between clusters and substrate, but also increased the degree of epitaxy for primary deposition and secondary deposition. Exfoliation pattern of thin-film was profoundly dependent on initial velocity through comparison between adhesion of primary and secondary deposition. Moreover, the epitaxial growth became well as the temperature of substrate was raised, and the degree of epitaxy of small cluster was larger than that of larger cluster, no matter of primary and secondary deposition.

  2. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Borglin, Sharon; Jansson, Janet K; Dionisi, Hebe M; Lozada, Mariana

    2016-01-01

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.

  3. Modeling of metal thin film growth: Linking angstrom-scale molecular dynamics results to micron-scale film topographies

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Rodgers, S.; Jensen, K. F.

    2000-07-01

    A general method for modeling ionized physical vapor deposition is presented. As an example, the method is applied to growth of an aluminum film in the presence of an ionized argon flux. Molecular dynamics techniques are used to examine the surface adsorption, reflection, and sputter reactions taking place during ionized physical vapor deposition. We predict their relative probabilities and discuss their dependence on energy and incident angle. Subsequently, we combine the information obtained from molecular dynamics with a line of sight transport model in a two-dimensional feature, incorporating all effects of reemission and resputtering. This provides a complete growth rate model that allows inclusion of energy- and angular-dependent reaction rates. Finally, a level-set approach is used to describe the morphology of the growing film. We thus arrive at a computationally highly efficient and accurate scheme to model the growth of thin films. We demonstrate the capabilities of the model predicting the major differences on Al film topographies between conventional and ionized sputter deposition techniques studying thin film growth under ionized physical vapor deposition conditions with different Ar fluxes.

  4. Compound-specific carbon isotope analyses of individual long-chain alkanes and alkanoic acids in Harmattan aerosols

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.

    The higher molecular weight n-alkane, n-alkanol and n-alkanoic acid series from higher plant wax are ubiquitous components of aerosol particles in remote areas. The carbon isotopic compositions of individual n-alkanes and n-alkanoic acids have been determined in samples of Harmattan aerosol and composited vegetation wax from Nigeria. The data confirm the terrestrial origin of these compounds and support the distinction among the vegetation sources of C 4 plants (savannah) from C 3 and CAM plants (wet climate, mixed vegetation). The superimposed petroleum components from vehicular emissions in urban areas could not be differentiated from C 3 vegetation by compound-specific isotope analysis.

  5. Maximizing the dielectric response of molecular thin films via quantum chemical design.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2014-12-23

    Developing high-capacitance organic gate dielectrics is critical for advances in electronic circuitry based on unconventional semiconductors. While high-dielectric constant molecular substances are known, the mechanism of dielectric response and the fundamental chemical design principles are not well understood. Using a plane-wave density functional theory formalism, we show that it is possible to map the atomic-scale dielectric profiles of molecule-based materials while capturing important bulk characteristics. For molecular films, this approach reveals how basic materials properties such as surface coverage density, molecular tilt angle, and π-system planarity can dramatically influence dielectric response. Additionally, relatively modest molecular backbone and substituent variations can be employed to substantially enhance film dielectric response. For dense surface coverages and proper molecular alignment, conjugated hydrocarbon chains can achieve dielectric constants of >8.0, more than 3 times that of analogous saturated chains, ∼2.5. However, this conjugation-related dielectric enhancement depends on proper molecular orientation and planarization, with enhancements up to 60% for proper molecular alignment with the applied field and an additional 30% for conformations such as coplanarity in extended π-systems. Conjugation length is not the only determinant of dielectric response, and appended polarizable high-Z substituents can increase molecular film response more than 2-fold, affording estimated capacitances of >9.0 μF/cm2. However, in large π-systems, polar substituent effects are substantially attenuated.

  6. Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M; Togbe, C; Dagaut, P; Wang, H; Oehlschlaeger, M; NIemann, U; Seshadri, K; Veloo, P S; Ji, C; Egolfopoulos, F; Lu, T

    2011-03-16

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C{sub 8} to C{sub 20}. The mechanism also includes an updated version of our previously published C{sub 8} to C{sub 16} n-alkanes model. The complete detailed mechanism contains approximately 7,200 species 31,400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and nonpremixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.

  7. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus

    PubMed Central

    Khelifi, Nadia; Amin Ali, Oulfat; Roche, Philippe; Grossi, Vincent; Brochier-Armanet, Céline; Valette, Odile; Ollivier, Bernard; Dolla, Alain; Hirschler-Réa, Agnès

    2014-01-01

    The thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain VC-16 (DSM 4304), which is known to oxidize fatty acids and n-alkenes, was shown to oxidize saturated hydrocarbons (n-alkanes in the range C10–C21) with thiosulfate or sulfate as a terminal electron acceptor. The amount of n-hexadecane degradation observed was in stoichiometric agreement with the theoretically expected amount of thiosulfate reduction. One of the pathways used by anaerobic microorganisms to activate alkanes is addition to fumarate that involves alkylsuccinate synthase as a key enzyme. A search for genes encoding homologous enzymes in A. fulgidus identified the pflD gene (locus-tag AF1449) that was previously annotated as a pyruvate formate lyase. A phylogenetic analysis revealed that this gene is of bacterial origin and was likely acquired by A. fulgidus from a bacterial donor through a horizontal gene transfer. Based on three-dimensional modeling of the corresponding protein and molecular dynamic simulations, we hypothesize an alkylsuccinate synthase activity for this gene product. The pflD gene expression was upregulated during the growth of A. fulgidus on an n-alkane (C16) compared with growth on a fatty acid. Our results suggest that anaerobic alkane degradation in A. fulgidus may involve the gene pflD in alkane activation through addition to fumarate. These findings highlight the possible importance of hydrocarbon oxidation at high temperatures by A. fulgidus in hydrothermal vents and the deep biosphere. PMID:24763368

  8. Intermolecular electronic coupling in organic molecular thin films measured by temperature modulation spectroscopy

    SciTech Connect

    Yadav, Abhishek; Jin, Y; Chan, P. K. L.; Shtein, Max; Pipe, Kevin P.

    2010-01-01

    Temperature modulation spectroscopy is used to obtain the temperature dependences of oscillator strength, exciton transition energy, and line width for a copper phthalocyanine thin film. With increasing temperature, the oscillator strength exhibits a pronounced decrease for charge transfer (CT) excitons, making this technique suitable for differentiating exciton types. From the measured magnitude and temperature dependence of the CT oscillator strength, we obtain estimates for the intermolecular electronic coupling and its exponential decay coefficient.

  9. Selective Adsorption of n-Alkanes from n-Octane on Metal-Organic Frameworks: Length Selectivity.

    PubMed

    Bhadra, Biswa Nath; Jhung, Sung Hwa

    2016-03-01

    The liquid-phase adsorption of n-alkanes (from n-octane (C8) solvent) with different chain lengths was carried out over three metal-organic frameworks (MOFs), viz., metal-azolate framework-6 (MAF-6), copper-benzenetricarboxylate (Cu-BTC), and iron-benzenetricarboxylate (MIL-100(Fe)), and a conventional adsorbent activated carbon (AC). MAF-6 and Cu-BTC were found to have significant selectivity for the adsorption of n-dodecane (C12) and n-heptane (C7), respectively, from C8. Selectivity for C12 on MAF-6 was also observed in competitive adsorption from binary adsorbate systems. To understand the selective adsorption of C12 on MAF-6 more, the adsorption of C12 from C8 over MAF-6 was investigated in detail and compared with that over AC. The obtained selectivities over MAF-6 and Cu-BTC for C12 and C7, respectively, might be explained by the similarity between cavity size of adsorbents and molecular length of n-alkanes. In the case of AC and MIL-100(Fe), no specific adsorption selectivity was observed because the cavity sizes of the two adsorbents are larger than the size of the n-alkanes used in this study. The adsorption capacities (qt) of n-alkanes over AC and MIL-100(Fe) decreased and increased, respectively, as the polarity (or length) of the adsorbates increased, probably because of nonpolar and polar interactions between the adsorbents and n-alkanes. On the basis of the results obtained, it can be concluded that matching the cavity size (of adsorbents) with the molecular length (of n-alknaes) is more important parameter than the MOF's hydrophilicity/hydrophobicity for the selective adsorption/separation of alkanes.

  10. Thermal conductivity of liquid n-alkanes

    SciTech Connect

    Calado, J.C.G.; Fareleira, J.M.N.A.; Mardolcar, U.V.; Nieto de Castro, C.A.

    1988-05-01

    The thermal conductivity of liquids has been shown in the past to be difficult to predict with a reasonable accuracy, due to the lack of accurate experimental data and reliable prediction schemes. However, data of a high accuracy, and covering wide density ranges, obtained recently in laboratories in Boulder, Lisbon, and London with the transient hot-wire technique, can be used to revise an existing correlation scheme and to develop a new universal predictive technique for the thermal conductivity of liquid normal alkanes. The proposed correlation scheme is constructed on a theoretically based treatment of the van der Waals model of a liquid, which permits the prediction of the density dependence and the thermal conductivity of liquid n-alkanes, methane to tridecane, for temperatures between 110 and 370 K and pressures up to 0.6 MPa, i.e., for 0.3 less than or equal to T/T/sub c/ less than or equal to 0.7 and 2.4 less than or equal to rho/rho/sub c/ less than or equal to 3.7, with an accuracy of +/-1%, given a known value of the thermal conductivity of the fluid at the desired temperature. A generalization of the hard-core volumes obtained, as a function of the number of carbon atoms, showed that it was possible to predict the thermal conductivity of pentane to tetradecane +/- 2%, without the necessity of available experimental measurements.

  11. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  12. Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992

    SciTech Connect

    Biscardi, J.; Bowden, P.T.; Durante, V.A.; Ellis, P.E. Jr.; Gray, H.B.; Gorbey, R.G.; Hayes, R.C.; Hodge, J.; Hughes, M.; Langdale, W.A.; Lyons, J.E.; Marcus, B.; Messick, D.; Merrill, R.A.; Moore, F.A.; Myers, H.K. Jr.; Seitzer, W.H.; Shaikh, S.N.; Tsao, W.H.; Wagner, R.W.; Warren, R.W.; Wijesekera, T.P.

    1997-05-01

    The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).

  13. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated phenyl alkane. 721.536 Section 721.536 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.536 Halogenated phenyl alkane....

  14. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  15. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  16. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  17. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  18. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    SciTech Connect

    Skarlinski, Michael D.; Quesnel, David J.

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  19. Prediction of static contact angles on the basis of molecular forces and adsorption data.

    PubMed

    Diaz, M Elena; Savage, Michael D; Cerro, Ramon L

    2016-08-01

    At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations-particularly for alkanes with a low number of carbon atoms, for which adsorption is significant. PMID:27627371

  20. Prediction of static contact angles on the basis of molecular forces and adsorption data

    NASA Astrophysics Data System (ADS)

    Diaz, M. Elena; Savage, Michael D.; Cerro, Ramon L.

    2016-08-01

    At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations—particularly for alkanes with a low number of carbon atoms, for which adsorption is significant.

  1. Prediction of static contact angles on the basis of molecular forces and adsorption data.

    PubMed

    Diaz, M Elena; Savage, Michael D; Cerro, Ramon L

    2016-08-01

    At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations-particularly for alkanes with a low number of carbon atoms, for which adsorption is significant.

  2. An ESR and NMR study of the radiolysis of n-alkanes: Crystal structure dependence

    NASA Astrophysics Data System (ADS)

    Toriyama, K.; Okazaki, M.; Nunome, K.; Matsuura, K.

    The process of radiation damage for long-chain n-alkanes was investigated to elucidate that for polyethylene. Chain-end alkyl radicals were preferentially formed not only through primary C-H scission but also through a hydrogen atom reaction in odd- n-alkane, as was shown by analysis of the ESR spectra for isotopic mixtures of tridecane- h28/tridecane- d28 and nonadecane- h40/nonadecane- d40. To elucidate the mode of alkyl radical migration in solids through intermolecular hydrogen atom abstraction, D/H exchange was detected in mixed crystals of eicosane- d42/eicosane- h42. The chain-end region was found to be more reactive than the inner region for radical site migration. In addition, formation of a microscopic amorphous island by destruction of the crystal lattice was also detected. The influences of molecular packing were large in all cases.

  3. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers

    NASA Astrophysics Data System (ADS)

    Moultos, Othonas A.; Zhang, Yong; Tsimpanogiannis, Ioannis N.; Economou, Ioannis G.; Maginn, Edward J.

    2016-08-01

    Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO2, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH3O-(CH2CH2O)n-CH3 with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.

  4. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers.

    PubMed

    Moultos, Othonas A; Zhang, Yong; Tsimpanogiannis, Ioannis N; Economou, Ioannis G; Maginn, Edward J

    2016-08-21

    Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO2, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH3O-(CH2CH2O)n-CH3 with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results. PMID:27544089

  5. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake.

    PubMed Central

    Ito, S; Inoue, S

    1982-01-01

    Torulopsis bombicola produces extracellular sophorolipids when it is grown on water-insoluble alkanes. Sophorolipids and related model compounds, which were not themselves used for growth, were found to stimulate markedly the growth of T. bombicola on alkanes. This stimulatory effect was restricted to growth on C10 to C20 alkanes, whereas no significantly influence was observed for growth on fatty alcohols, fatty acids, glucose, or glycerol. The nonionic methyl ester of the glycolipid supported the greatest cell yield. However, a number of synthetic nonionic surfactants were unable to replace the glycolipid. When organisms were grown on hexadecane, stimulation of growth by sophorolipids was observed almost exclusively with strains of Torulopsis yeasts. In contrast, the growth of other typical alkane-utilizing yeasts, such as candida and Pichia strains, was inhibited or not affected. It appears that sophorolipids are involved in alkane dissimilation by T. bombicola through an undetermined mechanism. PMID:7201782

  6. Alkanes in benthic organisms from the Buccaneer oil field

    SciTech Connect

    Middleditch, B.S.; Basile, B.

    1980-06-01

    About 200 g per day of alkanes are present in brine discharged from each of two production platforms in the Buccaneer oil field in the NW Gulf of Mexico. These alkanes disperse rapidly in the water column, so that seawater concentrations of petroleum alkanes in this region are generally very low. They can be taken up to some extent by plankton, fish, and barnacles, but the petroleum alkane concentrations in these organisms are also relatively low. The largest pool of petroleum alkanes is in the surficial sediments, where concentrations of up to 25 ppM are observed, with concentration gradients extending more than 20 m from the production platforms. Organisms are examined which are exposed to these sediments and, for comparison, other specimens from control sites around structures from which there are no discharges.

  7. Utilization of n-Alkanes by Cladosporium resinae

    PubMed Central

    Teh, J. S.; Lee, K. H.

    1973-01-01

    Four different isolates of Cladosporium resinae from Australian soils were tested for their ability to utilize liquid n-alkanes ranging from n-hexane to n-octadecane under standard conditions. The isolates were unable to make use of n-hexane, n-heptane, and n-octane for growth. In fact, these hydrocarbons, particularly n-hexane, exerted an inhibitory effect on spore germination and mycelial growth. All higher n-alkanes from n-nonane to n-octadecane were assimilated by the fungus, although only limited growth occurred on n-nonane and n-decane. The long chain n-alkanes (C14 to C18) supported good growth of all isolates, but there was no obvious correlation between cell yields and chain lengths of these n-alkanes. Variation in growth responses to individual n-alkane among the different isolates was also observed. The cause of this variation is unknown. PMID:4735447

  8. Synthesis, conformational and theoretical studies of 1,n-di(2-formyl-4-phenylazophenoxy)alkanes

    NASA Astrophysics Data System (ADS)

    Balachander, R.; Manimekalai, A.

    2016-01-01

    1,n-di(2-Formyl-4-phenylazophenoxy)alkanes 1 and 2 and 1,3-di(2-formyl-4-phenylazophenoxymethyl)benzene 3 were synthesis and characterized by FT-IR, UV-Vis, 1H, 13C NMR and mass spectral studies. The stable conformations of 1-3 were predicted theoretically and selected geometrical parameters were derived from optimized structures. The molecular parameters of HOMO-LUMO energies, polarizability, hyperpolarizability, natural bond orbital (NBO), atom in molecule (AIM) analysis and molecular electrostatic potential (MEP) surfaces were determined by the density functional theory (DFT) method and analysed.

  9. Spectroscopy of the tilde A state of NO-alkane complexes (alkane = methane, ethane, propane, and n-butane)

    NASA Astrophysics Data System (ADS)

    Tamé-Reyes, Victor M.; Gardner, Adrian M.; Harris, Joe P.; McDaniel, Jodie; Wright, Timothy G.

    2012-12-01

    We have recorded (1+1) resonance-enhanced multiphoton ionization spectra of complexes formed between NO and the alkanes: CH4, C2H6, C3H8, and n-C4H10. The spectra correspond to the tilde A ← tilde X transition, which is a NO-localized 3s ← 2pπ* transition. In line with previous work, the spectrum for NO-CH4 has well-defined structure, but this is only partially resolved for the other complexes. The spectra recorded in the NO+-alkane mass channels all show a slowly rising onset, followed by a sharp offset, which is associated with dissociation of NO-alkane, from which binding energies in the tilde X and tilde A states are deduced. Beyond this sharp offset, there is a further rise in signal, which is attributed to fragmentation of higher complexes, NO-(alkane)n. Analysis of these features allows binding energies for (NO-alkane) ... alkane to be estimated, and these suggest that in the NO-(alkane)2 complexes, the second alkane molecule is bound to the first, rather than to NO. Calculated structures for the 1:1 complexes are reported, as well as binding energies.

  10. Molecular Weight Changes and Crosslinking Kinetics in Glassy and Elastomeric Thin Films

    NASA Astrophysics Data System (ADS)

    Carbone, Nicholas; Ene, Mada; Lancaster, Jeffrey; Koberstein, Jeffrey

    2010-03-01

    The quantitative and qualitative kinetics of molecular bridging through hydrogen extraction from the tertiary carbon in Polymer backbones are explored through HPLC with MALLS in 300nm films of Polystyrene, Poly(n-butyl acrylate), and other polymers above and below the glass transition temperature. Changes in molecular weight distribution and the appearance of peaks at double and triple the original molecular weight allow the study of the initial stages of network formation. The relative merits of multiple bridging molecules are explored, as well as their effects on kinetics and distribution. When our compounds are mixed into a polymer and exposed to UV radiation, they abstract hydrogen atoms from any chains in proximity, thereby initiating a cascade of free radical reactions that include several mechanisms that can lead to covalent polymer crosslinking.

  11. Charge Transfer-Induced Molecular Hole Doping into Thin Film of Metal-Organic Frameworks.

    PubMed

    Lee, Deok Yeon; Kim, Eun-Kyung; Shrestha, Nabeen K; Boukhvalov, Danil W; Lee, Joong Kee; Han, Sung-Hwan

    2015-08-26

    Despite the highly porous nature with significantly large surface area, metal-organic frameworks (MOFs) can be hardly used in electronic and optoelectronic devices due to their extremely poor electrical conductivity. Therefore, the study of MOF thin films that require electron transport or conductivity in combination with the everlasting porosity is highly desirable. In the present work, thin films of Co3(NDC)3DMF4 MOFs with improved electronic conductivity are synthesized using layer-by-layer and doctor blade coating techniques followed by iodine doping. The as-prepared and doped films are characterized using FE-SEM, EDX, UV/visible spectroscopy, XPS, current-voltage measurement, photoluminescence spectroscopy, cyclic voltammetry, and incident photon to current efficiency measurements. In addition, the electronic and semiconductor properties of the MOF films are characterized using Hall Effect measurement, which reveals that, in contrast to the insulator behavior of the as-prepared MOFs, the iodine doped MOFs behave as a p-type semiconductor. This is caused by charge transfer-induced hole doping into the frameworks. The observed charge transfer-induced hole doping phenomenon is also confirmed by calculating the densities of states of the as-prepared and iodine doped MOFs based on density functional theory. Photoluminescence spectroscopy demonstrates an efficient interfacial charge transfer between TiO2 and iodine doped MOFs, which can be applied to harvest solar radiations.

  12. Research on the electronic and optical properties of polymer and other organic molecular thin films

    SciTech Connect

    1997-02-01

    The main goal of the work is to find materials and methods of optimization of organic layered electroluminescent cells and to study such properties of polymers and other organic materials that can be used in various opto-electronic devices. The summary of results obtained during the first year of work is presented. They are: (1) the possibility to produce electroluminescent cells using a vacuum deposition photoresist technology for commercial photoresists has been demonstrated; (2) the idea to replace the polyaryl polymers by other polymers with weaker hole conductivity for optimization of electroluminescent cells with ITO-Al electrodes has been suggested. The goal is to obtain amorphous processable thin films of radiative recombination layers in electroluminescent devices; (3) procedures of preparation of high-quality vacuum-deposited poly (p-phenylene) (PPP) films on various substrates have been developed; (4) it was found for the first time that the fluorescence intensity of PPP films depends on the degree of polymerization; (5) the role of interfaces between organic compounds, on one side, and metals or semiconductors, on the other side, has been studied and quenching of the fluorescence caused by semiconductor layer in thin sandwiches has been observed; (6) studies of the dynamics of photoexcitations revealed the exciton self-trapping in quasi-one-dimensional aggregates; and (7) conditions for preparation of highly crystalline fullerene C{sub 60} films by vacuum deposition have been found. Composites of C{sub 60} with conjugated polymers have been prepared.

  13. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  14. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.

    PubMed

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay K

    2015-04-28

    Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.

  15. Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film

    PubMed Central

    Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862

  16. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  17. Nucleation and stochiometry dependence of rutile-TiO2 thin films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Constantin, Costel; Sun, Kai; Feenstra, R. M.

    2008-03-01

    Considerable interest has been shown of late in transition-metal oxides. One case is the titanium dioxide system, which can have applications as a high-k dielectric gate insulator for Si-based devicesootnotetextZ. J. Luo et al., Appl. Phys. Lett. 79, 2803. In this study, rutile-TiO2 thin films were grown on GaN(0001) substrates by oxygen plasma-assisted molecular beam epitaxy. Two sets of films were grown, one in which the initial GaN surface is prepared WITH the pseudo 1x1 Ga-rich surface reconstruction, and the other set, WITHOUT the pseudo 1x1. On top of these two type of surfaces, the rutile-TiO2 thin films were grown at Ts˜ 600 ^oC, and with a thickness ˜ 40 - 50 nm. During growth, reflection high-energy electron diffraction indicated a reversible stoichiometry transition from O-rich to Ti-rich growth. Post-growth x-ray diffraction measurements performed on the samples WITHOUT the GaN pseudo 1x1, show the presence of additional peaks at 2θ = 52.9^o, which implies the existence of additional phases. In addition, the high-resolution transmission electron microscopy performed on these samples show a high degree of disorder, as compared to the samples prepared WITH the pseudo 1x1. Work supported by ONR.

  18. The effects of annealing process influence on optical properties and the molecular orientation of selected organometallic compounds thin films

    NASA Astrophysics Data System (ADS)

    Zawadzka, A.; Płóciennik, P.; Czarnecka, I.; Sztupecka, J.; Łukasiak, Z.

    2012-08-01

    The paper presents the optical properties of four metallophtalocyanines (MPcs, M = Cu, Co, Mg and Zn) and two metallophtalocyanine chlorides (MClPcs, M = Al, Ga) thin films. Investigated films were fabricated by Physical Vapor Deposition (PVD) in high vacuum onto quartz substrates. After fabrication both MPcs and MClPcs thin films were undergone an annealing process in ambient atmosphere for 12 h at temperature equal 150 °C or 250 °C. The absorbance spectra were measured in range 190-1100 nm to investigate the optical and structural properties. Theoretical model of physical dimer was used to explain experimental results. The position and shape of the main absorbance peak (Q-band) in these materials are compared and discussed, taking into consideration the molecular arrangement and the longitudinal contribution which depends on the transition moment orientation. It was found that annealing process changing both optical and structural properties of MPcs and MClPcs comparing to samples without applying the process.

  19. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic-inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V-1 s-1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from -3 to 9 V). This work demonstrates an organic-inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  20. Microphase Separation in Thin Films of Block Copolymer Supramolecular Assemblies: Composition Dependent Morphological Transitions and Molecular Architecture Effect

    NASA Astrophysics Data System (ADS)

    Nandan, Bhanu; Stamm, Manfred

    2010-03-01

    Block copolymer based supramolecular assemblies (SMAs) recently have attracted lot of attention because of their potential application as nanotemplates. These SMAs are prepared by attaching small molecules selectively to one of the blocks of the copolymer through physical interactions. In the present study, the phase behavior of SMAs formed by polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) with 2-(4'-hydroxybenzeneazo)benzoic acid (HABA) was investigated with respect to the molar ratio (X) between HABA and 4VP monomer unit in bulk as well as in thin films. It will be shown that these SMAs show some interesting composition dependent and solvent induced pathway dependent phase transitions. Moreover, the orientation of cylindrical or lamellar microdomains of P4VP(HABA) depends on the selectivity of the solvent as well as on the degree of swelling of the thin film. Furthermore, it will be shown that the molecular architecture of the block copolymer influences the orientation and ordering of microdomains in the SMA. Hence, whereas, the cylindrical and lamellar microdomains of SMA composed of a P4VP-b-PS-b-P4VP triblock copolymer were perpendicular to the substrate, those composed from a PS-b-P4VP diblock of similar composition had in-plane orientation of the microdomains.

  1. Engineering of an ultra-thin molecular superconductor by charge transfer

    DOEpatents

    Hla, Saw Wai; Hassanien, Abdelrahim; Kendal, Clark

    2016-06-07

    A method of forming a superconductive device of a single layer of (BETS).sub.2GaCl.sub.4 molecules on a substrate surface which displays a superconducting gap that increases exponentially with the length of the molecular chain is provided.

  2. The taxonomic status of the endangered thin-spined porcupine, Chaetomys subspinosus (Olfers, 1818), based on molecular and karyologic data

    PubMed Central

    Vilela, Roberto V; Machado, Taís; Ventura, Karen; Fagundes, Valéria; de J Silva, Maria José; Yonenaga-Yassuda, Yatiyo

    2009-01-01

    Background The thin-spined porcupine, also known as the bristle-spined rat, Chaetomys subspinosus (Olfers, 1818), the only member of its genus, figures among Brazilian endangered species. In addition to being threatened, it is poorly known, and even its taxonomic status at the family level has long been controversial. The genus Chaetomys was originally regarded as a porcupine in the family Erethizontidae, but some authors classified it as a spiny-rat in the family Echimyidae. Although the dispute seems to be settled in favor of the erethizontid advocates, further discussion of its affinities should be based on a phylogenetic framework. In the present study, we used nucleotide-sequence data from the complete mitochondrial cytochrome b gene and karyotypic information to address this issue. Our molecular analyses included one individual of Chaetomys subspinosus from the state of Bahia in northeastern Brazil, and other hystricognaths. Results All topologies recovered in our molecular phylogenetic analyses strongly supported Chaetomys subspinosus as a sister clade of the erethizontids. Cytogenetically, Chaetomys subspinosus showed 2n = 52 and FN = 76. Although the sexual pair could not be identified, we assumed that the X chromosome is biarmed. The karyotype included 13 large to medium metacentric and submetacentric chromosome pairs, one small subtelocentric pair, and 12 small acrocentric pairs. The subtelocentric pair 14 had a terminal secondary constriction in the short arm, corresponding to the nucleolar organizer region (Ag-NOR), similar to the erethizontid Sphiggurus villosus, 2n = 42 and FN = 76, and different from the echimyids, in which the secondary constriction is interstitial. Conclusion Both molecular phylogenies and karyotypical evidence indicated that Chaetomys is closely related to the Erethizontidae rather than to the Echimyidae, although in a basal position relative to the rest of the Erethizontidae. The high levels of molecular and morphological

  3. High-order harmonic generation in alkanes

    SciTech Connect

    Altucci, C.; Velotta, R.; Heesel, E.; Springate, E.; Marangos, J. P.; Vozzi, C.; Benedetti, E.; Calegari, F.; Sansone, G.; Stagira, S.; Nisoli, M.; Tosa, V.

    2006-04-15

    We have investigated the process of high-order harmonic generation in light alkanes by using femtosecond laser pulses. We show the experimental results cannot be matched by a model that assumes a single active electron only in a hydrogenic s orbital. Clear evidences are shown of the important role played by the p-like character originating from the covalent C-H bond. By constructing a suitable mixture of s-type and p-type atomic wave functions, an excellent agreement between measurements in methane and simulations is found, thus confirming the validity of the developed method as a general tool for the analysis of high-order harmonic generation in complex molecules.

  4. Novel phase behavior in normal alkanes

    SciTech Connect

    Sirota, E.B.; King, H.E. Jr.; Hughes, G.J.; Wan, W.K. )

    1992-01-27

    X-ray scattering studies on aligned films of binary mixtures of the normal alkanes C{sub 23}H{sub 48} and C{sub 28}H{sub 58} reveal, for the first time in such materials, the existence of a new equilibrium phase having the symmetry of a smectic crystal, possibly a hexatic. This phase occurs between the hexagonally packed {ital R}{sub II} and the lower-temperature orthorhombic {ital R}{sub I}, plastic crystalline, layered, rotator phases. We argue that this loss of order is due to local distortion fluctuations in the hexagonal phase. Furthermore, we have identified an {ital ABC}-to-{ital ABAB} restacking transition within the ordered {ital R}{sub II} phase.

  5. The effect of surfaces on molecular ordering in thin liquid-crystal systems

    NASA Astrophysics Data System (ADS)

    Śliwa, I.; JeŻewski, W.; Zakharov, A. V.

    2016-08-01

    A theoretical method for analyzing the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions in liquid crystals, confined between plates of thin planar cells, is developed. It is shown that this method, as involving the concept of local orientational and translational order parameters, enables detailed investigations of the emergence of smectic A, nematic, and isotopic phases, as well as yields an insight into phase transitions between them, in cases of systems strongly affected by surfaces. The evidence of various surface effects, including the coexistence of different phases and the inward propagation of surface melting under the increase of temperature, is also given. The underlying numerical procedure, based on the algorithm of self-consistent calculations of local order parameters, is found to be very effective, allowing one to consider model systems of rather large thicknesses, corresponding to thicknesses of real sample cells.

  6. The effect of surfaces on molecular ordering in thin liquid-crystal systems.

    PubMed

    Śliwa, I; Jeżewski, W; Zakharov, A V

    2016-08-28

    A theoretical method for analyzing the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions in liquid crystals, confined between plates of thin planar cells, is developed. It is shown that this method, as involving the concept of local orientational and translational order parameters, enables detailed investigations of the emergence of smectic A, nematic, and isotopic phases, as well as yields an insight into phase transitions between them, in cases of systems strongly affected by surfaces. The evidence of various surface effects, including the coexistence of different phases and the inward propagation of surface melting under the increase of temperature, is also given. The underlying numerical procedure, based on the algorithm of self-consistent calculations of local order parameters, is found to be very effective, allowing one to consider model systems of rather large thicknesses, corresponding to thicknesses of real sample cells. PMID:27586944

  7. Ion and electron beam processing of condensed molecular solids to form thin films

    SciTech Connect

    Ruckman, M.W.; Strongin, M.; Mowlem, J.K.; Moore, J.F.; Strongin, D.R.

    1992-12-31

    Electron and ion beams can be used to deposit thin films and etch surfaces using gas phase precursors. However, the generation of undesirable gas phase products and the diffusion of the reactive species beyond the region irradiated by the electron or ion beam can limit selectivity. In this paper, the feasibility of processing condensed precursors such as diborane, tri-methyl aluminum, ammonia and water at 78 K with low energy ( 100--1000 eV) electron and ion beams (Ar{sup +}, N{sub 2}{sup +} and H{sub 2}{sup +}) ranging in current density from 50 nA to several {mu}a per cm{sup 2} is examined. It was found that boron, boron nitride and stoichiometric aluminum oxide films could be deposited from the condensed volatile; species using charged particle beams and some of the physical and chemical aspects and limitations of this new technique are discussed.

  8. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  9. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. PMID:25545362

  10. Expanding the product profile of a microbial alkane biosynthetic pathway.

    PubMed

    Harger, Matthew; Zheng, Lei; Moon, Austin; Ager, Casey; An, Ju Hye; Choe, Chris; Lai, Yi-Ling; Mo, Benjamin; Zong, David; Smith, Matthew D; Egbert, Robert G; Mills, Jeremy H; Baker, David; Pultz, Ingrid Swanson; Siegel, Justin B

    2013-01-18

    Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.

  11. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water.

    PubMed

    Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M; Gnecco, Enrico

    2014-07-21

    The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.

  12. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water.

    PubMed

    Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M; Gnecco, Enrico

    2014-07-21

    The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum. PMID:24932960

  13. Investigation of Nanomechanical Properties of β-Si3N4 Thin Layers in a Prismatic Plane under Tension: A Molecular Dynamics Study.

    PubMed

    Lu, Xuefeng; La, Peiqing; Guo, Xin; Wei, Yupeng; Nan, Xueli; He, Ling

    2013-06-01

    We report molecular dynamics simulations of the nanomechanical properties and fracture mechanisms of β-Si3N4 thin layers in a prismatic plane under uniaxial tension. It is found that the thin layers in the y loading direction display a linear stress-strain relationship at ε < 0.021, and afterward, the stress increases nonlinearly with the strain until fracture occurs. However, for the z direction, the linear response is located at ε < 0.051. The calculated fracture stresses and strains of the thin layers increase with strain rates both in both directions. The thin layers exhibit the higher Young's modulus of 0.345 TPa in the z direction, higher than that in the y direction. The origins of crack derive from N(2c-1)-Si and N(6h-1)-Si bonds for the y and z loading directions, respectively.

  14. Heterogeneity of Alkane Chain Length in Freshwater and Marine Cyanobacteria

    PubMed Central

    Shakeel, Tabinda; Fatma, Zia; Fatma, Tasneem; Yazdani, Syed Shams

    2015-01-01

    The potential utilization of cyanobacteria for the biological production of alkanes represents an exceptional system for the next generation of biofuels. Here, we analyzed a diverse group of freshwater and marine cyanobacterial isolates from Indian culture collections for their ability to produce both alkanes and alkenes. Among the 50 cyanobacterial isolates screened, 32 isolates; 14 freshwater and 18 marine isolates; produced predominantly alkanes. The GC-MS/MS profiles revealed a higher percentage of pentadecane and heptadecane production for marine and freshwater strains, respectively. Oscillatoria species were found to be the highest producers of alkanes. Among the freshwater isolates, Oscillatoria CCC305 produced the maximum alkane level with 0.43 μg/mg dry cell weight, while Oscillatoria formosa BDU30603 was the highest producer among the marine isolates with 0.13 μg/mg dry cell weight. Culturing these strains under different media compositions showed that the alkane chain length was not influenced by the growth medium but was rather an inherent property of the strains. Analysis of the cellular fatty acid content indicated the presence of predominantly C16 chain length fatty acids in marine strains, while the proportion of C18 chain length fatty acids increased in the majority of freshwater strains. These results correlated with alkane chain length specificity of marine and freshwater isolates indicating that alkane chain lengths may be primarily determined by the fatty acid synthesis pathway. Moreover, the phylogenetic analysis showed clustering of pentadecane-producing marine strains that was distinct from heptadecane-producing freshwater strains strongly suggesting a close association between alkane chain length and the cyanobacteria habitat. PMID:25853127

  15. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Morshed, A. K. M. Monjur; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250K/130K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×109 K/s to 8×109 K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  16. Simple DFT-LSDA modeling of the molecular-like aspects of ultra-thin film properties

    SciTech Connect

    Trickey, S.B.; Mathar, R.J.; Boettger, J.C.

    1996-09-01

    Ordered ultra-thin films (UTF`s) are atomic n-layers (n = 1,2,3,...) with translational symmetry in-plane and molecular-like inter-planar spacings. Though commonly used (especially at relatively large n-values) as models of crystalline surfaces, they are intrinsically interesting and of growing technological significance as the basic building blocks of multi-layer electronic devices. Predicting the structure and properties of even a simple diatomic 1-layer means addressing aspects of molecular binding (and boundary conditions) in the context of an extended, periodically bounded system. At the level of refinement provided by the local spin density approximation to Density Functional Theory, the baseline standard of today`s predictive, chemically specific solid-state calculations, a number of technical and fundamental issues arise. The authors focus on treatment of the isolated atoms, on basis sets, and on numerical precision, as illustrated by the Fe atom and BN 1- and 2-layer calculations. Computational requirements are illustrated by a brief summary of recently completed calculations on crystalline sapphire, {alpha}-Al{sub 2}O{sub 3}, which used the same code.

  17. Atomic/molecular depth profiling of nanometric-metallized polymer thin films by secondary ion mass spectrometry.

    PubMed

    Téllez, Helena; Vadillo, José Miguel; Laserna, José Javier

    2010-02-01

    The capability of secondary ion mass spectrometry (SIMS) to perform atomic and molecular in-depth analysis in complex nanometric-metallized thin polymer films used to manufacture capacitors is demonstrated through three different case studies related to failure analysis. The excellent repeatability and sensitivity of the technique allow us to study the degradation process of the nanometric-metallized layer in the capacitor films and the accurate location of the metal-polymer interface. The analysis of the sample is challenging due to the extreme difference in conductivity between layers, and the reduced thickness of the metallization grown on top of a rough polymeric base. However, SIMS has provided reliable and reproducible results with relative standard deviation (RSD) values better than 1.5% in the metallic layer thickness estimation. The detailed information of atomic and molecular ion in-depth distributions provided by SIMS depth profiling has allowed the identification of different factors (demetallization, generation of interstitial oxide regions, and diffusion processes or modification in the metallization thickness) that can be directly related to the origin of the lack of performance of the mounted devices.

  18. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage

    SciTech Connect

    Borah, B; Zhang, HD; Snurr, RQ

    2015-03-03

    Diffusion of methane, ethane, propane and n-butane was studied within the micropores of several metal organic frameworks (MOFs) of varying topologies, including the MOFs PCN-14, NU-125, NU-1100 and DUT-49. Diffusion coefficients of the pure components, as well as methane/ethane, methane/ propane and methane/butane binary mixtures, were calculated using molecular dynamics simulations to understand the effect of the longer alkanes on uptake of natural gas in MOB. The calculated self diffusion coefficients of all four components are on the order of 10(-8) m(2)/s. The diffusion coefficients of the pure components decrease as a function of chain length in all of the MOFs studied and show different behaviour as a function of loading in different MOB. The self-diffusivities follow the trend DPCN-14 < DNU-125 approximate to DNU-1100 < DDUT-49, which is exactly the reverse order of the densities of the MOFs: PCN-14 > NU-125 approximate to NU-1100 > DUT-49. By comparing the diffusion of pure methane and methane mixtures vvith the higher alkancs, it is observed that the diffusivity of methane is unaffected by the presence of the higher alkanes in the MOFs considered, indicating that the diffusion path of methane is not blocked by the higher alkanes present in natural gas. (C) 2014 Elsevier Ltd. All rights reserved.

  19. Catalytic conversion of light alkanes phase II. Topical report, January 1990--January 1993

    SciTech Connect

    1998-12-31

    The Topical Report on Phase II of the project entitled, Catalytic Conversion of Light Alkanes reviews work done between January 1, 1990 and September 30, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. This Topical Report documents our efforts to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. Research on the Cooperative Agreement is divided into three Phases relating to three molecular environments for the active catalytic species that we are trying to generate. In this report we present our work on catalysts which have oxidation-active metals in polyoxoanions (PHASE II).

  20. Alkanes-filled photonic crystal fibers as sensor transducers

    NASA Astrophysics Data System (ADS)

    Marć, P.; Przybysz, N.; Stasiewicz, K.; Jaroszewicz, L. R.

    2015-09-01

    In this paper we propose alkanes-filled PCFs as the new class of transducers for optical fiber sensors. We investigated experimentally thermo-optic properties of a commercially available LMA8 partially filled with different alkanes with a higher number of carbon atoms. A partially filled PCF spliced with standard SMFs constitutes one of the newest type transducer. We have selected a group of eight alkanes which have melting points in different temperatures. An analysis of temperature spectral characteristics of these samples will allow to design an optical fiber sensor with different temperature thresholds at specific wavelengths.

  1. Development of molecular precursors for deposition of indium sulphide thin film electrodes for photoelectrochemical applications.

    PubMed

    Ehsan, Muhammad Ali; Peiris, T A Nirmal; Wijayantha, K G Upul; Olmstead, Marilyn M; Arifin, Zainudin; Mazhar, Muhammad; Lo, K M; McKee, Vickie

    2013-08-14

    Symmetrical and unsymmetrical dithiocarbamato pyridine solvated and non-solvated complexes of indium(III) with the general formula [In(S2CNRR')3]·n(py) [where py = pyridine; R,R' = Cy, n = 2 (1); R,R' = (i)Pr, n = 1.5 (2); NRR' = Pip, n = 0.5 (3) and R = Bz, R' = Me, n = 0 (4)] have been synthesized. The compositions, structures and properties of these complexes have been studied by means of microanalysis, IR and (1)H-NMR spectroscopy, X-ray single crystal and thermogravimetric (TG/DTG) analyses. The applicability of these complexes as single source precursors (SSPs) for the deposition of β-In2S3 thin films on fluorine-doped SnO2 (FTO) coated conducting glass substrates by aerosol-assisted chemical vapour deposition (AACVD) at temperatures of 300, 350 and 400 °C is studied. All films have been characterized by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDX) for the detection of phase and stoichiometry of the deposit. Scanning electron microscopy (SEM) studies reveal that precursors (1)-(4), irrespective of different metal ligand design, generate comparable morphologies of β-In2S3 thin films at different temperatures. Direct band gap energies of 2.2 eV have been estimated from the UV-vis spectroscopy for the β-In2S3 films fabricated from precursors (1) and (4). The photoelectrochemical (PEC) properties of β-In2S3 were confirmed by recording the current-voltage plots under light and dark conditions. The plots showed anodic photocurrent densities of 1.25 and 0.65 mA cm(-2) at 0.23 V vs. Ag/AgCl for the β-In2S3 films made at 400 and 350 °C from the precursors (1) and (4), respectively. The photoelectrochemical performance indicates that the newly synthesised precursors are highly useful in fabricating β-In2S3 electrodes for solar energy harvesting and optoelectronic application. PMID:23787951

  2. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N-28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.

  3. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N-28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.

  4. One-Nanometer Thin Monolayers Remove the Deleterious Effect of Substrate Defects in Molecular Tunnel Junctions.

    PubMed

    Jiang, Li; Sangeeth, C S Suchand; Yuan, Li; Thompson, Damien; Nijhuis, Christian A

    2015-10-14

    Defects in self-assembled monolayer (SAMs) based junctions cause the largest deviation between predicted and measured values of the tunnelling current. We report the remarkable, seemingly counterintuitive finding that shorter, less-ordered SAMs provide, unlike taller crystalline-like SAMs, higher quality tunnelling barriers on defective substrates, which points to self-repair of liquid-like SAMs on defects. The molecular dynamics show that short-chain molecules can more easily rotate into low-density boundary regions and smoothen out defects than thick solid-like SAMs. Our findings point to an attractive means of removing their deleterious effects simply by using flexible molecules.

  5. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  6. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. PMID:25835032

  7. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes.

    PubMed

    Dennis, V W; Stead, N W; Andreoli, T E

    1970-03-01

    Amphotericin B modifies the permeability properties of thin lipid membranes formed from solutions containing sheep red cell phospholipids and cholesterol. At 10(-6)M amphotericin B, the DC membrane resistance fell from approximately 10(8) to approximately 10(2) ohm-cm(2), and the membranes became Cl(-)-, rather than Na(+)-selective; the permeability coefficients for hydrophilic nonelectrolytes increased in inverse relationship to solute size, and the rate of water flow during osmosis increased 30-fold. These changes may be rationalized by assuming that the interaction of amphotericin B with membrane-bound sterol resulted in the formation of aqueous pores. N-acetylamphotericin B and the methyl ester of N-acetylamphotericin B, but not the smaller ring compounds, filipin, rimocidin, and PA-166, produced comparable permeability changes in identical membranes, and amphotericin B and its derivatives produced similar changes in the properties of membranes formed from phospholipid-free sterol solutions. However, amphotericin B did not affect ionic selectivity or water and nonelectrolyte permeability in membranes formed from solutions containing phospholipids and no added cholesterol, or when cholesterol was replaced by either cholesterol palmitate, dihydrotachysterol, epicholesterol, or Delta5-cholesten-3-one. Phospholipid-free sterol membranes exposed to amphotericin B or its derivatives were anion-selective, but the degree of Cl(-) selectivity varied among the compounds, and with the aqueous pH. The data are discussed with regard to, first, the nature of the polyene-sterol interactions which result in pore formation, and second, the functional groups on amphotericin B responsible for membrane anion selectivity.

  8. Process for converting light alkanes to higher hydrocarbons

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  9. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    SciTech Connect

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J. Riechert, H.

    2015-05-25

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  10. On the dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever

    SciTech Connect

    Finot, Eric; Fabre, Arnaud; Passian, Ali; Thundat, Thomas

    2014-03-01

    Mechanical resonators shaped like microcantilevers have been demonstrated as a platform for very sensitive detection of chemical and biological analytes. However, its use as an analytical tool will require fundamental understanding of the molecular absorption-induced effects in the static and dynamic sensor response. The effect of absorption-induced surface stress on the microcantilever response is here investigated using palladium hydride formation. It is shown that the resonance and deformation states of the cantilever monitored simultaneously exhibit excellent correlation with the phase of the hydride formation. However, the associated frequency shifts and quasistatic bending are observed to be independent during solid solution phase. Importantly, absorption-induced changes in the elastic parameters of the palladium film are found to play a dominant role in the static and dynamic response. The presented results help in discerning the parameters that control the cantilever response as well as the relationships between these parameters.

  11. How do smectic liquid crystals of different molecular length mix in thin films?

    PubMed

    Keymeulen, H R; de Jeu, W H; Slattery, J T; Veum, M

    2002-12-01

    We present a model for the structure of binary mixtures of smectic compounds in freely suspended films of 2-7 layers. The compounds are the hexyl (6AB) and dodecyl (10AB) homologues of p, p'-dialkylazoxybenzene that differ by about 40% in molecular length. X-ray reflectivity indicates that no demixing occurs between 6AB and 10AB molecules, while also there is no indication found of increased roughness at the film surfaces. However, the surface layers are somewhat expanded compared to the interior layers. This can be explained by backfolding of the dodecyl end chains of 10AB molecules at the surface via two gauche kinks, which ensures dense packing. This model is supported by surface tension measurements that indicate an increased amount of alkyl groups at the surfaces.

  12. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.

    PubMed

    Lea-Smith, David J; Biller, Steven J; Davey, Matthew P; Cotton, Charles A R; Perez Sepulveda, Blanca M; Turchyn, Alexandra V; Scanlan, David J; Smith, Alison G; Chisholm, Sallie W; Howe, Christopher J

    2015-11-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities.

  13. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  14. Poly(quinoxaline-2,3-diyl)s bearing (S)-3-octyloxymethyl side chains as an efficient amplifier of alkane solvent effect leading to switch of main-chain helical chirality.

    PubMed

    Nagata, Yuuya; Nishikawa, Tsuyoshi; Suginome, Michinori

    2014-11-12

    Poly(quinoxaline-2,3-diyl) containing (S)-3-octyloxymethyl side chains was synthesized to investigate the induction of a single-handed helical sense to the main chain in various alkane solvents. The polymer showed an efficient solvent dependent helix inversion between n-octane (M-helix) and cyclooctane (P-helix). After a screening of alkane solvents, it was found that linear alkanes having large molecular aspect ratios induced M-helical structure, and branched or cyclic alkanes having small molecular aspect ratios induced P-helical structure. A polymer ligand containing (S)-3-octyloxymethyl side chains and diphenylphosphino pendants also exhibited solvent-dependent helical inversion between n-octane and cyclooctane, leading to the highly enantioselective production of the both enantiomeric product in a palladium-catalyzed asymmetric hydrosilylation reaction of styrene (R-product 94% ee in n-octane and S-product 90% ee in cyclooctane). PMID:25343492

  15. Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film.

    PubMed

    Bosserdt, Maria; Gajovic-Eichelman, Nenad; Scheller, Frieder W

    2013-08-01

    We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm(-2). In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30% of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA-SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA-MIP-modified electrode occurred with an affinity constant of 100,000 mol(-1) L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins. PMID:23660694

  16. Temperature dependence of molecular orientation on the surfaces of semifluorinated polymer thin films

    SciTech Connect

    Genzer, J.; Sivaniah, E.; Kramer, E.J.

    2000-02-22

    Near-edge X-ray absorption fine structure is used to investigate the temperature dependence of molecular orientation of semifluorinated liquid crystalline (SF-LC) mesogens, which are attached to the modified isoprene backbone of (1) a poly(1,2-isoprene) homopolymer and (2) a diblock copolymer consisting of polystyrene and poly(1,2-isoprene) blocks. These experiments reveal the existence of two temperature regions in which the surface orientation of the SF-LC mesogens changes abruptly, but even 30 K above the highest such temperature region the surface orientation does not become isotropic. The lower temperature surface transition for both homopolymer and block copolymer occurs close to the temperature of the bulk homopolymer smectic-B to smectic-A transition and well above the bulk smectic-B to smectic-A transition in the block copolymer. It seems to be controlled exclusively by the ordering phenomena originating from the surface. In contrast, the change in the surface organization of the SF-LC mesogens at higher temperatures can be associated with bulk LC transition from the smectic-A to the isotropic phase.

  17. Molecular dynamics simulation of mechanical deformation of ultra-thin metal and ceramic films

    SciTech Connect

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1995-04-01

    We present an overview of the molecular dynamics computer simulation method as employed in the study of the mechanical properties of surfaces at the manometer scale. The embedded atom method is used to model a clean metal surface and the bond-order model is used to model ceramic surfaces. The computer experiment consists of the indentation and scraping of a hard diamond-like tool into and across the surface. Results are presented for the (111) surface of copper and silver and for the (100) surface of silicon. We explicitly demonstrate in our point indentation simulations that nanoscale plasticity in metals takes place by nondislocation mechanisms, a result suggested by recent nanoindentation experiments. We also observe the surface to accommodate nearly the entire volume of the tip and the annealing out of plastic work as the tip is removed. In our orthogonal cutting simulation, we observe an interesting phenomenon: the system dynamically reorients the gain in front of the tool tip to minimize the work performed on the shear plane (i.e. the shear plane becomes an easy slip plane). Silicon transforms into an amorphous state which then flows plastically.

  18. Hydrogen bond fluctuations and dispersive interactions of alcohol/alkane mixtures. An ultrasonic relaxation study

    NASA Astrophysics Data System (ADS)

    Kaatze, Udo; Behrends, Ralph

    2011-06-01

    The relaxation behaviour of 1-hexanol/n-heptane and 1-dodecanol/n-tetradecane mixtures has been studied at some compositions using ultrasonic attenuation spectrometry in the frequency range 0.4-3000 MHz. All mixtures reveal a relaxation term due to hydrogen network fluctuations. It is discussed in conjunction with the principle dielectric relaxation of alcohol/alkane mixtures, indicating a dynamically micro-heterogeneous liquid structure. The spectra of the long-chain alcohol system display an additional relaxation due to the structural isomerisation of the hydrocarbon chains. In terms of a torsional oscillator model this relaxation reveals the effect of molecular ordering on the enthalpy of activation.

  19. Molecular-dynamics simulations of thin polyisoprene films confined between amorphous silica substrates

    SciTech Connect

    Guseva, D. V.; Komarov, P. V.; Lyulin, Alexey V.

    2014-03-21

    Constant temperature–constant pressure (NpT) molecular-dynamics computer simulations have been carried out for the united-atom model of a non-crosslinked (1,4) cis-polyisoprene (PI) melt confined between two amorphous, fully coordinated silica surfaces. The Lennard-Jones 12-6 potential was implemented to describe the polymer–silica interactions. The thickness H of the produced PI–silica film has been varied in a wide range, 1 < H/R{sub g} < 8, where R{sub g} is the individual PI chain radius of gyration measured under the imposed confinement. After a thorough equilibration, the PI film stratified structure and polymer segmental dynamics have been studied. The chain structure in the middle of the films resembles that in a corresponding bulk, but the polymer-density profile shows a pronounced ordering of the polymer segments in the vicinity of silica surfaces; this ordering disappears toward the film middles. Tremendous slowing down of the polymer segmental dynamics has been observed in the film surface layers, with the segmental relaxation more than 150 times slower as compared to that in a PI bulk. This effect increases with decreasing the polymer-film thickness. The segmental relaxation in the PI film middles shows additional relaxation process which is absent in a PI bulk. Even though there are fast relaxation processes in the film middle, its overall relaxation is slower as compared to that in a bulk sample. The interpretation of the results in terms of polymer glassy bridges has been discussed.

  20. Subdiffraction-Resolution Optical Measurements of Molecular Transport in Thin Polymer Films.

    PubMed

    Pahal, Suman; Raichur, Ashok M; Varma, Manoj M

    2016-06-01

    The measurement of molecular transport within polymer films yields information about the internal structural organization of the films and is useful in applications such as the design of polymeric capsules for drug delivery. Layer-by-layer assembly of polyelectrolyte multilayer films has been widely used in such applications where the multilayer structure often exhibits anisotropic transport resulting in different diffusivities in the lateral (parallel to the film) and transverse (normal to the film) directions. Although lateral transport can be probed using techniques such as fluorescence recovery after photobleaching (FRAP), it cannot be applied to probing transverse diffusivity in polymer films smaller than the diffraction limit of light. Here we present a technique to probe the transport of molecules tagged with fluorphores in polymer films thinner than the optical diffraction limit using the modulation of fluorescence emission depending on the distance of the tagged molecules from a metal surface. We have used this technique to probe the diffusion of proteins biotin and bovine serum albumin (BSA) in polyelectrolyte multilayer films. We also studied the interdiffusion of chains in multilayer films using this technique. We observed a 3 order of magnitude increase in interdiffusion as a function of the ionic strength of the medium. This technique, along with FRAP, will be useful in studying anisotropic transport in polymer films, even those thinner than the diffraction limit, because the signal in this technique arises only from transverse and not lateral transport. Finally, this technique is also applicable to studying the diffusion of chromophore-labeled species within a polymer film. We demonstrate this aspect by measuring the transverse diffusion of methylene blue in the PAH-PAA multilayer system.

  1. Effects of solvent density on retention in gas-liquid chromatography. I. Alkanes solutes in polyethylene glycol stationary phases.

    PubMed

    González, F R; Pérez-Parajón, J; García-Domínguez, J A

    2002-04-12

    Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.

  2. Conformal organic-inorganic hybrid network polymer thin films by molecular layer deposition using trimethylaluminum and glycidol.

    PubMed

    Gong, Bo; Peng, Qing; Parsons, Gregory N

    2011-05-19

    Growing interest in nanoscale organic-inorganic hybrid network polymer materials is driving exploration of new bulk and thin film synthesis reaction mechanisms. Molecular layer deposition (MLD) is a vapor-phase deposition process, based on atomic layer deposition (ALD) which proceeds by exposing a surface to an alternating sequence of two or more reactant species, where each surface half-reaction goes to completion before the next reactant exposure. This work describes film growth using trimethyl aluminum and heterobifunctional glycidol at moderate temperatures (90-150 °C), producing a relatively stable organic-inorganic network polymer of the form (-Al-O-(C(4)H(8))-O-)(n). Film growth rate and in situ reaction analysis indicate that film growth does not initially follow a steady-state rate, but increases rapidly during early film growth. The mechanism is consistent with subsurface species transport and trapping, previously documented during MLD and ALD on polymers. A water exposure step after the TMA produces a more linear growth rate, likely by blocking TMA subsurface diffusion. Uniform and conformal films are formed on complex nonplanar substrates. Upon postdeposition annealing, films transform into microporous metal oxides with ∼5 Å pore size and surface area as high as ∼327 m(2)/g, and the resulting structures duplicate the shape of the original substrate. These hybrid films and porous materials could find uses in several research fields including gas separations and diffusion barriers, biomedical scaffolds, high surface area coatings, and others.

  3. Oxygen vacancy induced photoluminescence and ferromagnetism in SrTiO{sub 3} thin films by molecular beam epitaxy

    SciTech Connect

    Xu, Wenfei; Yang, Jing; Bai, Wei; Tang, Kai; Zhang, Yuanyuan; Tang, Xiaodong

    2013-10-21

    SrTiO{sub 3} thin films were epitaxially grown on (100) SrTiO{sub 3} substrates using molecular beam epitaxy. The temperature for growth of the films was optimized, which was indicated by x-ray diffraction and further confirmed by microstructural characterization. Photoluminescence spectra show that oxygen-vacancy contributes to red and blue luminescence of oxygen-deficient post-annealed films, and a red shift was observed in blue region. On the other hand, ferromagnetism in film form SrTiO{sub 3} was observed from 5 K to 400 K and could be further enhanced with decreasing oxygen plasma partial pressure in annealing processes, which might be explained by the theory involving d{sup 0} magnetism related to oxygen-vacancy. From the cooperative investigations of optical and magnetic properties, we conclude that intrinsic defects, especially oxygen-vacancy, can induce and enhance luminescence and magnetism in SrTiO{sub 3} films.

  4. Real-time observation on surface diffusion and molecular orientations for phthalocyanine thin films at nanometer spacial resolution

    NASA Astrophysics Data System (ADS)

    Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori; Hirao, Norie; Narita, Ayumi; Deng, Juzhi

    2009-08-01

    The morphology, electronic structure and ordering of the phthalocyanine thin films have been investigated at nanometer scale by photoelectron emission microscopy (PEEM) excited by polarized soft X-rays from synchrotron light source. The sample investigated was micropattern of silicon phthalocyanine deposited on gold surface. The incident angle dependences of the X-ray absorption near edge structure (XANES) spectra at the silicon K-edge revealed that the molecules of 5-layered films are lying nearly flat on the surface. Clear image of the micropattern was observed by PEEM, showing that the molecules are deposited via Volmer-Weber (VW) mode at room temperature. While, the surface diffusion was observed upon heating, and the micropattern image almost disappeared at 240 °C, representing the deposition mode changes from VW-mode to Frank-van der Merwe (FM)-one. On the basis of the photon-energy dependences of the brightnesses in the PEEM images, it was found that the molecules diffusing to the fresh gold surface rather stand-up at 240 °C. The observed changes in the molecular orientations at nanometer domains are discussed on the basis of the strengths of the molecule-molecule and molecule-surface interactions.

  5. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Yao, Q.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Shen, D. W.

    2016-08-01

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO3 and iso-polarity LaAlO3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO3 (111) substrate was more suitable than Nb-doped SrTiO3. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO3 based superlattices.

  6. Structural properties of Bi2-xMnxSe3 thin films grown via molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David; Marcus, Matthew A.; Tarafder, Kartick

    2015-07-01

    The effects of Mn doping on the structural properties of the topological insulator Bi2Se3 in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn2+ substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  7. Conformational equilibria of alkanes in aqueous solution: relationship to water structure near hydrophobic solutes.

    PubMed Central

    Ashbaugh, H S; Garde, S; Hummer, G; Kaler, E W; Paulaitis, M E

    1999-01-01

    Conformational free energies of butane, pentane, and hexane in water are calculated from molecular simulations with explicit waters and from a simple molecular theory in which the local hydration structure is estimated based on a proximity approximation. This proximity approximation uses only the two nearest carbon atoms on the alkane to predict the local water density at a given point in space. Conformational free energies of hydration are subsequently calculated using a free energy perturbation method. Quantitative agreement is found between the free energies obtained from simulations and theory. Moreover, free energy calculations using this proximity approximation are approximately four orders of magnitude faster than those based on explicit water simulations. Our results demonstrate the accuracy and utility of the proximity approximation for predicting water structure as the basis for a quantitative description of n-alkane conformational equilibria in water. In addition, the proximity approximation provides a molecular foundation for extending predictions of water structure and hydration thermodynamic properties of simple hydrophobic solutes to larger clusters or assemblies of hydrophobic solutes. PMID:10423414

  8. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase.

    PubMed

    Peter, Sebastian; Kinne, Matthias; Wang, Xiaoshi; Ullrich, René; Kayser, Gernot; Groves, John T; Hofrichter, Martin

    2011-10-01

    Fungal peroxygenases are novel extracellular heme-thiolate biocatalysts that are capable of catalyzing the selective monooxygenation of diverse organic compounds, using only H(2)O(2) as a cosubstrate. Little is known about the physiological role or the catalytic mechanism of these enzymes. We have found that the peroxygenase secreted by Agrocybe aegerita catalyzes the H(2)O(2)-dependent hydroxylation of linear alkanes at the 2-position and 3-position with high efficiency, as well as the regioselective monooxygenation of branched and cyclic alkanes. Experiments with n-heptane and n-octane showed that the hydroxylation proceeded with complete stereoselectivity for the (R)-enantiomer of the corresponding 3-alcohol. Investigations with a number of model substrates provided information about the route of alkane hydroxylation: (a) the hydroxylation of cyclohexane mediated by H(2)(18)(2) resulted in complete incorporation of (18)O into the hydroxyl group of the product cyclohexanol; (b) the hydroxylation of n-hexane-1,1,1,2,2,3,3-D(7) showed a large intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 16.0 ± 1.0 for 2-hexanol and 8.9 ± 0.9 for 3-hexanol; and (c) the hydroxylation of the radical clock norcarane led to an estimated radical lifetime of 9.4 ps and an oxygen rebound rate of 1.06 × 10(11) s(-1). These results point to a hydrogen abstraction and oxygen rebound mechanism for alkane hydroxylation. The peroxygenase appeared to lack activity on long-chain alkanes (> C(16)) and highly branched alkanes (e.g. tetramethylpentane), but otherwise exhibited a broad substrate range. It may accordingly have a role in the bioconversion of natural and anthropogenic alkane-containing structures (including alkyl chains of complex biomaterials) in soils, plant litter, and wood. PMID:21812933

  9. Fine-Tunable Absorption of Uniformly Aligned Polyurea Thin Films for Optical Filters Using Sequentially Self-Limited Molecular Layer Deposition.

    PubMed

    Park, Yi-Seul; Choi, Sung-Eun; Kim, Hyein; Lee, Jin Seok

    2016-05-11

    Development of methods enabling the preparation of uniformly aligned polymer thin films at the molecular level is a prerequisite for realizing their optoelectronic characteristics as innovative materials; however, these methods often involve a compromise between scalability and accuracy. In this study, we have grown uniformly aligned polyurea thin films on a SiO2 substrate using molecular layer deposition (MLD) based on sequential and self-limiting surface reactions. By integrating plane-polarized Fourier-transform infrared, Raman spectroscopic tools, and density functional theory calculations, we demonstrated the uniform alignment of polyurea MLD films. Furthermore, the selective-wavelength absorption characteristics of thickness-controlled MLD films were investigated by integrating optical measurements and finite-difference time-domain simulations of reflection spectra, resulting from their thickness-dependent fine resonance with photons, which could be used as color filters in optoelectronics. PMID:27092573

  10. Synthesis and modification of mesoporous silica and the preparation of molecular sieve thin films via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Coutinho, Decio Heringer

    2001-07-01

    Hexagonal mesoporous DAM-1 (Dallas Amorphous Material-1) was prepared using Vitamin E TPGS as the structure-directing agent. Depending upon the temperature and gel composition, highly ordered and hydrothermally stable DAM-1 with various morphologies could be achieved including spheres, gyroids, discoid, hexagonal plates and rods. This synthesis was modified to prepare hybrid organic-inorganic amine and thiol bifunctionalized DAM-1 by direct co-condensation under acidic conditions. Patterned DAM-1 thin films were prepared on patterned transparencies utilizing pulsed laser deposition (PLD) and line patterning techniques. DAM-1 laser ablation onto the patterned substrate followed by hydrothermal treatment resulted in a densely packed film. Removal of the patterned lines by sonication revealed patterned DAM-1 films. Thin films of zeolite type X were also prepared using the PLD technique. Laser ablation of zeolite X onto TiN-coated silicon wafers followed by a hydrothermal treatment resulted in partially oriented, crystalline membranes. Hydrothermal treatment of PLD films on stainless steel mesh produced a coated wire mesh with a 3-mum thick zeolite X film. A novel strategy for imprinting mesoporous SBA-15 that combines a triblock copolymer template and a chiral ruthenium complex is reported. A chiral PEO helix was formed by the chiral ruthenium complex interaction with the block copolymer during the synthesis of SBA-15. Upon removal of the chiral ruthenium complex, a stereospecfic cavity was created. Preliminary results indicated stereoselective absorption of Delta or Λ-Ru(phen)3 2+ isomer from a racemic mixture could be achieved depending on the chirality of the PEO chain. Practicum Two. The industrial practicum report describes the process development unit (PDU) 3-pentenenitrile (3PN) refining operation. This distillation works was operated to refine crude 3PN product, which contained 3PN, 2-methyl-3-butenenitrile (2M3BN), and other byproducts. This report also

  11. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  12. Structure, Energetics, and Dynamics of Screw Dislocations in Even n-Alkane Crystals.

    PubMed

    Olson, Isabel A; Shtukenberg, Alexander G; Hakobyan, Gagik; Rohl, Andrew L; Raiteri, Paolo; Ward, Michael D; Kahr, Bart

    2016-08-18

    Spiral hillocks on n-alkane crystal surfaces were observed immediately after Frank recognized the importance of screw dislocations for crystal growth, yet their structures and energies in molecular crystals remain ill-defined. To illustrate the structural chemistry of screw dislocations that are responsible for plasticity in organic crystals and upon which the organic electronics and pharmaceutical industries depend, molecular dynamics was used to examine heterochiral dislocation pairs with Burgers vectors along [001] in n-hexane, n-octane, and n-decane crystals. The cores were anisotropic and elongated in the (110) slip plane, with significant local changes in molecular position, orientation, conformation, and energy. This detailed atomic level picture produced a distribution of strain consistent with linear elastic theory, giving confidence in the simulations. Dislocations with doubled Burgers vectors split into pairs with elementary displacements. These results suggest a pathway to understanding the mechanical properties and failure associated with elastic and plastic deformation in soft crystals. PMID:27478906

  13. Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing.

    PubMed

    Charlton, Christy; Giovannini, Marcella; Faist, Jérôme; Mizaikoff, Boris

    2006-06-15

    Thin-film GaAs waveguides were designed and fabricated by molecular beam epitaxy for use in mid-infrared (MIR) evanescent field liquid sensing. Waveguides were designed to facilitate the propagation of a single mode at a wavelength of 10.3 microm emitted from a distributed feedback quantum cascade laser, which overlaps with molecular selective absorption features of acetic anhydride. The characterization of the waveguides shows transmission across a broad MIR band. Evanescent field absorption measurements indicate a significant sensitivity enhancement in contrast to multimode planar silver halide waveguides.

  14. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  15. Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

    PubMed

    dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare

    2008-08-01

    A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes. PMID:18630859

  16. Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

    PubMed

    dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare

    2008-08-01

    A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.

  17. Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

    PubMed

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, "Shengli Cluster" and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes.

  18. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  19. Diffusion of Benzene and Alkylbenzenes in n-Alkanes.

    PubMed

    Kowert, Bruce A; Register, Paul M

    2015-10-01

    The translational diffusion constants, D, of benzene and a series of alkylbenzenes have been determined in four n-alkanes at room temperature using capillary flow techniques. The alkylbenzenes are toluene, ethylbenzene, 1-phenylpropane, 1-phenylpentane, 1-phenyloctane, 1-phenylundecane, 1-phenyltetradecane, and 1-phenylheptadecane. The n-alkanes are n-nonane, n-decane, n-dodecane, and n-pentadecane. Ratios of the solutes' D values are independent of solvent and in general agreement with the predictions of diffusion models for cylinders and lollipops. For the latter, an alkylbenzene's phenyl ring is the lollipop's candy; the alkyl chain is its handle. A model that considers the solutes to be spheres with volumes determined by the van der Waals increments of their constituent atoms is not in agreement with experiment. The diffusion constants of 1-alkene and n-alkane solutes in n-alkane solvents also are compared with the cylinder model; reasonably good agreement is found. The n-alkanes are relatively extended, and this appears to be the case for the alkyl chains of the 1-alkenes and alkylbenzenes as well. PMID:26417941

  20. Alkane desaturation by concerted double hydrogen atom transfer to benzyne.

    PubMed

    Niu, Dawen; Willoughby, Patrick H; Woods, Brian P; Baire, Beeraiah; Hoye, Thomas R

    2013-09-26

    The removal of two vicinal hydrogen atoms from an alkane to produce an alkene is a challenge for synthetic chemists. In nature, desaturases and acetylenases are adept at achieving this essential oxidative functionalization reaction, for example during the biosynthesis of unsaturated fatty acids, eicosanoids, gibberellins and carotenoids. Alkane-to-alkene conversion almost always involves one or more chemical intermediates in a multistep reaction pathway; these may be either isolable species (such as alcohols or alkyl halides) or reactive intermediates (such as carbocations, alkyl radicals, or σ-alkyl-metal species). Here we report a desaturation reaction of simple, unactivated alkanes that is mechanistically unique. We show that benzynes are capable of the concerted removal of two vicinal hydrogen atoms from a hydrocarbon. The discovery of this exothermic, net redox process was enabled by the simple thermal generation of reactive benzyne intermediates through the hexadehydro-Diels-Alder cycloisomerization reaction of triyne substrates. We are not aware of any single-step, bimolecular reaction in which two hydrogen atoms are simultaneously transferred from a saturated alkane. Computational studies indicate a preferred geometry with eclipsed vicinal C-H bonds in the alkane donor.

  1. Comparative Study on Single-Molecule Junctions of Alkane- and Benzene-Based Molecules with Carboxylic Acid/Aldehyde as the Anchoring Groups.

    PubMed

    Chen, Fang; Peng, Lin-Lu; Hong, Ze-Wen; Mao, Jin-Chuan; Zheng, Ju-Fang; Shao, Yong; Niu, Zhen-Jiang; Zhou, Xiao-Shun

    2016-12-01

    We have measured the alkane and benzene-based molecules with aldehyde and carboxylic acid as anchoring groups by using the electrochemical jump-to-contact scanning tunneling microscopy break junction (ECSTM-BJ) approach. The results show that molecule with benzene backbone has better peak shape and intensity than those with alkane backbone. Typically, high junction formation probability for same anchoring group (aldehyde and carboxylic acid) with benzene backbone is found, which contributes to the stronger attractive interaction between Cu and molecules with benzene backbone. The present work shows the import role of backbone in junction, which can guide the design molecule to form effective junction for studying molecular electronics. PMID:27566686

  2. Comparative Study on Single-Molecule Junctions of Alkane- and Benzene-Based Molecules with Carboxylic Acid/Aldehyde as the Anchoring Groups

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Peng, Lin-Lu; Hong, Ze-Wen; Mao, Jin-Chuan; Zheng, Ju-Fang; Shao, Yong; Niu, Zhen-Jiang; Zhou, Xiao-Shun

    2016-08-01

    We have measured the alkane and benzene-based molecules with aldehyde and carboxylic acid as anchoring groups by using the electrochemical jump-to-contact scanning tunneling microscopy break junction (ECSTM-BJ) approach. The results show that molecule with benzene backbone has better peak shape and intensity than those with alkane backbone. Typically, high junction formation probability for same anchoring group (aldehyde and carboxylic acid) with benzene backbone is found, which contributes to the stronger attractive interaction between Cu and molecules with benzene backbone. The present work shows the import role of backbone in junction, which can guide the design molecule to form effective junction for studying molecular electronics.

  3. Molecular profiling of thin-prep FNA samples in assisting clinical management of non-small-cell lung cancer.

    PubMed

    Petriella, Daniela; Galetta, Domenico; Rubini, Vincenza; Savino, Eufemia; Paradiso, Angelo; Simone, Giovanni; Tommasi, Stefania

    2013-07-01

    The discovery of new target treatments for NSCLC has led to a search for new genetic and epigenetic markers able to selectively predict response to these new drugs. Somatic mutations in EGFR and KRAS genes are routinely analyzed to predict response to tyrosine kinase inhibitors (TKIs), used in the treatment of NSCLC patients, whose efficacy depend on the presence or the absence of specific mutations. MicroRNA (miRNA) expression evaluation has been recently analyzed because of the involvement of these molecules in lung cancer pathogenesis and in drug resistance. Only 30 % of NSCLC patients present a resectable stage at time of diagnosis so tissue samples cannot be the only starting material for genetic and epigenetic analysis. Therefore, the possibility to use cytological sampling already used for diagnosis also for molecular testing is emerging. The aim of this study was to evaluate for the first time in lung cancer the use of liquid-based cytology both for EGFR and KRAS mutational testing and for the expression trend of some miRNAs involved in lung cancer pathogenesis: miR-21, miR-155, miR-7, and let7a. We enrolled 20 fine-needle aspirate (FNA) samples diagnosed as NSCLC, 10 FNAs without neoplastic cells, and tissue samples coming from 5 of the 20 patients who underwent surgery after FNA NSCLC diagnosis. All Thin-Prep processed FNA samples were evaluable for DNA and RNA analysis and results were compared with those of the small group of patients whose matched tumor histology was available. The mutational status of the EGFR and KRAS genes and the expression profile of the selected miRNA showed comparable results between FNA samples and histological tissues. Our results underline that cytological samples could give the same genetic information as that obtained from histological specimens and so could be collected to create a nucleic acids bank.

  4. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    PubMed

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  5. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    PubMed

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites. PMID:23683048

  6. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism

    NASA Astrophysics Data System (ADS)

    Kudryashov, S.; Ryabov, A.; Shchyogoleva, G.

    2016-01-01

    A new approach to the non-oxidative conversion of C1-C4 alkanes into gaseous and liquid products in a barrier discharge is proposed. It consists in inhibiting the formation of deposits on the reactor electrode surfaces due to the addition of distilled water into the flow of hydrocarbon gases. The energy consumption on hydrocarbon conversion decreases from methane to n-butane from ~46 to 35 eV molecule-1. The main gaseous products of the conversion of light alkanes are hydrogen and C2-C4 hydrocarbons. The liquid reaction products contain C5+ alkanes with a predominantly isomeric structure. The results of modeling the kinetics of chemical reactions show that an increase in the molecular weight of the reaction products is mainly due to processes involving CH2 radical and the recombination of alkyl radicals.

  7. Microbial production of short-chain alkanes.

    PubMed

    Choi, Yong Jun; Lee, Sang Yup

    2013-10-24

    Increasing concerns about limited fossil fuels and global environmental problems have focused attention on the need to develop sustainable biofuels from renewable resources. Although microbial production of diesel has been reported, production of another much in demand transport fuel, petrol (gasoline), has not yet been demonstrated. Here we report the development of platform Escherichia coli strains that are capable of producing short-chain alkanes (SCAs; petrol), free fatty acids (FFAs), fatty esters and fatty alcohols through the fatty acyl (acyl carrier protein (ACP)) to fatty acid to fatty acyl-CoA pathway. First, the β-oxidation pathway was blocked by deleting the fadE gene to prevent the degradation of fatty acyl-CoAs generated in vivo. To increase the formation of short-chain fatty acids suitable for subsequent conversion to SCAs in vivo, the activity of 3-oxoacyl-ACP synthase (FabH), which is inhibited by unsaturated fatty acyl-ACPs, was enhanced to promote the initiation of fatty acid biosynthesis by deleting the fadR gene; deletion of the fadR gene prevents upregulation of the fabA and fabB genes responsible for unsaturated fatty acids biosynthesis. A modified thioesterase was used to convert short-chain fatty acyl-ACPs to the corresponding FFAs, which were then converted to SCAs by the sequential reactions of E. coli fatty acyl-CoA synthetase, Clostridium acetobutylicum fatty acyl-CoA reductase and Arabidopsis thaliana fatty aldehyde decarbonylase. The final engineered strain produced up to 580.8 mg l(-1) of SCAs consisting of nonane (327.8 mg l(-1)), dodecane (136.5 mg l(-1)), tridecane (64.8 mg l(-1)), 2-methyl-dodecane (42.8 mg l(-1)) and tetradecane (8.9 mg l(-1)), together with small amounts of other hydrocarbons. Furthermore, this platform strain could produce short-chain FFAs using a fadD-deleted strain, and short-chain fatty esters by introducing the Acinetobacter sp. ADP1 wax ester synthase (atfA) and the E. coli mutant

  8. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  9. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  10. Thermal decomposition of n-alkanes under supercritical conditions

    SciTech Connect

    Yu, J.; Eser, S.

    1996-10-01

    The future aircraft fuel system may be operating at temperatures above the critical points of fuels. Currently there is very limited information on the thermal stability of hydrocarbon fuels under supercritical conditions. In this work, the thermal stressing experiments of n-decane, n-dodecane, n-tetradecane, their mixtures, and an n-paraffin mixture, Norpar-13, was carried out under supercritical conditions. The experimental results indicated that the thermal decomposition of n-alkanes can be represented well by the first-order kinetics. Pressure has significant effects on the first-order rate constant and product distribution in the near-critical region. The major products are a series of n-alkanes and 1-alkenes. The relative yields of n-alkanes and 1-alkenes depend on the reaction conditions. The first-order rate constants for the thermal decomposition of individual compounds in a mixture are different from those obtained for the decomposition of pure compounds.

  11. Surface crystallization in normal-alkanes and alcohols

    SciTech Connect

    Deutsch, M.; Ocko, B.M.; Wu, X.Z. |; Sirota, E.B.; Sinha, S.K.

    1995-06-01

    A new, rare surface freezing, phenomenon is observed in molten normal-alkanes and their derivatives (alcohols, thiols, etc.). X-ray and surface tension measurements show the formation of a crystalline monolayer on the surface of the liquid alkane at temperatures up to 3 C above the bulk solidification temperature, T{sub f}. For alcohols, a single bilayer is formed. In both cases, the molecules in the layer are hexagonally packed and oriented normal to the surface for short chain lengths, and tilted for long ones. In both cases the single layer persists down to T{sub f}. In terms of wetting theory, this constitutes a very limited partial wetting of the liquid surface by the crystalline layer. The new surface phase is obtained only for chain lengths 14 < n {le} 50 in alkanes, and 16 < n < 30 in alcohols. The measurements are satisfactorily accounted for within a simple theory based on surface energy considerations.

  12. Alkanes and alkenes conversion to high octane gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-07-25

    This patent describes a process for the conversion of lower alkane and alkene hydrocarbons to high octane gasoline. It comprises: contacting a hydrocarbon feedstock comprising lower alkanes and alkenes with a fluidized bed of acidic, shape selective metallosiliate catalyst in a first conversion zone under high temperature alkane conversion conditions wherein the feedstock contains an amount of lower alkene sufficient to provide an exotherm sufficient to maintain near isothermal reaction conditions whereby an effluent stream is produced comprising higher aliphatic hydrocarbons rich in aromatics; contacting the effluent stream with a fluidized bed of acidic, medium pore metallosilicate catalyst in a second conversion zone at moderate temperature under oligonerization and alkylation conditions whereby a C/sub 5/ + gasoline boiling range product is produced rich in alkylated aromatics.

  13. Catalytic, mild, and selective oxyfunctionalization of linear alkanes: current challenges.

    PubMed

    Bordeaux, Mélanie; Galarneau, Anne; Drone, Jullien

    2012-10-22

    Selective catalysts for sustainable oxidation of alkanes are highly demanded because of the abundance of these molecules in the environment, the possibility to transform them into higher-value compounds, such as chemicals or synthetic fuels, and the fact that, kinetically speaking, this is a difficult reaction. Numerous chemical and biological catalysts have been developed in the lasts decades for this purpose, rendering the overview over this field of chemistry difficult. After giving a definition of the ideal catalyst for alkane oxyfunctionalization, this review aims to present the catalysts available today that are closest to ideal.

  14. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi

    SciTech Connect

    Murphy, G.L.; Perry, J.J.

    1984-12-01

    The fatty acid compositions of two filamentous fungi (Cunninghamella elegans and Penicillium zonatum) and a yeast (Candida lipolytica) were determined after the organisms were grown on 1-chlorohexadecane or 1-chlorooctadecane. These organisms utilized the chlorinated alkanes as sole sources of carbon and energy. Analyses of the fatty acids present after growth on the chlorinated alkanes indicated that 60 to 70% of the total fatty acids in C. elegans were chlorinated. Approximately 50% of the fatty acids in C. lipolytica were also chlorinated. P. zonatum contained 20% 1-chlorohexadecanoic acid after growth on either substrate but did not incorporate C/sub 18/ chlorinated fatty acids.

  15. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  16. Modeling of alkane emissions from a wood stain

    SciTech Connect

    Chang, J.C.S.; Guo, Z.

    1993-01-01

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a function of time after the application of the wood stain. It was found that the test house concentrations can be simulated by an integrated IAQ model which takes into consideration source, sink, and ventilation effects. The alkane emissions were controlled by an evaporation-like process.

  17. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains.

    PubMed

    Jeong, Cheol; Douglas, Jack F

    2015-10-14

    The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M(β), is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from -1.8 to -2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature Tg where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔHa and entropy ΔSa of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a "critical" chain length, n ≈ 17. A close examination of this phenomenon indicates that a "buckling transition" from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔSa ∝ ΔHa, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔHa and ΔSa with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.

  18. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains

    SciTech Connect

    Jeong, Cheol; Douglas, Jack F.

    2015-10-14

    The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M{sup β}, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature T{sub g} where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔH{sub a} and entropy ΔS{sub a} of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔS{sub a} ∝ ΔH{sub a}, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔH{sub a} and ΔS{sub a} with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.

  19. Vapor-liquid phase coexistence of alkane-carbon dioxide and perfluoroalkane-carbon dioxide mixtures

    SciTech Connect

    Cui, S.T.; Cochran, H.D.; Cummings, P.T. |

    1999-05-27

    Both government and industry are seeking benign substitutes for the many organic solvents used in industry. Solvents are used as media for cleaning, for chemical reactions, and for chemical separation, and most of the solvents used are hazardous to health, safety, and the environment. Supercritical carbon dioxide (SC-CO{sub 2}) is often considered as an ideal solvent substitute, but several important classes of substances -- water and hydrophilic substances; proteins, nucleic acids, and many other biomolecules; and most man-made high polymers, for example -- exhibit very low solubility in SC-CO{sub 2}. The authors carried out a molecular simulation study of the vapor-liquid equilibria of alkane-CO{sub 2} and perfluoroalkane-CO{sub 2} binary mixtures using the Gibbs ensemble Monte Carlo method. They used simple interaction site models and the conventional Lorentz-Berthelot combining rules for the cross interaction between the solute and solvent species with no adjustable parameters to predict the vapor-liquid phase equilibrium of the hexane-CO{sub 2} and perfluorohexane-CO{sub 2} mixtures. The predicted CO{sub 2} mole fraction on the liquid branch is higher than the experimental results by about 10--13%. The gas-phase solubility of hexane and perfluorohexane in CO{sub 2} is generally smaller than the experimental results. The model predicts a higher solubility for the perfluoroalkanes in CO{sub 2} in comparison with alkanes in CO{sub 2}, consistent with experiment. The simulation results suggest that the dispersion interaction and the geometric packing may have a predominant role in accounting for the solubility difference between alkane and pefluoroalkane in CO{sub 2}.

  20. The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity

    NASA Astrophysics Data System (ADS)

    Sivebaek, I. M.; Persson, B. N. J.

    2016-11-01

    The properties of linear alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature and elastic properties of the solid surfaces. We consider linear alkanes of different chain lengths from {{{C}}}3{{{H}}}8 to {{{C}}}16{{{H}}}34, confined between corrugated solid walls. The pressure necessary to squeeze out the lubricant increases rapidly with the alkane chain length, but is always much lower than in the case of smooth surfaces. The longest alkanes form domains of ordered chains and the squeeze-out appears to nucleate in the more disordered regions between these domains. The short alkanes stay fluid-like during the entire squeeze out process which result in a very small squeeze-out pressure which is almost constant during the squeeze-out of the last monolayer of the fluid. In all cases we observe lubricant trapped in the valley of the surface roughness, which cannot be removed independent of the magnitude of the squeezing pressures.

  1. The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity.

    PubMed

    Sivebaek, I M; Persson, B N J

    2016-11-01

    The properties of linear alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature and elastic properties of the solid surfaces. We consider linear alkanes of different chain lengths from [Formula: see text] to [Formula: see text], confined between corrugated solid walls. The pressure necessary to squeeze out the lubricant increases rapidly with the alkane chain length, but is always much lower than in the case of smooth surfaces. The longest alkanes form domains of ordered chains and the squeeze-out appears to nucleate in the more disordered regions between these domains. The short alkanes stay fluid-like during the entire squeeze out process which result in a very small squeeze-out pressure which is almost constant during the squeeze-out of the last monolayer of the fluid. In all cases we observe lubricant trapped in the valley of the surface roughness, which cannot be removed independent of the magnitude of the squeezing pressures. PMID:27668358

  2. The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity.

    PubMed

    Sivebaek, I M; Persson, B N J

    2016-11-01

    The properties of linear alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature and elastic properties of the solid surfaces. We consider linear alkanes of different chain lengths from [Formula: see text] to [Formula: see text], confined between corrugated solid walls. The pressure necessary to squeeze out the lubricant increases rapidly with the alkane chain length, but is always much lower than in the case of smooth surfaces. The longest alkanes form domains of ordered chains and the squeeze-out appears to nucleate in the more disordered regions between these domains. The short alkanes stay fluid-like during the entire squeeze out process which result in a very small squeeze-out pressure which is almost constant during the squeeze-out of the last monolayer of the fluid. In all cases we observe lubricant trapped in the valley of the surface roughness, which cannot be removed independent of the magnitude of the squeezing pressures.

  3. Propagation and extinction of premixed C{sub 5}-C{sub 12}n-alkane flames

    SciTech Connect

    Ji, Chunsheng; Dames, Enoch; Wang, Yang L.; Wang, Hai; Egolfopoulos, Fokion N.

    2010-02-15

    Laminar flame speeds and extinction strain rates of premixed C{sub 5}-C{sub 12}n-alkane flames were determined at atmospheric pressure and elevated unburned mixture temperatures, over a wide range of equivalence ratios. Experiments were performed in the counterflow configuration and flow velocities were measured using Laser Doppler Velocimetry. The laminar flame speeds were obtained using a non-linear extrapolation technique utilizing numerical simulations of the counterflow experiments with detailed descriptions of chemical kinetics and molecular transport. Compared to linearly extrapolated values, the laminar flame speeds obtained using non-linear extrapolations were found to be 1-4 cm/s lower depending on the equivalence ratio. It was determined that the laminar flame speeds of all n-alkane/air mixtures considered in this investigation are similar to each other and sensitive largely to the H{sub 2}/CO and C{sub 1}-C{sub 4} hydrocarbon kinetics. Additionally, the resistance to extinction decreases as the fuel molecular weight increases. Simulations of the experiments were performed using the recently developed JetSurF 0.2 reaction model consisting of 194 species and 1459 reactions. The laminar flame speeds were predicted with good accuracy for all the n-alkane-air mixtures considered. The experimental extinction strain rates are well predicted by the model for fuel-lean mixtures. For stoichiometric and fuel-rich mixtures, the predicted extinction strain rates are approximately 10% lower than the experimental values. Insights into the physical and chemical processes that control the response of n-alkane flames are provided through detailed sensitivity analyses on both reaction rates and binary diffusion coefficients. (author)

  4. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  5. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  6. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  7. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  8. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  9. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  10. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  11. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  12. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  13. Molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Park, Joon Young; Lee, Gil-Ho; Jo, Janghyun; Cheng, Austin K.; Yoon, Hosang; Watanabe, Kenji; Taniguchi, Takashi; Kim, Miyoung; Kim, Philip; Yi, Gyu-Chul

    2016-09-01

    We report the molecular beam epitaxial growth and characterization of high quality topological insulator Bi2Se3 thin films on hexagonal boron nitride (h-BN). A two-step growth was developed, enhancing both the surface coverage and crystallinity of the films on h-BN. High-resolution transmission electron microscopy study showed an atomically abrupt and epitaxial interface formation between the h-BN substrate and Bi2Se3. We performed gate tuned magnetotransport characterizations of the device fabricated on the thin film and confirmed a high mobility surface state at the Bi2Se3/h-BN interface. The Berry phase obtained from Shubnikov-de Haas oscillations suggested this interfacial electronic state is a topologically protected Dirac state.

  14. Insight into the nanomechanical properties under indentation of β-Si3N4 nano-thin layers in the basal plane using molecular dynamics simulation.

    PubMed

    Lu, Xuefeng; Guo, Xin; La, Peiqing; Wei, Yupeng; Nan, Xueli; He, Ling

    2014-09-21

    Molecular dynamics simulations were performed to clarify the nanomechanical responses of β-Si3N4 nano-thin layers in the basal plane for indenters of various radii, different indentation velocities and at different temperatures. It was found that the maximum loading stress and indenter displacement both increase with increasing radius of the indenter. A large number of N(6h)-Si bond-breaking defects and one N(2c)-Si bond-breaking defects are responsible for the initiation of fracturing. With increasing loading velocity, the maximum loading stresses show almost no change; however, a high loading velocity can shorten the displacement of the indenter and contributes to the formation of new N(2c)-Si bond-breaking defects. Thermal fluctuations can decrease the mechanical properties of the thin layer. The maximum loading stresses and indenter displacements are sensitive to both the radius of the indenter and the loading temperature.

  15. Diffusion of squalene in n-alkanes and squalane.

    PubMed

    Kowert, Bruce A; Watson, Michael B; Dang, Nhan C

    2014-02-27

    Squalene, an intermediate in the biosynthesis of cholesterol, has a 24-carbon backbone with six methyl groups and six isolated double bonds. Capillary flow techniques have been used to determine its translational diffusion constant, D, at room temperature in squalane, n-C16, and three n-C8-squalane mixtures. The D values have a weaker dependence on viscosity, η, than predicted by the Stokes-Einstein relation, D = kBT/(6πηr). A fit to the modified relation, D/T = ASE/η(p), gives p = 0.820 ± 0.028; p = 1 for the Stokes-Einstein limit. The translational motion of squalene appears to be much like that of n-alkane solutes with comparable chain lengths; their D values show similar deviations from the Stokes-Einstein model. The n-alkane with the same carbon chain length as squalene, n-C24, has a near-equal p value of 0.844 ± 0.018 in n-alkane solvents. The values of the hydrodynamic radius, r, for n-C24, squalene, and other n-alkane solutes decrease as the viscosity increases and have a common dependence on the van der Waals volumes of the solute and solvent. The possibility of studying squalene in lipid droplets and membranes is discussed.

  16. Catalytic production of branched small alkanes from biohydrocarbons.

    PubMed

    Oya, Shin-ichi; Kanno, Daisuke; Watanabe, Hideo; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-08-10

    Squalane, C30 algae-derived branched hydrocarbon, was successfully converted to smaller hydrocarbons without skeletal isomerization and aromatization over ruthenium on ceria (Ru/CeO2 ). The internal CH2 CH2 bonds located between branches are preferably dissociated to give branched alkanes with very simple distribution as compared with conventional methods using metal-acid bifunctional catalysts.

  17. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  18. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  19. Diffusion of squalene in n-alkanes and squalane.

    PubMed

    Kowert, Bruce A; Watson, Michael B; Dang, Nhan C

    2014-02-27

    Squalene, an intermediate in the biosynthesis of cholesterol, has a 24-carbon backbone with six methyl groups and six isolated double bonds. Capillary flow techniques have been used to determine its translational diffusion constant, D, at room temperature in squalane, n-C16, and three n-C8-squalane mixtures. The D values have a weaker dependence on viscosity, η, than predicted by the Stokes-Einstein relation, D = kBT/(6πηr). A fit to the modified relation, D/T = ASE/η(p), gives p = 0.820 ± 0.028; p = 1 for the Stokes-Einstein limit. The translational motion of squalene appears to be much like that of n-alkane solutes with comparable chain lengths; their D values show similar deviations from the Stokes-Einstein model. The n-alkane with the same carbon chain length as squalene, n-C24, has a near-equal p value of 0.844 ± 0.018 in n-alkane solvents. The values of the hydrodynamic radius, r, for n-C24, squalene, and other n-alkane solutes decrease as the viscosity increases and have a common dependence on the van der Waals volumes of the solute and solvent. The possibility of studying squalene in lipid droplets and membranes is discussed. PMID:24528091

  20. Improving alkane synthesis in Escherichia coli via metabolic engineering.

    PubMed

    Song, Xuejiao; Yu, Haiying; Zhu, Kun

    2016-01-01

    Concerns about energy security and global petroleum supply have made the production of renewable biofuels an industrial imperative. The ideal biofuels are n-alkanes in that they are chemically and structurally identical to the fossil fuels and can "drop in" to the transportation infrastructure. In this work, an Escherichia coli strain that produces n-alkanes was constructed by heterologous expression of acyl-acyl carrier protein (ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) from Synechococcus elongatus PCC7942. The accumulation of alkanes ranged from 3.1 to 24.0 mg/L using different expressing strategies. Deletion of yqhD, an inherent aldehyde reductase in E. coli, or overexpression of fadR, an activator for fatty acid biosynthesis, exhibited a nearly twofold increase in alkane titers, respectively. Combining yqhD deletion and fadR overexpression resulted in a production titer of 255.6 mg/L in E. coli, and heptadecene was the most abundant product. PMID:26476644

  1. 40 CFR 721.10704 - Aryl-substituted alkane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting. (1) The chemical substance identified generically as an aryl-substituted alkane (PMN P-12-548) is subject to reporting under this section for the significant new uses described in paragraph (a)(2) of this... communication program. Requirements as specified in § 721.72(a), (b), (c), (d), (e) (concentration set at...

  2. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fu...

  3. Diverse alkane hydroxylase genes in microorganisms and environments

    PubMed Central

    Nie, Yong; Chi, Chang-Qiao; Fang, Hui; Liang, Jie-Liang; Lu, She-Lian; Lai, Guo-Li; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature. PMID:24829093

  4. Cyano- and polycyanometalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been substituted with one or more cyano groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  5. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  6. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  7. Improving alkane synthesis in Escherichia coli via metabolic engineering.

    PubMed

    Song, Xuejiao; Yu, Haiying; Zhu, Kun

    2016-01-01

    Concerns about energy security and global petroleum supply have made the production of renewable biofuels an industrial imperative. The ideal biofuels are n-alkanes in that they are chemically and structurally identical to the fossil fuels and can "drop in" to the transportation infrastructure. In this work, an Escherichia coli strain that produces n-alkanes was constructed by heterologous expression of acyl-acyl carrier protein (ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) from Synechococcus elongatus PCC7942. The accumulation of alkanes ranged from 3.1 to 24.0 mg/L using different expressing strategies. Deletion of yqhD, an inherent aldehyde reductase in E. coli, or overexpression of fadR, an activator for fatty acid biosynthesis, exhibited a nearly twofold increase in alkane titers, respectively. Combining yqhD deletion and fadR overexpression resulted in a production titer of 255.6 mg/L in E. coli, and heptadecene was the most abundant product.

  8. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, Manoj V.; Bierl, Thomas W.

    1998-01-01

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  9. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  10. Integrated process for preparing a carboxylic acid from an alkane

    SciTech Connect

    Benderly, Abraham; Chadda, Nitin; Sevon, Douglass

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  11. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement.

  12. Pathway of n-Alkane Oxidation in Cladosporium resinae

    PubMed Central

    Walker, J. D.; Cooney, J. J.

    1973-01-01

    Pathways of initial oxidation of n-alkanes were examined in two strains of Cladosporium resinae. Cells grow on dodecane and hexadecane and their primary alcohol and monoic acid derivatives. The homologous aldehydes do not support growth but are oxidized by intact cells and by cell-free preparations. Hexane and its derivatives support little or no growth, but cell extracts oxidize hexane, hexanol, and hexanal. Alkane oxidation by extracts is stimulated by reduced nicotinamide adenine dinucleotide (phosphate). Alcohol and aldehyde oxidation are stimulated by nicotinamide adenine dinucleotide (phosphate), and reduced coenzymes accumulate in the presence of cyanide or azide. Extracts supplied with 14C-hexadecane convert it to the alcohol, aldehyde, and acid. Therefore, the major pathway for initial oxidation of n-alkanes is via the primary alcohol, aldehyde, and monoic acid, and the system can act on short-, intermediate-, and long-chain substrates. Thus, filamentous fungi appear to oxidize n-alkanes by pathways similar to those used by bacteria and yeasts. PMID:4146874

  13. Two-stage process for conversion of alkanes to gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-08-22

    This patent describes an improvement in a two-stage process for upgrading hydrocarbons in at least four reaction zones cooperating to produce gasoline range hydrocarbons from lower alkanes. The reaction zones comprising first reaction zone to crack gas oil range hydrocarbons utilizing a large pore cracking catalyst, a second reaction zone in which the large pore catalyst is oxidatively regenerated, a third reaction zone in which an external catalyst cooler autogeneously cools regenerated catalyst by dehydrogenation of the lower alkane stream to produce an olefinic effluent, and a fourth reaction zone in which the olefinic effluent is oligomerized to the gasoline range hydrocarbons. The improvement comprising: a first stage, comprising utilizing excess heat from the second reaction zone: contacting the hot fluid catalytic cracking catalyst with C/sub 3//sup +/ alkanes in the third reaction zone to provide conversion of the alkanes to olefins which leave the third reaction zone as the olefinic effluent separated from catalyst; returning a specified amount of separate fluid catalytic cracking catalyst from the third reaction zone directly to the first or second reaction zone; a second state comprising passing the olefinic effluent from the third reaction zone to a fourth reaction zone for oligomerizing olefins to gasoline range hydrocarbons contacting the olefinic effluent with a medium pore zeolite catalyst effective; recovering a gasoline range hydrocarbon stream from the effluent of the fourth reaction zone.

  14. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. PMID:26556131

  15. Influence of alkane chain length on adsorption on an α-alumina surface by MD simulations

    NASA Astrophysics Data System (ADS)

    Turgut, C.; Pandiyan, S.; Mether, L.; Belmahi, M.; Nordlund, K.; Philipp, P.

    2015-06-01

    Plasma surface techniques provide both an efficient and ecological tool for the functionalization of surfaces. Hence, a proper understanding of the plasma-surface interactions of precursors and radicals during the deposition process is of great importance. Especially during the initial deposition process, the deposition of molecules and fragments is difficult to investigate by experimental techniques and import insights can be obtained by molecular dynamics simulations. In this work, the reactive force field developed by the group of Kieffer at the University of Michigan was used to study the adsorption of single linear alkane chains on an α-alumina surface. The chain length was changed from 6 backbone carbon atoms to 16 carbon atoms, the deposition energy from 0.01 to 10 eV and the incidence angle from 0° to 60° with respect to the surface normal. Results show that the adsorption depends a lot on the ratio of deposition energy to alkane chain length and the incidence angle. More grazing incidence reduces the adsorption probability and a low ratio of energy to chain length increases it.

  16. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions.

    PubMed

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A; Cox, Kenneth R; Chapman, Walter G

    2014-08-14

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ε(W)/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E-ε(W)/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally. PMID:25134597

  17. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions.

    PubMed

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A; Cox, Kenneth R; Chapman, Walter G

    2014-08-14

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ε(W)/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E-ε(W)/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  18. Extreme strain rate and temperature dependence of the mechanical properties of nano silicon nitride thin layers in a basal plane under tension: a molecular dynamics study.

    PubMed

    Lu, Xuefeng; Wang, Hongjie; Wei, Yin; Wen, Jiangbo; Niu, Min; Jia, Shuhai

    2014-08-01

    Molecular dynamics simulations are performed to clarify the extreme strain rate and temperature dependence of the mechanical behaviors of nano silicon nitride thin layers in a basal plane under tension. It is found that fracture stresses show almost no change with increasing strain rate. However, fracture strains decrease gradually due to the appearance of additional N(2c)-Si bond breaking defects in the deformation process. With increasing loading temperature, there is a noticeable drop in fracture stress and fracture strain. In the low temperature range, roughness phases can be observed owing to a combination of factors such as configuration evolution and energy change.

  19. High Frequency of Thermodesulfovibrio spp. and Anaerolineaceae in Association with Methanoculleus spp. in a Long-Term Incubation of n-Alkanes-Degrading Methanogenic Enrichment Culture

    PubMed Central

    Liang, Bo; Wang, Li-Ying; Zhou, Zhichao; Mbadinga, Serge M.; Zhou, Lei; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-01-01

    In the present study, the microbial community and functional gene composition of a long-term active alkane-degrading methanogenic culture was established after two successive enrichment culture transfers and incubated for a total period of 1750 days. Molecular analysis was conducted after the second transfer (incubated for 750 days) for both the active alkanes-degrading methanogenic enrichment cultures (T2-AE) and the background control (T2-BC). A net increase of methane as the end product was detected in the headspace of the enrichment cultures amended with long-chain n-alkanes and intermediate metabolites, including octadecanoate, hexadecanoate, isocaprylate, butyrate, isobutyrate, propionate, acetate, and formate were measured in the liquid cultures. The composition of microbial community shifted through the successive transfers over time of incubation. Sequences of bacterial and archaeal 16S rRNA gene (16S rDNA) and mcrA functional gene indicated that bacterial sequences affiliated to Thermodesulfovibrio spp. and Anaerolineaceae and archaeal sequences falling within the genus Methanoculleus were the most frequently encountered and thus represented the dominant members performing the anaerobic degradation of long-chain n-alkanes and methanogenesis. In addition, the presence of assA functional genes encoding the alkylsuccinate synthase α subunit indicated that fumarate addition mechanism could be considered as a possible initial activation step of n-alkanes in the present study. The succession pattern of microbial communities indicates that Thermodesulfovibrio spp. could be a generalist participating in the metabolism of intermediates, while Anaerolineaceae plays a key role in the initial activation of long-chain n-alkane biodegradation. PMID:27695441

  20. High Frequency of Thermodesulfovibrio spp. and Anaerolineaceae in Association with Methanoculleus spp. in a Long-Term Incubation of n-Alkanes-Degrading Methanogenic Enrichment Culture

    PubMed Central

    Liang, Bo; Wang, Li-Ying; Zhou, Zhichao; Mbadinga, Serge M.; Zhou, Lei; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-01-01

    In the present study, the microbial community and functional gene composition of a long-term active alkane-degrading methanogenic culture was established after two successive enrichment culture transfers and incubated for a total period of 1750 days. Molecular analysis was conducted after the second transfer (incubated for 750 days) for both the active alkanes-degrading methanogenic enrichment cultures (T2-AE) and the background control (T2-BC). A net increase of methane as the end product was detected in the headspace of the enrichment cultures amended with long-chain n-alkanes and intermediate metabolites, including octadecanoate, hexadecanoate, isocaprylate, butyrate, isobutyrate, propionate, acetate, and formate were measured in the liquid cultures. The composition of microbial community shifted through the successive transfers over time of incubation. Sequences of bacterial and archaeal 16S rRNA gene (16S rDNA) and mcrA functional gene indicated that bacterial sequences affiliated to Thermodesulfovibrio spp. and Anaerolineaceae and archaeal sequences falling within the genus Methanoculleus were the most frequently encountered and thus represented the dominant members performing the anaerobic degradation of long-chain n-alkanes and methanogenesis. In addition, the presence of assA functional genes encoding the alkylsuccinate synthase α subunit indicated that fumarate addition mechanism could be considered as a possible initial activation step of n-alkanes in the present study. The succession pattern of microbial communities indicates that Thermodesulfovibrio spp. could be a generalist participating in the metabolism of intermediates, while Anaerolineaceae plays a key role in the initial activation of long-chain n-alkane biodegradation.

  1. The single molecular precursor approach to metal telluride thin films: imino-bis(diisopropylphosphine tellurides) as examples.

    PubMed

    Ritch, Jamie S; Chivers, Tristram; Afzaal, Mohammad; O'Brien, Paul

    2007-10-01

    Interest in metal telluride thin films as components in electronic devices has grown recently. This tutorial review describes the use of single-source precursors for the preparation of metal telluride materials by aerosol-assisted chemical vapour deposition (AACVD) and acquaints the reader with the basic techniques of materials characterization. The challenges in the design and synthesis of suitable precursors are discussed, focusing on metal complexes of the recently-developed imino-bis(diisopropylphosphine telluride) ligand. The generation of thin films and nanoplates of CdTe, Sb(2)Te(3) and In(2)Te(3) from these precursors are used as illustrative examples. PMID:17721586

  2. Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential.

    PubMed

    Carrete, J; Longo, R C; Gallego, L J

    2011-05-01

    A number of different potentials are currently being used in molecular dynamics simulations of semiconductor nanostructures. Confusion can arise if an inappropriate potential is used. To illustrate this point, we performed direct molecular dynamics simulations to predict the room temperature lattice thermal conductivity λ of thin GaAs, InAs and InP nanowires. In each case, simulations performed using the classical Harrison potential afforded values of λ about an order of magnitude smaller than those obtained using more elaborate potentials (an Abell-Tersoff, as parameterized by Hammerschmidt et al for GaAs and InAs, and a potential of Vashishta type for InP). These results will be a warning to those wishing to use computer simulations to orient the development of quasi-one-dimensional systems as heat sinks or thermoelectric devices. PMID:21427474

  3. The aerosol assisted chemical vapour deposition of SnSe and Cu₂SnSe₃ thin films from molecular precursors.

    PubMed

    Kevin, Punarja; Malik, Sajid N; Malik, Mohammad A; O'Brien, Paul

    2014-11-28

    Tin selenide (SnSe) and copper tin selenide (Cu2SnSe3) thin films have been deposited onto glass substrates by AACVD using [Sn(Ph2PSe2)2] or a mixture of [Sn(Ph2PSe2)2] and [Cu(acac)2] respectively. PMID:25284472

  4. Solid-State NMR Study of Paramagnetic Bis(alaninato-κ(2)N,O)copper(II) and Bis(1-amino(cyclo)alkane-1-carboxylato-κ(2)N,O)copper(II) Complexes: Reflection of Stereoisomerism and Molecular Mobility in (13)C and (2)H Fast Magic Angle Spinning Spectra.

    PubMed

    Szalontai, Gábor; Csonka, Róbert; Speier, Gábor; Kaizer, József; Sabolović, Jasmina

    2015-05-18

    Solid-state stereochemistry and mobility of paramagnetic copper(II) complexes formed by aliphatic amino acids (l-alanine, d,l-alanine, 1-amino-2-methyl-alanine) and 1-amino(cyclo)alkane-1-carboxylic acids (alkane = propane, butane, pentane, hexane) as bidentate ligands has been studied by (13)C and (2)H solid-state fast magic angle spinning (MAS) NMR spectroscopy. We examined the prospective method to characterize solid-state paramagnetic compounds in a routine way. Both (13)C and (2)H MAS spectra can distinguish d,l and l,l diastereomers of natural and polydeuterated bis([Dn]alaninato)copper(II) (n = 0, 2, 8) complexes with axial and/or equatorial methyl positions (conformations) primarily due to different Fermi-contact (FC) contributions. The three-bond hyperfine couplings clearly show Karplus-like dependence on the torsional angles which turned out to be a useful assignment aid. Density functional theory calculations of the FC term and crystal structures were also used to aid the final assignments. The correlations obtained for bis(alaninato-κ(2)N,O)copper(II) complexes were successfully used to characterize other complexes. The usefulness of the (2)H MAS spectra of the deuterated complexes was underlined. Even the spectra of the easily exchangeable amine protons contained essential stereochemical information. In the case of a dimer structure of bis(1-aminohexane-1-carboxylato-κ(2)N,O)copper(II) both the (13)C and (2)H resolutions were good enough to confirm the presence of the cis and trans forms in the asymmetric unit. With regard to the internal solid-state motions in the crystal lattice, the obtained quadrupolar tensor parameters were similar for the d,l- and l,l-alaninato isomers and also for the cis-trans forms suggesting similar crystal packing effects, static amine deuterons involved in hydrogen bonding, and fast rotating methyl groups.

  5. Electron-beam radiolysis of gaseous alkanes under circulation conditions: Gas-to-liquid transformation

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.

    2009-01-01

    The circulating mode of electron-beam irradiation was used for synthesis of the branched liquid hydrocarbons from the gaseous alkane mixtures, including natural gas and the associated petroleum gas. Atmospheric distillation of resulting liquids was characterized by boiling point range from 36 up to 200-230 °C. The average degree of molecular branching in the synthesized liquids was evaluated on the basis of their antiknock characteristics. The octane values of liquids synthesized from natural gaseous mixtures were above 95. The fractional composition and antiknock characteristics of synthesized liquids suggested the prevalence of C 5-C 11 isomers with highly branched structures. Fractional and isomeric compositions of the liquid products depended on the gas-phase composition, dose rate, and gas-dynamic conditions in the irradiation area.

  6. Dynamics of CN+alkane reactions by crossed-beam dc slice imaging

    SciTech Connect

    Huang Cunshun; Li Wen; Estillore, Armando D.; Suits, Arthur G.

    2008-08-21

    The hydrogen atom abstraction reactions of CN (X {sup 2}{sigma}{sup +}) with alkanes have been studied using the crossed molecular beam technique with dc slice ion imaging at collision energies of 7.5 and 10.8 kcal/mol. The product alkyl radical images were obtained via single photon ionization at 157 nm for the reactions of CN (X {sup 2}{sigma}{sup +}) with n-butane, n-pentane, n-hexane, and cyclohexane. From analysis of the images, we obtained the center-of-mass frame product angular distributions and translational energy distributions directly. The results indicate that the products are largely backscattered and that most of the available energy ({approx}80%-85%) goes to the internal energy of the products. The reaction dynamics is discussed in light of recent kinetics data, theoretical calculations, and results for related halogen and oxygen atom reactions.

  7. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    PubMed

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures. PMID:26491811

  8. Influence of high biomass concentrations on alkane solubilities.

    PubMed

    Davison, B H; Barton, J W; Klasson, K T; Francisco, A B

    2000-05-01

    Alkane solubilities were measured experimentally for high-density biomass. The resulting Henry's law constants for propane were found to decrease significantly for both dense yeast suspensions and an actual propane-degrading biofilm consortium. At the biomass densities of a typical biofilm, propane solubility was about an order of magnitude greater than that in pure water. For example, a dense biofilm had a propane Henry's law constant of 0.09+/-0.04 atm m(3) mol(-1) compared to 0.6+/-0.1 atm m(3) mol(-1) measured in pure water. The results were modeled with mixing rules and compared with octanol-water mixtures. Hydrogels (agar) and salts decreased the alkane solubility. By considering a theoretical solubility of propane in dry biomass, estimates were made of intrinsic Henry's law constants for propane in pure yeast and biomass, which were 13+/-2 and 5+/-2 atm kg biomass mol(-1) for yeast and biofilm consortium, respectively.

  9. Site isolation in vanadium phosphorus oxide alkane oxidation

    SciTech Connect

    Thompson, M R; Ebner, J R

    1991-06-01

    Single crystal X-ray diffraction studies of vanadyl pyrophosphate indicate that at least two polytypical structures exists for this active and selective alkane oxidation catalyst. The crystal structures of these materials differ with respect to the symmetry and direction of columns of vanadyl groups within the unit cell. Single crystals of vanadyl pyrophosphate have been generated at extreme temperatures not often experienced by microcrystalline catalysts. The crystallography of the system suggests that other crystalline modifications or disordered phases might also exist. Zeroth-order models of crystal surface termination of vanadyl pyrophosphate have been constructed which conceptually illustrate the ability of vanadyl pyrophosphate to accommodate varying amounts of surface phosphorus parallel to (1,0,0), (0,1,0) and (0,2,4). Pyrophosphate termination of surfaces parallel to (1,0,0) likely results in the isolation of clusters of reactive centers and limits overoxidation of the alkane substrate. 23 refs., 6 figs.

  10. Multi-stage conversion of alkanes to gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-09-17

    This patent describes improvement in a facility for converting alkanes into gasoline, the facility including a fluid catalytic cracking system and an olefin oligomerization reactor. The improvement comprises: a first valved conduit means for withdrawing a controlled stream of the regenerated catalyst from the first regenerator means; a dehydrogenation reactor in valved communication with the first regenerator means, through the first valved conduit means the dehydrogenation reactor having a dehydrogenation zone at a temperature below those prevailing in the first regeneration zone, the dehydrogenation reactor being located externally relative to the fluid catalytic cracker reactor and first regenerator; means for introducing a lower alkane feedstream into the dehydrogenation zone in an amount sufficient to maintain hot withdrawn catalyst in a state of fluidization in the dehydrogenation reactor while the catalyst is being cooled therein; a second valved conduit means for transporting cooled catalyst from the dehydrogenation zone to the first regeneration zone.

  11. Gas/particle partitioning of n-alkanes, PAHs and oxygenated PAHs in urban Denver

    NASA Astrophysics Data System (ADS)

    Xie, Mingjie; Hannigan, Michael P.; Barsanti, Kelley C.

    2014-10-01

    In this study, a medium volume sampler equipped with quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD-4/PUF sandwich (PXP) was used to collect semi-volatile organic compounds (SVOCs) in both gaseous and particle (PM2.5) phases. A backup QFF (bQFF) was used to evaluate possible sampling artifact of particulate organics due to vapor-phase adsorption. A series of n-alkanes (molecular weight: 170-562) and PAHs (128-300), and two oxy-PAHs (acenaphthenone, 168; fluorenone, 180) were measured. Breakthrough experiments demonstrated that the PXP could collect all gas-phase target compounds with high efficiency, even the low molecular weight (MW) species (e.g., naphthalene). Comparing species concentrations across different sampling matrices encountered at the Denver, Colorado field site, the light n-alkanes (MW < 282) and PAHs (MW < 192) were mostly distributed into the gas phase; while those heavy n-alkanes (MW > 324) and PAHs (MW > 202) were primarily in the particle phase (Average temperature, 12.5 ± 10.1 °C). Log values of measured gas/particle (G/P) partitioning coefficients (Kmp,OM) of selected SVOCs (docosane, tricosane, fluoranthene, pyrene, acenaphthenone and fluorenone) were linearly regressed to those of theoretically-based partitioning coefficients (Ktp,OM) for comparison. Prior to Kmp,OM calculation, the gas- and particle-phase concentrations of SVOCs were corrected following two different approaches based on bQFF measurements. The first approach assumed that the bQFF associated SVOCs were from the adsorption of gaseous SVOCs (positive artifact); the second approach assumed equal contributions from positive and negative (organics evaporated from top QFF and adsorbed by bQFF) artifacts. Under both corrections, significant correlations (p < 0.05) were observed between log Kmp,OM and log Ktp,OM for the six selected SVOCs, suggesting that the predicted G/P partitioning can reasonably capture the measured G/P partitioning behavior. The large

  12. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  13. At what chain length do unbranched alkanes prefer folded conformations?

    PubMed

    Byrd, Jason N; Bartlett, Rodney J; Montgomery, John A

    2014-03-01

    Short unbranched alkanes are known to prefer linear conformations, whereas long unbranched alkanes are folded. It is not known with certainty at what chain length the linear conformation is no longer the global minimum. To clarify this point, we use ab initio and density functional methods to compute the relative energies of the linear and hairpin alkane conformers for increasing chain lengths. Extensive electronic structure calculations are performed to obtain optimized geometries, harmonic frequencies, and accurate single point energies for the selected alkane conformers from octane through octadecane. Benchmark CCSD(T)/cc-pVTZ single point calculations are performed for chains through tetradecane, whereas approximate methods are required for the longer chains up to octadecane. Using frozen natural orbitals to unambiguously truncate the virtual orbital space, we are able to compute composite CCSD FNO(T) single point energies for all the chain lengths. This approximate composite method has significant computational savings compared to full CCSD(T) while retaining ∼0.15 kcal/mol accuracy compared to the benchmark results. More approximate dual-basis resolution-of-the-identity double-hybrid DFT calculations are also performed and shown to have reasonable 0.2-0.4 kcal/mol errors compared with our benchmark values. After including contributions from temperature dependent internal energy shifts, we find the preference for folded conformations to lie between hexadecane and octadecane, in excellent agreement with recent experiments [ Lüttschwager , N. O. ; Wassermann , T. N. ; Mata , R. A. ; Suhm , M. A. Angew. Chem. Int. Ed. 2013 , 52 , 463 ]. PMID:24524689

  14. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Criswell, L.; Taub, H.

    2007-03-01

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When the molecules are allowed to relax on the surface, they distort such that all six methyl groups point away from the surface. This results in a reduction in the monolayer's translational order characterized by a decrease in its coherence length and hence a broadening of the diffraction peaks. The MD simulations also show that the melting mechanism in the squalane monolayer is the same footprint reduction mechanism found in the tetracosane monolayer, where a chain melting drives the lattice melting.

  15. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Taub, H.; Dimeo, R. M.; Neumann, D. A.; Copley, J. R. D.

    2007-03-01

    The dynamics of monolayer films of the n-alkane tetracosane (n-C24H52) and the branched alkane squalane (C30H62) adsorbed on graphite have been studied by quasielastic and inelastic neutron scattering and molecular dynamics (MD) simulations. Both molecules have 24 carbon atoms along their carbon backbone, and squalane has an additional six methyl side groups symmetrically placed along its length. The authors' principal objective has been to determine the influence of the side groups on the dynamics of the squalane monolayer and thereby assess its potential as a nanoscale lubricant. To investigate the dynamics of these monolayers they used both the disk chopper spectrometer (DCS) and the high flux backscattering spectrometer (HFBS) at the National Institute of Standards and Technology. These instruments made it possible to study dynamical processes such as molecular diffusive motions and vibrations on very different time scales: 1-40ps (DCS) and 0.1-4ns (HFBS). The MD simulations were done on corresponding time scales and were used to interpret the neutron spectra. The authors found that the dynamics of the two monolayers are qualitatively similar on the respective time scales and that there are only small quantitative differences that can be understood in terms of the different masses and moments of inertia of the two molecules. In the course of this study, the authors developed a procedure to separate out the low-frequency vibrational modes in the spectra, thereby facilitating an analysis of the quasielastic scattering. They conclude that there are no major differences in the monolayer dynamics caused by intramolecular branching. It remains to be seen whether this similarity in monolayer dynamics also holds for the lubricating properties of these molecules in confined geometries.

  16. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure.

    PubMed

    Enevoldsen, A D; Hansen, F Y; Diama, A; Criswell, L; Taub, H

    2007-03-14

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91 K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When the molecules are allowed to relax on the surface, they distort such that all six methyl groups point away from the surface. This results in a reduction in the monolayer's translational order characterized by a decrease in its coherence length and hence a broadening of the diffraction peaks. The MD simulations also show that the melting mechanism in the squalane monolayer is the same footprint reduction mechanism found in the tetracosane monolayer, where a chain melting drives the lattice melting.

  17. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    PubMed

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules.

  18. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    PubMed

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules. PMID:26360875

  19. Modeling SOA production from the oxidation of intermediate volatility alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-12-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.

  20. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  1. Dielectric constant of liquid alkanes and hydrocarbon mixtures.

    PubMed

    Sen, A D; Anicich, V G; Arakelian, T

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  2. Cracking and aromatization of C{sub 6}-C{sub 10} n-alkanes and n-alkenes on a zeolite-containing catalyst

    SciTech Connect

    Gairbekov, T.M.; Takaeva, M.I.; Khadzhiev, S.N.; Manovyan, A.K.

    1992-05-10

    Despite the extensive studies on catalysis on zeolites, the question of the mechanism of the reactions of cracking and aromatization of hydrocarbons is still debated. The classic Whitmore theory hypothesizes that cracking of alkanes and alkenes takes place through the formation of the same intermediate trivalent carbenium ions of the (C{sub n}H{sub 2n+1}){sup +} type. Ola`s protolytic mechanism hypothesizes nonclassic five- (four-)coordinated ions of the (C{sub n}H{sub 2n+3}){sup +} type for cracking of alkanes and classic carbenium ions for alkenes. When the classic mechanism occurs on zeolites, an analogous effect on the rate of the reactions of alkanes and alkenes with the molecular weight of the starting hydrocarbons and similar compositions of the products obtained should be predicted. The authors investigated the transformation of individual n-alkanes and n-1-alkenes of C{sub 6}-C{sub 10} composition in the presence of a catalyst synthesized by addition of 30 wt.% decationized ultrahigh-silicon zeolite of the ZSM type (Si/Al - 16) modified with 1 wt.% zinc on {gamma}-Al{sub 2}O{sub 3}. The experiment was conducted on a flow-type laboratory setup at 425{degrees}C in conditions of the minimum effect of diffusion factors with the method described in detail previously. 13 refs., 4 figs., 1 tab.

  3. Chain-length dependent growth dynamics of n-alkanes on silica investigated by energy-dispersive x-ray reflectivity in situ and in real-time

    NASA Astrophysics Data System (ADS)

    Weber, C.; Frank, C.; Bommel, S.; Rukat, T.; Leitenberger, W.; Schäfer, P.; Schreiber, F.; Kowarik, S.

    2012-05-01

    We compare the growth dynamics of the three n-alkanes C36H74, C40H82, and C44H90 on SiO2 using real-time and in situ energy-dispersive x-ray reflectivity. All molecules investigated align in an upright-standing orientation on the substrate and exhibit a transition from layer-by-layer growth to island growth after about 4 monolayers under the conditions employed. Simultaneous fits of the reflected intensity at five distinct points in reciprocal space show that films formed by longer n-alkanes roughen faster during growth. This behavior can be explained by a chain-length dependent height of the Ehrlich-Schwoebel barrier. Further x-ray diffraction measurements after growth indicate that films consisting of longer n-alkanes also incorporate more lying-down molecules in the top region. While the results reveal behavior typical for chain-like molecules, the findings can also be useful for the optimization of organic field effect transistors where smooth interlayers of n-alkanes without coexistence of two or more molecular orientations are required.

  4. Diversity and abundance of n-alkane degrading bacteria in the near surface soils of a Chinese onshore oil and gas field

    NASA Astrophysics Data System (ADS)

    Xu, K.; Tang, Y.; Ren, C.; Zhao, K.; Sun, Y.

    2012-10-01

    Alkane degrading bacteria have long been used as an important biological indicator for oil and gas prospecting, but their ecological characteristics in hydrocarbon microseep habitats are still poorly understood. In this study, the diversity and abundance of n-alkane degrading bacterial community in the near surface soils of a Chinese onshore oil and gas field were investigated using molecular techniques. Terminal restriction fragment length polymorphism (T-RFLP) analyses in combination with cloning and sequencing of alkB genes revealed that trace amount of volatile hydrocarbons migrated from oil and gas reservoirs caused a shift of the n-alkane degrading bacterial community from Gram-positive bacteria (Mycobacterium and Rhodococcus) to Gram-negative genotypes (Alcanivorax and Acinetobacter). Real-time PCR results furthermore showed that the abundance of alkB genes increased substantially in the surface soils underlying oil and gas reservoirs even though only low or undetectable concentrations of hydrocarbons were measured in these soils due to efficient microbial degradation. Our findings broadened the knowledge on the ecological characteristics of alkane degrading community in hydrocarbon microseeps and may provide a new approach for microbial prospecting for oil and gas (MPOG).

  5. Effect of Varying the 1-4 Intramolecular Scaling Factor in Atomistic Simulations of Long-Chain N-alkanes with the OPLS-AA Model

    SciTech Connect

    de Almeida, Valmor F; Ye, Xianggui; Cui, Shengting; Khomami, Bamin

    2013-01-01

    A comprehensive molecular dynamics simulation study of n-alkanes using the Optimized Potential for Liquid Simulation-All Atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1-4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained by successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better un-derstand the effects of reducing the scaling factor, we analyzed the variation of the torsion potential pro-file with the scaling factor, and the corresponding impact on the gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane. This relatively simple procedure thus allows for more accurate predictions of the thermo-physical properties of longer n-alkanes.

  6. Systematic study of aggregation structure and thermal behavior of a series of unique H-shape alkane molecules.

    PubMed

    Yamamoto, Hiroko; Tashiro, Kohji; Nemoto, Norio; Motoyama, Yukihiro; Takahashi, Yoshiaki

    2011-08-11

    The H-shape alkanes of various arm lengths have been synthesized successfully through the Grignard reaction. The detailed investigation of these novel compounds may allow us to widen the topological chemistry field furthermore. The molecular form and molecular packing structure in the crystal lattice have been revealed successfully on the basis of X-ray structure analysis as well as the analysis of Raman longitudinal acoustic modes (LAM) sensitive to the alkyl zigzag chain segments. The molecular conformation in the crystal lattice is deformed markedly from the originally imagined H-shape. In the cases of C3HOH to C6HOH, for example, the molecules are packed in a complicated manner and the OH···O hydrogen bonds govern the whole intermolecular interactions mainly. Since the alkyl segmental length is not very long, the conformational change is not very drastic, i.e., the small configurational entropy. Synergic effect of the hydrogen bonds and the small configurational entropy gives the higher melting point as known from the thermal data. On the other hand, in the cases of C10HOH and C12HOH, one of the long alkyl chain arms is found to be bent by 90° so that all of the alky chain segments of planar-zigzag conformation can be packed as closely as possible, and the intermolecular OH···O hydrogen bonds are also formed effectively without any mistake. As a result, the contribution of nonbonded intra- and intermolecular van der Waals interactions between the trans-zigzag alkyl chain segments become major, and the coupling of this enthalpy effect with the larger configurational entropy effect of the molecular shape results in the decrement of the melting point which approaches gradually that of longer n-alkane compound. In this way a sensitive balance between the nonbonded van der Waals interactions, the OH···O hydrogen bonds, as well as the configurational entropy effect gives the characteristic thermal behavior of the H-shape compounds. The thus

  7. Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.

    PubMed

    Haar, Sébastien; Bruna, Matteo; Lian, Jian Xiang; Tomarchio, Flavia; Olivier, Yoann; Mazzaro, Raffaello; Morandi, Vittorio; Moran, Joseph; Ferrari, Andrea C; Beljonne, David; Ciesielski, Artur; Samorì, Paolo

    2016-07-21

    Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used. Here we report the exfoliation of graphite in N-methyl-2-pyrrolidinone, in the presence of heneicosane linear alkanes terminated with different head groups. These molecules act as stabilizing agents during exfoliation. The efficiency of the exfoliation in terms of the concentration of exfoliated single- and few-layer graphene flakes depends on the functional head group determining the strength of the molecular dimerization through dipole-dipole interactions. A thermodynamic analysis is carried out to interpret the impact of the termination group of the alkyl chain on the exfoliation yield. This combines molecular dynamics and molecular mechanics to rationalize the role of functionalized alkanes in the dispersion and stabilization process, which is ultimately attributed to a synergistic effect of the interactions between the molecules, graphene, and the solvent. PMID:27349897

  8. Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.

    PubMed

    Haar, Sébastien; Bruna, Matteo; Lian, Jian Xiang; Tomarchio, Flavia; Olivier, Yoann; Mazzaro, Raffaello; Morandi, Vittorio; Moran, Joseph; Ferrari, Andrea C; Beljonne, David; Ciesielski, Artur; Samorì, Paolo

    2016-07-21

    Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used. Here we report the exfoliation of graphite in N-methyl-2-pyrrolidinone, in the presence of heneicosane linear alkanes terminated with different head groups. These molecules act as stabilizing agents during exfoliation. The efficiency of the exfoliation in terms of the concentration of exfoliated single- and few-layer graphene flakes depends on the functional head group determining the strength of the molecular dimerization through dipole-dipole interactions. A thermodynamic analysis is carried out to interpret the impact of the termination group of the alkyl chain on the exfoliation yield. This combines molecular dynamics and molecular mechanics to rationalize the role of functionalized alkanes in the dispersion and stabilization process, which is ultimately attributed to a synergistic effect of the interactions between the molecules, graphene, and the solvent.

  9. Growth, characterization and post-processing of inorganic and hybrid organic-inorganic thin films deposited using atomic and molecular layer deposition techniques

    NASA Astrophysics Data System (ADS)

    Abdulagatov, Aziz Ilmutdinovich

    Atomic layer deposition (ALD) and molecular layer deposition (MLD) are advanced thin film coating techniques developed for deposition of inorganic and hybrid organic-inorganic films respectively. Decreasing device dimensions and increasing aspect ratios in semiconductor processing has motivated developments in ALD. The beginning of this thesis will cover study of new ALD chemistry for high dielectric constant Y 2O3. In addition, the feasibility of conducting low temperature ALD of TiN and TiAlN is explored using highly reactive hydrazine as a new nitrogen source. Developments of these ALD processes are important for the electronics industry. As the search for new materials with more advanced properties continues, attention has shifted toward exploring the synthesis of hierarchically nanostructured thin films. Such complex architectures can provide novel functions important to the development of state of the art devices for the electronics industry, catalysis, energy conversion and memory storage as a few examples. Therefore, the main focus of this thesis is on the growth, characterization, and post-processing of ALD and MLD films for fabrication of novel composite (nanostructured) thin films. Novel composite materials are created by annealing amorphous ALD oxide alloys in air and by heat treatment of hybrid organic-inorganic MLD films in inert atmosphere (pyrolysis). The synthesis of porous TiO2 or Al2O3 supported V2O5 for enhanced surface area catalysis was achieved by the annealing of inorganic TiVxOy and AlV xOy ALD films in air. The interplay between phase separation, surface energy difference, crystallization, and melting temperature of individual oxides were studied for their control of film morphology. In other work, a class of novel metal oxide-graphitic carbon composite thin films was produced by pyrolysis of MLD hybrid organic-inorganic films. For example, annealing in argon of titania based hybrid films enabled fabrication of thin films of intimately

  10. Infrared Transition Moment Orientational Analysis on the Structural Organization of the Distinct Molecular Subunits in Thin Layers of a High Mobility n-Type Copolymer.

    PubMed

    Anton, Arthur Markus; Steyrleuthner, Robert; Kossack, Wilhelm; Neher, Dieter; Kremer, Friedrich

    2015-05-13

    The IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence on polarization and inclination of the sample with respect to the optical axis. By that the molecular order parameter tensor for the respective molecular moieties with regard to the sample coordinate system is deduced. Making use of the specificity of the IR spectral range, we are able to determine separately the orientation of atomistic planes defined through the naphthalenediimide (NDI) and bithiophene (T2) units relative to the substrate, and hence, relative to each other. A pronounced solvent effect is observed: While chlorobenzene causes the T2 planes to align preferentially parallel to the substrate at an angle of 29°, using a 1:1 chloronaphthalene:xylene mixture results in a reorientation of the T2 units from a face on into an edge on arrangement. In contrast the NDI unit remains unaffected. Additionally, for both solvents evidence is observed for the aggregation of chains in accord with recently published results obtained by UV-vis absorption spectroscopy.

  11. Infrared Transition Moment Orientational Analysis on the Structural Organization of the Distinct Molecular Subunits in Thin Layers of a High Mobility n-Type Copolymer.

    PubMed

    Anton, Arthur Markus; Steyrleuthner, Robert; Kossack, Wilhelm; Neher, Dieter; Kremer, Friedrich

    2015-05-13

    The IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence on polarization and inclination of the sample with respect to the optical axis. By that the molecular order parameter tensor for the respective molecular moieties with regard to the sample coordinate system is deduced. Making use of the specificity of the IR spectral range, we are able to determine separately the orientation of atomistic planes defined through the naphthalenediimide (NDI) and bithiophene (T2) units relative to the substrate, and hence, relative to each other. A pronounced solvent effect is observed: While chlorobenzene causes the T2 planes to align preferentially parallel to the substrate at an angle of 29°, using a 1:1 chloronaphthalene:xylene mixture results in a reorientation of the T2 units from a face on into an edge on arrangement. In contrast the NDI unit remains unaffected. Additionally, for both solvents evidence is observed for the aggregation of chains in accord with recently published results obtained by UV-vis absorption spectroscopy. PMID:25892664

  12. Detection of λ-cyhalothrin by a core-shell spherical SiO2-based surface thin fluorescent molecularly imprinted polymer film.

    PubMed

    Gao, Lin; Han, Wenjuan; Li, Xiuying; Wang, Jixiang; Yan, Yongsheng; Li, Chunxiang; Dai, Jiangdong

    2015-12-01

    A fluorescent core-shell molecularly imprinted polymer based on the surface of SiO2 beads was synthesized and its application in the fluorescence detection of ultra-trace λ-cyhalothrin (LC) was investigated. The shell was prepared by copolymerization of acrylamide with allyl fluorescein in the presence of LC to form recognition sites. The experimental results showed that the thin fluorescent molecularly imprinted polymer (FMIP) film exhibited better selective recognition ability than fluorescent molecularly non-imprinted polymer (FNIP). A new nonlinear relationship between quenching rate and concentration was found in this work. In addition, the nonlinear relationship allowed a lower concentration range of 0-5.0 nM to be described by the Stern-Volmer equation with a correlation coefficient of 0.9929. The experiment results revealed that the SiO2@FMIP was satisfactory as a recognition element for determination of LC in soda water samples. Therefore this study demonstrated the potential of MIP for the recognition and detection of LC in food. PMID:26462923

  13. Towards a practical development of light-driven acceptorless alkane dehydrogenation.

    PubMed

    Chowdhury, Abhishek Dutta; Weding, Nico; Julis, Jennifer; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2014-06-16

    The efficient catalytic dehydrogenation of alkanes to olefins is one of the most investigated reactions in organic synthesis. In the coming years, an increased supply of shorter-chain alkanes from natural and shale gas will offer new opportunities for inexpensive carbon feedstock through such dehydrogenation processes. Existing methods for alkane dehydrogenation using heterogeneous catalysts require harsh reaction conditions and have a lack of selectivity, whereas homogeneous catalysis methods result in significant waste generation. A strong need exists for atom-efficient alkane dehydrogenations on a useful scale. Herein, we have developed improved acceptorless catalytic systems under optimal light transmittance conditions using trans-[Rh(PMe3)2(CO)Cl] as the catalyst with different additives. Unprecedented catalyst turnover numbers are obtained for the dehydrogenation of cyclic and linear (from C4) alkanes and liquid organic hydrogen carriers. These reactions proceed with unique conversion, thereby providing a basis for practical alkane dehydrogenations. PMID:24829085

  14. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  15. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  16. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  17. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    NASA Technical Reports Server (NTRS)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  18. Hydrogen isotope ratios of leaf wax n-alkanes in grasses are insensitive to transpiration

    NASA Astrophysics Data System (ADS)

    McInerney, Francesca A.; Helliker, Brent R.; Freeman, Katherine H.

    2011-01-01

    We analyzed hydrogen isotope ratios of high-molecular weight n-alkanes ( δD l) and oxygen isotope ratios of α-cellulose ( δ18O C) for C 3 and C 4 grasses grown in the field and in controlled-environment growth chambers. The relatively firm understanding of 18O-enrichment in leaf water and α-cellulose was used to elucidate fractionation patterns of δD l signatures. In the different relative humidity environments of the growth chambers, we observed clear and predictable effects of leaf-water enrichment on δ18O C values. Using a Craig-Gordon model, we demonstrate that leaf water in the growth chamber grasses should have experienced significant D-enriched due to transpiration. Nonetheless, we found no effect of transpirational D-enrichment on the δD l values. In field samples, we saw clear evidence of enrichment (correlating with relative humidity of the field sites) in both δ18O C and δD l. These seemingly contrasting results could be explained if leaf waxes are synthesized in an environment that is isotopically similar to water entering plant roots due to either temporal or spatial isolation from evaporatively enriched leaf waters. For grasses in the controlled environment, there was no enrichment of source water, whereas enrichment of grass source water via evaporation from soils and/or stems was likely for grass samples grown in the field. Based on these results, evaporation from soils and/or stems appears to affect δD l, but transpiration from leaves does not. Further evidence for this conclusion is found in modeling expected net evapotranspirational enrichment. A Craig-Gordon model applied to each of the field sites yields leaf water oxygen isotope ratios that can be used to accurately predict the observed δ18O C values. In contrast, the calculated leaf water hydrogen isotope ratios are more enriched than what is required to predict observed δD l values. These calculations lend support to the conclusion that while δ18O C reflects both soil

  19. Molecular beam epitaxial growth and transmission electron microscopy studies of thin GaAs/InAs(100) multiple quantum well structures

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Fernandez, R.; Lewis, B. F.; Yen, M. Y.; Lee, T. C.; Madhukar, A.

    1985-01-01

    GaAs/InAs(100) multiple interface structures involving 7.4 percent lattice mismatch have been fabricated via molecular beam epitaxy and examined via transmission electron microscopy. It is found that high-quality, dislocation-free interfaces involving such high lattice mismatch can indeed be experimentally realized for very thin layers provided proper care is given to achieve a balance between the growth kinetics and the thermodynamics leading to the equilibrium ground state of the strained layer. The compressive strain is homogeneously accommodated and a tetragonal distortion is induced in the InAs layer with a perpendicular lattice constant in close agreement with that expected on the basis of the continuum theory and elastic constants of bulk InAs.

  20. Electron spin resonance of Zn{sub 1-x}Mg{sub x}O thin films grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Wassner, T. A.; Stutzmann, M.; Brandt, M. S.; Laumer, B.; Althammer, M.; Goennenwein, S. T. B.; Eickhoff, M.

    2010-08-30

    Zn{sub 1-x}Mg{sub x}O thin films with a Mg content x between 0 and 0.42 grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates were investigated by electron spin resonance at 5 K. Above band gap illumination induces a persistent resonance signal, which is attributed to free conduction band electrons. The g-factors of the Zn{sub 1-x}Mg{sub x}O epitaxial layers and their anisotropy were determined experimentally and an increase from g{sub ||}=1.957 for x=0 to g{sub ||}=1.970 for x=0.42 was found, accompanied by a decrease in anisotropy. A comparison with g-factors of the Al{sub x}Ga{sub 1-x}N system is also given.

  1. Investigation of ZnO thin films deposited on ferromagnetic metallic buffer layer by molecular beam epitaxy toward realization of ZnO-based magnetic tunneling junctions

    SciTech Connect

    Belmoubarik, M.; Nozaki, T.; Sahashi, M.; Endo, H.

    2013-05-07

    Deposition of ZnO thin films on a ferromagnetic metallic buffer layer (Co{sub 3}Pt) by molecular beam epitaxy technique was investigated for realization of ZnO-based magnetic tunneling junctions with good quality hexagonal ZnO films as tunnel barriers. For substrate temperature of 600 Degree-Sign C, ZnO films exhibited low oxygen defects and high electrical resistivity of 130 {Omega} cm. This value exceeded that of hexagonal ZnO films grown by sputtering technique, which are used as tunnel barriers in ZnO-MTJs. Also, the effect of oxygen flow during deposition on epitaxial growth conditions and Co{sub 3}Pt surface oxidation was discussed.

  2. Thermal stability and relaxation mechanisms in compressively strained Ge0.94Sn0.06 thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fleischmann, C.; Lieten, R. R.; Hermann, P.; Hönicke, P.; Beckhoff, B.; Seidel, F.; Richard, O.; Bender, H.; Shimura, Y.; Zaima, S.; Uchida, N.; Temst, K.; Vandervorst, W.; Vantomme, A.

    2016-08-01

    Strained Ge1-xSnx thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge0.94Sn0.06 films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge0.94Sn0.06 films grown by molecular beam epitaxy.

  3. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  4. Domain formation due to surface steps in topological insulator Bi{sub 2}Te{sub 3} thin films grown on Si (111) by molecular beam epitaxy

    SciTech Connect

    Borisova, S.; Kampmeier, J.; Mussler, G.; Grützmacher, D.; Luysberg, M.

    2013-08-19

    The atomic structure of topological insulators Bi{sub 2}Te{sub 3} thin films on Si (111) substrates grown in van der Waals mode by molecular beam epitaxy has been investigated by in situ scanning tunneling microscopy and scanning transmission electron microscopy. Besides single and multiple quintuple layer (QL) steps, which are typical for the step-flow mode of growth, a number of 0.4 QL steps is observed. We determine that these steps originate from single steps at the substrate surface causing domain boundaries in the Bi{sub 2}Te{sub 3} film. Due to the peculiar structure of these domain boundaries the domains are stable and penetrate throughout the entire film.

  5. Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells.

    PubMed

    Zhang, Xiaoyu; Xu, Yaoyao; Giordano, Fabrizio; Schreier, Marcel; Pellet, Norman; Hu, Yue; Yi, Chenyi; Robertson, Neil; Hua, Jianli; Zakeeruddin, Shaik M; Tian, He; Grätzel, Michael

    2016-08-31

    Dye-sensitized solar cells (DSSCs) have shown significant potential for indoor and building-integrated photovoltaic applications. Herein we present three new D-A-π-A organic sensitizers, XY1, XY2, and XY3, that exhibit high molar extinction coefficients and a broad absorption range. Molecular modifications of these dyes, featuring a benzothiadiazole (BTZ) auxiliary acceptor, were achieved by introducing a thiophene heterocycle as well as by shifting the position of BTZ on the conjugated bridge. The ensuing high molar absorption coefficients enabled the fabrication of highly efficient thin-film solid-state DSSCs with only 1.3 μm mesoporous TiO2 layer. XY2 with a molar extinction coefficient of 6.66 × 10(4) M(-1) cm(-1) at 578 nm led to the best photovoltaic performance of 7.51%. PMID:27488265

  6. A simple atomic force microscopy calibration method for direct measurement of surface energy on nanostructured surfaces covered with molecularly thin liquid films.

    PubMed

    Brunner, Ralf; Etsion, Izhak; Talke, Frank E

    2009-05-01

    A simple calibration method is described for the determination of surface energy by atomic force microscopy (AFM) pull-off force measurements on nanostructured surfaces covered with molecularly thin liquid films. The method is based on correlating pull-off forces measured in arbitrary units on a nanostructured surface with pull-off forces measured on macroscopically smooth dip-coated gauge surfaces with known surface energy. The method avoids the need for complex calibration of the AFM cantilever stiffness and the determination of the radius of curvature of the AFM tip. Both of the latter measurements are associated with indirect and less accurate measurements of surface energy based on various contact mechanics adhesion models.

  7. Characterization of high-{kappa} LaLuO{sub 3} thin film grown on AlGaN/GaN heterostructure by molecular beam deposition

    SciTech Connect

    Yang Shu; Huang Sen; Chen Hongwei; Chen, Kevin J.; Schnee, Michael; Zhao Qingtai; Schubert, Juergen

    2011-10-31

    We report the study of high-dielectric-constant (high-{kappa}) dielectric LaLuO{sub 3} (LLO) thin film that is grown on AlGaN/GaN heterostructure by molecular beam deposition (MBD). The physical properties of LLO on AlGaN/GaN heterostrucure have been investigated with atomic force microscopy, x-ray photoelectron spectroscopy, and TEM. It is revealed that the MBD-grown 16 nm-thick LLO film is polycrystalline with a thin ({approx}2 nm) amorphous transition layer at the LLO/GaN interface. The bandgap of LLO is derived as 5.3 {+-} 0.04 eV from O1s energy loss spectrum. Capacitance-voltage (C-V) characteristics of a Ni-Au/LLO/III-nitride metal-insulator-semiconductor diode exhibit small frequency dispersion (<2%) and reveal a high effective dielectric constant of {approx}28 for the LLO film. The LLO layer is shown to be effective in suppressing the reverse and forward leakage current in the MIS diode. In particular, the MIS diode forward current is reduced by 7 orders of magnitude at a forward bias of 1 V compared to a conventional Ni-Au/III-nitride Schottky diode.

  8. Combining a molecular modelling approach with direct current and high power impulse magnetron sputtering to develop new TiO2 thin films for antifouling applications

    NASA Astrophysics Data System (ADS)

    Guillot, Jérôme; Lecoq, Elodie; Duday, David; Puhakka, Eini; Riihimäki, Markus; Keiski, Riitta; Chemin, Jean-Baptiste; Choquet, Patrick

    2015-04-01

    The accumulation of crystallization deposits at the surface of heat exchangers results in the increase of the heat transfer resistance and a drastic loss of efficiency. Coating surfaces with a thin film can limit the scale-surface adhesion force and thus the fouling process. This study compares the efficiency of TiO2 layers exhibiting various crystalline planes and microstructures to reduce the kinetic of fouling. Molecular modelling with density functional theory is first carried out to determine the energy of CaCO3 deposition on anatase (1 0 1), (0 0 4), and (2 0 0) surfaces as well as on a rutile (1 0 1) one. TiO2 thin films (thickness < 1 μm) are then synthesized by direct current and high power impulse magnetron sputtering (dcMS and HiPIMS respectively) in order to tune their crystallinity and microstructure. Lastly, the induction time to grow CaCO3 crystals at the surface of such materials is determined. Comparing the modelling and fouling results allows to draw general trends on the potential anti-scaling properties of TiO2 crystallized under various forms. Until now, such a comparison combining a theoretical approach with experimental fouling tests has never been reported in the literature.

  9. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Structural and Electrical Properties of Single Crystalline Ga-Doped ZnO Thin Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Zou, Wen-Qin; Xu, Ming-Xiang; Zhang, Feng-Ming; Du, You-Wei

    2009-11-01

    High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a-plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2 at.% and the lowest resistivity can reach 1.92 × 10-4 Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.

  10. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    SciTech Connect

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.; Cusco, R.; Artus, L.; Novikov, S. V.; Foxon, C. T.; Calleja, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared results with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.

  11. Gas-Phase Reactions of Atomic Gold Cations with Linear Alkanes (C2-C9).

    PubMed

    Zhang, Ting; Li, Zi-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-06-30

    To develop proper ionization methods for alkanes, the reactivity of bare or ligated transition metal ions toward alkanes has attracted increasing interests. In this study, the reactions of the gold cations with linear alkanes from ethane up to nonane (CnH2n+2, n = 2-9) under mild conditions have been characterized by mass spectrometry and density functional theory calculations. When reacting with Au(+), small alkanes (n = 2-6) were confirmed to follow specific reaction channels of dehydrogenation for ethane and hydride transfer for others to generate product ions characteristic of the original alkanes, which indicates that Au(+) can act as a reagent ion to ionize alkanes from ethane to n-hexane. Strong dependence of the chain length of alkanes was observed for the rate constants and reaction efficiencies. Extensive fragmentation took place for larger alkanes (n > 6). Theoretical results show that the fragmentation induced by the hydride transfer occurs after the release of AuH. Moreover, the fragmentation of n-heptane was successfully avoided when the reaction took place in a high-pressure reactor. This implies that Au(+) is a potential reagent ion to ionize linear and even the branched alkanes. PMID:27266670

  12. Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23.

    PubMed

    Boonmak, Chanita; Takahashi, Yasunori; Morikawa, Masaaki

    2014-05-01

    An extremely thermophilic bacterium, Geobacillus thermoleovorans B23, is capable of degrading a broad range of alkanes (with carbon chain lengths ranging between C11 and C32) at 70 °C. Whole-genome sequence analysis revealed that unlike most alkane-degrading bacteria, strain B23 does not possess an alkB-type alkane monooxygenase gene. Instead, it possesses a cluster of three ladA-type genes, ladAαB23, ladAβB23, and ladB B23, on its chromosome, whose protein products share significant amino acid sequence identities, 49.8, 34.4, and 22.7 %, respectively, with that of ladA alkane monooxygenase gene found on a plasmid of Geobacillus thermodetrificans NG 80-2. Each of the three genes, ladAαB23, ladAβB23, and ladB B23, was heterologously expressed individually in an alkB1 deletion mutant strain, Pseudomonas fluorescens KOB2Δ1. It was found that all three genes were functional in P. fluorescens KOB2Δ1, and partially restored alkane degradation activity. In this study, we suggest that G. thermoleovorans B23 utilizes multiple LadA-type alkane monooxygenases for the degradation of a broad range of alkanes.

  13. Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment

    NASA Astrophysics Data System (ADS)

    Yunker, Mark B.; Macdonald, Robie W.; Cretney, Walter J.; Fowler, Brian R.; McLaughlin, Fiona A.

    1993-07-01

    To study the largest source of river sediment to the Arctic Ocean, we have collected suspended particulates from the Mackenzie River in all seasons and sediments from the Mackenzie shelf between the river mouth and the shelf edge. These samples have been analyzed for alkanes, triterpenes and polycyclic aromatic hydrocarbons (PAHs). We found that naturally occurring hydrocarbons predominate in the river and on the shelf. These hydrocarbons include biogenic alkanes and triterpenes with a higher plant/peat origin, diagenetic PAHs from peat and plant detritus, petrogenic alkanes, triterpenes and PAHs from oil seeps and/or bitumens and combustion PAHs that are likely relict in peat deposits. Because these components vary independently, the season is found to strongly influence the concentration and composition of hydrocarbons in the Mackenzie River. While essentially the same pattern of alkanes, diagenetic hopanes and alkyl PAHs is observed in all river and most shelf sediment samples, alkane and triterpene concentration variations are strongly linked to the relative amount of higher plant/peat material. Polycyclic aromatic hydrocarbon molecular-mass profiles also appear to be tied primarily to varying proportions of peat, with an additional petrogenic component which is most likely associated with lithic material mobilized by the Mackenzie River at freshet. Consistent with the general lack of alkyl PAHs in peat, the higher PAHs found in the river are probably derived from forest and tundra fires. A few anthropogenic/pyrogenic compounds are manifest only at the shelf edge, probably due to a weakening of the river influence. We take this observation of pyrogenic PAHs and the pronounced source differences between two sediment samples collected at the shelf edge as evidence of a transition from dominance by the Mackenzie River to the geochemistry prevalent in Arctic regions far removed from major rivers.

  14. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes

    NASA Astrophysics Data System (ADS)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M.; Baganz, Frank

    2014-07-01

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.

  15. Both water source and atmospheric water impact leaf wax n-alkane 2H/1H values of hydroponically grown angiosperm trees

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Roden, J. S.; Ehleringer, J. R.

    2013-12-01

    The extent to which both water source and leaf water 2H-enrichment affect the δ2H values of terrestrial plant leaf waxes is an area of active research as ecologists seek a mechanistic understanding of the environmental determinants of leaf wax isotope values before applying δ2H values of leaf waxes to reconstruct past hydrologic conditions. To elucidate the effects of both water source and atmospheric water vapor on δ2H values of leaf waxes for broad-leaved angiosperms, we analyzed hydrogen isotope ratios of high-molecular weight n-alkanes from two tree species that were grown throughout the spring and summer (five months) in a hydroponic system under controlled atmospheric conditions. Here, 12 subpopulations each of Populus fremontii and Betula occidentalis saplings were grown under one of six source different waters ranging in hydrogen isotope ratio values from -120 to +180 ‰ and under either 40 % or 75 % relative humidity conditions. We found n-alkane δ2H values of both species were linearly related to source water δ2H values with differences in slope associated with differing atmospheric humidity. A Craig-Gordon model was used to predict the δ2H values of leaf water and, by extension, n-alkane δ2H values under the range of growth conditions. The modeled leaf water values were found to be linearly related to observed n-alkane δ2H values with a statistically indistinguishable slope between the high and low humidity treatments. These leaf wax observations support a constant biosynthetic fractionation factor between evaporatively-enriched leaf water and n-alkanes for each species. However, we found the calculated biosynthetic fractionation between modeled leaf-water and n-alkane to be different between the two species. We submit that these dissimilarities were due to model inputs and not differences in the specific-species biochemistry. Nonetheless, these results are significant as they indicated that the δ2H value of atmospheric water vapor and

  16. [Normal alkanes characteristic parameters of Jinzhou Bay surface sediments].

    PubMed

    Li, Ze-Li; Ma, Qi-Min; Cheng, Hai-Ou; Xu, Shao-Qing

    2011-11-01

    The concentration, composition and characteristic parameters of 18 surface sediment samples collected from Jinzhou Bay were studied. The samples were soxhlet-extracted with a mixture of 1: 1 (V/V) dichloromethane-hexane and analyzed by GC-MS after purification and concentration. Concentrations of n-alkanes vary from 1.9 to 4.2 microg x g(-1) with an average value of 2.6 microg x g(-1) dry weight. n-Alkanes distribution patterns of all positions were characterized by double peak-cluster, which means double sources from terrestrial and marine origin. The sum of nC25 to nC31 accounts for 20%-32% of the total n-alkanes, while the average value of L/H, C31/C19, TAR ratio are 0.67, 3.06, 2.02, respectively. All of these three indices suggest that the terrestrial contributions are higher than marine sources, especially for No. 2, 3 and 7 stations, which were influenced by riverinput nearby. Carbon Preference Index (CPI) ranges from 1.19 to 2.63 with an average value of 1.73, which is close to 1; the ratio of Pristane/Phytane (Pr/Ph) and unresolved/resolved compounds (U/R) range from 0.91 to 1.28, 2.2 to 4.3, respectively. All of these three parameters indicate that No. 13 and 15 stations are influenced by petroleum pollution. Comprehensive analysis of various parameters shows that Jinzhou Bay is threatened by both terrestrial inputs and petroleum hydrocarbons contaminations, which may relate to river discharging and port shipping in Jinzhou Bay. PMID:22295627

  17. Defect study of molecular beam epitaxy grown undoped GaInNAsSb thin film using junction-capacitance spectroscopy

    SciTech Connect

    Monirul Islam, Muhammad; Miyashita, Naoya; Ahsan, Nazmul; Okada, Yoshitaka

    2013-02-18

    Defects in undoped GaInNAsSb thin film (i-GaInNAsSb) were investigated by junction-capacitance technique using admittance and transient photocapacitance (TPC) spectroscopy. An electron trap D2 was identified at 0.34 eV below the conduction band (E{sub C}) of i-GaInNAsSb using admittance spectroscopy. Optical transition of valance band (E{sub V}) electrons to a localized state OH1 (E{sub V} + 0.75 eV) was manifested in negative TPC signal. Combined activation energy of OH1 and D2 defect corresponds to the band-gap of i-GaInNAsSb, suggesting that OH1/D2 acts as an efficient recombination center. TPC signal at {approx}1.59 eV above E{sub V} was attributed to the nitrogen-induced localized state in GaInNAsSb.

  18. Preliminary assessment of halogenated alkanes as vapor-phase tracers

    SciTech Connect

    Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

    1991-01-01

    New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

  19. Environmental and biosynthetic influences on carbon and hydrogen isotope ratios of leaf wax n-alkanes

    NASA Astrophysics Data System (ADS)

    McInerney, F. A.; Freeman, K. H.; Polissar, P. J.; Feakins, S. J.

    2013-12-01

    Both carbon and hydrogen isotope ratios of leaf-wax n-alkanes are influenced by the availability of water in a plant's growth environment. Carbon isotope ratios of bulk tissues in C3 plants demonstrate a strong inverse relationship with measures of available moisture (e.g. mean annual precipitation and precipitation/evaporation). Similarly, hydrogen isotope ratios of leaf wax n-alkanes (δDl) can be enriched relative to precipitation (δDw) by transpiration, which is related to relative humidity and the leaf-to-air vapor pressure deficit. Thus, D-enrichment of leaf-wax n-alkanes relative to precipitation, termed the apparent fractionation (2ɛl/w), becomes more positive with increasing aridity. In theory, more positive values of leaf-wax δ13C (δ13Cl) and 2ɛl/w of leaf-wax n-alkanes should both correspond to more arid conditions in C3 plants. Here we review published and unpublished data on over 100 plants to examine this relationship. Contrary to expectations, C3 dicots show no clear relationship between δ13Cl and 2ɛl/w. This global lack of correlation is surprising given our understanding of aridity related isotopic effects in C3 plants. One possibility is that the implicit assumption of constant fractionation between lipid and bulk tissue is flawed due to the effects of different biosynthetic carriers and reaction pathways. We explore this possibility by examining the offset of leaf-wax carbon isotopes from the bulk leaf tissue (13ɛl/bulk). Different offsets would indicate additional biosynthetic processes are affecting δ13Cl in addition to any direct effects from aridity. We find that 13ɛl/bulk is highly variable, ranging from -1 to -16‰, which could explain the lack of correlation between δ13Cl and 2ɛl/w. In addition, 13ɛl/bulk values for C3 and C4 monocots (averages of -10.6 and -11.4‰ respectively) represent significantly greater offset between leaf wax and bulk tissue than in C3 dicots (average of -4.3‰), which is consistent with previous

  20. Effect of alkane chain length and counterion on the freezing transition of cationic surfactant adsorbed film at alkane mixture - water interfaces.

    PubMed

    Tokiwa, Yuhei; Sakamoto, Hiroyasu; Takiue, Takanori; Aratono, Makoto; Matsubara, Hiroki

    2015-05-21

    Penetration of alkane molecules into the adsorbed film gives rise to a surface freezing transition of cationic surfactant at the alkane-water interface. To examine the effect of the alkane chain length and counterion on the surface freezing, we employed interfacial tensiometry and ellipsometry to study the interface of cetyltrimethylammonium bromide and cetyltrimethylammonium chloride aqueous solutions against dodecane, tetradecane, hexadecane, and their mixtures. Applying theoretical equations to the experimental results obtained, we found that the alkane molecules that have the same chain length as the surfactant adsorb preferentially into the surface freezing film. Furthermore, we demonstrated that the freezing transition temperature of cationic surfactant adsorbed film was independent of the kind of counterion. PMID:25932500

  1. Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Golan-Bac, M.; Hostettler, F.D.

    1987-01-01

    Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age. ?? 1987.

  2. Gas-phase study of Fe sup + -benzyne with alkanes

    SciTech Connect

    Yongqing Huang; Freiser, B.S. )

    1989-03-29

    The unimolecular chemistry of Fe{sup +}-benzyne and its reactivity with small alkanes in the gas phase are studied by Fourier transform mass spectrometry (FTMS). Collision-induced dissociation of Fe{sup +}-benzyne yields benzyne loss exclusively. In contrast, photodissociation of Fe{sup +}-benzyne yields not only cleavage of benzyne from Fe{sup +}, but competitive loss of C{sub 2}H{sub 2} and C{sub 4}H{sub 2} as well. The Fe{sup +}-benzyne is formed from chlorobenzene by loss of HCl. This dehydrochlorination of chlorobenzene also occurs in secondary reactions up to six times forming products of the type Fe{sup +}-polyphenylene. Fe{sup +}-benzyne reacts with alkanes larger than methane to form a wide variety of product ions by mechanisms including hydrogenation and methanation of the benzyne ligand. All of the product ions can be explained by mechanisms based on Fe{sup +} insertion into either C-C or C-H bonds as the reaction-initiating step, followed by either alkyl or H migration from Fe{sup +} onto the benzyne ligand or, alternatively, by the migratory insertion of benzyne into a metal-carbon or metal-hydrogen bond. Photodissociation and ion-molecule reaction studies yield a value for the metal-ligand bond energy of D{degree} (Fe{sup +}-benzyne) = 76 {plus minus} 10 kcal/mol.

  3. Geologic seepage of methane and light alkanes in Los Angeles

    NASA Astrophysics Data System (ADS)

    Doezema, L. A.; Chang, K.; Baril, R.; Nwachuku, I.; Contreras, P.; Marquez, A.; Howard, D.

    2013-12-01

    Natural geologic seepage of methane from underground oil and natural gas reservoirs has been suggested to be an underreported part of the global methane budget. Other light alkanes are also given off in combination with the methane seepage, making it possible that geologic seepage is also a potentially significant global source of these light alkanes. This study reports C1-C5 findings from geologic seepage made in the Los Angeles region. Microseepage, invisible escape of gases, was measured primarily at Kenneth Hahn Regional Park, while macroseepage, the visible release of gases, was measured at the La Brea Tar Pits. Samples were collected using stainless steel canisters and flux chambers and were analyzed using gas chromatography with flame ionization detectors (GC-FID). Average microseepage flux rates of 0.95 μg m-2 h-1 for ethane and 0.51 μg m-2 h-1 were found for propane, while average macroseepage rates for methane, ethane, and propane were 664, 19.8, and 18.1 mg m-2 h-1 respectively. Relationships between microseepage flux rate and location of underground oil and natural deposit and earthquake fault lines are presented. Additionally, the relative importance of findings in context with global budgets and local air quality is discussed.

  4. Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS

    NASA Astrophysics Data System (ADS)

    Harsha, S. Sree; Melinger, Joseph. S.; Qadri, S. B.; Grischkowsky, D.

    2012-01-01

    The influence of the metal substrate on the measurement of high resolution THz vibrational modes of molecular solids with the waveguide THz-TDS technique is investigated. The sample film of salicylic acid is studied using waveguide THz-TDS on three different metal substrates and two-surface passivated substrates. The independence of the observed THz vibrational modes to the metal substrate is demonstrated. Independently, surface passivation is presented as a viable experimental addition to the waveguide THz-TDS technique to aid the characterization of samples with known reactivity to metal surfaces.

  5. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  6. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  7. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  8. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  9. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  10. Surfactant-induced phases in water-supported alkane monolayers: I. Thermodynamics.

    PubMed

    Yefet, Shai; Sloutskin, Eli; Tamam, Lilach; Sapir, Zvi; Cohen, Asaf; Deutsch, Moshe; Ocko, Benjamin M

    2014-07-15

    Alkanes longer than n = 6 carbons do not spread on the water surface, but condense in a macroscopic lens. However, adding trimethylammonium-based surfactants, C(m)TAB, in submillimolar concentrations causes the alkanes to spread and form a single Langmuir-Gibbs (LG) monolayer of mixed alkanes and surfactant tails, which coexists with the alkane lenses. Upon cooling, this LG film surface-freezes at a temperature T(s) above the bulk freezing temperature T(b). The thermodynamics of surface freezing (SF) of these LG films is studied by surface tension measurements for a range of alkanes (n = 12-21) and surfactant alkyl lengths (m = 14, 16, 18), at several concentrations c. The surface freezing range T(s)-T(b) observed is up to 25 °C, an order of magnitude larger than the temperature range of SF monolayers on the surface of pure alkane melts. The measured (n,T) surface phase diagram is accounted for well by a model based on mixtures' theory, which includes an interchange energy term ω. ω is found to be negative, implying attraction between unlike species, rather than the repulsion found for SF of binary alkane mixtures. Thus, the surfactant/alkane mixing is a necessary condition for the occurrence of SF in these LG films. The X-ray derived structure of the films is presented in an accompanying paper. PMID:24918482

  11. Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents.

    PubMed

    Bertrand, Erin M; Keddis, Ramaydalis; Groves, John T; Vetriani, Costantino; Austin, Rachel Narehood

    2013-01-01

    Six aerobic alkanotrophs (organism that can metabolize alkanes as their sole carbon source) isolated from deep-sea hydrothermal vents were characterized using the radical clock substrate norcarane to determine the metalloenzyme and reaction mechanism used to oxidize alkanes. The organisms studied were Alcanivorax sp. strains EPR7 and MAR14, Marinobacter sp. strain EPR21, Nocardioides sp. strains EPR26w, EPR28w, and Parvibaculum hydrocarbonoclasticum strain EPR92. Each organism was able to grow on n-alkanes as the sole carbon source and therefore must express genes encoding an alkane-oxidizing enzyme. Results from the oxidation of the radical-clock diagnostic substrate norcarane demonstrated that five of the six organisms (EPR7, MAR14, EPR21, EPR26w, and EPR28w) used an alkane hydroxylase functionally similar to AlkB to catalyze the oxidation of medium-chain alkanes, while the sixth organism (EPR92) used an alkane-oxidizing cytochrome P450 (CYP)-like protein to catalyze the oxidation. DNA sequencing indicated that EPR7 and EPR21 possess genes encoding AlkB proteins, while sequencing results from EPR92 confirmed the presence of a gene encoding CYP-like alkane hydroxylase, consistent with the results from the norcarane experiments.

  12. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.

    PubMed

    Guermouche M'rassi, A; Bensalah, F; Gury, J; Duran, R

    2015-10-01

    Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments.

  13. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions.

    PubMed

    Wang, Bin; Lee, Yong-Min; Clémancey, Martin; Seo, Mi Sook; Sarangi, Ritimukta; Latour, Jean-Marc; Nam, Wonwoo

    2016-02-24

    Mononuclear nonheme high-spin iron(III)-acylperoxo complexes bearing an N-methylated cyclam ligand were synthesized, spectroscopically characterized, and investigated in olefin epoxidation and alkane hydroxylation reactions. In the epoxidation of olefins, epoxides were yielded as the major products with high stereo-, chemo-, and enantioselectivities; cis- and trans-stilbenes were oxidized to cis- and trans-stilbene oxides, respectively. In the epoxidation of cyclohexene, cyclohexene oxide was formed as the major product with a kinetic isotope effect (KIE) value of 1.0, indicating that nonheme iron(III)-acylperoxo complexes prefer C═C epoxidation to allylic C-H bond activation. Olefin epoxidation by chiral iron(III)-acylperoxo complexes afforded epoxides with high enantioselectivity, suggesting that iron(III)-acylperoxo species, not high-valent iron-oxo species, are the epoxidizing agent. In alkane hydroxylation reactions, iron(III)-acylperoxo complexes hydroxylated C-H bonds as strong as those in cyclohexane at -40 °C, wherein (a) alcohols were yielded as the major products with high regio- and stereoselectivities, (b) activation of C-H bonds by the iron(III)-acylperoxo species was the rate-determining step with a large KIE value and good correlation between reaction rates and bond dissociation energies of alkanes, and (c) the oxygen atom in the alcohol product was from the iron(III)-acylperoxo species, not from molecular oxygen. In isotopically labeled water (H2(18)O) experiments, incorporation of (18)O from H2(18)O into oxygenated products was not observed in the epoxidation and hydroxylation reactions. On the basis of mechanistic studies, we conclude that mononuclear nonheme high-spin iron(III)-acylperoxo complexes are strong oxidants capable of oxygenating hydrocarbons prior to their conversion into iron-oxo species via O-O bond cleavage.

  14. Degradation of Hydrocarbons by Members of the Genus Candida II. Oxidation of n-Alkanes and 1-Alkenes by Candida lipolytica

    PubMed Central

    Klug, M. J.; Markovetz, A. J.

    1967-01-01

    Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked. PMID:6025303

  15. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments

    PubMed Central

    Bose, Arpita; Rogers, Daniel R.; Adams, Melissa M.; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2–C5) and longer alkanes. C2–C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1–C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (−3.5 and −6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1–C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3–C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial

  16. Incorporation of chlorinated alkanes into fatty acids of hydrocarbon-utilizing mycobacteria.

    PubMed

    Murphy, G L; Perry, J J

    1983-12-01

    The cellular fatty acid composition of Mycobacterium vaccae JOB5 and Mycobacterium convolutum R22 was examined after growth on n-alkanes and compared with the fatty acids of the organisms after growth on 1-chlorohexadecane and 1-chlorooctadecane. Growth on n-alkanes resulted in normal fatty acid profiles. Mass spectral analyses indicated that, after growth on the terminally chlorinated n-alkanes, 75 to 86% of the fatty acids in M. convolutum and ca. 55% of the fatty acids in M. vaccae contained chlorine. Neither organism could utilize chloroacetate or 3-chloropropionate as sole source of carbon and energy. When these compounds were added to a growth medium with n-hexadecane as substrate, there was no evidence that chlorinated fatty acids were produced. Terminally chlorinated n-alkanes can be added to the list of n-alkanes, alkenes, and cyclohexylalkane derivatives that can be directly incorporated into cellular fatty acids of hydrocarbon-utilizing organisms.

  17. Possible origin of n -alkanes with a remarkable even-to-odd predominance in recent marine sediments

    NASA Astrophysics Data System (ADS)

    Nishimura, Mitsugu; Baker, Earl W.

    1986-02-01

    N- alkane distributions with a remarkable even-to-odd predominance (C 16-C 24) were found in marine surface sediments. The previously proposed diagenetic reduction of the corresponding n- fatty acids could not be considered as a source for these N- alkane. Based on a comparison of compositional features of n- alkane, n- fatty acid and n- alcohol distributions, carbon isotope analyses, and other geochemical parameters, the data indicate that the even-predominant n- alkanes were derived directly from marine bacteria.

  18. Adsorption of proteins at the aqueous solution/alkane interface: Co-adsorption of protein and alkane.

    PubMed

    Miller, R; Aksenenko, E V; Zinkovych, I I; Fainerman, V B

    2015-08-01

    The equations of state, adsorption isotherms and functions of the distribution of protein molecules in liquid interfacial layers with respect to molar area and the equations for their viscoelastic behavior are presented. This theory was used to determine the adsorption characteristics of β-casein and β-lactoglobulin at water/oil interfaces. The experimental results are shown to be describable quite adequately by the proposed theory with consistent model parameters. The data analysis demonstrated that the β-casein molecule adsorbed at equilibrium conditions is more unfolded as compared with dynamic conditions, and this fact causes the significant increase of the adsorption equilibrium constant. The theory assumes the adsorption of protein molecules from the aqueous solution and a competitive adsorption of alkane molecules from the alkane phase. The comparison of the experimental equilibrium interfacial tension isotherms for β-lactoglobulin at the solution/hexane interface with data calculated using the proposed theoretical model demonstrates that the assumption of a competitive adsorption is essential, and the influence of the hexane molecules on the shape of the adsorption isotherm does in fact exist.

  19. Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection

    SciTech Connect

    Lai, Y. H.; He, Q. L.; Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Sou, I. K.; Ho, S. K.; Tam, K. W.

    2013-04-29

    Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

  20. Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection

    NASA Astrophysics Data System (ADS)

    Lai, Y. H.; He, Q. L.; Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Ho, S. K.; Tam, K. W.; Sou, I. K.

    2013-04-01

    Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

  1. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films

    SciTech Connect

    Chan, Edwin P.; Chung, Jun Young; Stafford, Christopher M.; Lee, Jung-Hyun

    2012-11-15

    We present the design of an automated spin-coater that facilitates fabrication of polymer films based on molecular layer-by-layer (mLbL) assembly. Specifically, we demonstrate the synthesis of ultrathin crosslinked fully-aromatic polyamide (PA) films that are chemically identical to polymer membranes used in water desalination applications as measured by X-ray photoelectron spectroscopy. X-ray reflectivity measurements indicate that the automated mLbL assembly creates films with a constant film growth rate and minimal roughness compared with the traditional interfacial polymerization of PA. This automated spin-coater improves the scalability and sample-to-sample consistency by reducing human involvement in the mLbL assembly.

  2. Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Asghar, M.; K., Mahmood; A. Hasan, M.; T. Ferguson, I.; Tsu, R.; Willander, M.

    2014-09-01

    We report deep level transient spectroscopy results from ZnO layers grown on silicon by molecular beam epitaxy (MBE). The hot probe measurements reveal mixed conductivity in the as-grown ZnO layers, and the current—voltage (I—V) measurements demonstrate a good quality p-type Schottky device. A new deep acceptor level is observed in the ZnO layer having activation energy of 0.49 ±0.03 eV and capture cross-section of 8.57 × 10-18 cm2. Based on the results from Raman spectroscopy, photoluminescence, and secondary ion mass spectroscopy (SIMS) of the ZnO layer, the observed acceptor trap level is tentatively attributed to a nitrogen-zinc vacancy complex in ZnO.

  3. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films.

    PubMed

    Chan, Edwin P; Lee, Jung-Hyun; Chung, Jun Young; Stafford, Christopher M

    2012-11-01

    We present the design of an automated spin-coater that facilitates fabrication of polymer films based on molecular layer-by-layer (mLbL) assembly. Specifically, we demonstrate the synthesis of ultrathin crosslinked fully-aromatic polyamide (PA) films that are chemically identical to polymer membranes used in water desalination applications as measured by X-ray photoelectron spectroscopy. X-ray reflectivity measurements indicate that the automated mLbL assembly creates films with a constant film growth rate and minimal roughness compared with the traditional interfacial polymerization of PA. This automated spin-coater improves the scalability and sample-to-sample consistency by reducing human involvement in the mLbL assembly.

  4. Structural properties of SrO thin films grown by molecular beam epitaxy on LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Maksimov, O.; Heydemann, V. D.; Fisher, P.; Skowronski, M.; Salvador, P. A.

    2006-12-01

    SrO films were grown on LaAlO3 substrates by molecular beam epitaxy and characterized using reflection high-energy electron diffraction (RHEED) and x-ray diffraction (XRD). The evolution of the RHEED pattern is discussed as a function of film thickness. 500Å thick SrO films were relaxed and exhibited RHEED patterns indicative of an atomically smooth surface having uniform terrace heights. Films had the epitaxial relationship (001)SrO‖(001)LaAlO3; [010]SrO‖[110]LaAlO3. This 45° in-plane rotation minimizes mismatch and leads to films of high crystalline quality, as verified by Kikuchi lines in the RHEED patterns and narrow rocking curves of the (002) XRD peak.

  5. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane...

  6. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane...

  7. 40 CFR 721.10178 - Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), hydroisomerized middle, C10-13-branched alkane fraction. 721.10178 Section 721.10178 Protection of Environment...), hydroisomerized middle, C10-13-branched alkane fraction. (a) Chemical substance and significant new uses subject... middle, C10-13-branched alkane fraction (PMN P-04-319; CAS No. 642928-30-1) is subject to reporting...

  8. 40 CFR 721.10178 - Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...), hydroisomerized middle, C10-13-branched alkane fraction. 721.10178 Section 721.10178 Protection of Environment...), hydroisomerized middle, C10-13-branched alkane fraction. (a) Chemical substance and significant new uses subject... middle, C10-13-branched alkane fraction (PMN P-04-319; CAS No. 642928-30-1) is subject to reporting...

  9. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  10. Computational study of the molecular level mechanisms of the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique for thin film deposition

    NASA Astrophysics Data System (ADS)

    Leveugle, Elodie Mathilde Julia Perrine

    There are a number of recent and emerging techniques that utilize the ability of laser ablation of a volatile matrix to entrain, eject and, if needed, deposit large macromolecules or nano-objects to a substrate. In particular, the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique shows a potential to produce uniform ultra-thin nanocomposite films with concentrations of nanoscale elements not attainable by other current methods. The lack of understanding of the fundamental underlying processes involved in laser ablation, however, hampers further optimization of the experimental parameters in MAPLE. In this dissertation I report the results of a comprehensive computational investigation of the relation between the basic mechanisms of laser interaction with multi-component target materials, the non-equilibrium processes caused by the fast deposition of laser energy, the parameters of the ejected ablation plume, and the resulting morphological characteristics of the growing film. The physical mechanisms and molecular-level picture of laser-induced material ejection from solutions of polymer molecules in a volatile matrix are analyzed in a series of coarse-grained molecular dynamics (MD) simulations. Simulations are performed for polymer concentrations up to 6 wt.% and laser fluences covering the range from the regime where molecular ejection is limited to matrix evaporation from the surface up to more than twice the threshold fluence for the onset of the collective molecular ejection or ablation. Contrary to the original picture of the ejection and transport of individual polymer molecules in MAPLE, the simulations indicate that polymer molecules are only ejected in the ablation regime and are always incorporated into polymer-matrix clusters generated in "phase explosion" of the target. Additionally, the entanglement of the polymer molecules facilitates the formation of elongated viscous droplets that can be related to nanofilament structures observed

  11. David Adler Lectureship Award Talk: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films

    NASA Astrophysics Data System (ADS)

    Krim, Jacqueline

    2015-03-01

    Studies of the fundamental origins of friction have undergone rapid progress in recent years, with the development of new experimental and computational techniques for measuring and simulating friction at atomic length and time scales. The increased interest has sparked a variety of discussions and debates concerning the nature of the atomic-scale and quantum mechanisms that dominate the dissipative process by which mechanical energy is transformed into heat. Measurements of the sliding friction of physisorbed monolayers and bilayers can provide information on the relative contributions of these various dissipative mechanisms. Adsorbed films, whether intentionally applied or present as trace levels of physisorbed contaminants, moreover are ubiquitous at virtually all surfaces. As such, they impact a wide range of applications whose progress depends on precise control and/or knowledge of surface diffusion processes. Examples include nanoscale assembly, directed transport of Brownian particles, material flow through restricted geometries such as graphene membranes and molecular sieves, passivation and edge effects in carbon-based lubricants, and the stability of granular materials associated with frictional and frictionless contacts. Work supported by NSFDMR1310456.

  12. Defects in Ga(In)NAs thin films grown by atomic H-assisted molecular beam epitaxy

    SciTech Connect

    Shimizu, Yukiko; Mura, Yusuke; Uedono, Akira; Okada, Yoshitaka

    2006-09-15

    The vacancy-type defects in Ga{sub 1-y}In{sub y}N{sub x}As{sub 1-x} dilute nitride films grown by atomic H-assisted molecular beam epitaxy (H-MBE) were investigated. The positron annihilation measurements showed that the densities of vacancy-type defects in GaN{sub x}As{sub 1-x} (x=0%-1.3%) films grown under an optimized atomic H flux were as low as that for a liquid encapsulated Czochralski (LEC) GaAs substrate. Further, the influence of vacancy-type defects on the crystal quality and optical properties were studied by x-ray diffraction and photoluminescence (PL) measurements. The integrated PL intensity at 77 K drastically decreased as N composition was increased, but we found no clear correlation between the density or volume of vacancy defects and optical properties, and the S parameters were nearly constant at a value of {approx}0.516 in all Ga{sub 1-y}In{sub y}N{sub x}As{sub 1-x} films grown by our H-MBE technique.

  13. Atomic layer-by-layer growth of superconducting Bi Sr Ca Cu O thin films by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bove, P.; Rogers, D. J.; Hosseini Teherani, F.

    2000-11-01

    In situ reflection high-energy electron diffraction (RHEED) is employed to investigate the growth kinetics, and monitor the crystal surface evolution, during plasma-assisted molecular beam epitaxy growth of Bi 2Sr 2Ca n-1 Cu nO (BSCCO) compounds. By varying the growth parameters such as operating pressure, substrate temperature, cation flux and shutter opening pulse duration, it is found that the crystal growth front exhibits surface reconstructions with (1×1), (2×2), c(2×2) and (3×1) symmetries for the Sr, Ca and Cu species, and a RHEED pattern characteristic of twinning for Bi. Through manipulation of these surface reconstructions, and use of an adapted growth mode, it was possible to achieve a monolayer coverage for each species supplied. For the n=1, 2 and 3 compounds the resulting films exhibit a crystal quality characterised by an X-ray diffraction rocking curve width of 0.03° and an atomic force microscope mean surface roughness of 0.9 nm [over 10×10 μm] for 40 nm thick films.

  14. Usefulness of conventional transbronchial needle aspiration in the diagnosis, staging and molecular characterization of pulmonary neoplasias by thin-prep based cytology: experience of a single oncological institute

    PubMed Central

    Ramieri, Maria Teresa; Marandino, Ferdinando; Visca, Paolo; Salvitti, Tommaso; Gallo, Enzo; Casini, Beatrice; Giordano, Francesca Romana; Frigieri, Claudia; Caterino, Mauro; Carlini, Sandro; Rinaldi, Massimo; Ceribelli, Anna; Pennetti, Annarita; Alò, Pier Luigi; Pescarmona, Edoardo; Filippetti, Massimo

    2016-01-01

    Background Conventional transbronchial needle aspiration (c-TBNA) contributed to improve the bronchoscopic examination, allowing to sample lesions located even outside the tracheo-bronchial tree and in the hilo-mediastinal district, both for diagnostic and staging purposes. Methods We have evaluated the sensitivity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the c-TBNA performed during the 2005–2015 period for suspicious lung neoplasia and/or hilar and mediastinal lymphadenopathy at the Thoracic endoscopy of the Thoracic Surgery Department of the Regina Elena National Cancer Institute, Rome. Data from 273 consecutive patients (205 males and 68 females) were analyzed. Results Among 158 (58%) adequate specimens, 112 (41%) were neoplastic or contained atypical cells, 46 (17%) were negative or not diagnostic. We considered in the analysis first the overall period; then we compared the findings of the first [2005–2011] and second period [2012–2015] and, finally, only those of adequate specimens. During the overall period, sensibility and accuracy values were respectively of 53% and 63%, in the first period they reached 41% and 53% respectively; in the second period sensibility and accuracy reached 60% and 68%. Considering only the adequate specimens, sensibility and accuracy during the overall period were respectively of 80% and 82%; the values obtained for the first period were 68% and 72%. Finally, in the second period, sensibility reached 86% and accuracy 89%. Carcinoma-subtyping was possible in 112 cases, adenocarcinomas being diagnosed in 50 cases; further, in 30 cases molecular predictive data could be obtained. Conclusions The c-TBNA proved to be an efficient method for the diagnosis/staging of lung neoplasms and for the diagnosis of mediastinal lymphadenopathy. Endoscopist’s skill and technical development, associated to thin-prep cytology and to a rapid on site examination (ROSE), were able to provide by c-TBNA a

  15. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  16. Usefulness of conventional transbronchial needle aspiration in the diagnosis, staging and molecular characterization of pulmonary neoplasias by thin-prep based cytology: experience of a single oncological institute

    PubMed Central

    Ramieri, Maria Teresa; Marandino, Ferdinando; Visca, Paolo; Salvitti, Tommaso; Gallo, Enzo; Casini, Beatrice; Giordano, Francesca Romana; Frigieri, Claudia; Caterino, Mauro; Carlini, Sandro; Rinaldi, Massimo; Ceribelli, Anna; Pennetti, Annarita; Alò, Pier Luigi; Pescarmona, Edoardo; Filippetti, Massimo

    2016-01-01

    Background Conventional transbronchial needle aspiration (c-TBNA) contributed to improve the bronchoscopic examination, allowing to sample lesions located even outside the tracheo-bronchial tree and in the hilo-mediastinal district, both for diagnostic and staging purposes. Methods We have evaluated the sensitivity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the c-TBNA performed during the 2005–2015 period for suspicious lung neoplasia and/or hilar and mediastinal lymphadenopathy at the Thoracic endoscopy of the Thoracic Surgery Department of the Regina Elena National Cancer Institute, Rome. Data from 273 consecutive patients (205 males and 68 females) were analyzed. Results Among 158 (58%) adequate specimens, 112 (41%) were neoplastic or contained atypical cells, 46 (17%) were negative or not diagnostic. We considered in the analysis first the overall period; then we compared the findings of the first [2005–2011] and second period [2012–2015] and, finally, only those of adequate specimens. During the overall period, sensibility and accuracy values were respectively of 53% and 63%, in the first period they reached 41% and 53% respectively; in the second period sensibility and accuracy reached 60% and 68%. Considering only the adequate specimens, sensibility and accuracy during the overall period were respectively of 80% and 82%; the values obtained for the first period were 68% and 72%. Finally, in the second period, sensibility reached 86% and accuracy 89%. Carcinoma-subtyping was possible in 112 cases, adenocarcinomas being diagnosed in 50 cases; further, in 30 cases molecular predictive data could be obtained. Conclusions The c-TBNA proved to be an efficient method for the diagnosis/staging of lung neoplasms and for the diagnosis of mediastinal lymphadenopathy. Endoscopist’s skill and technical development, associated to thin-prep cytology and to a rapid on site examination (ROSE), were able to provide by c-TBNA a

  17. Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis

    PubMed Central

    Maitra, Radhashree; Clement, Cristina C.; Scharf, Brian; Crisi, Giovanna M; Chitta, Sriram; Paget, Daniel; Purdue, P. Edward; Cobelli, Neil; Santambrogio, Laura

    2009-01-01

    Ultra high molecular weight polyethylene is widely used as a bearing surface in prosthetic arthroplasty. Over time the generation of implant-derived wear particles can initiate an inflammatory reaction characterized by periprosthetic inflammation and ultimately bone resorption at the prosthetic bone interface. Herein we present evidence that the different sized particles as well as the different length alkane polymers generated by implant wear leads to a two component inflammatory response. Polymeric alkane structures, with side chain oxidations, directly bind and activate the TLR-1/2 signaling pathway. Whereas micron and nanometer sized particulate debris are extensively phagocyted and induce enlargement, fusion and disruption of endosomal compartments. The resulting lysosomal damage and subsequent enzymatic leakage induces the NALP3 inflammasome activation as determined by cathepsins S and B cytosolic release, Caspase 1 activation and processing of pro-IL-1β, and pro-IL-18. These two processes synergistically results in the initiation of a strong inflammatory response with consequent cellular necrosis and extra-cellular matrix degradation. PMID:19804908

  18. Measurements of homogeneous nucleation in normal-alkanes

    NASA Astrophysics Data System (ADS)

    Kraack, H.; Sirota, E. B.; Deutsch, M.

    2000-04-01

    The homogeneous nucleation of normal-alkanes with carbon numbers 15⩽n⩽60 is studied by scanning calorimetry, using the droplet technique. Pure, nonemulsified samples show near-zero undercoolings below the melting point, Tm, except for both ends of the n-range, where undercoolings ΔT of up to 2 °C are observed. The emulsions have much larger undercoolings. The relative undercoolings show three regimes: A fast decreasing one, up to n=17, an anomalously low constant one, ΔT/Tm≈0.04, for 17⩽n⩽30, and a gradually increasing one for 32⩽n⩽60. A value of ΔT/Tm≈0.086 is reached at n=60. The connections of these results with the bulk rotator phases and the recently discovered surface freezing effect are discussed. Strong intrinsic interrelations among these are indicated.

  19. Thermal analysis of n-alkane phase change material mixtures

    SciTech Connect

    Chio, Y.I.; Choi, E.; Lorsch, H.G.

    1991-03-31

    Tests were performed to characterize the thermal behavior of it number of n-alkanes to be used as phase change materials (PCMs) in district cooling applications. Hexadecane and tetradecane were mixed in different fractions, and their thermal behavior was experimentally evaluated. Test results for melting temperature and fusion energy for laboratory grade hexadecane and tetradecane showed good agreement with datain the literature. However, values for commercial grade hexadecane were found to be considerably lower. In the range of temperatures of interest for district cooling, mixtures of tetradecane and hexadecane can be treated as homogeneous substances. However, their heats of fusion are slightly lower than those of the pure substances. Their melting temperatures are also lower by an amount that can be predicted.

  20. Environmental chemistry and toxicology of polychlorinated n-alkanes.

    PubMed

    Tomy, G T; Fisk, A T; Westmore, J B; Muir, D C

    1998-01-01

    Polychlorinated-n-alkanes (PCAs) or chlorinated paraffins consist of C10 to C30 n-alkanes with chlorine content from 30% to 70% by mass. PCAs are used as high-temperature lubricants, plasticizers, flame retardants, and additives in adhesives, paints, rubber, and sealants. This review presents the existing data on the environmental chemistry and toxicology of PCAs and a preliminary exposure and risk assessment. There is limited information on the levels, fate, or biological effects of PCAs in the environment. This results both from the difficulty associated with quantifying PCAs, because of the complexity inherent to commercial formulations, and from the limited knowledge of their physicochemical properties and biodegradation rates. There are indications that PCAs are widespread environmental contaminants at ng/L levels in surface waters and ng/g (wet wt) levels in biota. However, environmental measurements of PCAs are very limited in the U.S. and Canada, and are only slightly more detailed in western Europe. Assuming that reported water concentrations are mainly caused by the short chain (C10-C13) compounds, aquatic organisms may be at risk from exposure to PCAs. Fugacity level II modeling for two representative PCAs, using the best available physicochemical property data and estimated degradation rates, suggested that C16C24Cl10 would achieve higher concentrations in biota, sediment, and soil than C12H20Cl6 because of slower degradation rates and lower water solubility. Environmental residence time of C16H24Cl10 is estimated to be 520 d compared to 210 d for C12H20Cl6. Future studies will require better analytical methods and reference materials certified for PCA content. Additional data are needed to evaluate exposure of biota to PCAs in the environment, particularly in light of their continued production and usage around the globe. PMID:9751033

  1. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    NASA Astrophysics Data System (ADS)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  2. Thin film growth of a topological crystal insulator SnTe on the CdTe (111) surface by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryo; Yamaguchi, Tomonari; Ohtaki, Yusuke; Akiyama, Ryota; Kuroda, Shinji

    2016-11-01

    We report molecular beam epitaxial growth of a SnTe (111) layer on a CdTe template, fabricated by depositing it on a GaAs (111)A substrate, instead of BaF2 which has been conventionally used as a substrate. By optimizing temperatures for the growth of both SnTe and CdTe layers and the SnTe growth rate, we could obtain SnTe layers of the single phase grown only in the (111) orientation and of much improved surface morphology from the viewpoint of the extension and the flatness of flat regions, compared to the layers grown on BaF2. In this optimal growth condition, we have also achieved a low hole density of the order of 1017 cm-3 at 4 K, the lowest value ever reported for SnTe thin films without additional doping. In the magnetoresistance measurement on this optimized SnTe layer, we observe characteristic negative magneto-conductance which is attributed to the weak antilocalization effect of the two-dimensional transport in the topological surface state.

  3. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    SciTech Connect

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David; Marcus, Matthew A.; Tarafder, Kartick

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  4. Growth of high-quality InN thin films on InGaN buffer layer by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Chen-Chi; Lo, Ikai; Shih, Cheng-Hung; Hu, Chia-Hsuan; Wang, Ying-Chieh; Lin, Yu-Chiao; Tasi, Cheng-Da; You, Shuo-Ting

    2015-03-01

    Four samples were grown on 2 inch c-plane (0001) sapphire substrates with 4 μm-thick GaN template. The InN thin films were grown on InGaN buffer layer by low-temperature plasma-assisted molecular beam epitaxy (PAMBE) system. These samples were grown under a varied temperature of InGaN buffer layers: 500°C, 540°C, 570°C, and 600°C. The structure properties of these samples were analyzed by X-ray diffraction (XRD). The interference fringes of InN grown on the sample 1 (the growth temperature of InGaN buffer layer at 500°C) exhibit prominent oscillations, which indicates that the sample has a high quality and layer by layer epitaxial structure. The surface morphology and microstructure of samples were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). We confirmed the smooth surface and high quality crystalline for the sample.

  5. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy

    PubMed Central

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2014-01-01

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics. PMID:25388355

  6. Neutron diffraction and quasielastic neutron scattering studies of films of intermediate-length alkanes adsorbed on a graphite surface

    NASA Astrophysics Data System (ADS)

    Diama, Armand

    Over the past several years, we have conducted a variety of elastic neutron diffraction and quasielastic neutron scattering experiments to study the structure and the dynamics of films of two intermediate-length alkane molecules (C nH2n+2), adsorbed on a graphite basal-plane surface. The two molecules are the normal alkane n-tetracosane [n-CH 3(CH2)22CH3] and the branched alkane squalane (C30H62 or 2, 6, 10, 15, 19, 23-hexamethyltetracosane) whose carbon backbone is the same length as teteracosane. The temperature dependence of the monolayer structure of tetracosane and squalane was investigated using elastic neutron diffraction and evidence of two phase transitions was observed. Both the low-coverage tetracosane (C 24H50) and squalane (C30H62) monolayers have crystalline-to-"smectic" and "smectic"-to-isotropic fluid phase transitions upon heating. The diffusive motion in the tetracosane and squalane monolayers has been investigated by quasielastic neutron scattering. Two different quasielastic neutron scattering spectrometers at the Center for Neutron Research, National Institute of Standards and Technology (NIST) have been used. The spectrometers differ in both their dynamic range and energy resolution allowing molecular motions to be investigated on time scales in the range 10-13--10 -9 s. On these time scales, we observe evidence of translational, rotational, and intermolecular diffusive motions in the tetracosane and squalane monolayers. We conclude that the molecular diffusive motion in the two monolayers is qualitatively similar. Thus, despite the three methyl sidegroups at each end of the squalane molecule, its monolayer structure, phase transitions, and dynamics are qualitatively similar to that of a monolayer of the unbranched tetracosane molecules. With the higher resolution spectrometer at NIST, we have also investigated the molecular diffusive motion in multilayer tetracosane films. The analysis of our measurements indicates slower diffusive motion in

  7. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  8. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates.

    SciTech Connect

    Lyons, J.E.

    1992-07-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  9. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates

    SciTech Connect

    Lyons, J.E.

    1992-01-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  10. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE. PMID:25432418

  11. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    SciTech Connect

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  12. Diversity and abundance of n-alkane-degrading bacteria in the near-surface soils of a Chinese onshore oil and gas field

    NASA Astrophysics Data System (ADS)

    Xu, K.; Tang, Y.; Ren, C.; Zhao, K.; Sun, Y.

    2013-03-01

    Alkane-degrading bacteria have long been used as an important biological indicator for oil and gas prospecting, but their ecological characteristics in hydrocarbon microseep habitats are still poorly understood. In this study, the diversity and abundance of n-alkane-degrading bacterial community in the near-surface soils of a Chinese onshore oil and gas field were investigated using molecular techniques. Terminal restriction fragment length polymorphism (T-RFLP) analyses in combination with cloning and sequencing of alkB genes revealed that Gram-negative genotypes (Alcanivorax and Acinetobacter) dominated n-alkane-degrading bacterial communities in the near-surface soils of oil and gas reservoirs, while the dominant microbial communities were Gram-positive bacteria (Mycobacterium and Rhodococcus) in background soil. Real-time quantitative polymerase chain reaction (PCR) results furthermore showed that the abundance of alkB genes increased substantially in the surface soils above oil and gas reservoirs even though only low or undetectable concentrations of hydrocarbons were measured in these soils. The results of this study implicate that trace amounts of volatile hydrocarbons migrate from oil and gas reservoirs, and likely result in the changes of microbial communities in the near-surface soil.

  13. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

  14. Prototheca zopfii Kruger strain UMK-13 growth on acetate or n-alkanes

    SciTech Connect

    Koenig, D.W.; Ward, H.B.

    1983-01-01

    A new strain of Prototheca zopfii Kruger was grown on acetate or on pure n-alkanes. A maximum acetate-supported exponential growth of 12 divisions day/sup -1/ occurred at pH 5 and 30/sup 0/C. At 25/sup 0/C, growth on n-alkanes was almost as fast, but no growth occurred at 30/sup 0/C. After 3 days at 25/sup 0/C, 34 to 45% of the n-alkanes had been removed, whereas at 21/sup 0/C and slower growth, utilization was twofold greater after 15 days. Rates of growth and utilization increased markedly after a point of sudden emulsification.

  15. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  16. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  17. Characterization of the Medium- and Long-Chain n-Alkanes Degrading Pseudomonas aeruginosa Strain SJTD-1 and Its Alkane Hydroxylase Genes

    PubMed Central

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12–C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18. PMID:25165808

  18. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.

    PubMed

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12-C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18. PMID:25165808

  19. Premelting of thin wires

    NASA Astrophysics Data System (ADS)

    Gülseren, O.; Ercolessi, F.; Tosatti, E.

    1995-03-01

    We have investigated the melting behavior of thin lead wires using molecular dynamics. We find that-in analogy with cluster melting-the melting temperature Tm(R) of a wire with radius R is lower than that of a bulk solid Tbm by Tm(R)=Tbm-c/R. Surface melting effects, with formation of a thin skin of highly diffusive atoms at the wire surface, are observed. The diffusivity is lower over (111)-oriented faces, and higher at (110) and (100) rounded areas. The possible relevance to recent results on nonrupturing thin necks between a scanning tunnel microscope tip and a warm surface is addressed.

  20. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    PubMed Central

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173