Science.gov

Sample records for molecularly thin carboxylic

  1. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    SciTech Connect

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  2. Influence of molecular interactions on the stability of hydrogen-bonded dimers of carboxylic acids

    NASA Astrophysics Data System (ADS)

    Kolbe, Alfred; Plass, Monika; Kresse, Horst; Kolbe, Adelheid; Drabowicz, Jozef; Zurawinski, Remiguisz

    1997-12-01

    Possibilities to change the molecular arrangement of hydrogen bonded dimers of carboxylic acids by offering other acceptor groups are investigated in different species of molecules, namely in amino acid conjugates, in sulfinyl- and phosphinyl-carboxylic acids and in some p- n-alkoxybenzoic acids. As a result it was found that the carboxylic dimers are rather easily broken by lattice forces, by forming other intra- and intermolecular hydrogen bonds to stronger acceptor groups, and by increasing the temperature.

  3. Partial Hydrothermal Oxidation of High Molecular Weight Unsaturated Carboxylic Acids for Upgrading of Biodiesel Fuel

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.

    2007-03-01

    With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.

  4. Low-Molecular Weight Carboxylic Acids in Gas Phase in a Developing Megacity

    NASA Astrophysics Data System (ADS)

    Khwaja, H. A.; Saied, S.; Hussain, M. M.; Siddique, A.; Butts, C.; Kamran, S. S.; Khan, M. K.

    2013-12-01

    Carboxylic acids are amongst the plethora of pollutants that are currently ubiquitous in the environment. Molecular distributions of carboxylic acids have been studied in the atmosphere of the developing mega city Karachi, Pakistan. As a region the city is experiencing industrial and population growth at an unparallel rate. Karachi served as a great focal point to observe the effects of industrial development on a growing city and how it contributes to the progression of environmental pollution. Results indicate that acetic and formic acids are important components of the Karachi atmosphere. The most abundant acids, by a substantial margin, were acetic acid and formic acid, with concentrations of 0.70 - 14.2 ppb and 0.82 - 11.0 ppb, respectively. On the average acetic acid levels exceeded those of formic acid. Concentrations of propionic acid, pyruvic acid, and glyoxalic acid ranged 0.03 - 1.41, 0.01 - 0.28, and 0.02 - 0.14 ppb, respectively. The gaseous acids showed diurnal cycles, with higher mixing ratios during nighttime. Compared with other metropolitans in the world, the level of acetic and formic acid concentration of Karachi is much higher. The ratio of formic to acetic acid was used to distinguish primary sources from secondary sources. A mean ratio of 0.85 was found. A positive correlation (r = 0.65 - 0.94) was observed between the acid concentrations suggesting that they have similar sources. Carboxylic acid concentrations appear to arise both from direct emissions and from atmospheric oxidation of hydrocarbons.

  5. The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum

    PubMed Central

    Fujinaga, Masao; Cherney, Maia M.; Oyama, Hiroshi; Oda, Kohei; James, Michael N. G.

    2004-01-01

    The molecular structure of the pepstatin-insensitive carboxyl peptidase from Scytalidium lignicolum, formerly known as scytalidopepsin B, was solved by multiple isomorphous replacement phasing methods and refined to an R factor of 0.230 (Rfree = 0.246) at 2.1-Å resolution. In addition to the structure of the unbound peptidase, the structure of a product complex of cleaved angiotensin II bound in the active site of the enzyme was also determined. We propose the name scytalidocarboxyl peptidase B (SCP-B) for this enzyme. On the basis of conserved, catalytic residues identified at the active site, we suggest the name Eqolisin for the enzyme family. The previously uninvestigated SCP-B fold is that of a β-sandwich; each sheet has seven antiparallel strands. A tripeptide product, Ala-Ile-His, bound in the active site of SCP-B has allowed for identification of the catalytic residues and the residues in subsites S1, S2, and S3, which are important for substrate binding. The most likely hydrolytic mechanism involves nucleophilic attack of a general base (Glu-136)-activated water (OH-) on the si-face of the scissile peptide carbonylcarbon atom to form a tetrahedral intermediate. Electrophilic assistance and oxyanion stabilization is provided by the side-chain amide of Gln-53. Protonation of the leaving-group nitrogen is accomplished by the general acid function of the protonated carboxyl group of Glu-136. PMID:14993599

  6. Preface: Thin films of molecular organic materials

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  7. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    DOE PAGES

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; ...

    2016-03-07

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquidmore » nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.« less

  8. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    SciTech Connect

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; dos Santos, A. M.; Reis, M. S.

    2016-03-07

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquid nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.

  9. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    NASA Astrophysics Data System (ADS)

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; dos Santos, A. M.; Reis, M. S.

    2016-02-01

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. In this context, this letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, in addition, a pure singlet state occupied up to around 80 K (above liquid nitrogen temperature). These results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.

  10. Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases.

    PubMed

    Yin, DeLu Tyler; Kazlauskas, Romas J

    2012-06-25

    Several serine hydrolases catalyze a promiscuous reaction: perhydrolysis of carboxylic acids to form peroxycarboxylic acids. The working hypothesis is that perhydrolases are more selective than esterases for hydrogen peroxide over water. In this study, we tested this hypothesis, and focused on L29P-PFE (Pseudomonas fluorescens esterase), which catalyzes perhydrolysis of acetic acid 43-fold faster than wild-type PFE. This hypothesis predicts that L29P-PFE should be approximately 43-fold more selective for hydrogen peroxide than wild-type PFE, but experiments show that L29P-PFE is less selective. The ratio of hydrolysis to perhydrolysis of methyl acetate at different concentrations of hydrogen peroxide fit a kinetic model for nucleophile selectivity. L29P-PFE (β(0)=170  M(-1)) is approximately half as selective for hydrogen peroxide over water than wild-type PFE (β(0)=330  M(-1)), which contradicts the working hypothesis. An alternative hypothesis is that carboxylic acid perhydrolases increase perhydrolysis by forming the acyl-enzyme intermediate faster. Consistent with this hypothesis, the rate of acetyl-enzyme formation, measured by (18)O-water exchange into acetic acid, was 25-fold faster with L29P-PFE than with wild-type PFE, which is similar to the 43-fold faster perhydrolysis with L29P-PFE. Molecular modeling of the first tetrahedral intermediate (T(d)1) suggests that a closer carbonyl group found in perhydrolases accepts a hydrogen bond from the leaving group water. This revised understanding can help design more efficient enzymes for perhydrolysis and shows how subtle changes can create new, unnatural functions in enzymes.

  11. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling the degree of molecular mixing, the solar selective coatings can be tailored to have the combined properties of high solar absorptance, alpha, and low infrared emittance, epsilon. On orbit, these combined properties would simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. Mini-satellites equipped with solar collectors coated with these cermet coatings may utilize the captured heat energy to power a heat engine to generate electricity, or to power a thermal bus that directs heat to remote regions of the spacecraft. Early work in this area identified the theoretical boundary conditions needed to operate a Carnot cycle in space, including the need for a solar concentrator, a solar selective coating at the heat inlet of the engine, and a radiator. A solar concentrator that can concentrate sunlight by a factor of 100 is ideal. At lower values, the temperature of the solar absorbing surface becomes too low for efficient heat engine operation, and at higher values, cavity type heat receivers become attractive. In designing the solar selective coating, the wavelength region yielding high solar absorptance must be separated from the wavelength region yielding low infrared emittance by establishing a sharp transition in optical properties. In particular, a sharp transition in reflectance is desired in the infrared to achieve the desired optical performance. For a heat engine operating at 450C, a sharp transition at 1.8 micrometers is desired. The radiator completes the heat flow through the Carnot cycle. Additional work has been done supporting the use of molecular mixtures for terrestrial applications. Sputter deposition provides a means to apply coatings to the tubes that carry a working fluid at the focus of trough

  12. Porous Organic Cage Thin Films and Molecular-Sieving Membranes.

    PubMed

    Song, Qilei; Jiang, Shan; Hasell, Tom; Liu, Ming; Sun, Shijing; Cheetham, Anthony K; Sivaniah, Easan; Cooper, Andrew I

    2016-04-06

    Porous organic cage molecules are fabricated into thin films and molecular-sieving membranes. Cage molecules are solution cast on various substrates to form amorphous thin films, with the structures tuned by tailoring the cage chemistry and processing conditions. For the first time, uniform and pinhole-free microporous cage thin films are formed and demonstrated as molecular-sieving membranes for selective gas separation.

  13. Optical Properties of Thin Film Molecular Mixtures

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.

    2003-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling the degree of molecular mixing, the solar selective coatings can be tailored to have the combined properties of high solar absorptance, , and low infrared emittance, . On orbit, these combined properties would simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. Mini-satellites equipped with solar collectors coated with these cermet coatings may utilize the captured heat energy to power a heat engine to generate electricity, or to power a thermal bus that directs heat to remote regions of the spacecraft. Early work in this area identified the theoretical boundary conditions needed to operate a Carnot cycle in space, including the need for a solar concentrator, a solar selective coating at the heat inlet of the engine, and a radiator.1 A solar concentrator that can concentrate sunlight by a factor of 100 is ideal. At lower values, the temperature of the solar absorbing surface becomes too low for efficient heat engine operation, and at higher values, cavity type heat receivers become attractive. In designing the solar selective coating, the wavelength region yielding high solar absorptance must be separated from the wavelength region yielding low infrared emittance by establishing a sharp transition in optical properties. In particular, a sharp transition in reflectance is desired in the infrared to achieve the desired optical performance. For a heat engine operating at 450 C, a sharp transition at 1.8 micrometers is desired.2 The radiator completes the heat flow through the Carnot cycle.

  14. Patterns and conformations in molecularly thin films

    NASA Astrophysics Data System (ADS)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  15. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  16. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  17. Characterization of the Connexin45 Carboxyl-Terminal Domain Structure and Interactions with Molecular Partners

    PubMed Central

    Kopanic, Jennifer L.; Al-mugotir, Mona H.; Kieken, Fabien; Zach, Sydney; Trease, Andrew J.; Sorgen, Paul L.

    2014-01-01

    Mechanisms underlying the initiation and persistence of lethal cardiac rhythms are of significant clinical and scientific interests. Gap junctions are principally involved in forming the electrical connections between myocytes, and changes in distribution, density, and properties are consistent characteristics in arrhythmic heart disease. Therefore, understanding the structure and function of gap junctions during normal and abnormal impulse propagation are essential in the control of arrhythmias. For example, Cx45 is predominately expressed in the specialized myocytes of the impulse generation and conduction system. In both ventricular and atrial human working myocytes, Cx45 is present in very low quantities. However, a reduction in Cx43 coupled with an increased Cx45 protein levels within the ventricles have been observed after myocardial infarction and end-stage heart failure. Cx45 may influence electrical and/or metabolic coupling as a result of pathophysiological overexpression. Our goal was to identify mechanisms that could cause cellular coupling to be different between the cardiac connexins. Based upon the conserved transmembrane and extracellular loop segments, our focus was on identifying features within the divergent cytoplasmic portions. Here, we biophysically characterize the carboxyl-terminal domain of Cx45 (Cx45CT). Purification revealed the possibility of oligomeric species, which was confirmed by analytical ultracentrifugation experiments. Sedimentation equilibrium and circular dichroism studies of different Cx45CT constructs identified one region of α-helical structure (A333-N361) that mediates CT dimerization through hydrophobic contacts. Interestingly, the binding affinity of Cx45CT dimerization is 1000-fold stronger than Cx43CT dimerization. Cx45CT resonance assignments were also used to identify the binding sites and affinities of molecular partners involved in the Cx45 regulation; although none disrupted dimerization, many of these proteins

  18. Tunable Affinity and Molecular Architecture Lead to Diverse Self-Assembled Supramolecular Structures in Thin Films

    SciTech Connect

    Hsu, Chin-Hao; Dong, Xuehui; Lin, Zhiwei; Ni, Bo; Lu, Pengatao; Jiang, Zhang; Tian, Ding; Cheng, Stephen Z.D.

    2016-01-01

    The self-assembly behaviors of specifically designed giant surfactants are systematically studied in thin films using grazing incident X-ray and transmission electron microscopy (TEM), focusing on the effects of head surface functionalities and molecular architectures on nanostructure formation. Two molecular nanoparticles (MNPs) with different affinities, i.e., hydrophilic carboxylic acid functionalized [60]fullerene (AC60) and omniphobic fluorinated polyhedral oligomeric silsesquioxane (FPOSS), are utilized as heads of the giant surfactants. By covalently tethering these functional MNPs onto the chain end or the junction point of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer, linear and star-like giant surfactants possess distinct molecular architectures are constructed. With fixed length of the PEO block, the molecular weight change of the PS block originates the phase formation and transition. Due to the distinct affinity, the AC60-based giant surfactants form two-component morphologies, while three-component morphologies are found in the FPOSS-based ones. A PS block stretching parameter is introduced to characterize the PS chain conformation in different morphologies. The highly diverse self-assembly behaviors and the tunable dimensions in thin films suggest the giant surfactants could be a promising and robust platform for nanolithography applications.

  19. Surface Patterning of Benzene Carboxylic Acids on Graphite: Influence of structure, solvent, and concentration on molecular self-assembly

    NASA Astrophysics Data System (ADS)

    Florio, Gina; Stiso, Kimberly; Campanelli, Joseph; Dessources, Kimberly; Folkes, Trudi

    2012-02-01

    Scanning tunneling microscopy (STM) was used to investigate the molecular self-assembly of four different benzene carboxylic acid derivatives at the liquid/graphite interface: pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), trimellitic acid (1,2,4-benzenetricarboxylic acid), trimesic acid (1,3,5-benzenetricarboxylic acid), and 1,3,5-benzenetriacetic acid. A range of two dimensional networks are observed that depend sensitively on the number of carboxylic acids present, the nature of the solvent, and the solution concentration. We will describe our recent efforts to determine (a) the preferential two-dimensional structure(s) for each benzene carboxylic acid at the liquid/graphite interface, (b) the thermodynamic and kinetic factors influencing self-assembly (or lack thereof), (c) the role solvent plays in the assembly, (e) the effect of in situ versus ex situ dilution on surface packing density, and (f) the temporal evolution of the self-assembled monolayer. Results of computational analysis of analog molecules and model monolayer films will also be presented to aid assignment of network structures and to provide a qualitative picture of surface adsorption and network formation.

  20. [Low molecular weight carboxylic acids in precipitation during the rainy season in the rural area of Anshun, West Guizhou Province].

    PubMed

    Zhang, Yan-Lin; Lee, Xin-Qing; Huang, Dai-Kuan; Huang, Rong-Sheng; Jiang, Wei

    2009-03-15

    40 rainwater samples were collected at Anshun from June 2007 to October 2007 and analysed in terms of pH values, electrical conductivity, major inorganic anions and soluble low molecular weight carboxylic acids. The results showed that pH of individual precipitation events ranged from 3.57-7.09 and the volume weight mean pH value was 4.57. The most abundant carboxylic acids were acetic (volume weight mean concentration 6.75 micromol x L(-1)) and formic (4.61 micromol x L(-1)) followed by oxalic (2.05 micromol x L(-1)). The concentration levels for these three species during summer especially June and July were comparatively high; it implied that organic acids in Anshun may came primarily from emissions from growing vegetations or products of the photochemical reactions of unsaturated hydrocarbons. Carboxylic acids were estimated to account for 32.2% to the free acidity in precipitation. The contribution was higher than in Guiyang rainwater, which indicated contamination by industry in Guiyang was more than in Anshun. The remarkable correlation(p = 0.01) between formic acid and acetic acid suggest that they have similar sources or similar intensity but different sources. And the remarkable correlation (p = 0.01) between and formic acid and oxalic acid showed that the precursors of oxalic acid and formic acid had similar sources. During this period, the overall wet deposition of carboxylic acids were 2.10 mmol/m2. And it appeared mainly in the summer, during which both concentration and contribution to free acidity were also relatively high. Consequently, it was necessary to control emission of organic acids in the summer to reduce frequence of acid rain in Anshun.

  1. Elastic Properties of Molecular Glass Thin Films

    NASA Astrophysics Data System (ADS)

    Torres, Jessica

    2011-12-01

    This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found that decreases in the modulus of ultrathin flexible films is not correlated with the observed Tg decrease in films of the same thickness. Techniques to circumvent reductions from bulk modulus were also demonstrated. However, as chain flexibility is reduced the modulus becomes thickness independent down to 10 nm. Similarly for this series minor reductions in T g were obtained. To further understand the impact of the intrinsic size and processing conditions; this wrinkling instability was also utilized to determine the modulus of small organic electronic materials at various deposition conditions. Lastly, this wrinkling instability is exploited for development of poly furfuryl alcohol wrinkles. A two-step wrinkling process is developed via an acid catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid generator. The ability to control the surface topology and tune the wrinkle wavelength with processing parameters such as substrate temperature and photo acid generator concentration is also demonstrated. Well-ordered linear, circular, and curvilinear patterns are also obtained by selective ultraviolet exposure and polymerization of the furfuryl alcohol film. As a carbon precursor a thorough understanding of this wrinkling instability can have applications in a wide variety of

  2. Molecular tribology of fluid lubrication - Shear thinning

    SciTech Connect

    Carson, G.; Hu, Hsuan-Wei; Granick, S. )

    1992-07-01

    An investigation of the boundary layer viscosity of films of nonpolar liquid lubricants, hexadecane and a silicone oil, octamethyl-cyclotetrasiloxane, confined between parallel atomically smooth single crystals of muscovite mica, is reported. The effective viscosity (eta sub eff) showed a zone of linear response and a second zone of extreme shear thinning. In the zone of linear response, (eta sub eff) increased exponentially with increasing net normal pressure, increasing from 250 to 2200 poises as the pressure was raised from 0.03 to 0.15 MPa. However, very large shear thinning (decay by more than one order of magnitude) was observed as the effective shear rate was varied from 1/sec to 10,000/sec, and the transition to glassy solid response (critical shear stress behavior) was impeded by continuous shear. These experiments show that the rheology of a lubricant within a zone of contact can be strikingly different from that in the bulk. Possible engineering applications of these findings are discussed. 25 refs.

  3. Molecular tribology of fluid lubrication - Shear thinning

    NASA Astrophysics Data System (ADS)

    Carson, George; Hu, Hsuan-Wei; Granick, Steve

    1992-07-01

    An investigation of the boundary layer viscosity of films of nonpolar liquid lubricants, hexadecane and a silicone oil, octamethyl-cyclotetrasiloxane, confined between parallel atomically smooth single crystals of muscovite mica, is reported. The effective viscosity (eta sub eff) showed a zone of linear response and a second zone of extreme shear thinning. In the zone of linear response, (eta sub eff) increased exponentially with increasing net normal pressure, increasing from 250 to 2200 poises as the pressure was raised from 0.03 to 0.15 MPa. However, very large shear thinning (decay by more than one order of magnitude) was observed as the effective shear rate was varied from 1/sec to 10,000/sec, and the transition to glassy solid response (critical shear stress behavior) was impeded by continuous shear. These experiments show that the rheology of a lubricant within a zone of contact can be strikingly different from that in the bulk. Possible engineering applications of these findings are discussed.

  4. Molecular and crystal structure of 4-ethoxycarbonyloxy-1-oxo-1H-phthalazine-2-carboxylic acid ethyl ester

    SciTech Connect

    Deshmukh, M. B.

    2006-07-15

    The molecular and crystal structure of 4-ethoxycarbonyloxy-1-oxo-1H-phthalazine 2-carboxylic acid ethyl ester has been elucidated by X-ray diffraction methods. The compound crystallizes in the orthorhombic crystal system (space group Pc) with the unit cell parameters a = 10.758(9), b = 4.631(3), c = 14.957(7) A, {beta} = 107.30(6) deg. and Z = 2. The structure has been solved by direct methods and refined to a final R value of 0.060 for 870 observed reflections [F{sub o} > 4{sigma}(F{sub o})]. The presence of a large number of intra-and intermolecular interactions makes the molecule look like a four-ring structure. The structure is stabilized by C-H...O hydrogen bonds.

  5. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer.

    PubMed

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2010-04-12

    Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.

  6. Structure of eight molecular salts assembled from noncovalent bonding between carboxylic acids, imidazole, and benzimidazole

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Huan; Liu, Hui; Wen, Xianhong; Li, Minghui; Wang, Daqi

    2015-09-01

    Eight organic salts of imidazole/benzimidazole have been prepared with carboxylic acids as 2-methyl-2-phenoxypropanoic acid, α-ketoglutaric acid, 5-nitrosalicylic acid, isophthalic acid, 4-nitro-phthalic acid, and 3,5-dinitrosalicylic acid. The eight crystalline forms reported are proton-transfer compounds of which the crystals and compounds were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted hetero supramolecular synthons, with the most common R22(7) motif observed at salts 2, 3, 5, 6 and 8. Analysis of the crystal packing of 1-8 suggests that there are extensive strong Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds (charge assisted or neutral) between acid and imidazolyl components in all of the salts. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. This variety, coupled with the varying geometries and number of acidic groups of the acids utilized, has led to the creation of eight supramolecular arrays with 1D-3D structure. The role of weak and strong noncovalent interactions in the crystal packing is analyzed. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds between acids and imidazole/benzimidazole are sufficient to bring about the formation of organic salts.

  7. Molecular cloning of an 1-aminocyclopropane-1-carboxylate synthase from senescing carnation flower petals.

    PubMed

    Park, K Y; Drory, A; Woodson, W R

    1992-01-01

    Synthetic oligonucleotides based on the sequence of 1-aminocyclopropane-1-carboxylate (ACC) synthase from tomato were used to prime the synthesis and amplification of a 337 bp tomato ACC synthase cDNA by polymerase chain reaction (PCR). This PCR product was used to screen a cDNA library prepared from mRNA isolated from senescing carnation flower petals. Two cDNA clones were isolated which represented the same mRNA. The longer of the two clones (CARACC3) contained a 1950 bp insert with a single open reading frame of 516 amino acids encoding a protein of 58 kDa. The predicted protein from the carnation ACC synthase cDNA was 61%, 61%, 64%, and 51% identical to the deduced proteins from zucchini squash, winter squash, tomato, and apple, respectively. Genomic DNA gel blot analysis indicated the presence of at least a second gene in carnation which hybridized to CARACC3 under conditions of low stringency. ACC synthase mRNA accumulates during senescence of carnation flower petals concomitant with the increase in ethylene production and ACC synthase enzyme activity. Ethylene induced the accumulation of ACC synthase mRNA in presenescent petals. Wound-induced ethylene production in leaves was not associated with an increase in ACC synthase mRNA represented by CARACC3. These results indicate that CARACC3 represents an ACC synthase transcript involved in autocatalytic ethylene production in senescing flower petals.

  8. Fluidization and Active Thinning by Molecular Kinetics in Active Gels.

    PubMed

    Oriola, David; Alert, Ricard; Casademunt, Jaume

    2017-02-24

    We derive the constitutive equations of an active polar gel from a model for the dynamics of elastic molecules that link polar elements. Molecular binding kinetics induces the fluidization of the material, giving rise to Maxwell viscoelasticity and, provided that detailed balance is broken, to the generation of active stresses. We give explicit expressions for the transport coefficients of active gels in terms of molecular properties, including nonlinear contributions on the departure from equilibrium. In particular, when activity favors linker unbinding, we predict a decrease of viscosity with activity-active thinning-of kinetic origin, which could explain some experimental results on the cell cortex. By bridging the molecular and hydrodynamic scales, our results could help understand the interplay between molecular perturbations and the mechanics of cells and tissues.

  9. Determination of low-molecular-mass aliphatic carboxylic acids and inorganic anions from kraft black liquors by ion chromatography.

    PubMed

    Käkölä, Jaana M; Alén, Raimo J; Isoaho, Jukka Pekka; Matilainen, Rose B

    2008-05-09

    An ion chromatographic (IC) method with suppressed conductivity detection (CD) was developed and validated for the quantitative determination of several low-molecular-mass aliphatic mono- and dicarboxylic acids as their carboxylate anions together with some inorganic anions (chloride, sulfate, and thiosulfate) from kraft black liquors. To confirm the identification of some carboxylate anions which lack commercial model substances, a qualitative IC method with suppressed electrospray ionization mass spectrometry (ESI-MS) was also developed. The separations were performed on an IonPac AS 11-HC anion-exchange column operated at 25 degrees C within 25 min by a gradient elution with aqueous potassium hydroxide (suppressed CD in the AutoRegen mode) or sodium hydroxide (suppressed ESI-MS in the pressurized bottle mode). In the validation process a mixture of carboxylic acids and inorganic anions in aqueous media and in seven different types of wood and non-wood black liquor samples were quantitatively analyzed by IC-CD. As a result, calibration lines with correlation coefficients of 1.00 for all analytes were achieved at a concentration range from 0.05 to 105 mg L(-1). In black liquor samples intra-day (n=6) precision values ranged from 0.9 to 5%. Day-to-day (n1=3) and intermediate precision values were less than 5% for all other compounds except sulfate and thiosulfate. The variability in the thiosulfate and sulfate results is due in large part to the oxidation of sulfide and thiosulfate, respectively. Recoveries were close to 100% with standard deviations less than 8%. Depending of the analyte, the limits of detection and quantification were, respectively, between 1 and 8 microg L(-1) and between 3 and 27 microg L(-1) for standard compounds in aqueous media and between 6 and 106 microg L(-1) and between 14 and 148 microg L(-1) for black liquor samples. These validation results clearly indicated that with respect to selectivity, linearity, limits of detection and

  10. Separation and determination of polyether carboxylic antibiotics from Streptomyces hygroscopicus NRRL B 1865 by thin-layer chromatography with flame ionization detection.

    PubMed

    Auboiron, S; Bauchart, D; David, L

    1991-06-28

    Thin-layer chromatography coupled with flame ionization detection was used to develop a method to separate and to determine simultaneously three polyether carboxylic ionophore antibiotics (abierixin, nigericin and grisorixin) produced by Streptomyces hygroscopicus NRRL B 1865. Various proportions of chloroform, methanol and formic acid (or acetic acid as a substitute for formic acid) were used in the developing solvent to determine changes in RF values of the antibiotics and to allow conditions for maximum resolution to be obtained. Development on Chromarods SII with chloroform-methanol-formic acid (97:4:0.6, v/v/v) gave satisfactory and reliable separations of the three polyether antibiotics. Under these conditions, the internal standard methyl desoxycholate was found to be suitable for their simultaneous determination in the lipid extracts of Streptomyces hygroscopicus NRRL B 1865.

  11. Discovery of non-competitive thrombin inhibitor derived from competitive tryptase inhibitor skeleton: Shift in molecular recognition resulted from skeletal conversion of carboxylate into phosphonate.

    PubMed

    Aoyama, Hiroshi; Ijuin, Ryosuke; Kato, Jun-ya; Urushiyama, Sarasa; Tetsuhashi, Masashi; Hashimoto, Yuichi; Yokomatsu, Tsutomu

    2015-09-01

    A novel series of terminal and internal phosphonate esters based on our previously developed aryl carboxylate-type tryptase selective inhibitor 1 was synthesized. The potency of these synthesized compounds was assessed in vitro with an enzyme inhibition assay using three available serine proteases, that is, tryptase, trypsin, and thrombin. The internal phosphonate derivative 6 showed potent thrombin inhibitory activity with an IC50 value of 1.0 μM, whereas it exhibited no or only weak tryptase and trypsin inhibition at 10 μM. The Lineweaver-Burk plot analysis indicates that the inhibition pattern of thrombin with 6 is non-competitive in spite of the fact that the lead carboxylate compound 1 is competitive inhibitor. Therefore, the skeletal conversion of the carboxylate into a phosphonate alters the mode of molecular recognition of these inhibitors by thrombin.

  12. Shear-thinning of molecular fluids in Couette flow

    NASA Astrophysics Data System (ADS)

    Raghavan, Bharath V.; Ostoja-Starzewski, Martin

    2017-02-01

    We use non-equilibrium molecular dynamics simulations, the Boltzmann equation, and continuum thermomechanics to investigate and characterize the shear-thinning behavior of molecular fluids undergoing Couette flow, interacting via a Lennard-Jones (LJ) potential. In particular, we study the shear-stress under steady-state conditions and its dependency on fluid density and applied shear-strain rate. Motivated by kinetic theory, we propose a rheological equation of state that fits observed system responses exceptionally well and captures the extreme shear-thinning effect. We notice that beyond a particular strain-rate threshold, the fluid exhibits shear-thinning, the degree of which is dependent on the density and temperature of the system. In addition, we obtain a shear-rate dependent model for the viscosity which matches the well established Cross viscosity model. We demonstrate how this model arises naturally from the Boltzmann equation and possesses an inherent scaling parameter that unifies the rheological properties of the LJ fluid. We compare our model with those in the literature. Finally, we formulate a dissipation function modeling the LJ fluid as a quasilinear fluid.

  13. Molecular dynamics simulation of friction of hydrocarbon thin films

    SciTech Connect

    Tamura, Hiroyuki; Yoshida, Muneo; Kusakabe, Kenichi

    1999-10-26

    Molecular Dynamics (MD) simulations were performed to investigate the dynamic behavior of hydrocarbon molecules under shear conditions. Frictional properties of cyclohexane, n-hexane, and iso-hexane thin films confirmed between two solid surfaces were calculated. Because the affinity of the solid surfaces in these simulations is strong, slippages occurred at inner parts of the confined films, whereas no slippages were observed at the solid boundaries. The hexagonal closest packing structure was observed for the adsorbed cyclohexane molecular layers. The branched methyl groups in the iso-hexane molecules increase the shear stress between the molecular layers. For the n-hexane monolayer, molecules were observed to roll during the sliding simulations. Rolling of the n-hexane molecules decreased the shear stress.

  14. Conformation of the umifenovir cation in the molecular and crystal structures of four carboxylic acid salts

    NASA Astrophysics Data System (ADS)

    Orola, Liana; Sarcevica, Inese; Kons, Artis; Actins, Andris; Veidis, Mikelis V.

    2014-01-01

    The umifenovir salts of maleic, salicylic, glutaric, and gentisic acid as well as the chloroform solvate of the salicylate were prepared. Single crystals of the five compounds were obtained and their molecular and crystal structures determined by X-ray diffraction. In each structure the conformation of phenyl ring with respect to the indole group of the umifenovir moiety is different. The water solubility and melting points of the studied umifenovir salts have been determined.

  15. Molecular-dynamics simulation of thin-film growth

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Schuller, I. K.; Rahman, A.

    1987-01-01

    The epitaxial growth of thin films has been studied by molecular-dynamics computer simulation. In these simulations atoms are projected towards a temperature-controlled substrate, and the equations of motion of all atoms are solved for a given interaction potential. The calculations give insight into the microscopic structure of thin films, the dynamics of the adsorption process, and they help answer the way in which substrate temperature, form of the substrate, flux of impinging atoms, and form of the interaction potential, affect epitaxial growth. Simulations were performed for monatomic and binary systems with spherically symmetric atomic interactions, and for systems in which the atoms are interacting via a three-body potential to simulate the epitaxial growth of silicon.

  16. On the relationship between the structure of self-assembled carboxylic acid monolayers on alumina and the organization and electrical properties of a pentacene thin film

    NASA Astrophysics Data System (ADS)

    Lang, Philippe; Mottaghi, Daniel; Lacaze, Pierre-Camille

    2016-03-01

    The modification of insulating surfaces by self-assembled monolayers (SAMs) is an elegant way of tailoring the gate dielectric of organic field effect transistors (OFET) to pentacene and is commonly used to improve electrical performance. A SAM based on an alkylcarboxylic acid deposited on a thin layer of alumina, serving as the gate dielectric is considered. The relationship between carrier mobility and (i) the length of the carboxylic acid (CH3(CH2)nCOOH; n = 9, 14, 18), (ii) substrate preparation and (iii) the SAM and pentacene thin film structures is considered. The size and boundaries of pentacene grains are not limiting factors for carrier mobility, and the most relevant parameter, which depends on whether there is a SAM or not, is the organization of the first pentacene layers in contact with the gate dielectric. The variation of the interplanar distance d(0 0 1) of the pentacene layers close to the alumina surface is much greater without SAM than with, and this could explain the lower carrier mobility observed in the case of a bare alumina dielectric. The relationship between the disorder associated with this variation and mobility is discussed.

  17. Molecular release from patterned nanoporous gold thin films

    NASA Astrophysics Data System (ADS)

    Kurtulus, Ozge; Daggumati, Pallavi; Seker, Erkin

    2014-05-01

    Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy, fluorospectrometry, and electrochemical surface characterization to study loading capacity and molecular release kinetics as a function of film properties and discuss underlying mechanisms. The sub-micron-thick sputter-coated nanoporous gold films provide small-molecule loading capacities up to 1.12 μg cm-2 and molecular release half-lives between 3.6 hours to 12.8 hours. A systematic set of studies reveals that effective surface area of the np-Au thin films on glass substrates plays the largest role in determining loading capacity. The release kinetics on the other hand depends on a complex interplay of micro- and nano-scale morphological features.Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy

  18. Molecular basis of glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes.

    PubMed

    Chen, Quan; Pinon, Delia I; Miller, Laurence J; Dong, Maoqing

    2009-12-04

    The glucagon-like peptide 1 (GLP1) receptor is a member of Family B G protein-coupled receptors and represents an important drug target for type 2 diabetes. Despite recent solution of the structure of the amino-terminal domain of this receptor and that of several close family members, understanding of the molecular basis of natural ligand GLP1 binding to its intact receptor remains limited. The goal of this study was to explore spatial approximations between specific receptor residues within the carboxyl terminus of GLP1 and its receptor as normally docked. Therefore, we developed and characterized two high affinity, full-agonist photolabile GLP1 probes having sites for covalent attachment in positions 24 and 35. Both probes labeled the receptor specifically and saturably. Subsequent peptide mapping using chemical and proteinase cleavages of purified wild-type and mutant GLP1 receptor identified that the Arg(131)-Lys(136) segment at the juxtamembrane region of the receptor amino terminus contained the site of labeling for the position 24 probe, and the specific receptor residue labeled by this probe was identified as Glu(133) by radiochemical sequencing. Similarly, nearby residue Glu(125) within the same region of the receptor amino-terminal domain was identified as the site of labeling by the position 35 probe. These data represent the first direct demonstration of spatial approximation between GLP1 and its intact receptor as docked, providing two important constraints for the modeling of this interaction. This should expand our understanding of the molecular basis of natural agonist ligand binding to the GLP1 receptor and may be relevant to other family members.

  19. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  20. Molecular tailoring of interfaces for thin film on substrate systems

    NASA Astrophysics Data System (ADS)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  1. Contact potential difference measurements of doped organic molecular thin films

    NASA Astrophysics Data System (ADS)

    Chan, Calvin; Gao, Weiying; Kahn, Antoine

    2004-07-01

    The possibility of nonequilibrium conditions in doped organic molecular thin films is investigated using a combination of ultraviolet photoemission spectroscopy (UPS) and contact potential difference measurements. Surface or interface photovoltage is of particular concern in materials with large band gap and appreciable band (or energy level) bending at interfaces. We investigate here zinc phthalocyanine (ZnPc) and N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'biphenyl-4,4'' diamine (α-NPD) p-doped with the acceptor molecule, tetrafluorotetracyanoquinodimethane (F4-TCNQ). In both cases, we observe an upward movement of the vacuum level away from the metal interface with respect to the Fermi level, consistent with the formation of a depletion region. We show that photovoltage is not a significant factor in these doped films, under ultraviolet illumination during UPS. We suggest that the carrier recombination rate in organic films is sufficiently fast to exclude any photovoltage effects at room temperature. .

  2. Preparation of Robust, Thin Zeolite Membrane Sheet for Molecular Separation

    SciTech Connect

    Liu, Wei; Zhang, Jian; Canfield, Nathan L.; Saraf, Laxmikant V.

    2011-10-19

    This paper reports a feasibility study on the preparation of zeolite membrane films on a thin, porous metal support sheet (50-{micro}m thick). Zeolite sodium A (NaA) and silicalite zeolite frameworks are chosen to represent synthesis of respective hydrophilic-type and hydrophobic-type zeolite membranes on this new support. It is found that a dense, continuous inter-grown zeolite crystal layer at a thickness less than 2 {micro}m can be directly deposited on such a support by using direct and secondary growth techniques. The resulting membrane shows excellent adhesion on the metal sheet. Molecular-sieving functions of the prepared membranes are characterized with ethanol/water separation, CO2 separation, and air dehumidification. The results show great potential to make flexible metal-foil-like zeolite membranes for a range of energy conversion and environmental applications.

  3. Crystal and molecular structures of sixteen charge-assisted hydrogen bond-mediated diisopropylammonium salts from different carboxylic acids

    NASA Astrophysics Data System (ADS)

    Lin, Zhihao; Hu, Kaikai; Jin, Shouwen; Ding, Aihua; Wang, Yining; Dong, Lingfeng; Gao, Xingjun; Wang, Daqi

    2017-10-01

    Cocrystallization of the commonly available organic amine, diisopropylamine, with a series of carboxylic acids gave a total of sixteen molecular salts with the compositions: diisopropylaminium 2-methyl-2-phenoxypropanate [(Hdpa)+ · (mpa-), mpa- = 2-methyl-2-phenoxypropanoate] (1), diisopropylaminium 2-methyl-2-(naphthalen-2-yloxy)-propionate [(Hdpa)+ · (npa-), npa- = 2-methyl-2-(naphthalen-2-yloxy)-propionate] (2), diisopropylaminium indole-3-acetate [(Hdpa)+ · (iaa-), iaa- = indole-3-acetate] (3), diisopropylaminium 4-chlorophenoxyacetate [(Hdpa)+ · (cpa-), cpa- = 4-chlorophenoxyacetate] (4), diisopropylaminium 2,4-dichlorophenoxyacetate [(Hdpa)+ · (dcpa-), dcpa- = 2,4-dichlorophenoxyacetate] (5), diisopropylaminium 4-hydroxybenzoate [(Hdpa)+ · (hba-), hba- = 4-hydroxybenzoate] (6), diisopropylaminium 4-aminobenzoate [(Hdpa)+ · (aba-), aba- = 4-aminobenzoate] (7), tetra(diisopropylaminium) tetra(1-hydroxy-2-naphthoate) trihydrate [(Hdpa)44+ · (2-hnpa)44- · 3H2O, 2-hnpa = 1-hydroxy-2-naphthoate] (8), diisopropylaminium 2-hydroxy-3-naphthoate [(Hdpa)+ · (3-hnpa-), 3-hnpa- = 2-hydroxy-3-naphthoate] (9), diisopropylaminium 5-bromosalicylate [(Hdpa)+ · (bsa-), bsa- = 5-bromosalicylate] (10), diisopropylaminium 3,5-dinitrobenzoate [(Hdpa)+ · (dna-), dna- = 3,5-dinitrobenzoate] (11), diisopropylaminium 3,5-dinitrosalicylate [(Hdpa)+ · (3,5-dns-), 3,5-dns- = 3,5-dinitrosalicylate] (12), tetra(diisopropylaminium) bis(m-phthalate) monohydrate [(Hdpa+)4 · (mpta2-)2 · H2O, mpta2- = m-phthalate] (13), bis(diisopropylaminium) dihydrogen 1,2,3,4-butane tetracarboxylate [(Hdpa+)2 · (H2Bta2-), H2Bta2- = dihydrogen 1,2,3,4-butane tetracarboxylate] (14), bis(diisopropylaminium) mucate [(Hdpa+)2 · (muc2-), muc2- = mucate] (15), and diisopropylaminium hydrogen 1,2-phenylenediacetate [(Hdpa) · (Hpda-), Hpda- = hydrogen 1,2-phenylenediacetate] (16). The sixteen salts have been characterised by XRD technique, IR, and elemental analysis, and the melting points of all the

  4. Molecularly Oriented Polymeric Thin Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C.; Stoakley, Diane M.; St.Clair, Anne K.

    1997-01-01

    The increased commitment from NASA and private industry to the exploration of outer space and the use of orbital instrumentation to monitor the earth has focused attention on organic polymeric materials for a variety of applications in space. Some polymeric materials have exhibited short-term (3-5 yr) space environmental durability; however, future spacecraft are being designed with lifetimes projected to be 10-30 years. This gives rise to concern that material property change brought about during operation may result in unpredicted spacecraft performance. Because of their inherent toughness and flexibility, low density, thermal stability, radiation resistance and mechanical strength, aromatic polyimides have excellent potential use as advanced materials on large space structures. Also, there exists a need for high temperature (200-300 C) stable, flexible polymeric films that have high optical transparency in the 300-600nm range of the electromagnetic spectrum. Polymers suitable for these space applications were fabricated and characterized. Additionally, these polymers were molecularly oriented to further enhance their dimensional stability, stiffness, elongation and strength. Both unoriented and oriented polymeric thin films were also cryogenically treated to temperatures below -184 C to show their stability in cold environments and determine any changes in material properties.

  5. Supercritical fluid molecular spray thin films and fine powders

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  6. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  7. Molecular structure, hydrogen bonding and spectroscopic properties of the complex of piperidine-4-carboxylic acid with chloroacetic acid

    NASA Astrophysics Data System (ADS)

    Komasa, A.; Katrusiak, A.; Szafran, M.; Barczyński, P.; Dega-Szafran, Z.

    2008-10-01

    Complex of piperidine-4-carboxylic acid with chloroacetic acid has been studied by X-ray diffraction, FTIR, Raman, 1H and 13C NMR spectroscopy and B3LYP/6-31G(d,p) calculations. In crystal the piperidine ring is protonated and adopts a chair conformation with the COOH group in the equatorial position. The COO - group of chloroacetate unit is engaged in three hydrogen bonds: O(1)-H(1)···O(3) of 2.604(2) Å, N(1)-H(12)···O(3) of 2.753(2) Å and N(1)-H(11)···O(4) of 2.760(2) Å. According to the B3LYP calculations the isolated complexes both in vacuum and H 2O solution have cyclic structures. In vacuum the molecules are connected by two H-bonds: the COOH group of chloroacetic acid is engaged with piperidine-4-carboxylic acid, one with the nitrogen atom, O(4)-H···N(1) of 2.658 Å and the second with carboxyl group, O(1)-H···O(3) of 2.860 Å. In water solution piperidine-4-carboxylic acid is protonated and forms two hydrogen bonds with the chloroacetate unit: N(1)-H···O(4) of 2.690 Å and O(1)-H···O(3) of 2.611 Å. Powder FTIR spectra of the complex and its deuterated analogue are consistent with the X-ray structure. Correlations between the experimental 1H and 13C chemical shifts of the complex investigated and the GIAO/B3LYP/6-31G(d,p) calculated magnetic isotropic shielding tensors ( σcalc) in vacuum and within the conductor-like screening continuum solvation model (COSMO) in H 2O, δexp = a + b σcalc, are reported.

  8. Molecular solution processing of metal chalcogenide thin film solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Wenbing

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (CISS) and kesterite Cu2ZnSn(S,Se) 4 organized in chronological order. Chalcopyrite CISS is a very promising material. It has been demonstrated to achieve the highest efficiency among thin film solar cells. Scaled-up industry production at present has reached the giga-watt per year level. The process however mainly relies on vacuum systems which account for a significant percentage of the manufacturing cost. In the first section of this dissertation, hydrazine based solution processed CISS has been explored. The focus of the research involves the procedures to fabricate devices from solution. The topics covered in Chapter 2 include: precursor solution synthesis with a focus on understanding the solution chemistry, CISS absorber formation from precursor, properties modification toward favorable device performance, and device structure innovation toward tandem device. For photovoltaics to have a significant impact toward meeting energy demands, the annual production capability needs to be on TW-level. On such a level, raw materials supply of rare elements (indium for CIS or tellurium for CdTe) will be the bottleneck limiting the scalability. Replacing indium with zinc and tin, earth abundant kesterite CZTS exhibits great potential to reach the goal of TW-level with no limitations on raw material availability. Chapter 3 shows pioneering work towards solution processing of CZTS film at low temperature. The solution processed devices show performances which rival vacuum

  9. Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaigns - Part 1: Low molecular weight carboxylic acids in cold seasons

    NASA Astrophysics Data System (ADS)

    Pietrogrande, Maria Chiara; Bacco, Dimitri; Visentin, Marco; Ferrari, Silvia; Poluzzi, Vanes

    2014-04-01

    In the framework of the “Supersito” project, three intensive experimental campaigns were conducted in the Po Valley (Northern Italy) in cold seasons, such as late autumn, pre-winter and deep-winter, over three years from 2011 to 2013. As a part of a study on polar marker compounds, including carboxylic acids, sugar derivatives and lignin phenols, the present study reports a detailed discussion on the atmospheric concentrations of 14 low molecular weight carboxylic acids, mainly dicarboxylic and oxo-hydroxy carboxylic acids, as relevant markers of primary and secondary organic aerosols. PM2.5 samples were collected in two monitoring sites, representing urban and rural background stations. The total quantities of carboxylic acids were 262, 167 and 249 ng m-3 at the urban site and 308, 115, 248 ng m-3 at the rural site in pre-winter, fall and deep-winter, respectively. These high concentrations can be explained by the large human emission sources in the urbanized region, combined with the stagnant atmospheric conditions during the cold seasons that accumulate the organic precursors and accelerate the secondary atmospheric reactions. The distribution profiles of the investigated markers suggest the dominant contributions of primary anthropogenic sources, such as traffic, domestic heating and biomass burning. These results are confirmed by comparison with additional emission tracers, such as anhydro-saccharides for biomass burning and fatty acids originated from different anthropogenic sources. In addition, some secondary constituents were detected in both sites, as produced by in situ photo-chemical reactions from both biogenic (e.g. pinonic acid) and anthropogenic precursors (e.g. phthalic and adipic acids). The impact of different sources from human activities was elucidated by investigating the week pattern of carboxylic and fatty acid concentrations. The weekly trends of analytes during the warmer campaign (fall 2012; mean temperature: 12 °C) may be related to

  10. Molecular Aspects of Transport in Thin Films of Controlled Architecture

    SciTech Connect

    Paul W. Bohn

    2009-04-16

    Our laboratory focuses on developing spatially localized chemistries which can produce structures of controlled architecture on the supermolecular length scale -- structures which allow us to control the motion of molecular species with high spatial resolution, ultimately on nanometer length scales. Specifically, nanocapillary array membranes (NCAMs) contain an array of nanometer diameter pores connecting vertically separated microfluidic channels. NCAMs can manipulate samples with sub-femtoliter characteristic volumes and attomole sample amounts and are opening the field of chemical analysis of mass-limited samples, because they are capable of digital control of fluid switching down to sub-attoliter volumes; extension of analytical “unit operations” down to sub-femtomole sample sizes; and exerting spatiotemporal control over fluid mixing to enable studies of reaction dynamics. Digital flow switching mediated by nanocapillary array membranes can be controlled by bias, ionic strength, or pore diameter and is being studied by observing the temporal characteristics of transport across a single nanopore in thin PMMA membranes. The control of flow via nanopore surface characteristics, charge density and functional group presentation, is being studied by coupled conductivity and laser-induced fluorescence (LIF) measurements. Reactive mixing experiments previously established low millisecond mixing times for NCAM-mediated fluid transfer, and this has been exploited to demonstrate capture of mass-limited target species by Au colloids. Voltage and thermally-activated polymer switches have been developed for active control of transport in NCAMs. Thermally-switchable and size-selective transport was achieved by grafting poly(N-isopropylacrylamide) brushes onto the exterior surface of a Au-coated polycarbonate track-etched membrane, while the voltage-gated properties of poly(hydroxyethylmethacrylate) were characterized dynamically. Electrophoretic separations have been

  11. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO analysis and molecular docking study of 4-chlorophenyl quinoline-2-carboxylate.

    PubMed

    Fazal, E; Panicker, C Yohannan; Varghese, Hema Tresa; Nagarajan, S; Sudha, B S; War, Javeed Ahamad; Srivastava, S K; Harikumar, B; Anto, P L

    2015-06-15

    FT-IR and FT-Raman spectra of 4-chlorophenyl quinoline-2-carboxylate were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. Potential energy distribution was done using GAR2PED program. The geometrical parameters obtained theoretically are in agreement with the XRD data. NBO analysis, HOMO-LUMO, first hyperpolarizability and molecular electrostatic potential results are also reported. The calculated hyperpolarizability of the title compound is 77.53 times that of the standard NLO material urea and the title compound and its derivatives are attractive object for future studies of nonlinear optical properties. Molecular docking results suggest that the compound might exhibit inhibitory activity against GPb. Copyright © 2015. Published by Elsevier B.V.

  12. A Computational Study of Cytotoxicity of Substituted Amides of Pyrazine- 2-carboxylic acids Using QSAR and DFT Based Molecular Surface Electrostatic Potential

    PubMed Central

    Hosseini, Sharieh; Monajjemi, Majid; Rajaeian, Elahe; Haghgu, Mohammad; Salari, Aliakbar; Gholami, Mohammad Reza

    2013-01-01

    Pyrazine derivatives are important class of compounds with diverse biological and cytotoxic activities and clinical applications. In this study, B3 p 86 / 6 – 31 + + G * was used to compute and map the molecular surface electrostatic potentials of a group of substituted amides of pyrazine-2-carboxylic acids to identify common features related to their subsequent cytotoxicities. Several statistical properties including potentials extrema (Vs ,min,Vs ,max), the average of positive electrostatic potential on the surface (Vs+), the average of V(r) over the surface (Vs) and the Lowest Unoccupied Molecular Orbital (LUMO) and system cytotoxicities were computed. Statistically, the most significant correlation is a five -parameter equation with correlation coefficient, R² values of 0.922 and R²adj = 0.879. The obtained models allowed us to reveal cytotoxic activity of substituted amides of Pyrazine2- carboxcylic acid. PMID:24523754

  13. Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin

    DTIC Science & Technology

    2016-09-01

    heating. The α-Sn layers were also characterized with high-resolution X-ray diffraction, Hall, and atomic force microscopy (AFM) measurements...ARL-TR-7838 ● SEP 2016 US Army Research Laboratory Molecular Beam Epitaxy Growth and Characterization of Thin Layers of...Laboratory Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin by P Folkes, P Taylor, C Rong, B Nichols

  14. Ultrafast Polarization Switching in a Biaxial Molecular Ferroelectric Thin Film: [Hdabco]ClO4.

    PubMed

    Tang, Yuan-Yuan; Zhang, Wan-Ying; Li, Peng-Fei; Ye, Heng-Yun; You, Yu-Meng; Xiong, Ren-Gen

    2016-12-07

    Molecular ferroelectrics are attracting much attention as valuable complements to conventional ceramic ferroelectrics owing to their solution processability and nontoxicity. Encouragingly, the recent discovery of a multiaxial molecular ferroelectric, tetraethylammonium perchlorate, is expected to be able to solve the problem that in the technologically relevant thin-film form uniaxial molecular ferroelectrics have been found to perform considerably more poorly than in bulk. However, it can show good polarization-electric field (P-E) hysteresis loops only at very low frequency, severely hampering practical applications such as ferroelectric random access memory. Here, we present a biaxial molecular ferroelectric thin film of [Hdabco]ClO4 (dabco = 1,4-diazabicyclo[2.2.2]octane) (1), where a perfect ferroelectric hysteresis loop can be observed even at 10 kHz. It is the first example of a molecular ferroelectric thin film whose polarization can be switched at such a high frequency. Moreover, using piezoresponse force microscopy, we clearly observed the coexistence of 180° and non-180° ferroelectric domains and provided direct experimental proof that 180° ferroelectric switching and non-180° ferroelastic switching are both realized; that is, a flexible alteration of the polarization axis direction can occur in the thin film by applying an electric field. These results open a new avenue for applications of molecular ferroelectrics and will inspire further exploration of high-performance multiaxial molecular ferroelectric thin films.

  15. Electro-deposited poly-luminol molecularly imprinted polymer coating on carboxyl graphene for stir bar sorptive extraction of estrogens in milk.

    PubMed

    Liu, Haibo; Qiao, Li; Gan, Ning; Lin, Saichai; Cao, Yuting; Hu, Futao; Wang, Jiayu; Chen, Yinji

    2016-08-01

    Electrochemical polymerization of luminol molecularly imprinted polymer on carboxyl graphene (MIP/CG) was developed as stir bar sorptive extraction (SBSE) coating for selective pre-concentration and specific recognition of bisphenol A (BPA), hexoestrol and diethylstilbestrol in milk samples. Luminol was employed as monomer and BPA as the template to prepare MIP under 0-0.6V electro-polymerization. Carboxyl graphene was modified on pencil lead as the substrate to increase extraction capacity. The preparation and extraction conditions affecting the extraction efficiency were optimized. Under the optimized conditions, a good linearity of three estrogens was obtained in the range of 4-1000ngmL(-1). The average recoveries at the three spiked levels of the three estrogens ranged from 83.4% to 96.3% with the relative standard deviations (RSD)≤7.1%. The limits of detection were in the range of 0.36-1.09ngmL(-1). The developed method with low cost, high selectivity and good reproducibility can be potentially applied for determining trace estrogens in complex food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Pinzhi; Lu, Jie; Yu, Hualong; Ren, Ning; Lockwood, Frances E.; Wang, Q. Jane

    2017-08-01

    The shear thinning of a lubricant significantly affects lubrication film generation at high shear rates. The critical shear rate, defined at the onset of shear thinning, marks the transition of lubricant behaviors. It is challenging to capture the entire shear-thinning curve by means of molecular dynamics (MD) simulations owing to the low signal-to-noise ratio or long calculation time at comparatively low shear rates (104-106 s-1), which is likely coincident with the shear rates of interest for lubrication applications. This paper proposes an approach that correlates the shear-thinning phenomenon with the change in the molecular conformation characterized by the radius of gyration of the molecule. Such a correlation should be feasible to capture the major mechanism of shear thinning for small- to moderate-sized non-spherical molecules, which is shear-induced molecular alignment. The idea is demonstrated by analyzing the critical shear rate for squalane (C30H62) and 1-decene trimer (C30H62); it is then implemented to study the behaviors of different molecular weight poly-α-olefin (PAO) structures. Time-temperature-pressure superpositioning (TTPS) is demonstrated and it helps further extend the ranges of the temperature and pressure for shear-thinning behavior analyses. The research leads to a relationship between molecular weight and critical shear rate for PAO structures, and the results are compared with those from the Einstein-Debye equation.

  17. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  18. Molecular structure, vibrational spectra, natural bond orbital and thermodynamic analysis of 3,6-dichloro-4-methylpyridazine and 3,6-dichloropyridazine-4-carboxylic acid by dft approach.

    PubMed

    Prabavathi, N; Senthil Nayaki, N; Venkatram Reddy, B

    2015-02-05

    Vibrational spectral analysis of the molecules 3,6-dichloro-4-methylpyridazine (DMP) and 3,6-dichloropyridazine-4-carboxylic acid (DPC) was carried out using FT-IR and FT-Raman spectroscopic techniques. The molecular structure and vibrational spectra of DMP and DPC were obtained by the density functional theory (DFT) method, using B3LYP functional, with 6-311++G(d,p) basis set. A detailed interpretation of the Infrared and Raman spectra of the two molecules were reported based on potential energy distribution (PED). The theoretically predicted FTIR and FT-Raman spectra of the titled molecules have been simulated and were compared with the experimental spectra. Determination of electric dipole moment (μ) and hyperpolarizability β0 helps to study the non-linear optical (NLO) behavior of DMP and DPC. Stability of the molecules arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H NMR chemical shifts of the molecules were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compounds was also recorded in the region 200-1100 nm and electronic properties, HOMO (Highest Occupied Molecular Orbitals) and LUMO (Lowest Unoccupied Molecular Orbitals) energies were measured by time-dependent TD-DFT approach. Charge density distribution and site of chemical reactivity of the molecule have been studied by mapping electron density isosurface with molecular electrostatic potential (MESP).

  19. Enhanced Rates of Photoinduced Molecular Orientation in a Series of Molecular Glassy Thin Films.

    PubMed

    Snell, Kristen E; Hou, Renjie; Ishow, Eléna; Lagugné-Labarthet, François

    2015-07-07

    Photoinduced orientation in a series of molecular glasses made of small push-pull azo derivatives is dynamically investigated for the first time. Birefringence measurements at 632.8 nm are conducted with a temporal resolution of 100 ms to probe the fast rate of the azo orientation induced under polarized light and its temporal stability over several consecutive cycles. To better evaluate the influence of the azo chemical substituents and their electronic properties on the orientation of the whole molecule, a series of push-pull azo derivatives involving a triphenylaminoazo core substituted with distinct electron-withdrawing moieties is studied. All resulting thin films are probed using polarization modulation infrared spectroscopy that yields dynamical linear dichroism measurements during a cycle of orientation followed by relaxation. We show here in particular that the orientation rates of small molecule-based azo materials are systematically increased up to 7-fold compared to those of a reference polymer counterpart. For specific compounds, the percentage of remnant orientation is also higher, which makes these materials of great interest and promising alternatives to azobenzene-containing polymers for a variety of applications requiring a fast response and absolute control over the molecular weight.

  20. Vibrational modes and changing molecular conformation of perfluororubrene in thin films and solution.

    PubMed

    Anger, F; Scholz, R; Gerlach, A; Schreiber, F

    2015-06-14

    We investigate the vibrational properties of perfluororubrene (PF-RUB) in thin films on silicon wafers with a native oxide layer as well as on silicon wafers covered with a self-assembled monolayer and in dichloromethane solution. In comparison with computed Raman and IR spectra, we can assign the molecular modes and identify two molecular conformations with twisted and planar tetracene backbones of the molecule. Moreover, we employ Raman imaging techniques to study the morphology and distribution of the molecular conformation in PF-RUB thin films.

  1. On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Eremin, Roman A.; Kholmurodov, Kholmirzo T.; Petrenko, Viktor I.; Rosta, László; Grigoryeva, Natalia A.; Avdeev, Mikhail V.

    2015-11-01

    The data of infrared spectroscopy (IR), molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) have been combined to conclude about the nanoscale structural organization of organic non-polar solutions of saturated mono-carboxylic acids with different alkyl chain lengths for diluted solutions of saturated myristic (C14) and stearic (C18) acids in benzene and decalin. In particular, the degree of dimerization was found from the IR spectra. The structural anisotropy of the acids and their dimers was used in the treatment of the data of MD simulations to describe the solute-solvent interface in a cylindrical approximation and show its rather strong influence on SANS. The corresponding scattering length density profiles were used to fit the experimental SANS data comprising the information about the acid molecule isomerization. The SANS data from concentrated solutions showed a partial self-assembling of the acids within the nematic transition is different for two solvents due to lyophobic peculiarities.

  2. Carboxyl Group Footprinting Mass Spectrometry and Molecular Dynamics Identify Key Interactions in the HER2-HER3 Receptor Tyrosine Kinase Interface* ♦

    PubMed Central

    Collier, Timothy S.; Diraviyam, Karthikeyan; Monsey, John; Shen, Wei; Sept, David; Bose, Ron

    2013-01-01

    The HER2 receptor tyrosine kinase is a driver oncogene in many human cancers, including breast and gastric cancer. Under physiologic levels of expression, HER2 heterodimerizes with other members of the EGF receptor/HER/ErbB family, and the HER2-HER3 dimer forms one of the most potent oncogenic receptor pairs. Previous structural biology studies have individually crystallized the kinase domains of HER2 and HER3, but the HER2-HER3 kinase domain heterodimer structure has yet to be solved. Using a reconstituted membrane system to form HER2-HER3 kinase domain heterodimers and carboxyl group footprinting mass spectrometry, we observed that HER2 and HER3 kinase domains preferentially form asymmetric heterodimers with HER3 and HER2 monomers occupying the donor and acceptor kinase positions, respectively. Conformational changes in the HER2 activation loop, as measured by changes in carboxyl group labeling, required both dimerization and nucleotide binding but did not require activation loop phosphorylation at Tyr-877. Molecular dynamics simulations on HER2-HER3 kinase dimers identify specific inter- and intramolecular interactions and were in good agreement with MS measurements. Specifically, several intermolecular ionic interactions between HER2 Lys-716-HER3 Glu-909, HER2 Glu-717-HER3 Lys-907, and HER2 Asp-871-HER3 Arg-948 were identified by molecular dynamics. We also evaluated the effect of the cancer-associated mutations HER2 D769H/D769Y, HER3 E909G, and HER3 R948K (also numbered HER3 E928G and R967K) on kinase activity in the context of this new structural model. This study provides valuable insights into the EGF receptor/HER/ErbB kinase structure and interactions, which can guide the design of future therapies. PMID:23843458

  3. Molecular cloning and characterization of the mouse carboxyl ester lipase gene and evidence for expression in the lactating mammary gland

    SciTech Connect

    Lidmer, A.S.; Lundberg, L.; Kannius, M.; Bjursell, G.

    1995-09-01

    DNA hybridization was used to isolate a 2.04-kb cDNA encoding carboxyl ester lipase (CEL) from a mouse lactating mammary gland, {lambda}gt10 cDNA library. The cDNA sequence translated into a protein of 599 amino acids, including 20 amino acids of a putative signal peptide. Comparison of the deduced amino acid sequence of the mouse CEL with CEL from five other species revealed that there is a high degree of a homology between the different species. The mouse CEL gene was also isolated and found to span approximately 7.2 kb and to include 11 exons. This organization is similar to those of the recently reported human and rat CEL genes. We have also analyzed expression of the CEL gene in the mammary glands from other species by performing a Northern blot analysis with RNA from goat and cow. The results show that the gene is expressed in both species. 36 refs., 6 figs., 1 tab.

  4. Direct Photoalignment and Optical Patterning of Molecular Thin Films.

    PubMed

    Pithan, Linus; Beyer, Paul; Bogula, Laura; Zykov, Anton; Schäfer, Peter; Rawle, Jonathan; Nicklin, Chris; Opitz, Andreas; Kowarik, Stefan

    2017-02-01

    A novel strategy for direct photoalignment of molecular materials using optothermal re-orientation is introduced. Photoalignment for molecular materials such as the organic semiconductor tetracene is shown, without relying on additional photoreactive dopants or alignment layers. Patterning and polarized light emission, e.g., for polarized organic light emitting diodes is demonstrated.

  5. Detection of Human IgG on Poly(pyrrole-3-carboxylic acid) Thin Film by Electrochemical-Surface Plasmon Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Janmanee, Rapiphun; Baba, Akira; Phanichphant, Sukon; Sriwichai, Saengrawee; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2011-01-01

    An electrochemically controlled surface plasmon resonance (SPR) immunosensor for the detection of human immunoglobulin G (IgG) has been developed using poly(pyrrole-3-carboxylic acid) (PP3C) film. In this work, a pyrrole-3-carboxylic acid monomer was used for electropolymerization of a PP3C film on a gold-coated high-refractive-index glass slide. In situ electrochemical (EC)-SPR spectroscopy was performed to study the kinetic property and electroactivity property of the PP3C film. Moreover, ultraviolet-visible (UV-vis) spectroscopy was performed to characterize the PP3C film. Finally, the immunosensor-based PP3C film was constructed. The carboxylic acid surface of the PP3C film was activated for the immobilization of anti-human IgG. The immunosensor electrode was used for probing the binding reaction of anti-human IgG/human IgG with several concentrations of human IgG at different constant applied potentials. The probe immobilization and immunosensing process were in situ monitored by EC-SPR technique. The sensitivity of the sensor was improved by controlling the morphology of the PP3C film by applying the potential.

  6. Fluidization and Active Thinning by Molecular Kinetics in Active Gels

    NASA Astrophysics Data System (ADS)

    Oriola, David; Alert, Ricard; Casademunt, Jaume

    2017-02-01

    We derive the constitutive equations of an active polar gel from a model for the dynamics of elastic molecules that link polar elements. Molecular binding kinetics induces the fluidization of the material, giving rise to Maxwell viscoelasticity and, provided that detailed balance is broken, to the generation of active stresses. We give explicit expressions for the transport coefficients of active gels in terms of molecular properties, including nonlinear contributions on the departure from equilibrium. In particular, when activity favors linker unbinding, we predict a decrease of viscosity with activity—active thinning—of kinetic origin, which could explain some experimental results on the cell cortex. By bridging the molecular and hydrodynamic scales, our results could help understand the interplay between molecular perturbations and the mechanics of cells and tissues.

  7. Anomalous scaling behavior and surface roughening in molecular thin-film deposition

    SciTech Connect

    Yim, S.; Jones, T. S.

    2006-04-15

    The thin film growth dynamics of a molecular semiconductor, free-base phthalocyanine (H{sub 2}Pc), deposited by organic molecular beam deposition, has been studied by atomic force microscopy (AFM) and height difference correlation function (HDCF) analysis. The measured dynamic scaling components ({alpha}{sub loc}=0.61{+-}0.12, {beta}=1.02{+-}0.08, and 1/z=0.72{+-}0.13) are consistent with rapid surface roughening and anomalous scaling behavior. A detailed analysis of AFM images and simple growth models suggest that this behavior arises from the pronounced upward growth of crystalline H{sub 2}Pc mounds during the initial stages of thin film growth.

  8. Synthesis, crystal growth and characterization of bioactive material: 2- Amino-1H-benzimidazolium pyridine-3-carboxylate single crystal- a proton transfer molecular complex

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Kavitha, P.; Anitha, K.

    2017-09-01

    The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.

  9. Role of Molecular Conformations in Rubrene Thin Film Growth

    SciTech Connect

    Kaefer, D.; Ruppel, L.; Witte, G.; Woell, Ch.

    2005-10-14

    A systematic analysis of the growth of rubrene (C{sub 42}H{sub 28}), an organic molecule that currently attracts considerable attention with regard to its application in molecular electronics, is carried out by using x-ray absorption spectroscopy and thermal desorption spectroscopy. The results allow us to unravel a fundamental mechanism that effectively limits organic epitaxy for a large class of organic molecules. If the structure of the free molecule differs substantially from that of the corresponding molecular structure in the bulk, the crystallization is severely hampered.

  10. Defect-Controlled Preparation of UiO-66 Metal-Organic Framework Thin Films with Molecular Sieving Capability.

    PubMed

    Zhang, Caiqin; Zhao, Yajing; Li, Yali; Zhang, Xuetong; Chi, Lifeng; Lu, Guang

    2016-01-01

    Metal-organic framework (MOF) UiO-66 thin films are solvothermally grown on conducting substrates. The as-synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO-66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox-active species with different sizes.

  11. Giant surfactants of poly(ethylene oxide)- b-polystyrene-(molecular nanoparticle): nanoparticle-driven self-assembly with sub-10-nm nanostructures in thin films

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Hao; Lin, Zhiwei; Dong, Xue-Hui; Hsieh, I.-Fan; Cheng, Stephen Z. D.

    2014-03-01

    Giant surfactants are built upon precisely attaching shape- and volume-persistent molecular nanoparticles (MNP) to polymeric flexible tails. The unique class of self-assembling materials, giant surfactants, has been demonstrated to form self-assembled ordered nanostructures, and their self-assembly behaviors are remarkably sensitive to primary chemical structures. In this work, two sets of giant surfactants with functionalized MNP attached to diblock copolymer tails were studied in thin films. Carboxylic acid-functionalized [60]fullerene (AC60) tethered with PEO- b-PS (PEO-PS-AC60) represents an ABA' (hydrophilic-hydrophobic-hydrophilic) giant surfactant, and fluoro-functionalized polyhedral oligomeric silsesquioxane (FPOSS) tethered with PEO- b-PS (PEO-PS-FPOSS) represents an ABC (hydrophilic-hydrophobic-omniphobic) one. The dissimilar chemical natures of the MNPs result in different arrangement of MNPs in self-assembled structures, the dispersion of AC60 in PEO domain and the single domain of FPOSS. Moreover, the chemically bonded MNPs could induce the originally disordered small molecular PEO- b-PS to form ordered cylindrical and lamellar structure, as evidenced by TEM and GISAXS, leading to sub-10-nm nanostructures of copolymer in the thin film state.

  12. Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors.

    PubMed

    Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J

    2005-03-29

    Very thin (2.3-5.5 nm) self-assembled organic dielectric multilayers have been integrated into organic thin-film transistor structures to achieve sub-1-V operating characteristics. These new dielectrics are fabricated by means of layer-by-layer solution phase deposition of molecular silicon precursors, resulting in smooth, nanostructurally well defined, strongly adherent, thermally stable, virtually pinhole-free, organosiloxane thin films having exceptionally large electrical capacitances (up to approximately 2,500 nF.cm(-2)), excellent insulating properties (leakage current densities as low as 10(-9) A.cm(-2)), and single-layer dielectric constant (k)of approximately 16. These 3D self-assembled multilayers enable organic thin-film transistor function at very low source-drain, gate, and threshold voltages (<1 V) and are compatible with a broad variety of vapor- or solution-deposited p- and n-channel organic semiconductors.

  13. Modeling Ellipsometry Measurements of Molecular Thin-Film Contamination on Genesis Array Samples

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The discovery of a molecular thin-film contamination on Genesis flown array samples changed the course of preliminary assessment strategies. Analytical techniques developed to measure solar wind elemental abundances must now compensate for a thin-film contamination. Currently, this is done either by experimental cleaning before analyses or by depth-profiling techniques that bypass the surface contamination. Inside Johnson Space Center s Genesis dedicated ISO Class 4 (Class 10) cleanroom laboratory, the selection of collector array fragments allocated for solar wind analyses are based on the documentation of overall surface quality, visible surface particle contamination greater than 1 m, and the amount of thin film contamination measured by spectroscopic ellipsometry. Documenting the exact thickness, surface topography, and chemical composition of these contaminates is also critical for developing accurate cleaning methods. However, the first step in characterization of the molecular film is to develop accurate ellipsometry models that will determine an accurate thickness measurement of the contamination film.

  14. A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin

    2015-06-01

    Quantitative comparisons were made between the flow factor approach model and the molecular dynamics simulation (MDS) results both of which describe the flow of a molecularly thin fluid film confined between two solid walls. Although these two approaches, respectively, calculate the flow of a confined molecularly thin fluid film by different ways, very good agreements were found between them when the Couette and Poiseuille flows, respectively, calculated from them were compared. It strongly indicates the validity of the flow factor approach model in modeling the flow of a confined molecularly thin fluid film.

  15. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  16. Five novel lanthanide complexes with 2-chloroquinoline-4-carboxylic acid and 1,10-phenanthroline: Crystal structures, molecular spectra, thermal properties and bacteriostatic activities

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun

    2016-12-01

    Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  17. Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury.

    PubMed

    Han, Chunfang; Zheng, Chengbin; Wang, Jun; Cheng, Guanglei; Lv, Yi; Hou, Xiandeng

    2007-06-01

    With UV irradiation, Hg(2+) in aqueous solution can be converted into Hg(0) cold vapor by low molecular weight alcohols, aldehydes, or carboxylic acids, e.g., methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid, or malonic acid. It was found that the presence of nano-TiO(2) more or less improved the efficiency of the photo-induced chemical/cold vapor generation (photo-CVG) with most of the organic reductants. The nano-TiO(2)-enhanced photo-CVG systems can be coupled to various analytical atomic spectrometric techniques for the determination of ultratrace mercury. In this work, we evaluated the application of this method to the atomic fluorescence spectrometric (AFS) determination of mercury in cold vapor mode. Under the optimized experimental conditions, the instrumental limits of detection (based on three times the standard deviation of 11 measurements of a blank solution) were around 0.02-0.04 microg L(-1), with linear dynamic ranges up to 15 microg L(-1). The interference of transition metals and the mechanism of the photo-CVG are briefly discussed. Real sample analysis using the photo-CVG-AFS method revealed that it was promising for water and geological analysis of ultralow levels of mercury.

  18. Determining the molecular interactions of perfluorinated carboxylic acids with human sera and isolated human serum albumin using nuclear magnetic resonance spectroscopy.

    PubMed

    D'eon, Jessica C; Simpson, André J; Kumar, Rajeev; Baer, Andrew J; Mabury, Scott A

    2010-08-01

    Perfluorooctanoate (PFOA) is ubiquitous in North American human sera and has a serum half-life of 3.5 years in humans. The molecular interactions that lead to the bioaccumulation of these hydrophobic and lipophobic molecules in human blood are not well understood. Perfluorohexanoic acid (PFHxA) and PFOA were used as model perfluorinated carboxylic acids (PFCAs) to characterize the major site of PFCA interaction in human sera. Using novel heteronuclear saturation transfer difference nuclear magnetic resonance spectroscopy experiments, human serum albumin (HSA) was identified as the major site of interaction for both PFHxA and PFOA in human sera. Heteronuclear single quantum coherence nuclear magnetic resonance experiments were then performed to interrogate site-specific interactions of PFHxA and PFOA with isolated HSA. Perfluorohexanoic acid was found to bind specifically to Sudlow's drug-binding site II, whereas PFOA interacted preferentially with Sudlow's drug-binding site I at the lower concentration, with additional interactions developing at the higher concentration. These experiments highlight the utility of nuclear magnetic resonance spectrometry as a tool to observe the in situ interactions of chemical contaminants with biological systems. Both PFCAs displaced the endogenous HSA ligand oleic acid at concentrations lower than observed for the drugs ibuprofen and phenylbutazone, which are established HSA ligands. Interactions between PFCAs and HSA may affect the pharmacokinetics and distribution of fatty acids and certain drugs in the human body and warrant further investigation. Copyright 2010 SETAC

  19. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives.

    PubMed

    Abdullah, Mohammed A A; Abuo-Rahma, Gamal El-Din A A; Abdelhafez, El-Shimaa M N; Hassan, Heba A; Abd El-Baky, Rehab M

    2017-02-01

    New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC50=1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Shear Viscous Response of Molecularly Thin Liquid Films

    NASA Astrophysics Data System (ADS)

    Tschirhart, Charles; Troian, Sandra

    2014-11-01

    Fluids that exhibit Newtonian response at the macroscale can display interesting deviations at the nanoscale caused by internal fluid microstructure or conformational entropy reduction near an adjacent solid boundary. Such deviations signal the breakdown of the continuum and isotropic fluid approximations at molecular length scales. These effects are particularly pronounced near the interface separating a liquid film from a supporting solid substrate where molecular layering in the fluid can result in inhomogeneity in the shear viscosity. Here we describe ellipsometric measurements of the surface deformation of non-volatile liquid nanofilms subject to a constant interfacial shear stress. For simple Newtonian response, the slope of the deformation can be used to extract the value of the shear viscosity in ultrathin films, which in our experiments range from 2 - 200 nm in thickness. For complex films, we observe deviations from linear deformation which require augmentation of the analytic model normally used to describe the viscous response. These findings may be helpful for improved parametrization of the shear response of supported free surface films as well as course grained models for nanofluidic applications. Support from the Fred and Jean Felberg and Winifred and Robert Gardner Summer Undergraduate Research Fellowships is gratefully acknowledged.

  1. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Chen, Chunlei; Li, Jianjun; Zhou, Bianhong; Xie, Mingjie; Hu, Shuyuan; Kawamura, Kimitaka; Chen, Yan

    2011-05-01

    Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars, sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze event caused by field burning of wheat straw were characterized and compared with those in the summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m -3) was the most abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze event were 2-20 times more than those in the non-hazy days. Size distribution results showed that there was no significant change in the compound peaks in coarse mode (>2.1 μm) with respect to the haze and non-haze samples, but a large difference in the fine fraction (<2.1 μm) was found with a sharp increase during the hazy days mostly due to the increased emissions of wheat straw burning. Molecular compositions of organic compounds in the fresh smoke particles from wheat straw burning demonstrate that sharply increased concentrations of glycerol and succinic and malic acids in the fine particles during the haze event were mainly derived from the field burning of wheat straw, although the sources of glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative abundance of succinic acid to levoglucosan during the haze event suggests a significant production of secondary organic aerosols during transport of the smoke plumes.

  2. The QM/MM molecular dynamics and free energy simulations of the acylation reaction catalyzed by the serine carboxyl peptidase kumamolisin-As†

    PubMed Central

    Xu, Qin; Guo, Hao-Bo; Wlodawer, Alexander; Nakayama, Toru; Guo, Hong

    2008-01-01

    Quantum mechanical/molecular mechanical molecular dynamics and free energy simulations are performed to study the acylation reaction catalyzed by kumamolisin-As, a serine-carboxyl peptidase, and to elucidate the catalytic mechanism and the origin of substrate specificity. It is demonstrated that the nucleophilic attack by the serine residue on the substrate may not be the rate limiting step for the acylation of the GPH*FF substrate. The present study also confirms the earlier suggestions that Asp 164 acts as a general acid during the catalysis and that the electrostatic oxyanion-hole interactions may not be sufficient to lead a stable tetrahedral intermediate along the reaction pathway. Moreover, Asp 164 is found to act as a general base during the formation of the acyl-enzyme from the tetrahedral intermediate. The role of dynamic substrate assisted catalysis (DSAC) involving His at the P1 site of the substrate is examined for the acylation reaction. It is demonstrated that the bond breaking and making events at each stage of the reaction trigger a change of the position for the His sidechain and lead to the formation of the alternative hydrogen bonds. The back and forth movements of the His sidechain between the C=O group of Pro at P2 and Oδ2 of Asp 164 in a P1ng-pong-like mechanism and the formation of the alternative hydrogen bonds effectively lower the free energy barriers for both the nucleophilic attack and the acyl-enzyme formation and may therefore contribute to the relatively high activity of kumamolisin-As towards to the substrates with His at P1 site. PMID:17326662

  3. Simulation studies of the tribological behavior of molecularly thin films

    NASA Astrophysics Data System (ADS)

    He, Gang

    2002-09-01

    In this thesis I used molecular dynamics simulations to study two nanotribological problems. The first is the frictional behavior of adsorbed molecules. Macroscopic objects almost always exhibit a finite static friction and a kinetic friction that is slightly smaller at low velocities. However, molecular scale theories of friction between bare surfaces predict that the static friction almost always vanishes and is not closely related to the kinetic friction. Of course most real surfaces are not bare, but are coated with a layer of adsorbed molecules. Our simulation results show that these molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. We found that parameters that are not controlled in experiments, i.e., crystalline alignment, sliding direction, and the number of adsorbed molecules have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The kinetic friction is found to rise logarithmically with velocity as in many experimental systems. Variations in static and kinetic friction are highly correlated. This correlation is understood through analogy with the Tomlinson model and the trends are explained with a hard-sphere picture. We also studied the microscopic flow boundary condition due to rough surfaces: Generally slip at the interface can be quantified by a slip length S that represents the additional width of fluid that would be needed to accommodate any velocity difference at the interface. Previous simulations with atomically flat surfaces show that S can be very large in certain limits. A dramatic divergence of S as shear rate increases has also been reported. We have extended these simulations to surfaces with random roughness, steps, and angled facets typical of twin boundaries. In all cases, S decreases rapidly as the roughness increases. When peak-to-peak roughness is only two atomic diameters, values of S have dropped from

  4. An investigation of clustering during the early stages of sculptured thin film growth via molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yurick, Thomas J., Jr.

    2005-11-01

    As nano-technology continues to revolutionize our daily lives, nano-engineered materials take on a more prominent role. One example of a nano-engineered material is that of sculptured thin films. Sculptured thin films or STFs are a special class of thin films that have a characteristic shape imparted to them on the nano-scale, during the deposition process. This characteristic shape can be that of a zig-zag, chevron, or helices. Applications for these STFs vary from micro-electronics to medical applications, however, it is most likely that the best use of them is yet to be discovered. As with any engineering problem, simulation can play a key role in gaining understanding and insight. This is certainly true with the deposition of STFs as well. However, the simulation of an STF entails the capability of simulating each and every atom that makes up the STF. It is the manipulation of the impinging film atoms, during the deposition, that produce the characteristic shape. Luckily, today's fast computer processors coupled with an atomistic simulation method called Molecular Dynamics allows for such a simulation. This work focused on the use of a custom parallel Molecular Dynamics program for the simulation of cluster formation during very early stages of STF growth. Once the simulated thin film morphology was obtained, a qualitative analysis of the simulated thin film morphology was performed by visualizing the thin film surface. A qualitative analysis of the thin film morphology was also performed by estimating the fractal dimension of the simulated surface via the Slit-Island Method.

  5. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics.

    PubMed

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  6. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    SciTech Connect

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  7. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-02-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented large-scale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented large-scale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism

  8. Molecular-orientation-induced rapid roughening and morphology transition in organic semiconductor thin-film growth.

    PubMed

    Yang, Junliang; Yim, Sanggyu; Jones, Tim S

    2015-03-24

    We study the roughening process and morphology transition of organic semiconductor thin film induced by molecular orientation in the model of molecular semiconductor copper hexadecafluorophthalocyanine (F16CuPc) using both experiment and simulation. The growth behaviour of F16CuPc thin film with the thickness, D, on SiO2 substrate takes on two processes divided by a critical thickness: (1) D ≤ 40 nm, F16CuPc thin films are composed of uniform caterpillar-like crystals. The kinetic roughening is confirmed during this growth, which is successfully analyzed by Kardar-Parisi-Zhang (KPZ) model with scaling exponents α = 0.71 ± 0.12, β = 0.36 ± 0.03, and 1/z = 0.39 ± 0.12; (2) D > 40 nm, nanobelt crystals are formed gradually on the caterpillar-like crystal surface and the film growth shows anomalous growth behaviour. These new growth behaviours with two processes result from the gradual change of molecular orientation and the formation of grain boundaries, which conversely induce new molecular orientation, rapid roughening process, and the formation of nanobelt crystals.

  9. Histological Stratification of Thick and Thin Plaque Psoriasis Explores Molecular Phenotypes with Clinical Implications

    PubMed Central

    Kim, Dong Joo; Brodmerkel, Carrie; Correa da Rosa, Joel; Krueger, James G.; Suárez-Fariñas, Mayte

    2015-01-01

    Psoriasis, which presents as red, scaly patches on the body, is a common, autoimmune skin disease that affects 2 to 3 percent of the world population. To leverage recent molecular findings into the personalized treatment of psoriasis, we need a strategy that integrates clinical stratification with molecular phenotyping. In this study, we sought to stratify psoriasis patients by histological measurements of epidermal thickness, and to compare their molecular characterizations by gene expression, serum cytokines, and response to biologics. We obtained histological measures of epidermal thickness in a cohort of 609 psoriasis patients, and identified a mixture of two subpopulations—thick and thin plaque psoriasis—from which they were derived. This stratification was verified in a subcohort of 65 patients from a previously published study with significant differences in inflammatory cell infiltrates in the psoriatic skin. Thick and thin plaque psoriasis shared 84.8% of the meta-analysis-derived psoriasis transcriptome, but a stronger dysregulation of the meta-analysis-derived psoriasis transcriptome was seen in thick plaque psoriasis on microarray. RT-PCR revealed that gene expression in thick and thin plaque psoriasis was different not only within psoriatic lesional skin but also in peripheral non-lesional skin. Additionally, differences in circulating cytokines and their changes in response to biologic treatments were found between the two subgroups. All together, we were able to integrate histological stratification with molecular phenotyping as a way of exploring clinical phenotypes with different expression levels of the psoriasis transcriptome and circulating cytokines. PMID:26176783

  10. Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth

    PubMed Central

    Yang, Junliang; Yim, Sanggyu; Jones, Tim S.

    2015-01-01

    We study the roughening process and morphology transition of organic semiconductor thin film induced by molecular orientation in the model of molecular semiconductor copper hexadecafluorophthalocyanine (F16CuPc) using both experiment and simulation. The growth behaviour of F16CuPc thin film with the thickness, D, on SiO2 substrate takes on two processes divided by a critical thickness: (1) D ≤ 40 nm, F16CuPc thin films are composed of uniform caterpillar-like crystals. The kinetic roughening is confirmed during this growth, which is successfully analyzed by Kardar-Parisi-Zhang (KPZ) model with scaling exponents α = 0.71 ± 0.12, β = 0.36 ± 0.03, and 1/z = 0.39 ± 0.12; (2) D > 40 nm, nanobelt crystals are formed gradually on the caterpillar-like crystal surface and the film growth shows anomalous growth behaviour. These new growth behaviours with two processes result from the gradual change of molecular orientation and the formation of grain boundaries, which conversely induce new molecular orientation, rapid roughening process, and the formation of nanobelt crystals. PMID:25801646

  11. YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.

    2017-06-01

    The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.

  12. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  13. Facile nucleation of gold nanoparticles on graphene-based thin films from Au144 molecular precursors

    NASA Astrophysics Data System (ADS)

    Venter, Andrei; Hesari, Mahdi; Shafiq Ahmed, M.; Bauld, Reg; Workentin, Mark S.; Fanchini, Giovanni

    2014-04-01

    We demonstrate a facile and cost effective method to obtain gold nanoparticles on graphene by dispersing Au144 molecular nanoclusters by spin coating them in thin layers on graphene-based films and subsequent annealing in a controlled atmosphere. The graphene-based thin films used for these experiments are prepared by solvent-assisted exfoliation of graphite in water in the presence of ribonucleic acid as a surfactant and by subsequent vacuum filtration of the resulting graphene-containing suspensions. Not only is this method easily reproducible, but it leads to gold nanoparticles that are not dependent in size on the number of graphene layers beneath them. This is a distinct advantage over other methods. Plasmonic effects have been detected in our gold nanoparticle-decorated graphene layers, indicating that these thin films may be useful in applications such as plasmonic solar cells and optical memory devices.

  14. Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films.

    PubMed

    Pale, Ville; Giedraityte, Zivile; Chen, Xi; Lopez-Acevedo, Olga; Tittonen, Ilkka; Karppinen, Maarit

    2017-08-01

    Atomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements.

  15. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    SciTech Connect

    Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael; Matheson, Michael A

    2014-01-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.

  16. Molecular and electronic structure of organic semiconductors on ultra-thin oxide films

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Cullen, William; Williams, Ellen

    2009-03-01

    We utilize scanning tunneling microscopy (STM) to molecularly image and probe the interactions of organic semiconductors. To mimic a device substrate and growth modes, ultra-thin oxide (UTO) films less than 1 nm thick are grown on Si(111) in ultrahigh vacuum at room temperature. These films are characterized by STM and display a long range RMS roughness of 0.109 nm versus a typical RMS roughness of 0.3 nm for thick SiO2. UTO films are then used as substrates for growth of pentacene, C60, and PCBM. Standing up pentacene is molecularly resolved and described by a thin-film phase unit cell with a=0.76nm and b=0.59nm in the ab-plane. The morphology and electronic structure of co-depositions of pentacene, C60, and PCBM are then deposited on UTO films and will be presented. http://arxiv.org/abs/0811.2515

  17. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  18. The chemistry of aminoguanidine derivatives - preparation, crystal structure, thermal properties, and molecular docking studies of aminoguanidinium salts of several carboxylic acids

    NASA Astrophysics Data System (ADS)

    Selvakumar, Rajendran; Geib, Steven J.; Muthu Sankar, Aathi; Premkumar, Thathan; Govindarajan, Subbaiah

    2015-11-01

    The reaction of aminoguanidine bicarbonate (Amg) with oxamic, oxalic, malonic and sulfoacetic acids yielded (AmgH)H2NOC-COO (1), OOC-CONHNHC(NH2)NH2 (2) (AmgH)HOOC-CH2-COO (3) and O3S-CH2-CONHNHC(NH2)NH2 (4), respectively. For the first time, we studied the salt-forming ability of aminoguanidine with several carboxylic acids, such as oxamic, oxalic, malonic and sulphoacetic acids. We also compared the structural and thermal properties of these salts. Oxamic and malonic acids form only mono-aminoguanidinium salts, whereas oxalic acid mainly forms di-aminoguanidinium oxalate. In addition, oxalic acid forms guanylhydrazido-oxalic acid which exists as zwitter ion. Unlike other acids, sulfoacetic acid readily forms only the zwitter ionic salts (2-guanylhydrazido-oxo-methanesulfonic acid) rather than the usual simple salt. This result may be a result of the highly acidic nature of the sulfonic group, which favors acid catalyzed condensation. More significantly, for the first time, the ability guanylhydrazido-oxalic acid (2) and 2-guanylhydrazido-oxo-methanesulfonic acid (4) to inhibit human butyrylcholinesterase (human BChE) receptor has been studied with a molecular docking approach. The binding of the compounds to human BChE was examined as it is crucial to understanding the biological significance of aminoguanidine derivatives. The compounds were identified and characterized by analytical, FT-IR spectroscopic and thermal studies. Furthermore, the structures of compounds 1, 2 and 4 were confirmed by single X-ray diffraction studies. Compounds 1 and 2 crystallized in a monoclinic crystal system with P21/c and Cc space groups, respectively, whereas compound 4 crystalized in an orthorhombic system with a Pbca space group. All the compounds (1-4) underwent endo- followed by exothermic decomposition in the temperature range from 130 to 600 °C to yield gaseous products.

  19. Synthesis, crystal structures, molecular docking, and in vitro biological activities of transition metals with 4-(2,3-dichlorophenyl)piperazine-1-carboxylic acid.

    PubMed

    Yang, Dan-Dan; Chen, Ya-Nan; Wu, Yu-Shan; Wang, Rui; Chen, Zhi-Jian; Qin, Jie; Qian, Shao-Song; Zhu, Hai-Liang

    2016-07-15

    Four novel mononuclear complexes, [Cd(L)2·2H2O] (1), [Ni(L)2·2H2O] (2) [Cu(L)2·H2O] (3), and [Zn(L)2·2H2O] (4) (CCDC numbers: 1444630-1444633 for complexes 1-4) (HL=4-(2,3-dichlorophenyl)piperazine-1-carboxylic acid) were synthesized, and have been characterized by IR spectroscopy, elemental analysis, and X-ray crystallography. Molecular docking study preliminarily revealed that complex 1 had potential telomerase inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complex 1 against telomerase showed complex 1 (IC50=8.17±0.91μM) had better inhibitory activities, while complexes 2, 3 and 4 showed no inhibitory activities. Antiproliferative activity in human cancer cell line HepG2 was further determined by MTT assays. The IC50 value (6.5±0.2μM) for the complex 1 having good inhibitory activity against HepG2 was at the same micromolar concentrations with cis-platinum (2.2±1.2μM). While the IC50 value for the metal-free ligand, complex 2, 3 and 4 was more than 100μM. These results indicated that telomerase was potentially an anticancer drug target and showed that complex 1 was a potent inhibitor of human telomerase as well as an antiproliferative compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Molecular layer-by-layer assembled thin-film composite membranes for water desalination.

    PubMed

    Gu, Joung-Eun; Lee, Seunghye; Stafford, Christopher M; Lee, Jong Suk; Choi, Wansuk; Kim, Bo-Young; Baek, Kyung-Youl; Chan, Edwin P; Chung, Jun Young; Bang, Joona; Lee, Jung-Hyun

    2013-09-14

    Molecular layer-by-layer (mLbL) assembled thin-film composite membranes fabricated by alternating deposition of reactive monomers on porous supports exhibit both improved salt rejection and enhanced water flux compared to traditional reverse osmosis membranes prepared by interfacial polymerization. Additionally, the well-controlled structures achieved by mLbL deposition further lead to improved antifouling performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrically controllable molecular spin crossover switching in Fe(phen)2 (NCS)2 thin film

    NASA Astrophysics Data System (ADS)

    Mondal, Chaitali; Mandal, Swapan K.

    2016-10-01

    Spin crossover molecular complex Fe(phen)2(NCS)2 in thin film form (20-300 nm) is obtained by simple dip-coating technique on glass substrates. The growth of the molecular films is confirmed by optical and X-ray diffraction data. The morphology of the samples shows distributed nanocrystals with an average size ca. 12 nm. We measure the current (I)-voltage (V) characteristics of a device with 300 nm film thickness and show that application of electric field can induce spin state switching. The electric field experienced by individual nanocrystals separated by nanometric gap is supposed to be quite high and is plausibly playing the crucial role in instigating switching in molecular nanocrystals. The result is quite significant towards developing room temperature molecular spin cross-over switching devices in the nanoscale limit.

  2. Highly-oriented molecular arrangements and enhanced magnetic interactions in thin films of CoTTDPz using PTCDA templates.

    PubMed

    Eguchi, Keitaro; Nanjo, Chihiro; Awaga, Kunio; Tseng, Hsiang-Han; Robaschik, Peter; Heutz, Sandrine

    2016-07-14

    In the present work, the templating effect of thin layers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on the growth of cobalt tetrakis(thiadiazole)porphyrazine (CoTTDPz) thin films was examined. X-ray diffraction and optical absorption spectra indicate that while CoTTDPz forms amorphous thin films on the bare substrates, it forms crystalline thin films on the PTCDA templates, in which the molecular planes of CoTTDPz are considered to be parallel to the substrates. Magnetic measurements reveal a significantly enhanced antiferromagnetic interaction of CoTTDPz in the templated thin films, with values reaching over 13 K. The ability to generate crystalline films and to control their orientation using molecular templates is an important strategy in the fields of organic electronics and spintronics in order to tailor the physical properties of organic thin films to suit their intended application.

  3. Effects of hydrophilic solvent and oxidation resistance post surface treatment on molecular structure and forward osmosis performance of polyamide thin-film composite (TFC) membranes

    NASA Astrophysics Data System (ADS)

    Jia, Qibo; Xu, Yangyu; Shen, Jianquan; Yang, Haijun; Zhou, Lu

    2015-11-01

    In this article, novel hydrophilic solvents and antioxidants were used to post-treat aromatic polyamide thin-film composite (TFC) hollow fiber forward osmosis (FO) membranes. The effects of trimesoyl chloride (TMC) and oxalic acid on the structure of polyamide skin layer were investigated using ATR-FTIR and XPS analyses. Pure water flux and rejection of salts were detected using 2 M NaCl solution as draw solutions in FO processes. The results demonstrated that hydrophilic solvent N-methyl pyrrolidone (NMP) enhanced the water flux and kept a high salt retention of the TFC FO membrane. TMC and oxalic acid were both found to improve the oxidation resistance properties of the skin layer of TFC membrane because the electron-withdrawing carboxyl groups reduced the activity of polyamide molecular. The effects of the oxalic acid and carbodiimide on the molecular structures and the FO water flux of the polyamide TFC membranes were more marked than those of TMC. The novel TFC FO membrane treated by oxalic acid and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) exhibited a high level of water flux (20.33 L m-2 h-1), and the rates of salt rejection and salt reverse rejection were higher by 50% and 83%, respectively.

  4. Porphyrin Molecular Multilayer Thin-Films on Gold (111) Electrodes for Electro-optical Applications

    NASA Astrophysics Data System (ADS)

    Krawicz, Alexandra; Qian, Guoguang; Lewis, Kim; Dinolfo, Peter

    2012-02-01

    We have developed a Layer-by-Layer (LbL) method for the fabrication of thin-film molecular multilayers on gold (111) electrodes. Copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) coupling reactions were used for surface attachment and subsequent LbL deposition of porphyrin building blocks. The electrochemical and photophysical properties of the thin-films can be tuned through synthetic modification of the individual components, resulting in new porphyrin multilayers for applications in light harvesting and molecular electronics. Herein, we demonstrate the reproducible growth trends and optical properties of these films. Multilayer growth was followed by UV-Vis absorption and reflectance spectroscopy. Film thickness (FT) and optical constants were obtained from spectroscopic ellipsometry. Topology and surface roughness was examined by TM-AFM, while the copper content was quantified by XPS. The redox characteristics were studied by electrochemical methods, whereas the conductance of individual porphyrin constructs was examined by STM using the molecular break junction method. The multilayers show consistent linear growth in absorbance and FT over tens of layers and continuity in their molecular structure.

  5. Influence of carboxylic ion-pairing reagents on retention of peptides in thin-layer chromatography systems with C18 silica-based adsorbents.

    PubMed

    Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Klimek-Turek, Anna; Ziajko-Jankowska, Agnieszka; Matosiuk, Dariusz; Dzido, Tadeusz H

    2016-04-01

    One of the main problems related to chromatography of peptides concerns adverse interactions of their strong basic groups with free silanol groups of the silica based stationary phase. Influence of type and concentration of ion-pairing regents on peptide retention in reversed-phase high-performance liquid chromatography (RP-HPLC) systems has been discussed before. Here we present influence of these mobile phase additives on retention of some peptide standards in high-performance thin-layer chromatography (HPTLC) systems with C18 silica-based adsorbents. We prove, that due to different characteristic of adsorbents used in both techniques (RP HPLC and HPTLC), influence of ion-pairing reagents on retention of basic and/or amphoteric compounds also may be quite different. C18 silica-based HPTLC adsorbents provide more complex mechanism of retention and should be rather considered as mixed-mode adsorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight

    DOE PAGES

    Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; ...

    2017-08-23

    Controlling the structure and dynamics of thin films of ionizable polymers at water interfaces is critical to their many applications. As the chemical diversity within one polymer is increased, controlling the structure and dynamics of the polymer, which is a key to their use, becomes a challenge. Here molecular dynamics simulations (MD) are used to obtain molecular insight into the structure and dynamics of thin films of one such macromolecule at the interface with water. The polymer consists of an ABCBA topology with randomly sulfonated polystyrene (C), tethered symmetrically to flexible poly(ethylene-r-propylene) blocks (B), and end-capped by a poly(t-butylstyrene) blockmore » (A). The compositions of the interfacial and bulk regions of thin films of the ABCBA polymers are followed as a function of exposure time to water. We find that interfacial rearrangements take place where buried ionic segments migrate toward the water interface. The hydrophobic blocks collapse and rearrange to minimize their exposure to water. In conclusion, the water that initially drives interfacial reengagements breaks the ionic clusters within the film, forming a dynamic hydrophilic internal network within the hydrophobic segments.« less

  7. Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight.

    PubMed

    Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S

    2017-09-08

    Controlling the structure and dynamics of thin films of ionizable polymers at water interfaces is critical to their many applications. As the chemical diversity within one polymer is increased, controlling the structure and dynamics of the polymer, which is a key to their use, becomes a challenge. Here molecular dynamics simulations (MD) are used to obtain molecular insight into the structure and dynamics of thin films of one such macromolecule at the interface with water. The polymer consists of an ABCBA topology with randomly sulfonated polystyrene (C), tethered symmetrically to flexible poly(ethylene-r-propylene) blocks (B), and end-capped by a poly(t-butylstyrene) block (A). The compositions of the interfacial and bulk regions of thin films of the ABCBA polymers are followed as a function of exposure time to water. We find that interfacial rearrangements take place where buried ionic segments migrate toward the water interface. The hydrophobic blocks collapse and rearrange to minimize their exposure to water. The water that initially drives interfacial reengagements breaks the ionic clusters within the film, forming a dynamic hydrophilic internal network within the hydrophobic segments.

  8. Molecular Dynamics of Polymers at Nanometric Length Scales: From Thin Layers to Isolated Coils

    NASA Astrophysics Data System (ADS)

    Kremer, F.; Mapesa, E. U.; Tress, M.; Reiche, M.

    The (dynamic) glass transition of polymers in nanometer thin layers is both a prevailing but as well a highly controversial topic. In the current review the literature for the most studied case of polystyrene (as freestanding films or as deposited and suspended layers) will be discussed. Based on this, the extraordinary impact of sample preparation is immediately evident and outlined in detail. Recent results are presented on nanometric thin (≥5 nm) layers of polystyrene (PS) having widely varying molecular weights and polymethylmethacrylate (PMMA) deposited on different substrates. For the dielectric measurements two sample geometries are employed: the conventional technique using evaporated electrodes and a recently developed approach taking advantage of silica nanostructures as spacers. All applied methods deliver the concurring result that deviations from glassy dynamics and from the glass transition of the bulk never exceed margins of ±3 K independent of the layer thickness, the molecular weight of the polymer under study and the underlying substrate. Novel experiments are described on thin layers of polyisoprene, a type A polymer, having relaxation processes on two different length scales, the segmental and the normal mode. A further exciting perspective is the measurement of the dynamics of isolated polymer coils, for which first results will be presented.

  9. Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications.

    PubMed

    Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin

    2016-03-21

    Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.

  10. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy.

    PubMed

    Yue, Ruoyu; Barton, Adam T; Zhu, Hui; Azcatl, Angelica; Pena, Luis F; Wang, Jian; Peng, Xin; Lu, Ning; Cheng, Lanxia; Addou, Rafik; McDonnell, Stephen; Colombo, Luigi; Hsu, Julia W P; Kim, Jiyoung; Kim, Moon J; Wallace, Robert M; Hinkle, Christopher L

    2015-01-27

    In this work, we demonstrate the growth of HfSe2 thin films using molecular beam epitaxy. The relaxed growth criteria have allowed us to demonstrate layered, crystalline growth without misfit dislocations on other 2D substrates such as highly ordered pyrolytic graphite and MoS2. The HfSe2 thin films exhibit an atomically sharp interface with the substrates used, followed by flat, 2D layers with octahedral (1T) coordination. The resulting HfSe2 is slightly n-type with an indirect band gap of ∼ 1.1 eV and a measured energy band alignment significantly different from recent DFT calculations. These results demonstrate the feasibility and significant potential of fabricating 2D material based heterostructures with tunable band alignments for a variety of nanoelectronic and optoelectronic applications.

  11. Atomic dynamics in molecular dynamics simulations of glassy CuTi thin films

    NASA Astrophysics Data System (ADS)

    Vauth, Sebastian; Mayr, S. G.

    2005-02-01

    We present results on atomic dynamics in metallic glass thin films below the glass transition temperature using molecular dynamics simulations. Thin CuTi films of different compositions are prepared by quenching the liquid to an amorphous state. The atomic dynamics on the amorphous surface and inside the bulk of the samples are quantitatively compared by calculating diffusion constants and jump length distributions. Here, we focus on the collective or single particle character of the diffusion mechanism in dependence of the atom type. In addition, single atom exemplifications are analyzed for the different kinds of atomic dynamics. We find that Cu surface atoms diffuse with a single atom jump dynamics, whereas inside the bulk collective behavior dominates for both species.

  12. Dependence of equilibrium stacking fault width on thickness of Cu thin films: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Rohith, P.; Sainath, G.; Choudhary, B. K.

    2017-05-01

    In face centered cubic systems, due to decrease in energy all perfect dislocations dissociates into two Shockley partials separated by stacking fault width. The stacking fault width, which influences the deformation behavior depends on many factors such as composition, stacking fault energy, temperature, surface energy and applied stress. Additionally in thin films, thickness also influences the stacking fault width of dissociated dislocations. In this paper, we investigate the effect of thin film thickness on stacking fault width in Cu using molecular dynamics simulations. The results indicate that with increase in film thickness from 1.25 nm to 11 nm, the stacking fault width increases from 1.6 nm to 3.12 nm. A bi-linear behavior has been observed. Above 11 nm thickness, the width of stacking fault has attained a saturation at higher thickness. This thickness dependent dissociation has been explained using the concept of image dislocations and associated image forces.

  13. Development of Layered Multiscale Porous Thin Films by Tuning Deposition Time and Molecular Weight of Polyelectrolytes.

    PubMed

    Yu, Jing; Sanyal, Oishi; Izbicki, Andrew P; Lee, Ilsoon

    2015-09-01

    This work focuses on the design of porous polymeric films with nano- and micro-sized pores existing in distinct zones. The porous thin films are fabricated by the post-treatment of layer-by-layer assembled poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayers. In order to improve the processing efficiency, the deposition time is shortened to ≈ 10 s. It is found that fine porous structures can be created even by significantly reducing the processing time. The effect of using polyelectrolytes with widely different molecular weights is also studied. The pore size is increased by using high molecular weight PAH, while high molecular weight PAA minimizes the pore size to nanometer scale. Having gained a precise control over the pore size, layered multiscale porous thin films are further built up with either a microsized porous zone on top of a nanosized porous zone or vice versa. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Morphological Behavior of Thin Polyhedral Oligomeric Silsesquioxane Films at the Molecular Scale

    SciTech Connect

    G Evmenenko; B Stripe; P Dutta

    2011-12-31

    Synchrotron X-ray reflectivity (XRR) was used to study the structure of thin films of polyhedral oligomeric silsesquioxanes (POSS) with side organic chains of different flexibility and containing terminal epoxy groups. POSS films were deposited from volatile solvents on hydroxylated and hydrogen-passivated silicon surfaces. The XRR data show a variety of structural morphologies, including autophobic molecular monolayers and bilayers as well as uniform films. The role of conformational and energetic factors governing the development of different morphologies in a restricted geometry is discussed.

  15. Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy.

    PubMed

    Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge

    2015-06-21

    We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.

  16. Imaging the condensation and evaporation of molecularly thin ethanol films with surface forces apparatus

    SciTech Connect

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Zhang, Di; Ni, Zhonghua E-mail: yunfeichen@seu.edu.cn; Yi, Hong; Chen, Yunfei E-mail: yunfeichen@seu.edu.cn

    2014-01-15

    A new method for imaging condensation and evaporation of molecularly thin ethanol films is reported. It is found that the first adsorbed layer of ethanol film on mica surface behaves as solid like structure that cannot flow freely. With the increase of exposure time, more ethanol molecules condense over the mica surface in the saturated ethanol vapor condition. The first layer of adsorbed ethanol film is about 3.8 Å thick measured from the surface forces apparatus, which is believed to be the average diameter of ethanol molecules while they are confined in between two atomically smooth mica surfaces.

  17. Towards active microfluidics: Interface turbulence in thin liquid films with floating molecular machines

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Mikhailov, Alexander S.

    2009-06-01

    Thin liquid films with floating active protein machines are considered. Cyclic mechanical motions within the machines, representing microscopic swimmers, lead to molecular propulsion forces applied to the air-liquid interface. We show that when the rate of energy supply to the machines exceeds a threshold, the flat interface becomes linearly unstable. As a result of this instability, the regime of interface turbulence, characterized by irregular traveling waves and propagating machine clusters, is established. Numerical investigations of this nonlinear regime are performed. Conditions for the experimental observation of the instability are discussed.

  18. Molecular dynamics simulations of grain boundaries in thin nanocrystalline silicon films

    SciTech Connect

    Berman, G.P.; Doolen, G.D.; Mainieri, R.; Campbell, D.K.; Luchnikov, V.A. |

    1997-10-01

    Using molecular dynamics simulations, the grain boundaries in thin polycrystalline silicon films (considered as promising material for future nanoelectronic devices) are investigated. It is shown that in polysilicon film with randomly oriented grains the majority of grain boundaries are disordered. However, some grains with small mutual orientation differences can form extended crystalline patterns. The structure of the grain boundaries satisfies the thermodynamical criterion. The majority of atoms in the grain boundaries are tetrahedrally coordinated with the nearest neighbors, even though the grain boundaries are disordered. The grain boundary matter is characterized as an amorphous phase with a characteristic tetragonality value.

  19. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    PubMed

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  20. FT-IR, FT-Raman and NMR characterization of 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate and investigation of its reactive and optoelectronic properties by molecular dynamics simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Fazal, Edakot; Mary, Y. Sheena; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Nagarajan, Subban; Van Alsenoy, C.

    2017-01-01

    The FT-IR and FT-Raman spectra of the synthesized compound, 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate is recorded and analyzed. Optimized molecular structure, wave numbers, corresponding assignments regarding 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate has become screened tentatively as well as hypothetically using Gaussian09 program package. Natural bonding orbital assessment has been completed with a reason to clarify charge transfer or conjugative interaction, the intra-molecular re-hybridization and delocalization of electron density within the molecule. The NMR spectral assessment had been made choosing structure property relationship by chemical shifts along with the magnetic shielding effects regarding the title compound. The first and second hyperpolarizabilities were calculated. The calculated first order hyperpolarizability is commensurate with the documented worth of very similar derivatives and could be an interesting object for more experiments on nonlinear optics. Local reactivity properties have been investigated using average local ionization energies and Fukui functions. Investigation of optoelectronic properties encompassed calculations of reorganization energies and hopping rates of charge carriers within the framework of Marcus semi-empiric approach. The docked ligand title compound forms a stable complex with CDK inhibitors and gives a binding affinity value of -9.7 kcal/mol and molecular docking results suggest that the compound might exhibit inhibitory activity against CDK inhibitors.

  1. Mesoporous thin films of ``molecular squares'' as sensors for volatile organic compounds

    SciTech Connect

    Keefe, M.H.; Slone, R.V.; Hupp, J.T.; Czaplewski, K.F.; Snurr, R.Q.; Stern, C.L.

    2000-04-18

    Mesoporous thin films of rhenium-based molecular squares, [Re(CO){sub 3}Cl(L)]{sub 4} (L = pyrazine, 4,4{prime}-bipyridine), have been utilized as sensors for volatile organic compounds (VOCs). The sensing was conducted using a quartz crystal microbalance with the target compounds present in the gas phase at concentrations ranging from 0.05 to 1 mM. Quartz crystal microbalance studies with these materials allowed for distinction between the following VOCs: (1) small aromatic versus aliphatic molecules of almost identical size and volatility and (2) an array of benzene molecules derivatized with electron donating/withdrawing substituents. The experiments suggest that the mesoporous host materials interact with VOC guest molecules through both van der Waals and weak charge-transfer interactions. In addition, size selectivity is shown by exposure of the molecular squares to cyclic ethers of differing size.

  2. Molecular doping for control of gate bias stress in organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Hein, Moritz P.; Zakhidov, Alexander A.; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K.; Leo, Karl

    2014-01-01

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  3. Molecular Weight Effects on the Glass Transition and Confinement Behavior of Polymer Thin Films.

    PubMed

    Xia, Wenjie; Hsu, David D; Keten, Sinan

    2015-08-01

    Nanoscale polymer thin films exhibit strong confinement effects on Tg arising from free surfaces. However, the coupled influence of molecular weight (MW) and surface effects on Tg is not well understood for low MW film systems below the entanglement length. Utilizing atomistically informed coarse-grained molecular dynamics simulations for poly(methyl methacrylate) (PMMA), it is demonstrated that the decrease in free-standing film Tg with respect to bulk is more significant for low MW compared to high MW systems. Investigation of the local interfacial properties reveals that the increase in the local free volume near the free surface is greater for low MW, explaining the MW dependence of Tg -confinement behaviors. These findings corroborate recent experiments on low MW films, and highlight the relationship between nanoconfinement phenomena and local free volume effects arising from free surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecularly imprinted protein recognition thin films constructed by controlled/living radical polymerization.

    PubMed

    Sasaki, Shogo; Ooya, Tooru; Kitayama, Yukiya; Takeuchi, Toshifumi

    2015-02-01

    We demonstrated the synthesis of molecularly imprinted polymers (MIPs) with binding affinity toward a target protein, ribonuclease A (RNase) by atom transfer radical polymerization (ATRP) of acrylic acid, acrylamide, and N,N'-methylenebisacrylamide in the presence of RNase. The binding activity of the MIPs was evaluated by surface plasmon resonance (SPR) of the MIP thin layers prepared on the gold-coated sensor chips. The MIPs prepared by ATRP (MIP-ATRP) had a binding affinity toward RNase with larger binding amount compared to MIPs prepared by conventional free radical polymerization methods (MIP-RP). Moreover, protein selectivity was evaluated using reference proteins (cytochrome c, myoglobin, and α-lactalbumin) and was confirmed in MIP-ATRP of optimum film thickness determined experimentally to be 15-30 nm; however, protein selectivity was not achieved in all MIP-RP. We have shown that ATRP is powerful technique for preparing protein recognition materials by molecular imprinting.

  5. Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Shen, J. L.; Chou, W. C.

    2016-07-01

    We have investigated the luminescence characteristics of Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system. The temperature-dependent photoluminescence (PL) and excitation power-dependent PL spectra were measured to clarify the luminescence mechanisms of the Zn1-xCdxO thin films. The peak energy of the Zn1-xCdxO thin films with increasing the Cd concentration is observed as redshift and can be fitted by the quadratic function of alloy content. The broadened full-width at half-maximum (FWHM) estimated from the 15 K PL spectra as a function of Cd content shows a larger deviation between the experimental values and theoretical curve, which indicates that experimental FWHM values are affected not only by alloy compositional disorder but also by localized excitons occupying states in the tail of the density of states. The Urbach energy determined from an analysis of the lineshape of the low-energy side of the PL spectrum and the degree of localization effect estimated from the temperature-induced S-shaped PL peak position described an increasing mean exciton-localization effects in ZnCdO films with increasing the Cd content. In addition, the PL intensity and peak position as a function of excitation power are carried out to clarify the types of radiative recombination and the effects of localized exciton in the ZnCdO films with different Cd contents.

  6. Mass spectrometric behaviour of carboxylated polyethylene glycols and carboxylated octylphenol ethoxylates.

    PubMed

    Frańska, Magdalena; Zgoła, Agnieszka; Rychłowska, Joanna; Szymański, Andrzej; Łukaszewski, Zenon; Frański, Rafał

    2003-01-01

    Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra.

  7. Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-triphos complex: molecular control over selectivity and substrate scope.

    PubMed

    vom Stein, Thorsten; Meuresch, Markus; Limper, Dominik; Schmitz, Marc; Hölscher, Markus; Coetzee, Jacorien; Cole-Hamilton, David J; Klankermayer, Jürgen; Leitner, Walter

    2014-09-24

    The complex [Ru(Triphos)(TMM)] (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane, TMM = trimethylene methane) provides an efficient catalytic system for the hydrogenation of a broad range of challenging functionalities encompassing carboxylic esters, amides, carboxylic acids, carbonates, and urea derivatives. The key control factor for this unique substrate scope results from selective activation to generate either the neutral species [Ru(Triphos)(Solvent)H2] or the cationic intermediate [Ru(Triphos)(Solvent)(H)(H2)](+) in the presence of an acid additive. Multinuclear NMR spectroscopic studies demonstrated together with DFT investigations that the neutral species generally provides lower energy pathways for the multistep reduction cascades comprising hydrogen transfer to C═O groups and C-O bond cleavage. Carboxylic esters, lactones, anhydrides, secondary amides, and carboxylic acids were hydrogenated in good to excellent yields under these conditions. The formation of the catalytically inactive complexes [Ru(Triphos)(CO)H2] and [Ru(Triphos)(μ-H)]2 was identified as major deactivation pathways. The former complex results from substrate-dependent decarbonylation and constitutes a major limitation for the substrate scope under the neutral conditions. The deactivation via the carbonyl complex can be suppressed by addition of catalytic amounts of acids comprising non-coordinating anions such as HNTf2 (bis(trifluoromethane)sulfonimide). Although the corresponding cationic cycle shows higher overall barriers of activation, it provides a powerful hydrogenation pathway at elevated temperatures, enabling the selective reduction of primary amides, carbonates, and ureas in high yields. Thus, the complex [Ru(Triphos)(TMM)] provides a unique platform for the rational selection of reaction conditions for the selective hydrogenation of challenging functional groups and opens novel synthetic pathways for the utilization of renewable carbon sources.

  8. Lability and Basicity of Bipyridine-Carboxylate-Phosphonate Ligand Accelerate Single-Site Water Oxidation by Ruthenium-Based Molecular Catalysts.

    PubMed

    Shaffer, David W; Xie, Yan; Szalda, David J; Concepcion, Javier J

    2017-09-24

    A critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s(-1), faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L)2] (bpH2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediates O-O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.

  9. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

    PubMed Central

    Sundberg, Pia

    2014-01-01

    Summary The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. PMID:25161845

  10. A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2017-04-01

    Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.

  11. Growth of SrVO{sub 3} thin films by hybrid molecular beam epitaxy

    SciTech Connect

    Eaton, Craig; Brahlek, Matthew; Engel-Herbert, Roman; Moyer, Jarrett A.; Alipour, Hamideh M.; Grimley, Everett D.; LeBeau, James M.

    2015-11-15

    The authors report the growth of stoichiometric SrVO{sub 3} thin films on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (001) substrates using hybrid molecular beam epitaxy. This growth approach employs a conventional effusion cell to supply elemental A-site Sr and the metalorganic precursor vanadium oxytriisopropoxide (VTIP) to supply vanadium. Oxygen is supplied in its molecular form through a gas inlet. An optimal VTIP:Sr flux ratio has been identified using reflection high-energy electron-diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy, demonstrating stoichiometric SrVO{sub 3} films with atomically flat surface morphology. Away from the optimal VTIP:Sr flux, characteristic changes in the crystalline structure and surface morphology of the films were found, enabling identification of the type of nonstoichiometry. For optimal VTIP:Sr flux ratios, high quality SrVO{sub 3} thin films were obtained with smallest deviation of the lattice parameter from the ideal value and with atomically smooth surfaces, indicative of the good cation stoichiometry achieved by this growth technique.

  12. Molecular orientation dependence of hole-injection barrier in pentacene thin film on the Au surface in organic thin film transistor

    NASA Astrophysics Data System (ADS)

    Ihm, Kyuwook; Kim, Bongsoo; Kang, Tai-Hee; Kim, Ki-Jeong; Joo, Min Ho; Kim, Tae Hyeong; Yoon, Sang Soo; Chung, Sukmin

    2006-07-01

    We have investigated the effects of a buffer layer insertion on the performance of the pentacene based thin film transistor with a bottom contact structure. When the pentacene molecules have a standing up coordination on the Au surface that is modified by the benzenethiol or methanethiol, the transition region in the pentacene thin film is removed along the boundary between the Au and silicon oxide region, and the hole-injection barrier decreases by 0.4eV. Pentacene on various surfaces showed that the highly occupied molecular level is 0.2-0.4eV lower in the standing up coordination than in the lying down coordination.

  13. Molecular Processes Underlying the Structure and Assembly of Thin Films and Nanoparticles at Complex interfaces

    SciTech Connect

    Richmond, Geraldine

    2016-06-03

    differences in how water behaves at hydrophobic self-assembled monolayer (SAMS)/water interfaces relative to the organic liquid/water interfaces. Several monolayer films have been examined in these studies using a combination of vibrational sum frequency spectroscopy (VSFS), contact angle measurements and AFM. At the hydrocarbon monolayer/water interface we find that water has a weak bonding interaction with the monolayer film that results in an orientation of water at the terminus of these hydrocarbon chains. The water-film interaction is still present for fluorinated films but it is found to be considerably weaker. Hydration and Surfactant Adsorption at Salt/Water Interfaces This set of studies has examined the molecular characteristics of the CaF2/water interface using VSFS. Our first studies detailed the structure and orientation of water molecules adsorbed at this mineral surfaces including studies of the surface in the presence of aqueous solutions of salts. These studies have been followed by a series of static and time-resolved studies of the adsorption of carboxylic acid containing organics at this surface, specifically carboxylic acid surfactants and acetic acid. In the latter we have developed a new method for time resolved studies that involve sequential wavelength tuning and automated control of spatial beam overlap at the target can probe amplitude changes of sum-frequency resonances in widely spaced infrared regions. This offers great advantages for the study of the synchronism of molecular processes at interfaces. This approach is particularly suitable to investigate the synchronization of interfacial processes such as surfactant adsorption at charged mineral surfaces. Macromolecular Assembly at Liquid/Liquid Interfaces Macromolecular assembly at the interface between water and a hydrophobic surface underlies some of the most important biological and environmental processes on the planet. Our work has examined polymer adsorption and assembly of

  14. Identification of a Carboxylic Acid Metabolite from the Catabolism of Fluoranthene by a Mycobacterium sp

    PubMed Central

    Kelley, Ingrid; Freeman, James P.; Evans, Frederick E.; Cerniglia, Carl E.

    1991-01-01

    A Mycobacterium sp. previously isolated from oil-contaminated estuarine sediments was capable of extensively mineralizing the high-molecular-weight polycyclic aromatic hydrocarbon fluoranthene. A carboxylic acid metabolite accumulated and was isolated by thin-layer and high-pressure liquid chromatographic analyses of ethyl acetate extracts from acidified culture media. The metabolite reached a maximum concentration of approximately 0.65% after 24 h of incubation. On the basis of comparisons with authentic compound in which we used UV and fluorescence spectrophotometry and Rf values, as well as mass spectral and proton and carbon nuclear magnetic resonance spectral analyses, the metabolite was identified as 9-fluorenone-1-carboxylic acid. This is the first report in a microbial system of a fluoranthene metabolite in which significant degradation of one of the aromatic rings has occurred. PMID:16348429

  15. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    SciTech Connect

    Ames, Richard L.

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate counterparts of similar thickness

  16. Solar Selective Coatings Prepared From Thin-Film Molecular Mixtures and Evaluated

    NASA Technical Reports Server (NTRS)

    Jaworske, Don A.

    2003-01-01

    Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling molecular mixing during ion-beam sputter deposition, researchers can tailor the solar selective coatings to have the combined properties of high solar absorptance and low infrared emittance. On orbit, these combined properties simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. The solar selective coatings are envisioned for use on minisatellites, for applications where solar energy is used to power heat engines or to heat remote regions in the interior of the spacecraft. Such systems may be useful for various missions, particularly those to middle Earth orbit. Sunlight must be concentrated by a factor of 100 or more to achieve the desired heat inlet operating temperature. At lower concentration factors, the temperature of the heat inlet surface of the heat engine is too low for efficient operation, and at high concentration factors, cavity type heat receivers become attractive. The an artist's concept of a heat engine, with the annular heat absorbing surface near the focus of the concentrator coated with a solar selective coating is shown. In this artist's concept, the heat absorbing surface powers a small Stirling convertor. The astronaut's gloved hand is provided for scale. Several thin-film molecular mixtures have been prepared and evaluated to date, including mixtures of aluminum and aluminum oxide, nickel and aluminum oxide, titanium and aluminum oxide, and platinum and aluminum oxide. For example, a 2400- Angstrom thick mixture of titanium and aluminum oxide was found to have a solar absorptance of 0.93 and an infrared emittance of 0.06. On the basis of tests performed under flowing nitrogen at temperatures as high as 680 C, the coating appeared to be durable at elevated temperatures. Additional durability

  17. Re-orientation transition in molecular thin films: Potts model with dipolar interaction.

    PubMed

    Hoang, Danh-Tai; Kasperski, Maciej; Puszkarski, Henryk; Diep, H T

    2013-02-06

    We study the low-temperature behavior and the phase transition of a thin film by Monte Carlo simulation. The thin film has a simple cubic lattice structure where each site is occupied by a Potts parameter which indicates the molecular orientation of the site. We take only three molecular orientations in this paper, which correspond to the three-state Potts model. The Hamiltonian of the system includes (i) the exchange interaction J(ij) between nearest-neighbor sites i and j, (ii) the long-range dipolar interaction of amplitude D truncated at a cutoff distance r(c), and (iii) a single-ion perpendicular anisotropy of amplitude A. We allow J(ij) = J(s) between surface spins, and J(ij) = J otherwise. We show that the ground state depends on the ratio D/A and r(c). For a single layer, for a given A, there is a critical value D(c) below (above) which the ground-state (GS) configuration of molecular axes is perpendicular (parallel) to the film surface. When the temperature T is increased, a re-orientation transition occurs near D(c): the low-T in-plane ordering undergoes a transition to the perpendicular ordering at a finite T, below the transition to the paramagnetic phase. The same phenomenon is observed in the case of a film with a thickness. Comparison with the Fe/Gd experiment is given. We show that the surface phase transition can occur below or above the bulk transition depending on the ratio J(s)/J. Surface and bulk order parameters as well as other physical quantities are shown and discussed.

  18. Molecular dynamics simulations of disjoining pressure effect in ultra-thin water film on a metal surface

    NASA Astrophysics Data System (ADS)

    Hu, H.; Sun, Y.

    2013-12-01

    Molecular dynamics (MD) simulations are used to examine the disjoining pressure effect of a water thin film adsorbed on a metal surface. The model was validated against experiments and verified against previous MD simulations. The variation of vapor pressure with film thickness was examined for a water thin film adsorbed on a gold surface. The results agree well with the classic disjoining pressure theory without surface charges and show that liquid layering does not affect disjoining pressure. However, surface charges of the gold substrate enhance the disjoining pressure of the water thin film, consistent with experimental evidences for polar liquids.

  19. Molecular modelling, synthesis and acetylcholinesterase inhibition of ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate.

    PubMed

    Soriano, Elena; Samadi, Abdelouahid; Chioua, Mourad; de los Ríos, Cristóbal; Marco-Contelles, José

    2010-05-01

    In silico analysis of ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate (2) predicts that this molecule should be successfully docked in the PAS, and easily accommodated in the CAS of AChE. The synthesis and the AChE/BuChE inhibition studies are reported, confirming that compound 2 is a potent and selective AChE inhibitor, and consequently, a new lead compound for further development into new dual CAS/PAS cholinergic agents for the treatment of Alzheimer's disease.

  20. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films.

    PubMed

    Peumans, Peter; Uchida, Soichi; Forrest, Stephen R

    2003-09-11

    The power conversion efficiency of small-molecular-weight and polymer organic photovoltaic cells has increased steadily over the past decade. This progress is chiefly attributable to the introduction of the donor-acceptor heterojunction that functions as a dissociation site for the strongly bound photogenerated excitons. Further progress was realized in polymer devices through use of blends of the donor and acceptor materials: phase separation during spin-coating leads to a bulk heterojunction that removes the exciton diffusion bottleneck by creating an interpenetrating network of the donor and acceptor materials. The realization of bulk heterojunctions using mixtures of vacuum-deposited small-molecular-weight materials has, on the other hand, posed elusive: phase separation induced by elevating the substrate temperature inevitably leads to a significant roughening of the film surface and to short-circuited devices. Here, we demonstrate that the use of a metal cap to confine the organic materials during annealing prevents the formation of a rough surface morphology while allowing for the formation of an interpenetrating donor-acceptor network. This method results in a power conversion efficiency 50 per cent higher than the best values reported for comparable bilayer devices, suggesting that this strained annealing process could allow for the formation of low-cost and high-efficiency thin film organic solar cells based on vacuum-deposited small-molecular-weight organic materials.

  1. Lipoate-based imprinted self-assembled molecular thin films for biosensor applications.

    PubMed

    Tappura, Kirsi; Vikholm-Lundin, Inger; Albers, Willem M

    2007-01-15

    Lipoate derivatives were used for the formation of imprinted self-assembled molecular thin films for the recognition of morphine. A large collection of lipoate derivatives was screened by molecular dynamics simulations in various solvents. A set of ligands showing favourable interactions with morphine in aqueous environment was selected for synthesis. Morphine-imprinted layers were then produced on gold substrates in mixed monolayers with morphine added as the template. The binding of ligands and morphine to gold, as well as the association/dissociation of morphine to the formed layers were studied with Surface Plasmon Resonance. Imprinted factors were highly variable and were dependent on ligand/morphine mixing ratio, lipoate derivative and monolayer preparation method. The imprinted factors were as high as 100 and 600 for one of the ligands. The results show that the simulations are able to provide correct information of the relative strengths of the molecular interactions between the ligand and morphine molecules in different solutions. The liquid phase simulations are, however, not able to predict the imprinted factors (i.e. distinguish between specific and non-specific binding), because the specificity is not formed before self-assembly on the surface.

  2. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  3. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Sallis, S.; Piper, L. J.; McCombe, B.; Durbin, S. M.

    2014-04-01

    The alloying of bismuth with III-V semiconductors, in particular GaAs and InAs thin films grown by molecular beam epitaxy (MBE), has attracted considerable interest due to the accompanying changes in band structure and lattice constant. Specifically, bismuth incorporation in these compounds results in both a reduction in band gap (through shifting of the valence band) and an increase in the lattice constant of the alloy. To fully understand the composition of these alloys, a better understanding of the binary endpoints is needed. At present, a limited amount of literature exists on the III-Bi family of materials, most of which is theoretical work based on density functional theory calculations. The only III-Bi material known to exist (in bulk crystal form) is InBi, but its electrical properties have not been sufficiently studied and, to date, the material has not been fabricated as a thin film. We have successfully deposited crystalline InBi on (100) GaAs substrates using MBE. Wetting of the substrate is poor, and regions of varying composition exist across the substrate. To obtain InBi, the growth temperature had to be below 100 °C. It was found that film crystallinity improved with reduced Bi flux, into an In-rich regime. Additionally, attempts were made to grow AlBi and GaBi.

  4. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  5. Thin film growth of CaFe2As2 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  6. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    NASA Astrophysics Data System (ADS)

    Honda, K.; Yamaguchi, H.; Kobayashi, M.; Morita, M.; Takahara, A.

    2008-03-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-Cy, where y is fluoromethylene number in Rf group] thin films were systematically investigated. Spin-coated PFA-Cy thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-Cy with short side chain (y<=6) and increased above y>=8. GIXD revealed that fluoroalkyl side chain of PFA-Cy with y>=8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-Cy can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity.

  7. Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min

    PubMed Central

    Matsuba, Kazuaki; Wang, Chengxiang; Saruwatari, Kazuko; Uesusuki, Yusuke; Akatsuka, Kosho; Osada, Minoru; Ebina, Yasuo; Ma, Renzhi; Sasaki, Takayoshi

    2017-01-01

    Controlled arrangement of molecularly thin two-dimensional (2D) materials on a substrate, particularly into precisely organized mono- and multilayer structures, is a key to design a nanodevice using their unique and enhanced physical properties. Several techniques such as mechanical transfer process and Langmuir-Blodgett deposition have been applied for this purpose, but they have severe restrictions for large-scale practical applications, for example, limited processable area and long fabrication time, requiring skilled multistep operations. We report a facile one-pot spin-coating method to realize dense monolayer tiling of various 2D materials, such as graphene and metal oxide nanosheets, within 1 min over a wide area (for example, a 30-mmφ substrate). Centrifugal force drives the nanosheets in a thin fluid layer to the substrate edge where they are packed edge to edge all the way to the central region, without forming overlaps. We investigated the relationship between precursor concentration, rotation speed, and ultraviolet-visible absorbance and developed an effective method to optimize the parameters for neat monolayer films. The multilayer buildup is feasible by repeating the spin-coating process combined with a heat treatment at moderate temperature. This versatile solution-based technique will provide both fundamental and practical advancements in the rapid large-scale production of artificial lattice-like films and nanodevices based on 2D materials. PMID:28695198

  8. Temperature stabilized effusion cell evaporation source for thin film deposition and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tiedje, H. F.; Brodie, D. E.

    2000-05-01

    A simple effusion cell evaporation source for thin film deposition and molecular-beam epitaxy is described. The source consists of a crucible with a thermocouple temperature sensor heated by a resistive crucible heater. Radiation heat transfer from the crucible to the thermocouple produces a consistent and reproducible thermocouple temperature for a given crucible temperature, without direct contact between the thermocouple and the crucible. The thermocouple temperature is somewhat less than the actual crucible temperature because of heat flow from the thermocouple junction along the thermocouple lead wires. In a typical case, the thermocouple temperature is 1007 °C while the crucible is at 1083 °C. The crucible temperature stability is estimated from the measured sensitivity of the evaporation rate of indium to temperature, and the observed variations in the evaporation rate for a fixed thermocouple temperature. The crucible temperature peak-to-peak variation over a one hour period is 1.2 °C. Machined molybdenum crucibles were used in the indium and copper sources for depositing CuInSe2 thin films for solar cells.

  9. Thermal stabilization of thin gold nanowires by surfactant-coating: a molecular dynamics study.

    PubMed

    Huber, Stefan E; Warakulwit, Chompunuch; Limtrakul, Jumras; Tsukuda, Tatsuya; Probst, Michael

    2012-01-21

    The thermal stabilization of thin gold nanowires with a diameter of about 2 nm by surfactants is investigated by means of classical molecular dynamics simulations. While the well-known melting point depression leads to a much lower melting of gold nanowires compared to bulk gold, coating the nanowires with surfactants can reverse this, given that the attractive interaction between surfactant molecules and gold atoms lies beyond a certain threshold. It is found that the melting process of coated nanowires is dominated by surface instability patterns, whereas the melting behaviour of gold nanowires in a vacuum is dominated by the greater mobility of atoms with lower coordination numbers that are located at edges and corners. The suppression of the melting by surfactants is explained by the isotropic pressure acting on the gold surface (due to the attractive interaction) which successfully suppresses large-amplitude thermal motions of the gold atoms.

  10. Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy.

    PubMed

    Gu, Yi; Wang, Kai; Zhou, Haifei; Li, Yaoyao; Cao, Chunfang; Zhang, Liyao; Zhang, Yonggang; Gong, Qian; Wang, Shumin

    2014-01-13

    InPBi thin films have been grown on InP by gas source molecular beam epitaxy. A maximum Bi composition of 2.4% is determined by Rutherford backscattering spectrometry. X-ray diffraction measurements show good structural quality for Bi composition up to 1.4% and a partially relaxed structure for higher Bi contents. The bandgap was measured by optical absorption, and the bandgap reduction caused by the Bi incorporation was estimated to be about 56 meV/Bi%. Strong and broad photoluminescence signals were observed at room temperature for samples with xBi < 2.4%. The PL peak position varies from 1.4 to 1.9 μm, far below the measured InPBi bandgap.

  11. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular Passivation

    SciTech Connect

    Rajachidambaram, Meena Suhanya; Pandey, Archana; Vilayur Ganapathy, Subramanian; Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2013-10-21

    The role of back channel surface chemistry on amorphous zinc tin oxide (ZTO) bottom gate thin film transistors (TFT) have been characterized by positive bias-stress measurements and x-ray photoelectron spectroscopy. Positive bias-stress turn-on voltage shifts for ZTO-TFTs were significantly reduced by passivation of back channel surfaces with self-assembled monolayers of n-hexylphosphonic acid (n-HPA) when compared to ZTO-TFTs with no passivation. These results indicate that adsorption of molecular species on exposed back channel of ZTO-TFTs strongly influence observed turn-on voltage shifts, as opposed to charge injection into the dielectric or trapping due to oxygen vacancies.

  12. Molecular orientation and anisotropic carrier mobility in poorly soluble polythiophene thin films

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yuki; Misaki, Masahiro; Yamamoto, Satoshi; Torii, Masafumi; Ishida, Kenji; Ueda, Yasukiyo

    2012-05-01

    Oriented thin films of a poorly soluble polythiophene, poly[benzo[1,2-d:4,5-d']bisthiazole-2,6-diyl(3',4,4″,4″'-tetradodecyl[2,2':5',2″:5″,2″'-quaterthiophene]-5,5″'-diyl)], were fabricated using the friction-transfer technique. The detail of the film structure was investigated using polarized UV-vis spectroscopy, transmission electron microscopy, and grazing-incidence x-ray diffraction observations. The friction-transfer technique enables control of the anisotropic carrier transport according to the face-on and/or edge-on molecular orientations in films with one-directionally aligned polymer backbones.

  13. Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, B.; Gao, J.; Wu, K. M.; Liu, C.

    2009-05-01

    AlN films were grown at 785 ∘C on (0001) sapphire substrates by radio-frequency assisted molecular beam epitaxy. Post-growth rapid thermal annealing (RTA) was carried out from 900 to 1200 ∘C for 10 s in flowing N 2. The morphological and structural properties of the AlN epilayers before and after the RTA were studied by atomic force microscopy, x-ray diffraction and transmission electron microscopy. It is found that the threading dislocations can be decreased to an order of magnitude by using an interlayer growth method. The surface roughness (RMS) of the AlN thin films becomes larger with the increase of annealing temperature. The full width at half maximum of AlN (0002) rocking curve reaches its minimum after the RTA at 1000 ∘C.

  14. Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters on Montmorillonite (Mmt): effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure.

    PubMed

    Ait-Akbour, Rachid; Boustingorry, Pascal; Leroux, Fabrice; Leising, Frédéric; Taviot-Guého, Christine

    2015-01-01

    This study deals with the adsorption of PolyCarboxylate Poly(ethylene glycol) esters (PCP) superplasticizers on Na-, Mg- and Ca-saturated Montmorillonite (Mmt) clays. The interactions have been examined through different experimental methods: adsorption isotherms, zeta potential measurements and sedimentation experiments. It was found that PCP adsorption depends both on the architecture of PCP molecules and the nature of cation located on the interlayer exchange sites of the Montmorillonite. Whatever the PCP, a larger amount was adsorbed on Na-Mont than on Mg-Mont or Ca-Mont. This indicates the occurrence of two adsorption mechanisms: (i) a superficial adsorption via electrostatic interactions between the carboxylate groups of PCP and positively charged sites on clay surfaces, (ii) intercalation of ether units of the PCP grafts in the interlayer space by displacement of water molecules coordinated to the exchangeable cations. Furthermore, despite the weak negative values of the zeta potential, the addition of PCP promotes the stability of the suspensions which is attributed to steric repulsion acting between particles. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.

    PubMed

    Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk

    2017-10-11

    We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; VOC = 0.73 V, JSC = 15.4 mA·cm(-2), and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m(-2)), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only JSC through improved ICT but also VOC through the evenly distributed sensitizer surface coverage.

  16. Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni(II), Co(II), Zn(II) and Mn(II) ions based on density functional theory.

    PubMed

    Creaven, B S; Devereux, M; Georgieva, I; Karcz, D; McCann, M; Trendafilova, N; Walsh, M

    2011-12-15

    Novel Ni(II), Co(II), Zn(II) and Mn(II) complexes of coumarin-3-carboxylic acid (HCCA) were studied at experimental and theoretical levels. The complexes were characterised by elemental analyses, FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by magnetic susceptibility measurements. The binding modes of the ligand and the spin states of the metal complexes were established by means of molecular modelling of the complexes studied and calculation of their IR, NMR and absorption spectra at DFT(TDDFT)/B3LYP level. The experimental and calculated data verified high spin Ni(II), Co(II) and Mn(II) complexes and a bidentate binding through the carboxylic oxygen atoms (CCA2). The model calculations predicted pseudo octahedral trans-[M(CCA2)(2)(H(2)O)(2)] structures for the Zn(II), Ni(II) and Co(II) complexes and a binuclear [Mn(2)(CCA2)(4)(H(2)O)(2)] structure. Experimental and calculated (1)H, (13)C NMR, IR and UV-Vis data were used to distinguish the two possible bidentate binding modes (CCA1 and CCA2) as well as mononuclear and binuclear structures of the metal complexes.

  17. Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni(II), Co(II), Zn(II) and Mn(II) ions based on density functional theory

    NASA Astrophysics Data System (ADS)

    Creaven, B. S.; Devereux, M.; Georgieva, I.; Karcz, D.; McCann, M.; Trendafilova, N.; Walsh, M.

    2011-12-01

    Novel Ni(II), Co(II), Zn(II) and Mn(II) complexes of coumarin-3-carboxylic acid (HCCA) were studied at experimental and theoretical levels. The complexes were characterised by elemental analyses, FT-IR, 1H NMR, 13C NMR and UV-Vis spectroscopy and by magnetic susceptibility measurements. The binding modes of the ligand and the spin states of the metal complexes were established by means of molecular modelling of the complexes studied and calculation of their IR, NMR and absorption spectra at DFT(TDDFT)/B3LYP level. The experimental and calculated data verified high spin Ni(II), Co(II) and Mn(II) complexes and a bidentate binding through the carboxylic oxygen atoms (CCA2). The model calculations predicted pseudo octahedral trans-[M(CCA2) 2(H 2O) 2] structures for the Zn(II), Ni(II) and Co(II) complexes and a binuclear [Mn 2(CCA2) 4(H 2O) 2] structure. Experimental and calculated 1H, 13C NMR, IR and UV-Vis data were used to distinguish the two possible bidentate binding modes (CCA1 and CCA2) as well as mononuclear and binuclear structures of the metal complexes.

  18. Defect-free thin InAs nanowires grown using molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2016-01-21

    In this study, we designed a simple method to achieve the growth of defect-free thin InAs nanowires with a lateral dimension well below their Bohr radius on different substrate orientations. By depositing and annealing a thin layer of Au thin film on a (100) substrate surface, we have achieved the growth of defect-free uniform-sized thin InAs nanowires. This study provides a strategy to achieve the growth of pure defect-free thin nanowires.

  19. Molecular beam epitaxy deposition of Gd2O3 thin films on SrTiO3 (100) substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jinxing; Hao, Jinghua; Zhang, Yangyang; Wei, Hongmei; Mu, Juyi

    2016-06-01

    Gd2O3 thin films are grown on the SrTiO3 (100) substrate by molecular beam epitaxy (MBE) deposition. X-ray diffraction (XRD) analysis, conventional transmission electron microscopy (TEM) and aberration-corrected scanning transmission electron microscopy (STEM) are performed to investigate the microstructure of deposited thin films. It is found that the as-deposited thin film possesses a very uniform thickness of ∼40 nm and is composed of single cubic phase Gd2O3 grains. STEM and TEM observations reveal that Gd2O3 thin film grows epitaxially on the SrTiO3 (100) substrate with (001)Gd2O3//(100)STO and [110]Gd2O3//[001]STO orientations. Furthermore, the Gd atoms are found to diffuse into the SrTiO3 substrate for a depth of one unit cell and substitute for the Sr atoms near the interface.

  20. High Lipophilicty of Perfluoroalkyl Carboxylate and Sulfonate

    PubMed Central

    Jing, Ping; Rodgers, Patrick J.; Amemiya, Shigeru

    2009-01-01

    Here we report on remarkably high lipophilicity of perfluoroalkyl carboxylate and sulfonate. A lipophilic nature of this emerging class of organic pollutants has been hypothesized as an origin of their bioaccumulation and toxicity. Both carboxylate and sulfonate, however, are considered hydrophilic while perfluroalkyl groups are not only hydrophobic but also oleophobic. Partition coefficients of homologous series of perfluoroalkyl and alkyl carboxylates between water and n-octanol were determined as a measure of their lipophilicity by ion-transfer cyclic voltammetry. Very similar lipophilicity of perfluoroalkyl and alkyl chains with the same length is demonstrated experimentally for the first time by fragment analysis of the partition coefficients. This finding is important for pharmaceutical and biomedical applications of perfluoroalkyl compounds. Interestingly, ∼2 orders of magnitude higher lipophilicity of a perfluoroalkyl carboxylate or sulfonate in comparison to its alkyl counterpart is ascribed nearly exclusively to their oxoanion groups. The higher lipophilicity originates from a strong electron-withdrawing effect of the perfluoroalkyl group on the adjacent oxoanion group, which is weakly hydrated to decrease its hydrophilicity. In fact, the inductive effect is dramatically reduced for a fluorotelomer with an ethylene spacer between perfluorohexyl and carboxylate groups, which is only as lipophilic as its alkyl counterpart, nonanoate, and is 400 times less lipophilic than perfluorononanoate. The high lipophilicity of perfluoroalkyl carboxylate and sulfonate implies that their permeation across such a thin lipophilic membrane as a bilayer lipid membrane is limited by their transfer at a membrane/water interface. The limiting permeability is lower and less dependent on their lipophilicity than the permeability controlled by their diffusion in the membrane interior as assumed in the classical solubility-diffusion model. PMID:19170492

  1. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle

    PubMed Central

    Hooper, Scott L.; Hobbs, Kevin H.; Thuma, Jeffrey B.

    2008-01-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vetebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca++ binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved. PMID:18616971

  2. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle.

    PubMed

    Hooper, Scott L; Hobbs, Kevin H; Thuma, Jeffrey B

    2008-10-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.

  3. Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Morshed, A. K. M. M.; Paul, Taitan C.; Khan, Jamil A.

    2011-11-01

    Molecular dynamics simulations have been employed to investigate the boiling phenomena of thin liquid films adsorbed on a nanostructured solid surface. The molecular system was comprised of the following: solid platinum wall, liquid argon, and argon vapor. A few layers of the liquid argon were placed on the nanoposts decorated solid surface. The nanoposts height was varied keeping the liquid film thickness constant to capture three scenarios: (i) liquid-film thickness is higher than the height of the nanoposts, (ii) liquid-film and nanoposts are of same height, and (iii) liquid-film thickness is less than the height of the nanoposts. The rest of the simulation box was filled with argon vapor. The simulation was started from its initial configuration, and once the equilibrium of the three phase system was established, the wall was suddenly heated to a higher temperature which resembles an ultrafast laser heating. Two different jump temperatures were selected: a few degrees above the boiling point to initiate normal evaporation and far above the critical point to initiate explosive boiling. Simulation results indicate nanostructures play a significant role in both cases: Argon responds very quickly for the nanostructured surface, the transition from liquid to vapor becomes more gradual, and the evaporation rate increases with the nanoposts height.

  4. Photochemical functionalization of gallium nitride thin films with molecular and biomolecular layers.

    PubMed

    Kim, Heesuk; Colavita, Paula E; Metz, Kevin M; Nichols, Beth M; Sun, Bin; Uhlrich, John; Wang, Xiaoyu; Kuech, Thomas F; Hamers, Robert J

    2006-09-12

    We demonstrate that photochemical functionalization can be used to functionalize and photopattern the surface of gallium nitride crystalline thin films with well-defined molecular and biomolecular layers. GaN(0001) surfaces exposed to a hydrogen plasma will react with organic molecules bearing an alkene (C=C) group when illuminated with 254 nm light. Using a bifunctional molecule with an alkene group at one end and a protected amine group at the other, this process can be used to link the alkene group to the surface, leaving the protected amine exposed. Using a simple contact mask, we demonstrate the ability to directly pattern the spatial distribution of these protected amine groups on the surface with a lateral resolution of <12 mum. After deprotection of the amines, single-stranded DNA oligonucleotides were linked to the surface using a bifunctional cross-linker. Measurements using fluorescently labeled complementary and noncomplementary sequences show that the DNA-modified GaN surfaces exhibit excellent selectivity, while repeated cycles of hybridization and denaturation in urea show good stability. These results demonstrate that photochemical functionalization can be used as an attractive starting point for interfacing molecular and biomolecular systems with GaN and other compound semiconductors.

  5. Long-range correlated dynamics in ultra-thin molecular glass films

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Glor, Ethan C.; Li, Mu; Liu, Tianyi; Wahid, Kareem; Zhang, William; Riggleman, Robert A.; Fakhraai, Zahra

    2016-09-01

    It has been previously shown that the free surface of molecular glasses has enhanced surface diffusion compared to the bulk. However, the degree by which the glass dynamics are affected by the free surface remains unexplored. Here, we measure enhanced dynamics in ultra-thin molecular glass films as a function of film thickness. We demonstrate that these films exhibit a sharp transition from glassy solid to liquid-like behavior when the thickness is reduced below 30 nm. This liquid-like behavior persists even at temperatures well below the glass transition temperature, Tg. The enhanced dynamics in these films can produce large scale morphological features during physical vapor deposition and lead to a dewetting instability in films held at temperatures as low as Tg - 35 K. The effective viscosity of these films are measured by monitoring the dewetting kinetics. These measurements combined with cooling-rate dependent Tg measurements show that the apparent activation barrier for rearrangement decreases sharply in films thinner than 30 nm. This sharp transition in the dynamics suggests that long-range correlated dynamics exists in these films such that the enhancement induced by the free surface can strongly affect the dynamics of the film over a length scale that is ten times larger than the size of the molecules.

  6. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  7. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  8. A novel coordination polymer of 7-azaindole-3-carboxylic acid with sodium ions: crystal and molecular structures, vibrational spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Morzyk-Ociepa, Barbara; Szmigiel, Ksenia; Petrus, Rafał; Turowska-Tyrk, Ilona; Michalska, Danuta

    2017-09-01

    A novel two-dimensional coordination polymer, catena-poly[(μ2-7-azaindole-3-carboxylato-O:N)-di-aqua-sodium], [Na(7AI3CAH)(H2O)2]n has been synthesized and investigated by a single crystal X-ray diffraction, vibrational spectroscopy and DFT calculations. The sodium complex crystallizes in the triclinic system, space group Pī with a = 7.2226 (4), b = 7.4342 (7), c = 8.8428 (8) Å, α = 103.568 (8), β = 93.425 (6), γ = 91.233 (6)°, V = 460.42 (7) A3 and Z = 2. The asymmetric unit contains two crystallographically independent, half occupied sodium cations surrounded by one 7AI3CAH anion and two water molecules. The O-deprotonated 7-azaindole-3-carboxylate ligand (7AI3CAH) bridges the adjacent Na ions via one oxygen atom of the carboxylate group and via the pyridine nitrogen atom of the 7-azaindole group, which is quite unusual. The sodium cations are six-coordinated in a distorted octahedral geometry, where two apical positions are occupied by two water molecules. Extensive intermolecular Nsbnd H⋯O and Osbnd H⋯O hydrogen bonds stabilize the crystal structure of the complex. The infrared and Raman spectra of [Na(7AI3CAH)(H2O)2]n were recorded in the solid state. The theoretical wavenumbers, infrared intensities, Raman scattering activities and Raman intensities were calculated at the B3LYP/6-311++G(d,p) level for a theoretical model of the title compound including an inter ligand Nsbnd H⋯O(aqua) interaction. A detailed vibrational assignment has been made on the basis of the calculated potential energy distribution.

  9. A highly selective molecularly imprinted sorbent for extraction of 2-aminothiazoline-4-carboxylic acid--Synthesis, characterization and application in post-mortem whole blood analysis.

    PubMed

    Luliński, Piotr; Giebułtowicz, Joanna; Wroczyński, Piotr; Maciejewska, Dorota

    2015-11-13

    In this paper, the optimized synthesis and detailed characterization of novel imprinted material for selective extraction of 2-aminothiazoline-4-carboxylic acid (ATCA) were described. The prepolymeric system contained 1-allyl-2-thiourea and ethylene glycol dimethacrylate in methanol, tetrahydrofuran and dimethyl sulfoxide porogenic mixture and 2-aminothiazole-4-carboxylic acid which was used as the template for ATCA. This structural analog of the target analyte was found to provide the imprinted polymer with sufficient binding capacity (60.7 ± 0.9 μg g(-1)) and high selectivity (imprinting factor equal to 18.4) toward ATCA. The adsorption of ATCA was analyzed by the Langmuir model. The heterogeneous population of binding sites on the imprinted polymer was characterized by dissociation constants equal to 3.72 μg L(-1) and 435 μg L(-1) for high and low affinity binding sites, respectively. The morphology of the polymer was studied employing SEM and BET analyses and the composition was confirmed by EDS and (13)C CP/MAS NMR analyses. Adsorption of amino acids on the imprinted material was tested to analyze the impact of the sample components. The superiority of the imprinted sorbent was proved in a novel dispersive solid phase extraction procedure of ATCA from post-mortem whole blood with respect to the extraction efficacy on the commercial ion-exchange sorbents. The limit of quantification and limit of detection of ATCA in the new analytical method were 12 μg L(-1) and 3.5 μg L(-1), respectively. The recovery of ATCA was in the range of 81-89% and the precision of the method ranged from 1.5 to 2.7%.

  10. Phases, line tension and pattern formation in molecularly thin films at the air-water interface

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam

    A Langmuir film, which is a molecularly thin insoluble film on a liquid substrate, is one practical realization of a quasi-two dimensional matter. The major advantages of this system for the study of phase separation and phase co-existence are (a) it allows accurate control of the components and molecular area of the film and (b) it can be studied by various methods that require very flat films. Phase separation in molecularly thin films plays an important role in a range of systems from biomembranes to biosensors. For example, phase-separated lipid nano-domains in biomembranes are thought to play crucial roles in membrane function. I use Brewster Angel Microscopy (BAM) coupled with Fluorescence Microscopy (FM) and static Light Scattering Microscopy (LSM) to image phases and patterns within Langmuir films. The three microscopic techniques --- BAM, FM and LSM --- are complimentary to each other, providing distinct sets of information. They allow direct comparison with literature results in lipid systems. I have quantitatively validated the use of detailed hydrodynamic simulations to determine line tension in monolayers. Line tension decreases as temperature rises. This decrease gives us information on the entropy associated with the line, and thus about line structure. I carefully consider the thermodynamics of line energy and entropy to make this connection. In the longer run, LSM will be exploited to give us further information about line structure. I have also extended the technique by testing it on domains within the curved surface of a bilayer vesicle. I also note that in the same way that the presence of surface-active agents, known as surfactants, affects surface energy, the addiction of line active agents alters the inter-phase line energy. Thus my results set to stage to systematically study the influence of line active agents ---'linactants' --- on the inter-phase line energy. Hierarchal self-assembled chiral patterns were observed as a function of

  11. Hygroscopic Characteristics of Alkylaminium Carboxylate Aerosols.

    PubMed

    Gomez-Hernandez, Mario; McKeown, Megan; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Lavi, Avi; Rudich, Yinon; Collins, Don R; Zhang, Renyi

    2016-03-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (κ) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The κ value for all alkylaminium carboxylates is in the range of 0.06-1.37 derived from the HGF measurements at 90% RH, 0.05-0.49 derived from the CCN measurements, and 0.22-0.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate.

  12. Supramolecular Scaffold for Tailoring the Two-Dimensional Assembly of Functional Molecular Units into Organic Thin Films.

    PubMed

    Leung, Franco King-Chi; Ishiwari, Fumitaka; Kajitani, Takashi; Shoji, Yoshiaki; Hikima, Takaaki; Takata, Masaki; Saeki, Akinori; Seki, Shu; Yamada, Yoichi M A; Fukushima, Takanori

    2016-09-14

    Tailoring structurally anisotropic molecular assemblies while controlling their orientation on solid substrates is an important subject for advanced technologies that use organic thin films. Here we report a supramolecular scaffold based on tripodal triptycene assemblies, which enables functional molecular units to assemble into a highly oriented, multilayered two-dimensional (2D) structure on solid substrates. The triptycene building block carries an ethynyl group and three flexible side chains at the 10- and 1,8,13-positions, respectively. These bridgehead-substituted tripodal triptycenes self-assembled on solid substrates to form a well-defined "2D hexagonal + 1D lamellar" structure, which developed parallel to the surface of the substrates. Remarkably, the assembling properties of the triptycene building blocks, particularly for a derivative with tri(oxyethylene)-containing side chains, were not impaired when the alkyne terminal was functionalized with a large molecular unit such as C60, which is comparable in diameter to the triptycene framework. Consequently, thin films with a multilayered 2D assembly of the C60 unit were obtained. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed that the C60 film exhibits highly anisotropic charge-transport properties. Bridgehead-substituted tripodal triptycenes may provide a versatile supramolecular scaffold for tailoring the 2D assembly of molecular units into a highly oriented thin film, and in turn for exploiting the full potential of anisotropic molecular functions.

  13. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    PubMed

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  14. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  15. Molecular dynamics simulations of disjoining pressure effects in ultra-thin water films on a metal surface

    NASA Astrophysics Data System (ADS)

    Hu, Han; Sun, Ying

    2013-11-01

    Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.

  16. Effects of sapphire annealing on the structural properties of AIN thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhang, Jia

    2010-03-01

    The effects of sapphire annealing on high-quality AlN growth by molecular beam epitaxy have been studied. AlN thin films grown on annealed sapphire (1200 °C, 12 h) were hole-free. The full width at half maximum of the (0 0 0 2) and (1 0 1bar 5)ω-rocking curves for 260 nm-thick AlN thin films grown on annealed sapphires were 200 and 900 arcsec, respectively. The substantial improvement of AlN quality is ascribed to reduction of dislocation density by sapphire annealing.

  17. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  18. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  19. Organic Molecular Thin Films: Growth, Structure, and Manipulation Studied by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Stock, Taylor J. Z.

    Room temperature scanning tunneling microscopy (RT-STM) has been used to observe the growth modes, morphologies and crystal structures of sub-monolayer (ML) to multilayer thin films of phthalocyanines (H2Pc and CuPc), C60 fullerenes, and CuPc:C60 composites, grown on the Cu(111) surface. In addition to imaging these films, STM has been used to manipulate the various molecules via hot tunneling electron injection. At sub-ML coverage the phthalocyanines are mobile on the Cu(111) and form a diffuse 2D gas. Molecules in this mobile phase can be immobilized on the substrate through exposure to tunneling electrons at a bias voltage exceeding a threshold value. The bias threshold value and strength of the induced molecular immobilization is dependent on the particular phthalocyanine molecule/substrate combination. At approximately one ML coverage the phthalocyanine molecules become sterically confined and lie flat on the Cu(111), forming an ordered 2D lattice. As coverage is increased beyond 1ML in the Cu(111)-CuPc system, the molecule-substrate interaction diminishes in strength and the intermolecular interaction becomes dominant, causing the molecular crystal lattice parameters to evolve towards the bulk α-phase. This trend continues for the layer-by-layer growth of three complete ML, and then gives way to 3D island growth at a coverage of 4 ML. The 3D island growth mode of the pure CuPc films is dramatically suppressed by the inclusion of C60 during deposition. X-ray diffraction (XRD) and STM studies reveal that the CuPc molecular packing is altered upon C 60 inclusion, producing disordered CuPc-C60 interfaces. The ordered molecular stacking of CuPc is found to be disrupted completely when C60 concentration reaches 30 wt.%. This disorder in the CuPc:C 60 composites is explained in terms of the relative strengths of the intermolecular interactions. Furthermore, an understanding of these relative interaction strengths is exploited to grow ordered composite films

  20. Poly[triaquabis-(μ(2)-3-carboxy-pyrazine-2-carboxyl-ato)dilithium(I)].

    PubMed

    Tombul, Mustafa; Güven, Kutalmış; Büyükgüngör, Orhan

    2008-02-20

    In the title compound, [Li(2)(C(6)H(3)N(2)O(4))(2)(H(2)O)(3)](n), the coordination number for both independent Li(+) cations is five. One of the Li(+) ions has a distorted trigonal-bipyramidal geometry, coordinated by one of the carboxyl O atoms of a 3-carboxy-pyrazine-2-carboxyl-ate ligand, two O atoms from two water mol-ecules, and an N and a carboxyl-ate O atom of a second 3-carboxy-pyrazine-2-carboxyl-ate ligand. The other Li(+) ion also has a distorted trigonal-bipyramidal geometry, coordinated by one water mol-ecule and two 3-carboxy-pyrazine-2-carboxyl-ate ligands through an N and a carboxyl-ate O atom from each. One of the carboxyl groups of the two ligands takes part in an intra-molecular O-H⋯O hydrogen bond. The stabilization of the crystal structure is further assisted by O-H⋯O, O-H⋯N and C-H⋯O hydrogen-bonding inter-actions involving the water mol-ecules and carboxyl-ate O atoms.

  1. Pharmacophore Elucidation and Molecular Docking Studies on 5-Phenyl-1-(3-pyridyl)-1H-1,2,4-triazole-3-carboxylic Acid Derivatives as COX-2 Inhibitors

    PubMed Central

    Lindner, Marc; Sippl, Wolfgang; Radwan, Awwad A.

    2010-01-01

    A set of 5-phenyl-1-(3-pyridyl)-1H-1,2,4-triazole-3-carboxylic acid derivatives (16–32) showing anti-inflammatory activity was analyzed using a three-dimensional qualitative structure-selectivity relationship (3D QSSR) method. The CatalystHipHop approach was used to generate a pharmacophore model for cyclooxygenase-2 (COX-2) inhibitors based on a training set of 15 active inhibitors (1–15). The degree of fitting of the test set compounds (16–32) to the generated hypothetical model revealed a qualitative measure of the more or less selective COX-2 inhibition of these compounds. The results indicate that most derivatives (16, 18, 20–25, and 30–32) are able to effectively satisfy the proposed pharmacophore geometry using energy accessible conformers (Econf < 20 kcal/mol). In addition, the triazole derivatives (16–32) were docked into COX-1 and COX-2 X-ray structures, using the program GOLD. Based on the docking results it is suggested that several of these novel triazole derivatives are active COX inhibitors with a significant preference for COX-2. In principle, this work presents an interesting, comprehensive approach to theoretically predict the mode of action of compounds that showed anti-inflammatory activity in an in vivo model. PMID:21179343

  2. Characterization of the multiple molecular mechanisms underlying RsaL control of phenazine-1-carboxylic acid biosynthesis in the rhizosphere bacterium Pseudomonas aeruginosa PA1201.

    PubMed

    Sun, Shuang; Chen, Bo; Jin, Zi-Jing; Zhou, Lian; Fang, Yun-Ling; Thawai, Chitti; Rampioni, Giordano; He, Ya-Wen

    2017-03-18

    Phenazines are important secondary metabolites that have been found to affect a broad spectrum of organisms. Two almost identical gene clusters phz1 and phz2 are responsible for phenazines biosynthesis in the rhizobacterium Pseudomonas aeruginosa PA1201. Here, we show that the transcriptional regulator RsaL is a potent repressor of phenazine-1-carboxylic acid (PCA) biosynthesis. RsaL negatively regulates phz1 expression and positively regulates phz2 expression via multiple mechanisms. First, RsaL binds to a 25-bp DNA region within the phz1 promoter to directly repress phz1 expression. Second, RsaL indirectly regulates the expression of both phz clusters by decreasing the activity of the las and pqs quorum sensing (QS) systems, and by promoting the rhl QS system. Finally, RsaL represses phz1 expression through the downstream transcriptional regulator CdpR. RsaL directly binds to the promoter region of cdpR to positively regulate its expression, and subsequently CdpR regulates phz1 expression in a negative manner. We also show that RsaL represents a new mechanism for the turnover of the QS signal molecule N-3-oxododecanoyl-homoserine lactone (3-oxo-C12-HSL). Overall, this study elucidates RsaL control of phenazines biosynthesis and indicates that a PA1201 strain harboring deletions in both the rsaL and cdpR genes could be used to improve the industrial production of PCA.

  3. Novel photoresist thin films with in-situ photoacid generator by molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Han; Bent, Stacey F.

    2013-03-01

    Current photoresist materials are facing many challenges introduced by advanced lithographies, particularly the need for excellent compositional homogeneity and ultrathin film thickness. Traditional spin-on polymeric resists have inherent limitations in achieving a high level of control over the chemical composition, leading to interest in development of alternative methods for making photoresists. In this work, we demonstrate that molecular layer deposition (MLD) is a potential method for synthesizing photoresists because it allows for precise control over organic film thickness and composition. MLD utilizes sequential, self-limiting reactions of organic precursors to build a thin film directly on a substrate surface and grows organic films by depositing only one molecular layer at each precursor dose, which in turn allows for fine-tuning of the position and concentration of various functionalities in the deposited film. In this study, we use bifunctional precursors, diamine and diisocyanate, to build polyurea resist films via urea coupling reaction between the amine and isocyanate groups. Acid-labile groups and photoacid generators (PAGs) are embedded in the backbone of the resist films with a highly uniform distribution. The resist films were successfully deposited and characterized for both materials properties and resist response. E-beam patterning was achieved with the resist films. Cross-linking behavior of the resist films was observed, likely due to the aromatic rings in the films, which is undesirable for application as a positive-tone photoresist. Moreover, the in-situ polymer-bound PAGs had low sensitivity. It is suggested that this effect may arise because the PAG is cation-bound, leading to lower efficiency of sulfur-carbon bond cleavage in the sulfonium cation, which is needed to produce the photoacid, and consequently a lower photoacid yield. Further work is needed to improve the performance of the MLD resist films.

  4. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    NASA Astrophysics Data System (ADS)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  5. Molecular Hydrogen Bubbles Formation on Thin Vacuum Deposited Aluminum Layers After Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Sznajder, Maciej; Geppert, Ulrich

    2014-06-01

    Metals are the most common materials used in space technology. Metal structures, while used in space, are subjected to the full spectrum of the electromagnetic radiation together with particle irradiation. Hence, they undergo degradation. Future space missions are planned to proceed in the interplanetary space, where the protons of the solar wind play a very destructive role on metallic surfaces. Unfortunately, their real degradation behavior is to a great extent unknown.Our aim is to predict materials' behavior in such a destructive environment. Therefore both, theoretical and experimental studies are performed at the German Aerospace Center (DLR) in Bremen, Germany.Here, we report the theoretical results of those studies. We examine the process of H2-bubble formation on metallic surfaces. H2-bubbles are metal caps filled with Hydrogen molecular gas resulting from recombination processes of the metal free electrons and the solar protons. A thermodynamic model of the bubble growth is presented. Our model predicts e.g. the velocity of that growth and the reflectivity of foils populated by bubbles.Formation of bubbles irreversibly changes the surface quality of irradiated metals. Thin metallic films are especially sensitive for such degradation processes. They are used e.g. in the solar sail propulsion technology. The efficiency of that technology depends on the thermoptical properties of the sail materials. Therefore, bubble formation processes have to be taken into account for the planning of long-term solar sail missions.

  6. Growth and characterization of polymer thin films grown using molecular layer deposition with heterobifunctional precursors

    NASA Astrophysics Data System (ADS)

    Gibbs, Zachary Michael Conway

    In this work, growth of thin polymer films using molecular layer deposition with heterobifunctional precursors is investigated. Several growth phenomena are observed including: loss or gain of reactive sites as a result of precursor reactivity or vapor pressure; precursor diffusion and reaction within the porous polymer film; and crosslinking. Reactions were investigated using quartz crystal microbalance, Fourier transform infrared spectroscopy, and various ex situ techniques. Reactions involving 4-azidophenylisothiocyanate and 4-aminobenzonitrile were shown to stop growth after only a few cycles which is attributed to a loss in reactive sites which was modeled by an exponentially decaying growth rate. Growth of 4-carboxyphenylisothiocyanate with TMA and water was investigated as well. Active site multiplication as a result of the trifunctionality of the TMA molecule was proposed to explain the significantly higher growth rate for TMA/CI films. TMA/H2O/CI films showed the ability to crosslink through aluminum hydroxyl condensation reactions. Upon increasing the reaction temperature, reactant diffusion was observed in the form of mass removal upon TMA exposure. This same phenomena is thought to be occurring in films grown using Diels-Alder reactions in the third section of this thesis. These films showed a strong growth rate dependence upon reactant purge time and growth temperature. FTIR seems to weakly support Diels-Alder reaction, but it appears that the primary film growth mechanism is through CVD-like diffusion and condensation reactions.

  7. Producing and imaging a thin line of He*₂ molecular tracers in helium-4.

    PubMed

    Gao, J; Marakov, A; Guo, W; Pawlowski, B T; Van Sciver, S W; Ihas, G G; McKinsey, D N; Vinen, W F

    2015-09-01

    Cryogenic helium-4 has long been recognized as a useful material in fluids research. The unique properties of helium-4 in the gaseous phase and the normal liquid phase allow for the generation of turbulent flows with exceptionally high Reynolds and Rayleigh numbers. In the superfluid phase, helium-4 exhibits two-fluid hydrodynamics and possesses fascinating properties due to its quantum nature. However, studying the flows in helium-4 has been very challenging largely due to the lack of effective visualization and velocimetry techniques. In this article, we discuss the development of novel instrumentation for flow-visualization in helium based on the generation and imaging of thin lines of metastable He*₂ tracer molecules. These molecular tracers are created via femtosecond-laser field-ionization of helium atoms and can be imaged using a laser-induced fluorescence technique. By observing the displacement and distortion of the tracer lines in helium, quantitative information about the flow field can be extracted. We present experimental results in the study of thermal counterflow in superfluid helium that validate the concept of this technique. We also discuss anticipated future developments of this powerful visualization technique.

  8. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography.

    PubMed

    Winter, Gregory T; Wilhide, Joshua A; LaCourse, William R

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  9. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    SciTech Connect

    Dangwal Pandey, A. Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V.; Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A.

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  10. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dangwal Pandey, A.; Krausert, K.; Franz, D.; Grânäs, E.; Shayduk, R.; Müller, P.; Keller, T. F.; Noei, H.; Vonk, V.; Stierle, A.

    2016-08-01

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  11. Molecular dynamics study of deformation and fracture in a tantalum nano-crystalline thin film

    NASA Astrophysics Data System (ADS)

    Smith, Laura; Zimmerman, Jonathan A.; Hale, Lucas M.; Farkas, Diana

    2014-06-01

    We present results from molecular dynamics simulations of two nano-crystalline tantalum thin films that illuminate the variety of atomic-scale mechanisms of incipient plasticity. Sample 1 contains approximately 500 K atoms and 3 grains, chosen to facilitate study at 105 s-1 strain rate; sample 2 has 4.6 M atoms and 30 grains. The samples are loaded in uniaxial tension at deformation rates of 105-109 s-1, and display phenomena including emission of perfect 1/2<1 1 1>-type dislocations and the formation and migration of twin boundaries. It was found that screw dislocation emission is the first deformation mechanism activated at strain rates below 108 s-1. Deformation twins emerge as a deformation mechanism at higher strains, with twins observed to cross grain boundaries as larger strains are reached. At high strain rates atoms are displaced with the characteristic twin vector at a ratio of 3 : 1 (108 s-1) or 4 : 1 (109 s-1) to characteristic dislocation vectors. Fracture is nucleated through a nano-void growth process. Grain boundary sliding does not scale with increasing strain rate. Detailed analysis of nano-scale deformation using these tools enhances our understanding of deformation mechanisms in tantalum.

  12. Reduced graphene oxide/molecular imprinted polymer-organic thin film transistor for amino acid detection

    NASA Astrophysics Data System (ADS)

    Halim, Nurul Farhanah AB.; Musa, Nur Hazwani; Zakaria, Zulkhairi; Von Schleusingen, Mubaraq; Ahmad, Mohd Noor; Derman, Nazree; Shakaff, Ali Yeon Md.

    2017-03-01

    This works reports the electrical performance of reduced graphene oxide (RGO)/Molecular imprinted polymer (MIP)- organic thin film transistor (OTFT) for amino-acid detection, serine. These biomimetic sensors consider MIP as man-tailored biomimetic recognition sites that play an important role in signal transduction. MIP provides recognition sites compatible with serine molecules was developed by dispersing serine with methylacrylate acid (MAA) as functional monomer and Ethylene glycol dimethylacrylate (EGDMA) as cross-linker. The imprinted polymeric were mixed with reduced graphene oxide to produced sensing layer for the sensor. RGO-MIP layer was introduced between source and drain of OTFT via spin coating as a detecting layer for serine molecules. RGO was introduced into MIP, to allow a highly conductive sensing material thus enhanced selectivity and sensitivity of the sensor. By analyzing the electrical performance of the sensors, the performances of OTFT sensor enhanced with RGO/MIP interlayer and OTFT sensor with MIP interlayer when exposed to serine analyte were obtained. The results showed that there were remarkable shifts of drain current (ID) obtained from OTFT sensor with RGO/MIP interlayer after exposed to serine analyte. Moreover, the sensitivity of OTFT sensor with RGO/MIP interlayer was nearly higher than the OTFT sensor with MIP interlayer. Hence, it proved that RGO successfully enhanced the sensing performance of OTFT sensor.

  13. Molecular Cloning and Evidence for Osmoregulation of the Δ1-Pyrroline-5-Carboxylate Reductase (proC) Gene in Pea (Pisum sativum L.) 12

    PubMed Central

    Williamson, Cynthia L.; Slocum, Robert D.

    1992-01-01

    Several cDNA clones encoding Δ1-pyrroline-5-carboxylate reductase (P5CR, l-proline:NAD[P]+ 5-oxidoreductase, EC 1.5.1.2), which catalyzes the terminal step in proline biosynthesis, were isolated from a pea leaf library screened with a 32P-labeled Aval fragment of a soybean nodule P5CR cDNA (A.J. Delauney, D.P.S. Verma [1990] Mol Gen Genet 221: 299-305). DNA sequence analysis of one full-length 1.3-kb clone (pPPS3) indicated that the pea P5CR gene contains a single major open reading frame encoding a polypeptide of 28,242 Da. Genomic analysis suggested that two to three copies of the P5CR gene are present per haploid genome in pea. The primary structure of pea P5CR is 85% identical with that of soybean and exhibits significant homology to human, yeast, and Escherichia coli P5CR. The sequence of one of four highly conserved domains found in all prokaryotic and eukaryotic P5CRs is similar to the consensus sequence for the NAD(P)H-binding site of other enzymes. The pea P5CR cDNA hybridized to two transcripts, 1.3 and 1.1 kb in size, in polyadenylated RNA purified from leaf tissues of mature, light-grown plants (4 weeks old). Only the 1.3-kb transcript was detected in younger (1 week old) greened seedlings or in etiolated seedlings. In greened seedlings, steady-state levels of this 1.3-kb mRNA increased approximately 5-fold in root tissues within 6 h after plants were irrigated with 0.4 m NaCl, suggesting that expression of the P5CR gene is osmoregulated. Images Figure 3 Figure 4 Figure 5 PMID:11537868

  14. Molecular Packing Structure of Mesogenic Octa-Hexyl Substituted Phthalocyanine Thin Film by X-ray Diffraction Analysis.

    PubMed

    Ohmori, Masashi; Higashi, Takuya; Fujii, Akihiko; Ozaki, Masanori

    2016-04-01

    The molecular packing structure in a thin film of the liquid crystalline phthalocyanine, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), which is a promising small-molecular material for solution-processable organic thin-film solar cells, has been investigated by X-ray diffraction (XRD) measurement. The crystal structure of C6PcH2 in the spin-coated film was determined to be a centered rectangular structure (a = 36.4 Å, b = 20.3 Å). The tilt angle of the phthalocyanine core normal vector was 34-39° from the column axis, and the shortest intermolecular distance was 3.9-4.0 A. The crystal structure determined by XRD analysis was ascertained to be consistent with that calculated by Fourier analvsis.

  15. RESEARCH ON THE ELECTRONIC AND OPTICAL PROPERTIES OF POLYMER AND OTHER ORGANIC MOLECULAR THIN FILMS

    SciTech Connect

    ALEXEI G. VITUKHNOVSKY; IGOR I. SOBELMAN - RUSSIAN ACADEMY OF SCIENCES

    1995-09-06

    Optical properties of highly ordered films of poly(p-phenylene) (PPP) on different substrates, thin films of mixtures of conjugated polymers, of fullerene and its composition with polymers, molecular J-aggregates of cyanine dyes in frozen matrices have been studied within the framework of the Agreement. Procedures of preparation of high-quality vacuum deposited PPP films on different substrates (ITO, Si, GaAs and etc.) were developed. Using time-correlated single photon counting technique and fluorescence spectroscopy the high quality of PPP films has been confirmed. Dependence of structure and optical properties on the conditions of preparation were investigated. The fluorescence lifetime and spectra of highly oriented vacuum deposited PPP films were studied as a function of the degree of polymerization. It was shown for the first time that the maximum fluorescence quantum yield is achieved for the chain length approximately equal to 35 monomer units. The selective excitation of luminescence of thin films of PPP was performed in the temperature range from 5 to 300 K. The total intensity of luminescence monotonically decreases with decreasing temperature. Conditions of preparation of highly cristallyne fullerene C{sub 60} films by the method of vacuum deposition were found. Composites of C{sub 60} with conjugated polymers PPV and polyacetylene (PA) were prepared. The results on fluorescence quenching, IR and resonant Raman spectroscopy are consistent with earlier reported ultrafast photoinduced electron transfer from PPV to C{sub 60} and show that the electron transfer is absent in the case of the PA-C{sub 60} composition. Strong quenching of PPV fluorescence was observed in the PPV-PA blends. The electron transfer from PPV to PA can be considered as one of the possible mechanisms of this quenching. The dynamics of photoexcitations in different types of J-aggregates of the carbocyanine dye was studied at different temperatures in frozen matrices. The optical

  16. Low molecular weight protein enrichment on mesoporous silica thin films for biomarker discovery.

    PubMed

    Fan, Jia; Gallagher, James W; Wu, Hung-Jen; Landry, Matthew G; Sakamoto, Jason; Ferrari, Mauro; Hu, Ye

    2012-04-17

    The identification of circulating biomarkers holds great potential for non invasive approaches in early diagnosis and prognosis, as well as for the monitoring of therapeutic efficiency.(1-3) The circulating low molecular weight proteome (LMWP) composed of small proteins shed from tissues and cells or peptide fragments derived from the proteolytic degradation of larger proteins, has been associated with the pathological condition in patients and likely reflects the state of disease.(4,5) Despite these potential clinical applications, the use of Mass Spectrometry (MS) to profile the LMWP from biological fluids has proven to be very challenging due to the large dynamic range of protein and peptide concentrations in serum.(6) Without sample pre-treatment, some of the more highly abundant proteins obscure the detection of low-abundance species in serum/plasma. Current proteomic-based approaches, such as two-dimensional polyacrylamide gel-electrophoresis (2D-PAGE) and shotgun proteomics methods are labor-intensive, low throughput and offer limited suitability for clinical applications.(7-9) Therefore, a more effective strategy is needed to isolate LMWP from blood and allow the high throughput screening of clinical samples. Here, we present a fast, efficient and reliable multi-fractionation system based on mesoporous silica chips to specifically target and enrich LMWP.(10,11) Mesoporous silica (MPS) thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different polymer templates and polymer concentrations in the precursor solution, various pore size distributions, pore structures, connectivity and surface properties were determined and applied for selective recovery of low mass proteins. The selective parsing of the enriched peptides into different subclasses according to their physicochemical properties will enhance the efficiency of recovery and detection of low abundance species. In combination with mass

  17. Low Molecular Weight Protein Enrichment on Mesoporous Silica Thin Films for Biomarker Discovery

    PubMed Central

    Fan, Jia; Gallagher, James W.; Wu, Hung-Jen; Landry, Matthew G.; Sakamoto, Jason; Ferrari, Mauro; Hu, Ye

    2012-01-01

    The identification of circulating biomarkers holds great potential for non invasive approaches in early diagnosis and prognosis, as well as for the monitoring of therapeutic efficiency.1-3 The circulating low molecular weight proteome (LMWP) composed of small proteins shed from tissues and cells or peptide fragments derived from the proteolytic degradation of larger proteins, has been associated with the pathological condition in patients and likely reflects the state of disease.4,5 Despite these potential clinical applications, the use of Mass Spectrometry (MS) to profile the LMWP from biological fluids has proven to be very challenging due to the large dynamic range of protein and peptide concentrations in serum.6 Without sample pre-treatment, some of the more highly abundant proteins obscure the detection of low-abundance species in serum/plasma. Current proteomic-based approaches, such as two-dimensional polyacrylamide gel-electrophoresis (2D-PAGE) and shotgun proteomics methods are labor-intensive, low throughput and offer limited suitability for clinical applications.7-9 Therefore, a more effective strategy is needed to isolate LMWP from blood and allow the high throughput screening of clinical samples. Here, we present a fast, efficient and reliable multi-fractionation system based on mesoporous silica chips to specifically target and enrich LMWP.10,11 Mesoporous silica (MPS) thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different polymer templates and polymer concentrations in the precursor solution, various pore size distributions, pore structures, connectivity and surface properties were determined and applied for selective recovery of low mass proteins. The selective parsing of the enriched peptides into different subclasses according to their physicochemical properties will enhance the efficiency of recovery and detection of low abundance species. In combination with mass

  18. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  19. Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film

    NASA Technical Reports Server (NTRS)

    Gruhlke, R. W.; Holland, W. R.; Hall, D. G.

    1968-01-01

    Surface plasmons on opposite sides of a thin metal film can cross couple in the presence of a surface corrugation, or grating. The observation of this cross-coupling phenomenon as a radiative-decay mechanism for molecules near a corrugated thin metal film is reported.

  20. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    NASA Astrophysics Data System (ADS)

    Li, Qibin; Peng, Xianghe; Peng, Tiefeng; Tang, Qizhong; Zhang, Xiaomin; Huang, Cheng

    2015-12-01

    Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms' movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  1. Molecular organization and mixing in thin solid films of novel perylene tetracarboxylic dianhydride derivatives: Infrared and surface enhanced Raman studies

    NASA Astrophysics Data System (ADS)

    Kam, Alicia Patricia

    The present work focuses on the fabrication and spectroscopic characterization of submicron thin solid films of novel organic dyes. The synthesis, thin film fabrication, electronic and vibrational spectra of neat materials are described. The main group of organic dyes studied here are novel perylene tetracarboxylic derivatives. The fabrication of thin solid films on a variety of substrates is demonstrated and the long-range molecular organization in the films, extracted using mainly infrared techniques, is illustrated. The starting point in using vibrations as structural probes, is the vibrational assignments of the characteristic perylene tetracarboxylic fundamentals for each dye under study. The assigned vibrational spectra are employed as references to extract the molecular organization in the vacuum evaporated films using data from the complementary techniques: transmission infrared and reflection-absorption infrared spectroscopy. The understanding of the molecular organization opens the door to changing and controlling the molecular film structure with thermal annealing, and these studies are illustrated for bis(n-propylimido) perylene films. It is shown that reorientation can be induced in thin films of bisPTCD dye. The factors that may determine reorientation on thermal annealing are investigated. Surface-enhanced spectroscopic studies of metal island films coated with the dyes were carried out. The surface-enbanced vibrational spectroscopy (SEVS) used encompasses spectral data obtained from surface-enhanced Raman scattering (SERS), surface-enhanced-resonance Raman scattering- (SERRS) and surface-enhanced infrared (SEIR). The first systematic study of mixed thin solid films of PTDC materials and phthalocyanines, using vacuum co-evaporation, is presented. Mixed films of Perylene and phthalocyanine derivatives were fabricated and investigated using SERS, SERRS and SERRS imaging. It is demonstrated that SERRS global imaging is a powerful analytical tool that

  2. Determination of molecular anisotropy in thin films of discotic assemblies using attenuated total reflectance UV-visible spectroscopy.

    PubMed

    Flora, Ware H; Mendes, Sergio B; Doherty, Walter J; Saavedra, S Scott; Armstrong, Neal R

    2005-01-04

    We report here an investigation of absorbance anisotropy in highly ordered, single bilayer (ca. 5.6 nm) Langmuir-Blodgett (LB) thin films of discotic liquid-crystalline phthalocyanines, using a recently introduced broad-band attenuated total reflectance (ATR) spectroscopic technique, capable of measuring dichroism in such films in the UV--visible optical region down to absorbances of ca. 0.003 absorbance units. On the basis of the ATR measurements of LB-deposited films, a thorough treatment was established to determine the ensemble average of the Cartesian components and the associated optical anisotropy of transition dipoles in the molecular film. In an effort to recover order parameters of molecular orientation, those results were interpreted with a circular dipole model, which is the expected model for the isolated molecule based on symmetry properties. We measured a strong dipole component normal to the film plane that cannot be explained in terms of a truly circular model, indicating that the molecular transition dipoles were perturbed upon aggregation. The utility of the experimental approach was further demonstrated by (a) investigating the effect of substrate modifiers (methyl- and phenyl-terminated silanes) on the ordering within the phthalocyanine film and (b) the effect of water immersion and re-annealing of the thin film on molecular ordering and optical anisotropy.

  3. Design, synthesis, and characterization of ultra-thin robust films with molecular control

    NASA Astrophysics Data System (ADS)

    Kohli, Punit

    The work reported in this dissertation has demonstrated new ways to design, synthesize and characterize robust thin films with controlled molecular dimensions. The central point of this work is to provide the fundamental knowledge and understanding of layered-material assemblies to advance the field. We are especially interested in controlled layer-by-layer multilayer assemblies in which the properties of these films such as film thickness, linear and non-linear optical response, electrical and electronic behavior, and porosity can be controlled. Ultimately, these ultra-thin films may find applications in the areas of controlled released delivery systems, nonlinear optical devices, chemical interfaces and interfacial sciences, separation science, nanoelectronics, biocatalysis, and biotechnology. There are some requirements for successful films and coatings. For example, the films must be stable in their surrounding environment in which are used. Furthermore, the control of the properties of the films is also an important issue. Keeping these requirements in mind, we used maleimide-vinyl ether (MVE) copolymers to deposit coatings where we have ability to change the pendant groups on the maleimide monomers. We used MVE polymers because they form strictly alternating polymers and their structure and properties are well studied by others. They also possess excellent thermal and chemical resistant. Since changing the pendant groups on the succinimide groups gives us a great ability to control various properties makes MVE copolymers ideal candidates. We have used zirconium phosphonate (ZP) interlayer linking chemistry which is robust and allows for exquisite control over layered material assembly. Thus the use of polymer chains and ZP complexation led to quasi-2-dimensional films where we can control the properties of each layer of the films. These films are found to be robust to both chemical and thermal treatments. Although these coatings may find uses in various

  4. Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications.

    PubMed

    Biswas, Shaurjo; Shalev, Olga; Shtein, Max

    2013-01-01

    Rapid advances in research and development in organic electronics have resulted in many exciting discoveries and applications, including organic light-emitting devices for information display and illumination, solar cells, photodetectors, chemosensors, and logic. Organic optoelectronic materials are broadly classified as polymeric or small molecular. For the latter category, solvent-free deposition techniques are generally preferred to form well-defined interfaces and improve device performance. This article reviews several deposition and patterning methods for small molecular thin films and devices, including organic molecular beam deposition, vacuum thermal evaporation, organic vapor phase deposition, and organic vapor jet printing, and compares them to several other methods that have been proposed recently. We hope this review provides a compact but informative summary of the state of the art in organic device processing and addresses the various techniques' governing physical principles.

  5. Experimental and theoretical studies of the molecular structure of 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Acar, Betül; Yilmaz, Ibrahim; Çalışkan, Nezihe; Cukurovali, Alaaddin

    2017-07-01

    In this work, the title molecule, 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester (C30H34N2O2S1), was synthesized and characterized by FT-IR spectroscopy and single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P21/c. with Z = 4, a = 14.1988(6), b = 19.0893(5), c = 10.1325(4) Å, V = 2674.56(17) A3. The optimized structure parameters of the studied molecule was determined theoretically using HF/6-31G(d) and B3LYP/6-31G(d) methods for ground state, and compared with previously reported experimental findings. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental frequencies obtained by FT-IR spectra. The electronic properties, such as HOMO and LUMO energies, and molecular electrostatic potential (MEP) are also performed.

  6. Structure, vibrational spectra and DFT characterization of the intra- and inter-molecular interactions in 2-hydroxy-5-methylpyridine-3-carboxylic acid--normal modes of the eight-membered HB ring.

    PubMed

    Godlewska, P; Jańczak, J; Kucharska, E; Hanuza, J; Lorenc, J; Michalski, J; Dymińska, L; Węgliński, Z

    2014-01-01

    Fourier transform IR and Raman spectra, XRD studies and DFT quantum chemical calculations have been used to characterize the structural and vibrational properties of 2-hydroxy-5-methylpyridine-3-carboxylic acid. In the unit-cell of this compound two molecules related by the inversion center interact via OH⋯N hydrogen bonds. The double hydrogen bridge system is spaced parallel to the (102) crystallographic plane forming eight-membered arrangement characteristic for pyridine derivatives. The six-membered ring is the second characteristic unit formed via the intramolecular OH⋯O hydrogen bond. The geometry optimization of the monomer and dimer have been performed applying the Gaussian03 program package. All calculations were performed in the B3LYP/6-31G(d,p) basis set using the XRD data as input parameters. The relation between the molecular and crystal structures has been discussed in terms of the hydrogen bonds formed in the unit cell. The vibrations of the dimer have been discussed in terms of the resonance inside the system built of five rings coupled via hydrogen bonds.

  7. Molecular Mechanism of the Negative Regulation of Smad1/5 Protein by Carboxyl Terminus of Hsc70-interacting Protein (CHIP)*

    PubMed Central

    Wang, Le; Liu, Yi-Tong; Hao, Rui; Chen, Lei; Chang, Zhijie; Wang, Hong-Rui; Wang, Zhi-Xin; Wu, Jia-Wei

    2011-01-01

    The transforming growth factor-β (TGF-β) superfamily of ligands signals along two intracellular pathways, Smad2/3-mediated TGF-β/activin pathway and Smad1/5/8-mediated bone morphogenetic protein pathway. The C terminus of Hsc70-interacting protein (CHIP) serves as an E3 ubiquitin ligase to mediate the degradation of Smad proteins and many other signaling proteins. However, the molecular mechanism for CHIP-mediated down-regulation of TGF-β signaling remains unclear. Here we show that the extreme C-terminal sequence of Smad1 plays an indispensable role in its direct association with the tetratricopeptide repeat (TPR) domain of CHIP. Interestingly, Smad1 undergoes CHIP-mediated polyubiquitination in the absence of molecular chaperones, and phosphorylation of the C-terminal SXS motif of Smad1 enhances the interaction and ubiquitination. We also found that CHIP preferentially binds to Smad1/5 and specifically disrupts the core signaling complex of Smad1/5 and Smad4. We determined the crystal structures of CHIP-TPR in complex with the phosphorylated/pseudophosphorylated Smad1 peptides and with an Hsp70/Hsc70 C-terminal peptide. Structural analyses and subsequent biochemical studies revealed that the distinct CHIP binding affinities of Smad1/5 or Smad2/3 result from the nonconservative hydrophobic residues at R-Smad C termini. Unexpectedly, the C-terminal peptides from Smad1 and Hsp70/Hsc70 bind in the same groove of CHIP-TPR, and heat shock proteins compete with Smad1/5 for CHIP interaction and concomitantly suppress, rather than facilitate, CHIP-mediated Smad ubiquitination. Thus, we conclude that CHIP inhibits the signaling activities of Smad1/5 by recruiting Smad1/5 from the functional R-/Co-Smad complex and further promoting the ubiquitination/degradation of Smad1/5 in a chaperone-independent manner. PMID:21454478

  8. Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP).

    PubMed

    Wang, Le; Liu, Yi-Tong; Hao, Rui; Chen, Lei; Chang, Zhijie; Wang, Hong-Rui; Wang, Zhi-Xin; Wu, Jia-Wei

    2011-05-06

    The transforming growth factor-β (TGF-β) superfamily of ligands signals along two intracellular pathways, Smad2/3-mediated TGF-β/activin pathway and Smad1/5/8-mediated bone morphogenetic protein pathway. The C terminus of Hsc70-interacting protein (CHIP) serves as an E3 ubiquitin ligase to mediate the degradation of Smad proteins and many other signaling proteins. However, the molecular mechanism for CHIP-mediated down-regulation of TGF-β signaling remains unclear. Here we show that the extreme C-terminal sequence of Smad1 plays an indispensable role in its direct association with the tetratricopeptide repeat (TPR) domain of CHIP. Interestingly, Smad1 undergoes CHIP-mediated polyubiquitination in the absence of molecular chaperones, and phosphorylation of the C-terminal SXS motif of Smad1 enhances the interaction and ubiquitination. We also found that CHIP preferentially binds to Smad1/5 and specifically disrupts the core signaling complex of Smad1/5 and Smad4. We determined the crystal structures of CHIP-TPR in complex with the phosphorylated/pseudophosphorylated Smad1 peptides and with an Hsp70/Hsc70 C-terminal peptide. Structural analyses and subsequent biochemical studies revealed that the distinct CHIP binding affinities of Smad1/5 or Smad2/3 result from the nonconservative hydrophobic residues at R-Smad C termini. Unexpectedly, the C-terminal peptides from Smad1 and Hsp70/Hsc70 bind in the same groove of CHIP-TPR, and heat shock proteins compete with Smad1/5 for CHIP interaction and concomitantly suppress, rather than facilitate, CHIP-mediated Smad ubiquitination. Thus, we conclude that CHIP inhibits the signaling activities of Smad1/5 by recruiting Smad1/5 from the functional R-/Co-Smad complex and further promoting the ubiquitination/degradation of Smad1/5 in a chaperone-independent manner.

  9. Magnetic properties of low-moment ferrimagnetic Heusler Cr 2 CoGa thin films grown by molecular beam epitaxy

    DOE PAGES

    Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; ...

    2016-10-31

    Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87 meV.more » These results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.« less

  10. The Structure of Ice Nanoclusters and Thin-films of Water Ice: Implications for Icy Grains in Cold Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Blake, David; Uffindell, Christine; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The cubic to hexagonal phase transformation in water ice (I(sub c) yields I(sub h)) is used to measure the extent to which surface structure and impurities control bulk properties. In pure crystalline (I(sub c)) water ice nanoclusters and in thin-films of impure water ice, I(sub c) yields I(sub h) occurs at lower temperatures than in thin-films of pure water ice. The disordered surface of the 20 nm diameter nanoclusters promotes transformations or reactions which would otherwise be kinetically hindered. Likewise, impurities such as methanol introduce defects into the ice network, thereby allowing sluggish structural transitions to proceed. Such surface-related phenomena play an important role in promoting chemical reactions on interstellar ice grains within cold molecular clouds, where the first organic compounds are formed.

  11. The effects of external stimuli on molecular organization in organic thin films by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hietpas, Geoffrey David

    The study of organic thin films has been an active field of research for nearly 100 years. Two general types of organic thin film systems have received considerable attention. The first of these is the field of self-assembled monolayers (SAM's), where a reactive adsorbate is spontaneously organized at a substrate through ionic or covalent bonding. The second area is comprised of thin films of polymeric materials which may also be ordered and chemically attached like SAM's, but also includes disordered systems pinned by random attachment, and purely physisorbed films held by Van der Waals forces. The incentive for research on these systems has focused on potential improvements in applications such as biocompatable implants, lithographic masks or resists, chromatographic coatings, biosensors, and providing corrosion protection for the underlying substrate. For virtually any application, an organic thin film must remain stable such that its structure is either unaltered or reversibly changed in a manner that does not affect performance. In this thesis, the technique of infrared spectroscopy is applied to the study of thin film stability in response to external stimuli. Both polymer thin films (thickness < 0.5 mum) and SAM systems are studied, and chemical as well as mechanical methods of structural perturbation are explored. Taken together, the studies in this thesis demonstrate that organic thin films are fragile systems, often more susceptible to external perturbation than the bulk material. For any thin film system the substrate/film and film/air interfaces as well as the extremely small quantities of film material, all affect the adsorbate material in a manner not present to a significant extent in the bulk state. All of these variables are also potential sources of failure in the film. Therefore, any organic thin film system is sensitive to its immediate surroundings, and an externally applied chemical and mechanical stimuli may 'attack' this structure on several

  12. Prediction of the solubility of cucurbitacin drugs in self-associating poly(ethylene oxide)-b-poly(alpha-benzyl carboxylate epsilon-caprolactone) block copolymer with different tacticities using molecular dynamics simulation.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-01-01

    Molecular dynamics (MD) simulation was used to investigate the solubility of two hydrophobic drugs Cucurbitacin B (CuB) and Cucurbitacin I (CuI) in poly(ethylene oxide)-b-poly(alpha-benzyl carboxylate epsilon-caprolactone) (PEO-b-PBCL) block copolymers with different tacticities. In particular, di-block copolymer with three different tacticities viz. PEO-b-iPBCL, PEO-b-sPBCL, and PEO-b-aPBCL were used. The solubility was quantified by calculating the corresponding Flory-Huggins interaction parameters (chi) using random binary mixture models with 10wt% of drug. The tacticity of the di-block copolymer was found to influence significantly the solubility of two drugs in it. In particular, based on MD simulation results, only PEO-b-sPBCL exhibited solubility while the other two did not. Given the fact that the drugs were shown to be soluble in PEO-b-PBCL experimentally, it is predicted that the tacticity of the di-block copolymer synthesized in experiment is syndiotactic. This predication matches well with the dominant ring opening polymerization of cyclic lactones to syndiotactic polymers by stannous octoate as catalyst used to prepare PEO-b-PBCL block copolymers in our previous experiments. The simulation results showed that the solubility of the drugs in PEO-b-sPBCL is attributed to the favorable intra-molecular interaction of the di-block copolymer and favorable intermolecular interaction between the di-block copolymer and the drugs. Radial distribution function analysis provides useful insights into the nature and type of the intermolecular interactions.

  13. Electrochemical sensor based on molecularly imprinted polymer film via sol-gel technology and multi-walled carbon nanotubes-chitosan functional layer for sensitive determination of quinoxaline-2-carboxylic acid.

    PubMed

    Yang, Yukun; Fang, Guozhen; Liu, Guiyang; Pan, Mingfei; Wang, Xiaomin; Kong, Lingjie; He, Xinlei; Wang, Shuo

    2013-09-15

    Quinoxaline-2-carboxylic acid (QCA) is difficult to measure since only trace levels are present in commercial meat products. In this study, a rapid, sensitive and selective molecularly imprinted electrochemical sensor for QCA determination was successfully constructed by combination of a novel modified glassy carbon electrode (GCE) and differential pulse voltammetry (DPV). The GCE was fabricated via stepwise modification of multi-walled carbon nanotubes (MWNTs)-chitosan (CS) functional composite and a sol-gel molecularly imprinted polymer (MIP) film on the surface. MWNTs-CS composite was used to enhance the electron transfer rate and expand electrode surface area, and consequently amplify QCA reduction electrochemical response. The imprinted mechanism and experimental parameters affecting the performance of MIP film were discussed in detail. The resulting MIP/sol-gel/MWNTs-CS/GCE was characterized using various electrochemical methods involving cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and DPV. The sensor using MIP/sol-gel/MWNTs-CS/GCE as working electrode showed a linear current response to the target QCA concentration in the wide range from 2.0×10(-6) to 1.0×10(-3)molL(-1) with a low detection limit of 4.4×10(-7)molL(-1) (S/N=3). The established sensor with excellent reproductivity and stability was applied to evaluate commercial pork products. At five concentration levels, the recoveries and standard deviations were calculated as 93.5-98.6% and 1.7-3.3%, respectively, suggesting the proposed sensor is promising for the accurate quantification of QCA at trace levels in meat samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Self-regulated growth of LaVO{sub 3} thin films by hybrid molecular beam epitaxy

    SciTech Connect

    Zhang, Hai-Tian; Engel-Herbert, Roman; Dedon, Liv R.; Martin, Lane W.

    2015-06-08

    LaVO{sub 3} thin films were grown on SrTiO{sub 3} (001) by hybrid molecular beam epitaxy. A volatile metalorganic precursor, vanadium oxytriisopropoxide (VTIP), and elemental La were co-supplied in the presence of a molecular oxygen flux. By keeping the La flux fixed and varying the VTIP flux, stoichiometric LaVO{sub 3} films were obtained for a range of cation flux ratios, indicating the presence of a self-regulated growth window. Films grown under stoichiometric conditions were found to have the largest lattice parameter, which decreased monotonically with increasing amounts of excess La or V. Energy dispersive X-ray spectroscopy and Rutherford backscattering measurements were carried out to confirm film compositions. Stoichiometric growth of complex vanadate thin films independent of cation flux ratios expands upon the previously reported self-regulated growth of perovskite titanates using hybrid molecular beam epitaxy, thus demonstrating the general applicability of this growth approach to other complex oxide materials, where a precise control over film stoichiometry is demanded by the application.

  15. Multilayer Growth of Porphyrin-Based Polyurea Thin Film Using Solution-Based Molecular Layer Deposition Technique.

    PubMed

    Uddin, S M Nizam; Nagao, Yuki

    2017-10-12

    Controllable synthesis of organic thin film materials on solid surfaces is a challenging issue in the research field of surface science as it is affected by several physical parameters. In this work, we demonstrated a solution-based molecular layer deposition (MLD) approach to prepare porphyrin-based covalent organic molecular networks on a 3-aminopropyl trimethoxysilane (APTMS) modified substrate surface using the urea coupling reaction between 1,4-phenylene diisocyanate (1,4-PDI) and 5,10,15,20-tetrakis-(4-aminophenyl) porphyrin (H2TAPP) at room temperature (22 ± 2 ºC). Multilayer growth was investigated under different relative humidity (RH) conditions of the reaction chamber. Sequential molecular growth at low relative humidity (≤10% RH) was observed using UV-vis absorption spectroscopy and atomic force microscopy (AFM). The high-RH condition shows limited film growth. Infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) revealed the polyurea bond formation in sequential multilayer thin films, demonstrating that stepwise multilayer film growth was achieved using the urea coupling reaction.

  16. Molecular dynamics simulation of polymerlike thin films irradiated by fast ions: A comparison between FENE and Lennard-Jones potentials

    NASA Astrophysics Data System (ADS)

    Lima, N. W.; Gutierres, L. I.; Gonzalez, R. I.; Müller, S.; Thomaz, R. S.; Bringa, E. M.; Papaléo, R. M.

    2016-11-01

    In this paper, the surface effects of individual heavy ions impacting thin polymerlike films were investigated, using molecular dynamics simulations with the finite extensible nonlinear elastic (FENE) potential to describe the molecular chains. The perturbation introduced by the ions in the lattice was modeled assuming that the initial excitation energy in the ion track is converted into an effective temperature, as in a thermal spike. The track was heated only within the film thickness h , leaving a nonexcited substrate below. The effect of decreasing thickness on cratering and sputtering was evaluated. The results were compared to experimental data of thin polymer films bombarded by MeV-GeV ions and to simulations performed with the Lennard-Jones potential. While several qualitative results observed in the experiments were also seen in the simulations, irrespective of the potential used, there are important differences observed on FENE films. Crater dimensions, rim volume, and sputtering yields are substantially reduced, and a threshold thickness for molecular ejection appears in FENE simulations. This is attributed to the additional restrictions on mass transport out of the excited track region imposed by interchain interactions (entanglements) and by the low mobility of the molten phase induced by the spike.

  17. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Skarlinski, Michael D.; Quesnel, David J.

    2015-12-01

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu2O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films

  18. Molecular architecture of thin films fabricated via physical vapor deposition and containing a poly(azo)urethane.

    PubMed

    Aléssio, Priscila; Constantino, Carlos José Leopoldo; Job, Aldo Eloizo; Aroca, Ricardo; González, Eduardo René Pérez

    2010-05-01

    Organic thin films are widely applied as transducers in devices whose performance is determined by the optical and electrical properties of the films. In this context, the molecular architecture of the thin films plays an important role. In this work we report the fabrication and characterization of a poly(azo)urethane synthesized fixing CO2 in bis-epoxide followed by a copolymerization reaction with an azodiamine without using isocyanate. The poly(azo)urethane thin films were fabricated by physical vapor deposition (PVD) technique using vacuum thermal evaporation. The molecular architecture of the PVD films was investigated under control growth at nanometer level of thickness, as well as the surface morphology at micro and nanometer scales and the molecular organization. The thermal stability of the poly(azo)urethane molecules, which is a challenge in itself considering the thermal evaporation process, was followed by thermogravimetric analysis (TG) and also by both Fourier transform infrared absorption (FTIR) and ultraviolet-visible (UV-vis) absorption spectroscopies. The UV-vis absorption spectra showed a linear growth of the absorbance of the PVD films with the mass thickness measured by a quartz crystal balance. A random distribution of the poly(azo)urethane molecules in the PVD films was revealed by FTIR spectra. The film morphology was investigated at microscopic level combining chemical and topographical information through micro-Raman technique. At nanoscopic scale, the morphology was investigated by atomic force microscopy (AFM) for films fabricated using distinct evaporation rates. As a proof of principle (for potential applications), the film luminescence was measured over a wide range of temperature. Interestingly, an unusual increase of fluorescence intensity was observed at +150 degrees C after a monotonic decrease from -150 degrees C.

  19. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold

    DOE PAGES

    Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.; ...

    2017-04-07

    The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less

  20. Modification of agarose with carboxylation and grafting dopamine for promotion of its cell-adhesiveness.

    PubMed

    Su, Yixue; Chu, Bin; Gao, Yuan; Wu, Chaoxi; Zhang, Lingmin; Chen, Peng; Wang, Xiaoying; Tang, Shunqing

    2013-02-15

    In order to improve bioactivity of agarose, we modified agarose by carboxylation and grafting dopamine. Under alkaline condition, carboxylated agarose was prepared using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation system by oxidizing C(6) hydroxyl on D-galactose ring into carboxyl group, and the maximum value of the degree of carboxylation reached 30%. With the increase of the amount of oxidant, the molecular weight of the carboxylated agarose decreased to 4 kDa by gel permeation chromatography (GPC) measure. Carboxylated agarose reacted with dopamine through EDC condensation reaction to obtain agarose grafting dopamine (Ag-g-DA), and the grafting rate of dopamine was determined to be 9.3% by UV spectroscopy at 280 nm. The structures of these modified agaroses were determined by FT-IR and (13)C NMR. Both carboxylated agarose and Ag-g-DA showed no cytotoxicity and promoted cell-adhesiveness.

  1. Molecular Engineering of Liquid-Crystalline Polymers by Living Polymerization. 18. SC* Mesophase in Copolymers of (2S, 3S)-(+)-2-Chloro-3- Methylpentyl 4’-(Omega-Vinyloxyalkyloxy) biphenyl-4-carboxylate with Undecanyl and Octyl Alkyl Groups

    DTIC Science & Technology

    1991-11-20

    carboxylate with Undecanyl and Octyl Alkyl Groups by D T IC Virgil Percec and Qiang Zheng .LECTE Department of Macromolecular Science DECO 3 1991 Case...ficatton) s* Mesophase in Copolymers of (2S, 3S)-(+)-2-Chloro-3-MethylpentyI 4 ’-(WO-Vinyloxyalkyloxy) biphenyl-4- carboxylate with Undecanyl and Octyl...number) The synthesis and living cationic polymerization of (2S, 3S)-(+)-2-chloro-3-mnethylpentyl 4’-( 11 - vIn y loxy undecanyloxy)bipheny 1-4- carboxyl

  2. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    SciTech Connect

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-10

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm{sup 2} has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  3. Effect of molecular coverage on the electric conductance of a multi-walled carbon nanotube thin film

    NASA Astrophysics Data System (ADS)

    Kokabu, Takuya; Inoue, Shuhei; Matsumura, Yukihiko

    2016-06-01

    We investigated the influence of water adsorption on a CNT thin film. When we assumed that the magnitude of the change in electrical resistance was correlated with the surface coverage of the adsorbed molecules, this phenomenon could be explained by two-layer adsorption. The first layer was expressed by Langmuir adsorption and that on the second layer was expressed by Fowler-Guggenheim adsorption, which was derived by Bragg-Williams approximation and involved a lateral molecular interaction. The adsorption energy estimated by this assumption was on the same order as derived by DFT calculation.

  4. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films

    SciTech Connect

    Yang, R; Goktekin, E; Wang, MH; Gleason, KK

    2014-08-08

    Biofouling is a universal problem in various applications ranging from water purification to implantable biomedical devices. Recent advances in surface modification have created a rich library of antifouling surface chemistries, many of which can be categorized into one of the two groups: hydrophilic surfaces or amphiphilic surfaces. We report the straightforward preparation of antifouling thin film coatings in both categories via initiated chemical vapor deposition. A molecular force spectroscopy-based method is demonstrated as a rapid and quantitative assessment tool for comparing the differences in antifouling characteristics. The fouling propensity of single molecules, as opposed to bulk protein solution or bacterial culture, is assessed. This method allows for the interrogation of molecular interaction without the complication resulted from protein conformational change or micro-organism group interactions. The molecular interaction follows the same trend as bacterial adhesion results obtained previously, demonstrating that molecular force probe is a valid method for the quantification and mechanistic examination of fouling. In addition, the molecular force spectroscopy-based method is able to distinguish differences in antifouling capability that is not resolvable by traditional static protein adsorption tests. To lend further insight into the intrinsic fouling resistance of zwitterionic and amphiphilic surface chemistries, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, advancing and receding water contact angles, and atomic force microscopy are used to elucidate the film properties that are relevant to their antifouling capabilities.

  5. Analysis of Molecular Orientation in Organic Semiconducting Thin Films Using Static Dynamic Nuclear Polarization Enhanced Solid-State NMR.

    PubMed

    Suzuki, Katsuaki; Kubo, Shosei; Aussenac, Fabien; Engelke, Frank; Fukushima, Tatsuya; Kaji, Hironori

    2017-10-09

    Molecular orientation in amorphous organic semiconducting thin film devices is an important issue affecting device performances. However, to date it has not been possible to analyze the "distribution" of the orientations. Although solid-state NMR (ssNMR) can provide information on the distribution of molecular orientations, the technique is limited because of the small amounts of sample in the devices and the low sensitivity of ssNMR. Here, we report the first application of dynamic nuclear polarization enhanced ssNMR (DNP-ssNMR) to orientational analysis of amorphous phenyldi(pyren-1-yl)phosphine oxide (POPy2). The 31P DNP-ssNMR spectra exhibited a sufficient signal-to-noise ratio to quantify the distribution of molecular orientations in amorphous films: the P=O axis of the vacuum-deposited and drop-cast POPy2 shows anisotropic and isotropic distribution, respectively. The different molecular orientations reflect the molecular origin of the different charge transport behaviors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characterization of the Non-uniform Reaction in Chemically Amplified Calix[4]resorcinarene Molecular Resist Thin Films

    SciTech Connect

    V Prabhu; S Kang; R Kline; D DeLongchamp; D Fischer; W Wu; S Satija; P Bonnesen; J Sha; C Ober

    2011-12-31

    The ccc stereoisomer-purified tert-butoxycarbonyloxy-protected calix[4]resorcinarene molecular resists blended with photoacid generator exhibit a non-uniform photoacid-catalyzed reaction in thin films. The surface displays a reduced reaction extent, compared with the bulk, with average surface-layer thickness 7.0 {+-} 1.8 nm determined by neutron reflectivity with deuterium-labelled tert-butoxycarbonyloxy groups. Ambient impurities (amines and organic bases) are known to quench surface reactions and contribute, but grazing-incidence X-ray diffraction shows an additional effect that the protected molecular resists are preferentially oriented at the surface, whereas the bulk of the film displays diffuse scattering representative of amorphous packing. The surface deprotection reaction and presence of photoacid were quantified by near-edge X-ray absorption fine-structure measurements.

  7. Sequence control of phase separation and dewetting in PS/PVME blend thin films by changing molecular weight of PS

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Qin, Yaping; Huang, Yajiang; Huang, Ting; Xu, Jianhui; Li, Youbing

    2016-11-01

    The morphology evolution mechanism of polystyrene (PS)/poly (vinyl methyl ether) (PVME) blend thin films with different PS molecular weights (Mw) was studied. It was found that the morphology evolution was closely related to the molecular weight asymmetry between PS and PVME. In the film where Mw(PS) ≈ Mw(PVME), dewetting happened at the interface between the bottom layer and substrate after SD phase separation. While in the film where Mw(PS) >> Mw(PVME), dewetting happened at the interface between the middle PS/PVME blend layer and bottom PVME layer near the substrate prior to phase separation. The different sequences of phase separation and dewetting and different interface for dewetting occurrence were studied by regarding the competitive effects of viscoelasticity contrast between polymer components and preferential wetting between PVME and the substrate. The viscoelastic nature of the PS component played a crucial role in the sequence of phase separation and dewetting.

  8. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    SciTech Connect

    Chiarella, F. Barra, M.; Ciccullo, F.; Cassinese, A.; Toccoli, T.; Aversa, L.; Tatti, R.; Verucchi, R.

    2014-04-07

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  9. Water at a hydrophilic solid surface probed by ab-initio molecular dynamics: inhomogeneous thin layers of dense fluid

    SciTech Connect

    Cicero, G; Grossman, J; Galli, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interface between liquid water and a hydrophilic, solid surface, as obtained from ab-initio molecular dynamics simulations. In particular, we focused on the (100)surface of cubic SiC, a leading candidate semiconductor for bio-compatible devices. Our results show that, in the liquid in contact with the clean substrate, molecular dissociation occurs in a manner unexpectedly similar to that observed in the gas phase. After full hydroxylation takes place, the formation of a thin ({approx}3 {angstrom})interfacial layer is observed, which has higher density than bulk water and forms stable hydrogen bonds with the substrate. The liquid does not uniformly wet the surface, rather molecules preferably bind along directions parallel to the Si dimer rows. Our calculations also predict that one dimensional confinement between two hydrophilic surfaces at about 1.3 nm distance does not affect the structural and electronic properties of the whole water sample.

  10. Characterization of the non-uniform reaction in chemically-amplified calix[4]resorcinarene molecular resist thin films

    SciTech Connect

    Prabhu, Vivek M.; Kang, Shuhui; Kline, R. Joseph; DeLongchamp, Dean M.; Fischer, Daniel A.; Wu, Wen-li; Satija, Sushil K.; Bonnesen, Peter V; Sha, Jing; Ober, Christoper K.

    2011-01-01

    The ccc stereoisomer-purified tert-butoxycarbonyloxy (t-Boc) protected calix[4]resorcinarene molecular resists blended with photoacid generator exhibit a non-uniform photoacid catalyzed reaction in thin films. The surface displays a reduced reaction extent, compared to the bulk, with average surface-layer thickness (7.0 1.8) nm determined by neutron reflectivity with deuterium-labeled t-Boc groups. Ambient impurities (amines and organic bases) are known to quench surface reactions and contribute, but grazing incidence X-ray diffraction shows an additional effect that the protected molecular resist are preferentially oriented at the surface, while the bulk of the film displayed diffuse scattering representative of amorphous packing. The surface deprotection reaction and presence of photoacid was quantified by near-edge X-ray absorption fine structure measurements.

  11. Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes.

    PubMed

    Nisula, Mikko; Karppinen, Maarit

    2016-02-10

    We demonstrate the fabrication of high-quality electrochemically active organic lithium electrode thin films by the currently strongly emerging combined atomic/molecular layer deposition (ALD/MLD) technique using lithium terephthalate, a recently found anode material for lithium-ion battery (LIB), as a proof-of-the-concept material. Our deposition process for Li-terephthalate is shown to well comply with the basic principles of ALD-type growth including the sequential self-saturated surface reactions, a necessity when aiming at micro-LIB devices with three-dimensional architectures. The as-deposited films are found crystalline across the deposition temperature range of 200-280 °C, which is a trait highly desired for an electrode material but rather unusual for hybrid inorganic-organic thin films. Excellent rate capability is ascertained for the Li-terephthalate films with no conductive additives required. The electrode performance can be further enhanced by depositing a thin protective LiPON solid-state electrolyte layer on top of Li-terephthalate; this yields highly stable structures with capacity retention of over 97% after 200 charge/discharge cycles at 3.2 C.

  12. Molecularly imprinted polymer for selective determination of Δ9-tetrahydrocannabinol and 11-nor-Δ9-tetrahydrocannabinol carboxylic acid using LC-MS/MS in urine and oral fluid.

    PubMed

    Lendoiro, E; de Castro, A; Fernández-Vega, H; Cela-Pérez, M C; López-Vilariño, J M; González-Rodríguez, M V; Cruz, A; López-Rivadulla, M

    2014-06-01

    The use of molecularly imprinted polymers (MIPs) for solid phase extraction (MISPE) allows a rapid and selective extraction compared with traditional methods. Determination of Δ(9)-tetrahydrocannabinol (THC) and 11-nor-Δ(9)-tetrahydrocannabinol carboxylic acid (THC-COOH) in oral fluid (OF) and urine was performed using homemade MISPEs for sample clean-up and liquid chromatography tandem mass spectrometry (LC-MS/MS). Cylindrical MISPE shaped pills were synthesized using catechin as a mimic template. MISPEs were added to 0.5 mL OF or urine sample and sonicated 30 min for adsorption of analytes. For desorption, the MISPE was transfered to a clean tube, and sonicated for 15 min with 2 mL acetone:acetonitrile (3:1, v/v). The elution solvent was evaporated and reconstituted in mobile phase. Chromatographic separation was performed using a SunFire C18 (2.5 μm; 2.1 × 20 mm) column, and formic acid 0.1% and acetonitrile as mobile phase, with a total run time of 5 min. The method was fully validated including selectivity (no endogenous or exogenous interferences), linearity (1-500 ng/mL in OF, and 2.5-500 ng/mL in urine), limit of detection (0.75 and 1 ng/mL in OF and urine, respectively), imprecision (%CV <12.3%), accuracy (98.2-107.0% of target), extraction recovery (15.9-53.5%), process efficiency (10.1-46.2%), and matrix effect (<-55%). Analytes were stable for 72 h in the autosampler. Dilution 1:10 was assured in OF, and Quantisal™ matrix effect showed ion suppression (<-80.4%). The method was applied to the analysis of 20 OF and 11 urine specimens. This is the first method for determination of THC and THC-COOH in OF using MISPE technology.

  13. Electric Field Tuning Molecular Packing and Electrical Properties of Solution-Shearing Coated Organic Semiconducting Thin Films

    DOE PAGES

    Molina-Lopez, Francisco; Yan, Hongping; Gu, Xiaodan; ...

    2017-01-17

    Recent improvements in solution-coated organic semiconductors (OSCs) evidence their high potential for cost-efficient organic electronics and sensors. Molecular packing structure determines the charge transport property of molecular solids. However, it remains challenging to control the molecular packing structure for a given OSC. Here, the application of alternating electric fields is reported to fine-tune the crystal packing of OSC solution-shearing coated at ambient conditions. First, a theoretical model based on dielectrophoresis is developed to guide the selection of the optimal conditions (frequency and amplitude) of the electric field applied through the solution-shearing blade during coating of OSC thin films. Next, electricmore » field-induced polymorphism is demonstrated for OSCs with both herringbone and 2D brick-wall packing motifs in 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and 6,13-bis(triisopropylsilylethynyl) pentacene, respectively. Favorable molecular packing can be accessible in some cases, resulting in higher charge carrier mobilities. In conclusion, this work provides a new approach to tune the properties of solution-coated OSCs in functional devices for high-performance printed electronics.« less

  14. Maximizing the dielectric response of molecular thin films via quantum chemical design.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2014-12-23

    Developing high-capacitance organic gate dielectrics is critical for advances in electronic circuitry based on unconventional semiconductors. While high-dielectric constant molecular substances are known, the mechanism of dielectric response and the fundamental chemical design principles are not well understood. Using a plane-wave density functional theory formalism, we show that it is possible to map the atomic-scale dielectric profiles of molecule-based materials while capturing important bulk characteristics. For molecular films, this approach reveals how basic materials properties such as surface coverage density, molecular tilt angle, and π-system planarity can dramatically influence dielectric response. Additionally, relatively modest molecular backbone and substituent variations can be employed to substantially enhance film dielectric response. For dense surface coverages and proper molecular alignment, conjugated hydrocarbon chains can achieve dielectric constants of >8.0, more than 3 times that of analogous saturated chains, ∼2.5. However, this conjugation-related dielectric enhancement depends on proper molecular orientation and planarization, with enhancements up to 60% for proper molecular alignment with the applied field and an additional 30% for conformations such as coplanarity in extended π-systems. Conjugation length is not the only determinant of dielectric response, and appended polarizable high-Z substituents can increase molecular film response more than 2-fold, affording estimated capacitances of >9.0 μF/cm2. However, in large π-systems, polar substituent effects are substantially attenuated.

  15. Synthesis of Hexagonal FeMnP Thin Films from a Single-Source Molecular Precursor.

    PubMed

    Leitner, Andrew P; Schipper, Desmond E; Chen, Jing-Han; Colson, Adam C; Rusakova, Irene; Kumar Rai, Binod; Morosan, Emilia; Whitmire, Kenton Herbert

    2017-03-08

    The first heterobimetallic phosphide thin film containing iron, manganese, and phosphorus derived from the single-source precursor FeMn(CO)8(μ-PH2) has been prepared using a home-built metal-organic chemical vapor deposition apparatus. The thin film contains the same ratio of iron, manganese, and phosphorus as the initial precursor. The film becomes oxidized when deposited on a quartz substrate whereas the film deposited on an alumina substrate provides a more homogeneous product. Powder X-ray diffraction confirms the formation of metastable, hexagonal FeMnP phase that was previously only observed at temperatures above 1200 ºC. Selected area electron diffraction on single crystals isolated from the films were indexed to the hexagonal phase. The effective moment of the films (µeff = 3.68µB) matches the previously reported theoretical value for the metastable hexagonal phase whereas the more stable orthorhombic phase is known to be antiferromagnetic. These results not only demonstrate the successful synthesis of a bimetallic, ternary thin film from a single-source precursor, but also the first low temperature approach to the hexagonal phase of FeMnP.

  16. Breaking the Carboxyl Rule

    PubMed Central

    Balashov, Sergei P.; Petrovskaya, Lada E.; Imasheva, Eleonora S.; Lukashev, Evgeniy P.; Dioumaev, Andrei K.; Wang, Jennifer M.; Sychev, Sergey V.; Dolgikh, Dmitriy A.; Rubin, Andrei B.; Kirpichnikov, Mikhail P.; Lanyi, Janos K.

    2013-01-01

    A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ϵ-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein. PMID:23696649

  17. Crystal structures of ethyl 6-(4-methyl-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate and ethyl 6-(4-fluoro-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate.

    PubMed

    Gomes, Ligia R; Low, John Nicolson; Fernandes, Carlos; Gaspar, Alexandra; Borges, Fernanda

    2016-01-01

    The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methyl-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate, C19H16O4, (1), and ethyl 6-(4-fluoro-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate C18H13FO4, (2), have been determined: (1) crystallizes with two mol-ecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each mol-ecule differs significantly from the others, even the two independent mol-ecules (a and b) of (1). In all three mol-ecules, the carbonyl groups of the chromone and the carboxyl-ate are trans-related. The supra-molecular structure of (1) involves only weak C-H⋯π inter-actions between H atoms of the substituent phenyl group and the phenyl group, which link mol-ecules into a chain of alternating mol-ecules a and b, and weak π-π stacking inter-actions between the chromone units. The packing in (2) involves C-H⋯O inter-actions, which form a network of two inter-secting ladders involving the carbonyl atom of the carboxyl-ate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. π-π inter-actions stack the mol-ecules by unit translation along the a axis.

  18. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    SciTech Connect

    Skarlinski, Michael D.; Quesnel, David J.

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  19. Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films.

    PubMed

    Yang, Wenbing; Duan, Hsin-Sheng; Cha, Kitty C; Hsu, Chia-Jung; Hsu, Wan-Ching; Zhou, Huanping; Bob, Brion; Yang, Yang

    2013-05-08

    Successful implementation of molecular solution processing from a homogeneous and stable precursor would provide an alternative, robust approach to process multinary compounds compared with physical vapor deposition. Targeting deposition of chemically clear, high quality crystalline films requires specific molecular structure design and solvent selection. Hydrazine (N2H4) serves as a unique and powerful medium, particularly to incorporate selected metallic elements and chalcogens into a stable solution as metal chalcogenide complexes (MCC). However, not all the elements and compounds can be easily dissolved. In this manuscript, we demonstrate a paradigm to incorporate previously insoluble transitional-metal elements into molecular solution as metal-atom hydrazine/hydrazine derivative complexes (MHHD), as exemplified by dissolving of the zinc constituent as Zn(NH2NHCOO)2(N2H4)2. Investigation into the evolution of molecular structure reveals the hidden roadmap to significantly enrich the variety of building blocks for soluble molecule design. The new category of molecular structures not only set up a prototype to incorporate other elements of interest but also points the direction for other compatible solvent selection. As demonstrated from the molecular precursor combining Sn-/Cu-MCC and Zn-MHHD, an ultrathin film of copper zinc tin sulfide (CZTS) was deposited. Characterization of a transistor based on the CZTS channel layer shows electronic properties comparable to CuInSe2, confirming the robustness of this molecular solution processing and the prospect of earth abundant CZTS for next generation photovoltaic materials. This paradigm potentially outlines a universal pathway, from individual molecular design using selected chelated ligands and combination of building blocks in a simple and stable solution to fundamentally change the way multinary compounds are processed.

  20. Visualization of molecular packing and tilting domains and interface effects in tetracene thin films on H/Si(001)

    DOE PAGES

    Tersigni, Andrew; Sadowski, Jerzy T.; Qin, Xiao-Rong

    2017-03-27

    Visualizing molecular crystalline domains and influence of substrate defects are important in understanding the charge transport in organic thin film devices. Vacuum evaporated tetracene films of four monolayers on hydrogen-terminated Si(001)-2x1 substrate, as a prototypical system, have been studied with ex situ atomic force microscopy (AFM), transverse shear microscopy (TSM), friction force microscopy (FFM), and low-energy electron microscopy (LEEM). Two differently oriented in-plane lattice domains are found due to the symmetry of the substrate lattice, with no visible azimuthal twist between adjacent molecular layers in surface islands, indicating significant bulk-like crystallization in the film. Meanwhile, two types of subdomains aremore » observed inside of each in-plane lattice domain. The subdomains are anisotropic in shape, and their sizes and distribution are highly influenced by the substrate atomic steps. TSM and FFM measurements indicate that these subdomains result from molecule-tilt orderings within the bulk-like lattice domains. Lastly, TSM evidently shows a sensitivity to probe vertical molecule-tilt anisotropy for the molecular crystals, in addition to its known ability to map the lateral lattice orientations.« less

  1. Role of molecular architecture on the vitrification of polymer thin films.

    PubMed

    Glynos, Emmanouil; Frieberg, Bradley; Oh, Hyunjoon; Liu, Ming; Gidley, David W; Green, Peter F

    2011-03-25

    We show that thin film star-shaped macromolecules exhibit significant differences in their average vitrification behavior, in both magnitude and thickness dependence, from their linear analogs. This behavior is dictated by a combination of their functionality and arm length. Additionally, the glass transition temperature at the free surface of a star-shaped molecule film may be higher than that of the interior, in contrast to their linear analogs where the opposite is true. These findings have implications for other properties, due largely to the origins, entropic, of this behavior.

  2. Molecular beam epitaxy of thin HfTe2 semimetal films

    NASA Astrophysics Data System (ADS)

    Aminalragia-Giamini, S.; Marquez-Velasco, J.; Tsipas, P.; Tsoutsou, D.; Renaud, G.; Dimoulas, A.

    2017-03-01

    Epitaxial thin films of 1T-HfTe2 semimetal are grown by MBE on AlN(0001) substrates. The measured in-plane lattice parameter indicates an unstrained film which is also azimuthally aligned with the AlN substrate, albeit with an in-plane mosaic spread, as it would be expected for van der Waals epitaxy. Angle resolved photoemission spectroscopy combined with first principles electronic band structure calculations show steep linearly dispersing conduction and valence bands which cross near the Brillouin zone center, providing evidence that HfTe2/AlN is an epitaxial topological Dirac semimetal.

  3. Low-line edge roughness extreme ultraviolet photoresists of organotin carboxylates

    NASA Astrophysics Data System (ADS)

    Del Re, Ryan; Passarelli, James; Sortland, Miriam; Cardineau, Brian; Ekinci, Yasin; Buitrago, Elizabeth; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-10-01

    Pure thin films of organotin compounds have been lithographically evaluated using extreme ultraviolet lithography (EUVL, 13.5 nm). Twenty compounds of the type R2Sn) were spin-coated from solutions in toluene, exposed to EUV light, and developed in organic solvents. Exposures produced negative-tone contrast curves and dense-line patterns using interference lithography. Contrast-curve studies indicated that the photosensitivity is linearly related to the molecular weight of the carboxylate group bound to tin. Additionally, photosensitivity was found to be linearly related to free radical stability of the hydrocarbon group bound directly to tin (R=phenyl, butyl, and benzyl). Dense-line patterning capabilities varied, but two resists in particular show exceptionally good line edge roughness (LER). A resist composed of an amorphous film of )SnCC)2 (1) achieved 1.4 nm LER at 22-nm half-pitch patterning and a resist composed of )Sn) (2) achieved 1.1 nm LER at 35-nm half-pitch at high exposure doses (600 mJ/cm2). Two photoresists that use olefin-based carboxylates, )SnCCH (3) and )SnCC (4), demonstrated better photospeeds (5 mJ/cm2 and 27 mJ/cm2) but worse LER.

  4. Enhanced lysozyme imprinting over nanoparticles functionalized with carboxyl groups for noncovalent template sorption.

    PubMed

    Fu, Guoqi; He, Hongyan; Chai, Zhihua; Chen, Huachang; Kong, Juan; Wang, Yan; Jiang, Yizhe

    2011-02-15

    Surface molecular imprinting, in particular over nanosized support materials, is very suitable for a template of bulky structure like protein. Inspired by the surface template immobilization method reported previously, we herein demonstrate an alternative strategy for enhancing specific recognition of core-shell protein-imprinted nanoparticles through prefunctionalizing the cores with noncovalent template sorption groups. For proof of this concept, silica nanoparticles chosen as the core materials were modified consecutively with 3-aminopropyltrimethoxysilane and maleic anhydride to introduce polymerizable double bonds and terminal carboxyl groups, hence capable of physically adsorbing the print protein. With lysozyme as a template, thin protein-imprinted shells were fabricated according to our newly developed approach for surface protein imprinting over nanoparticles. The rebinding experiments confirmed that the introduction of the carboxyl groups could remarkably improve the imprinting effect in relation to a significantly increased imprinting factor and specific rebinding capacity. Moreover, in contrast to the harsh template removal conditions required for the covalent template coupling approach, the template removal during the imprinted particle synthesis as well as desorption after rebinding could be mildly achieved via washing with salt solution.

  5. Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid.

    PubMed

    Momiyama, Norie; Tabuse, Hideaki; Noda, Hirofumi; Yamanaka, Masahiro; Fujinami, Takeshi; Yamanishi, Katsunori; Izumiseki, Atsuto; Funayama, Kosuke; Egawa, Fuyuki; Okada, Shino; Adachi, Hiroaki; Terada, Masahiro

    2016-09-07

    A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

  6. Potential for spin-based information processing in a thin-film molecular semiconductor

    NASA Astrophysics Data System (ADS)

    Warner, Marc; Din, Salahud; Tupitsyn, Igor; Morley, Gavin; Stoneham, Marshall; Gardener, Jules; Wu, Zhenlin; Fisher, Andrew; Heutz, Sandrine; Kay, Christopher; Aeppli, Gabriel

    2014-03-01

    Organic semiconductors are studied intensively for applications in electronics and optics, and even spin-based information technology, or spintronics. Fundamental quantities in spintronics are the population relaxation time (T1) and the phase memory time (T2) : T1 measures the lifetime of a classical bit, in this case embodied by a spin oriented either parallel or antiparallel to an external magnetic field, and T2 measures the corresponding lifetime of a quantum bit, encoded in the phase of the quantum state. Here we establish that these times are surprisingly long for a common, low-cost and chemically modifiable organic semiconductor, the blue pigment copper phthalocyanine, in easily processed thin-film form of the type used for device fabrication. At 5 K, a temperature reachable using inexpensive closed-cycle refrigerators, T1 and T2 are respectively 59 ms and 2.6 ms, and at 80 K, which is just above the boiling point of liquid nitrogen, they are respectively 10 ms and 1 ms, demonstrating that the performance of thin-film copper phthalocyanine is superior to that of single-molecule magnets over the same temperature range.

  7. Research on the electronic and optical properties of polymer and other organic molecular thin films

    SciTech Connect

    1997-02-01

    The main goal of the work is to find materials and methods of optimization of organic layered electroluminescent cells and to study such properties of polymers and other organic materials that can be used in various opto-electronic devices. The summary of results obtained during the first year of work is presented. They are: (1) the possibility to produce electroluminescent cells using a vacuum deposition photoresist technology for commercial photoresists has been demonstrated; (2) the idea to replace the polyaryl polymers by other polymers with weaker hole conductivity for optimization of electroluminescent cells with ITO-Al electrodes has been suggested. The goal is to obtain amorphous processable thin films of radiative recombination layers in electroluminescent devices; (3) procedures of preparation of high-quality vacuum-deposited poly (p-phenylene) (PPP) films on various substrates have been developed; (4) it was found for the first time that the fluorescence intensity of PPP films depends on the degree of polymerization; (5) the role of interfaces between organic compounds, on one side, and metals or semiconductors, on the other side, has been studied and quenching of the fluorescence caused by semiconductor layer in thin sandwiches has been observed; (6) studies of the dynamics of photoexcitations revealed the exciton self-trapping in quasi-one-dimensional aggregates; and (7) conditions for preparation of highly crystalline fullerene C{sub 60} films by vacuum deposition have been found. Composites of C{sub 60} with conjugated polymers have been prepared.

  8. Potential for spin-based information processing in a thin-film molecular semiconductor

    NASA Astrophysics Data System (ADS)

    Warner, Marc; Din, Salahud; Tupitsyn, Igor S.; Morley, Gavin W.; Stoneham, A. Marshall; Gardener, Jules A.; Wu, Zhenlin; Fisher, Andrew J.; Heutz, Sandrine; Kay, Christopher W. M.; Aeppli, Gabriel

    2013-11-01

    Organic semiconductors are studied intensively for applications in electronics and optics, and even spin-based information technology, or spintronics. Fundamental quantities in spintronics are the population relaxation time (T1) and the phase memory time (T2): T1 measures the lifetime of a classical bit, in this case embodied by a spin oriented either parallel or antiparallel to an external magnetic field, and T2 measures the corresponding lifetime of a quantum bit, encoded in the phase of the quantum state. Here we establish that these times are surprisingly long for a common, low-cost and chemically modifiable organic semiconductor, the blue pigment copper phthalocyanine, in easily processed thin-film form of the type used for device fabrication. At 5K, a temperature reachable using inexpensive closed-cycle refrigerators, T1 and T2 are respectively 59ms and 2.6μs, and at 80K, which is just above the boiling point of liquid nitrogen, they are respectively 10μs and 1μs, demonstrating that the performance of thin-film copper phthalocyanine is superior to that of single-molecule magnets over the same temperature range. T2 is more than two orders of magnitude greater than the duration of the spin manipulation pulses, which suggests that copper phthalocyanine holds promise for quantum information processing, and the long T1 indicates possibilities for medium-term storage of classical bits in all-organic devices on plastic substrates.

  9. Demonstration of 40 MHz thin-film electro-optic modulator using an organic molecular salt

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya; Ahyi, Ayayi; Tan, Shida; Mishra, Alpana; Thakur, Mrinal

    2000-03-01

    Recently we reported the first demonstration of a single-pass thin-film electro-optic modulator based on a DAST single-crystal film.(M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635-637 (1999).) In this work, we report a larger modulation depth ( ~80%) and higher speed of operation. Excellent optical quality single-crystal films were prepared by a modified shear method.(M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989).) Thin-film modulator was constructed by depositing electrodes across the polar axis. The beam from a Ti-Sapphire laser, tunable over 720-850 nm, was propagated perpendicular to the film surface. The modulated signal was detected using a fast photodetector, and displayed on a high bandwidth oscilloscope and a spectrum analyzer. The response was independent of the frequency of applied field over the measurement range (2 kHz - 40 MHz). A much higher speed (>100 GHz) of operation should be possible using these films. These modulators involve negligible losses compared to the waveguide structures, and have significant potential for a broad range of applications in high speed optical signal processing.

  10. A molecular dynamics study on thin film liquid boiling characteristics under rapid linear boundary heating: Effect of liquid film thickness

    NASA Astrophysics Data System (ADS)

    Rabbi, Kazi Fazle; Tamim, Saiful Islam; Faisal, A. H. M.; Mukut, K. M.; Hasan, Mohammad Nasim

    2017-06-01

    This study is a molecular dynamics investigation of phase change phenomena i.e. boiling of thin liquid films subjected to rapid linear heating at the boundary. The purpose of this study is to understand the phase change heat transfer phenomena at nano scale level. In the simulation, a thin film of liquid argon over a platinum surface has been considered. The simulation domain herein is a three-phase system consisting of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system is brought to an equilibrium state at 90 K and then the temperature of the bottom wall is increased to a higher temperature (250K) within a finite time interval. Four different liquid argon film thicknesses have been considered (3 nm, 4 nm, 5 nm and 6 nm) in this study. The boundary heating rate (40×109 K/s) is kept constant in all these cases. Variation in system temperature, pressure, net evaporation number, spatial number density of the argon region with time for different film thickness have been demonstrated and analyzed. The present study indicates that the pattern of phase transition may be significantly different (i.e. evaporation or explosive boiling) depending on the liquid film thickness. Among the four cases considered in the present study, explosive boiling has been observed only for the liquid films of 5nm and 6nm thickness, while for the other cases, evaporation take place.

  11. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  12. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic-inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V-1 s-1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from -3 to 9 V). This work demonstrates an organic-inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  13. Polarization dependence of Raman scattering from a thin film involving optical anisotropy theorized for molecular orientation analysis.

    PubMed

    Itoh, Yuki; Hasegawa, Takeshi

    2012-06-14

    Polarized Raman scattering from a thin film involving uniaxial optical anisotropy deposited on a dielectric substrate has analytically been theorized. The analyte film is modeled as a three-phase system (air/film/substrate) to calculate the electromagnetic fields of the incident and scattered light propagating across the system with an aid of the transfer matrix method to exactly take the optical anisotropy of the film into account. On the new theory, a methodology for molecular orientation analysis of an extended polymethylene chain in the film is proposed, which is employed for determination of the tilt angles of the chains in single- and five-monolayer Langmuir-Blodgett (LB) films of cadmium stearate deposited on a glass plate. The results agree well with those obtained by infrared spectroscopy, which confirms reliability of the present method.

  14. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.

    PubMed

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay K

    2015-04-28

    Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.

  15. Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film

    PubMed Central

    Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862

  16. Structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene diblock copolymer thin film.

    PubMed

    Wu, Hui; Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite.

  17. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  18. Oxygen vacancy induced photoluminescence and ferromagnetism in SrTiO3 thin films by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Wenfei; Yang, Jing; Bai, Wei; Tang, Kai; Zhang, Yuanyuan; Tang, Xiaodong

    2013-10-01

    SrTiO3 thin films were epitaxially grown on (100) SrTiO3 substrates using molecular beam epitaxy. The temperature for growth of the films was optimized, which was indicated by x-ray diffraction and further confirmed by microstructural characterization. Photoluminescence spectra show that oxygen-vacancy contributes to red and blue luminescence of oxygen-deficient post-annealed films, and a red shift was observed in blue region. On the other hand, ferromagnetism in film form SrTiO3 was observed from 5 K to 400 K and could be further enhanced with decreasing oxygen plasma partial pressure in annealing processes, which might be explained by the theory involving d0 magnetism related to oxygen-vacancy. From the cooperative investigations of optical and magnetic properties, we conclude that intrinsic defects, especially oxygen-vacancy, can induce and enhance luminescence and magnetism in SrTiO3 films.

  19. Low-damping sub-10-nm thin films of lutetium iron garnet grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jermain, C. L.; Paik, H.; Aradhya, S. V.; Buhrman, R. A.; Schlom, D. G.; Ralph, D. C.

    2016-11-01

    We analyze the structural and magnetic characteristics of (111)-oriented lutetium iron garnet (Lu3Fe5O12) films grown by molecular-beam epitaxy, for films as thin as 2.8 nm. Thickness-dependent measurements of the in- and out-of-plane ferromagnetic resonance allow us to quantify the effects of two-magnon scattering, along with the surface anisotropy and the saturation magnetization. We achieve effective damping coefficients of 11.1 (9 )×10-4 for 5.3 nm films and 32 (3 )×10-4 for 2.8 nm films, among the lowest values reported to date for any insulating ferrimagnetic sample of comparable thickness.

  20. In vitro studies of PEG thin films with different molecular weights deposited by MAPLE

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Ion, Valentin; Luculescu, Catalin-Romeo; Dinescu, Maria; Canulescu, Stela; Schou, Jørgen

    2012-10-01

    In this work, polyethylene glycol (PEG) films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE). The possibility to tailor the properties of the films by means of polymer molecular weight was explored. The films of PEG of average molecular weights 400 Da, 1450 Da, and 10000 Da (PEG400, PEG1450, and PEG10000) were investigated in vitro, in media similar with those inside the body (phosphate buffer saline PBS with pH 7.4 and blood). The mass of the polymer did not change during this treatment, but the polymer molecular weight was found to strongly influence the films properties and their behavior in vitro. Thus, immersion in PBS induced swelling of the PEG films, which was more pronounced for PEG polymers of higher molecular weight. Prior to immersion in PBS, the PEG films of higher molecular weight were more hydrophilic, the water contact angles decreasing from ˜66 grd for PEG400 to ˜41 grd for PEG1450 and to ˜15 grd for PEG10000. The same trend was observed during immersion of the PEG films in PBS. Before immersion in PBS, the refractive index of the films increased from ˜1.43 for PEG400 to ˜1.48 for PEG1450 and to ˜1.68 for PEG10000. During immersion in PBS the refractive index decreased gradually, but remained higher for the PEG molecules of higher mass. Finally, blood compatibility tests showed that the PEG films of higher molecular weight were most compatible with blood.

  1. Biocatalytic reduction of carboxylic acids.

    PubMed

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Winkler, Margit

    2014-06-01

    An increasing demand for non-petroleum-based products is envisaged in the near future. Carboxylic acids such as citric acid, succinic acid, fatty acids, and many others are available in abundance from renewable resources and they could serve as economic precursors for bio-based products such as polymers, aldehyde building blocks, and alcohols. However, we are confronted with the problem that carboxylic acid reduction requires a high level of energy for activation due to the carboxylate's thermodynamic stability. Catalytic processes are scarce and often their chemoselectivity is insufficient. This review points at bio-alternatives: currently known enzyme classes and organisms that catalyze the reduction of carboxylic acids are summarized. Two totally distinct biocatalyst lines have evolved to catalyze the same reaction: aldehyde oxidoreductases from anaerobic bacteria and archea, and carboxylate reductases from aerobic sources such as bacteria, fungi, and plants. The majority of these enzymes remain to be identified and isolated from their natural background in order to evaluate their potential as industrial biocatalysts.

  2. Deviations from stoichiometry and molecularity in non-stoichiometric Ag-In-Se thin films: Effects on the optical and the electrical properties

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Hoon; Yoo, Myoung Han; Ko, Pil Ju; Lee, Woo-Sun

    2016-12-01

    Non-stoichiometric Ag-In-Se (AIS) thin films were prepared using co-sputtering with InSe2 and Ag targets followed by rapid thermal annealing. The internal stress of the non-stoichiometric AIS thin films was strongly affected by the deviation from molecularity, Δ m. When Δ m was far from stoichiometry, the non-stoichiometric AIS thin films showed better crystallinity. The improvement in the crystallinity and the release of internal stress led to a reduction in the optical band gap from 1.63 to 1.19 eV and in the resistivity from 6.45 × 10-2 to 3.21 × 10-3 Ω·cm for the non-stoichiometric AIS thin films, with a similar tendency for the deviation from molecularity, Δ m. The non-stoichiometric AIS thin films, with Δ m < 0 and Δ s < 0, exhibited n-type conductivity with carrier concentrations on the order of magnitude of 1018 cm-3. The mean absorbance of the 200-nm-thick non-stoichiometric AIS thin films was 1.50, corresponding to an absorption of approximately 96.84 % of the incident light in the visible region.

  3. Engineering of an ultra-thin molecular superconductor by charge transfer

    DOEpatents

    Hla, Saw Wai; Hassanien, Abdelrahim; Kendal, Clark

    2016-06-07

    A method of forming a superconductive device of a single layer of (BETS).sub.2GaCl.sub.4 molecules on a substrate surface which displays a superconducting gap that increases exponentially with the length of the molecular chain is provided.

  4. The taxonomic status of the endangered thin-spined porcupine, Chaetomys subspinosus (Olfers, 1818), based on molecular and karyologic data

    PubMed Central

    Vilela, Roberto V; Machado, Taís; Ventura, Karen; Fagundes, Valéria; de J Silva, Maria José; Yonenaga-Yassuda, Yatiyo

    2009-01-01

    Background The thin-spined porcupine, also known as the bristle-spined rat, Chaetomys subspinosus (Olfers, 1818), the only member of its genus, figures among Brazilian endangered species. In addition to being threatened, it is poorly known, and even its taxonomic status at the family level has long been controversial. The genus Chaetomys was originally regarded as a porcupine in the family Erethizontidae, but some authors classified it as a spiny-rat in the family Echimyidae. Although the dispute seems to be settled in favor of the erethizontid advocates, further discussion of its affinities should be based on a phylogenetic framework. In the present study, we used nucleotide-sequence data from the complete mitochondrial cytochrome b gene and karyotypic information to address this issue. Our molecular analyses included one individual of Chaetomys subspinosus from the state of Bahia in northeastern Brazil, and other hystricognaths. Results All topologies recovered in our molecular phylogenetic analyses strongly supported Chaetomys subspinosus as a sister clade of the erethizontids. Cytogenetically, Chaetomys subspinosus showed 2n = 52 and FN = 76. Although the sexual pair could not be identified, we assumed that the X chromosome is biarmed. The karyotype included 13 large to medium metacentric and submetacentric chromosome pairs, one small subtelocentric pair, and 12 small acrocentric pairs. The subtelocentric pair 14 had a terminal secondary constriction in the short arm, corresponding to the nucleolar organizer region (Ag-NOR), similar to the erethizontid Sphiggurus villosus, 2n = 42 and FN = 76, and different from the echimyids, in which the secondary constriction is interstitial. Conclusion Both molecular phylogenies and karyotypical evidence indicated that Chaetomys is closely related to the Erethizontidae rather than to the Echimyidae, although in a basal position relative to the rest of the Erethizontidae. The high levels of molecular and morphological

  5. The effect of surfaces on molecular ordering in thin liquid-crystal systems

    NASA Astrophysics Data System (ADS)

    Śliwa, I.; JeŻewski, W.; Zakharov, A. V.

    2016-08-01

    A theoretical method for analyzing the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions in liquid crystals, confined between plates of thin planar cells, is developed. It is shown that this method, as involving the concept of local orientational and translational order parameters, enables detailed investigations of the emergence of smectic A, nematic, and isotopic phases, as well as yields an insight into phase transitions between them, in cases of systems strongly affected by surfaces. The evidence of various surface effects, including the coexistence of different phases and the inward propagation of surface melting under the increase of temperature, is also given. The underlying numerical procedure, based on the algorithm of self-consistent calculations of local order parameters, is found to be very effective, allowing one to consider model systems of rather large thicknesses, corresponding to thicknesses of real sample cells.

  6. Growth of Cr2CoGa and inverse Heusler thin films using Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle; Decapua, Matthew; Player, Gabriel; Heiman, Don

    Theoretical calculations have predicted the existence of inverse Heusler compounds that exhibit zero-moment magnetization while retaining their half-metallicity. These unique compounds have been labeled spin gapless semiconductors (SGS), where the density of states (DOS) can behave as a half-metal or gapless semiconductor. There is a special interest for zero-moment SGS compounds since traditional antiferromagnets cannot be spin-polarized. Such compounds are experimentally attractive for future spintronic devices due to their large magnetic transition temperature (400-800 K). This work focuses on zero-moment inverse Heusler compounds including Cr2CoGa and Mn3Al. Thin films have been grown using MBE and their magnetic, structural, and electrical properties of these compounds have been characterized by various techniques, including XMCD and magnetometry. The atomic moments are found to be large, but significant cancellations lead to small average moments. Supported by NSF Grant ECCS-1402738.

  7. Nanostructured organic and inorganic thin films with novel molecular recognition properties

    NASA Astrophysics Data System (ADS)

    Twardowski, Mariusz Z.

    An important theme in surface/interface science is the development of molecular level understandings of interactions at solid-liquid interfaces. The study of molecular recognition at such interfaces is well suited for modeling with self-assembled monolayers of alkanethiols (SAMs). For optimal studies, the SAM must be defect-free. Towards this end, a chemical treatment of the gold substrate was developed, consisting of a sequential treatment in "piranha" followed by dilute aqua regia. We found that the SAMs assembled on these treated substrates had exceptional barrier properties as measured by cyclic voltammetry(CV). X-ray diffraction(XRD) indicated that oxidative treatment induces significant bulk recrystallization of the metal. The dynamics suggest that recrystallization results from preferential dissolution of Au and/or impurities present at grain boundaries, leading to unpinning and merger into larger grains. Supported lipid layers were formed via fusion of unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) to mixed SAMs containing ferrocene-functionalized hexadecanethiol chains(FcCO 2C16SH). The structures were characterized by several methods, including CV, ellipsometry and surface plasmon resonance(SPR). Studies revealed that the adsorbed DMPC strongly influences the interactions of the tethered ferrocene groups with secondary aqueous molecular redox probes. Permselective properties are seen. We believe that molecular scale defect structures in the adsorbed DMPC layer confer these molecular discrimination properties. Unilamellar vesicles of DMPC and varying quantities of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt)(DMPG) were used to deposit lipid bilayer assemblies on SAMs. The coverages of the layers were measured with SPR and decreased with increasing DMPG. The assembly is reversible and the lipid adlayer removable with ethanol. Effects of the adsorbed lipid layer on the electrochemical interactions of the

  8. A novel approach in controlling the conductivity of thin films using molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Lushington, Andrew; Liu, Jian; Bannis, Mohammad N.; Xiao, Biwei; Lawes, Stephen; Li, Ruying; Sun, Xueliang

    2015-12-01

    Here we present a novel way to grow aluminum alkoxide films with tunable conductivity with molecular level accuracy with the use of molecular layer deposition (MLD). Alternating exposures of trimethylaluminum (TMA), ethylene glycol (EG), and terephthaloyl chloride (TC) are used to grow the aluminium alkoxide films. Control over film composition was accomplished by alternating cycles of EG and TC between cycles of TMA and EG. In this fashion the aluminum to carbon ratio can be accurately controlled. These films were then pyrolyzed under a reducing atmosphere to yield a conductive Al2O3/carbon composite. Raman spectroscopy determined that nanocrystalline sp2-graphitic carbon was formed following pyrolysis while sheet resistance measurements determined that conductivity of the film is directly related to aluminium-carbon ratio. To further elucidate the origin of conductivity within the film, synchrotron based XPS was performed.

  9. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    NASA Technical Reports Server (NTRS)

    Butcher, Ray J.; Brewer, Greg; Burton, Aaron S.; Dworkin, Jason

    2014-01-01

    In the title compound, C5H9NO2H2O, the amino acid is in the usual zwitterionic form involving the carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7) and0.118 (7). In the crystal, NH O and OH O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+) and donor (through a single carboxylate O from two different aminocyclobutane carboxylatemoities)], resulting in a two-dimensional layered structure lying parallel to (100).

  10. Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water.

    PubMed

    Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M; Gnecco, Enrico

    2014-07-21

    The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.

  11. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    SciTech Connect

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph; Stein, Gila E.; Green, Peter F.

    2016-09-18

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations and the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.

  12. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    SciTech Connect

    Hasan, Mohammad Nasim Morshed, A. K. M. Monjur Rabbi, Kazi Fazle Haque, Mominul

    2016-07-12

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90 K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  13. Structural and magnetic phase transitions in chromium nitride thin films grown by rf nitrogen plasma molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Alam, Khan; Disseler, Steven M.; Ratcliff, William D.; Borchers, Julie A.; Ponce-Pérez, Rodrigo; Cocoletzi, Gregorio H.; Takeuchi, Noboru; Foley, Andrew; Richard, Andrea; Ingram, David C.; Smith, Arthur R.

    2017-09-01

    A magnetostructural phase transition is investigated in single-crystal chromium nitride (CrN) thin films grown by rf plasma molecular beam epitaxy on MgO(001) substrates. While still within the vacuum environment following molecular beam epitaxy growth, in situ low-temperature scanning tunneling microscopy, and in situ variable low-temperature reflection high-energy electron diffraction are applied, revealing an atomically smooth and metallic CrN(001) surface, and an in-plane structural transition from 1 ×1 (primitive CrN unit cell) to √{2 }×√{2 }-R 45∘ with a transition temperature of (278 ±3 ) K, respectively. Ex situ temperature-dependent measurements using neutron diffraction are also performed, looking at the structural peaks and likewise revealing a first-order structural transition along the [111] out-of-plane direction, with transition temperatures of (268 ± 3) K. Turning to the magnetic peaks, neutron diffraction confirms a clear magnetic transition from paramagnetic at room temperature to antiferromagnetic at low temperatures with a sharp, first-order phase transition and a Néel temperature of (270 ±2 ) K or (280 ±2 ) K for two different films. In addition to the experimental measurements of structural and magnetic ordering, we also discuss results from first-principles theoretical calculations which explore various possible magnetostructural models.

  14. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    SciTech Connect

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph; Stein, Gila E.; Green, Peter F.

    2016-09-18

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations and the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.

  15. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    DOE PAGES

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph; ...

    2016-09-18

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations andmore » the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.« less

  16. Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time

    SciTech Connect

    Pithan, Linus; Weber, Christopher; Zykov, Anton; Sauer, Katrein; Opitz, Andreas; Kowarik, Stefan; Meister, Eduard; Brütting, Wolfgang; Jin, Chenyu; Riegler, Hans

    2015-10-28

    We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C{sub 44}H{sub 90}) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.

  17. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Morshed, A. K. M. Monjur; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250K/130K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×109 K/s to 8×109 K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  18. Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy.

    PubMed

    Kawashima, Kazuhiro; Okamoto, Yuji; Annayev, Orazmuhammet; Toyokura, Nobuo; Takahashi, Ryota; Lippmaa, Mikk; Itaka, Kenji; Suzuki, Yoshikazu; Matsuki, Nobuyuki; Koinuma, Hideomi

    2017-01-01

    As an extension of combinatorial molecular layer epitaxy via ablation of perovskite oxides by a pulsed excimer laser, we have developed a laser molecular beam epitaxy (MBE) system for parallel integration of nano-scaled thin films of organic-inorganic hybrid materials. A pulsed infrared (IR) semiconductor laser was adopted for thermal evaporation of organic halide (A-site: CH3NH3I) and inorganic halide (B-site: PbI2) powder targets to deposit repeated A/B bilayer films where the thickness of each layer was controlled on molecular layer scale by programming the evaporation IR laser pulse number, length, or power. The layer thickness was monitored with an in situ quartz crystal microbalance and calibrated against ex situ stylus profilometer measurements. A computer-controlled movable mask system enabled the deposition of combinatorial thin film libraries, where each library contains a vertically homogeneous film with spatially programmable A- and B-layer thicknesses. On the composition gradient film, a hole transport Spiro-OMeTAD layer was spin-coated and dried followed by the vacuum evaporation of Ag electrodes to form the solar cell. The preliminary cell performance was evaluated by measuring I-V characteristics at seven different positions on the 12.5 mm × 12.5 mm combinatorial library sample with seven 2 mm × 4 mm slits under a solar simulator irradiation. The combinatorial solar cell library clearly demonstrated that the energy conversion efficiency sharply changes from nearly zero to 10.2% as a function of the illumination area in the library. The exploration of deposition parameters for obtaining optimum performance could thus be greatly accelerated. Since the thickness ratio of PbI2 and CH3NH3I can be freely chosen along the shadow mask movement, these experiments show the potential of this system for high-throughput screening of optimum chemical composition in the binary film library and application to halide perovskite solar cell.

  19. Development of molecular precursors for deposition of indium sulphide thin film electrodes for photoelectrochemical applications.

    PubMed

    Ehsan, Muhammad Ali; Peiris, T A Nirmal; Wijayantha, K G Upul; Olmstead, Marilyn M; Arifin, Zainudin; Mazhar, Muhammad; Lo, K M; McKee, Vickie

    2013-08-14

    Symmetrical and unsymmetrical dithiocarbamato pyridine solvated and non-solvated complexes of indium(III) with the general formula [In(S2CNRR')3]·n(py) [where py = pyridine; R,R' = Cy, n = 2 (1); R,R' = (i)Pr, n = 1.5 (2); NRR' = Pip, n = 0.5 (3) and R = Bz, R' = Me, n = 0 (4)] have been synthesized. The compositions, structures and properties of these complexes have been studied by means of microanalysis, IR and (1)H-NMR spectroscopy, X-ray single crystal and thermogravimetric (TG/DTG) analyses. The applicability of these complexes as single source precursors (SSPs) for the deposition of β-In2S3 thin films on fluorine-doped SnO2 (FTO) coated conducting glass substrates by aerosol-assisted chemical vapour deposition (AACVD) at temperatures of 300, 350 and 400 °C is studied. All films have been characterized by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDX) for the detection of phase and stoichiometry of the deposit. Scanning electron microscopy (SEM) studies reveal that precursors (1)-(4), irrespective of different metal ligand design, generate comparable morphologies of β-In2S3 thin films at different temperatures. Direct band gap energies of 2.2 eV have been estimated from the UV-vis spectroscopy for the β-In2S3 films fabricated from precursors (1) and (4). The photoelectrochemical (PEC) properties of β-In2S3 were confirmed by recording the current-voltage plots under light and dark conditions. The plots showed anodic photocurrent densities of 1.25 and 0.65 mA cm(-2) at 0.23 V vs. Ag/AgCl for the β-In2S3 films made at 400 and 350 °C from the precursors (1) and (4), respectively. The photoelectrochemical performance indicates that the newly synthesised precursors are highly useful in fabricating β-In2S3 electrodes for solar energy harvesting and optoelectronic application.

  20. Molecular and thin film properties of cobalt half-sandwich compounds for optoelectronic application.

    PubMed

    Reinhardt, Maxwell; Dalgleish, Simon; Shuku, Yoshiaki; Reissig, Louisa; Matsushita, Michio M; Crain, Jason; Awaga, Kunio; Robertson, Neil

    2017-03-01

    The structure and electronic properties of a novel cobalt half sandwich complex of cyclopentadiene (Cp) and diaminonaphthalene (DAnap) [CpCo(DAnap)] are described and compared to the previously reported diaminobenzene derivative [CpCo(DAbnz)] in view of their potential for (opto)electronic device application. Both complexes show stable redox processes, tunable through the diaminoacene ligand, and show strong absorption in the visible region, with additional transitions stretching into the near infrared (NIR). CpCo(DAnap) crystallises with a particularly large unit cell (9301 Å(3)), comprising 32 molecules, with a gradual rotation over 8 molecules along the long c-axis. In the solid state the balance of the optical transitions in both complexes is reversed, with a suppression of the visible band and an enhancement of the NIR band, attributed to extensive intermolecular electronic interaction. In the case of CpCo(DAnap), highly crystalline thin films could be formed under physical vapor deposition, which show a photocurrent response stretching into the NIR, and p-type semiconductor behavior in field effect transistors with mobility values of the order 1 × 10(-4) cm(2) V(-1) s(-1). The device performance is understood through investigation of the morphology of the grown films.

  1. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics.

    PubMed

    Sangwan, Vinod K; Ortiz, Rocio Ponce; Alaboson, Justice M P; Emery, Jonathan D; Bedzyk, Michael J; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2012-08-28

    In the past decade, semiconducting carbon nanotube thin films have been recognized as contending materials for wide-ranging applications in electronics, energy, and sensing. In particular, improvements in large-area flexible electronics have been achieved through independent advances in postgrowth processing to resolve metallic versus semiconducting carbon nanotube heterogeneity, in improved gate dielectrics, and in self-assembly processes. Moreover, controlled tuning of specific device components has afforded fundamental probes of the trade-offs between materials properties and device performance metrics. Nevertheless, carbon nanotube transistor performance suitable for real-world applications awaits understanding-based progress in the integration of independently pioneered device components. We achieve this here by integrating high-purity semiconducting carbon nanotube films with a custom-designed hybrid inorganic-organic gate dielectric. This synergistic combination of materials circumvents conventional design trade-offs, resulting in concurrent advances in several transistor performance metrics such as transconductance (6.5 μS/μm), intrinsic field-effect mobility (147 cm(2)/(V s)), subthreshold swing (150 mV/decade), and on/off ratio (5 × 10(5)), while also achieving hysteresis-free operation in ambient conditions.

  2. Ferredoxin molecular thin film with intrinsic switching mechanism for biomemory application.

    PubMed

    Yagati, Ajay Kumar; Kim, Sang-Uk; Min, Junhong; Choi, Jeong-Woo

    2010-05-01

    A biomemory device consisting of cysteine modified ferredoxin molecules which possess a memory effect via a charge transfer mechanism was developed. For achieving an efficient bioelectronic device, cysteine modified ferredoxin was developed by embodying cysteine residues in ferredoxin by site--directed mutagenesis method to directly coordinate with the gold (Au) surface without use of any additional linkers. The thin film formation of ferredoxin molecules on Au electrode is confirmed by surface plasmon resonance (SPR) spectroscopy and scanning tunneling microscope (STM). Cyclic voltammetry (CV) and open circuit potential amperometry (OCPA) methods were used to verify the memory switching characteristics of the fabricated device. The charge transfer between ferredoxin protein molecules and Au electrode enables a bi-stable electrical conductivity allowing the system to be used as a digital memory device. Data storage is achieved by applying redox voltages which are within the range of -500 mV. These results suggest that the proposed device has a function of memory and can be used for the construction of a nano-scale bioelectronic device.

  3. Not all carboxylates are created equal: differences in interaction of carboxylated peptides with a CaCO₃ dimer.

    PubMed

    Rosas-García, Víctor M; de León-Abarte, Isidro; Vidal-López, Germán; Palacios-Pargas, Arturo; Jáuregui-Prado, Xóchitl

    2014-08-01

    The carboxylate group has been considered the "glue" for mineralizing proteins because of its ability to bind Ca(II). We propose the calcium salts of dicarboxylated dipeptides (Asp-Asp and Glu-Glu) as the smallest models of a mineralizing protein active site. Molecular dynamics/simulated annealing was used for conformational search of the dipeptide global minimum. Semiempirical blind docking was used for configurational search of all cluster-peptide complexes and structures were then optimized in the gas phase at the RI-MP2/SVP level of theory. Solvent effects were also taken into account. We found that the energy of interaction of the calcium carboxylates with a calcium carbonate dimer can be either favorable or unfavorable depending on side-chain length, so side-chain carboxylic groups belonging to different amino acids may show different affinities towards calcium carbonate. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Molecular layer deposition of functional thin films for advanced lithographic patterning.

    PubMed

    Zhou, Han; Bent, Stacey F

    2011-02-01

    Photoresist materials comprise one of the main challenges faced by lithography to meet the requirements of electronic device size scaling. Here we report for the first time the use of molecular layer deposition (MLD) to produce photoresist materials with controllable placement of functional moieties. Polyurea resists films are deposited by MLD using urea coupling reactions between 1,4-phenylene diisocyanate (PDIC) and ethylenediamine (ED) or 2,2'-(propane-2,2-diylbis(oxy))diethanamine (PDDE) monomers in a layer-by-layer fashion with a linear growth rate, allowing acid-labile groups to be incorporated into the film at well-controlled positions. The films are deposited with stoichiometric compositions and have highly uniform surface morphology as investigated using atomic force microscopy. We show that acid treatment can cleave the backbone of the polyurea film at positions where the acid-labile groups are embedded. We further show that after soaking the polyurea film with photoacid generator (PAG), it acts as a photoresist material and we present several UV patterning demonstrations. This approach presents a new way to make molecularly designed resist films for lithography.

  5. The performance of thin layers produced by molecular plating as α-particle sources

    NASA Astrophysics Data System (ADS)

    Vascon, A.; Wiehl, N.; Reich, T.; Drebert, J.; Eberhardt, K.; Düllmann, Ch. E.

    2013-09-01

    Sources for α-spectroscopy studies were prepared. Constant current density molecular plating was used to produce layers containing the α-particle emitter 147Sm. Different parameters of the molecular plating process were varied, namely the plating solvent (an isopropanol/isobutanol mixture, pyridine, and N,N-dimethylformamide), the applied deposition time (90, 180, and 360 min), and the surface roughness of the deposition substrate (ca. 10, 20, and 300 nm). Using different analytical techniques, Sm deposition yields, chemical composition of the produced surfaces, surface homogeneity, roughness and morphology were investigated. Alpha spectra were recorded with a Si solid-state detector for samples belonging to the different types of characterized sources, and big differences in the peak shape and position of the peak maximum were observed, as well as significant differences in the fraction of α particles reaching the detector positioned above the samples. An explanation for the observed features is presented. The results of these studies led to the identification of the key plating parameters, namely the plating solvent and the roughness of the deposition substrate, which most affect the quality of the α spectra.

  6. Structure investigations of group 13 organometallic carboxylates.

    PubMed

    Justyniak, Iwona; Prochowicz, Daniel; Tulewicz, Adam; Bury, Wojciech; Goś, Piotr; Lewiński, Janusz

    2017-01-17

    The octet-compliant group 13 organometallics with highly polarized bonds in the metal coordination sphere exhibit a significant tendency to maximize their coordination number through the formation of adducts with a wide range of neutral donor ligands or by self-association to give aggregates containing tetrahedral and higher coordinated aluminium centres, and even in some cases molecular complexes equilibrate with ionic species of different coordination numbers of the metal centre. This work provides a comprehensive overview of the structural chemistry landscape of the group 13 carboxylates. Aside from a more systematic approach to the general structural chemistry of the title compounds, the structure investigations of [R2M(μ-O2CPh)]2-type benzoate complexes (where M = B, Al and Ga) and their Lewis acid-base adducts [(R2M)(μ-O2CPh)(py-Me)] are reported. DFT calculations were also performed to obtain a more in-depth understanding of both the changes in the bonding of group 13 organometallic carboxylate adducts with a pyridine ligand.

  7. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  8. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes.

    PubMed

    Dennis, V W; Stead, N W; Andreoli, T E

    1970-03-01

    Amphotericin B modifies the permeability properties of thin lipid membranes formed from solutions containing sheep red cell phospholipids and cholesterol. At 10(-6)M amphotericin B, the DC membrane resistance fell from approximately 10(8) to approximately 10(2) ohm-cm(2), and the membranes became Cl(-)-, rather than Na(+)-selective; the permeability coefficients for hydrophilic nonelectrolytes increased in inverse relationship to solute size, and the rate of water flow during osmosis increased 30-fold. These changes may be rationalized by assuming that the interaction of amphotericin B with membrane-bound sterol resulted in the formation of aqueous pores. N-acetylamphotericin B and the methyl ester of N-acetylamphotericin B, but not the smaller ring compounds, filipin, rimocidin, and PA-166, produced comparable permeability changes in identical membranes, and amphotericin B and its derivatives produced similar changes in the properties of membranes formed from phospholipid-free sterol solutions. However, amphotericin B did not affect ionic selectivity or water and nonelectrolyte permeability in membranes formed from solutions containing phospholipids and no added cholesterol, or when cholesterol was replaced by either cholesterol palmitate, dihydrotachysterol, epicholesterol, or Delta5-cholesten-3-one. Phospholipid-free sterol membranes exposed to amphotericin B or its derivatives were anion-selective, but the degree of Cl(-) selectivity varied among the compounds, and with the aqueous pH. The data are discussed with regard to, first, the nature of the polyene-sterol interactions which result in pore formation, and second, the functional groups on amphotericin B responsible for membrane anion selectivity.

  9. Molecular Aspects of Polyene- and Sterol-Dependent Pore Formation in Thin Lipid Membranes

    PubMed Central

    Dennis, Vincent W.; Stead, Nancy W.; Andreoli, Thomas E.

    1970-01-01

    Amphotericin B modifies the permeability properties of thin lipid membranes formed from solutions containing sheep red cell phospholipids and cholesterol. At 10-6 M amphotericin B, the DC membrane resistance fell from ≈108 to ≈102 ohm-cm2, and the membranes became Cl--, rather than Na+-selective; the permeability coefficients for hydrophilic nonelectrolytes increased in inverse relationship to solute size, and the rate of water flow during osmosis increased 30-fold. These changes may be rationalized by assuming that the interaction of amphotericin B with membrane-bound sterol resulted in the formation of aqueous pores. N-acetylamphotericin B and the methyl ester of N-acetylamphotericin B, but not the smaller ring compounds, filipin, rimocidin, and PA-166, produced comparable permeability changes in identical membranes, and amphotericin B and its derivatives produced similar changes in the properties of membranes formed from phospholipid-free sterol solutions. However, amphotericin B did not affect ionic selectivity or water and nonelectrolyte permeability in membranes formed from solutions containing phospholipids and no added cholesterol, or when cholesterol was replaced by either cholesterol palmitate, dihydrotachysterol, epicholesterol, or Δ5-cholesten-3-one. Phospholipid-free sterol membranes exposed to amphotericin B or its derivatives were anion-selective, but the degree of Cl- selectivity varied among the compounds, and with the aqueous pH. The data are discussed with regard to, first, the nature of the polyene-sterol interactions which result in pore formation, and second, the functional groups on amphotericin B responsible for membrane anion selectivity. PMID:4938534

  10. Low-LER tin carboxylate photoresists using EUV

    NASA Astrophysics Data System (ADS)

    Del Re, Ryan; Sortland, Miriam; Pasarelli, James; Cardineau, Brian; Ekinci, Yasin; Vockenhuber, Michaela; Neisser, Mark; Freedman, Daniel; Brainard, Robert L.

    2015-03-01

    Pure thin films of organotin compounds have been lithographically evaluated using extreme ultraviolet lithography (EUVL, 13.5 nm). Twenty-one compounds of the type R2Sn(O2CR')2 were spin-coated from solutions in toluene, exposed to EUV light, and developed in organic solvents. Exposures produced negative-tone contrast curves and dense-line patterns using interference lithography. Contrast-curve studies indicated that the Emax values were linearly related to molecular weight when plotted separately depending upon the hydrocarbon group bound directly to tin (R = butyl, phenyl and benzyl). Additionally, Emax was found to be linearly related to free radical stability of the hydrocarbon group bound directly to tin. Dense-line patterning capabilities varied, but two resists in particular show exceptionally good line edge roughness (LER). A resist composed of an amorphous film of (C6H5CH2)2Sn(O2CC(CH3)3)2 (13) achieved 1.4 nm LER at 22 nm half-pitch patterning and a resist composed of (C6H5CH2)2Sn(O2CC6H5)2 (14) achieved 1.1 nm LER at 35 nm half-pitch at high exposure doses (600 mJ/cm2). Two photoresists that use olefin-based carboxylates, (C6H5CH2)2Sn(O2CCH=CH2)2 (11) and (C6H5CH2)2Sn(O2CC(CH3)=CH2)2 (12), demonstrated much improved photospeeds (5 mJ/ cm2 and 27 mJ/cm2) but with worse LER.

  11. On the dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever

    SciTech Connect

    Finot, Eric; Fabre, Arnaud; Passian, Ali; Thundat, Thomas

    2014-03-01

    Mechanical resonators shaped like microcantilevers have been demonstrated as a platform for very sensitive detection of chemical and biological analytes. However, its use as an analytical tool will require fundamental understanding of the molecular absorption-induced effects in the static and dynamic sensor response. The effect of absorption-induced surface stress on the microcantilever response is here investigated using palladium hydride formation. It is shown that the resonance and deformation states of the cantilever monitored simultaneously exhibit excellent correlation with the phase of the hydride formation. However, the associated frequency shifts and quasistatic bending are observed to be independent during solid solution phase. Importantly, absorption-induced changes in the elastic parameters of the palladium film are found to play a dominant role in the static and dynamic response. The presented results help in discerning the parameters that control the cantilever response as well as the relationships between these parameters.

  12. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    SciTech Connect

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J. Riechert, H.

    2015-05-25

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  13. Mechanism of Charge Transport in Cobalt and Iron Phthalocyanine Thin Films Grown by Molecular Beam Epitaxy

    SciTech Connect

    Kumar, Arvind; Samanta, Soumen; Singh, Ajay; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.

    2011-12-12

    Cobalt phthalocyanine (CoPc), iron phthalocyanine (FePc) and their composite (CoPc-FePc) films have been grown by molecular beam epitaxy (MBE). Grazing incidence X-ray diffraction (GIXRD) and scanning electron microscope (SEM) studies showed that composite films has better structural ordering compared to individual CoPc and FePc films. The temperature dependence of resistivity (in the temperature range 25 K- 100 K) showed that composite films are metallic, while individual CoPc and FePc films are in the critical regime of metal-to-insulator (M-I) transition The composite films show very high mobility of 110 cm{sup 2} V{sup -1} s{sup -1} at room temperature i.e. nearly two order of magnitude higher compared to pure CoPc and FePc films.

  14. Specifics of freezing of Lennard-Jones fluid confined to molecularly thin layers

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Aleksey; Neimark, Alexander V.

    2003-04-01

    Freezing of a Lennard-Jones fluid between solid surfaces was studied using grand canonical Monte Carlo and molecular dynamics simulations. We explored the formation of frozen phases of hexagonal and orthorhombic symmetry in mono-, bi-, and tri-layer structures. The freezing transition, the type of lattice, and translational and orientational ordering were identified on the basis of orientational order parameters, in-plane two-body and three-body translational correlation functions, orientational correlation functions, and analysis of molecular mobilities. We have found that the freezing temperature is a nonmonotonous function of the pore width: orthorhombic bi-layer freezes at lower temperatures than hexagonal monolayer and hexagonal bi-layer. As the pore width increases, the transition from a hexagonal monolayer to an orthorhombic bi-layer occurred via disordered liquidlike and quasi-long-range four-fold ordered bi-layers. The latter, "quadratic" structure is characterized by an algebraically decaying four-fold orientational correlation function. The transition from crystalline hexagonal bi-layer to orthorhombic tri-layer occurs through a bi-layer structure with two uncoupled hexagonal monolayers. The quadratic phase was observed also as an intermediate structure during freezing of a liquidlike bi-layer into an orthorhombic quasi-crystal. The formation of the quadratic phase was associated with step-wise densification of fluid, a sharp increase of the local orientational order parameter, and a significant reduction of fluid mobility. In the process of solidification, the system passed through a sequence of high-density jammed structures, in which the four-fold symmetry developed progressively, as the temperature decreased.

  15. Structure-activity relationship and molecular mechanisms of ethyl 2-amino-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4h-chromene-3-carboxylate (sha 14-1) and its analogues.

    PubMed

    Das, Sonia G; Doshi, Jignesh M; Tian, Defeng; Addo, Sadiya N; Srinivasan, Balasubramanian; Hermanson, David L; Xing, Chengguo

    2009-10-08

    Rapid development of multiple drug resistance against current therapies is a major barrier in the treatment of cancer. Therefore, anticancer agents that can overcome acquired drug resistance in cancer cells are of great importance. Previously, we have demonstrated that ethyl 2-amino-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4H-chromene-3-carboxylate (5a, sHA 14-1), a stable analogue of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (6, HA 14-1), mitigates drug resistance and synergizes with a variety of cancer therapies in leukemia cells. Structure-activity relationship (SAR) studies of 5a guided the development of ethyl 2-amino-6-(3',5'-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (5q, CXL017), a compound with low micromolar cytotoxicity against a wide-range of hematologic and solid tumor cells. More excitingly, our studies of 5q in camptothecin (CCRF-CEM/C2) and mitoxantrone (HL-60/MX2) resistant cancer cells highlight its ability to selectively kill drug-resistant cells over parent cancer cells. 5q inhibits tumor cell growth through the induction of apoptosis, with detailed mechanism of its selectivity toward drug-resistant cancer cells under investigation. These results suggest that 5q is a promising candidate for treatment of cancers with multiple drug resistance.

  16. Electrical and mechanical properties of molecularly functionalized mesoporous silica thin films

    NASA Astrophysics Data System (ADS)

    Singh, Amit Pratap

    Mesoporous silica (MPS) thin films are attractive for achieving low relative dielectric permittivity (low-kappa) interlayer isolation in integrated circuit wiring, but are susceptible to instabilities in electrical behavior due to water uptake and copper diffusion. This work investigates the electrical, chemical, and thermal instabilities, Cu diffusion, and adhesion of these materials for evaluating and enabling their use for applications as interlayer insulators in nanodevice wiring. Upon annealing Al/MPS/Si(001)/Al capacitors between 80 to 200°C, the flat-band voltage first increases, reaches a maximum, and then decreases. Concurrently, the initially observed deep depletion behavior is replaced by strong inversion. Subsequent air-exposure restores the preanneal C-V characteristics. Kinetics analyses reveal two thermally activated processes: proton generation through fissure of silanol bonds (activation energy Ea1 = 0.42 +/- 0.04 eV) and proton-induced depassivation of dangling bond traps (Ea2 = 0.54 +/- 0.05 eV) at the MPS/Si interface. We present an empirical model correlating these processes with the C-V characteristics. Further, we show that capping MPS films with a trimethyl-terminated organosilane irreversibly suppresses moisture-induced capacitance instabilities, and decreases the relative dielectric permittivity and Cu-induced leakage currents. Analysis of capacitance-voltage and current-voltage characteristics along with infrared spectroscopy shows that the trimethyl organosilanes inhibit hydrogen bonding of water molecules by rendering the dielectric surfaces hydrophobic. Fracture behavior and mechanical properties of pristine (i.e., un-functionalized MPS) and silylated mesoporous silica (SMPS) films were studied by four-point bend tests and nanoindentation measurements. Four-point bend measurements on Si/epoxy/Ti/Cu/MPS/Si stacks show that structures with un-silylated MPS films fracture at ˜3 J/m2, while those with SMPS films show a ˜50% lower

  17. Structure of a dinuclear cadmium complex with 2,2'-bi-pyridine, monodentate nitrate and 3-carb-oxy-6-methyl-pyridine-2-carboxyl-ate ligands: intra-molecular carbon-yl(lone pair)⋯π(ring) and nitrate(π)⋯π(ring) inter-actions.

    PubMed

    Granifo, Juan; Suarez, Sebastián; Baggio, Ricardo

    2015-08-01

    The centrosymmetric dinuclear complex bis-(μ-3-carb-oxy-6-methyl-pyridine-2-carboxyl-ato)-κ(3) N,O (2):O (2);κ(3) O (2):N,O (2)-bis-[(2,2'-bi-pyridine-κ(2) N,N')(nitrato-κO)cadmium] methanol monosolvate, [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH3OH, was isolated as colourless crystals from the reaction of Cd(NO3)2·4H2O, 6-methyl-pyridine-2,3-di-carb-oxy-lic acid (mepydcH2) and 2,2'-bi-pyridine in methanol. The asymmetric unit consists of a Cd(II) cation bound to a μ-κ(3) N,O (2):O (2)-mepydcH(-) anion, an N,N'-bidentate 2,2'-bi-pyridine group and an O-mono-dentate nitrate anion, and is completed with a methanol solvent mol-ecule at half-occupancy. The Cd complex unit is linked to its centrosymmetric image through a bridging mepydcH(-) carboxyl-ate O atom to complete the dinuclear complex mol-ecule. Despite a significant variation in the coordination angles, indicating a considerable departure from octa-hedral coordination geometry about the Cd(II) atom, the Cd-O and Cd-N distances in this complex are surprisingly similar. The crystal structure consists of O-H⋯O hydrogen-bonded chains parallel to a, further bound by C-H⋯O contacts along b to form planar two-dimensional arrays parallel to (001). The juxtaposed planes form inter-stitial columnar voids that are filled by the methanol solvent mol-ecules. These in turn inter-act with the complex mol-ecules to further stabilize the structure. A search in the literature showed that complexes with the mepydcH(-) ligand are rare and complexes reported previously with this ligand do not adopt the μ-κ(3) coordination mode found in the title compound.

  18. Absolute photoluminescence quantum yield of molecular organic thin films: effects of doping with strongly fluorescent rubrene

    NASA Astrophysics Data System (ADS)

    Mattoussi, Hedi M.; Murata, Hideyuki; Merritt, Charles D.; Kafafi, Zakya H.

    1998-12-01

    We present data on the absolute photoluminescence quantum yield (phi) PL, for a set of pure and molecularly doped organic solid films. The procedure uses an integrating sphere to provide accurate measure of the photoluminescence efficiency for solid, sub-micron thickness, films. Host materials include a common hole transport compounds, N,N- dipheny-N,N-bis(3-methylphenyl)-1,1-biphenyl-4,4-diamine, TPD, and two metal chelates used as electron transport and/or light emitting materials, tris (8- hydroxyquinolinolato) aluminum (III), Alq3, and one of its methyl derivatives, tris (8- trimethylhydroxyquinolinolator) aluminum (III), Almq3, Tetraphenylnapthacene, or rubrene, is used as the dopant. A substantial increase in (phi) PL is measured with respect to the pure host. For example, the measured (phi) PL increases from 0.25 and 0.40 for pure Alq3 and Almq3, respectively, to near unity upon doping with rubrene at approximately 1 mol percent. The data are discussed within the framework of Foerster energy transfer.

  19. Molecular dynamics simulation of nano-indentation on Ti-V multilayered thin films

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Peng, Xianghe; Fu, Tao; Zhao, Yinbo; Huang, Cheng; Wang, Zhongchang

    2017-03-01

    We developed a second nearest-neighbor modified embedded-atom method potential for binary Ti-V system. The potential parameters were identified by fitting the lattice parameter, cohesive energy and elastic constants of CsCl-type TiV, and further validated by reproducing the fundamental physical and mechanical properties of Ti-V systems with other crystal structures. In addition, we also performed molecular dynamics simulations of nano-indentation processes of pure Ti film, pure V film, and two kinds of four-layer Ti-V films, V-Ti-V-Ti and Ti-V-Ti-V. We found that the indentation force-depth curve for the pure V film turns flat at an indentation depth of 2.8 nm, where a prismatic loop was observed. Such prismatic loop is not found in the V/Ti/V/Ti multilayer because the thickness of each layer is insufficient for the formation of such prismatic loops, which accounts for the increase of stress in the multilayer.

  20. Photoconductivity of ultra-thin Ge(GeSn) layers grown in Si by low-temperature molecular beam epitaxy

    SciTech Connect

    Talochkin, A. B.; Chistokhin, I. B.; Mashanov, V. I.

    2016-04-07

    Photoconductivity (PC) spectra of Si/Ge(GeSn)/Si structures with the ultra-thin (1.0–2.3 nm) Ge and GeSn alloy layers grown by the low-temperature (T = 100 °C) molecular beam epitaxy are studied. Photoresponse in the range of 1.2–0.4 eV related to light absorption in the buried Ge(GeSn) layer is observed. It is shown that in case of lateral PC, a simple diffusion model can be used to determine the absorption coefficient of this layer α ∼ 10{sup 5 }cm{sup −1}. This value is 100 times larger than that of a single Ge quantum dot layer and is reached significantly above the band gap of most bulk semiconductors. The observed absorption is caused by optical transitions between electron and hole states localized at the interfaces. The anomalous high value of α can be explained by the unusual state of Ge(GeSn) layer with high concentration of dangling bonds, the optical properties of which have been predicted theoretically by Knief and von Niessen (Phys. Rev. B 59, 12940 (1999)).

  1. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Yao, Q.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Shen, D. W.

    2016-08-01

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO3 and iso-polarity LaAlO3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO3 (111) substrate was more suitable than Nb-doped SrTiO3. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO3 based superlattices.

  2. Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces

    NASA Astrophysics Data System (ADS)

    Feng, Tianli; Yao, Wenjun; Wang, Zuyuan; Shi, Jingjing; Li, Chuang; Cao, Bingyang; Ruan, Xiulin

    2017-05-01

    Although extensive experimental and theoretical works have been conducted to understand the ballistic and diffusive phonon transport in nanomaterials recently, direct observation of temperature and thermal nonequilibrium of different phonon modes has not been realized. Herein, we have developed a method within the framework of molecular dynamics to calculate the temperatures of phonons in both real and phase spaces. Taking silicon thin film and graphene as examples, we directly obtained the spectral phonon temperature (SPT) and observed the local thermal nonequilibrium between the ballistic and diffusive phonons. Such nonequilibrium also generally exists across interfaces and is surprisingly large, and it provides a significant additional thermal interfacial resistance mechanism besides phonon reflection. Our SPT results directly show that the vertical thermal transport across the dimensionally mismatched graphene-substrate interface is through the coupling between flexural acoustic phonons of graphene and the longitudinal phonons in the substrate with mode conversion. In the dimensionally matched interfaces, e.g., graphene-graphene junction and graphene-boron nitride planar interfaces, strong coupling occurs between the acoustic phonon modes on both sides, and the coupling decreases with interfacial mixing. The SPT method together with the spectral heat flux can eliminate the size effect of the thermal conductivity prediction induced from ballistic transport.

  3. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  4. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    SciTech Connect

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Yao, Q.; Shen, D. W.

    2016-08-15

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO{sub 3} thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO{sub 3} and iso-polarity LaAlO{sub 3} substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO{sub 3} (111) substrate was more suitable than Nb-doped SrTiO{sub 3}. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO{sub 3} based superlattices.

  5. Spinodal decomposition in thin films: Molecular-dynamics simulations of a binary Lennard-Jones fluid mixture

    NASA Astrophysics Data System (ADS)

    Das, Subir K.; Puri, Sanjay; Horbach, Jürgen; Binder, Kurt

    2006-03-01

    We use molecular dynamics (MD) to simulate an unstable homogeneous mixture of binary fluids (AB), confined in a slit pore of width D . The pore walls are assumed to be flat and structureless and attract one component of the mixture (A) with the same strength. The pairwise interactions between the particles are modeled by the Lennard-Jones potential, with symmetric parameters that lead to a miscibility gap in the bulk. In the thin-film geometry, an interesting interplay occurs between surface enrichment and phase separation. We study the evolution of a mixture with equal amounts of A and B, which is rendered unstable by a temperature quench. We find that A-rich surface enrichment layers form quickly during the early stages of the evolution, causing a depletion of A in the inner regions of the film. These surface-directed concentration profiles propagate from the walls towards the center of the film, resulting in a transient layered structure. This layered state breaks up into a columnar state, which is characterized by the lateral coarsening of cylindrical domains. The qualitative features of this process resemble results from previous studies of diffusive Ginzburg-Landau-type models [S. K. Das, S. Puri, J. Horbach, and K. Binder, Phys. Rev. E 72, 061603 (2005)], but quantitative aspects differ markedly. The relation to spinodal decomposition in a strictly two-dimensional geometry is also discussed.

  6. Mechanical response of nanocrystalline platinum via molecular dynamics: size effects in bulk versus thin-film samples

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Strachan, Alejandro

    2015-09-01

    We use large-scale molecular dynamics simulations to characterize the mechanical responses of nanocrystalline bulk and thin-film samples with average grain size ranging from 5 to 40 nm and at two strain rates. Our simulations show Hall-Petch maxima for both yield and flow stresses and for both sets of specimens. We find that the presence of free surface decreases both the yield and flow stresses and, interestingly, the Hall-Petch maximum for slabs occur at a larger grain size than for the bulk samples. A quantitative analysis of plastic slip on grain interiors and boundaries reveals that the shift in the maximum results from a combination of higher intergranular slip and weaker size dependence of dislocation activity in the slabs as compared with the bulk. Finally, increasing strain rate increases both yield and flow stresses and this rate effect is dominated by the plasticity involving full dislocations; plastic slip by partial dislocations and grain boundary processes exhibit weaker size effects.

  7. Molecular-dynamics simulations of thin polyisoprene films confined between amorphous silica substrates

    SciTech Connect

    Guseva, D. V.; Komarov, P. V.; Lyulin, Alexey V.

    2014-03-21

    Constant temperature–constant pressure (NpT) molecular-dynamics computer simulations have been carried out for the united-atom model of a non-crosslinked (1,4) cis-polyisoprene (PI) melt confined between two amorphous, fully coordinated silica surfaces. The Lennard-Jones 12-6 potential was implemented to describe the polymer–silica interactions. The thickness H of the produced PI–silica film has been varied in a wide range, 1 < H/R{sub g} < 8, where R{sub g} is the individual PI chain radius of gyration measured under the imposed confinement. After a thorough equilibration, the PI film stratified structure and polymer segmental dynamics have been studied. The chain structure in the middle of the films resembles that in a corresponding bulk, but the polymer-density profile shows a pronounced ordering of the polymer segments in the vicinity of silica surfaces; this ordering disappears toward the film middles. Tremendous slowing down of the polymer segmental dynamics has been observed in the film surface layers, with the segmental relaxation more than 150 times slower as compared to that in a PI bulk. This effect increases with decreasing the polymer-film thickness. The segmental relaxation in the PI film middles shows additional relaxation process which is absent in a PI bulk. Even though there are fast relaxation processes in the film middle, its overall relaxation is slower as compared to that in a bulk sample. The interpretation of the results in terms of polymer glassy bridges has been discussed.

  8. Distinct kinetics of molecular gelation in a confined space and its relation to the structure and property of thin gel films.

    PubMed

    Liu, Yu; Zhao, Wen-Jing; Li, Jing-Liang; Wang, Rong-Yao

    2015-03-28

    Thin films of molecular gels formed in a confined space have potential applications in transdermal delivery, artificial skin, molecular electronics, etc. The microstructures and properties of thin gel films can be significantly different from those of their bulk counterparts. However, so far a comprehensive understanding of the effects of spatial confinement on the molecular gelation kinetics, fiber network structure and related mechanical properties is still lacking. In this work, using rheological techniques, we investigated the effect of one-dimensional confinement on the formation kinetics of fiber networks in the molecular gelation process. Fractal analyses of the kinetic information in terms of an extended Dickinson model enabled us to describe quantitatively the distinct kinetic signature of molecular gelation. The structural features derived from gelation kinetics support well the fractal patterns of the fiber networks acquired by optical and electron microscopy. With the kinetics-structure correlation, we can gain an in-depth understanding of the confinement-induced differences in the structure and consequently the mechanical properties of a model molecular gelling system. Particularly, the confinement induced structural transition, from a three-dimensional, dense and compact spherulitic network composed of highly branched fibers to a quasi-two-dimensional sparse spherulitic network composed of less branched fibers and entangled fibrils at the boundary areas, renders a gel film to become less stiff but more ductile. Our study suggests here a new strategy of engineering the fiber network microstructure to achieve functional gel films with unusual but useful properties.

  9. Molecular orientation in thin films of bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) on graphite studied by angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shinji; Tanaka, Shoji; Yamashita, Yoshiro; Inokuchi, Hiroo; Fujimoto, Hitoshi; Kamiya, Koji; Seki, Kazuhiko; Ueno, Nobuo

    1993-07-01

    Angle-resolved ultraviolet photoelectron spectra using synchrotron radiation were measured for oriented thin films of bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) on a cleaved highly oriented pyrolytic graphite (HOPG) surface. The observed takeoff angle dependence of the photoelectron intensity was analyzed by using the independent-atomic-center approximation and modified neglect of diatomic overlap molecular-orbital calculations. The calculated results agree well with the experimental ones. From the comparison between these results, the molecules in the thin film are estimated to lie flat with the inclination angle β<=10° to the HOPG surface. This analysis method is useful as a first step to a quantitative analysis for angular distribution of photoelectrons from thin films of large and complex organic molecules.

  10. Critical Design Features of Phenyl Carboxylate-Containing Polymer Microbicides

    PubMed Central

    Rando, Robert F.; Obara, Sakae; Osterling, Mark C.; Mankowski, Marie; Miller, Shendra R.; Ferguson, Mary L.; Krebs, Fred C.; Wigdahl, Brian; Labib, Mohamed; Kokubo, Hiroyasu

    2006-01-01

    Recent studies of cellulose-based polymers substituted with carboxylic acids like cellulose acetate phthalate (CAP) have demonstrated the utility of using carboxylic acid groups instead of the more common sulfate or sulfonate moieties. However, the pKa of the free carboxylic acid group is very important and needs careful selection. In a polymer like CAP the pKa is approximately 5.28. This means that under the low pH conditions found in the vaginal lumen, CAP would be only minimally soluble and the carboxylic acid would not be fully dissociated. These issues can be overcome by substitution of the cellulose backbone with a moiety whose free carboxylic acid group(s) has a lower pKa. Hydroxypropyl methylcellulose trimellitate (HPMCT) is structurally similar to CAP; however, its free carboxylic acids have pKas of 3.84 and 5.2. HPMCT, therefore, remains soluble and molecularly dispersed at a much lower pH than CAP. In this study, we measured the difference in solubility and dissociation between CAP and HPMCT and the effect these parameters might have on antiviral efficacy. Further experiments revealed that the degree of acid substitution of the cellulose backbone can significantly impact the overall efficacy of the polymer, thereby demonstrating the need to optimize any prospective polymer microbicide with respect to pH considerations and the degree of acid substitution. In addition, we have found HPMCT to be a potent inhibitor of CXCR4, CCR5, and dual tropic strains of human immunodeficiency virus in peripheral blood mononuclear cells. Therefore, the data presented herein strongly support further evaluation of an optimized HPMCT variant as a candidate microbicide. PMID:16940105

  11. The growth of strontium titanate and lutetium ferrite thin films by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brooks, Charles M.

    Included in this work is a range of studies on films of homoeptaxial and heteroepitaxial films of SrTiO3 and the first reported phase-pure films of LuFe2O4. We report the structural properties of homoepitaxial (100) SrTiO3 films grown by reactive molecular-beam epitaxy (MBE). The lattice spacing and x-ray diffraction (XRD) rocking curves of stoichiometric MBEgrown SrTiO3 films are indistinguishable from the underlying SrTiO3 substrates. The effect of off-stoichiometry for both strontium-rich and strontium-poor compositions results in lattice expansion with significant changes to the shuttered reflection high-energy electron diffraction oscillations, XRD, film microstructure, and thermal conductivity. Up to an 80% reduction in Sr(1+x)TiO3 film thermal conductivity is measured for x = -0.1 to 0.5. Significant reduction, from 11.5 to ˜2 W˙m-1K-1, occurs through the formation of Ruddlesden-Popper planar faults. The ability to deposit films with a reduction in thermal conductivity is applicable to thermal barrier coatings and thermoelectrics. Scanning transmission electron microscopy is used to examine the formation of Ruddlesden-Popper planar faults in films with strontium excess. We also show that the band gap of SrTiO3 can be altered by >10% (0.3 eV) by using experimentally realizable biaxial strains providing a new means to accomplish band gap engineering of SrTiO3 and related perovskites. Such band gap manipulation is relevant to applications in solar cells water splitting, transparent conducting oxides, superconductivity, two-dimensional electron liquids, and other emerging oxide electronics. This work also presents the adsorption-controlled growth of single-phase (0001)-oriented epitaxial films of charge ordered multiferroic, LuFe2O4, on (111) MgAl2O4, (111) MgO, and (0001) 6H-SiC substrates in an iron-rich environment at pressures and temperatures where excess iron desorbs from the film surface during growth. Scanning transmission electron microscopy reveals

  12. Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes.

    PubMed

    Yang, Rui-Zhu; Dong, Wen-Fei; Meng, Xiang; Zhang, Xu-Lin; Sun, Yun-Lu; Hao, Ya-Wei; Guo, Jing-Chun; Zhang, Wen-Yi; Yu, Yong-Sen; Song, Jun-Feng; Qi, Zhi-Mei; Sun, Hong-Bo

    2012-06-12

    We present novel nanoporous TiO(2)/polyion thin-film-coated long-period fiber grating (LPFG) sensors for the direct measurement of low-molecular-weight chemicals by monitoring the resonance wavelength shift. The hybrid overlay films are prepared by a simple layer-by-layer deposition approach, which is mainly based on the electrostatic interaction of TiO(2) nanoparticles and polyions. By the alternate immersion of LPFG into dispersions of TiO(2) nanoparticles and polyions, respectively, the so-formed TiO(2)/polyion thin film exhibits a unique nanoporous internal structure and has a relative higher refractive index than LPFG cladding. In particular, the porosity of the thin film reduces the diffusion coefficient and enhances the permeability retention of low-molecular-weight analytes within the porous film. The increases in the refractive index of the LPFG overlay results in a distinguished modulation of the resonance wavelength. Therefore, the detection sensitivity of LPFG sensors has been greatly improved, according to theoretical simulation. After the structure of the TiO(2)/polyion thin film was optimized, glucose solutions as an example with a low concentration of 10(-7) M was easily detected and monitored at room temperature.

  13. Fine-Tunable Absorption of Uniformly Aligned Polyurea Thin Films for Optical Filters Using Sequentially Self-Limited Molecular Layer Deposition.

    PubMed

    Park, Yi-Seul; Choi, Sung-Eun; Kim, Hyein; Lee, Jin Seok

    2016-05-11

    Development of methods enabling the preparation of uniformly aligned polymer thin films at the molecular level is a prerequisite for realizing their optoelectronic characteristics as innovative materials; however, these methods often involve a compromise between scalability and accuracy. In this study, we have grown uniformly aligned polyurea thin films on a SiO2 substrate using molecular layer deposition (MLD) based on sequential and self-limiting surface reactions. By integrating plane-polarized Fourier-transform infrared, Raman spectroscopic tools, and density functional theory calculations, we demonstrated the uniform alignment of polyurea MLD films. Furthermore, the selective-wavelength absorption characteristics of thickness-controlled MLD films were investigated by integrating optical measurements and finite-difference time-domain simulations of reflection spectra, resulting from their thickness-dependent fine resonance with photons, which could be used as color filters in optoelectronics.

  14. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  15. Synthesis and modification of mesoporous silica and the preparation of molecular sieve thin films via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Coutinho, Decio Heringer

    2001-07-01

    Hexagonal mesoporous DAM-1 (Dallas Amorphous Material-1) was prepared using Vitamin E TPGS as the structure-directing agent. Depending upon the temperature and gel composition, highly ordered and hydrothermally stable DAM-1 with various morphologies could be achieved including spheres, gyroids, discoid, hexagonal plates and rods. This synthesis was modified to prepare hybrid organic-inorganic amine and thiol bifunctionalized DAM-1 by direct co-condensation under acidic conditions. Patterned DAM-1 thin films were prepared on patterned transparencies utilizing pulsed laser deposition (PLD) and line patterning techniques. DAM-1 laser ablation onto the patterned substrate followed by hydrothermal treatment resulted in a densely packed film. Removal of the patterned lines by sonication revealed patterned DAM-1 films. Thin films of zeolite type X were also prepared using the PLD technique. Laser ablation of zeolite X onto TiN-coated silicon wafers followed by a hydrothermal treatment resulted in partially oriented, crystalline membranes. Hydrothermal treatment of PLD films on stainless steel mesh produced a coated wire mesh with a 3-mum thick zeolite X film. A novel strategy for imprinting mesoporous SBA-15 that combines a triblock copolymer template and a chiral ruthenium complex is reported. A chiral PEO helix was formed by the chiral ruthenium complex interaction with the block copolymer during the synthesis of SBA-15. Upon removal of the chiral ruthenium complex, a stereospecfic cavity was created. Preliminary results indicated stereoselective absorption of Delta or Λ-Ru(phen)3 2+ isomer from a racemic mixture could be achieved depending on the chirality of the PEO chain. Practicum Two. The industrial practicum report describes the process development unit (PDU) 3-pentenenitrile (3PN) refining operation. This distillation works was operated to refine crude 3PN product, which contained 3PN, 2-methyl-3-butenenitrile (2M3BN), and other byproducts. This report also

  16. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes

    PubMed Central

    Fröhlich, Eleonore; Meindl, Claudia; Höfler, Anita; Leitinger, Gerd; Roblegg, Eva

    2012-01-01

    The use of carbon nanotubes (CNTs) could improve medical diagnosis and treatment provided they show no adverse effects in the organism. In this study, short CNTs with different diameters with and without carboxyl surface functionalisation were assessed. After physicochemical characterisation, cytotoxicity in phagocytic and non-phagocytic cells was determined. The role of oxidative stress was evaluated according to the intracellular glutathione levels and protection by N-acetyl cysteine (NAC). In addition to this, the mode of cell death was also investigated. CNTs <8 nm acted more cytotoxic than CNTs ≥20 nm and carboxylated CNTs more than pristine CNTs. Protection by NAC was maximal for large diameter pristine CNTs and minimal for small diameter carboxylated CNTs. Thin (<8 nm) CNTs acted mainly by disruption of membrane integrity and CNTs with larger diameter induced mainly apoptotic changes. It is concluded that cytotoxicity of small carboxylated CNTs occurs by necrosis and cannot be prevented by antioxidants. PMID:22963691

  17. Supra-molecular inter-actions in the 1:2 co-crystal of 4,4'-bipyridine and 3-chloro-thio-phene-2-carb-oxy-lic acid.

    PubMed

    Prajina, Olakkandiyil; Thomas Muthiah, Packianathan; Geiger, David K

    2016-10-01

    The asymmetric unit of the title compound, 2C5H3ClO2S·C10H8N2, is comprised of a mol-ecule of 3-chloro-thio-phene-2-carb-oxy-lic acid (3TPC) and half of a mol-ecule of 4,4'-bi-pyridine (BPY). A distinctive O-H⋯N-based synthon is present. Cl⋯Cl and π-π stacking inter-actions further stabilize the crystal structure, forming a two-dimensional network parallel to the bc plane.

  18. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    NASA Astrophysics Data System (ADS)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  19. Microstructural and Electrical Characterization of Silicon Carbide and Aluminum Nitride Thin Films Grown by Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kern, Richard Scott

    1996-08-01

    Monocrystalline thin films, multilayered heterostructures and solid solutions of silicon carbide (SiC) and aluminum nitride (AlN) have been grown on alpha(6H) -SiC(0001) substrates by gas-source molecular beam epitaxy. Growth mechanisms, defect formation, donor and acceptor doping, metal-insulator-semiconductor diodes, pseudomorphic heterostructures and solid solutions in these materials have been studied. Monocrystalline films of beta(3C) -SiC(111) and alpha(6H)-SiC(0001) have been controllably deposited on the silicon face of 6H-SiC(0001) substrates. Polytype control was achieved via changes in the substrate orientation, substrate temperature and gas phase chemistry. Step flow growth was achieved on vicinal substrates at growth temperatures of at least 1350^circC using the SiH _4-rm C_2H_4 -H_2 system. Step bunching, cubic SiC nucleation and double positioning boundaries were observed at all temperatures when H_2 was removed from the system or the growth was performed at below 1350^circC. In both cases, growth rate was strongly dependent on temperature. Films doped using either a NH_3/H _2 mixture or pure N_2 were n-type; Al, p-type. Uniform, controllable doping levels between 10^{15} and 10^{19} cm ^{-3} were achieved for both polytypes. The measured mobility in the undoped 6H polytype, 434 cm ^2 V^{-1} s ^{-1}, is the highest reported in this polytype. Monocrystalline AlN was deposited using aluminum evaporated from a modified MBE effusion cell and either activated nitrogen derived from a compact electron cyclotron resonance plasma source or ammonia. Growth using each of the nitrogen sources was optimized with respect to substrate temperature, reactant flux and system pressure. In general, very thin films (<=q50 A) grown on vicinal 6H-SiC had a higher defect density than those grown on nominally on-axis substrates due to defect formation at or near the steps on the SiC surface. Full-width half maximum (FWHM) values of the (0002)_ {AlN} X-ray diffraction Bragg

  20. FT-IR, molecular structure, HOMO-LUMO, MEP, NBO analysis and first order hyperpolarizability of Methyl 4,4″-difluoro-5";-methoxy-1,1";:3";,1″-terphenyl-4";-carboxylate

    NASA Astrophysics Data System (ADS)

    Sheena Mary, Y.; Yohannan Panicker, C.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.; Van Alsenoy, C.

    2014-12-01

    Methyl 4,4″-difluoro-5";-methoxy-1,1";:3";,1″-terphenyl-4";-carboxylate was prepared by the aromatization of a cyclohexenone derivative, Methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate using iodine and methanol at reflux conditions. The structure of the compound was confirmed by IR and single crystal X-ray diffraction studies. FT-IR spectrum was recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers are calculated using HF and DFT methods and are assigned with the help of potential energy distribution. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated (DFT) values. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. According to the MEP analysis, negative region (red) is mainly over the carbonyl group showing large activity. The calculated hyperpolarizability of the title compound is greater than that of the standard NLO material urea and the title compound is an attractive object for future studies of nonlinear optical properties.

  1. Growth, luminescence and magnetic properties of GaN:Er semiconductor thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dasari, K.; Wu, J.; Huhtinen, H.; Jadwisienczak, W. M.; Palai, R.

    2017-05-01

    We report on the growth, surface, luminescence and magnetic properties of 180 nm thick Er-doped GaN thin films grown by molecular beam epitaxy (MBE) on c-sapphire substrates with no buffer layer and with different Er concentrations. In situ reflection high-energy electron diffraction (RHEED) patterns revealed crystalline and uniform growth of the films. The x-ray diffraction (XRD) pattern showed c-axis-oriented growth. Atomic force microscopy (AFM) analysis showed enhancement of surface morphology and smoothness with increasing Er doping, which could be due to minimization of surface defects because of the gettering effect of the rare earth. Scanning area-dependent surface morphology analysis showed a power law dependence indicating the fractal nature of the surface, which is confirmed by the observation of a non-integer D (fractal dimension) value. X-ray photoluminescence spectroscopy (XPS) revealed the formation of a GaN:Er phase and ruled out the presence of Ga and Er metallic and native oxide phases. The semi-quantitative elemental composition of the films was determined using N 1s, Ga 2p3/2 and Er 4d photoemission lines. The Er concentration was estimated from the x-ray photoelectron spectra and found to be between 3.0 and 9.0 at.% (˜1021 atoms cm-3). Photoluminescence (PL) and cathodoluminescence (CL) studies showed visible emission and concentration quenching of Er3+ ions in agreement with reported results. Excitation of the Er3+ ion might be affected by charge trapping due to Er-doping-induced defect complexes. The magnetic measurements carried out by a superconducting quantum interference device (SQUID) showed a ferromagnetic-paramagnetic phase transition at low temperature, contrary to the reported room temperature ferromagnetism in metalorganic chemical vapor deposition (MOCVD)-grown GaN:Er thick films of 550 nm.

  2. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  3. Structure Property Relationships of Carboxylic Acid Isosteres

    PubMed Central

    2016-01-01

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure–property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group. PMID:26967507

  4. Structure Property Relationships of Carboxylic Acid Isosteres.

    PubMed

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  5. Using volatile additives to alter the morphology and performance of active layers in thin-film molecular photovoltaic devices incorporating bulk heterojunctions.

    PubMed

    Dang, Minh Trung; Wuest, James D

    2013-12-07

    Thin-film photovoltaic devices composed of polymers or small molecules have an exciting future as sources of renewable energy because they can be made in large sizes on flexible surfaces by inexpensive techniques of fabrication. Significant progress in developing new molecular photovoltaic materials and device architectures has been achieved in the last decade. The identity of molecular components in active layers and their individual optoelectronic properties obviously help determine the properties of devices; in addition, however, the behavior of devices depends critically on the nature of the local organization of the components. Recent studies have shown that the morphology of active layers can be tuned by adjusting various parameters, including the solvent used to cast the layer, thermal annealing, and special processing additives. In this review, we summarize the effect of volatile additives on the nanoscale morphology of molecular blends, and we show how these effects can improve the performance of devices. Although we focus on the behavior of mixtures of the type used in current molecular thin-film photovoltaic devices, the subject of our review will interest researchers in all areas of science and technology requiring materials in which separate phases must form intimate long-lived intermixtures with defined structures.

  6. Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates.

    PubMed

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C

    2017-04-01

    Thin solid films made of high nitro (NO2)/nitrate (NO3) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm(2). This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

  7. Dimerization of Carboxylic Acids: An Equation of State Approach.

    PubMed

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M; Panayiotou, Costas

    2017-03-09

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess enthalpies and the vapor-liquid equilibrium of relevant binary mixtures containing low molecular weight organic acids. The model sheds light on the interplay of intermolecular interactions through the calculation of the various contributions to the mixing enthalpies, namely from hydrogen bonding and non-hydrogen bonding (dipolar, induced polar or dispersive) interactions. According to model predictions, the acid molecules are so strongly associated that the addition of inert solvents to carboxylic acids with small carbon numbers at ambient temperature does not dramatically alter their degree of association. Consequently, the observed endothermic dissolution process is mainly attributed to the hindering of polar interactions. Furthermore, upon mixing of two carboxylic acids, the rearrangement of hydrogen bonds due to the formation of cross associating species results in an insignificant contribution to the heats of mixing due to the rather constant dimerization enthalpy that is revealed by the available experimental data for low molecular weight compounds.

  8. Molecular beam epitaxy and characterization of thin Bi{sub 2}Se{sub 3} films on Al{sub 2}O{sub 3} (110)

    SciTech Connect

    Tabor, Phillip; Keenan, Cameron; Urazdhin, Sergei; Lederman, David

    2011-07-04

    The structural and electronic properties of thin Bi{sub 2}Se{sub 3} films grown on Al{sub 2}O{sub 3} (110) by molecular beam epitaxy are investigated. The epitaxial films grow in the Frank-van der Merwe mode and are c-axis oriented. They exhibit the highest crystallinity, the lowest carrier concentration, and optimal stoichiometry at a substrate temperature of 200 deg. C determined by the balance between surface kinetics and desorption of Se. The crystallinity of the films improves with increasing Se/Bi flux ratio. Our results enable studies of thin topological insulator films on inert, non-conducting substrates that allow optical access to both film surfaces.

  9. Magnetic properties of low-moment ferrimagnetic Heusler Cr 2 CoGa thin films grown by molecular beam epitaxy

    SciTech Connect

    Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; DeCapua, Matthew C.; Player, Gabriel; Heiman, Don

    2016-10-31

    Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87 meV. These results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.

  10. [Capacitive sensor for environmental monitoring based on thin films of molecularly imprinted polymers. Computer modeling for optimization of the composition of synthetic analogs of bioreceptors].

    PubMed

    Serheieva, T A; Panasiuk-Dileni, T L; Pilets'ka, O V; Pilets'kyĭ, S A; Iel's'ka, H V

    2006-01-01

    A capacitive sensor for environmental monitoring based on thin films of desmetryn-selective molecularly imprinted polymer (MIP) was developed. The method of modification of gold electrodes with the thin film of herbicide-selective MIP using the grafting polymerization approach was developed. The method of computational modeling was used to optimize the composition of desmetryn-selective MIPs. It was shown that 2-acrylamido-2-methyl-1-propan-sulfonic acid is the optimal functional monomer for desmetryn. Formation of synthetic binding sites in MIPs was demonstrated to be determined by the binding energy between the template and functional monomers as well as the number of functional groups taking part in the recognition of the template molecule. Electrochemical processes occurring at the MIP-modified electrode were analyzed. The detection limit for desmetryn comprised 100 nM. High selectivity of the capacitive sensor towards structural analogues of desmetryn as well as high operational and storage stabilities was demonstrated.

  11. Insight into the nanomechanical properties under indentation of β-Si3N4 nano-thin layers in the basal plane using molecular dynamics simulation.

    PubMed

    Lu, Xuefeng; Guo, Xin; La, Peiqing; Wei, Yupeng; Nan, Xueli; He, Ling

    2014-09-21

    Molecular dynamics simulations were performed to clarify the nanomechanical responses of β-Si3N4 nano-thin layers in the basal plane for indenters of various radii, different indentation velocities and at different temperatures. It was found that the maximum loading stress and indenter displacement both increase with increasing radius of the indenter. A large number of N(6h)-Si bond-breaking defects and one N(2c)-Si bond-breaking defects are responsible for the initiation of fracturing. With increasing loading velocity, the maximum loading stresses show almost no change; however, a high loading velocity can shorten the displacement of the indenter and contributes to the formation of new N(2c)-Si bond-breaking defects. Thermal fluctuations can decrease the mechanical properties of the thin layer. The maximum loading stresses and indenter displacements are sensitive to both the radius of the indenter and the loading temperature.

  12. Giant regular polyhedra from calixarene carboxylates and uranyl

    PubMed Central

    Pasquale, Sara; Sattin, Sara; Escudero-Adán, Eduardo C.; Martínez-Belmonte, Marta; de Mendoza, Javier

    2012-01-01

    Self-assembly of large multi-component systems is a common strategy for the bottom-up construction of discrete, well-defined, nanoscopic-sized cages. Icosahedral or pseudospherical viral capsids, built up from hundreds of identical proteins, constitute typical examples of the complexity attained by biological self-assembly. Chemical versions of the so-called 5 Platonic regular or 13 Archimedean semi-regular polyhedra are usually assembled combining molecular platforms with metals with commensurate coordination spheres. Here we report novel, self-assembled cages, using the conical-shaped carboxylic acid derivatives of calix[4]arene and calix[5]arene as ligands, and the uranyl cation UO22+ as a metallic counterpart, which coordinates with three carboxylates at the equatorial plane, giving rise to hexagonal bipyramidal architectures. As a result, octahedral and icosahedral anionic metallocages of nanoscopic dimensions are formed with an unusually small number of components. PMID:22510690

  13. Density functional theory study of the oligomerization of carboxylic acids.

    PubMed

    Di Tommaso, Devis; Watson, Ken L

    2014-11-20

    We present a density functional theory [M06-2X/6-31+G(d,p)] study of the structures and free energies of formation of oligomers of four carboxylic acids (formic acid, acetic acid, tetrolic acid, and benzoic acid) in water, chloroform, and carbon tetrachloride. Solvation effects were treated using the SMD continuum solvation model. The low-lying energy structures of molecular complexes were located by adopting an efficient search procedure to probe the potential energy surfaces of the oligomers of carboxylic acids (CA)n (n = 2-6). The free energies of the isomers of (CA)n in solution were determined as the sum of the electronic energy, vibrational-rotational-translational gas-phase contribution, and solvation free energy. The assessment of the computational protocol adopted in this study with respect to the dimerization of acetic acid, (AA)2, and formic acid, (FA)2, located new isomers of (AA)2 and (FA)2 and gave dimerization constants in good agreement with the experimental values. The calculation of the self-association of acetic acid, tetrolic acid, and benzoic acid shows the following: (i) Classic carboxylic dimers are the most stable isomer of (CA)2 in both the gas phase and solution. (ii) Trimers of carboxylic acid are stable in apolar aprotic solvents. (iii) Molecular clusters consisting of two interacting classic carboxylic dimers (CA)4,(D+D) are the most stable type of tetramers, but their formation from the self-association of classic carboxylic dimers is highly unfavorable. (iv) For acetic acid and tetrolic acid the reactions (CA)2 + 2CA → (CA)4,(D+D) and (CA)3 + CA → (CA)4,(D+D) are exoergonic, but these aggregation pathways go through unstable clusters that could hinder the formation of tetrameric species. (v) For tetrolic acid the prenucleation species that are more likely to form in solution are dimeric and trimeric structures that have encoded structural motifs resembling the α and β solid forms of tetrolic acid. (vi) Stable tetramers of

  14. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  15. Recovery of carboxylic acids produced by fermentation.

    PubMed

    López-Garzón, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ.

  16. Triclinic modification of diaqua-bis-(5-carb-oxy-1H-imidazole-4-carboxyl-ato-κ(2)N(3),O(4))iron(II).

    PubMed

    Ohshima, Eriko; Yoshida, Kazuki; Sugiyama, Kazumasa; Uekusa, Hidehiro

    2012-08-01

    The title compound, [Fe(C(5)H(3)N(2)O(4))(2)(H(2)O)(2)], is a triclinic modification of a monoclinic form recently reported by Du et al. [Acta Cryst. (2011) ▶, E67, m997]. The Fe(II) ion lies at an inversion center and is coordinated by two N and two O atoms from two 5-carb-oxy-1H-imidazole-4-carboxyl-ate ligands in trans positions, together with two water mol-ecules, completing a slightly distorted octahedral coordination. Inter-molecular N-H⋯O hydrogen bonding between the N-H group of the imidazole ring and the deprotonated carboxyl-ate group builds a chain of 5-carb-oxy-1H-imidazole-4-carboxyl-ate anions along the [101] direction. The water molecules form intermolecular hydrogen bonds to O-C and O=C sites of the carboxylate group in adjacent layers.

  17. Molecular structure, vibrational spectroscopic, first order hyperpolarizability and HOMO-LUMO studies of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Ramalingam, M.; Sethuraman, V.; Sundaraganesan, N.

    2011-02-01

    The FT-IR and FT-Raman spectra of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (7AVCA) were recorded in the region 4000-400 cm -1 and 3500-10 cm -1, respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers were carried out by ab initio HF and density functional theoretical methods invoking 6-311G(d,p) basis set. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The electric dipole moment ( μ) and the first order hyperpolarizability ( β0) values have been computed quantum mechanically. The calculated results show that 7AVCA may have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the FT-IR and FT-Raman spectra of 7AVCA is reported. The theoretical IR and Raman spectra of 7AVCA have also been constructed. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule.

  18. Quantitative structure-property relationship of aromatic sulfur-containing carboxylates.

    PubMed

    Liu, Xin-hui; Yang, Zhi-feng; Wang, Lian-sheng

    2003-11-01

    Based on quantum chemical calculations, TLSER model (theoretical linear solvation energy relationships) and atomic charge approach were applied to model the partition properties(water solubility and octanol/water partition coefficient) of 96 aromatic sulfur-containing carboxylates, including phenylthio, phenylsulfinyl and phenylsulfonyl carboxylates. In comparison with TLSER models, the atomic charge models are more accurate and reliable to predict the partition properties of the kind of compounds. For the atomic charge models, the molecular descriptors are molecular surface area (S), molecular shape (O), weight( MW), net charges on carboxyl group (QOC), net charges of nitrogen atoms (QN), and the most negative atomic charge (q-) of the solute molecule. For water solubility (log SW) and octanol/water partition coefficient (log KOW), the correction coefficients r2adj (adjusted for degrees of freedom) are 0.936 and 0.938, and the standard deviations are 0.364 and 0.223, respectively.

  19. Organic Thin-Film Transistors with Phase Separation of Polymer-Blend Small-Molecule Semiconductors: Dependence on Molecular Weight and Types of Polymer

    NASA Astrophysics Data System (ADS)

    Ohe, Takahiro; Kuribayashi, Miki; Tsuboi, Ami; Satori, Kotaro; Itabashi, Masao; Nomoto, Kazumasa

    2009-12-01

    We have investigated effect of polymer on solution-processed organic thin-film transistors (TFTs) with polymer-blend semiconductors. Organic TFTs made from a solution of 6,13-bis(triisopropylsilylethynyl)-pentacene with a poly(α-methylstyrene) (PaMS) molecular weight of 20 k or above, exhibited mobility around 0.1 cm2/(V.s). On the other hand, the organic TFTs with a PaMS molecular weight of 2 k or with a poly(isobutyl methacrylate), exhibited much lower mobility. This can be explained in terms of the structure and crystallinity of the films. The results of film structure can be explained by applying the Flory-Huggins theory.

  20. Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential.

    PubMed

    Carrete, J; Longo, R C; Gallego, L J

    2011-05-06

    A number of different potentials are currently being used in molecular dynamics simulations of semiconductor nanostructures. Confusion can arise if an inappropriate potential is used. To illustrate this point, we performed direct molecular dynamics simulations to predict the room temperature lattice thermal conductivity λ of thin GaAs, InAs and InP nanowires. In each case, simulations performed using the classical Harrison potential afforded values of λ about an order of magnitude smaller than those obtained using more elaborate potentials (an Abell-Tersoff, as parameterized by Hammerschmidt et al for GaAs and InAs, and a potential of Vashishta type for InP). These results will be a warning to those wishing to use computer simulations to orient the development of quasi-one-dimensional systems as heat sinks or thermoelectric devices.

  1. Detection of charge storage on molecular thin films of tris(8-hydroxyquinoline) aluminum (Alq3) by Kelvin force microscopy: a candidate system for high storage capacity memory cells.

    PubMed

    Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir

    2012-03-14

    Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells.

  2. [Sorption properties of carboxyl cation exchangers with a bacteriostatic effect].

    PubMed

    Ezhova, N M; Zaikina, N A; Shataeva, L K; Dubinina, N I; Ovechkina, T P; Kopylova, J V

    1980-01-01

    Sorption properties of new carboxyl cation exchangers containing components of salicylic acid (CST and CMTS) and benzoic acid (CBT and CMTB) were examined with respect to large organic ions. Such cation exchangers were shown to have greater permeability for high molecular weight proteins that sorbents of the Biocarb type. Bacteriostatic properties of the above cation exchangers were studied. With an increase in the content of the bactericidal component the bacteriostatic effect of the cation exchangers on Escherichia coli and Staphylococcus aureus enhanced. The cation exchangers CST and CMTS showed a greater bacteriostatic effect than those CBT and CMTB.

  3. Activation of carboxylic acids in asymmetric organocatalysis.

    PubMed

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  4. Carboxylator: incorporating solvent-accessible surface area for identifying protein carboxylation sites

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Tsung; Chen, Shu-An; Bretaña, Neil Arvin; Cheng, Tzu-Hsiu; Lee, Tzong-Yi

    2011-10-01

    In proteins, glutamate (Glu) residues are transformed into γ-carboxyglutamate (Gla) residues in a process called carboxylation. The process of protein carboxylation catalyzed by γ-glutamyl carboxylase is deemed to be important due to its involvement in biological processes such as blood clotting cascade and bone growth. There is an increasing interest within the scientific community to identify protein carboxylation sites. However, experimental identification of carboxylation sites via mass spectrometry-based methods is observed to be expensive, time-consuming, and labor-intensive. Thus, we were motivated to design a computational method for identifying protein carboxylation sites. This work aims to investigate the protein carboxylation by considering the composition of amino acids that surround modification sites. With the implication of a modified residue prefers to be accessible on the surface of a protein, the solvent-accessible surface area (ASA) around carboxylation sites is also investigated. Radial basis function network is then employed to build a predictive model using various features for identifying carboxylation sites. Based on a five-fold cross-validation evaluation, a predictive model trained using the combined features of amino acid sequence (AA20D), amino acid composition, and ASA, yields the highest accuracy at 0.874. Furthermore, an independent test done involving data not included in the cross-validation process indicates that in silico identification is a feasible means of preliminary analysis. Additionally, the predictive method presented in this work is implemented as Carboxylator (http://csb.cse.yzu.edu.tw/Carboxylator/), a web-based tool for identifying carboxylated proteins with modification sites in order to help users in investigating γ-glutamyl carboxylation.

  5. The microbial metabolism of thiophen-2-carboxylate

    PubMed Central

    Cripps, Roger E.

    1973-01-01

    1. An organism was isolated by enrichment culture that was capable of using thiophen-2-carboxylate as sole source of carbon, energy and sulphur for growth. 2. Analysis of the cellular protein after growth of the organism on thiophen-2-[14C]carboxylate showed that only glutamate, proline and arginine were labelled. All the radioactivity in the glutamate was confined to C-1. 3. In the presence of 2.1 mm-arsenite, suspensions of the organism converted thiophen-2-[14C]carboxylate into 14C-labelled 2-oxoglutarate which had the same specific radioactivity as the starting material. 4. Cell-free extracts of the organism catalysed the release of 14CO2 from thiophen-2-[14C]carboxylate. This activity was largely dependent on the presence of ATP and CoA and was stimulated by NAD+ and Mg2+. Inclusion of hydroxylamine resulted in the appearance of thiophen-2-carbohydroxamic acid, indicating that the ATP and CoA were involved in the formation of the CoA ester of thiophen-2-carboxylate. 5. High-speed centrifuging of cell-free extracts resulted in supernatants with decreased thiophen-2-carboxylate-degrading activity. Activity was restored by the addition of the high-speed pellet or by Methylene Blue. 6. The metabolism of the CoA ester of thiophen-2-carboxylate by cell-free extracts could be linked to the anaerobic reduction of Methylene Blue. 7. The sulphur atom of the thiophen nucleus was converted into sulphate by growing cultures and resting suspensions of the organism. 8. A degradative pathway is proposed involving the hydroxylation (at C-5) of the CoA ester of thiophen-2-carboxylate followed by further metabolism to 2-oxoglutarate and sulphate. PMID:16742794

  6. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  7. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  8. Histochemical Demonstration of Protein-Bound Alpha-Acylamido Carboxyl Groups

    PubMed Central

    Barrnett, Russell J.; Seligman, Arnold M.

    1958-01-01

    A method has been developed to demonstrate the alpha-acylamido carboxyl groups of protein, taking advantage of the fact that acylamido carboxyl groups are converted to ketonic carbonyls by the action of acetic anhydride and absolute pyridine. The method utilizes deparaffinized sections of tissues fixed in a variety of fixatives. Following the conversion of carboxyls to the methyl ketones, the latter are stained with 2-hydroxy-3-naphthoic acid hydrazide. Control experiments have indicated that methylation of carboxyls prevented staining, as did carbonyl reagents after the carboxyls were transformed to methyl ketones. Leucofuchsin did not stain the ketonic carbonyls, and only elastic tissue stained with 2-hydroxy-3-naphthoic acid hydrazide without the previous use of the catalyzed reaction with anhydride. A brief survey of the reaction on various tissues of the albino rat was made, and the effects of various fixatives were assayed. Of particular interest were certain sites, such as acidophiles of the anterior pituitary gland, where an intense reaction occurred. The possibility exists that certain specific proteins rich in terminal acylamido carboxyl groups, by virtue of their protein side chains or low molecular weight, may be demonstrated by this method. PMID:13525430

  9. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups.

    PubMed

    Mo, Yinghui; Tiraferri, Alberto; Yip, Ngai Yin; Adout, Atar; Huang, Xia; Elimelech, Menachem

    2012-12-18

    Carboxyls are inherent functional groups of thin-film composite polyamide nanofiltration (NF) membranes, which may play a role in membrane performance and fouling. Their surface presence is attributed to incomplete reaction of acyl chloride monomers during the membrane active layer synthesis by interfacial polymerization. In order to unravel the effect of carboxyl group density on organic fouling, NF membranes were fabricated by reacting piperazine (PIP) with either isophthaloyl chloride (IPC) or the more commonly used trimesoyl chloride (TMC). Fouling experiments were conducted with alginate as a model hydrophilic organic foulant in a solution, simulating the composition of municipal secondary effluent. Improved antifouling properties were observed for the IPC membrane, which exhibited lower flux decline (40%) and significantly greater fouling reversibility or cleaning efficiency (74%) than the TMC membrane (51% flux decline and 40% cleaning efficiency). Surface characterization revealed that there was a substantial difference in the density of surface carboxyl groups between the IPC and TMC membranes, while other surface properties were comparable. The role of carboxyl groups was elucidated by measurements of foulant-surface intermolecular forces by atomic force microscopy, which showed lower adhesion forces and rupture distances for the IPC membrane compared to TMC membranes in the presence of calcium ions in solution. Our results demonstrated that a decrease in surface carboxyl group density of polyamide membranes fabricated with IPC monomers can prevent calcium bridging with alginate and, thus, improve membrane antifouling properties.

  10. Understanding biocatalyst inhibition by carboxylic acids

    PubMed Central

    Jarboe, Laura R.; Royce, Liam A.; Liu, Ping

    2013-01-01

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance. PMID:24027566

  11. Understanding biocatalyst inhibition by carboxylic acids.

    PubMed

    Jarboe, Laura R; Royce, Liam A; Liu, Ping

    2013-09-03

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  12. Poly[triaquabis­(μ2-3-carboxy­pyrazine-2-carboxyl­ato)dilithium(I)

    PubMed Central

    Tombul, Mustafa; Güven, Kutalmış; Büyükgüngör, Orhan

    2008-01-01

    In the title compound, [Li2(C6H3N2O4)2(H2O)3]n, the coordination number for both independent Li+ cations is five. One of the Li+ ions has a distorted trigonal–bipyramidal geometry, coordinated by one of the carboxyl O atoms of a 3-carboxy­pyrazine-2-carboxyl­ate ligand, two O atoms from two water mol­ecules, and an N and a carboxyl­ate O atom of a second 3-carboxy­pyrazine-2-carboxyl­ate ligand. The other Li+ ion also has a distorted trigonal–bipyramidal geometry, coordinated by one water mol­ecule and two 3-carboxy­pyrazine-2-carboxyl­ate ligands through an N and a carboxyl­ate O atom from each. One of the carboxyl groups of the two ligands takes part in an intra­molecular O—H⋯O hydrogen bond. The stabilization of the crystal structure is further assisted by O—H⋯O, O—H⋯N and C—H⋯O hydrogen-bonding inter­actions involving the water mol­ecules and carboxyl­ate O atoms. PMID:21201874

  13. Growth, characterization and post-processing of inorganic and hybrid organic-inorganic thin films deposited using atomic and molecular layer deposition techniques

    NASA Astrophysics Data System (ADS)

    Abdulagatov, Aziz Ilmutdinovich

    Atomic layer deposition (ALD) and molecular layer deposition (MLD) are advanced thin film coating techniques developed for deposition of inorganic and hybrid organic-inorganic films respectively. Decreasing device dimensions and increasing aspect ratios in semiconductor processing has motivated developments in ALD. The beginning of this thesis will cover study of new ALD chemistry for high dielectric constant Y 2O3. In addition, the feasibility of conducting low temperature ALD of TiN and TiAlN is explored using highly reactive hydrazine as a new nitrogen source. Developments of these ALD processes are important for the electronics industry. As the search for new materials with more advanced properties continues, attention has shifted toward exploring the synthesis of hierarchically nanostructured thin films. Such complex architectures can provide novel functions important to the development of state of the art devices for the electronics industry, catalysis, energy conversion and memory storage as a few examples. Therefore, the main focus of this thesis is on the growth, characterization, and post-processing of ALD and MLD films for fabrication of novel composite (nanostructured) thin films. Novel composite materials are created by annealing amorphous ALD oxide alloys in air and by heat treatment of hybrid organic-inorganic MLD films in inert atmosphere (pyrolysis). The synthesis of porous TiO2 or Al2O3 supported V2O5 for enhanced surface area catalysis was achieved by the annealing of inorganic TiVxOy and AlV xOy ALD films in air. The interplay between phase separation, surface energy difference, crystallization, and melting temperature of individual oxides were studied for their control of film morphology. In other work, a class of novel metal oxide-graphitic carbon composite thin films was produced by pyrolysis of MLD hybrid organic-inorganic films. For example, annealing in argon of titania based hybrid films enabled fabrication of thin films of intimately

  14. Density Functional Theory Study on the Interactions of Metal Ions with Long Chain Deprotonated Carboxylic Acids.

    PubMed

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Koch, Henrik; Åstrand, Per-Olof; Trinh, Thuat T; Grimes, Brian A

    2015-10-08

    In this work, interactions between carboxylate ions and calcium or sodium ions are investigated via density functional theory (DFT). Despite the ubiquitous presence of these interactions in natural and industrial chemical processes, few DFT studies on these systems exist in the literature. Special focus has been placed on determining the influence of the multibody interactions (with up to 4 carboxylates and one metal ion) on an effective pair-interaction potential, such as those used in molecular mechanics (MM). Specifically, DFT calculations are employed to quantify an effective pair-potential that implicitly includes multibody interactions to construct potential energy curves for carboxylate-metal ion pairs. The DFT calculated potential curves are compared to a widely used molecular mechanics force field (OPLS-AA). The calculations indicate that multibody effects do influence the energetic behavior of these ionic pairs and the extent of this influence is determined by a balance between (a) charge transfer from the carboxylate to the metal ions which stabilizes the complex and (b) repulsion between carboxylates, which destabilizes the complex. Additionally, the potential curves of the complexes with 1 and 2 carboxylates and one counterion have been examined to higher separation distance (20 Å) by the use of relaxed scan optimization and constrained density functional theory (CDFT). The results from the relaxed scan optimization indicate that near the equilibrium distance, the charge transfer between the metal ion and the deprotonated carboxylic acid group is significant and leads to non-negligible differences between the DFT and MM potential curves, especially for calcium. However, at longer separation distances the MM calculated interaction potential functions converge to those calculated with CDFT, effectively indicating the approximate domain of the separation distance coordinate where charge transfer between the ions is occurring.

  15. Detection of λ-cyhalothrin by a core-shell spherical SiO2-based surface thin fluorescent molecularly imprinted polymer film.

    PubMed

    Gao, Lin; Han, Wenjuan; Li, Xiuying; Wang, Jixiang; Yan, Yongsheng; Li, Chunxiang; Dai, Jiangdong

    2015-12-01

    A fluorescent core-shell molecularly imprinted polymer based on the surface of SiO2 beads was synthesized and its application in the fluorescence detection of ultra-trace λ-cyhalothrin (LC) was investigated. The shell was prepared by copolymerization of acrylamide with allyl fluorescein in the presence of LC to form recognition sites. The experimental results showed that the thin fluorescent molecularly imprinted polymer (FMIP) film exhibited better selective recognition ability than fluorescent molecularly non-imprinted polymer (FNIP). A new nonlinear relationship between quenching rate and concentration was found in this work. In addition, the nonlinear relationship allowed a lower concentration range of 0-5.0 nM to be described by the Stern-Volmer equation with a correlation coefficient of 0.9929. The experiment results revealed that the SiO2@FMIP was satisfactory as a recognition element for determination of LC in soda water samples. Therefore this study demonstrated the potential of MIP for the recognition and detection of LC in food.

  16. Molecularly mediated thin film assembly of nanoparticles on flexible devices: electrical conductivity versus device strains in different gas/vapor environment.

    PubMed

    Yin, Jun; Hu, Peipei; Luo, Jin; Wang, Lingyan; Cohen, Melissa F; Zhong, Chuan-Jian

    2011-08-23

    The ability to precisely control nanoparticle-enabled electrical devices for applications involving conformal wrapping/bending adaptability in various complex sensing environments requires an understanding of the electrical correlation with the device strain and exposure to the molecular environment. This report describes novel findings of an investigation of molecularly mediated thin film assembly of gold nanoparticles on flexible chemiresistor devices under different device strains and exposure molecules. Both theoretical and experimental data have revealed that the electrical conductivity of the nanoparticle assembly depends on a combination of the device strain and the exposure molecules. Under no device strain, the electrical conductivity is sensitive to the molecular nature in the exposure environment, revealing a clear increase in electrical conductivity with the dielectric constant of vapor molecules. Under small device strains, the electrical conductivity is shown to respond sensitively to the strain directions (tensile vs compressive strain) and also to the dielectric constant of the vapor molecules in a way resembling the characteristic under no device strain. Under large device strains, the electrical conductivity is shown to respond to the difference in dielectric constant of the vapor molecules but, more significantly, to the device tensile and compressive strains than those under small device strains. This combination of device strain and dielectric characteristic is also dependent on the orientation of the microelectrode patterns with respect to the device strain direction, a finding that has important implications to the design of flexible arrays for a complex sensing environment. © 2011 American Chemical Society

  17. Infrared Transition Moment Orientational Analysis on the Structural Organization of the Distinct Molecular Subunits in Thin Layers of a High Mobility n-Type Copolymer.

    PubMed

    Anton, Arthur Markus; Steyrleuthner, Robert; Kossack, Wilhelm; Neher, Dieter; Kremer, Friedrich

    2015-05-13

    The IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence on polarization and inclination of the sample with respect to the optical axis. By that the molecular order parameter tensor for the respective molecular moieties with regard to the sample coordinate system is deduced. Making use of the specificity of the IR spectral range, we are able to determine separately the orientation of atomistic planes defined through the naphthalenediimide (NDI) and bithiophene (T2) units relative to the substrate, and hence, relative to each other. A pronounced solvent effect is observed: While chlorobenzene causes the T2 planes to align preferentially parallel to the substrate at an angle of 29°, using a 1:1 chloronaphthalene:xylene mixture results in a reorientation of the T2 units from a face on into an edge on arrangement. In contrast the NDI unit remains unaffected. Additionally, for both solvents evidence is observed for the aggregation of chains in accord with recently published results obtained by UV-vis absorption spectroscopy.

  18. Thin layer chromatography/plasma assisted multiwavelength laser desorption ionization mass spectrometry for facile separation and selective identification of low molecular weight compounds.

    PubMed

    Zhang, Jialing; Zhou, Zhigui; Yang, Jianwang; Zhang, Wei; Bai, Yu; Liu, Huwei

    2012-02-07

    A novel plasma assisted multiwavelength (1064, 532, and 355 nm) laser desorption ionization mass spectrometry (PAMLDI-MS) system was fabricated and applied in the analysis of low molecular weight compounds through combination with thin layer chromatography (TLC). The TLC/PAMLDI-MS system successfully integrated TLC, the multiwavelength laser ablation, and the excitated state plasma from direct analysis in real time (DART) and was proved to be effective in the facile separation and selective identification of low molecular weight compounds. An automated three-dimensional platform was utilized to facilitate the analysis procedures with all the parameters of the TLC/PAMLDI-MS systematically optimized, and the desorption/ionization mechanisms were discussed. The successful combination of three-wavelength laser with DART based system extended the range of the analytes and provided broad possibilities for the compound desorption from the TLC. The experimental results clearly showed that the laser desorption was wavelength dependent. The PAMLDI-MS system was successfully applied in the detection of low molecular weight compounds from different kinds of samples separated on a normal-phase silica gel, such as dye mixtures, drug standards, and tea extract, with the detection level of 5 ng/mm(2).

  19. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

    DOE PAGES

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...

    2016-03-15

    We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(Sx,Se1-x)3, and Cu2ZnSn(SxSe1-x)4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu2ZnSn(SxSe1-x)4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  20. Metal-metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices.

    PubMed

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; Hu, Xianyi; Stach, Eric A; Handwerker, Carol A; Agrawal, Rakesh

    2016-04-11

    Bulk metals and metal chalcogenides are found to dissolve in primary amine-dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(S(x),Se(1-x))3, and Cu2ZnSn(S(x)Se(1-x))4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Cu2ZnSn(S(x)Se(1-x))4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  1. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors

    NASA Astrophysics Data System (ADS)

    Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi

    2017-09-01

    The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.

  2. An attempt to correlate surface physics with chemical properties: molecular beam and Kelvin probe investigations of Ce1-xZrxO2 thin films.

    PubMed

    Kolekar, Sadhu K; Dubey, Anjani; Date, Kalyani S; Datar, Suwarna; Gopinath, Chinnakonda S

    2016-10-05

    What is the correlation between physical properties of the surfaces (such as surface potential, electronic nature of the surface), and chemical and catalysis properties (such as chemisorption, sticking probability of surface)? An attempt has been made to explore any correlation that might exist between the physical and chemical properties of thin film surfaces. Kelvin probe microscopy (KPM) and the molecular beam (MB) methods were employed to carry out the surface potential, and oxygen adsorption and oxygen storage capacity (OSC) measurements on Ce1-xZrxO2 thin films. A sol-gel synthesis procedure and spin-coating deposition method have been applied to make continuous nanocrystalline Ce1-xZrxO2 (x = 0-1) (CZ) thin films with uniform thickness (35-50 nm); however, surface roughness and porosity inherently changes with CZ composition. MB studies of O2 adsorption on CZ reveal high OSC for Ce0.9Zr0.1O2, which also exhibits highly porous and significantly rough surface characteristics. The surface potential observed from KPM studies varied between 30 and 80 mV, with Ce-rich compositions exhibiting the highest surface potential. Surface potential shows large changes after reduction or oxidation of the CZ film demonstrating the influence of Ce(3+)/Ce(4+) on surface potential, which is also a key to catalytic activity for ceria-based catalysts. The surface potential measured from KPM and the OSC measured from MB vary linearly and they depend on the Ce(3+)/Ce(4+) ratio. More and detailed studies are suggested to arrive at a correlation between the physical and chemical properties of the surfaces.

  3. A search for new glucophores by isosteric replacement of carboxylic function.

    PubMed

    Polański, J; Jarzembek, K; Łysiak, V

    2000-11-01

    We used arylsulfonylalkanoic acids as parent structures for designing new potential sweeteners. The Kohonen maps of the molecular electrostatic potential of the possible bioisosteric replacements of carboxylic function have been simulated and used for the selection of the potential synthetic targets which are now under synthesis.

  4. Combining a molecular modelling approach with direct current and high power impulse magnetron sputtering to develop new TiO2 thin films for antifouling applications

    NASA Astrophysics Data System (ADS)

    Guillot, Jérôme; Lecoq, Elodie; Duday, David; Puhakka, Eini; Riihimäki, Markus; Keiski, Riitta; Chemin, Jean-Baptiste; Choquet, Patrick

    2015-04-01

    The accumulation of crystallization deposits at the surface of heat exchangers results in the increase of the heat transfer resistance and a drastic loss of efficiency. Coating surfaces with a thin film can limit the scale-surface adhesion force and thus the fouling process. This study compares the efficiency of TiO2 layers exhibiting various crystalline planes and microstructures to reduce the kinetic of fouling. Molecular modelling with density functional theory is first carried out to determine the energy of CaCO3 deposition on anatase (1 0 1), (0 0 4), and (2 0 0) surfaces as well as on a rutile (1 0 1) one. TiO2 thin films (thickness < 1 μm) are then synthesized by direct current and high power impulse magnetron sputtering (dcMS and HiPIMS respectively) in order to tune their crystallinity and microstructure. Lastly, the induction time to grow CaCO3 crystals at the surface of such materials is determined. Comparing the modelling and fouling results allows to draw general trends on the potential anti-scaling properties of TiO2 crystallized under various forms. Until now, such a comparison combining a theoretical approach with experimental fouling tests has never been reported in the literature.

  5. Characterization of high-{kappa} LaLuO{sub 3} thin film grown on AlGaN/GaN heterostructure by molecular beam deposition

    SciTech Connect

    Yang Shu; Huang Sen; Chen Hongwei; Chen, Kevin J.; Schnee, Michael; Zhao Qingtai; Schubert, Juergen

    2011-10-31

    We report the study of high-dielectric-constant (high-{kappa}) dielectric LaLuO{sub 3} (LLO) thin film that is grown on AlGaN/GaN heterostructure by molecular beam deposition (MBD). The physical properties of LLO on AlGaN/GaN heterostrucure have been investigated with atomic force microscopy, x-ray photoelectron spectroscopy, and TEM. It is revealed that the MBD-grown 16 nm-thick LLO film is polycrystalline with a thin ({approx}2 nm) amorphous transition layer at the LLO/GaN interface. The bandgap of LLO is derived as 5.3 {+-} 0.04 eV from O1s energy loss spectrum. Capacitance-voltage (C-V) characteristics of a Ni-Au/LLO/III-nitride metal-insulator-semiconductor diode exhibit small frequency dispersion (<2%) and reveal a high effective dielectric constant of {approx}28 for the LLO film. The LLO layer is shown to be effective in suppressing the reverse and forward leakage current in the MIS diode. In particular, the MIS diode forward current is reduced by 7 orders of magnitude at a forward bias of 1 V compared to a conventional Ni-Au/III-nitride Schottky diode.

  6. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Structural and Electrical Properties of Single Crystalline Ga-Doped ZnO Thin Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Zou, Wen-Qin; Xu, Ming-Xiang; Zhang, Feng-Ming; Du, You-Wei

    2009-11-01

    High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a-plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2 at.% and the lowest resistivity can reach 1.92 × 10-4 Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.

  7. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    SciTech Connect

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.; Cusco, R.; Artus, L.; Novikov, S. V.; Foxon, C. T.; Calleja, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared results with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.

  8. Ab initio molecular dynamics model for density, elastic properties and short range order of Co-Fe-Ta-B metallic glass thin films.

    PubMed

    Hostert, C; Music, D; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B; Schneider, J M

    2011-11-30

    Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm(-3) for Co(43)Fe(20)Ta(5.5)B(31.5) and 8.42 g cm(-3) for Co(45.5)Fe(24)Ta(6)B(24.5), as well as the Young's moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness.

  9. Biodegradation kinetics of trans-4-methyl-1-cyclohexane carboxylic acid.

    PubMed

    Paslawski, Janice C; Headley, John V; Hill, Gordon A; Nemati, Mehdi

    2009-02-01

    Naphthenic acids are a complex mixture of organic compounds which naturally occur in crude oil. Low molecular weight components of the naphthenic acids are known to be toxic in aquatic environments and there is a need to better understand the factors controlling the kinetics of their biodegradation. In this study, a relatively low molecular weight naphthenic acid compound (trans-isomer of 4-methyl-1-cyclohexane carboxylic acid) and a microbial culture developed in our laboratory were used to study the biodegradation of this naphthenic acid and to evaluate the kinetics of the process in batch cultures. The initial concentration of trans-4-methyl-1-cyclohexane carboxylic acid (50-750 mg l(-1)) did not affect the maximum specific growth rate of the bacteria at 23 degrees C (0.52 day(-1)) to the maximum biodegradable concentration (750 mg l(-1)). The maximum yield observed at this temperature and at a neutral pH was 0.21 mg of biomass per milligram of substrate. Batch experiments indicated that biodegradation can be achieved at low temperatures; however, the biodegradation rate at room temperature (23 degrees C) and neutral pH was 5 times faster than that observed at 4 degrees C. Biodegradation at various pH conditions indicated a maximum specific growth rate of 1.69 day(-1) and yield (0.41 mg mg(-1)) at a pH of 10.

  10. Electron spin resonance of Zn{sub 1-x}Mg{sub x}O thin films grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Wassner, T. A.; Stutzmann, M.; Brandt, M. S.; Laumer, B.; Althammer, M.; Goennenwein, S. T. B.; Eickhoff, M.

    2010-08-30

    Zn{sub 1-x}Mg{sub x}O thin films with a Mg content x between 0 and 0.42 grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates were investigated by electron spin resonance at 5 K. Above band gap illumination induces a persistent resonance signal, which is attributed to free conduction band electrons. The g-factors of the Zn{sub 1-x}Mg{sub x}O epitaxial layers and their anisotropy were determined experimentally and an increase from g{sub ||}=1.957 for x=0 to g{sub ||}=1.970 for x=0.42 was found, accompanied by a decrease in anisotropy. A comparison with g-factors of the Al{sub x}Ga{sub 1-x}N system is also given.

  11. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V

    2014-11-12

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics.

  12. Molecular beam epitaxial growth and transmission electron microscopy studies of thin GaAs/InAs(100) multiple quantum well structures

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Fernandez, R.; Lewis, B. F.; Yen, M. Y.; Lee, T. C.; Madhukar, A.

    1985-01-01

    GaAs/InAs(100) multiple interface structures involving 7.4 percent lattice mismatch have been fabricated via molecular beam epitaxy and examined via transmission electron microscopy. It is found that high-quality, dislocation-free interfaces involving such high lattice mismatch can indeed be experimentally realized for very thin layers provided proper care is given to achieve a balance between the growth kinetics and the thermodynamics leading to the equilibrium ground state of the strained layer. The compressive strain is homogeneously accommodated and a tetragonal distortion is induced in the InAs layer with a perpendicular lattice constant in close agreement with that expected on the basis of the continuum theory and elastic constants of bulk InAs.

  13. Molecular beam epitaxial growth and transmission electron microscopy studies of thin GaAs/InAs(100) multiple quantum well structures

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Fernandez, R.; Lewis, B. F.; Yen, M. Y.; Lee, T. C.; Madhukar, A.

    1985-01-01

    GaAs/InAs(100) multiple interface structures involving 7.4 percent lattice mismatch have been fabricated via molecular beam epitaxy and examined via transmission electron microscopy. It is found that high-quality, dislocation-free interfaces involving such high lattice mismatch can indeed be experimentally realized for very thin layers provided proper care is given to achieve a balance between the growth kinetics and the thermodynamics leading to the equilibrium ground state of the strained layer. The compressive strain is homogeneously accommodated and a tetragonal distortion is induced in the InAs layer with a perpendicular lattice constant in close agreement with that expected on the basis of the continuum theory and elastic constants of bulk InAs.

  14. Domain formation due to surface steps in topological insulator Bi{sub 2}Te{sub 3} thin films grown on Si (111) by molecular beam epitaxy

    SciTech Connect

    Borisova, S.; Kampmeier, J.; Mussler, G.; Grützmacher, D.; Luysberg, M.

    2013-08-19

    The atomic structure of topological insulators Bi{sub 2}Te{sub 3} thin films on Si (111) substrates grown in van der Waals mode by molecular beam epitaxy has been investigated by in situ scanning tunneling microscopy and scanning transmission electron microscopy. Besides single and multiple quintuple layer (QL) steps, which are typical for the step-flow mode of growth, a number of 0.4 QL steps is observed. We determine that these steps originate from single steps at the substrate surface causing domain boundaries in the Bi{sub 2}Te{sub 3} film. Due to the peculiar structure of these domain boundaries the domains are stable and penetrate throughout the entire film.

  15. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  16. Thermal stability and relaxation mechanisms in compressively strained Ge0.94Sn0.06 thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fleischmann, C.; Lieten, R. R.; Hermann, P.; Hönicke, P.; Beckhoff, B.; Seidel, F.; Richard, O.; Bender, H.; Shimura, Y.; Zaima, S.; Uchida, N.; Temst, K.; Vandervorst, W.; Vantomme, A.

    2016-08-01

    Strained Ge1-xSnx thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge0.94Sn0.06 films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge0.94Sn0.06 films grown by molecular beam epitaxy.

  17. Anomalous Mn depth profiles for GaMnAs/GaAs(001) thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, J. F.; Thibado, P. M.; Awo-Affouda, C.; Ramos, F.; Labella, V. P.

    Mn concentration depth profiles in Mn-doped GaAs thin films grown at substrate temperatures of 580 and 250 {\\deg}C using various Mn cell temperatures have been investigated with dynamic secondary ion mass spectrometry and Auger electron spectroscopy. When the samples are grown at a low substrate temperature of 250 {\\deg}C, the Mn distributes uniformly. For the samples grown at a high substrate temperature of 580 {\\deg}C, the concentration depth profiles are easily fitted with a temperature-dependent Fermi function only if the Mn concentration is above the solubility limit. However, when the Mn concentration is below the solubility limit, unexpected peaks are observed in the concentration depth profiles.

  18. The effect of laser energy on V2O5 thin film growth prepared by laser assisted molecular beam deposition

    NASA Astrophysics Data System (ADS)

    Abdel Samad, B.; Ashrit, P. V.

    2014-09-01

    Vanadium pentoxide V2O5 thin films were grown on glass substrates by the LAMBD deposition system with different laser energies. The structure, composition and optical properties of the films have been investigated with atomic force microscopy, x-ray photoemission spectroscopy, ellipsometry and the transmittance analysis. Upon the increase of laser energy, the results showed that the changes in the optical constants are consistent with the thickness changes of the film. The refractive index increases and the absorption coefficient increases when the laser energy increases. The AFM analysis showed a change of the roughness and structure of the deposited films at different laser energies. The prepared films deposited by LAMBD showed interesting properties with correct V2O5 phase without need of annealing after deposition.

  19. Improvement of laser molecular beam epitaxy grown SrTiO3 thin film properties by temperature gradient modulation growth

    NASA Astrophysics Data System (ADS)

    Li, Jin Long; Hao, J. H.; Li, Y. R.

    2007-09-01

    Oxygen diffusion at the SrTiO3/Si interface was analyzed. A method called temperature gradient modulation growth was introduced to control oxygen diffusion at the interface of SrTiO3/Si. Nanoscale multilayers were grown at different temperatures at the initial growing stage of films. Continuous growth of SrTiO3 films was followed to deposit on the grown sacrificial layers. The interface and crystallinity of SrTiO3/Si were investigated by in situ reflection high energy electron diffraction and x-ray diffraction measurements. It has been shown that the modulated multilayers may help suppress the interfacial diffusion, and therefore improve SrTiO3 thin film properties.

  20. Defect study of molecular beam epitaxy grown undoped GaInNAsSb thin film using junction-capacitance spectroscopy

    SciTech Connect

    Monirul Islam, Muhammad; Miyashita, Naoya; Ahsan, Nazmul; Okada, Yoshitaka

    2013-02-18

    Defects in undoped GaInNAsSb thin film (i-GaInNAsSb) were investigated by junction-capacitance technique using admittance and transient photocapacitance (TPC) spectroscopy. An electron trap D2 was identified at 0.34 eV below the conduction band (E{sub C}) of i-GaInNAsSb using admittance spectroscopy. Optical transition of valance band (E{sub V}) electrons to a localized state OH1 (E{sub V} + 0.75 eV) was manifested in negative TPC signal. Combined activation energy of OH1 and D2 defect corresponds to the band-gap of i-GaInNAsSb, suggesting that OH1/D2 acts as an efficient recombination center. TPC signal at {approx}1.59 eV above E{sub V} was attributed to the nitrogen-induced localized state in GaInNAsSb.

  1. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

    SciTech Connect

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; Hu, Xianyi; Stach, Eric A.; Handwerker, Carol A.; Agrawal, Rakesh

    2016-03-15

    We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(Sx,Se1-x)3, and Cu2ZnSn(SxSe1-x)4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu2ZnSn(SxSe1-x)4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  2. Variation of the Molecular Conformation, Shape, and Cavity Size in Dinuclear Metalla-Macrocycles Containing Hetero-Ditopic Dithiocarbamate-Carboxylate Ligands from a Homologous Series of N-Substituted Amino Acids.

    PubMed

    Torres-Huerta, Aaron; Cruz-Huerta, Jorge; Höpfl, Herbert; Hernández-Vázquez, Luis G; Escalante-García, Jaime; Jiménez-Sánchez, Arturo; Santillan, Rosa; Hernández-Ahuactzi, Irán F; Sánchez, Mario

    2016-12-05

    A homologous series of dithiocarbamate ligands derived from N-substituted amino acids was reacted with different diorganotin dichlorides to give 18 diorganotin complexes. Spectroscopic and mass spectrometric analysis evidenced the formation of assemblies with six-coordinate tin atoms embedded in skewed-trapezoidal bipyramidal coordination environments of composition C2SnS2O2. Single-crystal X-ray diffraction analysis for three of the compounds revealed a one-dimensional polymeric structure for the complex with the ligand derived from 5-aminopentanoic acid, which through further intermolecular Sn···O interactions generated an overall two-dimensional coordination polymer containing 40-membered hexanuclear tin macrocycles. On the contrary, the ligands derived from 6-aminohexanoic and 8-aminooctanoic acid provided the expected 22- and 26-membered dinuclear macrocyclic structures. Density functional theory calculations for a representative series of macrocyclic complexes of composition [Me2SnLx]2 with Lx = ¯S2CN(Me)-(CH2)x-COO¯ (x = 3-12) enabled a detailed analysis of the variations in the molecular conformation, shape, and cavity size of the macrocycles in dependence of the aliphatic spacer. Because of odd-even effects, the difunctional ligands can adopt either a curved or a twisted-pincer shape, while the SnSxO4-x (x = 0-4) moieties can act either as linear or angular tectons with varying connectivity angles.

  3. Sensing of digestive proteins in saliva with a molecularly imprinted poly(ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Tseng, Hong-Yi; Lin, Wei-Che; Liu, Bin-Da; Lin, Hung-Yin

    2011-08-01

    The quartz crystal microbalance (QCM) has a sensitivity comparable to that of the surface plasmon resonance (SPR) transducer. Molecularly imprinted polymers (MIPs) have a much lower cost than natural antibodies, they are easier to fabricate and more stable, and they exhibit satisfactory recognition ability when integrated onto sensing transducers. Hence, MIP-based QCM sensors have been used to recognize small molecules and, recently, microorganisms, but only a few have been adopted in protein sensing. In this work, a mixed salivary protein and poly(ethylene-co-vinyl alcohol), EVAL, solution is coated onto a QCM chip and a molecularly imprinted EVAL thin film formed by thermally induced phase separation (TIPS). The optimal ethylene mole ratios of the commercially available EVALs for the imprinting of amylase, lipase and lysozyme were found to be 32, 38, and 44 mol %, respectively. Finally, the salivary protein-imprinted EVAL-based QCM sensors were used to detect amylase, lipase and lysozyme in real samples (saliva) and their effectiveness was compared with that of a commercial ARCHITECT ci 8200 chemical analysis system. The limits of detection (LOD) for those salivary proteins were as low as ∼pM.

  4. Molecular organization in the thin films of gallium(III) phthalocyanine chloride and its μ-(oxo)dimer: Optical spectroscopy and XPS study

    NASA Astrophysics Data System (ADS)

    Basova, Tamara V.; Kiselev, Vitaly G.; Latteyer, Florian; Peisert, Heiko; Chassé, Thomas

    2014-12-01

    Molecular arrangement in the thin films of gallium(III) phthalocyanine chloride (PcGaCl) and its μ-(oxo)dimer (μ-(oxo)bis[phthalocyaninato] gallium(III), (PcGa)2O) has been studied using complementary spectroscopic techniques: viz., X-ray photoelectron and optical (polarized Raman and UV-vis) spectroscopies, as well as atomic force microscopy. The former films grown by physical vapor deposition on ITO substrates transformed into the films of the latter μ-(oxo)dimer upon thermal annealing at 300 °C under controlled environmental conditions. The polarized Raman spectroscopy revealed that both films are well organized, and the mean tilt angle between the molecular planes and the substrate surface increases from 53 ± 5° (PcGaCl) to 85 ± 5° ((PcGa)2O). All intense bands in the experimental Raman spectra of PcGaCl and (PcGa)2O were assigned using density functional theory calculations. The theoretically predicted wavenumbers are in a good agreement with the experimental values.

  5. Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS

    NASA Astrophysics Data System (ADS)

    Harsha, S. Sree; Melinger, Joseph. S.; Qadri, S. B.; Grischkowsky, D.

    2012-01-01

    The influence of the metal substrate on the measurement of high resolution THz vibrational modes of molecular solids with the waveguide THz-TDS technique is investigated. The sample film of salicylic acid is studied using waveguide THz-TDS on three different metal substrates and two-surface passivated substrates. The independence of the observed THz vibrational modes to the metal substrate is demonstrated. Independently, surface passivation is presented as a viable experimental addition to the waveguide THz-TDS technique to aid the characterization of samples with known reactivity to metal surfaces.

  6. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B.

    PubMed

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu

    2014-07-15

    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  7. A polyoxometalate-based manganese carboxylate cluster.

    PubMed

    Fang, Xikui; Kögerler, Paul

    2008-08-07

    The functionalization of a pre-formed, high oxidation state {CeIV MnIV 6} cluster with a lacunary phosphotungstate, [alpha-P2 W15 O 56]12-, exemplifies a straightforward route for grafting redox-active building blocks to existing Mn-carboxylate clusters and modeling their deposition onto metal oxide surfaces.

  8. Cloud Forming Potential of Aminium Carboxylate Aerosols

    NASA Astrophysics Data System (ADS)

    Gomez Hernandez, M. E.; McKeown, M.; Taylor, N.; Collins, D. R.; Lavi, A.; Rudich, Y.; Zhang, R.

    2014-12-01

    Atmospheric aerosols affect visibility, air quality, human health, climate, and in particular the aerosol direct and indirect forcings represent the largest uncertainty in climate projections. In this paper, we present laboratory measurements of the hygroscopic growth factors (HGf) and cloud condensation nuclei (CCN) activity of a series of aminium carboxylate salt aerosols, utilizing a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) coupled to a Condensation Particle Counter (CPC) and a CCN counter. HGf measurements were conducted for size-selected aerosols with diameters ranging from 46 nm to 151 nm and at relative humidity (RH%) values ranging from 10 to 90%. In addition, we have calculated the CCN activation diameters for the aminium carboxylate aerosols and derived the hygroscopicity parameter (k or kappa) values for all species using three methods, i.e., the mixing rule approximation, HGf, and CCN results. Our results show that variations in the ratio of acid to base directly affect the activation diameter, HGf, and (k) values of the aminium carboxylate aerosols. Atmospheric implications of the variations in the chemical composition of aminium carboxylate aerosols on their cloud forming potential will be discussed.

  9. Evaluation of angiotensin-converting enzyme inhibitor's absorption with retention data of micellar thin-layer chromatography and suitable molecular descriptor.

    PubMed

    Odovic, Jadranka; Markovic, Bojan; Vladimirov, Sote; Karljikovic-Rajic, Katarina

    2015-01-01

    Twelve angiotensin-converting enzyme (ACE) inhibitors were studied to evaluate correlation between their absorption (ABS) data available in the literature (22-96%) and hydrophobicity parameters (km and Pm/w) obtained in micellar thin-layer chromatography (MTLC) using Brij 35. The theoretical considerations showed that the geometric molecular descriptor-volume value (Vol) should be considered as an independent variable simultaneously with calculated hydrophobicity parameters in multiple linear regression analysis to obtain reliable correlation between ACE inhibitor's absorption and lipophilicity (calculated KOWWINlog P) and that captopril should be excluded from further correlations. The results of MTLC confirmed that between the two hydrophobicity parameters km and Pm/w, for absorption prediction of 11 ACE inhibitors, the micelle-water partition coefficient Pm/w provided higher correlation (R(2) = 0.756), while for the km parameter R(2) = 0.612 was obtained. The micelle-water partition coefficient Pm/w could be considered as analogous to hydrophobicity parameter C0 from reversed-phase thin-layer chromatography. Dissimilar retention behavior of lisinopril indicated its lowest non-polar interaction with micelle, because of its di-acid form. The proposed model which included ACE inhibitors on the opposite site of lipophilicity-lisinopril and fosinopril (KOWWINlog P = -0.96 and KOWWINlog P = 6.61, respectively), both with similar absorption values (25 and 36%, respectively), could indicate that absorption of investigated compounds occurs via two different mechanisms: active and passive transport. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Substituent effects on hydrogen bonding of aromatic amide-carboxylate

    NASA Astrophysics Data System (ADS)

    Sen, Ibrahim; Kara, Hulya; Azizoglu, Akın

    2016-10-01

    N-(p-benzoyl)-anthranilic acid (BAA) derivatives have been synthesized with different substituents (X: Br, Cl, OCH3, CH3), and their crystal structures have been analyzed in order to understand the variations in their molecular geometries with respect to the substituents by using 1H NMR, 13C NMR, IR and X-ray single-crystal diffraction. The carboxylic acid group forms classic Osbnd H ⋯ O hydrogen bonded dimers in a centrosymmetric R22(8) ring motifs for BAA-Br and BAA-Cl. However, no carboxylic acid group forms classic Osbnd H ⋯ O hydrogen bonded dimers in BAA-OCH3 and BAA-CH3. The asymmetric unit consists of two crystallographically independent molecules in BAA-OCH3. DFT computations show that the interaction energies between monomer and dimer are in the range of 0.5-3.8 kcal/mol with the B3LYP/6-31 + G*, B3LYP/6-31 ++G*, B3LYP/6-31 ++G**, and B3LYP/AUG-cc-pVDZ levels of theory. The presence of different hydrogen bond patterns is also governed by the substrate. For monomeric compounds studied herein, theoretical calculations lead to two low-energy conformers; trans (a) and cis (b). Former one is more stable than latter by about 4 kcal/mol.

  11. Substituent effects on hydrogen bonding of aromatic amide-carboxylate.

    PubMed

    Sen, Ibrahim; Kara, Hulya; Azizoglu, Akın

    2016-10-05

    N-(p-benzoyl)-anthranilic acid (BAA) derivatives have been synthesized with different substituents (X: Br, Cl, OCH3, CH3), and their crystal structures have been analyzed in order to understand the variations in their molecular geometries with respect to the substituents by using (1)H NMR, (13)C NMR, IR and X-ray single-crystal diffraction. The carboxylic acid group forms classic OH⋯O hydrogen bonded dimers in a centrosymmetric R2(2)(8) ring motifs for BAA-Br and BAA-Cl. However, no carboxylic acid group forms classic OH⋯O hydrogen bonded dimers in BAA-OCH3 and BAA-CH3. The asymmetric unit consists of two crystallographically independent molecules in BAA-OCH3. DFT computations show that the interaction energies between monomer and dimer are in the range of 0.5-3.8kcal/mol with the B3LYP/6-31+G*, B3LYP/6-31++G*, B3LYP/6-31++G**, and B3LYP/AUG-cc-pVDZ levels of theory. The presence of different hydrogen bond patterns is also governed by the substrate. For monomeric compounds studied herein, theoretical calculations lead to two low-energy conformers; trans (a) and cis (b). Former one is more stable than latter by about 4kcal/mol.

  12. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis.

    PubMed

    Gahloth, Deepankar; Dunstan, Mark S; Quaglia, Daniela; Klumbys, Evaldas; Lockhart-Cairns, Michael P; Hill, Andrew M; Derrington, Sasha R; Scrutton, Nigel S; Turner, Nicholas J; Leys, David

    2017-09-01

    Carboxylic acid reductase (CAR) catalyzes the ATP- and NADPH-dependent reduction of carboxylic acids to the corresponding aldehydes. The enzyme is related to the nonribosomal peptide synthetases, consisting of an adenylation domain fused via a peptidyl carrier protein (PCP) to a reductase termination domain. Crystal structures of the CAR adenylation-PCP didomain demonstrate that large-scale domain motions occur between the adenylation and thiolation states. Crystal structures of the PCP-reductase didomain reveal that phosphopantetheine binding alters the orientation of a key Asp, resulting in a productive orientation of the bound nicotinamide. This ensures that further reduction of the aldehyde product does not occur. Combining crystallography with small-angle X-ray scattering (SAXS), we propose that molecular interactions between initiation and termination domains are limited to competing PCP docking sites. This theory is supported by the fact that (R)-pantetheine can support CAR activity for mixtures of the isolated domains. Our model suggests directions for further development of CAR as a biocatalyst.

  13. Oleic acid-based gemini surfactants with carboxylic acid headgroups.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Matsuda, Wataru; Takamatsu, Yuichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Anionic gemini surfactants with carboxylic acid headgroups have been synthesized from oleic acid. The hydrocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via an ester bond, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via disuccinyl units. The surfactants exhibit pH-dependent protonation-deprotonation behavior in aqueous solutions. In alkaline solutions (pH 9 in the presence of 10 mmol dm(-3) NaCl as the background electrolyte), the surfactants can lower the surface tension as well as form molecular assemblies, even in the region of low surfactant concentrations. Under acidic (pH 3) or neutral (pH 6-7) conditions, the surfactants are intrinsically insoluble in aqueous media and form a monolayer at the air/water interface. In this study, we have investigated physicochemical properties such as the function of the hydrocarbon chain length by means of static surface tension, pyrene fluorescence, dynamic light scattering, surface pressure-area isotherms, and infrared external reflection measurements.

  14. Crystal structure of 3-amino-pyridinium 1'-carb-oxy-ferrocene-1-carboxyl-ate.

    PubMed

    Medved'ko, Aleksei V; Churakov, Andrei V; Yu, Haojie; Li, Wang; Vatsadze, Sergey Z

    2017-06-01

    The structure of the title salt, (C5H7N2)[Fe(C6H4O2)(C6H5O2)], consists of 3-amino-pyridinium cations and 1'-carb-oxy-ferrocene-1-carboxyl-ate monoanions. The ferrocenyl moiety of the anion adopts a typical sandwich structure, with Fe-C distances in the range 2.0270 (15)-2.0568 (17) Å. The anion possesses an eclipsed conformation, with the torsion angle φ (Csubst-Cpcent-Cpcent- Csubst) equal to 66.0°. The conformations of other 1'-carb-oxy-ferrocene-1-carboxyl-ate monoanions are compared and analyzed on the basis of literature data.

  15. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films

    SciTech Connect

    Chan, Edwin P.; Chung, Jun Young; Stafford, Christopher M.; Lee, Jung-Hyun

    2012-11-15

    We present the design of an automated spin-coater that facilitates fabrication of polymer films based on molecular layer-by-layer (mLbL) assembly. Specifically, we demonstrate the synthesis of ultrathin crosslinked fully-aromatic polyamide (PA) films that are chemically identical to polymer membranes used in water desalination applications as measured by X-ray photoelectron spectroscopy. X-ray reflectivity measurements indicate that the automated mLbL assembly creates films with a constant film growth rate and minimal roughness compared with the traditional interfacial polymerization of PA. This automated spin-coater improves the scalability and sample-to-sample consistency by reducing human involvement in the mLbL assembly.

  16. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    ERIC Educational Resources Information Center

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  17. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    ERIC Educational Resources Information Center

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  18. The nucleation and growth of silicon thin films on silicate glasses of variable composition using supersonic gas source molecular beam deposition

    NASA Astrophysics Data System (ADS)

    Schroeder, T. W.; Engstrom, J. R.

    2004-06-01

    Supersonic molecular beam techniques have been used to study the nucleation and growth of Si thin films on glass surfaces of variable composition using Si2H6 as the precursor to film growth. We have examined, in particular, the early stages of growth using scanning electron microscopy. Making use of molecular beam techniques to control accurately the precursor exposure we have examined trends in the evolution of the Si island density as a function of the composition of the glass, x, in (2ṡSiO2)1-x(Al2O3ṡCaO)x. The silica composition (1-x) for these samples was varied between 0.25 and 0.75, and comparisons were also made to the nucleation of Si on SiO2 thin films made by thermal oxidation and Corning 1737 display glass. We have found that the incubation time τinc varies only weakly with substrate composition, increasing by only a factor of 3 over the range 1-x=0.25-1.0. Examination of a later stage of nucleation and growth, the time for coalescence, τcoal, indicated a stronger dependence on composition, and this metric varied by a factor of 8 over the same range of composition. These results indicate that the intrinsic reactivity of the surface scales with the silica content of the surface. The maximum island density shows a much stronger, superlinear dependence on silica content, increasing by a factor of 15 as 1-x increased from 0.25 to 1.0. For the silica rich compositions, i.e., SiO2 and 1737, Nmax is essentially independent of substrate temperature and the results can be interpreted by a model for nucleation that is purely heterogeneous, and where surface diffusion plays a minimal role. In contrast, on the most silica dilute glass surface (1-x=0.25), Nmax exhibits an Arrhenius temperature dependence with an apparent activation energy of 1.1 eV. Coupled with the observation of a broader island size distribution on this surface, we conclude that surface diffusion plays a role in nucleation and growth on this silica dilute surface, possibly via Ostwald

  19. Low-energy electron induced processes in molecular thin films condensed on silicon and titanium dioxide surfaces

    NASA Astrophysics Data System (ADS)

    Lane, Christopher D.

    The focus of the presented experimental research is to examine the fundamental physics and chemistry of electron-stimulated reactions upon adsorbate covered single crystal surfaces. Specifically, condensed SiCl4 on the Si(111) surface and condensed H2O on the TiO2 (110) surface have been studied. By varying adsorbate film thicknesses, the coupling strength of the electron target molecule to the substrate and surrounding media dictates the progression of the electron induced reactions. To investigate the electron interactions with SiCl4 on the Si(111) surface, a multilayer to monolayer approach was taken. Experiments measuring the electron stimulated desorption (ESD) of fragment cations are discussed in Chapter 3. ESD of neutrals was performed on a multilayer (100 ML) coverage of SiCl4 and is discussed in Chapter 4. These experiments remove the influence of the silicon substrate on the electron induced dissociative processes that are monitored via time of flight mass spectrometry (ToF-MS). The results in Chapter 3 and Chapter 4 have been published in Surface Science 593 (2005) 173 and in the Journal of Chemical Physics 124 (2006) 164702, respectively. Results from electron induced reactions within thin films of SiCl4 are presented in Chapter 5. In the low coverage region, the cation and neutral desorption channels are monitored simultaneously, and the adsorbate coupling strength to the silicon substrate is substantially greater. This affects the desorption yields and the autodetachment probability of the transient negative ion (SiCl4-). Chapters 6--8 discuss work that focuses on the electron-stimulated reactions within the H2O/TiO2 system. A discussion of the interactions of H2O with the TiO2(110) surface is presented in Chapter 6. The transition metal oxide surface is comprised of acidic and basic water adsorption sites along with intrinsic surface defects where surface oxygen atoms are missing. These surface defect sites significantly influence the interactions of

  20. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids.

    PubMed

    Khusnutdinova, Anna N; Flick, Robert; Popovic, Ana; Brown, Greg; Tchigvintsev, Anatoli; Nocek, Boguslaw; Correia, Kevin; Joo, Jeong C; Mahadevan, Radhakrishnan; Yakunin, Alexander F

    2017-08-01

    Carboxylic acid reductases (CARs) selectively reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Although CARs attracts significant interest, only a few enzymes have been characterized to date, whereas the vast majority of CARs have yet to be examined. Herein the authors report that 12 bacterial CARs reduces a broad range of bifunctional carboxylic acids containing oxo-, hydroxy-, amino-, or second carboxyl groups with several enzymes showing activity toward 4-hydroxybutanoic (4-HB) and adipic acids. These CARs exhibits significant reductase activity against substrates whose second functional group is separated from the carboxylate by at least three carbons with both carboxylate groups being reduced in dicarboxylic acids. Purified CARs supplemented with cofactor regenerating systems (for ATP and NADPH), an inorganic pyrophosphatase, and an aldo-keto reductase catalyzes a high conversion (50-76%) of 4-HB to 1,4-butanediol (1,4-BDO) and adipic acid to 1,6-hexanediol (1,6-HDO). Likewise, Escherichia coli strains expressing eight different CARs efficiently reduces 4-HB to 1,4-BDO with 50-95% conversion, whereas adipic acid is reduced to a mixture of 6-hydroxyhexanoic acid (6-HHA) and 1,6-HDO. Thus, our results illustrate the broad biochemical diversity of bacterial CARs and their compatibility with other enzymes for applications in biocatalysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Molecular dynamics study on evaporation and condensation characteristics of thin film liquid Argon on nanostructured surface in nano-scale confinement

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.

    2017-06-01

    Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of

  2. Computational study of the molecular level mechanisms of the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique for thin film deposition

    NASA Astrophysics Data System (ADS)

    Leveugle, Elodie Mathilde Julia Perrine

    There are a number of recent and emerging techniques that utilize the ability of laser ablation of a volatile matrix to entrain, eject and, if needed, deposit large macromolecules or nano-objects to a substrate. In particular, the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique shows a potential to produce uniform ultra-thin nanocomposite films with concentrations of nanoscale elements not attainable by other current methods. The lack of understanding of the fundamental underlying processes involved in laser ablation, however, hampers further optimization of the experimental parameters in MAPLE. In this dissertation I report the results of a comprehensive computational investigation of the relation between the basic mechanisms of laser interaction with multi-component target materials, the non-equilibrium processes caused by the fast deposition of laser energy, the parameters of the ejected ablation plume, and the resulting morphological characteristics of the growing film. The physical mechanisms and molecular-level picture of laser-induced material ejection from solutions of polymer molecules in a volatile matrix are analyzed in a series of coarse-grained molecular dynamics (MD) simulations. Simulations are performed for polymer concentrations up to 6 wt.% and laser fluences covering the range from the regime where molecular ejection is limited to matrix evaporation from the surface up to more than twice the threshold fluence for the onset of the collective molecular ejection or ablation. Contrary to the original picture of the ejection and transport of individual polymer molecules in MAPLE, the simulations indicate that polymer molecules are only ejected in the ablation regime and are always incorporated into polymer-matrix clusters generated in "phase explosion" of the target. Additionally, the entanglement of the polymer molecules facilitates the formation of elongated viscous droplets that can be related to nanofilament structures observed

  3. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl ester...

  4. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl ester...

  5. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl ester...

  6. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl ester...

  7. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  8. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  9. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  10. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  11. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  12. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  13. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  14. 40 CFR 721.10255 - Vinyl carboxylic acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Vinyl carboxylic acid ester (generic... Specific Chemical Substances § 721.10255 Vinyl carboxylic acid ester (generic). (a) Chemical substance and... carboxylic acid ester (PMN P-09-400) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.10255 - Vinyl carboxylic acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Vinyl carboxylic acid ester (generic... Specific Chemical Substances § 721.10255 Vinyl carboxylic acid ester (generic). (a) Chemical substance and... carboxylic acid ester (PMN P-09-400) is subject to reporting under this section for the significant new...

  16. 40 CFR 721.10255 - Vinyl carboxylic acid ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Vinyl carboxylic acid ester (generic... Specific Chemical Substances § 721.10255 Vinyl carboxylic acid ester (generic). (a) Chemical substance and... carboxylic acid ester (PMN P-09-400) is subject to reporting under this section for the significant new...

  17. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  18. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  19. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface...

  20. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene resins, carboxyl modified. 177.1600... Use Food Contact Surfaces § 177.1600 Polyethylene resins, carboxyl modified. Carboxyl-modified polyethylene resins may be safely used as the food-contact surface of articles intended for use in contact...

  1. Carboxylated magnetic polymer nanolatexes: Preparation, characterization and biomedical applications

    NASA Astrophysics Data System (ADS)

    Zheng, Weiming; Gao, Feng; Gu, Hongchen

    2005-05-01

    Carboxylated magnetic polymer nanolatexes were prepared by miniemulsion polymerization using 4,4'-azobis(4-cyanopentanoic acid) (ACPA) as initiator, which provided carboxyl end groups on the latex surface directly. The colloidal stability and the magnetic properties showed that these resulting carboxylated magnetic polymer nanolatexes were applicable in biomedical separation, which was performed by covalent coupling of activated antibody.

  2. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  3. David Adler Lectureship Award Talk: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films

    NASA Astrophysics Data System (ADS)

    Krim, Jacqueline

    2015-03-01

    Studies of the fundamental origins of friction have undergone rapid progress in recent years, with the development of new experimental and computational techniques for measuring and simulating friction at atomic length and time scales. The increased interest has sparked a variety of discussions and debates concerning the nature of the atomic-scale and quantum mechanisms that dominate the dissipative process by which mechanical energy is transformed into heat. Measurements of the sliding friction of physisorbed monolayers and bilayers can provide information on the relative contributions of these various dissipative mechanisms. Adsorbed films, whether intentionally applied or present as trace levels of physisorbed contaminants, moreover are ubiquitous at virtually all surfaces. As such, they impact a wide range of applications whose progress depends on precise control and/or knowledge of surface diffusion processes. Examples include nanoscale assembly, directed transport of Brownian particles, material flow through restricted geometries such as graphene membranes and molecular sieves, passivation and edge effects in carbon-based lubricants, and the stability of granular materials associated with frictional and frictionless contacts. Work supported by NSFDMR1310456.

  4. Usefulness of conventional transbronchial needle aspiration in the diagnosis, staging and molecular characterization of pulmonary neoplasias by thin-prep based cytology: experience of a single oncological institute

    PubMed Central

    Ramieri, Maria Teresa; Marandino, Ferdinando; Visca, Paolo; Salvitti, Tommaso; Gallo, Enzo; Casini, Beatrice; Giordano, Francesca Romana; Frigieri, Claudia; Caterino, Mauro; Carlini, Sandro; Rinaldi, Massimo; Ceribelli, Anna; Pennetti, Annarita; Alò, Pier Luigi; Pescarmona, Edoardo; Filippetti, Massimo

    2016-01-01

    Background Conventional transbronchial needle aspiration (c-TBNA) contributed to improve the bronchoscopic examination, allowing to sample lesions located even outside the tracheo-bronchial tree and in the hilo-mediastinal district, both for diagnostic and staging purposes. Methods We have evaluated the sensitivity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the c-TBNA performed during the 2005–2015 period for suspicious lung neoplasia and/or hilar and mediastinal lymphadenopathy at the Thoracic endoscopy of the Thoracic Surgery Department of the Regina Elena National Cancer Institute, Rome. Data from 273 consecutive patients (205 males and 68 females) were analyzed. Results Among 158 (58%) adequate specimens, 112 (41%) were neoplastic or contained atypical cells, 46 (17%) were negative or not diagnostic. We considered in the analysis first the overall period; then we compared the findings of the first [2005–2011] and second period [2012–2015] and, finally, only those of adequate specimens. During the overall period, sensibility and accuracy values were respectively of 53% and 63%, in the first period they reached 41% and 53% respectively; in the second period sensibility and accuracy reached 60% and 68%. Considering only the adequate specimens, sensibility and accuracy during the overall period were respectively of 80% and 82%; the values obtained for the first period were 68% and 72%. Finally, in the second period, sensibility reached 86% and accuracy 89%. Carcinoma-subtyping was possible in 112 cases, adenocarcinomas being diagnosed in 50 cases; further, in 30 cases molecular predictive data could be obtained. Conclusions The c-TBNA proved to be an efficient method for the diagnosis/staging of lung neoplasms and for the diagnosis of mediastinal lymphadenopathy. Endoscopist’s skill and technical development, associated to thin-prep cytology and to a rapid on site examination (ROSE), were able to provide by c-TBNA a

  5. Carboxylated Fullerene at the Oil/Water Interface.

    PubMed

    Li, Rongqiang; Chai, Yu; Jiang, Yufeng; Ashby, Paul D; Toor, Anju; Russell, Thomas P

    2017-09-08

    The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) having different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values at 4.84 and 7.8, robust, elastic films were formed at the interface, such that hollow tubules could be formed in situ when an aqueous solution of the functionalized fullerene was jetted into a toluene solution of PS-b-P2VP at a pH of 4.84. By varying the pH, the mechanical properties of the fullerene/polymer assemblies can be varied by tuning the strength of the interactions between the functionalized fullerenes and the PS-b-P2VP.

  6. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  7. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    NASA Astrophysics Data System (ADS)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  8. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy

    PubMed Central

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2014-01-01

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics. PMID:25388355

  9. Morphological and microstructural stability of N-polar InAlN thin films grown on free-standing GaN substrates by molecular beam epitaxy

    SciTech Connect

    Hardy, Matthew T. Storm, David F.; Downey, Brian P.; Katzer, D. Scott; Meyer, David J.; McConkie, Thomas O.; Smith, David J.; Nepal, Neeraj

    2016-03-15

    The sensitivity of the surface morphology and microstructure of N-polar-oriented InAlN to variations in composition, temperature, and layer thickness for thin films grown by plasma-assisted molecular beam epitaxy (PAMBE) has been investigated. Lateral compositional inhomogeneity is present in N-rich InAlN films grown at low temperature, and phase segregation is exacerbated with increasing InN fraction. A smooth, step-flow surface morphology and elimination of compositional inhomogeneity can be achieved at a growth temperature 50 °C above the onset of In evaporation (650 °C). A GaN/AlN/GaN/200-nm InAlN heterostructure had a sheet charge density of 1.7 × 10{sup 13 }cm{sup −2} and no degradation in mobility (1760 cm{sup 2}/V s) relative to 15-nm-thick InAlN layers. Demonstration of thick-barrier high-electron-mobility transistors with good direct-current characteristics shows that device quality, thick InAlN layers can be successfully grown by PAMBE.

  10. Thin film growth of a topological crystal insulator SnTe on the CdTe (111) surface by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryo; Yamaguchi, Tomonari; Ohtaki, Yusuke; Akiyama, Ryota; Kuroda, Shinji

    2016-11-01

    We report molecular beam epitaxial growth of a SnTe (111) layer on a CdTe template, fabricated by depositing it on a GaAs (111)A substrate, instead of BaF2 which has been conventionally used as a substrate. By optimizing temperatures for the growth of both SnTe and CdTe layers and the SnTe growth rate, we could obtain SnTe layers of the single phase grown only in the (111) orientation and of much improved surface morphology from the viewpoint of the extension and the flatness of flat regions, compared to the layers grown on BaF2. In this optimal growth condition, we have also achieved a low hole density of the order of 1017 cm-3 at 4 K, the lowest value ever reported for SnTe thin films without additional doping. In the magnetoresistance measurement on this optimized SnTe layer, we observe characteristic negative magneto-conductance which is attributed to the weak antilocalization effect of the two-dimensional transport in the topological surface state.

  11. Combined computational-experimental approach to predict blood-brain barrier (BBB) permeation based on "green" salting-out thin layer chromatography supported by simple molecular descriptors.

    PubMed

    Ciura, Krzesimir; Belka, Mariusz; Kawczak, Piotr; Bączek, Tomasz; Markuszewski, Michał J; Nowakowska, Joanna

    2017-09-05

    The objective of this paper is to build QSRR/QSAR model for predicting the blood-brain barrier (BBB) permeability. The obtained models are based on salting-out thin layer chromatography (SOTLC) constants and calculated molecular descriptors. Among chromatographic methods SOTLC was chosen, since the mobile phases are free of organic solvent. As consequences, there are less toxic, and have lower environmental impact compared to classical reserved phases liquid chromatography (RPLC). During the study three stationary phase silica gel, cellulose plates and neutral aluminum oxide were examined. The model set of solutes presents a wide range of log BB values, containing compounds which cross the BBB readily and molecules poorly distributed to the brain including drugs acting on the nervous system as well as peripheral acting drugs. Additionally, the comparison of three regression models: multiple linear regression (MLR), partial least-squares (PLS) and orthogonal partial least squares (OPLS) were performed. The designed QSRR/QSAR models could be useful to predict BBB of systematically synthesized newly compounds in the drug development pipeline and are attractive alternatives of time-consuming and demanding directed methods for log BB measurement. The study also shown that among several regression techniques, significant differences can be obtained in models performance, measured by R(2) and Q(2), hence it is strongly suggested to evaluate all available options as MLR, PLS and OPLS. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    SciTech Connect

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David; Marcus, Matthew A.; Tarafder, Kartick

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  13. β-NMR measurements of molecular-scale lithium-ion dynamics in poly(ethylene oxide)-lithium-salt thin films.

    PubMed

    McKenzie, Iain; Cortie, David L; Harada, Masashi; Kiefl, Robert F; Levy, C D Philip; MacFarlane, W Andrew; McFadden, Ryan M L; Morris, Gerald D; Ogata, Shin-Ichi; Pearson, Matthew R; Sugiyama, Jun

    2017-06-28

    β-detected NMR (β-NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β-NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of (8)Li(+) was observed in all of the films above ∼250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3±0.2 kJ mol(-1) in PEO:LiTFA to 17.8±0.2 kJ mol(-1) in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in (8)Li(+) hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.

  14. Thermal stability and relaxation mechanisms in compressively strained Ge{sub 0.94}Sn{sub 0.06} thin films grown by molecular beam epitaxy

    SciTech Connect

    Fleischmann, C.; Lieten, R. R.; Shimura, Y.; Vandervorst, W.; Hermann, P.; Hönicke, P.; Beckhoff, B.; Seidel, F.; Richard, O.; Bender, H.; Zaima, S.; Uchida, N.; Temst, K.; Vantomme, A.

    2016-08-28

    Strained Ge{sub 1-x}Sn{sub x} thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge{sub 0.94}Sn{sub 0.06} films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge{sub 0.94}Sn{sub 0.06} films grown by molecular beam epitaxy.

  15. β-NMR measurements of molecular-scale lithium-ion dynamics in poly(ethylene oxide)-lithium-salt thin films

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Cortie, David L.; Harada, Masashi; Kiefl, Robert F.; Levy, C. D. Philip; MacFarlane, W. Andrew; McFadden, Ryan M. L.; Morris, Gerald D.; Ogata, Shin-Ichi; Pearson, Matthew R.; Sugiyama, Jun

    2017-06-01

    β -detected NMR (β -NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β -NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of 8Li+ was observed in all of the films above ˜250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3 ±0.2 kJ mol-1 in PEO:LiTFA to 17.8 ±0.2 kJ mol-1 in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in 8Li+ hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.

  16. HPTLC and magnetochromatography of new complexes of carboxylates with transition metals or rare earth elements and their ligands - study of lipophilicity.

    PubMed

    Malinowska, Irena; Wronka, Agnieszka; Ferenc, Wiesława

    2017-05-01

    Nineteen new complexes of carboxylates with transition and rare elements as central ions and their ligands were characterized by chromatographic analyses. The parameter of relative lipophilicity (RM0 ) of the tested compounds was determined experimentally by the reversed-phase high-performance thin layer chromatography method with mixtures of various organic modifiers (acetonitrile, acetone, dioxane) and water as a mobile phase. The extrapolated RM0 values were compared with the logP values calculated from the molecular structures of tested solutes. Similarities between the lipophilicity indices were analysed by principal component analysis and linear regression. Thin-layer chromatography combined with a magnetic field has been proposed as a complementary method for determination of lipophilicity of the investigated compounds. The chromatograms in the field and outside it were developed simultaneously in two identical chromatographic chambers. One of them was placed in the external magnetic field of 0.4 T inductivity. We proved that chelation causes a drastic change in compound lipophilicity, but all complexes did not exhibit enhanced activity as compared with the parent ligand. Also in the magnetic field the retention of some complexes changed, which means that the presence of the field influences the physicochemical properties of the compounds and their interactions with the stationary phase.

  17. Facile preparation of oxazole-4-carboxylates and 4-ketones from aldehydes using 3-oxazoline-4-carboxylates as intermediates.

    PubMed

    Murai, Kenichi; Takahara, Yusuke; Matsushita, Tomoyo; Komatsu, Hideyuki; Fujioka, Hiromichi

    2010-08-06

    A novel 2-step synthesis of oxazole-4-carboxylates from aldehydes was developed, which is characterized by the utilization of 3-oxazoline-4-carboxylates as synthetic intermediates. The facile preparation of 4-keto-oxazole derivatives from 3-oxazoline-4-carboxylates based on their interesting reactivity toward Grignard reagents is also described.

  18. Pyrolysis Mechanisms of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P.F.; Eskay, T.P.; Buchanan, A.C. III

    1997-12-31

    Although decarboxylation of carboxylic acids is widely used in organic synthesis, there is limited mechanistic information on the uncatalyzed reaction pathways of aromatic carboxylic acids at 300-400 {degrees} C. The pyrolysis mechanisms of 1,2-(3,3-dicarboxyphenyl)ethane, 1,2-(4,4-dicarboxylphenyl)ethane, 1-(3-carboxyphenyl)-2-(4- biphenyl)ethane, and substituted benzoic acids have been investigated at 325-425 {degrees} C neat and diluted in an inert solvent. Decarboxylation is the dominant pyrolysis path. Arrhenius parameters, substituent effects, and deuterium isotope effects are consistent with decarboxylation by an electrophilic aromatic substitution reaction. Pyrolysis of benzoic acid in naphthalene, as a solvent, produces significant amounts of 1- and 2-phenylnaphthalenes. The mechanistic pathways for decarboxylation and arylation with be presented.

  19. Carboxylic Acid to Thioamide Hydrogen Bonding

    PubMed Central

    Datta, Suchitra; Lightner, David A.

    2009-01-01

    The lactam groups of dipyrrinones avidly engage in amide-amide hydrogen bonding to form dimeric association complexes in nonpolar solvents (in CHCl3, KD ~25,000 M-1 at 22°C). The corresponding thioamides (dipyrrinthiones), prepared from dipyrrinones by reaction with Lawesson’s reagent, also form intermolecularly hydrogen-bonded dimers in nonpolar solvents, albeit with much weaker association constants (in CHCl3, KD ~200 M-1 at 22°C). When a carboxylic acid group is tethered to C(9) of the dipyrrinone, as in the hexanoic acid of [6]-semirubin, tight intramolecular hydrogen bonding between the carboxylic acid group and the lactam moiety (intramolecular Kassoc ≫25,000) is found in CHCl3 with no evidence of dimers. In contrast, the analogous dipyrrinthione, [6]-thiosemirubin, eschews intramolecular hydrogen bonds, as determined using NMR spectroscopy and vapor pressure osmometry, preferring to form intermolecularly hydrogen-bonded dimers of the thioamide-thioamide type. PMID:20049064

  20. A polyoxometalate-based manganese carboxylate cluster

    SciTech Connect

    Fang, X.; Kogerler, P.

    2008-01-01

    The functionalization of a pre-formed, high oxidation state {l_brace}Ce{sup IV}Mn{sup IV}{sub 6}{r_brace} cluster with a lacunary phosphotungstate, [{alpha}-P{sub 2}W{sub 15}O{sub 56}]{sup 12-}, exemplifies a straightforward route for grafting redox-active building blocks to existing Mn-carboxylate clusters and modeling their deposition onto metal oxide surfaces.

  1. 4-Carboxypiperidinium 1-carboxycyclobutane-1-carboxylate.

    PubMed

    Belandria, Lusbely M; Mora, Asiloé J; Delgado, Gerzon E; Briceño, Alexander

    2012-02-01

    The title salt, C(6)H(12)NO(2)(+)·C(6)H(7)O(4)(-) or ISO(+)·CBDC(-), is an ionic ensemble assisted by hydrogen bonds. The amino acid moiety (ISO or piperidine-4-carboxylic acid) has a protonated ring N atom (ISO(+) or 4-carboxypiperidinium), while the semi-protonated acid (CBDC(-) or 1-carboxycyclobutane-1-carboxylate) has the negative charge residing on one carboxylate group, leaving the other as a neutral -COOH group. The -(+)NH(2)- state of protonation allows the formation of a two-dimensional crystal packing consisting of zigzag layers stacked along a separated by van der Waals distances. The layers extend in the bc plane connected by a complex network of N-H···O and O-H···O hydrogen bonds. Wave-like ribbons, constructed from ISO(+) and CBDC(-) units and described by the graph-set symbols C(3)(3)(10) and R(3)(3)(14), run alternately in opposite directions along c. Intercalated between the ribbons are ISO(+) cations linked by hydrogen bonds, forming rings described by the graph-set symbols R(6)(6)(30) and R(4)(2)(18). A detailed analysis of the structures of the individual components and the intricate hydrogen-bond network of the crystal structure is given.

  2. Crystal structure of ethyl 2-amino-4-(4-meth-oxy-phen-yl)-4H-1-benzothieno[3,2-b]pyran-3-carboxyl-ate.

    PubMed

    Bakhouch, Mohamed; Kerbal, Abdelali; El Yazidi, Mohamed; Saadi, Mohamed; El Ammari, Lahcen

    2015-05-01

    The mol-ecule of the title compound, C21H19NO4S, features a fused ring system whereby a five-membered ring is flanked by two six-membered rings. This is linked to an ethyl 3-carboxyl-ate group and to a meth-oxy-benzene group. The fused-ring system is quasi-planar, with the greatest deviation from the mean plane being 0.131 (1) Å for the methine C atom. The plane through the meth-oxy-benzene ring is nearly perpendicular to that through the fused-ring system, as indicated by the dihedral angle of 85.72 (6)°. An intra-molecular N-H⋯O hydrogen bond is noted. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds, forming layers that stack along the a axis.

  3. Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius.

    PubMed

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Steudtner, Robin; Selenska-Pobell, Sonja; Merroun, Mohamed L

    2015-02-14

    The complexation of U(vi) at the proteinaceous surface layer (S-layer) of the archaeal strain Sulfolobus acidocaldarius was investigated over a pH range from pH 1.5 to 6 at the molecular scale using time-resolved laser-induced fluorescence spectroscopy (TRLFS) and U L(III)-edge extended X-ray absorption fine structure (EXAFS). The S-layer, which represents the interface between the cell and its environment, is very stable against high temperatures, proteases, and detergents. This allowed the isolation and purification of S-layer ghosts (= empty cells) that maintain the size and shape of the cells. In contrast to many other microbial cell envelope compounds the studied S-layer is not phosphorylated, enabling the investigation of uranyl carboxylate complexes formed at microbial surfaces. The latter are usually masked by preferentially formed uranyl phosphate complexes. We demonstrated that at highly acidic conditions (pH 1.5 to 3) no uranium was bound by the S-layer. In contrast to that, at moderate acidic pH conditions (pH 4.5 and 6) a complexation of U(vi) at the S-layer via deprotonated carboxylic groups was stimulated. Titration studies revealed dissociation constants for the carboxylic groups of glutamic and aspartic acid residues of pK(a) = 4.78 and 6.31. The uranyl carboxylate complexes formed at the S-layer did not show luminescence properties at room temperature, but only under cryogenic conditions. The obtained luminescence maxima are similar to those of uranyl acetate. EXAFS spectroscopy demonstrated that U(vi) in these complexes is mainly coordinated to carboxylate groups in a bidentate binding mode. The elucidation of the molecular structure of these complexes was facilitated by the absence of phosphate groups in the studied S-layer protein.

  4. Carboxylated single-walled carbon nanotubes induce an inflammatory response in human primary monocytes through oxidative stress and NF-κB activation

    NASA Astrophysics Data System (ADS)

    Ye, Shefang; Zhang, Honggang; Wang, Yifang; Jiao, Fei; Lin, Cuilin; Zhang, Qiqing

    2011-09-01

    A mechanistic understanding of interactions between carbon nanotubes (CNTs) and living systems has become imperative owing to the growing nanomedicine applications and the mounting societal concerns on nanosafety. The addition of different chemical groups leads to a significant change in the properties of CNTs, and the resulting functionalized CNTs are generating great interest in many biological applications, such as biosensors and transporters. This study aimed to assess the toxicity exhibited by carboxylic acid functionalized single-walled CNTs (SWCNTs) (with a diameter of 1-2 nm and mean length of 500 nm) and to elucidate possible molecular mechanisms underlying the biological effects of carboxylated SWCNTs in human primary monocytes. The results demonstrated that carboxylated SWCNTs were cytotoxic, triggering apoptosis and G2/M phase arrest in human primary monocytes. Flow cytometric and confocal microscopic analysis indicated that internalized carboxylated SWCNTs were mainly accumulated in the cytoplasm. Exposure of human primary monocytes to carboxylated SWCNTs led to interleukin-8 (IL-8) and interleukin-6 (IL-6) expression, reactive oxygen species (ROS) production, and nuclear factor-kappa B (NF-κB) activation in human primary monocytes. Pretreatment of human primary monocytes with antioxidants or NF-κB-specific inhibitor before exposure to carboxylated SWCNTs significantly abolished carboxylated SWCNTs-induced IL-8 and IL-6 expression. These results provide novel insights into the carboxylated SWCNTs-mediated chemokine induction and inflammatory responses in vitro.

  5. Growth of Thin, Anisotropic, π-Conjugated Molecular Films by Step-Wise `Click' Assembly of Molecular Building Blocks: Characterizing Reaction Yield, Surface Coverage, and Film Thickness vs. Addition Step Number

    NASA Astrophysics Data System (ADS)

    Demissie, Abel; Haugstad, Greg; Frisbie, C. Daniel

    2015-03-01

    Molecular electronics is an active field of nanotechnology that has gained much interest due to the advent of modern microscopy techniques, and thin film synthesis using click chemistry - an approach which has enabled scientists to achieve a sub-angstrom control of monolayer length. Among the major challenges to grow oriented, surface-confined wires by click chemistry is development of synthetic routes that yield monodisperse wires, and lack of systematic way to measure the surface coverage of molecules. In this work, we report a comprehensive characterization of π-conjugated oligophenylene imine (OPI) wires synthesized step-wise by imine condensation click chemistry. OPI wire synthesis began with a self-assembled monolayer (SAM) of 4-formylthiophenol or 4-aminothiophenol on Au, followed by alternate addition of terepthaldehyde or phenylenediamine. OPI wires were characterized after each monomer addition via Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, cyclic voltammetry, reflection-absorption infra-red spectroscopy, and nuclear reaction analysis. We have determined an average extent of reaction greater than 98% completion for each growth step using five different techniques. Overall, these nanoscale scale surface characterization techniques proved to be an extremely sufficient method for monitoring wire growth and surface coverage.

  6. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.

    PubMed

    Pritchard, James; Filonenko, Georgy A; van Putten, Robbert; Hensen, Emiel J M; Pidko, Evgeny A

    2015-06-07

    The catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review. In particular, we focus on the mechanistic aspects of the catalytic hydrogenation and highlight the bifunctional nature of the mechanism that is preferred for supported metal catalysts as well as homogeneous transition metal complexes.

  7. Carboxylates and sulfated carboxylates as inhibitors of steel corrosion in neutral media

    SciTech Connect

    Podobaev, N.I.; Larionov, E.A.

    1995-03-01

    Effects of carboxylates and sulfocarboxylates as well as their mixtures with o-nitrobenzoate on the corrosion of St3 steel in freely aerated distilled water and 0.01 - 0.04 M NaCl solutions (pH 7) are studied electrochemically and by the gravimetric technique. A noticeable improvement of the protective properties of sulfated mustard soap and sulfated castor oil is observed after the addition of 20 mg/l o-nitrobenzoate. Armco iron spontaneously passivates in 0.25 M CH{sub 3}COONa solution at a certain content of inhibitors and under a hydrodynamical regime. Sulfated carboxylates suppress the anodic process more strongly than do nonsulfated carboxylates.

  8. Localized surface plasmon resonance interfaces coated with poly[3-(pyrrolyl)carboxylic acid] for histidine-tagged peptide sensing.

    PubMed

    Tighilt, Fatma-Zohra; Subramanian, Palaniappan; Belhaneche-Bensemra, Naima; Boukherroub, Rabah; Gabouze, Noureddine; Sam, Sabrina; Szunerits, Sabine

    2011-10-21

    The paper reports on a novel localized surface plasmon resonance (LSPR) substrate architecture for the immobilization and detection of histidine-tagged peptides. The LSPR interface consists of an ITO (indium tin oxide) substrate coated with gold nanostructures. The latter are obtained by thermal deposition of a thin (2 nm thick) gold film followed by post-annealing at 500 °C. The LSPR interface was coated with poly[3-(pyrrolyl)carboxylic acid] thin films using electrochemical means. The ability of the LSPR interfaces coated with poly[3-(pyrrolyl)carboxylic acid] to chelate copper ions was investigated. Once loaded with metal ions, the modified LSPR interface was able to bind specifically to histidine-tagged peptides. The binding process was followed using LSPR.

  9. Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor.

    PubMed

    Gao, Fang; Hu, Yaxi; Chen, Da; Li-Chan, Eunice C Y; Grant, Edward; Lu, Xiaonan

    2015-10-01

    Sudan I is a carcinogenic and mutagenic azo-compound that has been utilized as a common adulterant in spice and spice blends to impart a desirable red color to foods. A novel biosensor combining molecularly imprinted polymers (MIPs), thin layer chromatography (TLC) and surface enhanced Raman spectroscopy (SERS) could determine Sudan I levels in paprika powder to 1 ppm (or 2 ng/spot). Sudan I spiked paprika extracts (spiking levels: 0, 1, 5, 10, 40, 70 and 100 ppm) were prepared. Sudan I imprinted polymers were synthesized by employing the interaction between Sudan I (template) and methacrylic acid (functional monomer), followed by washing to remove Sudan I leaving the Sudan I-binding sites exposed. MIPs were used as a stationary phase for TLC and could selectively retain Sudan I at the original spot with little interference. A gold colloid SERS substrate could enhance Raman intensity for Sudan I in this MIP-TLC system. Principal component analysis plot and partial least squares regression (R(2)=0.978) models were constructed and a linear regression model (R(2)=0.983) correlated spiking levels (5, 10, 40, 70 and 100 ppm) with the peak intensities (721 cm(-1)) of Sudan I SERS spectra. Both separation (30-40s) and detection (1s or 0.1s) were extremely fast by using both commercial bench-top and custom made portable Raman spectrometers. This biosensor can be applied as a rapid, low-cost and reliable tool for screening Sudan I adulteration in foods.

  10. Study of Gd-doped Bi{sub 2}Te{sub 3} thin films: Molecular beam epitaxy growth and magnetic properties

    SciTech Connect

    Harrison, S. E.; Huo, Y.; Harris, J. S.; Collins-McIntyre, L. J.; Hesjedal, T.; Li, S.; Baker, A. A.; Shelford, L. R.; Laan, G. van der; Pushp, A.; Parkin, S. S. P.; Arenholz, E.

    2014-01-14

    Incorporation of magnetic dopants into topological insulators to break time-reversal symmetry is a prerequisite for observing the quantum anomalous Hall (QAHE) effect and other novel magnetoelectric phenomena. GdBiTe{sub 3} with a Gd:Bi ratio of 1:1 is a proposed QAHE system, however, the reported solubility limit for Gd doping into Bi{sub 2}Te{sub 3} bulk crystals is between ∼0.01 and 0.05. We present a magnetic study of molecular beam epitaxy grown (Gd{sub x}Bi{sub 1–x}){sub 2}Te{sub 3} thin films with a high Gd concentration, up to x ≈ 0.3. Magnetometry reveals that the films are paramagnetic down to 1.5 K. X-ray magnetic circular dichroism at the Gd M{sub 4,5} edge at 1.5 K reveals a saturation field of ∼6 T, and a slow decay of the magnetic moment with temperature up to 200 K. The Gd{sup 3+} ions, which are substitutional on Bi sites in the Bi{sub 2}Te{sub 3} lattice, exhibit a large atomic moment of ∼7 μ{sub B}, as determined by bulk-sensitive superconducting quantum interference device magnetometry. Surface oxidation and the formation of Gd{sub 2}O{sub 3} lead to a reduced moment of ∼4 μ{sub B} as determined by surface-sensitive x-ray magnetic circular dichroism. Their large atomic moment makes these films suitable for incorporation into heterostructures, where interface polarization effects can lead to the formation of magnetic order within the topological insulators.

  11. Slantingly cross loading sample system enables simultaneous performance of separation and mixture to detect molecular interactions on thin-layer chromatography.

    PubMed

    Shimizu-Yumoto, Hiroko; Hayashi, Nobuyuki; Ichimura, Kazuo; Nakayama, Masayoshi

    2012-07-06

    Anthocyanins are major flower pigments that can be affected by copigments, colorless compounds that can modify anthocyanin coloration to more intense and bluer. Thin-layer chromatography (TLC) is an available technique to separate and analyze anthocyanins and copigments. To easily and comprehensively detect copigments, we added function of mixture of compounds to TLC; by slantingly cross loading samples on TLC, compounds are symmetrically developed at various angle lines from the upper origin to individual R(f) values and cross each other in an orderly fashion, where mixture is simultaneously performed with separation. Occurrence of copigments can be detected as a coloration change on the developed line of anthocyanin. Pink sweet pea (Lathyrus odoratus L.) petals were analyzed by the cross-TLC and a more intense spot and a paler spot on the anthocyanin line were detected. As each spot overlapped with an ultraviolet absorbance line, each of these ultraviolet absorption compounds was purified and identified as kaempferol 3-rhamnoside and 2-cyanoethyl-isoxazolin-5-one, respectively. Whereas kaempferol 3-rhamnoside is a flavonoid and had a general copigment effect of more intense and bluer coloration change, 2-cyanoethyl-isoxazolin-5-one is a compound whose structure is outside of conventional categories of copigments and had a novel effect to change anthocyanin coloration paler while maintaining color tone. We determined that the search for copigments should be carried out without pre-existing prediction of structures and effects. We have shown that slantingly cross loading samples system on plate-type chromatography is an effective technique for such comprehensive analysis of molecular interaction. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  12. Molecular dynamics simulations of lithium silicate/vanadium pentoxide interfacial lithium ion diffusion in thin film lithium ion-conducting devices

    NASA Astrophysics Data System (ADS)

    Li, Weiqun

    The lithium ion diffusion behavior and mechanism in the glassy electrolyte and the electrolyte/cathode interface during the initial stage of lithium ion diffusing from electrolyte into cathode were investigated using Molecular Dynamics simulation technique. Lithium aluminosilicate glass electrolytes with different R (ratio of the concentration of Al to Li) were simulated. The structural features of the simulated glasses are analyzed using Radial Distribution Function (RDF) and Pair Distribution Function (PDF). The diffusion coefficient and activation energy of lithium ion diffusion in simulated lithium aluminosilicate glasses were calculated and the values are consistent with those in experimental glasses. The behavior of lithium ion diffusion from the glassy electrolyte into a polycrystalline layered intercalation cathode has been studied. The solid electrolyte was a model lithium silicate glass while the cathode was a nanocrystalline vanadia with amorphous V2O5 intergranular films (IGF) between the V2O5 crystals. Two different orientations between the V2O5 crystal planes are presented for lithium ion intercalation via the amorphous vanadia IGF. A series of polycrystalline vanadia cathodes with 1.3, 1.9, 2.9 and 4.4 nm thickness IGFs were simulated to examine the effects of the IGF thickness on lithium ion transport in the polycrystalline vanadia cathodes. The simulated results showed that the lithium ions diffused from the glassy electrolyte into the IGF of the polycrystalline vanadia cathode and then part of those lithium ions diffused into the crystalline V2O5 from the IGF. The simulated results also showed an ordering of the vanadium ion structure in the IGF near the IGF/V2 O5 interface. The ordering structure still existed with glass former silica additive in IGF. Additionally, 2.9 run is suggested to be the optimal thickness of the IGF, which is neither too thick to decrease the capacity of the cathode nor too thin to impede the transport of lithium from

  13. Genome Sequence of Sphingomonas wittichii DP58, the First Reported Phenazine-1-Carboxylic Acid-Degrading Strain

    PubMed Central

    Ma, Zhiwei; Shen, Xuemei; Wang, Wei; Peng, Huasong; Xu, Ping; Zhang, Xuehong

    2012-01-01

    Sphingomonas wittichii DP58 (CCTCC M 2012027), the first reported phenazine-1-carboxylic acid (PCA)-degrading strain, was isolated from pimiento rhizosphere soils. Here we present a 5.6-Mb assembly of its genome. This sequence would contribute to the elucidation of the molecular mechanism of PCA degradation to improve the antifungal's effectiveness or remove superfluous PCA. PMID:22689229

  14. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond

    NASA Astrophysics Data System (ADS)

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V.; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M.; Haga, Masa-Aki; Wandlowski, Thomas

    2015-10-01

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g-1 at a current density of 10 μA cm-2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  15. Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1

    PubMed Central

    Taylor, David G.; Trudgill, Peter W.

    1978-01-01

    Thirty-three microorganisms capable of growth with cyclohexane carboxylate as the sole source of carbon were isolated from mud, water, and soil samples from the Aberystwyth area. Preliminary screening and whole-cell oxidation studies suggested that, with one exception, all of the strains metabolized the growth substrate by beta-oxidation of the coenzyme A ester. This single distinctive strain, able to oxidize rapidly trans-4-hydroxycyclohexane carboxylate, 4-ketocyclohexane carboxylate, p-hydroxybenzoate, and protocatechuate when grown with cyclohexane carboxylate, was classified as a strain of Alcaligenes and given the number W1. Enzymes capable of converting cyclohexane carboxylate to p-hydroxybenzoate were induced by growth with the alicyclic acid and included the first unambiguous specimen of a cyclohexane carboxylate hydroxylase. Because it is a very fragile protein, attempts to stabilize the cyclohexane carboxylate hydroxylase so that a purification procedure could be developed have consistently failed. In limited studies with crude cell extracts, we found that hydroxylation occurred at the 4 position, probably yielding the trans isomer of 4-hydroxycyclohexane carboxylate. Simultaneous measurement of oxygen consumption and reduced nicotinamide adenine dinucleotide oxidation, coupled with an assessment of reactant stoichiometry, showed the enzyme to be a mixed-function oxygenase. Mass spectral analysis enabled the conversion of cyclohexane carboxylate to p-hydroxybenzoate by cell extracts to be established unequivocally, and all of our data were consistent with the pathway: cyclohexane carboxylate → trans-4-hydroxycyclohexane carboxylate → 4-ketocyclohexane carboxylate → p-hydroxybenzoate. The further metabolism of p-hydroxybenzoate proceeded by meta fission and by the oxidative branch of the 2-hydroxy-4-carboxymuconic semialde-hyde-cleaving pathway. PMID:207665

  16. Oxoiron(IV) Tetramethylcyclam Complexes with Axial Carboxylate Ligands: Effect of Tethering the Carboxylate on Reactivity.

    PubMed

    Bigelow, Jennifer O; England, Jason; Klein, Johannes E M N; Farquhar, Erik R; Frisch, Jonathan R; Martinho, Marlène; Mandal, Debasish; Münck, Eckard; Shaik, Sason; Que, Lawrence

    2017-03-20

    Oxoiron(IV) species are implicated as reactive intermediates in nonheme monoiron oxygenases, often acting as the agent for hydrogen-atom transfer from substrate. A histidine is the most likely ligand trans to the oxo unit in most enzymes characterized thus far but is replaced by a carboxylate in the case of isopenicillin N synthase. As the effect of a trans carboxylate ligand on the properties of the oxoiron(IV) unit has not been systematically studied, we have synthesized and characterized four oxoiron(IV) complexes supported by the tetramethylcyclam (TMC) macrocycle and having a carboxylate ligand trans to the oxo unit. Two complexes have acetate or propionate axial ligands, while the other two have the carboxylate functionality tethered to the macrocyclic ligand framework by one or two methylene units. Interestingly, these four complexes exhibit substrate oxidation rates that differ by more than 100-fold, despite having Ep,c values for the reduction of the Fe═O unit that span a range of only 130 mV. Eyring parameters for 1,4-cyclohexadiene oxidation show that reactivity differences originate from differences in activation enthalpy between complexes with tethered carboxylates and those with untethered carboxylates, in agreement with computational results. As noted previously for the initial subset of four complexes, the logarithms of the oxygen atom transfer rates of 11 complexes of the Fe(IV)(O)TMC(X) series increase linearly with the observed Ep,c values, reflecting the electrophilicity of the Fe═O unit. In contrast, no correlation with Ep,c values is observed for the corresponding hydrogen atom transfer (HAT) reaction rates; instead, the HAT rates increase as the computed triplet-quintet spin state gap narrows, consistent with Shaik's two-state-reactivity model. In fact, the two complexes with untethered carboxylates are among the most reactive HAT agents in this series, demonstrating that the axial ligand can play a key role in tuning the HAT reactivity

  17. Enumeration of carboxyl groups carried on individual components of humic systems using deuteromethylation and Fourier transform mass spectrometry.

    PubMed

    Zherebker, Alexander; Kostyukevich, Yury; Kononikhin, Alexey; Kharybin, Oleg; Konstantinov, Andrey I; Zaitsev, Kirill V; Nikolaev, Eugene; Perminova, Irina V

    2017-03-01

    Here, we report a novel approach to enumeration of carboxylic groups carried by individual molecules of humic substances using selective chemical modification and isotopic labeling (deuteromethylation) and high-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS). Esterification was conducted with a use of thionyl chloride-deuteromethanol reagent under mild conditions to avoid transesterification. The deuteromethylated products were subjected to solid phase extraction using PPL Bond Elute cartridges prior to FTICR MS analysis. An amount of carboxyl groups in the individual molecular component was estimated from the length of identified deuteromethylation series. The method allowed for discerning between compounds with close elemental compositions possessing different protolytic properties. We found that different carboxylic moieties occupy distinct regions in molecular space of humic substances (HS) projected onto Van Krevelen diagram. These locations do not depend on the source of the humic material and can be assigned to carboxyl-rich alicyclic molecules (5 to 6 COOH), hydrolyzable tannins (3-4 COOH), lignins (1 to 2 COOH), condensed tannins and lignans (0 to 1 COOH), and carbohydrates (0 COOH). At the same time, the alignment pattern of these carboxylated species along the structural evolution lines in Van Krevelen diagrams was characteristic to the specific transformation processes undergone by the humic materials in the different environments. The obtained data enable mapping of molecular ensemble of HS with regards to their specific acidic compartments and might be used for directed fractionation of HS. Graphical abstract Selective isotopic labeling followed by FTICR MS enables discerning between humic molecules with close elemental compositions carrying different numbers of carboxylic groups.

  18. Reactivity of yttrium carboxylates toward alkylaluminum hydrides.

    PubMed

    Schädle, Christoph; Fischbach, Andreas; Herdtweck, Eberhardt; Törnroos, Karl W; Anwander, Reiner

    2013-11-25

    Yttrocene-carboxylate complex [Cp*2Y(OOCAr(Me))] (Cp*=C5Me5, Ar(Me) =C6H2Me3-2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare-earth-metal carboxylates. Equimolar reactions with bis-neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium-aluminum-hydride complex [{Cp*2Y(μ-H)AlMe2(μ-H)AlMe2(μ-CH3)}2] could be isolated, which features a 12-membered-ring structure. The adduct complexes [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] display identical (1)J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar (89)Y NMR shifts of δ=-88.1 ppm (R=CH2SiMe3) and δ=-86.3 ppm (R=Me) in the (89)Y DEPT45 NMR experiments.

  19. Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons.

    PubMed

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15-0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor-acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [⟨dO-O⟩ = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O-O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid-carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  20. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    PubMed Central

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  1. Carboxyl groups and the proton pump of bacteriorhodopsin

    SciTech Connect

    Herz, J.M.; Packer, L.

    1983-08-01

    Chemical modification and spin-labeled studies of purple membranes isolated from Halobacterium halobium have provided the first evidence for buried carboxyl residues within the hydrophobic, membrane-protein domains. Spin label data showed that modification of buried carboxyl residues resulted in loss of protein activity. A pH-sensitive, chromophoric reporter group demostrated that a carboxyl residue in a hydrophobic membrane environment interacts with the retinal chromophore of bacteriorhodopsin. These results appear consistent with the idea that carboxyl residues in hydrophobic environments may be a general feature required for activity of membrane proton pumps.

  2. Influence of Methyl Substituents on Azo-Dye Photoalignment in Thin Films

    NASA Astrophysics Data System (ADS)

    Mikulich, V. S.; Murawski, An. A.; Muravsky, Al. A.; Agabekov, V. E.

    2016-03-01

    Photoalignment of azo dyes derived from salicylic acid in thin films (80-200 nm) was studied upon irradiation with polarized light (λmax = 457 nm). It is shown that different trends of molecular reorientation, i.e., in the layer plane or orthogonal to it, are observed depending on the position of the methyl substituent in the dye structure. A new distribution parameter Z that allows the portion of molecules reoriented in the layer plane during exposure to be determined is introduced. The novel azo dye potassium 3,7-bis[1-(4-hydroxy-3-carboxylate)phenylazo]-5,5'-dioxodibenzothiophene was synthesized. Its molecules are photoaligned in the layer plane upon irradiation with polarized light.

  3. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    SciTech Connect

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  4. Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function

    PubMed Central

    Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit

    2010-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  5. Pyrolysis of simple coal model compounds containing aromatic carboxylic acids: Does decarboxylation lead to cross-linking?

    SciTech Connect

    Eskay, T.P.; Britt, P.F.; Buchanan, A.C. III

    1996-02-01

    The thermolysis of two aromatic carboxylic acids 1,2-(3,3`-dicarboxyphenyl)ethane (2) have been investigated at 400{degree} C as models of carboxylic acids in low rank coals. The major decomposition pathway observed is decarboxylation, which mainly occurs by an ionic pathway. This decarboxylation route does not lead to any significant amount of coupling or high molecular weight products that would be indicative of cross-linking products in coal. The pyrolysis of 1 and 2 will be investigated under a variety of conditions that better mimic the enviromment found in coal to further delineate the role that decarboxylation plays in coal cross-linking chemistry.

  6. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Queralt, I.; Ibañez, J.; Marguí, E.; Pujol, J.

    2010-07-01

    The importance of thin films in modern high technology products, such as semiconductors, requires fast and non-destructive analysis. A methodology to determine the thickness of single layers with benchtop energy dispersive X-ray fluorescence (EDXRF) instrumentation is described and tested following analytical validation criteria. The experimental work was carried out on gallium nitride thin films epitaxially grown on sapphire substrate. The results of samples with layers in the range from 400 to 1000 nm exhibit a good correlation with the layer thickness determined by optical reflectance. Spectral data obtained using thin layered samples indicate the possibility to precisely evaluate layer thickness from 5 nm, with a low relative standard deviation (RSD < 2%) of the results. In view of the limits of optical reflectance for very thin layer determination, EDXRF analysis offers the potential for the thickness determination of such kind of samples.

  7. Effects of a heavy atom on molecular order and morphology in conjugated polymer:fullerene photovoltaic blend thin films and devices.

    PubMed

    Tsoi, Wing C; James, David T; Domingo, Ester Buchaca; Kim, Jong Soo; Al-Hashimi, Mohammed; Murphy, Craig E; Stingelin, Natalie; Heeney, Martin; Kim, Ji-Seon

    2012-11-27

    We study the molecular order and morphology in poly(3-hexylthiophene) (P3HT) and poly(3-hexylselenophene) (P3HS) thin films and their blends with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). We find that substitution of the sulfur atoms in the thiophene rings of P3HT by heavy selenium atoms increases the tendency of the molecules to form better ordered phase; interestingly, their overall fraction of ordered phase is much lower than that of P3HT-based films. The higher tendency of P3HS molecules to order (aggregate) is consistent with more planar chain conformation simulated. The lower fraction of ordered phase (or the higher fraction of disordered phase) in P3HS-based films is clearly identified by in-plane skeleton Raman modes under resonant excitation conditions, such as a smaller ratio of the C═C modes associated with the ordered (∼1422 cm(-1)) and disordered (∼1446 cm(-1)) phases (I(1422 cm(-1))/I(1446 cm(-1)) = 1.4 for P3HS and 0.6 for P3HS:PCBM), compared with P3HT-based films (I(1449 cm(-1))/I(1470 cm(-1)) = 2.5 for P3HT and 1.0 for P3HT:PCBM) and a larger Raman dispersion of the C═C mode: P3HS (17 cm(-1)) versus P3HT (6 cm(-1)) and P3HS:PCBM (36 cm(-1)) versus P3HT:PCBM films (23 cm(-1)). The higher fraction of disordered phase in P3HS prevents the formation of micrometer-sized PCBM aggregates in blend films during thermal annealing. Importantly, this lower fraction but better quality of ordered phase in P3HS molecules strongly influences P3HS:PCBM photovoltaic performance, producing smaller short-circuit current (J(sc)) in pristine devices, but significantly larger increase in J(sc) after annealing compared to P3HT:PCBM devices. Our results clarify the effects of heavy atom substitution in low band gap polymers and their impact on blend morphology and device performance. Furthermore, our study clearly demonstrates resonant Raman spectroscopy as a simple, but powerful, structural probe which provides important information about "fraction

  8. Synthesis, Characterization, Semiempirical and Biological Activities of Organotin(IV) Carboxylates with 4-Piperidinecarboxylic Acid

    PubMed Central

    Sharma, Saroj K.; Qanungo, Kushal; Shahid, Muhammad

    2014-01-01

    Organotin (IV) carboxylates with the general formulae R2Sn(Cl)L [R = Me (1), n-Bu (2), Ph (3)] and R3SnL [R = Me (4), Ph (5)] have been synthesized by the reaction of 4-piperidinecarboxylic acid (HL) with KOH and R2SnCl2 (R = Me, n-Bu, Ph)/R3SnCl (R = Me, Ph) in methanol under stirring conditions. The metal ligand binding site, structure, and stability of complexes have been verified by FT-IR, (1H, 13C) NMR, EI-MS technique, and semiempirical study. The FT-IR data indicate the bidentate chelating mode of the carboxylate ligand which is also confirmed by semiempirical study. In solution state, five and four coordinated geometry around tin was confirmed by NMR spectroscopy. The EI-MS data agreed well with the molecular structure of the complexes. Thermodynamic parameters and molecular descriptors were calculated by using semiempirical PM3 method. HOMO-LUMO calculations show that chlorodiorganotin complexes are more susceptible to nucleophilic attack as compared to triorganotin complexes. Computed negative heat of formation indicates that complexes 1–4 are thermodynamically stable. The organotin(IV) carboxylates displayed powerful antimicrobial activities against various strains of bacteria and fungi and their minimal inhibitory concentration were also evaluated. The complexes exhibited comparatively higher hemolytic activity as compared to free ligand. PMID:25548551

  9. High-quality AlGaN/GaN grown on sapphire by gas-source molecular beam epitaxy using a thin low-temperature AlN layer

    SciTech Connect

    Jurkovic, M.J.; Li, L.K.; Turk, B.; Wang, W.I.; Syed, S.; Simonian, D.; Stormer, H.L.

    2000-07-01

    Growth of high-quality AlGaN/GaN heterostructures on sapphire by ammonia gas-source molecular beam epitaxy is reported. Incorporation of a thin AlN layer grown at low temperature within the GaN buffer is shown to result in enhanced electrical and structural characteristics for subsequently grown heterostructures. AlGaN/GaN structures exhibiting reduced background doping and enhanced Hall mobilities (2100, 10310 and 12200 cm{sup 2}/Vs with carrier sheet densities of 6.1 x 10{sup 12} cm{sup {minus}2}, and 5.8 x 10{sup 12} cm{sup {minus}2} at 300 K, 77 K, and 0.3 K, respectively) correlate with dislocation filtering in the thin AlN layer. Magnetotransport measurements at 0.3 K reveal well-resolved Shubnikov-de Haas oscillations starting at 3 T.

  10. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses.

    PubMed

    Connolly, Brian D; Tran, Benjamin; Moore, Jamie M R; Sharma, Vikas K; Kosky, Andrew

    2014-04-07

    Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH. The observed differences in deamidation rates were attributed to the unique ability of each type of carboxylic acid to stabilize the energetically unfavorable transition-state conformations required for imide formation. Quantitative structure property relationship (QSPR) analysis using kinetic data demonstrated that molecular descriptors encoding for the geometric spatial distribution of atomic properties on various carboxylic acids are effective determinants for the deamidation reaction. Specifically, the number of O-O and O-H atom pairs on carboxyl and hydroxyl groups with interatomic distances of 4-5 Å on a carboxylic acid buffer appears to determine the rate of deamidation. Collectively, the results from structural and thermodynamic analyses indicate that carboxylic acids presumably form multiple hydrogen bonds and charge-charge interactions with the relevant deamidation site and provide alignment between the reactive atoms on the side chain and backbone. We propose that carboxylic acids catalyze deamidation by stabilizing a specific, energetically unfavorable transition-state conformation of l-asparaginyl intermediate II that readily facilitates bond formation between the γ-carbonyl carbon and the deprotonated backbone nitrogen for cyclic imide formation.

  11. Synthesis and Structures of Cadmium Carboxylate and Thiocarboxylate Compounds with a Sulfur-Rich Coordination Environment: Carboxylate Exchange Kinetics Involving Tris(2-mercapto-1-t-butylimidazolyl)hydroborato Cadmium Complexes, [TmBut]Cd(O2CR)

    PubMed Central

    2016-01-01

    A series of cadmium carboxylate compounds in a sulfur-rich environment provided by the tris(2-tert-butylmercaptoimidazolyl)hydroborato ligand, namely, [TmBut]CdO2CR, has been synthesized via the reactions of the cadmium methyl derivative [TmBut]CdMe with RCO2H. Such compounds mimic aspects of cadmium-substituted zinc enzymes and also the surface atoms of cadmium chalcogenide crystals, and have therefore been employed to model relevant ligand exchange processes. Significantly, both 1H and 19F NMR spectroscopy demonstrate that the exchange of carboxylate groups between [TmBut]Cd(κ2-O2CR) and the carboxylic acid RCO2H is facile on the NMR time scale, even at low temperature. Analysis of the rate of exchange as a function of concentration of RCO2H indicates that reaction occurs via an associative rather than dissociative pathway. In addition to carboxylate compounds, the thiocarboxylate derivative [TmBut]Cd[κ1-SC(O)Ph] has also been synthesized via the reaction of [TmBut]CdMe with thiobenzoic acid. The molecular structure of [TmBut]Cd[κ1-SC(O)Ph] has been determined by X-ray diffraction, and an interesting feature is that, in contrast to the carboxylate derivatives [TmBut]Cd(κ2-O2CR), the thiocarboxylate ligand binds in a κ1 manner via only the sulfur atom. PMID:25826184

  12. Crystal structure of 5-amino-4H-1,2,4-triazol-1-ium pyrazine-2-carboxyl-ate: an unexpected salt arising from the deca-rboxylation of both precursors.

    PubMed

    Fernandes, José A; Liu, Bing; Tomé, João P C; Cunha-Silva, Luís; Almeida Paz, Filipe A

    2015-07-01

    Both the 3-amino-2H,4H-1,2,4-triazolium cation and the pyrazine-2-carboxyl-ate anion in the title salt, C2H5N4 (+)·C5H3N2O2 (-), were formed by an unexpected deca-rboxylation reaction, from 5-amino-1H-1,2,4-triazole-3-carb-oxy-lic acid and pyrazine-2,3-di-carb-oxy-lic acid, respectively. The dihedral angle between the pyrazine ring (r.m.s. deviation = 0.008 Å) and the carboxyl-ate group in the anion is 3.7 (3)°. The extended structure of the salt contains a supra-molecular zigzag tape in which cations and anions are engaged in strong and highly directional N-H⋯N,O hydrogen bonds, forming R 2 (2)(8) and R 2 (2)(9) graph-set motifs. The packing between the tapes is mediated by π-π stacking inter-actions between the triazole and pyrazine rings.

  13. Synthesis and structures of cadmium carboxylate and thiocarboxylate compounds with a sulfur-rich coordination environment: Carboxylate exchange kinetics involving tris(2-mercapto-1- t-butylimidazolyl)hydroborato cadmium complexes, [TmBut]Cd(O2CR)

    DOE PAGES

    Kreider-Mueller, Ava; Quinlivan, Patrick J.; Owen, Jonathan S.; ...

    2015-03-31

    Here, a series of cadmium carboxylate compounds in a sulfur-rich environment provided by the tris(2-tert-butylmercaptoimidazolyl)hydroborato ligand, namely, [TmBut]CdO2CR, has been synthesized via the reactions of the cadmium methyl derivative [TmBut]CdMe with RCO2H. Such compounds mimic aspects of cadmium-substituted zinc enzymes and also the surface atoms of cadmium chalcogenide crystals, and have therefore been employed to model relevant ligand exchange processes. Significantly, both 1H and 19F NMR spectroscopy demonstrate that the exchange of carboxylate groups between [TmBut]Cd(κ2-O2CR) and the carboxylic acid RCO2H is facile on the NMR time scale, even at low temperature. Analysis of the rate of exchange as amore » function of concentration of RCO2H indicates that reaction occurs via an associative rather than dissociative pathway. In addition to carboxylate compounds, the thiocarboxylate derivative [TmBut]Cd[κ1-SC(O)Ph] has also been synthesized via the reaction of [TmBut]CdMe with thiobenzoic acid. The molecular structure of [TmBut]Cd[κ1-SC(O)Ph] has been determined by X-ray diffraction, and an interesting feature is that, in contrast to the carboxylate derivatives [TmBut]Cd(κ2-O2CR), the thiocarboxylate ligand binds in a κ1 manner via only the sulfur atom.« less

  14. Regioselective Enzymatic β-Carboxylation of para-Hydroxy- styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases

    PubMed Central

    Wuensch, Christiane; Pavkov-Keller, Tea; Steinkellner, Georg; Gross, Johannes; Fuchs, Michael; Hromic, Altijana; Lyskowski, Andrzej; Fauland, Kerstin; Gruber, Karl; Glueck, Silvia M; Faber, Kurt

    2015-01-01

    We report on a ‘green’ method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site. PMID:26190963

  15. Propane-1,3-diaminium bis­(pyridine-4-carboxyl­ate) monohydrate

    PubMed Central

    Brito, Iván; Vallejos, Javier; Cárdenas, Alejandro; López-Rodríguez, Matías

    2011-01-01

    The asymmetric unit of the title compound, C3H12N2 2+·2C6H4NO2 −·H2O, consists of half of a doubly protonated propane-1,3-diammonium dication, a pyridine-4-carboxyl­ate anion and half of a solvent water mol­ecule; the dication and the solvent water are located on a twofold rotation axis which passes through the central C atom of the dication and the water O atom. The carboxyl­ate group of the anion appears to be delocalized on the basis of the C—O bond lengths. In the crystal, the components are linked by inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds. PMID:22065654

  16. Evolution of strategies to prepare synthetic mimics of carboxylate-bridged diiron protein active sites.

    PubMed

    Do, Loi H; Lippard, Stephen J

    2011-12-01

    We present a comprehensive review of research conducted in our laboratory in pursuit of the long-term goal of reproducing the structures and reactivity of carboxylate-bridged diiron centers used in biology to activate dioxygen for the conversion of hydrocarbons to alcohols and related products. This article describes the evolution of strategies devised to achieve these goals and illustrates the challenges in getting there. Particular emphasis is placed on controlling the geometry and coordination environment of the diiron core, preventing formation of polynuclear iron clusters, maintaining the structural integrity of model complexes during reactions with dioxygen, and tuning the ligand framework to stabilize desired oxygenated diiron species. Studies of the various model systems have improved our understanding of the electronic and physical characteristics of carboxylate-bridged diiron units and their reactivity toward molecular oxygen and organic moieties. The principles and lessons that have emerged from these investigations will guide future efforts to develop more sophisticated diiron protein model complexes.

  17. Novel Carbazole (Cbz)-Based Carboxylated Functional Monomers: Design, Synthesis, and Characterization

    PubMed Central

    Mondal, Ejabul; Lellouche, Jean-Paul; Naddaka, Maria

    2015-01-01

    A series of novel functional carbazole (Cbz)-based carboxylated monomers were synthesized and characterized. A Clauson-Kaas procedure, a deprotection step, amide coupling, and hydrolysis were utilized as key chemical reactions towards the multistep synthesis of monomers in good to excellent isolated yields. The design strategy was further extended to complex carbazole-COOH monomers incorporated arylazo groups as photoreactive moieties. In addition, photoreactive hybrid carbazole (Cbz)-pyrrole (Pyr)-based carboxylated monomers, comprising a pyrrole core linking a carbazole and a photoreactive phenylazide or benzophenone moiety through an amide spacer in the molecular structure, were also synthesized. The latter can be utilized for surface modification of polymeric films in their monomeric form or as polymeric microparticles (MPs). PMID:26478845

  18. Bis(5-methyl­pyrazine-2-carboxyl­ato)­diphenyl­tin(IV)

    PubMed Central

    Gao, Zhongjun

    2008-01-01

    In the mol­ecule of the title compound, [Sn(C6H5)2(C6H5N2O2)2], two O and one N atoms from the two 5-methyl­pyrazine-2-carboxyl­ate ligands and one C atom of a phenyl group form a distorted square-planar arrangement in the equatorial plane around the Sn atom, while the distorted octa­hedral coordination is completed by an N atom of one of the 5-methyl­pyrazine-2-carboxyl­ate ligands and a C atom of the other phenyl group in the axial positions. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. PMID:21202741

  19. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines.

    PubMed

    Wang, Chen; Yu, Hai-Zhu; Fu, Yao; Guo, Qing-Xiang

    2013-04-07

    Arylboronic acids were found to be efficient catalysts for the amidation reactions between carboxylic acids and amines. Theoretical calculations have been carried out to investigate the mechanism of this catalytic process. It is found that the formation of the acyloxyboronic acid intermediates from the carboxylic acid and the arylboronic acid is kinetically facile but thermodynamically unfavorable. Removal of water (as experimentally accomplished by using molecular sieves) is therefore essential for overall transformation. Subsequently C-N bond formation between the acyloxyboronic acid intermediates and the amine occurs readily to generate the desired amide product. The cleavage of the C-O bond of the tetracoordinate acyl boronate intermediates is the rate-determining step in this process. Our analysis indicates that the mono(acyloxy)boronic acid is the key intermediate. The high catalytic activity of ortho-iodophenylboronic acid is attributed to the steric effect as well as the orbital interaction between the iodine atom and the boron atom.

  20. Diaqua-(5-methyl-1H-pyrazole-3-carboxyl-ato)(4-nitro-benzoato)copper(II).

    PubMed

    Hu, Fei-Long; Yin, Xian-Hong; Feng, Yu; Mi, Yan; Zhang, Shan-Shan

    2009-01-23

    In the title complex, [Cu(C(7)H(4)NO(4))(C(5)H(5)N(2)O(2))(H(2)O)(2)], the Cu(II) ion is coordinated in a slightly distorted square-pyramidal enviroment. The basal plane is formed by an N atom and an O atom from a 5-methyl-1H-pyrazole-3-carboxyl-ate ligand and by two O atoms from two water ligands. The apical position is occupied by a carboxylate O atom from a 4-nitro-benzoate ligand. In the crystal structure, inter-molecular O-H⋯O and N-H⋯O hydrogen bonds link complex moleclues, forming extended chains parallel to the a axis.

  1. Electrical and optical properties of copper and nickel molecular materials with tetrabenzo [b,f,j,n] [1,5,9,13] tetraazacyclohexadecine thin films grown by the vacuum thermal evaporation technique.

    PubMed

    Rodriguez, A; Sánchez-Vergara, M E; García-Montalvo, V; Ortiz-Rebollo, A; Alvarez-Bada, J R; Alvarez-Toledano, C

    2010-01-01

    Semiconducting molecular-material thin-films of tetrabenzo (b,f,j,n) [1,5,9,13] tetraazacyclohexadecine copper(II) and nickel(II) bisanthraflavates have been prepared by using vacuum thermal evaporation on Corning glass substrates and crystalline silicon wafers. The films thus obtained were characterized by infrared spectroscopy (FTIR), atomic force microscopy (AFM), ultraviolet-visible (UV-vis) spectroscopy and ellipsometry. IR spectroscopy showed that the molecular-material thin-films exhibit the same intra-molecular bonds as the original compounds, which suggests that the thermal evaporation process does not significantly alter their bonds. The optical band-gap values calculated from the absorption coefficient may be related to non-direct electronic interband transitions. The effect of temperature on conductivity was also measured in these samples. It was found that the temperature-dependent electric current is always higher for the nickel-based material and suggests a semiconductor-like behavior with conductivities in the order of 10(-8)Omega(-1)cm(-1).

  2. New structural motif for carboxylic acid perhydrolases.

    PubMed

    Yin, DeLu Tyler; Purpero, Vince M; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J

    2013-02-25

    Some serine hydrolases also catalyze a promiscuous reaction--reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five X-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (k(cat) comparison) than the wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over the wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83-times faster (k(cat) comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (β(0)=170 vs. 160 M(-1)), and a similar fast formation of acetyl-enzyme (140 vs. 62 U mg(-1)). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II β-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I β-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE, so that an acetate accepts a hydrogen bond to promote faster formation of the acetyl-enzyme.

  3. New structural motif for carboxylic acid perhydrolases

    PubMed Central

    Yin, DeLu (Tyler); Purpero, Vince M.; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J.

    2013-01-01

    Some serine hydrolases also catalyze a promiscuous reaction – reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five x-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (kcat comparison) than wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83 times faster (kcat comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (β0 = 170 M−1 vs. 160 M−1), and a similar fast formation of acetyl-enzyme (140 U/mg vs. 62 U/mg). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II β-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I β-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE where an acetate accepts a hydrogen bond to promote faster formation of the acetyl enzyme. PMID:23325572

  4. Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1998-09-15

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  5. Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.

    1998-01-20

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  6. Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, Makarand Ratnakar; Spivey, James Jerry; Zoeller, Joseph Robert

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  7. Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  8. Lysine carboxylation: unveiling a spontaneous post-translational modification

    SciTech Connect

    Jimenez-Morales, David; Adamian, Larisa; Shi, Dashuang; Liang, Jie

    2014-01-01

    A computational method for the prediction of lysine carboxylation (KCX) in protein structures is described. The method accurately identifies misreported KCXs and predicts previously unknown KCX sites. The carboxylation of lysine residues is a post-translational modification (PTM) that plays a critical role in the catalytic mechanisms of several important enzymes. It occurs spontaneously under certain physicochemical conditions, but is difficult to detect experimentally. Its full impact is unknown. In this work, the signature microenvironment of lysine-carboxylation sites has been characterized. In addition, a computational method called Predictor of Lysine Carboxylation (PreLysCar) for the detection of lysine carboxylation in proteins with available three-dimensional structures has been developed. The likely prevalence of lysine carboxylation in the proteome was assessed through large-scale computations. The results suggest that about 1.3% of large proteins may contain a carboxylated lysine residue. This unexpected prevalence of lysine carboxylation implies an enrichment of reactions in which it may play functional roles. The results also suggest that by switching enzymes on and off under appropriate physicochemical conditions spontaneous PTMs may serve as an important and widely used efficient biological machinery for regulation.

  9. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  10. Combinations of hydroxy amines and carboxylic dispersants as fuel additives

    SciTech Connect

    LeSuer, W.M.

    1983-10-11

    Combinations of certain hydroxy amines, particularly the ''Ethomeens,'' and hydrocarbon-soluble carboxylic dispersants are useful as engine and carburetor detergents for normally liquid fuels. The preferred compositions are those in which the carboxylic dispersants are the reaction products of substituted succinic acids with polar compounds, expecially with amines such as ethylene polyamines.

  11. Effect of choline carboxylate ionic liquids on biological membranes.

    PubMed

    Rengstl, Doris; Kraus, Birgit; Van Vorst, Matthew; Elliott, Gloria D; Kunz, Werner

    2014-11-01

    Choline carboxylates, ChCm, with m=2-10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m=2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m=8, 10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m>8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes.

  12. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  13. Polymorphism in Self-Assembled Structures of 9-Anthracene Carboxylic Acid on Ag(111)

    PubMed Central

    Lu, Chao; Wei, Yinying; Zhu, Erkuang; Reutt-Robey, Janice E.; Xu, Bo

    2012-01-01

    Surface self-assembly process of 9-anthracene carboxylic acid (AnCA) on Ag(111) was investigated using STM. Depending on the molecular surface density, four spontaneously formed and one annealed AnCA ordered phases were observed, namely a straight belt phase, a zigzag double-belt phase, two simpler dimer phases, and a kagome phase. The two high-density belt phases possess large unit cells on the scale length of 10 nm, which are seldom observed in molecular self-assembled structures. This structural diversity stems from a complicated competition of different interactions of AnCA molecules on metal surface, including intermolecular and molecular-substrate interactions, as well as the steric demand from high molecular surface density. PMID:22837666

  14. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  15. DPO and POPOP carboxylate-analog sensors by sequential palladium-catalysed direct arylation of oxazole-4-carboxylates.

    PubMed

    Verrier, Cécile; Fiol-Petit, Catherine; Hoarau, Christophe; Marsais, Francis

    2011-09-21

    Sequential palladium-catalysed direct (het)arylation of oxazole-4-carboxylates is achieved to give rapid access to DPO and POPOP (di)carboxylate-analogs. Three novel DPO- and POPOP-type sensors with unusual Stokes shifts and high quantum yields are discovered.

  16. Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    PubMed

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2017-08-07

    To concisely synthesize highly enantiomerically enriched 5-alkyl-substituted pyrrolidine-3-carboxylic acids, organocatalytic enantioselective Michael addition reactions of 4-alkyl-substituted 4-oxo-2-enoates with nitroalkanes have been developed. Using the developed reaction method, 5-methylpyrrolidine-3-carboxylic acid with 97% ee was obtained in two steps.

  17. catena-Poly[[tri-aqua-copper(II)]-μ-5-carb-oxy-benzene-1,3-di-carboxyl-ato-κ(2) O (1):O (3)].

    PubMed

    Ma, Yu-Hong; Ma, Pi-Zhuang; Yao, Ting; Hao, Jing-Tuan

    2013-01-01

    In the title complex, [Cu(C9H4O6)(H2O)3] n , the Cu(II) cation exhibits a distorted square-pyramidal coordination geometry involving five O atoms from two monodentate 5-carb-oxy-benzene-1,3-di-carboxyl-ate anions and three water mol-ecules. The 5-carb-oxy-benzene-1,3-di-carboxyl-ate anions bridge Cu(II) cations into zigzag polymeric chains running along the b-axis direction. These chains are further linked by O-H⋯O hydrogen bonds between coordinating water mol-ecules or carboxyl groups and carboxylate groups into a three-dimensional supra-molecular architecture. In the crystal, π-π stacking is observed between parallel benzene rings of adjacent chains, the centroid-centroid distances being 3.584 (3) and 3.684 (3) Å.

  18. Cation-specific interactions with carboxylate in amino acid and acetate aqueous solutions: X-ray absorption and ab initio calculations.

    PubMed

    Aziz, Emad F; Ottosson, Niklas; Eisebitt, Stefan; Eberhardt, Wolfgang; Jagoda-Cwiklik, Barbara; Vácha, Robert; Jungwirth, Pavel; Winter, Bernd

    2008-10-09

    Relative interaction strengths between cations (X = Li (+), Na (+), K (+), NH 4 (+)) and anionic carboxylate groups of acetate and glycine in aqueous solution are determined. These model systems mimic ion pairing of biologically relevant cations with negatively charged groups at protein surfaces. With oxygen 1s X-ray absorption spectroscopy, we can distinguish between spectral contributions from H 2O and carboxylate, which allows us to probe the electronic structure changes of the atomic site of the carboxylate group being closest to the countercation. From the intensity variations of the COO (-) aq O 1s X-ray absorption peak, which quantitatively correlate with the change in the local partial density of states from the carboxylic site, interactions are found to decrease in the sequence Na (+) > Li (+) > K (+) > NH 4 (+). This ordering, as well as the observed bidental nature of the -COO (-) aq and X (+) aq interaction, is supported by combined ab initio and molecular dynamics calculations.

  19. The crystalline structures of carboxylic acid monolayers adsorbed on graphite.

    PubMed

    Bickerstaffe, A K; Cheah, N P; Clarke, S M; Parker, J E; Perdigon, A; Messe, L; Inaba, A

    2006-03-23

    X-ray and neutron diffraction have been used to investigate the formation of solid crystalline monolayers of all of the linear carboxylic acids from C(6) to C(14) at submonolayer coverage and from C(8) to C(14) at multilayer coverages, and to characterize their structures. X-rays and neutrons highlight different aspects of the monolayer structures, and their combination is therefore important in structural determination. For all of the acids with an odd number of carbon atoms, the unit cell is rectangular of plane group pgg containing four molecules. The members of the homologous series with an even number of carbon atoms have an oblique unit cell with two molecules per unit cell and plane group p2. This odd-even variation in crystal structure provides an explanation for the odd-even variation observed in monolayer melting points and mixing behavior. In all cases, the molecules are arranged in strongly hydrogen-bonded dimers with their extended axes parallel to the surface and the plane of the carbon skeleton essentially parallel to the graphite surface. The monolayer crystal structures have unit cell dimensions similar to certain close-packed planes of the bulk crystals, but the molecular arrangements are different. There is a 1-3% compression on increasing the coverage over a monolayer.

  20. Nasal pungency and odor of homologous aldehydes and carboxylic acids.

    PubMed

    Cometto-Muñiz, J E; Cain, W S; Abraham, M H

    1998-01-01

    Airborne substances can stimulate both the olfactory and the trigeminal nerve in the nose, giving rise to odor and pungent (irritant) sensations, respectively. Nose, eye, and throat irritation constitute common adverse effects in indoor environments. We measured odor and nasal pungency thresholds for homologous aliphatic aldehydes (butanal through octanal) and carboxylic acids (formic, acetic, butanoic, hexanoic, and octanoic). Nasal pungency was measured in subjects lacking olfaction (i.e., anosmics) to avoid odor biases. Similar to other homologous series, odor and pungency thresholds declined (i.e., sensory potency increased) with increasing carbon chain length. A previously derived quantitative structure-activity relationship (QSAR) based on solvation energies predicted all nasal pungency thresholds, except for acetic acid, implying that a key step in the mechanism for threshold pungency involves transfer of the inhaled substance from the vapor phase to the receptive biological phase. In contrast, acetic acid - with a pungency threshold lower than predicted - is likely to produce threshold pungency through direct chemical reaction with the mucosa. Both in the series studied here and in those studied previously, we reach a member at longer chain-lengths beyond which pungency fades. The evidence suggests a biological cut-off, presumably based upon molecular size, across the various series.