Science.gov

Sample records for molecule chelator ligand

  1. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  2. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F.; Li, Min; DeNardo, Sally J.

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  3. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89

    DOE PAGES

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; ...

    2014-12-18

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. Lastly, they represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.

  4. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    SciTech Connect

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  5. Searching for new aluminium chelating agents: a family of hydroxypyrone ligands.

    PubMed

    Toso, Leonardo; Crisponi, Guido; Nurchi, Valeria M; Crespo-Alonso, Miriam; Lachowicz, Joanna I; Mansoori, Delara; Arca, Massimiliano; Santos, M Amélia; Marques, Sérgio M; Gano, Lurdes; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Szewczuk, Zbigniew

    2014-01-01

    Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the efforts that have drastically reduced the occurrence of aluminium dialysis diseases, they so far constitute a cause of great medical concern. The use of chelating agents for iron and aluminium in different clinical applications has found increasing attention in the last thirty years. With the aim of designing new chelators, we synthesized a series of kojic acid derivatives containing two kojic units joined by different linkers. A huge advantage of these molecules is that they are cheap and easy to produce. Previous works on complex formation equilibria of a first group of these ligands with iron and aluminium highlighted extremely good pMe values and gave evidence of the ability to scavenge iron from inside cells. On these bases a second set of bis-kojic ligands, whose linkers between the kojic chelating moieties are differentiated both in terms of type and size, has been designed, synthesized and characterized. The aluminium(III) complex formation equilibria studied by potentiometry, electrospray ionization mass spectroscopy (ESI-MS), quantum-mechanical calculations and (1)H NMR spectroscopy are here described and discussed, and the structural characterization of one of these new ligands is presented. The in vivo studies show that these new bis-kojic derivatives induce faster clearance from main organs as compared with the monomeric analog.

  6. Rare-Earth Metal Postmetallocene Catalysts with Chelating Amido Ligands

    NASA Astrophysics Data System (ADS)

    Li, Tianshu; Jenter, Jelena; Roesky, Peter W.

    This review deals with the synthesis and the catalytic application of noncyclopentadienyl complexes of the rare-earth elements. The main topics of the review are amido metal complexes with chelating bidentate ligands, which show the most similarities to cyclopentadienyl ligands. Benzamidinates and guanidinates will be reviewed in a separate contribution within this book. Beside the synthesis of the complexes, the broad potential of these compounds in homogeneous catalysis is demonstrated. Most of the reviewed catalytic transformations are either C-C multiple bond transformation such as the hydroamination and hydrosilylation or polymerization reaction of polar and nonpolar monomers. In this area, butadiene and isoprene, ethylene, as well as lactides and lactones were mostly used as monomers.

  7. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    SciTech Connect

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  8. Reactivity and molecular modeling of new solvatochromic mixed-ligand copper(II) chelates of 2-acetylbutyrolactone and dinitrogen bases

    NASA Astrophysics Data System (ADS)

    Taha, A.; Adly, Omima M. I.; Shebl, Magdy

    2015-04-01

    A new series of solvatochromic mononuclear mixed ligand chelates with the general formula: Cu(AcBL)(L)X; where AcBL = 2-acetylbutyrolactonate, L = N,N,N‧,N‧-tetramethylethylenediamine (Me4en), N,N,N‧,N‧-tetramethylpropylene diamine (Me4pn), 1,10-phenanthroline (Phen) or 2,2‧-bipyridyl (Bipy) and X = ClO4-, NO3- or Br- have been synthesized and characterized by the analytical and spectral methods, as well as magnetic and molar conductance measurements. The d-d absorption bands of Me4en-chelates as Nujol mulls or weak donor solvents solutions revealed square-planar, distorted octahedral and/or distorted trigonal bipyramid geometries for the perchlorate, nitrate and bromide chelates, respectively. However, an octahedral structure is identified for chelates in strong donor solvents. Perchlorate chelates show a remarkable color change from violet to green as the Lewis basicity of the donor solvent increases, whereas bromide chelates are mainly affected by the Lewis acidity of solvent. Specific and non-specific interactions of solvent molecules with the chelates were investigated on the basis of unified solvation model. Structural parameters of the free ligands and their Cu(II)-chelates have been calculated on the basis of semiempirical PM3 level and correlated with the experimental data.

  9. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  10. Luminescent solutions and films of new europium complexes with chelating ligands

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Ivanov, Alexey V.; Borisova, Nataliya E.; Kaminskaya, Tatiana P.; Patsaeva, Svetlana V.; Popov, Vladimir V.; Yuzhakov, Viktor I.

    2015-03-01

    The development of new complexes of rare earth elements (REE) with chelating organic ligands opens up the possibility of purposeful alteration in the composition and structure of the complexes, and therefore tuning their optical properties. New ligands possessing two pyridine rings in their structure were synthesized to improve coordination properties and photophysical characteristics of REE compounds. Complexes of trivalent europium with novel chelating ligands were investigated using luminescence and absorption spectroscopy, as well as atomic force microscopy. Luminescence properties of new compounds were studied both for solutions and films deposited on the solid support. All complexes exhibit the characteristic red luminescence of Eu (III) ion with the absolute lumenescence quantum yield in polar acetonitrile solution varying from 0.21 to 1.45 % and emission lifetime ranged from 0.1 to 1 ms. Excitation spectra of Eu coordination complexes correspond with absorption bands of chelating ligand. The energy levels of the triplet state of the new ligands were determined from the phosphorescence at 77 K of the corresponding Gd (III) complexes. The morphology of films of europium complexes with different substituents in the organic ligands was investigated by atomic force microscopy (AFM). It strongly depends both on the type of substituent in the organic ligand, and the rotation speed of the spin-coater. New europium complexes with chelating ligands containing additional pyridine fragments represent outstanding candidates for phosphors with improved luminescence properties.

  11. Chelate effects in sulfate binding by amide/urea-based ligands.

    PubMed

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-07

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  12. Influence of nitrogen-containing chelating ligands on the structures of zinc(II) 4,4'-ethylenedibenzoates.

    PubMed

    Wang, Xiu-Yan; Wang, Jia-Jun; Ng, Seik Weng

    2008-12-01

    The Zn(II) compounds, micro-4,4'-ethylenedibenzoato-bis[acetatoaqua(dipyrido[3,2-a:2',3'-c]phenazine)zinc(II)] dihydrate, [Zn(2)(C(2)H(3)O(2))(2)(C(16)H(10)O(4))(C(18)H(10)N(4))(2)(H(2)O)(2)] x 2H(2)O, (I), and catena-poly[[[aqua(pyrazino[2,3-f][1,10]phenanthroline)zinc(II)]-micro-4,4'-ethylenedibenzoato] N,N-dimethylformamide hemisolvate], {[Zn(C(16)H(10)O(4))(C(14)H(8)N(4))(H(2)O)] x 0.5C(3)H(7)NO}(n), (II), display very different structures because of the influence of the N-donor chelating ligands. In (I), the coordination geometry of each Zn(II) centre is distorted octahedral, involving two N atoms from one dipyrido[3,2-a:2',3'-c]phenazine (L1) ligand, and four O atoms from one bis-chelating acetate anion, one bridging 4,4'-ethylenedibenzoate (bpea) ligand and one water molecule. Adjacent Zn(II) atoms are bridged by one bpea ligand to form a dinuclear complex, and the dinuclear species is centrosymmetric. Two types of pi-pi interactions between neighbouring dinuclear species have been found: one is between the L1 ligands, and the second is between the L1 and bpea ligands. In this way, an interesting two-dimensional supramolecular layer is formed. The layers are further linked by O-H...O and O-H...N hydrogen bonds, generating a three-dimensional supramolecular network. In (II), each Zn(II) atom is square-pyramidally coordinated by two N atoms from one pyrazino[2,3-f][1,10]phenanthroline ligand, three O atoms from two different bpea ligands and one water molecule. The two bpea dianions are situated across inversion centres. The bpea dianions bridge neighbouring Zn(II) centres, giving a one-dimensional chain structure in the ab plane. As in (I), two types of pi-pi interactions between neighbouring chains complete a three-dimensional supramolecular structure. The results indicate that the structures of the N-donor chelating ligands are the dominant factors determining the final supramolecular structures of the two compounds.

  13. Cooperative Ligand Binding to Linear Chain Molecules

    ERIC Educational Resources Information Center

    Applequist, Jon

    1977-01-01

    Summarizes the Ising model of ligand binding as it applies to cooperative binding to long chain molecules. Also presents some illustrations which help to visualize the connection between the interaction parameters and the shape of the binding isotherm. (Author/MR)

  14. Drawing Mononuclear Octahedral Coordination Compounds Containing Tridentate Chelating Ligands

    ERIC Educational Resources Information Center

    Mohamadou, Aminou; Ple, Karen; Haudrechy, Arnaud

    2011-01-01

    Complexes with tridentate ligands of the type [M(A-B-C)2], where A [not equal to] B [not equal to] C and with an imposed bonding sequence A-B-C, require special attention to draw all possible stereoisomers. Depending on the nature of the central donor atom B of the tridentate ligand, an easy drawing method is presented that shows seven chiral…

  15. Container molecules based on imine type ligands.

    PubMed

    Schulze, A Carina; Oppel, Iris M

    2012-01-01

    This chapter will give a short overview about container molecules, their synthesis and possible applications. The main focus is on those which are based on imine type ligands. These containers can be used for example for guest exchange, gas separation, as chemical sensors or for the stabilisation of white phosphorus under water. The described cages have wide openings or tightly closed ones. For one cage the reversible opening and closing is also described.

  16. Luminescent solutions and powders of new samarium complexes with N,N',O,O'-chelating ligands

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Nikolskiy, Kirill S.; Borisova, Nataliya E.; Ivanov, Alexey V.; Reshetova, Marina D.; Yuzhakov, Viktor I.; Patsaeva, Svetlana V.

    2016-04-01

    Imaging techniques in biology and medicine are crucial tools to obtain information on structural and functional properties of living cells and organisms. To fulfill the requirements associated with application of these techniques it appears necessary to design markers with specific characteristics. Luminescent complexes of trivalent lanthanide ions with chelating ligands are of increasing importance in biomedical applications because of their millisecond luminescence lifetime, narrow emission band, high signal-to-noise ratio and minimal photodamage to biological samples. In order to extend the available emission wavelength range the luminescent samarium chelates are highly desirable. In this study the ligands with diamides of 2,2'-bipyridin-6,6'-dicarboxylic acid were used to improve photophysical characteristics of samarium complexes. We report the luminescence characteristics of samarium complexes with novel ligands. All complexes exhibited the characteristic emission of Sm (III) ion with the lines at 565, 597, 605, 645 and 654 nm, the intensity strongly depended on the ligand. Absorption and luminescence excitation spectra of Sm (III) complexes showed main peaks in the UV range demonstrating lanthanide coordination to the ligand. The absolute lumenescence quantum yield was measured for solutions in acetonitrile with excitation at 350 nm. The largest luminescence quantum yield was found for the samarium complex Bipy 6MePy Sm (3%) being much higher that for samarium complexes reported in the literature earlier. These results prove as well that samarium chelates are potential markers for multiparametric imaging techniques.

  17. {sup 237}Np: Oxidation state in vivo and chelation by multidentate catecholat and hydroxypyridinonate ligands

    SciTech Connect

    Durbin, P.W.; Kullgren, B.; Allen, P.G.; Bucher, J.J.; Edelstein, N.M.; Shuh, D.K.; Xu, J.; Raymond, K.N. |

    1998-07-01

    Chemically, {sup 237}Np(V) is as toxic as U(VI), and radiologically, about as toxic as {sup 239}Pu. Depending on redox conditions in vivo, {sup 237}Np exists as weakly complexing Np(V) (NpO{sub 2}{sup +}) or as Np(IV), which forms complexes as stable as those of Pu(IV). Ten multidentate catecholate (CAM) and hydroxypyridinonate (HOPO) ligands with great affinity for Pu(IV) were compared with CaNa{sub 3}-DTPA for in vivo chelation of {sup 237}Np. Mice were injected intravenously with {sup 237}NpO{sub 2}Cl: those in a kinetic study were killed 1 to 2,880 min; in ligand studies, fed mice were injected intraperitoneally with a ligand 5, 60, or 1,440 min after {sup 237}Np(V), mice fasted for 16 h were gastrically intubated with a ligand 3 min after {sup 237}Np(V), and all were killed 24 h after ligand administration; tissues and excreta were radioanalyzed. Rapid plasma clearance and urinary excretion of {sup 237}Np(V) resemble U(VI); deposition and early retention in skeleton and liver resemble Pu(IV). The x-ray absorption near edge structure spectroscopy (XANES) spectra of femora of {sup 237}Np(V)-injected mice, compared with spectra of Np(V) and Np(IV) from reference solids, showed predominantly Np(IV). Significant in vivo {sup 237}Np chelation was obtained with all of the HOPO and CAM ligands injected at molar ratio 22; the HOPO ligands reduced {sup 237}Np in skeleton, liver, and other soft tissue, on average, to 72, 25, and 25% of control, respectively, while CaNa{sub 3}-DTPA was ineffective.

  18. Chelation Motifs Affecting Metal-dependent Viral Enzymes: N′-acylhydrazone Ligands as Dual Target Inhibitors of HIV-1 Integrase and Reverse Transcriptase Ribonuclease H Domain

    PubMed Central

    Carcelli, Mauro; Rogolino, Dominga; Gatti, Anna; Pala, Nicolino; Corona, Angela; Caredda, Alessia; Tramontano, Enzo; Pannecouque, Christophe; Naesens, Lieve; Esposito, Francesca

    2017-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection, still represent a serious global health emergency. The chronic toxicity derived from the current anti-retroviral therapy limits the prolonged use of several antiretroviral agents, continuously requiring the discovery of new antiviral agents with innovative strategies of action. In particular, the development of single molecules targeting two proteins (dual inhibitors) is one of the current main goals in drug discovery. In this contest, metal-chelating molecules have been extensively explored as potential inhibitors of viral metal-dependent enzymes, resulting in some important classes of antiviral agents. Inhibition of HIV Integrase (IN) is, in this sense, paradigmatic. HIV-1 IN and Reverse Transcriptase-associated Ribonuclease H (RNase H) active sites show structural homologies, with the presence of two Mg(II) cofactors, hence it seems possible to inhibit both enzymes by means of chelating ligands with analogous structural features. Here we present a series of N′-acylhydrazone ligands with groups able to chelate the Mg(II) hard Lewis acid ions in the active sites of both the enzymes, resulting in dual inhibitors with micromolar and even nanomolar activities. The most interesting identified N′-acylhydrazone analog, compound 18, shows dual RNase H-IN inhibition and it is also able to inhibit viral replication in cell-based antiviral assays in the low micromolar range. Computational modeling studies were also conducted to explore the binding attitudes of some model ligands within the active site of both the enzymes. PMID:28373864

  19. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE PAGES

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; ...

    2015-05-01

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilitiesmore » to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, Lpy was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. Lpy complexes Bi³⁺ more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT

  20. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.

    PubMed

    Wang, Jianxu; Xia, Jicheng; Feng, Xinbin

    2017-01-15

    Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg(-1)) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg(-1). The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating

  1. The rates of exchange of water molecules from Al(III)-methylmalonate complexes: The effect of chelate ring size

    SciTech Connect

    Casey, W.H.; Phillips, B.L.; Nordin, J.P.; Sullivan, D.J.

    1998-08-01

    Rate coefficients are reported for exchange of hydration waters in the inner-coordination-sphere of Al(III)-methylmalonate complexes with bulk solution as determined via {sup 17}O-NMR. Surprisingly, water molecules in the thermodynamically less-stable complexes containing six-membered chelates are much more labile than those in five-membered oxalate-A(III) complexes. The surprising trend in reactivity is attributable either to differences in the Lewis basicities of oxygens in bidentate oxalate and methylmalonate ligands, or to rapid dissociation/reassociation of one of the acetate groups to the metal center. These results identify a useful case where trends in the apparent labilities of dissolved and presumed surface complexes deviate sharply. This deviation could be usefully exploited to probe surfaces if ligand-promoted dissolution rates could be compared at conditions where inner-sphere and outer-sphere chelate complexes could be distinguished spectroscopically. The authors expect inner-sphere oxalate to have a smaller labilizing effect than malonate or methylmalonate. A contrary result would indicate structural dissimilarity between complexes on the surface and in solution, or perhaps steric hindrance.

  2. "Straining" to Separate the Rare Earths: How the Lanthanide Contraction Impacts Chelation by Diglycolamide Ligands.

    PubMed

    Ellis, Ross J; Brigham, Derek M; Delmau, Laetitia; Ivanov, Alexander S; Williams, Neil J; Vo, Minh Nguyen; Reinhart, Benjamin; Moyer, Bruce A; Bryantsev, Vyacheslav S

    2017-02-06

    The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid-liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln](3+) complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligands for efficient adjacent lanthanide separation for rare-earth refining.

  3. 2-Acylpyrroles as mono-anionic O,N-chelating ligands in silicon coordination chemistry.

    PubMed

    Kämpfe, Alexander; Brendler, Erica; Kroke, Edwin; Wagler, Jörg

    2014-07-21

    Kryptopyrrole (2,4-dimethyl-3-ethylpyrrole) was acylated with, for example, benzoyl chloride to afford 2-benzoyl-3,5-dimethyl-4-ethylpyrrole (L(1)H). With SiCl4 this ligand reacts under liberation of HCl and formation of the complex L(1)2SiCl2. In related reactions with HSiCl3 or H2SiCl2, the same chlorosilicon complex is formed under liberation of HCl and H2 or liberation of H2, respectively. The chlorine atoms of L(1)2SiCl2 can be replaced by fluoride and triflate using ZnF2 and Me3Si-OTf, respectively. The use of a supporting base (triethylamine) is required for the complexation of phenyltrichlorosilane and diphenyldichlorosilane. The complexes L(1)2SiCl2, L(1)2SiF2, L(1)2Si(OTf)2, L(1)2SiPhCl, and L(1)2SiPh2 exhibit various configurations of the octahedral silicon coordination spheres (i.e. cis or trans configuration of the monodentate substituents, different orientations of the bidentate chelating ligands relative to each other). Furthermore, cationic silicon complexes L(1)3Si(+) and L(1) SiPh(+) were synthesized by chloride abstraction with GaCl3. In contrast, reaction of L(1)2SiCl2 with a third equivalent of L(1)H in the presence of excess triethylamine produced a charge-neutral hexacoordinate Si complex with a new tetradentate chelating ligand which formed by Si-templated C-C coupling of two ligands L(1).

  4. Mechanism of cellular accumulation of an iridium(III) pentamethylcyclopentadienyl anticancer complex containing a C,N-chelating ligand.

    PubMed

    Novohradsky, Vojtech; Liu, Zhe; Vojtiskova, Marie; Sadler, Peter J; Brabec, Viktor; Kasparkova, Jana

    2014-03-01

    The effect of replacement of the N,N-chelating ligand 1,10-phenanthroline (phen) in the Ir(III) pentamethylcyclopentadienyl (Cp*) complex [(η(5)-Cp*)(Ir)(phen)Cl](+) (2) with the C,N-chelating ligand 7,8-benzoquinoline (bq) to give [(η(5)-Cp*)(Ir)(bq)Cl] (1) on the cytotoxicity of these Cp*Ir(III) complexes toward cancer cell lines was investigated. Complex 2 is inactive, similar to other Cp*Ir(III) complexes containing the N,N-chelating ligands. In contrast, a single atom change (C(-) for N) in the chelating N,N ligand resulted in potency in human ovarian carcinoma cisplatin-sensitive A2780 cells, and, strikingly, 1 is active in the cisplatin-resistant human breast cancer MCF-7 and A2780/cisR cells. Replacement of the N,N-chelating ligand with the C,N-chelating ligand gives rise to increased hydrophobicity, leading to higher cellular accumulation, higher DNA-bound iridium in cells and higher cytotoxicity. The pathways involved in cellular accumulation of 1 have been further explored and compared with conventional cisplatin. The results show that both energy-independent passive diffusion and energy-dependent transport play a role in accumulation of 1. Further results were consistent with involvement of p-glycoprotein, multidrug resistance-associated protein 1 and glutathione metabolism in the efflux of 1. In contrast, the internalization of 1 mediated by the endocytotic uptake pathway(s) seems less likely. Understanding the factors which contribute to the mechanism of cellular accumulation of this Ir(III) complex can now lead to the design of structurally similar metal complexes for antitumor chemotherapy.

  5. Conversion of a monodentate amidinate-germylene ligand into chelating imine-germanate ligands (on mononuclear manganese complexes).

    PubMed

    Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2014-08-18

    The unprecedented transformation of a terminal two-electron-donor amidinate-germylene ligand into a chelating three-electron-donor κ(2)-N,Ge-imine-germanate ligand has been achieved by treating the manganese amidinate-germylene complex [MnBr{Ge((i)Pr2bzam)(t)Bu}(CO)4] (1; (i)Pr2bzam = N,N'-bis(isopropyl)benzamidinate) with LiMe or Ag[BF4]. In these reactions, which afford [Mn{κ(2)Ge,N-GeMe((i)Pr2bzam)(t)Bu}(CO)4] (2) and [Mn{κ(2)Ge,N-GeF((i)Pr2bzam)(t)Bu}(CO)4] (3), respectively, the anionic nucleophile, Me(-) or F(-), ends on the Ge atom while an arm of the amidinate fragment migrates from the Ge atom to the Mn atom. In contrast, the reaction of 1 with AgOTf (OTf = triflate) leads to [Mn(OTf){Ge((i)Pr2bzam)(t)Bu}(CO)4] (4), which maintains intact the amidinate-germylene ligand. Complex 4 is very moisture-sensitive, leading to [Mn2{μ-κ(4)Ge2,O2-Ge2(t)Bu2(OH)2O}(CO)8] (5) and [(i)Pr2bzamH2]OTf (6) in wet solvents. In 5, a novel digermanate(II) ligand, [(t)Bu(OH)GeOGe(OH)(t)Bu](2-), doubly bridges two Mn(CO)4 units. The structures of 1-6 have been characterized by spectroscopic (IR, NMR) and single-crystal X-ray diffraction methods.

  6. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    SciTech Connect

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; Maassen, Joel R.; Engle, Jonathan W.; Batista, Enrique R.; Martin, Richard L.; Nortier, Francois M.; Fassbender, Michael E.; John, Kevin D.; Birnbaum, Eva R.

    2015-05-01

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, Lpy was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. Lpy complexes

  7. Synthesis, Characterization, and in Vitro Evaluation of a New TSPO-Selective Bifunctional Chelate Ligand

    PubMed Central

    2014-01-01

    The 18-kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. Thus, TSPO has become an extremely attractive subcellular target not only for imaging disease states overexpressing this protein, but also for a selective mitochondrial drug delivery. In this work we report the synthesis, the characterization, and the in vitro evaluation of a new TSPO-selective ligand, 2-(8-(2-(bis(pyridin-2-yl)methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfils the requirements for a bifunctional chelate approach. The goal was to provide a new TSPO ligand that could be used further to prepare coordination complexes of a metallo drug to be used in diagnosis and therapy. However, the ligand itself proved to be a potent tumor cell growth inhibitor and DNA double-strand breaker. PMID:24944744

  8. Mixed tridentate π -donor and monodentate π -acceptor ligands as chelating systems for rhenium-188 and technetium-99m nitrido radiopharmaceuticals.

    PubMed

    Boschi, Alessandra; Uccelli, Licia; Pasquali, Micol; Pasqualini, Roberto; Guerrini, Remo; Duatti, Adriano

    2013-09-01

    A new molecular metallic fragment for labeling biologically active molecules with 99mTc and 188Re is described. This system is composed of a combination of tridentate π-donor and monodentate π-acceptor ligands bound to a [M Ξ N]2+ group (M = (99m)Tc, 188Re) in a pseudo square-pyramidal geometry. A simple structural model of the new metallic fragment was obtained by reacting the ligand 2, 2'-iminodiethanethiol [H2NS2 = NH(CH2CH2SH)2] and monodentate tertiary phosphines with the [M Ξ N]2+ group (M = (99m)Tc, (188)Re). In the resulting complexes (dubbed3+1complexes), the tridentate ligand binds the [M Ξ N]2+ core through the two deprotonated, negatively charged, thiol sulfur atoms and the neutral, protonated, amine nitrogen atom. The residual fourth position of the five-coordinated arrangement is occupied by a phosphine ligand. The chemical identity of these model (99m)Tc and (188)Re compounds was established by comparison with the chromatographic properties of the corresponding complexes obtained at the macroscopic level with the long-lived (99)Tc and natural Re isotopes. The investigation was further extended to comprise a series of ligands formed by simple combinations of two basic amino acids or pseudo-amino acids to yield potential tridentate chelating systems having [S, N, S] and [N, N, S] as sets of π-donor atoms. Labeling yields and in vitro stability were investigated using different ancillary ligands. Results showed that SNS-type ligands afforded the highest labeling yields and the most robust 3+1 nitrido complexes with both (99m)Tc and (188)Re. Thus, the new chelating system can be conveniently employed for labeling peptides and other biomolecules with the [M Ξ N]2+ group.

  9. Hydroxyiminodisuccinic acid (HIDS): A novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction.

    PubMed

    Rahman, M Azizur; Hasegawa, H; Kadohashi, K; Maki, T; Ueda, K

    2009-09-01

    The influence of biodegradable chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. Even though the growth solution contained sufficient Fe, the growth of rice seedlings gradually decreased up to 76% with the increase of pH of the solution from 7 to 11. Iron forms insoluble ferric hydroxide complexes at neutral or alkaline pH in oxic condition. Chelating ligands produce soluble 'Fe-ligand complex' which assist Fe uptake in plants. The biodegradable chelating ligand hydroxyiminodisuccinic acid (HIDS) was more efficient then those of ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), and iminodisuccinic acid (IDS) in the increase of Fe uptake and growth of rice seedling. A total of 79+/-20, 87+/-6, 116+/-15, and 63+/-18mg dry biomass of rice seedlings were produced with the addition of 0.5mM of EDDS, EDTA, HIDS, and IDS in the nutrient solution, respectively. The Fe concentrations in rice tissues were 117+/-15, 82+/-8, 167+/-25, and 118+/-22micromolg(-1) dry weights when 0.25mM of EDDS, EDTA, HIDS, and IDS were added to the nutrient solution, respectively. Most of the Fe accumulated in rice tissues was stored in roots after the addition of chelating ligands in the solution. The results indicate that the HIDS would be a potential alternative to environmentally persistent EDTA for the increase of Fe uptake and plant growth. The HIDS also increased As uptake in rice root though its translocation from root to shoot was not augmented. This study reports HIDS for the first time as a promising chelating ligand for the enhancement of Fe bioavailability and As phytoextraction.

  10. A square-planar tellurium(II) complex with Te,Te'-chelating ligands.

    PubMed

    Chivers, Tristram; Ritch, Jamie S

    2015-05-01

    While exploring the chemistry of tellurium-containing dichalcogenidoimidodiphosphinate ligands, the first all-tellurium member of a series of related square-planar E(II)(E')4 complexes (E and E' are group 16 elements), namely bis(P,P,P',P'-tetraphenylditelluridoimidodiphosphinato-κ(2)Te,Te')tellurium(II) (systematic name: 2,2,4,4,8,8,10,10-octaphenyl-1λ(3),5,6λ(4),7λ(3),11-pentatellura-3,9-diaza-2λ(5),4λ(5),8λ(5),10λ(5)-tetraphosphaspiro[5.5]undeca-1,3,7,9-tetraene), C48H40N2P4Te5, was obtained unexpectedly. The formally Te(II) centre is situated on a crystallographic inversion centre and is Te,Te'-chelated to two anionic [(TePPh2)2N](-) ligands in an anti conformation. The central Te(II)(Te)4 unit is approximately square planar [Te-Te-Te = 93.51 (3) and 86.49 (3)°], with Te-Te bond lengths of 2.9806 (6) and 2.9978 (9) Å.

  11. A chelating dendritic ligand capped quantum dot: preparation, surface passivation, bioconjugation and specific DNA detection

    NASA Astrophysics Data System (ADS)

    Zhou, Dejian; Li, Yang; Hall, Elizabeth A. H.; Abell, Chris; Klenerman, David

    2011-01-01

    Herein we report the synthesis of a new chelating dendritic ligand (CDL) and its use in the preparation a compact, stable and water-soluble quantum dot (QD), and further development of specific DNA sensor. The CDL, which contains a chelative dihydrolipoic acid moiety for strong QD surface anchoring and four dendritic carboxylic acidgroups, provides a stable, compact and entangled hydrophilic coating around the QD that significantly increases the stability of the resulting water-soluble QD. A CDL-capped CdSe/ZnS core/shell QD (CDL-QD) has stronger fluorescence than that capped by a monodendate single-chain thiol, 3-mercapto-propionic acid (MPA-QD). In addition, the fluorescence of the CDL-QD can be enhanced by 2.5-fold by treatments with Zn2+ or S2- ions, presumably due to effective passivation of the surface defects. This level of fluorescence enhancement obtained for the CDL-QD is much greater than that for the MPA-QD. Further, by coupling a short single-stranded DNA target to the QD via the CDL carboxylic acidgroup, a functional QD-DNA conjugate that can resist non-specific adsorption and hybridize quickly to its complementary DNAprobe has been obtained. This functional QD-DNA conjugate is suitable for specific quantification of short, labelled complementary probes at the low DNAprobe:QD copy numbers via a QD-sensitised dyefluorescence resonance energy transfer (FRET) response with 500 pM sensitivity on a conventional fluorimeter.Herein we report the synthesis of a new chelating dendritic ligand (CDL) and its use in the preparation a compact, stable and water-soluble quantum dot (QD), and further development of specific DNA sensor. The CDL, which contains a chelative dihydrolipoic acid moiety for strong QD surface anchoring and four dendritic carboxylic acidgroups, provides a stable, compact and entangled hydrophilic coating around the QD that significantly increases the stability of the resulting water-soluble QD. A CDL-capped CdSe/ZnS core/shell QD (CDL-QD) has

  12. New Synthetic Approach for the Incorporation of 3,2-Hydroxypyridinone (HOPO) Ligands: Synthesis of Structurally Diverse Poly HOPO Chelators

    PubMed Central

    Arumugam, Jayanthi; Brown, Hayley A.; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2011-01-01

    The HOPO sulfonamide reagent, 3, was prepared from commercial 2,3-dihydroxypyridine in four steps in good yields. Sulfonamide 3 readily underwent selective alkylation with dibromides in the presence of base or could be coupled to alcohols using Mitsunobu conditions. The utility of this nucleophilic HOPO reagent was demonstrated by the synthesis some tris and tetraHOPO chelators. This approach for tethering HOPO ligands is unique and flexible as shown by the preparation of HOPO/iminocarboxylic acid chelator 17. PMID:21709749

  13. A Pyridine-Based Ligand with Two Hydrazine Functions for Lanthanide Chelation: Remarkable Kinetic Inertness for a Linear, Bishydrated Complex.

    PubMed

    Bonnet, Célia S; Laine, Sophie; Buron, Frédéric; Tircsó, Gyula; Pallier, Agnès; Helm, Lothar; Suzenet, Franck; Tóth, Éva

    2015-06-15

    To study the influence of hydrazine functions in the ligand skeleton, we designed the heptadentate HYD ligand (2,2',2″,2‴-(2,2'-(pyridine-2,6-diyl)bis(2-methylhydrazine-2,1,1-triyl)) tetraacetic acid) and compared the thermodynamic, kinetic, and relaxation properties of its Ln(3+) complexes to those of the parent pyridine (Py) analogues without hydrazine (Py = 2,6-pyridinebis(methanamine)-N,N,N',N'-tetraacetic acid). The protonation constants of HYD were determined by pH-potentiometric measurements, and assigned by a combination of UV-visible and NMR spectroscopies. The protonation sequence is rather unusual and illustrates that small structural changes can strongly influence ligand basicity. The first protonation step occurs on the pyridine nitrogen in the basic region, followed by two hydrazine nitrogens and the carboxylate groups at acidic pH. Contrary to Py, HYD self-aggregates through a pH-dependent process (from pH ca. 4). Thermodynamic stability constants have been obtained by pH-potentiometry and UV-visible spectrophotometry for various Ln(3+) and physiological cations (Zn(2+), Ca(2+), Cu(2+)). LnHYD stability constants show the same trend as those of LnDTPA complexes along the Ln(3+) series, with log K = 18.33 for Gd(3+), comparable to the Py analogue. CuHYD has a particularly high stability (log K > 19) preventing its determination from pH-potentiometric measurements. The stability constant of CuPy was also revisited and found to be underestimated in previous studies, highlighting that UV-visible spectrophotometry is often indispensable to obtain reliable stability constants for Cu(2+) chelates. The dissociation of GdL, assessed by studying the Cu(2+)-exchange reaction, occurs mainly via an acid-catalyzed process, with limited contribution from direct Cu(2+) attack. The kinetic inertness of GdHYD is remarkable for a linear bishydrated chelate; the 25-fold increase in the dissociation half-life with respect to the monohydrated commercial contrast agent

  14. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation.

    PubMed

    Wichert, Moreno; Krall, Nikolaus; Decurtins, Willy; Franzini, Raphael M; Pretto, Francesca; Schneider, Petra; Neri, Dario; Scheuermann, Jörg

    2015-03-01

    In contrast to standard fragment-based drug discovery approaches, dual-display DNA-encoded chemical libraries have the potential to identify fragment pairs that bind simultaneously and benefit from the chelate effect. However, the technology has been limited by the difficulty in unambiguously decoding the ligand pairs from large combinatorial libraries. Here we report a strategy that overcomes this limitation and enables the efficient identification of ligand pairs that bind to a target protein. Small organic molecules were conjugated to the 5' and 3' ends of complementary DNA strands that contain a unique identifying code. DNA hybridization followed by an inter-strand code-transfer created a stable dual-display DNA-encoded chemical library of 111,100 members. Using this approach we report the discovery of a low micromolar binder to alpha-1-acid glycoprotein and the affinity maturation of a ligand to carbonic anhydrase IX, an established marker of renal cell carcinoma. The newly discovered subnanomolar carbonic anhydrase IX binder dramatically improved tumour targeting performance in vivo.

  15. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation

    NASA Astrophysics Data System (ADS)

    Wichert, Moreno; Krall, Nikolaus; Decurtins, Willy; Franzini, Raphael M.; Pretto, Francesca; Schneider, Petra; Neri, Dario; Scheuermann, Jörg

    2015-03-01

    In contrast to standard fragment-based drug discovery approaches, dual-display DNA-encoded chemical libraries have the potential to identify fragment pairs that bind simultaneously and benefit from the chelate effect. However, the technology has been limited by the difficulty in unambiguously decoding the ligand pairs from large combinatorial libraries. Here we report a strategy that overcomes this limitation and enables the efficient identification of ligand pairs that bind to a target protein. Small organic molecules were conjugated to the 5‧ and 3‧ ends of complementary DNA strands that contain a unique identifying code. DNA hybridization followed by an inter-strand code-transfer created a stable dual-display DNA-encoded chemical library of 111,100 members. Using this approach we report the discovery of a low micromolar binder to alpha-1-acid glycoprotein and the affinity maturation of a ligand to carbonic anhydrase IX, an established marker of renal cell carcinoma. The newly discovered subnanomolar carbonic anhydrase IX binder dramatically improved tumour targeting performance in vivo.

  16. SPLINTS: small-molecule protein ligand interface stabilizers.

    PubMed

    Fischer, Eric S; Park, Eunyoung; Eck, Michael J; Thomä, Nicolas H

    2016-04-01

    Regulatory protein-protein interactions are ubiquitous in biology, and small molecule protein-protein interaction inhibitors are an important focus in drug discovery. Remarkably little attention has been given to the opposite strategy-stabilization of protein-protein interactions, despite the fact that several well-known therapeutics act through this mechanism. From a structural perspective, we consider representative examples of small molecules that induce or stabilize the association of protein domains to inhibit, or alter, signaling for nuclear hormone, GTPase, kinase, phosphatase, and ubiquitin ligase pathways. These SPLINTS (small-molecule protein ligand interface stabilizers) drive interactions that are in some cases physiologically relevant, and in others entirely adventitious. The diverse structural mechanisms employed suggest approaches for a broader and systematic search for such compounds in drug discovery.

  17. Small Molecule Ligands of Methyl-Lysine Binding Proteins

    PubMed Central

    Herold, J. Martin; Wigle, Tim J.; Norris, Jacqueline L.; Lam, Robert; Korboukh, Victoria K.; Gao, Cen; Ingerman, Lindsey A.; Kireev, Dmitri B.; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J.; Arrowsmith, Cheryl H.; Jin, Jian; Janzen, William P.; Frye, Stephen V.

    2011-01-01

    Proteins which bind methylated lysines (“readers” of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first co-crystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design. PMID:21417280

  18. Small-molecule ligands of methyl-lysine binding proteins.

    PubMed

    Herold, J Martin; Wigle, Tim J; Norris, Jacqueline L; Lam, Robert; Korboukh, Victoria K; Gao, Cen; Ingerman, Lindsey A; Kireev, Dmitri B; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J; Arrowsmith, Cheryl H; Jin, Jian; Janzen, William P; Frye, Stephen V

    2011-04-14

    Proteins which bind methylated lysines ("readers" of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small-molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first cocrystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design.

  19. A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis.

    PubMed

    Michaelos, Thoe K; Shopov, Dimitar Y; Sinha, Shashi Bhushan; Sharninghausen, Liam S; Fisher, Katherine J; Lant, Hannah M C; Crabtree, Robert H; Brudvig, Gary W

    2017-03-08

    Water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. Our research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or "pyalk", that fulfills these requirements. Work with a family of Cp*Ir(chelate)Cl complexes had indicated that the pyalk-containing precursor gave the most robust WOC, which was still molecular in nature but lost the Cp* fragment by oxidative degradation. In trying to characterize the resulting active "blue solution" WOC, we were able to identify a diiridium(IV)-mono-μ-oxo core but were stymied by the extensive geometrical isomerism and coordinative variability. By moving to a family of monomeric complexes [Ir(III/IV)(pyalk)3] and [Ir(III/IV)(pyalk)2Cl2], we were able to better understand the original WOC and identify the special properties of the ligand. In this Account, we cover some results using the pyalk ligand and indicate the main features that make it particularly suitable as a ligand for oxidation catalysis. The alkoxide group of pyalk allows for proton-coupled electron transfer (PCET) and its strong σ- and π-donor power strongly favors attainment of exceptionally high oxidation states. The aromatic pyridine ring with its methyl-protected benzylic position provides strong binding and degradation resistance during catalytic turnover. Furthermore, the ligand has two additional benefits: broad solubility in aqueous and nonaqueous solvents and an anisotropic ligand field that enhances the geometry-dependent redox properties of its complexes. After discussion of the general properties, we

  20. New two-dimensional metal-organic networks constructed from 1,2,4,5-benzenetetracarboxylate and chelate ligands.

    PubMed

    Li, Yangguang; Hao, Na; Lu, Ying; Wang, Enbo; Kang, Zhenhui; Hu, Changwen

    2003-05-05

    Two novel nickel coordination polymers [Ni(2)(2,2'-bipy)(2)(OH)(2)(H(2)btec)](3)(n)(1) and [Ni(2)(1,10'-phen)(2)(H(2)O)(2)(btec)](n)(2) (btec = 1,2,4,5-benzenetetracarboxylate) have been hydrothermally synthesized and characterized by elemental analyses, IR and XPS spectra, TG analysis, X-ray powder diffraction, and single crystal X-ray diffraction. Crystal data for 1: C(90)H(66)N(12)O(30)Ni(6), monoclinic P2(1)/c, a = 10.905(2) A, b = 18.006(4) A, c = 20.551(4) A, beta = 94.91(3) degrees, Z = 2. Crystal data for 2: C(34)H(22)N(4)O(10)Ni(2), monoclinic P2(1)/n, a = 10.122(2) A, b = 9.3106(19) A, c = 15.690(3) A, beta = 92.03(3) degrees, Z = 2. Compound 1 exhibits a novel one-dimensional chainlike structure, in which the dinuclear Ni centers are linked by the btec ligands. Furthermore, the adjacent chains are linked into a 2-D wavelike layer via the strong OH.O hydrogen bonding interactions. Compound 2 possesses an unusual two-dimensional steplike network with interesting rhombic grids. Both compounds exhibit unprecedented metal-organic ligand construction modes in [M/btec/L] (M = transition metal; L = chelate ligands) systems. The magnetic behaviors of compounds 1 and 2 have been studied.

  1. Synthesis and characterization of cerium and yttrium alkoxide complexes supported by ferrocene-based chelating ligands.

    PubMed

    Broderick, Erin M; Thuy-Boun, Peter S; Guo, Neng; Vogel, Carola S; Sutter, Jörg; Miller, Jeffrey T; Meyer, Karsten; Diaconescu, Paula L

    2011-04-04

    Two series of Schiff base metal complexes were investigated, where each series was supported by an ancillary ligand incorporating a ferrocene backbone and different N=X functionalities. One ligand is based on an imine, while the other is based on an iminophosphorane group. Cerium(IV), cerium(III), and yttrium(III) alkoxide complexes supported by the two ligands were synthesized. All metal complexes were characterized by cyclic voltammetry. Additionally, NMR, Mössbauer, X-ray absorption near-edge structure (XANES), and absorption spectroscopies were used. The experimental data indicate that iron remains in the +2 oxidation state and that cerium(IV) does not engage in a redox behavior with the ancillary ligand.

  2. Excitation energy transfer in europium chelate with doxycycline in the presence of a second ligand in micellar solutions of nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, T. D.; Shtykov, S. N.; Kochubei, V. I.; Khryachkova, E. S.

    2011-01-01

    The complexation of Eu3+ with doxycycline (DC) antibiotic in the presence of several second ligands and surfactant micelles of different types is studied by the spectrophotometric and luminescence methods. It is found that the efficiency of excitation energy transfer in Eu3+-DC chelate depends on the nature of the second ligand and surfactant micelles. Using thenoyltrifluoroacetone (TTA) as an example, it is shown that the second ligand additionally sensitizes the europium fluorescence, and the possibility of intermediate sensitization of DC and then of europium is shown by the example of 1,10-phenanthroline. In all cases, the excitation energy transfer efficiency was increased due to the so-called antenna effect. The decay kinetics of the sensitized fluorescence of the binary and mixed-ligand chelates in aqueous and micellar solutions of nonionic surfactants is studied and the relative quantum yields and lifetimes of fluorescence are determined.

  3. Synthesis of palladium(0) and -(II) complexes with chelating bis(N-heterocyclic carbene) ligands and their application in semihydrogenation.

    PubMed

    Sluijter, Soraya N; Warsink, Stefan; Lutz, Martin; Elsevier, Cornelis J

    2013-05-28

    A transmetallation route, using silver(I) precursors, to several zero- and di-valent palladium complexes with chelating bis(N-heterocyclic carbene) ligands bearing various N-substituents has been established. The resulting complexes have been characterized by NMR and mass spectroscopy. In addition, the structure of a representative compound, [Pd(0)(bis-(Mes)NHC)(η(2)-ma)] (3a), was confirmed by X-ray crystal structure determination. In contrast to the transfer semihydrogenation, in which only low activity was observed, complex 3a showed activity (TOF = 49 mol(sub) mol(cat)(-1) h(-1)) and selectivity comparable to its monodentate counterparts in the semihydrogenation of 1-phenyl-1-propyne with molecular hydrogen.

  4. Hydrogen chemistry of ruthenium complexes containing one chelating (P-P) or (P-N) ligand per Ru atom

    SciTech Connect

    James, B.

    1995-12-01

    Hydrogenation catalysts are of interest to a variety of fields such as fuels preparation. This report describes a hydrogenation catalysts concerning ruthenium. The most versatile hydrogenation catalysts appear to be based on Ru(P-P) species containing one chelating ditertiaryphosphine(P-P) ligand per metal, particularly for asymmetric hydrogenation when (P-P) is chiral. We have studied the interaction of H{sub 2} with, and catalytic hydrogenation activity (toward olefins ketones, nitrites and imines) of, systems containing the {open_quote}RuCl{sub 2}(P-P){close_quote} moiety or corresponding chelating (P-N) ligands where N is a tertiary amine. Variation in conditions leads to detection or isolation of, for example, ({eta}{sup 2}-H{sub 2})(P-P)Ru({mu}-Cl){sub 3}RuCl(P-P) (1), ({eta}{sup 2}-H{sub 2})(P-P)Ru({mu}-Cl){sub 2}({mu}-H)Ru(H)(P-P) (2), and [Ru(H)Cl(P-P)]{sub 3} (3), as well as analogous species where the {eta}{sup 2}-H{sub 2} of 1 or 2 is replaced by olefin, ketone, nitrile, or imine. The connectivity between 1-3, and kinetic and mechanistic details of selected catalytic hydrogenations will be discussed. Within (P-N) systems, the mononuclear species ({eta}{sup 2}-H{sub 2})RuCl{sub 2}(P-N)(PR{sub 3}) and Ru(H)Cl(P-N)(PR{sub 3}) are formed (R = Ph or p-tolyl), as well as species analogous to 2.

  5. Blue-emitting platinum(II) complexes bearing both pyridylpyrazolate chelate and bridging pyrazolate ligands: synthesis, structures, and photophysical properties.

    PubMed

    Chang, Sheng-Yuan; Chen, Jing-Lin; Chi, Yun; Cheng, Yi-Ming; Lee, Gene-Hsiang; Jiang, Chang-Ming; Chou, Pi-Tai

    2007-12-24

    A new Pt(II) dichloride complex [Pt(fppzH)Cl2] (1), in which fppzH = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, was prepared by the treatment of a pyridylpyrazole chelate fppzH with K2PtCl4 in aqueous HCl solution. Complex 1 could further react with its parent pyrazole (pzH), 3,5-dimethylpyrazole (dmpzH), or 3,5-di-tert-butylpyrazole (dbpzH) to afford the monometallic [Pt(fppz)(pzH)Cl] (2), [Pt(fppz)(dmpzH)Cl] (3), [Pt(fppz)(dmpzH)2]Cl (4), or two structural isomers with formula [Pt(fppz)(dbpzH)Cl] (5a,b). Single-crystal X-ray diffraction studies of 2, 4, and 5a,b revealed a square planar Pt(II) framework, among which a strong interligand hydrogen bonding occurred between fppz and pzH ligands in 2. This interligand H-bonding is replaced by dual N-H...Cl interaction in 4 and both intermolecular N-H...O (with THF solvate) and N-H...Cl interaction in 5a,b, respectively; the latter are attributed to the bulky tert-butyl substituents that force the dbpzH ligand to adopt the perpendicular arrangement. Furthermore, complex 2 underwent rapid deprotonation in basic media to afford two isomeric complexes with formula [Pt(fppz)(mu-pz)]2 (6a,b), which are related to each other according to the spatial orientation of the fppz chelates, i.e., trans- and cis-isomerism. Similar reaction exerted on 3 afforded isomers 7a,b. Both 6a,b (7a,b) are essentially nonemissive in room-temperature fluid state but afford strong blue phosphorescence in solid state prepared via either vacuum-deposited thin film or 77 K CH2Cl2 matrix. As also supported by the computational approaches, the nature of emission has been assigned to be ligand-centered triplet pipi* mixed with certain metal-to-ligand charge-transfer character.

  6. Ruthenium Bis-diimine Complexes with a Chelating Thioether Ligand: Delineating 1,10-Phenanthrolinyl and 2,2'-Bipyridyl Ligand Substituent Effects

    SciTech Connect

    Al-Rawashdeh, Nathir A. F.; Chatterjee, Sayandev; Krause, Jeanette A.; Connick, William B.

    2014-01-06

    A new series of ruthenium(II) bis-diimine complexes with a chelating thioether donor ligand has been prepared: Ru(diimine)2(dpte)2+ (diimine=1,10-phenanthroline (phen) (1); 5-CH3-phen (2), 5-Cl-phen (3); 5-Br-phen (4); 5-NO2-phen (5); 3,4,7,8-tetramethyl-phen (6); 4,7-diphenyl-phen (7); 5,5'-dimethyl-2,2'-bipyridine (8); 4,4'-di-tert-butyl-2,2'-bipyridine (9)). Crystal structures of 2, 5, 7 and 9 show that the complexes form 2 of the 12 possible conformational/configurational isomers, adopting compact C2-symmetric structures with short intramolecular transannular interactions between the diimine ligands and dpte phenyl groups; crystals of 2 and 5 contain non-statistical distributions of geometric isomers. In keeping with the π-acidity of the dpte, the Ru(III/II) couple, E°'(Ru3+/2+), occurs at relatively high potentials (1.4-1.7 V vs Ag/AgCl), and the lowest spin-allowed MLCT absorption band occurs near 400 nm. Surprisingly, the complexes also exhibit fluid-solution luminescence originating from a lowest MLCT excited state with lifetimes in the 140-750 ns time range; in acetonitrile, compound 8 undergoes photo-induced solvolysis. Variations in the MLCT energies and redox potentials are quantitatively described using a summative Hammett parameter (σT), as well as using Lever's electrochemical parameters (EL). Recommended parameterizations for 2,2'-bipyridyl and 1,10-phenanthrolinyl ligands were derived from analysis of correlations based on 199 measurements of E°'(Ru3+/2+) for 99 homo- and heteroleptic ruthenium(II) tris-diimine complexes. Variations in E°'(Ru3+/2+) due to substituents at the 4- and 4'-positions of bipyridyl ligands and 4- and 7-positions of phenanthrolinyl ligands are significantly more strongly correlated with σp+ than either σm or σp. Substituents at the 5- and 6-positions of phenanthrolinyl ligands are best described by σm and have effects comparable to those of substituents at the 3- and 8-positions. Correlations of EL with σT for 20

  7. Synthesis and luminescence properties of iridium complexes chelated with coumarin ligands.

    PubMed

    Park, Hye Rim; Kim, Bo Young; Kim, Young Kwan; Ha, Yunkyoung

    2013-05-01

    According to a recent report, the organic light-emitting diodes (OLEDs) using the iridium complexes of coumarin derivatives as emissive dopants are highly efficient and stable. Unlike the other Ir(III) phopsphorescent dopants, these coumarin-based Ir(III) complexes can effectively trap and transport electrons in the emissive layer. We have prepared a series of phosphorescent cyclometalated Ir(III) complexes containing 3-(2-pyridinyl)coumarin (pc) as an ancillary ligand. The new heteroleptic iridium complexes, Ir(C--N)2(pc) (CAN = 2-(2,4-difluorophenyl)pyridine (F2-ppy), 2-phenylpyridine (ppy) and 2-phenylquinoline (pq)) were characterized by 1H NMR and mass spectrometer. As main ligands, F2-ppy, ppy and pq were employed, which should have the drastically different ligand molecular orbital energy levels. The iridium complexes showed various emission ranges from 560 to 610 nm, depending upon the relative energy levels of their main and ancillary ligands. The photoabsorption, photoluminescence and electroluminescence of the complexes were studied. We also investigated the electrochemical properties of the iridium complexes to compare the HOMO and LUMO energy levels of these phosphorescent materials.

  8. Chelating tris(amidate) ligands: versatile scaffolds for nickel(II).

    PubMed

    Jones, Matthew B; Newell, Brian S; Hoffert, Wesley A; Hardcastle, Kenneth I; Shores, Matthew P; MacBeth, Cora E

    2010-01-14

    The synthesis and characterization of nickel complexes supported by a family of open-chain, tetradentate, tris(amidate) ligands, [N(o-PhNC(O)R)(3)](3-) ([L(R)](3-) where R = (i)Pr, (t)Bu, and Ph) is described. The complexes [Ni(L(iPr))](-), [Ni(L(tBu))](-), and [Ni(L(Ph))(CH(3)CN)](-) have been characterized by solution-state spectroscopic methods and single crystal X-ray diffraction. Each ligand gives rise to a different primary coordination sphere about the nickel centre. These studies indicate that the ligands' acyl substituents can be used to regulate the coordination mode of the amidate donors to nickel and the coordination number of the nickel centres. In addition, the ability of these complexes to bind cyanide has been explored. These experiments demonstrate that only one of these complexes, [Ni(L(iPr))](-), is able to irreversibly bind cyanide and can be used to assemble [Et(4)N](3)[Ni(L(iPr))(mu(2)-CN)Co(L(iPr))], a cyanide bridged, heterobimetallic complex. The synthesis and characterization of the cyanide containing complexes, including magnetic susceptibility studies, are described.

  9. Synthesis, crystal structure and cytotoxic activity of ruthenium(II) piano-stool complex with N,N-chelating ligand

    NASA Astrophysics Data System (ADS)

    Rogala, Patrycja; Jabłońska-Wawrzycka, Agnieszka; Kazimierczuk, Katarzyna; Borek, Agnieszka; Błażejczyk, Agnieszka; Wietrzyk, Joanna; Barszcz, Barbara

    2016-12-01

    A mononuclear compound of the general formula [(η6-p-cymene)RuIICl(2,2‧-PyBIm)]PF6 has been synthesized from a bidentate N,N-donor ligand, viz. 2,-(2‧-pyridyl)benzimidazole (2,2‧-PyBIm) and the corresponding chloro-complex [(η6-p-cymene)Ru(μ-Cl)Cl]2 (precursor). The isolated coordination compound was characterized by IR, UV-vis and 1H, 13C NMR spectroscopies. The single crystal X-ray analysis of the complex reveals that the asymmetric part of the unit cell consists of two symmetrically independent, [(η6-p-cymene)RuCl(2,2‧-PyBIm)]+ cationic complexes. Each cation exhibits a pseudo-octahedral three-legged piano-stool geometry, in which three "legs" are occupied by one chloride ion and two nitrogen donor atoms of the chelating ligand 2,2‧-PyBIm. The Hirshfeld surface analysis of obtained complex was determined, too. The ionic nature of the compound is identified by a strong band at around 830 cm-1 due to the νP-F stretching mode of the PF6- counter ion. The electronic spectrum of this monomeric complex displays high intensity bands in the ultraviolet region assignable to π→π*/n→π* transitions, as well as a band attributable to the metal-to-ligand charge transfer (MLCT) dπ(Ru)→π*(L) transition. Additionally, the complex has been screened for its cytotoxicity against three human cancer lines: non-small cell lung carcinoma (A549), colon adenocarcinoma (HT29) and breast adenocarcinoma (MCF-7) as well as normal mice fibroblast cells (BALB/3T3). The complex demonstrated a moderate antiproliferative activity against the cell lines tested.

  10. Pore-free matrix with cooperative chelating of hyperbranched ligands for high-performance separation of uranium.

    PubMed

    Li, Yang; Wang, Lei; Li, Bo; Zhang, Meicheng; Wen, Rui; Guo, Xinghua; Li, Xing; Zhang, Ji; Li, Shoujian; Ma, Lijian

    2016-10-04

    A new strategy combining pore-free matrix and cooperative-chelating was proposed in the present paper in order to effectively avoid undesired non-selective physical adsorption and intra-particle diffusion caused by pores and voids in porous sorbents, and to greatly enhance uranium-chelating capability based on hyperbranched amidoxime ligands on the surface of nanodiamond particles. Thus a pore-free, amidoxime-terminated hyperbranched nanodiamond (ND-AO) was designed and synthesized. The experimental results demonstrate that the strategy endows the as-synthesized ND-AO with following expected features: (1) distinctively high uranium selectivity (SU = qe-U /qe-tol ×100 %) from over 80% to nearly 100 % over the whole weak acidity range (pH < 4.5), especially, the SU can reach up to unprecedented > 91 % at pH 4.5, more than 20 percent of selectivity increment over any analogous sorbent materials reported so far, with a uranium sorption capacity of 121mg/g in simulated nuclear industry effluent samples containing 12 coexistent nuclide ions, (2) super-fast equilibrium sorption time of < 30s, (3) one of the highest distribution coefficient ( Kd ) of ~ 3×106 ml/g for U(VI) as well as fairly high sorption capacity of 212 mg/g at pH 4.5 in pure-uranium solution. The strategy could also provide an optional approach for the design and fabrication of other new high-performance sorbing materials with prospective applications in selective separation of other interested metal ions.

  11. Lanthanide mixed ligand chelates for DNA profiling and latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Menzel, E. R.; Allred, Clay

    1997-02-01

    It is our aim to develop a universally applicable latent fingerprint detection method using lanthanide (rare-earth) complexes as a source of luminescence. Use of these lanthanide complexes offers advantages on several fronts, including benefits from large Stokes shifts, long luminescence lifetimes, narrow emissions, ability of sequential assembly of complexes, and chemical variability of the ligands. Proper exploitation of these advantages would lead to a latent fingerprint detection method superior to any currently available. These same characteristics also lend themselves to many of the problems associated with DNA processing in the forensic science context.

  12. Protonation of metal-bound ?-hydroxycarboxylate ligand and implication for the role of homocitrate in nitrogenase: Computational study of the oxy-bidentate chelate ring opening

    NASA Astrophysics Data System (ADS)

    Cao, Zexing; Jin, Xi; Zhou, Zhaohui; Zhang, Qianer

    Protonation of the metal-bound oxy-bidentate ligand in the model complexes of [(HS)3(NH3)M(OCH2COO)]q (M = Mo, Fe, V, Co; q = -2, -1) in the gas phase and in solutions of water and acetonitrile has been explored by the density functional approach. Calculations show that protonation of the carboxyl oxygen can open the ?-hydroxycarboxylate chelate ring ligated to a transition-metal center under specific oxidation and spin states. The feasibility of the chelate ring opening by protonation depends on the electronic nature of the metal site in tune with conversion of a six-coordinate with a five-coordinate metal atom. Such selective dissociation of the metal-bound chelate ligand manipulates the availability of an empty site at the metal center and significantly affects reactivity of the metal-mediated chemical processes. Protonation changes the stability of species with different spin multiplicities and impels spin transition at the metal center in dissociation of the oxy-bidentate ligand. Solvent environments of water and acetonitrile play an important role in stabilizing the negatively charged species.

  13. Chelating agents related to ethylenediamine bis(2-hydroxyphenyl)acetic acid (EDDHA): synthesis, characterization, and equilibrium studies of the free ligands and their Mg2+, Ca2+, Cu2+, and Fe3+ chelates.

    PubMed

    Yunta, Felipe; García-Marco, Sonia; Lucena, Juan J; Gómez-Gallego, Mar; Alcázar, Roberto; Sierra, Miguel A

    2003-08-25

    Iron chelates such as ethylenediamine-N,N'-bis(2-hydroxyphenyl)acetic acid (EDDHA) and their analogues are the most efficient soil fertilizers to treat iron chlorosis in plants growing in calcareous soils. EDDHA, EDDH4MA (ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenyl)acetic acid), and EDDCHA (ethylenediamine-N,N'-bis(2-hydroxy-5-carboxyphenyl)acetic acid) are allowed by the European directive, but also EDDHSA (ethylenediamine-N,N'-bis(2-hydroxy-5-sulfonylphenyl)acetic acid) and EDDH5MA (ethylenediamine-N,N'-bis(2-hydroxy-5-methylphenyl)acetic acid) are present in several commercial iron chelates. In this study, these chelating agents as well as p,p-EDDHA (ethylenediamine-N,N'-bis(4-hydroxyphenyl)acetic acid) and EDDMtxA (ethylenediamine-N,N'-bis(2-metoxyphenyl)acetic acid) have been obtained following a new synthetic pathway. Their chemical behavior has been studied to predict the effect of the substituents in the benzene ring on their efficacy as iron fertilizers for soils above pH 7. The purity of the chelating agents has been determined using a novel methodology through spectrophotometric titration at 480 nm with Fe(3+) as titrant to evaluate the inorganic impurities. The protonation constants were determined by both spectrophotometric and potentiometric methods, and Ca(2+) and Mg(2+) stability constants were determined from potentiometric titrations. To establish the Fe(3+) and Cu(2+) stability constants, a new spectrophotometric method has been developed, and the results were compared with those reported in the literature for EDDHA and EDDHMA and their meso- and rac-isomers. pM values have been also determined to provide a comparable basis to establish the relative chelating ability of these ligands. The purity obtained for the ligands is higher than 87% in all cases and is comparable with that obtained by (1)H NMR. No significant differences have been found among ligands when their protonation and stability constants were compared. As expected, no Fe(3

  14. A Simple Method for Improving Torsion Optimization of Ligand Molecules in Receptor Binding Sites.

    PubMed

    Che, Jianwei

    2005-07-01

    A simple but effective method is introduced for optimizing ligand molecules in torsion space within receptor binding sites. The algorithm makes use of geometric constraints of ligand molecules to search for energetically favorable conformations. It is applied to a conjugate gradient (CG) method as an example. During conformational energy optimization, new line search directions are modified according to the spatial span of rotational groups in ligand molecules. Significant improvements were observed in terms of the abilities both to recover global optimal structures and to obtain lower energy ensembles. This simple algorithm allows rapid implementation and can be incorporated into other conformational energy optimization techniques.

  15. Site-specific and covalent attachment of his-tagged proteins by chelation assisted photoimmobilization: a strategy for microarraying of protein ligands.

    PubMed

    Ericsson, Emma M; Enander, Karin; Bui, Lan; Lundström, Ingemar; Konradsson, Peter; Liedberg, Bo

    2013-09-17

    A novel strategy for site-specific and covalent attachment of proteins has been developed, intended for robust and controllable immobilization of histidine (His)-tagged ligands in protein microarrays. The method is termed chelation assisted photoimmobilization (CAP) and was demonstrated using human IgG-Fc modified with C-terminal hexahistidines (His-IgGFc) as the ligand and protein A as the analyte. Alkanethiols terminated with either nitrilotriacetic acid (NTA), benzophenone (BP), or oligo(ethylene glycol) were synthesized and mixed self-assembled monolayers (SAMs) were prepared on gold and thoroughly characterized by infrared reflection absorption spectroscopy (IRAS), ellipsometry, and contact angle goniometry. In the process of CAP, NTA chelates Ni(2+) and the complex coordinates the His-tagged ligand in an oriented assembly. The ligand is then photoimmobilized via BP, which forms covalent bonds upon UV light activation. In the development of affinity biosensors and protein microarrays, site-specific attachment of ligands in a fashion where analyte binding sites are available is often preferred to random coupling. Analyte binding performance of ligands immobilized either by CAP or by standard amine coupling was characterized by surface plasmon resonance in combination with IRAS. The relative analyte response with randomly coupled ligand was 2.5 times higher than when site-specific attachment was used. This is a reminder that also when immobilizing ligands via residues far from the binding site, there are many other factors influencing availability and activity. Still, CAP provides a valuable expansion of protein immobilization techniques since it offers attractive microarraying possibilities amenable to applications within proteomics.

  16. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization.

    PubMed

    Michel, Julien; Tirado-Rives, Julian; Jorgensen, William L

    2009-10-28

    A strategy in drug design is to consider enhancing the affinity of lead molecules with structural modifications that displace water molecules from a protein binding site. Because success of the approach is uncertain, clarification of the associated energetics was sought in cases where similar structural modifications yield qualitatively different outcomes. Specifically, free-energy perturbation calculations were carried out in the context of Monte Carlo statistical mechanics simulations to investigate ligand series that feature displacement of ordered water molecules in the binding sites of scytalone dehydratase, p38-alphaMAP kinase, and EGFR kinase. The change in affinity for a ligand modification is found to correlate with the ease of displacement of the ordered water molecule. However, as in the EGFR example, the binding affinity may diminish if the free-energy increase due to the removal of the bound water molecule is not more than compensated by the additional interactions of the water-displacing moiety. For accurate computation of the effects of ligand modifications, a complete thermodynamic analysis is shown to be needed. It requires identification of the location of water molecules in the protein-ligand interface and evaluation of the free-energy changes associated with their removal and with the introduction of the ligand modification. Direct modification of the ligand in free-energy calculations is likely to trap the ordered molecule and provide misleading guidance for lead optimization.

  17. Mixed ligand chelate therapy for plutonium and toxic metals from energy power production. Final report, April 15, 1977-October 14, 1980. [Mice

    SciTech Connect

    Schubert, J.

    1980-10-14

    The results of experiments are summarized on the ability of combinations of chelating agents to modify the genotoxicity or tissue distributions. The mutagenicities of Cr and of chelating agents were determined. The metals described in the report are Pu(IV), Cd(II), Cr(III), and Cr(VI). Accurate measurements were made of the ability of CaNa/sub 2/EDTA, CaNa/sub 3/DTPA, and DMPS to reduce mortality in mice given doses (i.p.) of CdCl/sub 2/ well above the 100% lethal level. The efficacy in terms of the mmoles/kg needed to reduce the mortality was: DTPA > EDTA > DMPS. The combination of DTPA + DMPS proved most promising though little evidence for mixed complex formation was noted. Potentiometric titration studies the case of Pu(IV) a few combinations proved effective, but only when given shortly after Pu administration and then only in the liver but not the skeleton. It is recommended that metabolically stable chelating agents be used in combinations, especially for those combinations which may form very stable mixed ligand chelates.

  18. Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates: Fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI

    PubMed Central

    Soesbe, Todd C.; Ratnakar, S. James; Milne, Mark; Zhang, Shanrong; Do, Quyen N.; Kovacs, Zoltan; Sherry, A. Dean

    2014-01-01

    Purpose The water molecule exchange rates in a series of DyDOTA-(amide)X chelates were fine-tuned to maximize the effects of T2-exchange line broadening and improve T2 contrast. Methods Four DyDOTA-(amide)X chelates having a variable number of glycinate side-arms were prepared and characterized as T2-exchange agents. The non-exchanging DyTETA chelate was also used to measure the bulk water T2 reduction due solely to T2*. The total transverse relaxivity (r2tot) at 22, 37, and 52 °C for each chelate was measured in vitro at 9.4 T (400 MHz) by fitting plots of total T2−1 versus concentration. The water molecule exchange rates for each complex were measured by fitting 17O line-width versus temperature data taken at 9.4 T (54.3 MHz). Results The measured transverse relaxivities due to water molecule exchange (r2ex) and bound water lifetimes (τM) were in excellent agreement with Swift-Connick theory, with DyDOTA-(gly)3 giving the largest r2ex = 11.8 s−1 mM−1 at 37 °C. Conclusion By fine-tuning the water molecule exchange rate at 37 °C, the transverse relaxivity has been increased by 2 to 30 times compared to previously studied Dy3+-based chelates. Polymerization or dendrimerization of the optimal chelate could yield a highly sensitive, molecule-sized T2 contrast agent for improved molecular imaging applications. PMID:24390729

  19. cis-Dioxomolybdenum(VI) complexes of a new ONN chelating thiosemicarbazidato ligand; Synthesis, characterization, crystal, molecular structures and antioxidant activities

    NASA Astrophysics Data System (ADS)

    İlhan Ceylan, Berat; Deniz, Nahide Gulsah; Kahraman, Sibel; Ulkuseven, Bahri

    2015-04-01

    5-Chloro-4-methyl-2-hydroxybenzophenone S-propyl-4-phenyl-thiosemicarbazone (H2L) and its cis-dioxomolybdenum(VI) complexes, in the general formula [MoO2(L)R-OH)] (R: methyl, 1; ethyl, 2; n-propyl, 3; n-butyl, 4; n-pentyl, 5), were synthesized and characterized by micro analysis, electronic, infrared and 1H and 13C NMR spectra. The crystal structures of complexes, 1 and 3, have been solved by direct methods (SIR92) and refined to the residual indexes R1 = 0.098 and R1 = 0.052 respectively. Complexes 1 and 3 are crystallized in the triclinic space group P-1 with Z = 2. The crystal study of complex 1 showed the first example of intermolecular hydrogen bond for this type of molybdenum-thiosemicarbazone complexes. The hydrogen bond is between the hydroxyl proton of attached alcohol and an oxo oxygen (in MoO22+ unit) of another complex molecule, and its bond distance (1.767(1) Å) is shorter than from the σ-coordination bonds in complex 1. Antioxidant activities of the compounds were determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. Ligand showed 23.61% DPPH radical scavenging activity at 250 mg/L concentration. Cupric Reducing Antioxidant Capacity (CUPRAC) was also evaluated and trolox-equivalent antioxidant capacity (TEAC) values were found for ligand, 1 and 3 as 0.51, 0.33 and 0.30 respectively.

  20. Chelating fibers prepared with a wet spinning technique using a mixture of a viscose solution and a polymer ligand for the separation of metal ions in an aqueous solution.

    PubMed

    Kagaya, Shigehiro; Miyazaki, Hiroyuki; Inoue, Yoshinori; Kato, Toshifumi; Yanai, Hideyuki; Kamichatani, Waka; Kajiwara, Takehiro; Saito, Mitsuru; Tohda, Koji

    2012-02-15

    Chelating fibers containing polymer ligands such as carboxymethylated polyallylamine, carboxymethylated polyethyleneimine, and a copolymer of diallylamine hydrochloride/maleic acid were prepared with a wet spinning technique using mixtures of a viscose solution and the polymer ligands. The chelating fibers obtained effectively adsorbed various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Ti(IV), and Zn(II). The metal ions adsorbed could be readily desorbed using 0.1 or 0.5 mol L(-1) HNO(3). The chelating fiber containing carboxymethylated polyallylamine was available for the separation of some metal ions in synthetic wastewater containing a large amount of Na(2)SO(4). The wet spinning technique using a solution containing a base polymer and a polymer ligand was quite simple and effective and would be applicable for preparing various chelating fibers.

  1. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  2. Predicting Electrophoretic Mobility of Protein-Ligand Complexes for Ligands from DNA-Encoded Libraries of Small Molecules.

    PubMed

    Bao, Jiayin; Krylova, Svetlana M; Cherney, Leonid T; Hale, Robert L; Belyanskaya, Svetlana L; Chiu, Cynthia H; Shaginian, Alex; Arico-Muendel, Christopher C; Krylov, Sergey N

    2016-05-17

    Selection of target-binding ligands from DNA-encoded libraries of small molecules (DELSMs) is a rapidly developing approach in drug-lead discovery. Methods of kinetic capillary electrophoresis (KCE) may facilitate highly efficient homogeneous selection of ligands from DELSMs. However, KCE methods require accurate prediction of electrophoretic mobilities of protein-ligand complexes. Such prediction, in turn, requires a theory that would be applicable to DNA tags of different structures used in different DELSMs. Here we present such a theory. It utilizes a model of a globular protein connected, through a single point (small molecule), to a linear DNA tag containing a combination of alternating double-stranded and single-stranded DNA (dsDNA and ssDNA) regions of varying lengths. The theory links the unknown electrophoretic mobility of protein-DNA complex with experimentally determined electrophoretic mobilities of the protein and DNA. Mobility prediction was initially tested by using a protein interacting with 18 ligands of various combinations of dsDNA and ssDNA regions, which mimicked different DELSMs. For all studied ligands, deviation of the predicted mobility from the experimentally determined value was within 11%. Finally, the prediction was tested for two proteins and two ligands with a DNA tag identical to those of DELSM manufactured by GlaxoSmithKline. Deviation between the predicted and experimentally determined mobilities did not exceed 5%. These results confirm the accuracy and robustness of our model, which makes KCE methods one step closer to their practical use in selection of drug leads, and diagnostic probes from DELSMs.

  3. Improved Estimation of Protein-Ligand Binding Free Energy by Using the Ligand-Entropy and Mobility of Water Molecules

    PubMed Central

    Fukunishi, Yoshifumi; Nakamura, Haruki

    2013-01-01

    We previously developed the direct interaction approximation (DIA) method to estimate the protein-ligand binding free energy (ΔG). The DIA method estimates the ΔG value based on the direct van der Waals and electrostatic interaction energies between the protein and the ligand. In the current study, the effect of the entropy of the ligand was introduced with protein dynamic properties by molecular dynamics simulations, and the interaction between each residue of the protein and the ligand was also weighted considering the hydration of each residue. The molecular dynamics simulation of the apo target protein gave the hydration effect of each residue, under the assumption that the residues, which strongly bind the water molecules, are important in the protein-ligand binding. These two effects improved the reliability of the DIA method. In fact, the parameters used in the DIA became independent of the target protein. The averaged error of ΔG estimation was 1.3 kcal/mol and the correlation coefficient between the experimental ΔG value and the calculated ΔG value was 0.75. PMID:24276169

  4. Optical Tweezers Studies on Notch: Single-molecule Interaction Strength is Independent of Ligand Endocytosis

    PubMed Central

    Shergill, Bhupinder; Meloty-Kapella, Laurence; Musse, Abdiwahab A.; Weinmaster, Gerry; Botvinick, Elliot

    2012-01-01

    SUMMARY Notch signaling controls diverse cellular processes critical to development and disease. Cell surface ligands bind Notch on neighboring cells yet require endocytosis to activate signaling. The role ligand endocytosis plays in Notch activation has not been established. Here we integrate optical tweezers with cell biological and biochemical methods to test the prevailing model that ligand endocytosis facilitates recycling to enhance ligand interactions with Notch necessary to trigger signaling. Specifically, single-molecule measurements indicate that interference of ligand endocytosis and/or recycling does not alter the force required to rupture bonds formed between cells expressing the Notch ligand Delta-like1 (Dll1) and laser-trapped Notch1-beads. Together, our analyses eliminate roles for ligand endocytosis and recycling in Dll1-Notch1 interactions, and indicate that recycling indirectly affects signaling by regulating the accumulation of cell-surface ligand. Importantly, our study demonstrates the utility of optical tweezers to test a role for ligand endocytosis in generating cell-mediated mechanical force. PMID:22658935

  5. Synthesis and coordination chemistry of two N2-donor chelating di(indazolyl)methane ligands: structural characterization and comparison of their metal chelation aptitudes.

    PubMed

    Pettinari, Claudio; Marinelli, Alessandro; Marchetti, Fabio; Ngoune, Jean; Galindo, Agustín; Álvarez, Eleuterio; Gómez, Margarita

    2010-11-15

    The N(2)-donor bidentate ligands di(1H-indazol-1-yl)methane (L(1)) and di(2H-indazol-2-yl)methane (L(2)) (L in general) have been synthesized, and their coordination behavior toward Zn(II), Cd(II), and Hg(II) salts has been studied. Reaction of L(1) and L(2) with ZnX(2) (X = Cl, Br, or I) yields [ZnX(2)L] species (1-6), that, in the solid state, show a tetrahedral structure with dihapto ligand coordination via the pyrazolyl arms. The reaction of L(1) and L(2) with Zn(NO(3))(2)·6H(2)O is strongly dependent on the reaction conditions and on the ligand employed. Reaction of L(1) with equimolar quantities of Zn(NO(3))(2)·6H(2)O yields the neutral six-coordinate species [Zn(NO(3))(2)(L(1))], 7. On the other hand the use of L(1) excess gives the 2:1 adduct [Zn(NO(3))(2)(L(1))(2)], 8 where both nitrates act as a unidentate coordinating ligand. Analogous stoichiometry is found in the compound obtained from the reaction of L(2) with Zn(NO(3))(2)·6H(2)O which gives the ionic [Zn(NO(3))(L(2))(2)](NO(3)), 10. Complete displacement of both nitrates from the zinc coordination sphere is observed when the reaction between L(1) excess and the zinc salt was carried out in hydrothermal conditions. The metal ion type is also determining structure and stoichiometry: the reaction of L(2) with CdCl(2) gave the 2:1 adduct [CdCl(2)(L(2))(2)] 11 where both chlorides complete the coordination sphere of the six-coordinate cadmium center; on the other hand from the reaction of L(1) with CdBr(2) the polynuclear [CdBr(2)(L(1))](n) 12 is obtained, the Br(-) anion acting as bridging ligands in a six-coordinate cadmium coordination environment. The reaction of L(1) and L(2) with HgX(2) (X = Cl, I, SCN) is also dependent on the reaction conditions and the nature of X, two different types of adducts being formed [HgX(L)] (14: L = L(1), 16, 17: L = L(1) or L(2), X = I, 19: L = L(2), X = SCN) and [HgX(L)(2)] (15: L = L(2), X = Cl, 18: L = L(1), X = SCN). The X-ray diffraction analyses of compounds 1

  6. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    PubMed

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php.

  7. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  8. Cu-free 1,3-dipolar cycloaddition click reactions to form isoxazole linkers in chelating ligands for fac-[M(I)(CO)3]+ centers (M = Re, 99mTc).

    PubMed

    Bottorff, Shalina C; Kasten, Benjamin B; Stojakovic, Jelena; Moore, Adam L; MacGillivray, Leonard R; Benny, Paul D

    2014-02-17

    Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to Cu(I)-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate and chelate, then click) were examined to determine the feasibility of isoxazole ring formation with either alkyne-functionalized tridentate chelates or their respective fac-[M(I)(CO)3](+) complexes with a model nitrile oxide generator. Macroscale experiments, alkyne-functionalized chelates, or Re complexes indicate facile formation of the isoxazole ring. (99m)Tc experiments demonstrate efficient radiolabeling with click, then chelate; however, the chelate, then click approach led to faster product formation, but lower yields compared to the Re analogues.

  9. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands.

    PubMed

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J L; Chibotaru, Liviu F; Layfield, Richard A

    2015-07-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm(-1) and magnetic hysteresis up to 4.4 K.

  10. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands

    PubMed Central

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J.L.; Chibotaru, Liviu F.; Layfield, Richard A.

    2015-01-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm−1 and magnetic hysteresis up to 4.4 K. PMID:26130418

  11. Binuclear complexes of bis-chelating ligands based on [1,4]dioxocino[6,5-b:7,8-b']dipyridine moieties.

    PubMed

    Casalino, Marcello; De Felice, Vincenzo; Fraldi, Natascia; Panunzi, Achille; Ruffo, Francesco

    2009-07-06

    Ligands based on a [1,4]dioxocino[6,5-b:7,8-b']dipyridine (doxpy) core were prepared and characterized. They all present two equal chelating moieties each one including one N, O, or S donor in addition to a pyridinic nitrogen. These ligands displayed high selectivity for the formation of binuclear complexes. At least one d(8) ion (Pd(II) or Pt(II)) complex was prepared for each type of ligand. The stereochemical behavior of the ligands is discussed on the basis of NMR spectra. Stable atropoisomers were obtained in the case of N-oxides or in case chiral centers were introduced in the ethereal bridge. As for the complexes, stable enantiomers appear to be in principle attainable for all the new compounds. A test on the cooperative ability of two Pd(II) centers has been grounded on the microstructure of the styrene/CO copolymer catalytically produced by a binuclear pyridine-imino complex. In fact, comparison with the microstructure of the copolymers produced by related single-site mono- and (open-chain) binuclear catalysts reveals significant difference, thus giving indication of possible synergic metal activity.

  12. A pyridine alkoxide chelate ligand that promotes both unusually high oxidation states and water-oxidation catalysis

    DOE PAGES

    Michaelos, Thoe K.; Shopov, Dimitar Y.; Sinha, Shashi Bhushan; ...

    2017-03-08

    Here, water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so that the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. Our research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or “pyalk” that fulfills these requirements.

  13. Octanuclear zinc(II) and cobalt(II) clusters produced by cooperative tetrameric assembling of oxime chelate ligands.

    PubMed

    Akine, Shigehisa; Dong, Wenkui; Nabeshima, Tatsuya

    2006-06-12

    We have synthesized an octanuclear zinc(II) cluster [L4Zn8(H2O)3] by the complexation of 3-hydroxysalamo (H4L) with zinc(II) acetate. The complex crystallizes in the triclinic system, space group P, with unit cell parameters a = 18.233(10) A, b = 20.518(11) A, c = 21.366(11) A, alpha = 98.7557(2) degrees, beta = 99.191(11) degrees, gamma = 108.309(10) degrees, and Z = 4. The crystallographic analysis revealed the S4 symmetrical assembling of four ligands and that the tetrameric complex has three water molecules in an unsymmetrical fashion. Spectroscopic analysis of the complex strongly suggests that the octanuclear cluster also exists in solution and maintains a conformation similar to that in the crystal structure, although exchange of the coordinating water molecules presumably takes place. In addition, the formation process of the octanuclear complex is highly cooperative. A high coordinating ability of the [(salamo)Zn] unit as well as the catecholato2- moieties probably stabilizes the octanuclear assembly and makes the complexation process cooperative. The corresponding octanuclear cobalt(II) cluster [L4Co8(EtOH)3] was prepared in a similar manner. Complex [L4Co8(H2O)2X] (X = H2O or EtOH) was obtained by the recrystallization from chloroform/hexane. The complex crystallizes in the triclinic system, space group P, with unit cell parameters a = 15.2359(10) A, b = 16.9625(12) A, c = 18.9325(13) A, alpha = 101.9710(10) degrees, beta = 105.5410(10) degrees, gamma = 97.1290(10) degrees, and Z = 2. Temperature dependence of magnetic susceptibility showed a continuous decrease in the chi(M)T value with decreasing temperature, suggesting antiferromagnetic interaction among cobalt(II) ions. The magnetic susceptibility above 40 K obeys the Curie-Weiss law with a Weiss constant theta of -39 K and a Curie constant C of 19.7 cm(3) K mol(-1).

  14. A nonplanar porphyrin-based receptor molecule for chiral amine ligands

    SciTech Connect

    MUZZI,CINZIA M.; MEDFORTH,CRAIG J.; SMITH,KEVIN M.; JIA,SONG-LING; SHELNUTT,JOHN A.

    2000-03-06

    A novel porphyrin-based receptor molecule for chiral amine ligands is described in which nonplanarity of the porphyrin macrocycle is used to orient the ligand and to enhance porphyrin-ligand interactions. The porphyrin macrocycle provides a versatile platform upon which to build elaborate superstructures, and this feature coupled with a rich and well-developed synthetic chemistry has led to the synthesis of many elegant models of heme protein active sites and numerous porphyrin-based receptor molecules. One design feature which is not usually considered in the design of porphyrin-based receptor molecules is nonplanarity of the porphyrin ring, although there are a few systems such as the pyridine sensitive Venus Flytrap and the chirality-memory molecule which illustrate that nonplanar porphyrin-based receptors can display unique and interesting behavior. Given the novel properties of these receptors and the continuing interest in the effects of nonplanarity on the properties of porphyrins the authors decided to investigate in more detail the potential applications of nonplanarity in the design of porphyrin-based receptors. Herein, they describe the design, synthesis, and characterization of a new kind of nonplanar porphyrin-based receptor molecule for chiral amines.

  15. Synthesis and chelation properties of a new polymeric ligand derived from 1-amino-2-naphthol-4-sulfonic Acid.

    PubMed

    Manivannan, Dhanasekaran; Biju, Valsala Madhavan Nair

    2015-01-01

    A novel chelating resin for preconcentration of heavy metals from various seawater samples has been developed by condensing 1-amino-2-hydroxy-7-[(4-hydroxyphenyl)diazenyl] naphthalene-4-sulfonic acid (AHDNS) with formaldehyde (1:2 mole ratio) in the presence of oxalic acid as the catalyst. The resin thus obtained was used as a solid sorbent for the separation of divalent metal ions present at trace levels in seawater. The functionalized phenol (AHDNS) was characterized by spectral studies. The polymeric resin AHDNS-formaldehyde (AHDNS-F) obtained by condensing the functionalized phenol and formaldehyde was characterized by IR and NMR spectral studies. The chelating property of the AHDNS-F resin towards divalent metal ions was studied as a function of pH and in the presence of electrolyte. The metal uptake properties of the resin were determined by using an atomic absorption spectrophotometer. This procedure was validated for recovery of divalent metal ions from seawater samples. The recoveries of cadmium, cobalt, copper, manganese, lead, and zinc were above 92% under the optimum preconcentration conditions. The LOD was <0.73 μg/L and the RSDs were <2%. Thus, the AHDNS-F resin can be widely used as a solid sorbent for the preconcentration of trace metals at ppm levels in seawater samples.

  16. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    PubMed Central

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  17. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery.

    PubMed

    Sheng, Jia; Gan, Jianhua; Huang, Zhen

    2013-09-01

    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.

  18. Structure-Based DNA-Targeting Strategies with Small Molecule Ligands for Drug Discovery

    PubMed Central

    Sheng, Jia; Gan, Jianhua; Huang, Zhen

    2014-01-01

    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics. PMID:23633219

  19. An Undecanuclear Ferrimagnetic Cu9Dy2 Single Molecule Magnet Achieved through Ligand Fine-Tuning.

    PubMed

    Kühne, Irina A; Kostakis, George E; Anson, Christopher E; Powell, Annie K

    2016-05-02

    We describe the concept of increasing the nuclearity of a previously reported high-spin Cu5Gd2 core using a "fine-tuning" ligand approach. Thus, two Cu9Ln2 coordination clusters, with Ln = Dy (1) and Gd (2), were synthesized with the Gd compound having a ground spin state of (17)/2 and the Dy analogue showing single-molecule-magnet behavior in zero field.

  20. Synthesis, characterization, and antipathogenic studies of some transition metal complexes with N,O-chelating Schiff's base ligand incorporating azo and sulfonamide Moieties

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Bayoumi, Hoda A.; Ammar, Yousry A.; Aldhlmani, Sharah A.

    2013-03-01

    Chromium(III), Manganese(II), Cobalt(II), nickel(II), copper(II) and cadmium(II) complexes of 4-[4-hydroxy-3-(phenyliminomethyl)-phenylazo]benzenesulfonamide, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Dimeric complexes are obtained with 2:2 molar ratio except chromium(III) complex is monomeric which is obtained with 1:1 molar ratios. The IR spectra of the prepared complexes were suggested that the Schiff base ligand(HL) behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. Thermal studies suggest a mechanism for degradation of HL and its metal complexes as function of temperature supporting the chelation modes. Also, the activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS* and ΔG* for the different thermal decomposition steps of HL and its metal complexes were calculated. The pathogenic activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024) as Gram positive bacteria, Klebsiella pneumonia (RCMB 010093), Shigella flexneri (RCMB 0100542), as Gram negative bacteria and Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035) as fungus strain, and the results are discussed.

  1. Distribution patterns of small-molecule ligands in the protein universe and implications for origin of life and drug discovery

    PubMed Central

    Ji, Hong-Fang; Kong, De-Xin; Shen, Liang; Chen, Ling-Ling; Ma, Bin-Guang; Zhang, Hong-Yu

    2007-01-01

    Background Extant life depends greatly on the binding of small molecules (such as ligands) with macromolecules (such as proteins), and one ligand can bind multiple proteins. However, little is known about the global patterns of ligand-protein mapping. Results By examining 2,186 well-defined small-molecule ligands and thousands of protein domains derived from a database of druggable binding sites, we show that a few ligands bind tens of protein domains or folds, whereas most ligands bind only one, which indicates that ligand-protein mapping follows a power law. Through assigning the protein-binding orders (early or late) for bio-ligands, we demonstrate that the preferential attachment principle still holds for the power-law relation between ligands and proteins. We also found that polar molecular surface area, H-bond acceptor counts, H-bond donor counts and partition coefficient are potential factors to discriminate ligands from ordinary molecules and to differentiate super ligands (shared by three or more folds) from others. Conclusion These findings have significant implications for evolution and drug discovery. First, the chronology of ligand-protein binding can be inferred by the power-law feature of ligand-protein mapping. Some nucleotide-containing ligands, such as ATP, ADP, GDP, NAD, FAD, dihydro-nicotinamide-adenine-dinucleotide phosphate (NDP), nicotinamide-adenine-dinucleotide phosphate (NAP), flavin mononucleotide (FMN) and AMP, are found to be the earliest cofactors bound to proteins, agreeing with the current understanding of evolutionary history. Second, the finding that about 30% of ligands are shared by two or more domains will help with drug discovery, such as in finding new functions from old drugs, developing promiscuous drugs and depending more on natural products. PMID:17727706

  2. Influence of macrocyclic chelators on the targeting properties of (68)Ga-labeled synthetic affibody molecules: comparison with (111)In-labeled counterparts.

    PubMed

    Strand, Joanna; Honarvar, Hadis; Perols, Anna; Orlova, Anna; Selvaraju, Ram Kumar; Karlström, Amelie Eriksson; Tolmachev, Vladimir

    2013-01-01

    Affibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide (68)Ga (T1/2=67.6 min). Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with (68)Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of (68)Ga-DOTA-ZHER2:S1, (68)Ga-NOTA-ZHER2:S1 and (68)Ga-NODAGA-ZHER2:S1, as well as that of their (111)In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for (68)Ga-DOTA-ZHER2:S1 (17.9 ± 0.7%IA/g) was significantly higher than for both (68)Ga-NODAGA-ZHER2:S1 (16.13 ± 0.67%IA/g) and (68)Ga-NOTA-ZHER2:S1 (13 ± 3%IA/g) at 2 h after injection. (68)Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60 ± 10) in comparison with both (68)Ga-DOTA-ZHER2:S1 (28 ± 4) and (68)Ga-NOTA-ZHER2:S1 (42 ± 11). The tumor-to-liver ratio was also higher for (68)Ga-NODAGA-ZHER2:S1 (7 ± 2) than the DOTA and NOTA conjugates (5.5 ± 0.6 vs.3.3 ± 0.6). The influence of chelator on the biodistribution and targeting properties was less pronounced for (68)Ga than for (111)In. The results of this study demonstrate that

  3. Observed bromodomain flexibility reveals histone peptide- and small molecule ligand-compatible forms of ATAD2.

    PubMed

    Poncet-Montange, Guillaume; Zhan, Yanai; Bardenhagen, Jennifer P; Petrocchi, Alessia; Leo, Elisabetta; Shi, Xi; Lee, Gilbert R; Leonard, Paul G; Geck Do, Mary K; Cardozo, Mario G; Andersen, Jannik N; Palmer, Wylie S; Jones, Philip; Ladbury, John E

    2015-03-01

    Preventing histone recognition by bromodomains emerges as an attractive therapeutic approach in cancer. Overexpression of ATAD2 (ATPase family AAA domain-containing 2 isoform A) in cancer cells is associated with poor prognosis making the bromodomain of ATAD2 a promising epigenetic therapeutic target. In the development of an in vitro assay and identification of small molecule ligands, we conducted structure-guided studies which revealed a conformationally flexible ATAD2 bromodomain. Structural studies on apo-, peptide-and small molecule-ATAD2 complexes (by co-crystallization) revealed that the bromodomain adopts a 'closed', histone-compatible conformation and a more 'open' ligand-compatible conformation of the binding site respectively. An unexpected conformational change of the conserved asparagine residue plays an important role in driving the peptide-binding conformation remodelling. We also identified dimethylisoxazole-containing ligands as ATAD2 binders which aided in the validation of the in vitro screen and in the analysis of these conformational studies.

  4. A novel approach to the discovery of small molecule ligands of CDK2

    PubMed Central

    Martin, Mathew P.; Alam, Riazul; Betzi, Stephane; Ingles, Donna J.; Zhu, Jin-Yi

    2012-01-01

    In an attempt to identify novel small molecule ligands of CDK2 with potential as allosteric inhibitors, we devised a robust and cost-effective fluorescence-based high-throughput screening assay. The assay is based on the specific interaction of CDK2 with the extrinsic fluorophore 8-anilino-1-naphthalene sulfonate (ANS), which binds to a large allosteric pocket adjacent to the ATP site. Hit compounds which displace ANS directly or indirectly from CDK2 are readily classified as ATP site binders or allosteric ligands through the use of staurosporine, which blocks the ATP site without displacing ANS. Pilot screening of 1,453 compounds led to the discovery of 12 compounds with displacement activities (EC50 values) ranging from 6 to 44 μM, all of which were classified as ATP site-directed ligands. Four new Type I inhibitor scaffolds were confirmed by X-ray crystallography. While this small compound library contained only ATP-site directed ligands, the application of this assay to large compound libraries has the potential to reveal previously unrecognized chemical scaffolds suitable for structure-based design of CDK2 inhibitors with new mechanisms of action. PMID:22893598

  5. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level

    PubMed Central

    Tabor, Alina; Weisenburger, Siegfried; Banerjee, Ashutosh; Purkayastha, Nirupam; Kaindl, Jonas M.; Hübner, Harald; Wei, Luxi; Grömer, Teja W.; Kornhuber, Johannes; Tschammer, Nuska; Birdsall, Nigel J. M.; Mashanov, Gregory I.; Sandoghdar, Vahid; Gmeiner, Peter

    2016-01-01

    G protein–coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass. PMID:27615810

  6. Click-to-Chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals.

    PubMed

    Kluba, Christiane A; Mindt, Thomas L

    2013-03-12

    The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction) enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (bio)molecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  7. Development of a quinazoline-based chelating ligand for zinc ion and its application to validation of a zinc-ion-coordinated compound.

    PubMed

    Yamada, Hiroshi; Shirai, Akina; Kato, Keisuke; Kimura, Junko; Ichiba, Hideaki; Yajima, Takehiko; Fukushima, Takeshi

    2010-06-01

    A novel fluorescent chelating ligand, 2,4-[bis-(2-hydroxy-3-methoxybenzylidene)]-dihydrazinoquinazoline (HBQZ), was synthesized, and the fluorescence characteristics of its complex with metal ions were investigated. Among the 36 different metal ions tested in this study, it was found that HBQZ emits intense fluorescence at 506 nm with an excitation wavelength of 414 nm in the presence of Zn2+. The fluorescence intensity was almost constant in the pH range 3.5-10.5. Complexes of other metal ions with HBQZ did not show fluorescence, and the detection limit of Zn2+ was approximately 250 nM (16 ppb). The proposed method was applied to the validation test of a bioactive compound containing Zn2+ in its structure--an antibacterial and antifungal reagent, zinc pyrithione (ZnPT). In order to effectively release Zn2+ from ZnPT, a pretreatment procedure involving heating with H3PO4 at 100 degrees C for 60 min was adopted. Under these conditions, a linear calibration curve was obtained in the ZnPT concentration range of 0.79-15.7 microM (0.25-5.0 ppm); the correlation coefficient and the relative standard deviation were 0.996 and within 3.1% (n=5), respectively.

  8. The use of small-molecule structures to complement protein–ligand crystal structures in drug discovery

    PubMed Central

    Cole, Jason C.

    2017-01-01

    Many ligand-discovery stories tell of the use of structures of protein–ligand complexes, but the contribution of structural chemistry is such a core part of finding and improving ligands that it is often overlooked. More than 800 000 crystal structures are available to the community through the Cambridge Structural Database (CSD). Individually, these structures can be of tremendous value and the collection of crystal structures is even more helpful. This article provides examples of how small-molecule crystal structures have been used to complement those of protein–ligand complexes to address challenges ranging from affinity, selectivity and bioavailability though to solubility. PMID:28291759

  9. Lanthanide(III) di- and tetra-nuclear complexes supported by a chelating tripodal tris(amidate) ligand

    DOE PAGES

    Brown, Jessie L.; Jones, Matthew B.; Gaunt, Andrew J.; ...

    2015-04-06

    Syntheses, structural, and spectroscopic characterization of multinuclear tris(amidate) lanthanide complexes is described. Addition of K3[N(o-PhNC(O)tBu)3] to LnX3 (LnX3 = LaBr3, CeI3, and NdCl3) in N,N-dimethylformamide (DMF) results in the generation of dinuclear complexes, [Ln(N(o-PhNC(O)tBu)3)(DMF)]2(μ-DMF) (Ln = La (1), Ce (2), Nd(3)), in good yields. Syntheses of tetranuclear complexes, [Ln(N(o-PhNC(O)tBu)3)]4 (Ln = Ce (4), Nd(5)), resulted from protonolysis of Ln[N(SiMe3)2]3 (Ln = Ce, Nd) with N(o-PhNCH(O)tBu)3. As a result, in the solid-state, complexes 1–5 exhibit coordination modes of the tripodal tris(amidate) ligand that are unique to the 4f elements and have not been previously observed in transition metal systems.

  10. Lanthanide(III) di- and tetra-nuclear complexes supported by a chelating tripodal tris(amidate) ligand

    SciTech Connect

    Brown, Jessie L.; Jones, Matthew B.; Gaunt, Andrew J.; Scott, Brian L.; MacBeth, Cora E.; Gordon, John C.

    2015-04-06

    Syntheses, structural, and spectroscopic characterization of multinuclear tris(amidate) lanthanide complexes is described. Addition of K3[N(o-PhNC(O)tBu)3] to LnX3 (LnX3 = LaBr3, CeI3, and NdCl3) in N,N-dimethylformamide (DMF) results in the generation of dinuclear complexes, [Ln(N(o-PhNC(O)tBu)3)(DMF)]2(μ-DMF) (Ln = La (1), Ce (2), Nd(3)), in good yields. Syntheses of tetranuclear complexes, [Ln(N(o-PhNC(O)tBu)3)]4 (Ln = Ce (4), Nd(5)), resulted from protonolysis of Ln[N(SiMe3)2]3 (Ln = Ce, Nd) with N(o-PhNCH(O)tBu)3. As a result, in the solid-state, complexes 1–5 exhibit coordination modes of the tripodal tris(amidate) ligand that are unique to the 4f elements and have not been previously observed in transition metal systems.

  11. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5.

    PubMed

    Berg, Christian; Spiess, Katja; Lüttichau, Hans R; Rosenkilde, Mette M

    2016-12-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1 fusion inhibitors. A virus-free cell-based fusion reporter assay, based on mixing "effector cells" (expressing HIV Env and luciferase activator) with "target cells" (expressing CD4, CCR5 wild type or a selection of well-described mutations, and luciferase reporter), was used as fusion readout. Receptor expression was evaluated by ELISA and fluorescence microscopy. On CCR5 WT, Maraviroc and Aplaviroc inhibited fusion with high potencies (EC 50 values of 91 and 501 nM, respectively), whereas removal of key residues for both antagonists (Glu283Ala) or Maraviroc alone (Tyr251Ala) prevented fusion inhibition, establishing this assay as suitable for screening of HIV entry inhibitors. Both ligands inhibited HIV fusion on signaling-deficient CCR5 mutations (Tyr244Ala and Trp248Ala). Moreover, the steric hindrance CCR5 mutation (Gly286Phe) impaired fusion, presumably by a direct hindrance of gp120 interaction. Finally, the efficacy switch mutation (Leu203Phe) - converting small-molecule antagonists/inverse agonists to full agonists biased toward G-protein activation - uncovered that also small-molecule agonists can function as direct HIV-1 cell entry inhibitors. Importantly, no agonist-induced receptor internalization was observed for this mutation. Our studies of the pharmacodynamic requirements for HIV-1 fusion inhibitors highlight the possibility of future development of biased ligands with selective targeting of the HIV-CCR5 interaction without interfering with the normal functionality of CCR5.

  12. Compact halo-ligand-conjugated quantum dots for multicolored single-molecule imaging of overcrowding GPCR proteins on cell membranes.

    PubMed

    Komatsuzaki, Akihito; Ohyanagi, Tatsuya; Tsukasaki, Yoshikazu; Miyanaga, Yukihiro; Ueda, Masahiro; Jin, Takashi

    2015-03-25

    To detect single molecules within the optical diffraction limit (< ca. 200 nm), a multicolored imaging technique is developed using Halo-ligand conjugated quantum dots (Halo-QDs; <6 nm in diameter). Using three types of Halo-QDs, multicolored single-molecule fluorescence imaging of GPCR proteins in Dictyostelium cells is achieved.

  13. Negatively charged Ir(iii) cyclometalated complexes containing a chelating bis-tetrazolato ligand: synthesis, photophysics and the study of reactivity with electrophiles.

    PubMed

    Fiorini, Valentina; Zacchini, Stefano; Raiteri, Paolo; Mazzoni, Rita; Zanotti, Valerio; Massi, Massimiliano; Stagni, Stefano

    2016-08-09

    The bis-tetrazolate dianion [1,2 BTB](2-), which is the deprotonated form of 1,2 bis-(1H-tetrazol-5-yl)benzene [1,2-H2BTB], is for the first time exploited as an ancillary N^N ligand for negatively charged [Ir(C^N)2(N^N)](-)-type complexes, where C^N is represented by cyclometalated 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (F2ppy). The new Ir(iii) complexes [Ir(ppy)2(1,2 BTB)]- and [Ir(F2ppy)2(1,2 BTB)]- have been fully characterised and the analysis of the X-ray structure of [Ir(ppy)2(1,2 BTB)]- confirmed the coordination of the [1,2 BTB](2-) dianion in a bis chelated fashion through the N-atoms adjacent to each of the tetrazolic carbons. Both of the new anionic Ir(iii) complexes displayed phosphorescence in the visible region, with intense sky-blue (λmax = 460-490 nm) or aqua (λmax = 490-520 nm) emissions originating from [Ir(F2ppy)2(1,2 BTB)]- and [Ir(ppy)2(1,2 BTB)]-, respectively. In comparison with our very recent examples of anionic Ir(iii)tetrazolate cyclometalates, the new Ir(iii) tris chelate complexes [Ir(F2ppy)2(1,2 BTB)]- and [Ir(ppy)2(1,2 BTB)]-, display an improved robustness, allowing the study of their reactivity toward the addition of electrophiles such as H(+) and CH3(+). In all cases, the electrophilic attacks occurred at the coordinated tetrazolate rings, involving the reversible - by a protonation deprotonation mechanism - or permanent - upon addition of a methyl moiety - switching of their global net charge from negative to positive and, in particular, the concomitant variation of their photoluminescence output. The combination of the anionic complexes [Ir(F2ppy)2(1,2 BTB)]- or [Ir(ppy)2(1,2 BTB)]- with a deep red emitting (λmax = 686 nm) cationic Ir(iii) tetrazole complex such as [IrTPYZ-Me]+, where TPYZ-Me is 2-(2-methyl-2H-tetrazol-5-yl)pyrazine, gave rise to two fully Ir(iii)-based soft salts capable of displaying additive and O2-sensitive emission colours, with an almost pure white light obtained by the appropriate

  14. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms

    PubMed Central

    Andreozzi, Elisa; Barbieri, Federica; Ottaviani, Maria F.; Giorgi, Luca; Bruscolini, Francesca; Manti, Anita; Battistelli, Michela; Sabatini, Luigia; Pianetti, Anna

    2016-01-01

    Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae). Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration 10-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall twofold more effective than all other compounds with a reduction up to 85 and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection treatments of water systems

  15. Novel metal chelating molecules with anticancer activity. Striking effect of the imidazole substitution of the histidine-pyridine-histidine system.

    PubMed

    Ali, Taha F S; Iwamaru, Kana; Ciftci, Halil Ibrahim; Koga, Ryoko; Matsumoto, Masahiro; Oba, Yasunori; Kurosaki, Hiromasa; Fujita, Mikako; Okamoto, Yoshinari; Umezawa, Kazuo; Nakao, Mitsuyoshi; Hide, Takuichiro; Makino, Keishi; Kuratsu, Jun-ichi; Abdel-Aziz, Mohamed; Abuo-Rahma, Gamal El-Din A A; Beshr, Eman A M; Otsuka, Masami

    2015-09-01

    Previously we have reported a metal chelating histidine-pyridine-histidine system possessing a trityl group on the histidine imidazole, namely HPH-2Trt, which induces apoptosis in human pancreatic adenocarcinoma AsPC-1 cells. Herein the influence of the imidazole substitution of HPH-2Trt was examined. Five related compounds, HPH-1Trt, HPH-2Bzl, HPH-1Bzl, HPH-2Me, and HPH-1Me were newly synthesized and screened for their activity against AsPC-1 and brain tumor cells U87 and U251. HPH-1Trt and HPH-2Trt were highly active among the tested HPH compounds. In vitro DNA cleavage assay showed both HPH-1Trt and HPH-2Trt completely disintegrate pUC19 DNA. The introduction of trityl group decisively potentiated the activity.

  16. Semirigid aromatic sulfone-carboxylate molecule for dynamic coordination networks: multiple substitutions of the ancillary ligands.

    PubMed

    Zhou, Xiao-Ping; Xu, Zhengtao; Zeller, Matthias; Hunter, Allen D; Chui, Stephen Sin-Yin; Che, Chi-Ming

    2011-08-01

    We report dynamic, multiple single-crystal to single-crystal transformations of a coordination network system based on a semirigid molecule, TCPSB = 1,3,5-tri(4'-carboxyphenylsulphonyl)benzene, which nicely balances shape persistence and flexibility to bring about the framework dynamics in the solid state. The networks here generally consist of (1) the persistent core component (denoted as CoTCPSB) of linear Co(II) aqua clusters (Co-O-Co-O-Co) integrated into 2D grids by 4,4'-bipyridine and TCPSB and (2) ancillary ligands (AL) on the two terminal Co(II) ions-these include DMF (N,N'-dimethylformamide), DMA (N,N'-dimethylacetamide), CH(3)CN, and water. Most notably, the ancillary ligand sites are highly variable and undergo multiple substitution sequences while maintaining the solid reactants/products as single-crystals amenable to X-ray structure determinations. For example, when immersed in CH(3)CN, the AL of an as-made single crystal of CoTCPSB-DMF (i.e., DMF being the AL) is replaced to form CoTCPSB-CH(3)CN, which, in air, readily loses CH(3)CN to form CoTCPSB-H(2)O; the CoTCPSB-H(2)O single crystals, when placed in DMF, give back CoTCPSB-DMF in single-crystal form. Other selective, dynamic exchanges include the following: CoTCPSB-DMF reacts with CH(3)CN (to form CoTCPSB-CH(3)CN) but NOT with water, methanol, ethanol, DMA, or pyridine; CoTCPSB-H(2)O specifically pick outs DMF from a mixture of DMF, DMA, and DEF; an amorphous, dehydrated solid from CoTCPSB-H(2)O regains crystalline order simply by immersion in DMF (to form CoTCPSB-DMF). Further exploration with functional, semirigid ligands like TCPSB shall continue to uncover a wider array of advanced dynamic behaviors in solid state materials.

  17. Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand Through a Subunit Fracture Mechanism

    SciTech Connect

    L Silvian; J Friedman; K Strauch; T Cachero; E Day; F Qian; B Cunningham; A Fung; L Sun; et al.

    2011-12-31

    BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC{sub 50} = 25 {mu}M and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.

  18. New tetradentate N,N,N,N-chelating α-diimine ligands and their corresponding zinc and nickel complexes: synthesis, characterisation and testing as olefin polymerisation catalysts.

    PubMed

    Li, Lidong; Gomes, Clara S B; Gomes, Pedro T; Duarte, M Teresa; Fan, Zhiqiang

    2011-04-07

    A series of zinc complexes of the general formula {[ZnCl(ArN=C(An)-C(An)=NAr)](+)}(2)[Zn(2)Cl(6)](2-) (where Ar = 2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl 2a, 2-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)phenyl 2b, 2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl 2c; An = acenaphthene backbone) were prepared by the condensation of acenaphthenequinone with the corresponding o-triazolyl-substituted anilines (2-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline 1a, 2-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)aniline 1b, 2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline 1c) which were formed by the copper(I)-catalyzed Huisgen[3+2] dipolar cycloaddition between 2-ethynylaniline and the corresponding azides in high yields, using anhydrous ZnCl(2) as the metal template, in boiling glacial acetic acid. Zinc complexes of the type [ZnCl(ArN=C(An)-C(An)=NAr)](+)[ZnCl(3)(NCCH(3))](-) (4a-c) were synthesized by crystallisation of the corresponding complexes 2a-c in acetonitrile, at -20 °C. After removal of zinc dichloride from complexes 2a-c by the addition of potassium oxalate, in dichloromethane, the tetradentate N,N,N,N-chelating α-diimine ligands of the type ArN=C(An)-C(An)=NAr (5a-c) were obtained. The new ligand precursors and zinc complexes were characterised by elemental analysis, (1)H and (13)C{(1)H} NMR spectroscopy, two-dimensional NMR spectroscopy, and X-ray diffraction. Reaction of the ligand precursors 5a-c with [NiBr(2)(DME)], in dichloromethane, gave nickel complexes of the type [NiBr(2)(ArN=C(An)-C(An)=NAr)] (6a-c). The results of single crystal X-ray diffraction characterisation and magnetic susceptibility measurements demonstrated that nickel complexes 6a-c possess octahedral geometries around the nickel atoms with variable configurations, the Br atoms of which can be ionized when dissolved in methanol. In preliminary catalytic tests, complexes 6a-c revealed to be active as catalysts for the polymerisation of norbornene and styrene, when activated by cocatalyst MAO. The characterisation

  19. Theoretical studies of molecular structure, electronic structure, spectroscopic properties and the ancillary ligand effect: A comparison of tris-chelate ML 3-type and ML 2X-type species for gallium(III) complexes with N, O-donor phenolic ligand, 2-(2-hydroxyphenyl)benzothiazole

    NASA Astrophysics Data System (ADS)

    Tong, Yi-Ping; Lin, Yan-Wen

    2011-02-01

    Two Ga(III) complexes with main ligand, 2-(2-hydroxyphenyl)benzothiazole (HL'), namely mixed-ligand ML 2X-type [GaL' 2X'] ( 1) (HX' = acetic acid, as ancillary ligand) and the meridianal tris-chelate [GaL' 3] ( 2) have been investigated by the density functional theory (DFT/TDDFT) level calculations. Both 1 and 2 can be presented as a similar "mixed-ligand ML 2X-type" species. The molecular geometries, electronic structures, metal-ligand bonding property of Ga-O (N) (main ligand), Ga-O (N) (ancillary ligand) interactions, and the ancillary ligand effect on their HOMO-LUMO gap, their absorption/emission property, and their absorption/emission wavelengths/colors for them have been discussed in detail based on the orbital interactions, the partial density of states (PDOS), and so on. The current investigation also indicates that it is quite probable that by introduction of different ancillary ligands, a series of new mixed-ligand ML 2X-type complexes for group 13 metals can be designed with their absorption/emission property and the absorption/emission wavelengths and colors being tuned.

  20. Theoretical studies of molecular structure, electronic structure, spectroscopic properties and the ancillary ligand effect: a comparison of tris-chelate ML3-type and ML2X-type species for gallium(III) complexes with N,O-donor phenolic ligand, 2-(2-hydroxyphenyl)benzothiazole.

    PubMed

    Tong, Yi-Ping; Lin, Yan-Wen

    2011-02-01

    Two Ga(III) complexes with main ligand, 2-(2-hydroxyphenyl)benzothiazole (HL'), namely mixed-ligand ML2X-type [GaL'2X'] (1) (HX'=acetic acid, as ancillary ligand) and the meridianal tris-chelate [GaL'3] (2) have been investigated by the density functional theory (DFT/TDDFT) level calculations. Both 1 and 2 can be presented as a similar "mixed-ligand ML2X-type" species. The molecular geometries, electronic structures, metal-ligand bonding property of Ga-O (N) (main ligand), Ga-O (N) (ancillary ligand) interactions, and the ancillary ligand effect on their HOMO-LUMO gap, their absorption/emission property, and their absorption/emission wavelengths/colors for them have been discussed in detail based on the orbital interactions, the partial density of states (PDOS), and so on. The current investigation also indicates that it is quite probable that by introduction of different ancillary ligands, a series of new mixed-ligand ML2X-type complexes for group 13 metals can be designed with their absorption/emission property and the absorption/emission wavelengths and colors being tuned.

  1. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  2. Cytotoxicity of Ru(II) piano-stool complexes with chloroquine and chelating ligands against breast and lung tumor cells: Interactions with DNA and BSA.

    PubMed

    Colina-Vegas, Legna; Villarreal, Wilmer; Navarro, Maribel; de Oliveira, Clayton Rodrigues; Graminha, Angélica E; Maia, Pedro Ivo da S; Deflon, Victor M; Ferreira, Antonio G; Cominetti, Marcia Regina; Batista, Alzir A

    2015-12-01

    The synthesis and spectroscopic characterization of nine π-arene piano-stool ruthenium (II) complexes with aromatic dinitrogen chelating ligands or containing chloroquine (CQ), are described in this study: [Ru(η(6)-C10H14)(phen)Cl]PF6 (1), [Ru(η(6)-C10H14)(dphphen)Cl]PF6 (2), [Ru(η(6)-C10H14)(bipy)Cl]PF6 (3), [Ru(η(6)-C10H14)(dmebipy)Cl]PF6 (4) and [Ru(η(6)-C10H14)(bdutbipy)Cl]PF6 (5), [Ru(η(6)-C10H14)(phen)CQ](PF6)2 (6), [Ru(η(6)-C10H14)(dphphen)CQ](PF6)2 (7), [Ru(η(6)-C10H14)(bipy)CQ](PF6)2 (8), [Ru(η(6)-C10H14)(dmebipy)CQ](PF6)2 (9): [1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (dphphen), 2,2'-bipyridine (bipy), 5,5'-dimethyl-2,2'-bipyridine (dmebipy), and 4,4'-di-t-butyl-2,2'-bipyridine (dbutbipy)]. The solid state structures of five ruthenium complexes (1-5) were determined by X-ray crystallography. Electrochemical experiments were performed by cyclic voltammetry to estimate the redox potential of the Ru(II)/Ru(III) couple in each case. Their interactions with DNA and BSA, and activity against four cell lines (L929, A549, MDA-MB-231 and MCF-7) were evaluated. Compounds 2, 6 through 9, interact with DNA which was comparable to the one observed for free chloroquine. The results of fluorescence titration revealed that these complexes strongly quenched the intrinsic fluorescence of BSA following a static quenching procedure. Binding constants (Kb) and the number of binding sites (n~1) were calculated using modified Stern-Volmer equations. The thermodynamic parameters ΔG at different temperatures were calculated and subsequently the values of ΔH and ΔS were also calculated, which revealed that hydrophobic and electrostatic interactions play a major role in the BSA-complex association. The MTT assay results indicated that complexes 2, 5 and 7 showed cytostatic effects at appreciably lower concentrations than those needed for cisplatin, chloroquine and doxorubicin.

  3. Structure of the F-spondin domain of mindin, an integrin ligand and pattern recognition molecule.

    PubMed

    Li, Yili; Cao, Chunzhang; Jia, Wei; Yu, Lily; Mo, Min; Wang, Qian; Huang, Yuping; Lim, Jae-Min; Ishihara, Mayumi; Wells, Lance; Azadi, Parastoo; Robinson, Howard; He, You-Wen; Zhang, Li; Mariuzza, Roy A

    2009-02-04

    Mindin (spondin-2) is an extracellular matrix protein of unknown structure that is required for efficient T-cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N-terminal F-spondin (FS) domain and C-terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8-A resolution. The structure revealed an eight-stranded antiparallel beta-sandwich motif resembling that of membrane-targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C-mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.

  4. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    SciTech Connect

    Andersen, Jacob Lauwring; Schrøder, Tenna Juul; Christensen, Søren; Pallesen, Lone Tjener; García-Alai, Maria Marta; Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; Jong, Inge E. M. de; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob; Watson, Steven P.

    2014-02-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.

  5. Tautomerization of 2-nitroso-N-arylanilines by coordination as N,N'-chelate ligands to rhenium(I) complexes and the anticancer activity of newly synthesized oximine rhenium(I) complexes against human melanoma and leukemia cells in vitro.

    PubMed

    Wirth, Stefan; Wallek, Andreas U; Zernickel, Anna; Feil, Florian; Sztiller-Sikorska, M; Lesiak-Mieczkowska, K; Bräuchle, Christoph; Lorenz, Ingo-Peter; Czyz, M

    2010-07-01

    The synthesis, structural characterization and biological activity of eight ortho-quinone(N-aryl)-oximine rhenium(I) complexes are described. The reaction of the halogenido complexes (CO)(5)ReX (X = Cl (4), Br (5)) with 2-nitroso-N-arylanilines {(C(6)H(3)ClNO)NH(C(6)H(4)R)} (R = p-Cl, p-Me, o-Cl, H) (3a-d) in tetrahydrofurane (THF) yields the complexes fac-(CO)(3)XRe{(C(6)H(3)ClNO)NH(C(6)H(4)R)} (6a-d, 7a-d) with the tautomerized ligand acting as a N,N'-chelate. The substitution of two carbonyl ligands leads to the formation of a nearly planar 5-membered metallacycle. During coordination the amino-proton is shifted to the oxygen of the nitroso group which can be observed in solution for 6 and 7 by (1)H NMR spectroscopy and in solid state by crystal structure analysis. After purification, all compounds have been fully characterized by their (1)H and (13)C NMR, IR, UV/visible (UV/Vis) and mass spectra. The X-ray structure analyses revealed a distorted octahedral coordination of the CO, X and N,N'-chelating ligands for all Re(I) complexes. Biological activity of four oximine rhenium(I) complexes was assessed in vitro in two highly aggressive cancer cell lines: human metastatic melanoma A375 and human chronic myelogenous leukemia K562. Chlorido complexes (6a and 6c) were more efficient than bromido compounds (7d and 7b) in inducing apoptotic cell death of both types of cancer cells. Melanoma cells were more susceptible to tested rhenium(I) complexes than leukemia cells. None of the ligands (3a-d) showed any significant anticancer activity.

  6. Chelation of cadmium.

    PubMed Central

    Andersen, O

    1984-01-01

    The toxicity of cadmium is determined by chelation reactions: in vivo, Cd2+ exists exclusively in coordination complexes with biological ligands, or with administered chelating agents. The Cd2+ ion has some soft character, but it is not a typical soft ion. It has a high degree of polarizability, and its complexes with soft ligands have predominantly covalent bond characteristics. Cd2+ forms the most stable complexes with soft donor atoms (S much greater than N greater than 0). The coordination stereochemistry of Cd2+ is unusually varied, including coordination numbers from 2 to 8. Even though the Cd2+ ion is a d10 ion, disturbed coordination geometries are often seen. Generally, the stability of complexes increases with the number of coordination groups contributed by the ligand; consequently, complexes of Cd2+ with polydentate ligands containing SH groups are very stable. Cd2+ in metallothionein (MT) is coordinated with 4 thiolate groups, and the log stability constant is estimated to 25.5. Complexes between Cd2+ and low molecular weight monodentate or bidentate ligands, e.g., free amino acids (LMW-Cd), seem to exist very briefly, and Cd2+ is rapidly bound to high molecular weight proteins, mainly serum albumin. These complexes (HMW-Cd) are rapidly scavenged from blood, mainly by the liver, and Cd2+ is redistributed to MT. After about 1 day the Cd-MT complex (MT-Cd) almost exclusively accounts for the total retained dose of Cd2+, independent of the route of exposure. MT-Cd is slowly transferred to and accumulated in kidney cortex. The acute toxicity and interorgan distribution of parenterally administered Cd2+ are strongly influenced by preceding MT induction, or decreased capacity for MT synthesis; however, the gastrointestinal (GI) uptake of Cd2+ seems unaffected by preceding MT induction resulting in considerable capacity for Cd2+ chelation in intestinal mucosa, and this finding indicates that endogenous MT is not involved in Cd2+ absorption. The toxicity of

  7. Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform

    PubMed Central

    Wagner, Tobias; Greschik, Holger; Burgahn, Teresa; Schmidtkunz, Karin; Schott, Anne-Kathrin; McMillan, Joel; Baranauskienė, Lina; Xiong, Yan; Fedorov, Oleg; Jin, Jian; Oppermann, Udo; Matulis, Daumantas; Schüle, Roland; Jung, Manfred

    2016-01-01

    Epigenetic modifications of histone tails play an essential role in the regulation of eukaryotic transcription. Writer and eraser enzymes establish and maintain the epigenetic code by creating or removing posttranslational marks. Specific binding proteins, called readers, recognize the modifications and mediate epigenetic signalling. Here, we present a versatile assay platform for the investigation of the interaction between methyl lysine readers and their ligands. This can be utilized for the screening of small-molecule inhibitors of such protein–protein interactions and the detailed characterization of the inhibition. Our platform is constructed in a modular way consisting of orthogonal in vitro binding assays for ligand screening and verification of initial hits and biophysical, label-free techniques for further kinetic characterization of confirmed ligands. A stability assay for the investigation of target engagement in a cellular context complements the platform. We applied the complete evaluation chain to the Tudor domain containing protein Spindlin1 and established the in vitro test systems for the double Tudor domain of the histone demethylase JMJD2C. We finally conducted an exploratory screen for inhibitors of the interaction between Spindlin1 and H3K4me3 and identified A366 as the first nanomolar small-molecule ligand of a Tudor domain containing methyl lysine reader. PMID:26893353

  8. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules

    PubMed Central

    Davidge, Kelly S; Singh, Sandip; Bowman, Lesley AH; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and •NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify •NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, •NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site. PMID:26478812

  9. A strategy for the incorporation of water molecules present in a ligand binding site into a three-dimensional quantitative structure--activity relationship analysis.

    PubMed

    Pastor, M; Cruciani, G; Watson, K A

    1997-12-05

    Water present in a ligand binding site of a protein has been recognized to play a major role in ligand-protein interactions. To date, rational drug design techniques do not usually incorporate the effect of these water molecules into the design strategy. This work represents a new strategy for including water molecules into a three-dimensional quantitative structure-activity relationship analysis using a set of glucose analogue inhibitors of glycogen phosphorylase (GP). In this series, the structures of the ligand-enzyme complexes have been solved by X-ray crystallography, and the positions of the ligands and the water molecules at the ligand binding site are known. For the structure-activity analysis, some water molecules adjacent to the ligands were included into an assembly which encompasses both the inhibitor and the water involved in the ligand-enzyme interaction. The mobility of some water molecules at the ligand binding site of GP gives rise to differences in the ligand-water assembly which have been accounted for using a simulation study involving force-field energy calculations. The assembly of ligand plus water was used in a GRID/GOLPE analysis, and the models obtained compare favorably with equivalent models when water was excluded. Both models were analyzed in detail and compared with the crystallographic structures of the ligand-enzyme complexes in order to evaluate their ability to reproduce the experimental observations. The results demonstrate that incorporation of water molecules into the analysis improves the predictive ability of the models and makes them easier to interpret. The information obtained from interpretation of the models is in good agreement with the conclusions derived from the structural analysis of the complexes and offers valuable insights into new characteristics of the ligands which may be exploited for the design of more potent inhibitors.

  10. Microwave Measurements of Structure Changes for Ligand Molecules Bound to Transition Metals

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.

    2010-06-01

    Precise values for structural parameters for transition metal complexes have been obtained from high-resolution PBFT microwave measurements. The changes in structural parameters for the small organic molecule ligands are relatively large and well-determined. Results for C_2H_4-Os-(CO)_4, C_2H_4-Fe-(CO)_4, C_2H_2-Re-(O)_2CH_3, C_6H_6-Cr-(CO)_3 and C_4H_6-Fe-(CO)_3 will be discussed and compared. For the Ethylene Osmium Tetracarbonyl complex, the experimental ethylene C-C bond length is 1.432 Å, which falls between the free ethylene value of 1.339 Å { } and the ethane value of 1.534 Å. The angle between the plane of the CH_2 group and the extended ethylene C-C bond (out-of-plane angle) is 26 °. Ethylene structural changes are larger for the Os complex than for the similar Fe complex. For Acetylene Methyl dioxoRhenium, the C-C bond length is increased by 0.08 Å { } to 1.29 Å. The H-C-C interbond angles are reduced from 180 ° to 146 °, and 147 °. The planar, D_6_h structure of free benzene is changed to a C_3_v structure with alternating C-C bond lengths due to interaction with Cr-(CO)_3 in the complex. The structural changes are small but significant, since the benzene reactivity is changed. For Butadiene Iron Tricarbonyl, the terminal CH_2 groups are rotated by 28 ° out of the butadiene plane and the CH_2 plane is folded away from the butadiene C1-C2 axis by 27 ° in a direction away from the iron atom. Free butadiene has a trans planar conformation, much different from the distorted cis conformation in the complex. These structural changes are usually accompanied by significant changes in reactivity, which has proved useful for transition metal catalysts and metal containing enzymes.

  11. Identification of ligand-target pairs from combined libraries of small molecules and unpurified protein targets in cell lysates.

    PubMed

    McGregor, Lynn M; Jain, Tara; Liu, David R

    2014-02-26

    We describe the development and validation of interaction determination using unpurified proteins (IDUP), a method that selectively amplifies DNA sequences identifying ligand+target pairs from a mixture of DNA-linked small molecules and unpurified protein targets in cell lysates. By operating in cell lysates, IDUP preserves native post-translational modifications and interactions with endogenous binding partners, thereby enabling the study of difficult-to-purify targets and increasing the potential biological relevance of detected interactions compared with methods that require purified proteins. In IDUP, target proteins are associated with DNA oligonucleotide tags either non-covalently using a DNA-linked antibody or covalently using a SNAP-tag. Ligand-target binding promotes hybridization of a self-priming hairpin that is extended by a DNA polymerase to create a DNA strand that contains sequences identifying both the target and its ligand. These sequences encoding ligand+target pairs are selectively amplified by PCR and revealed by high-throughput DNA sequencing. IDUP can respond to the effect of affinity-modulating adaptor proteins in cell lysates that would be absent in ligand screening or selection methods using a purified protein target. This capability was exemplified by the 100-fold amplification of DNA sequences encoding FRB+rapamycin or FKBP+rapamycin in samples overexpressing both FRB and FKBP (FRB·rapamycin+FKBP, Kd ≈ 100 fM; FKBP·rapamycin+FRB, Kd = 12 nM). In contrast, these sequences were amplified 10-fold less efficiently in samples overexpressing either FRB or FKBP alone (rapamycin+FKBP, Kd ≈ 0.2 nM; rapamcyin+FRB, Kd = 26 μM). Finally, IDUP was used to process a model library of DNA-linked small molecules and a model library of cell lysates expressing SNAP-target fusions combined in a single sample. In this library×library experiment, IDUP resulted in enrichment of sequences corresponding to five known ligand+target pairs ranging in binding

  12. Ligand-mediated dimerization of a carbohydrate-binding molecule reveals a novel mechanism for protein-carbohydrate recognition.

    PubMed

    Flint, James; Nurizzo, Didier; Harding, Stephen E; Longman, Emma; Davies, Gideon J; Gilbert, Harry J; Bolam, David N

    2004-03-19

    The structural and thermodynamic basis for carbohydrate-protein recognition is of considerable importance. NCP-1, which is a component of the Piromyces equi cellulase/hemicellulase complex, presents a provocative model for analyzing how structural and mutational changes can influence the ligand specificity of carbohydrate-binding proteins. NCP-1 contains two "family 29" carbohydrate-binding modules designated CBM29-1 and CBM29-2, respectively, that display unusually broad specificity; the proteins interact weakly with xylan, exhibit moderate affinity for cellulose and mannan, and bind tightly to the beta-1,4-linked glucose-mannose heteropolymer glucomannan. The crystal structure of CBM29-2 in complex with cellohexaose and mannohexaose identified key residues involved in ligand recognition. By exploiting this structural information and the broad specificity of CBM29-2, we have used this protein as a template to explore the evolutionary mechanisms that can lead to significant changes in ligand specificity. Here, we report the properties of the E78R mutant of CBM29-2, which displays ligand specificity that is different from that of wild-type CBM29-2; the protein retains significant affinity for cellulose but does not bind to mannan or glucomannan. Significantly, E78R exhibits a stoichiometry of 0.5 when binding to cellohexaose, and both calorimetry and ultracentrifugation show that the mutant protein displays ligand-mediated dimerization in solution. The three-dimensional structure of E78R in complex with cellohexaose reveals the intriguing molecular basis for this "dimeric" binding mode that involves the lamination of the oligosaccharide between two CBM molecules. The 2-fold screw axis of the ligand is mirrored in the orientation of the two protein domains with adjacent sugar rings stacking against the equivalent aromatic residues in the binding site of each protein molecule of the molecular sandwich. The sandwiching of an oligosaccharide chain between two protein

  13. High-field Solution NMR Spectroscopy as a Tool for Assessing Protein Interactions with Small Molecule Ligands

    PubMed Central

    Skinner, Andria L.; Laurence, Jennifer S.

    2013-01-01

    The ability of a small molecule to bind and modify the activity of a protein target at a specific site greatly impacts the success of drugs in the pharmaceutical industry. One of the most important tools for evaluating these interactions has been high-field solution NMR because of its unique ability to examine even weak protein-drug interactions at high resolution. NMR can be used to evaluate the structural, thermodynamic and kinetic aspects of a binding reaction. The basis of NMR screening experiments is that binding causes a perturbation in the physical properties of both molecules. Unique properties of small and macromolecules allow selective detection of either the protein target or ligand, even in a mixture of compounds. This review outlines current methodologies for assessing protein-ligand interactions from the perspectives of the protein target and ligand and delineates the fundamental principles for understanding NMR approaches in drug research. Advances in instrumentation, pulse sequences, isotopic labeling strategies, and the development of competition experiments support the study of higher molecular weight protein targets, facilitate higher-throughput and expand the range of binding affinities that can be evaluated, enhancing the utility of NMR for identifying and characterizing potential therapeutics to druggable protein targets. PMID:18351634

  14. Correlation of the structural information obtained for europium-chelate ensembles from gas-phase photoluminescence and ion-mobility spectroscopy with density-functional computations and ligand-field theory.

    PubMed

    Greisch, Jean-François; Chmela, Jiří; Harding, Michael E; Wunderlich, Dirk; Schäfer, Bernhard; Ruben, Mario; Klopper, Wim; Schooss, Detlef; Kappes, Manfred M

    2017-02-22

    We report a combined investigation of europium(iii)9-oxo-phenalen-1-one (PLN) coordination complexes, [Eu(PLN)4AE](+) with AE = Mg, Ca, and Sr, using gas-phase photoluminescence, trapped ion-mobility spectrometry and density-functional computations. In order to sort out the structural impact of the alkali earth dications on the photoluminescence spectra, the experimental data are compared to the predicted ligand-field splittings as well as to the collision cross-sections for different isomers of [Eu(PLN)4AE](+). The best fitting interpretation is that one isomer family predominantly contributes to the recorded luminescence. The present work demonstrates the complexity of the coordination patterns of multicenter lanthanoid chelates involved in dynamical equilibria and the pertinence of using isolation techniques to elucidate their photophysical properties.

  15. Structural and Antioxidant Properties of Compounds Obtained from Fe2+ Chelation by Juglone and Two of Its Derivatives: DFT, QTAIM, and NBO Studies

    PubMed Central

    Tamafo Fouegue, Aymard Didier; Bikélé Mama, Désiré; Nkungli, Nyiang Kennet; Younang, Elie

    2016-01-01

    The chelating ability of juglone and two of its derivatives towards Fe2+ion and the antioxidant activity (AOA) of the resulting chelates and complexes (in the presence of H2O and CH3OH as ligands) in gas phase is reported via bond dissociation enthalpy, ionization potential, proton dissociation enthalpy, proton affinity, and electron transfer enthalpy. The DFT/B3LYP level of theory associated with the 6-31+G(d,p) and 6-31G(d) Pople-style basis sets on the atoms of the ligands and the central Fe(II), respectively, was used. Negative chelation free energies obtained revealed that juglone derivatives possessing the O-H substituent (L2) have the greatest ability to chelate Fe2+ ion. Apart from 1B, thermodynamic descriptors of the AOA showed that the direct hydrogen atom transfer is the preferred mechanism of the studied molecules. NBO analysis showed that the Fe-ligand bonds are all formed through metal to ligand charge transfer. QTAIM studies revealed that among all the Fe-ligand bonds, the O1-Fe bond of 1A is purely covalent. The aforementioned results show that the ligands can be used to fight against Fe(II) toxicity, thus preserving human health, and fight against the deterioration of industrial products. In addition, most of the complexes studied have shown a better AOA than their corresponding ligands. PMID:27774044

  16. Insertion of Guest Molecules into a Mixed Ligand Metal-Organic Framework via Single-Crystal-to-Single Crystal Guest Exchange

    DTIC Science & Technology

    2014-07-01

    Insertion of Guest Molecules into a Mixed Ligand Metal−Organic Framework via Single-Crystal-to-Single- Crystal Guest Exchange by Lily Giri...Research Laboratory Aberdeen Proving Ground, MD 21005-5069 ARL-TR-7004 July 2014 Insertion of Guest Molecules into a Mixed Ligand Metal−Organic...Framework via Single-Crystal-to-Single- Crystal Guest Exchange Lily Giri, Rose Pesce-Rodriguez, Shashi P Karna, and Nirupam J Trivedi Weapons

  17. Structure-based approach to improve a small-molecule inhibitor by the use of a competitive peptide ligand.

    PubMed

    Ono, Katsuki; Takeuchi, Koh; Ueda, Hiroshi; Morita, Yasuhiro; Tanimura, Ryuji; Shimada, Ichio; Takahashi, Hideo

    2014-03-03

    Structural information about the target-compound complex is invaluable in the early stage of drug discovery. In particular, it is important to know into which part of the initial compound additional interaction sites could be introduced to improve its affinity. Herein, we demonstrate that the affinity of a small-molecule inhibitor for its target protein could be successfully improved by the constructive introduction of the interaction mode of a competitive peptide. The strategy involved the discrimination of overlapping and non-overlapping peptide-compound pharmacophores by the use of a ligand-based NMR spectroscopic approach, INPHARMA. The obtained results enabled the design of a new compound with improved affinity for the platelet receptor glycoprotein VI (GPVI). The approach proposed herein efficiently combines the advantages of compounds and peptides for the development of higher-affinity druglike ligands.

  18. PRO_LIGAND: An approach to de novo molecular design. 1. Application to the design of organic molecules

    NASA Astrophysics Data System (ADS)

    Clark, David E.; Frenkel, David; Levy, Stephen A.; Li, Jin; Murray, Christopher W.; Robson, Barry; Waszkowycz, Bohdan; Westhead, David R.

    1995-02-01

    An approach to de novo molecular design, PRO_LIGAND, has been developed that, in the environment of a large, integrated molecular design and simulation system, provides a unified framework for the generation of novel molecules which are either similar or complementary to a specified target. The approach is based on a methodology that has proved to be effective in other studies-placing molecular fragments upon target interaction sites-but incorporates many novel features such as the use of a rapid graph-theoretical algorithm for fragment placing, a generalised driver for structure generation which offers a large variety of fragment assembly strategies to the user and the pre-screening of library fragments. After a detailed description of the relevant modules of the package, PRO_LIGAND's efficacy in aiding rational drug design is demonstrated by its ability to design mimics of methotrexate and potential inhibitors for dihydrofolate reductase and HIV-1 protease.

  19. In situ ligand formation in the synthesis of an octanuclear dysprosium 'double cubane' cluster displaying single molecule magnet features.

    PubMed

    Chesman, Anthony S R; Turner, David R; Moubaraki, Boujemaa; Murray, Keith S; Deacon, Glen B; Batten, Stuart R

    2012-04-07

    The nucleophilic addition of methanol and water to the dicyanonitrosomethanide anion, resulting in the formation of cyano(imino(methoxy)methyl)nitrosomethanide (cmnm) and carbamoylcyanonitrosomethanide (ccnm), respectively, is used as a means of in situ ligand synthesis during the formation of [Dy(8)(OH)(6)(OMe)(6)(cmnm)(10)(ccnm)(2)(H(2)O)(2)(MeOH)(2)] (1). This is the first time these reactions have been observed to be promoted by the presence of a lanthanoid ion. The core of the octanuclear cluster consists of two cubane moieties ([Dy(4)(OH)(3)(OMe)]), bridged by four methoxide ligands to form a central [Dy(8)(OH)(6)(OMe)(6)] moiety. The complex displays magnetic properties that are indicative of probable single molecule magnet features.

  20. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    PubMed Central

    Andersen, Jacob Lauwring; Schrøder, Tenna Juul; Christensen, Søren; Strandbygård, Dorthe; Pallesen, Lone Tjener; García-Alai, Maria Marta; Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; de Jong, Inge E. M.; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob; Uppalanchi, Srinivas; Sakumudi, Durga Rao; Eradi, Pradheep; Watson, Steven P.; Thirup, Søren

    2014-01-01

    Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methyl­umbelliferone moiety of AF40431 forming π-stacking with a phenylalanine. PMID:24531479

  1. Control of water molecule aggregations in copper 1,4-cyclohexanedicarboxylate coordination polymers containing pyridyl-piperazine type ligands

    NASA Astrophysics Data System (ADS)

    Qiblawi, Sultan H.; LaDuca, Robert L.

    2014-01-01

    A series of layered divalent copper coordination polymers containing 1,4-cyclohexanedicarboxylate and long-spanning pyridyl-piperazine type ligands exhibits greatly different co-crystallized water molecule aggregations depending on the specific ligands used. Both [Cu(t-14cdc)(4-bpmp)]n (1, t-14cdc = trans-1,4-cyclohexanedicarboxylate, 4-bpmp = bis(4-pyridylmethyl)piperazine) and {[Cu(t-14cdc)(4-bpfp)(H2O)2]·6H2O}n (2, 4-bpfp = bis(4-pyridylformyl)piperazine) possess 2D (4,4) coordination polymer grids. However 1 lacks any co-crystallized water and has pinched grid apertures, while 2 manifests infinite water tapes with T6(2)4(2) classification and rectangular grid apertures. {[Cu2(c-14cdc)2(4-bpmp)]·2H2O}n (3, c-14cdc = cis-1,4-cyclohexanedicarboxylate) has [Cu2(c-14cdc)]2 ribbons with paddlewheel dimeric units linked into 2D slabs by 4-bpmp tethers, along with isolated water molecule pairs. In contrast, {[Cu2(c-14cdc)2(4-bpfp)]·10H2O}n (4) shows a very similar underlying coordination polymer topology but entrains unique decameric water molecule clusters. The minor product {[Cu2(c-14cdcH)2(t-1,4-cdc)(4-bpfp)2(H2O)2]·2H2O}n (5) was isolated along with 4; this compound underwent some in situ cis to trans cyclohexane-dicarboxylate ligand isomerization and exhibits a ladder polymer motif.

  2. Ligand coupling symmetry correlates with thermopower enhancement in small-molecule/nanocrystal hybrid materials.

    PubMed

    Lynch, Jared; Kotiuga, Michele; Doan-Nguyen, Vicky V T; Queen, Wendy L; Forster, Jason D; Schlitz, Ruth A; Murray, Christopher B; Neaton, Jeffrey B; Chabinyc, Michael L; Urban, Jeffrey J

    2014-10-28

    We investigate the impact of the coupling symmetry and chemical nature of organic-inorganic interfaces on thermoelectric transport in Cu2-xSe nanocrystal thin films. By coupling ligand-exchange techniques with layer-by-layer assembly methods, we are able to systematically vary nanocrystal-organic linker interfaces, demonstrating how the functionality of the polar headgroup and the coupling symmetry of the organic linkers can change the power factor (S(2)σ) by nearly 2 orders of magnitude. Remarkably, we observe that ligand-coupling symmetry has a profound effect on thermoelectric transport in these hybrid materials. We shed light on these results using intuition from a simplified model for interparticle charge transport via tunneling through the frontier orbital of a bound ligand. Our analysis indicates that ligand-coupling symmetry and binding mechanisms correlate with enhanced conductivity approaching 2000 S/cm, and we employ this concept to demonstrate among the highest power factors measured for quantum-dot based thermoelectric inorganic-organic composite materials of ∼ 30 μW/m · K(2).

  3. A biomimetic polyketide-inspired approach to small-molecule ligand discovery

    NASA Astrophysics Data System (ADS)

    Aquino, Claudio; Sarkar, Mohosin; Chalmers, Michael J.; Mendes, Kimberly; Kodadek, Thomas; Micalizio, Glenn C.

    2012-02-01

    The discovery of new compounds for the pharmacological manipulation of protein function often embraces the screening of compound collections, and it is widely recognized that natural products offer beneficial characteristics as protein ligands. Much effort has therefore been focused on ‘natural product-like’ libraries, yet the synthesis and screening of such libraries is often limited by one or more of the following: modest library sizes and structural diversity, conformational heterogeneity and the costs associated with the substantial infrastructure of modern high-throughput screening centres. Here, we describe the design and execution of an approach to this broad problem by merging principles associated with biologically inspired oligomerization and the structure of polyketide-derived natural products. A novel class of chiral and conformationally constrained oligomers is described (termed ‘chiral oligomers of pentenoic amides’, COPA), which offers compatibility with split-and-pool methods and can be screened en masse in a batch mode. We demonstrate that a COPA library containing 160,000 compounds is a useful source of novel protein ligands by identifying a non-covalent synthetic ligand to the DNA-binding domain of the p53 transcription factor.

  4. Heterometallic 3d-4f single-molecule magnets: ligand and metal ion influences on the magnetic relaxation.

    PubMed

    Langley, Stuart K; Le, Crystal; Ungur, Liviu; Moubaraki, Boujemaa; Abrahams, Brendan F; Chibotaru, Liviu F; Murray, Keith S

    2015-04-06

    Six tetranuclear 3d–4f single-molecule magnet (SMM) complexes formed using N-n-butyldiethanolamine and N-methyldiethanolamine in conjunction with ortho- and para-substituted benzoic acid and hexafluoroacetoacetone ligands yield two families, both having a butterfly metallic core. The first consists of four complexes of type {Co2(III)Dy2(III)} and {Co2(III)Co(II)Dy(III)} using N-n-butyldiethanolamine with variation of the carboxylate ligand. The anisotropy barriers are 80 cm–1, (77 and 96 cm–1—two relaxation processes occur), 117 and 88 cm–1, respectively, each following a relaxation mechanism from a single DyIII ion. The second family consists of a {Co2(III)Dy2(III)} and a {Cr2(III)Dy2(III)} complex, from the ligand combination of N-methyldiethanolamine and hexafluoroacetylacetone. Both show SMM behavior, the Co(III) example displaying an anisotropy barrier of 23 cm–1. The Cr(III) complex displays a barrier of 28 cm–1, with longer relaxation times and open hysteresis loops, the latter of which is not seen in the Co(III) case. This is a consequence of strong Dy(III)–Cr(III) magnetic interactions, with the relaxation arising from the electronic structure of the whole complex and not from a single DyIII ion. The results suggest that the presence of strong exchange interactions lead to significantly longer relaxation times than in isostructural complexes where the exchange is weak. The study also suggests that electron-withdrawing groups on both bridging (carboxylate) and terminal (β-diketonate) ligands enhance the anisotropy barrier.

  5. Configuration Control in the Synthesis of Homo- and Heteroleptic Bis(oxazolinylphenolato/thiazolinylphenolato) Chelate Ligand Complexes of Oxorhenium(V): Isomer Effect on Ancillary Ligand Exchange Dynamics and Implications for Perchlorate Reduction Catalysis.

    PubMed

    Liu, Jinyong; Wu, Dimao; Su, Xiaoge; Han, Mengwei; Kimura, Susana Y; Gray, Danielle L; Shapley, John R; Abu-Omar, Mahdi M; Werth, Charles J; Strathmann, Timothy J

    2016-03-07

    This study develops synthetic strategies for N,N-trans and N,N-cis Re(O)(LO-N)2Cl complexes and investigates the effects of the coordination spheres and ligand structures on ancillary ligand exchange dynamics and catalytic perchlorate reduction activities of the corresponding [Re(O)(LO-N)2](+) cations. The 2-(2'-hydroxyphenyl)-2-oxazoline (Hhoz) and 2-(2'-hydroxyphenyl)-2-thiazoline (Hhtz) ligands are used to prepare homoleptic N,N-trans and N,N-cis isomers of both Re(O)(hoz)2Cl and Re(O)(htz)2Cl and one heteroleptic N,N-trans Re(O)(hoz)(htz)Cl. Selection of hoz/htz ligands determines the preferred isomeric coordination sphere, and the use of substituted pyridine bases with varying degrees of steric hindrance during complex synthesis controls the rate of isomer interconversion. The five corresponding [Re(O)(LO-N)2](+) cations exhibit a wide range of solvent exchange rates (1.4 to 24,000 s(-1) at 25 °C) and different LO-N movement patterns, as influenced by the coordination sphere of Re (trans/cis), the noncoordinating heteroatom on LO-N ligands (O/S), and the combination of the two LO-N ligands (homoleptic/heteroleptic). Ligand exchange dynamics also correlate with the activity of catalytic reduction of aqueous ClO4(-) by H2 when the Re(O)(LO-N)2Cl complexes are immobilized onto Pd/C. Findings from this study provide novel synthetic strategies and mechanistic insights for innovations in catalytic, environmental, and biomedical research.

  6. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1)

    PubMed Central

    Zak, Krzysztof M.; Grudnik, Przemyslaw; Guzik, Katarzyna; Zieba, Bartosz J.; Musielak, Bogdan; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2016-01-01

    Targeting the PD-1/PD-L1 immunologic checkpoint with monoclonal antibodies has provided unprecedented results in cancer treatment in the recent years. Development of chemical inhibitors for this pathway lags the antibody development because of insufficient structural information. The first nonpeptidic chemical inhibitors that target the PD-1/PD-L1 interaction have only been recently disclosed by Bristol-Myers Squibb. Here, we show that these small-molecule compounds bind directly to PD-L1 and that they potently block PD-1 binding. Structural studies reveal a dimeric protein complex with a single small molecule which stabilizes the dimer thus occluding the PD-1 interaction surface of PD-L1s. The small-molecule interaction “hot spots” on PD-L1 surfaces suggest approaches for the PD-1/PD-L1 antagonist drug discovery. PMID:27083005

  7. Multispectroscopic DNA-binding studies of a tris-chelate nickel(II) complex containing 4,7-diphenyl 1,10-phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Fatahi, Azadeh

    2010-04-01

    A tris-chelate nickel(II) complex, [Ni(DIP) 3](NO 3) 2 · 3H 2O in which DIP = 4,7-diphenyl 1,10 phenanthroline, was synthesized and characterized by spectroscopic ( 1H NMR and UV-vis) and elemental analysis techniques. Binding interaction of this complex with calf thymus-DNA (CT-DNA) was investigated using emission, absorption, circular dichroism (CD), viscosity and DNA thermal denaturation studies. In absorption spectrum of the complex, as the concentration of DNA increased, appearance of an isobestic point proved the new [Ni(DIP) 3] 2+-DNA complex formation. The intrinsic binding constant ( Kb = 4.34 × 10 4 M -1) is comparable to groove binding complexes. In fluorimetric studies, the dynamic enhancement constants ( kD) and bimolecular enhancement constant ( kB) were calculated and showed that the fluorescence enhancement was initiated by a static process in the ground state. Furthermore, the thermodynamic studies showed that the reaction is exothermic and enthalpy favored (Δ H = -58.41 kJ/mol). A strong CD spectrum in the UV and visible region develops upon addition of CT-DNA into the racemate solution of Ni(II) complex (Pfeiffer effect). This has revealed that a shift in diastereomeric inversion equilibrium takes place in the solution to yield an excess of one of the DNA complex diastereomers. Finally, all of the experimental results prove that the minor groove binding must be predominant.

  8. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  9. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals.

    PubMed

    Zayed, M A; El-Dien, F A Nour; Mohamed, Gehad G; El-Gamel, Nadia E A

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or dl-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  10. Copper chelators: chemical properties and bio-medical applications.

    PubMed

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.

  11. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  12. Solution thermodynamic stability of complexes formed with the octadentate hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO): A critical feature for efficient chelation of lanthanide(IV) and actinide(IV) ions

    PubMed Central

    Deblonde, Gauthier J-P.; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J.

    2013-01-01

    The solution thermodynamics of water soluble complexes formed between Ce(III), Ce(IV), Th(IV) and the octadentate chelating agent 3,4,3-LI(1,2-HOPO) were investigated. Several techniques including spectrofluorimetric and automated spectrophotometric titrations were used to overcome the slow spontaneous oxidation of Ce(III) complexes yielding to stability constants of log β110 = 17.4 ± 0.5, log β11-1 = 8.3 ± 0.4 and log β111 = 21.2 ± 0.4 for [Ce(III)(3,4,3-LI(1,2-HOPO))]−, [Ce(III)(3,4,3-LI(1,2-HOPO)(OH)]2− and [Ce(III)(3,4,3-LI(1,2-HOPO)H], respectively. Using the spectral properties of the hydroxypyridinonate chelator in ligand competition titrations against nitrilotriacetic acid, the stability constant log β110 = 41.5 ± 0.5 was determined for [Ce(IV)(3,4,3-LI(1,2-HOPO))]. Finally, the extraordinarily stable complex [Ce(IV)(3,4,3-LI(1,2-HOPO))] was used in Th(IV) competition titrations, resulting in a stability constant of log β110 = 40.1 ± 0.5 for [Th(IV)3,4,3-LI(1,2-HOPO))]. These experimental values are in excellent agreement with previous estimates, they are discussed with respect to the ionic radius and oxidation state of each cationic metal and allow predictions on the stability of other actinide complexes including [U(IV)(3,4,3-LI(1,2-HOPO))], [Np(IV)(3,4,3-LI(1,2-HOPO))] and [Pu(IV)(3,4,3-LI(1,2-HOPO))]. Comparisons with the standard ligand diethylenetriamine pentaacetic acid (DTPA) provide a thermodynamic basis for the observed significantly higher efficacy of 3,4,3-LI(1,2-HOPO) as an in vivo actinide decorporation agent. PMID:23855806

  13. Phosphonated chelates for nuclear imaging.

    PubMed

    Abada, Sabah; Lecointre, Alexandre; Christine, Câline; Ehret-Sabatier, Laurence; Saupe, Falk; Orend, Gertraud; Brasse, David; Ouadi, Ali; Hussenet, Thomas; Laquerrière, Patrice; Elhabiri, Mourad; Charbonnière, Loïc J

    2014-12-21

    A series of bis-, tris- and tetra-phosphonated pyridine ligands is presented. In view of their potential use as chelates for radiopharmaceutical applications, the physico-chemical properties of the ligands and of their Co(II), Ni(II), Cu(II), and Zn(II) complexes were studied by means of potentiometry and UV-Vis absorption spectroscopy. The pKa values of the ligands and of the complexes, as well as the stability constants for the formation of the complexes, are presented. The kinetic aspects of the formation of Cu(II) complexes and of their dissociation in acidic media were studied by means of stopped flow experiments, and the stability of the Cu(II) complex toward reduction to Cu(I) was investigated by cyclic voltammetry and by titration with different reducing agents. The different thermodynamic and kinetic aspects of the polyphosphonated ligands were compared with regard to the impact of the number of phosphonic acid functions. Considering the very promising properties for complexation, preliminary SPECT/CT imaging experiments were carried out on mice with (99m)Tc using the bis- and tetra-phosphonated ligands L(2) and L(1). Finally, a bifunctional version of chelate L(1), L*, was used to label MTn12, a rat monoclonal antibody with both specificity and relatively high affinity for murine tenascin-C. The labeling was monitored by MALDI/MS spectrometry and the affinity of the labeled antibody was checked by immunostaining experiments. After chelation with (99m)Tc, the (99m)Tc-L*-MTn12 antibody was injected into a transgenic mouse with breast cancer and the biodistribution of the labeled antibody was followed by SPECT/CT imaging.

  14. Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D.

    PubMed

    Bacon, Louise; Eagle, Robert A; Meyer, Martina; Easom, Nicholas; Young, Neil T; Trowsdale, John

    2004-07-15

    We characterized two novel members of the RAET1/ULBP gene cluster, RAET1E and RAET1G. The encoded proteins were similar to the ULBP in their class I-like alpha1 and alpha2 domains, but differed in that, instead of being GPI-anchored, their sequences were type 1 membrane-spanning molecules. Both proteins were capable of being expressed at the cell surface. Both proteins bound the activating receptor NKG2D, and RAET1G bound the human CMV protein UL16. The expression of diverse NKG2D-binding molecules in different tissues and with different properties is consistent with multiple modes of infection- or stress-induced activation.

  15. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    SciTech Connect

    Thomas, Christine M.

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  16. Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening.

    PubMed

    Wu, Chun-Yi; Wang, Don-Hong; Wang, Xiaobing; Dixon, Seth M; Meng, Liping; Ahadi, Sara; Enter, Daniel H; Chen, Chao-Yu; Kato, Jason; Leon, Leonardo J; Ramirez, Laura M; Maeda, Yoshiko; Reis, Carolina F; Ribeiro, Brianna; Weems, Brittany; Kung, Hsing-Jien; Lam, Kit S

    2016-06-13

    Identifying "druggable" targets and their corresponding therapeutic agents are two fundamental challenges in drug discovery research. The one-bead-one-compound (OBOC) combinatorial library method has been developed to discover peptides or small molecules that bind to a specific target protein or elicit a specific cellular response. The phage display cDNA expression proteome library method has been employed to identify target proteins that interact with specific compounds. Here, we combined these two high-throughput approaches, efficiently interrogated approximately 10(13) possible molecular interactions, and identified 91 small molecule compound beads that interacted strongly with the phage library. Of 19 compounds resynthesized, 4 were cytotoxic against cancer cells; one of these compounds was found to interact with EIF5B and inhibit protein translation. As more binding pairs are confirmed and evaluated, the "library-against-library" screening approach and the resulting small molecule-protein domain interaction database may serve as a valuable tool for basic research and drug development.

  17. Identification of a small-molecule ligand that activates the neuropeptide receptor GPR171 and increases food intake

    PubMed Central

    Wardman, Jonathan H.; Gomes, Ivone; Bobeck, Erin N.; Stockert, Jennifer A.; Kapoor, Abhijeet; Bisignano, Paola; Gupta, Achla; Mezei, Mihaly; Kumar, Sanjai; Filizola, Marta; Devi, Lakshmi A.

    2016-01-01

    Several neuropeptide systems in the hypothalamus, including neuropeptide Y and agouti-related protein (AgRP), control food intake. Peptides derived from proSAAS, a precursor implicated in the regulation of body weight, also control food intake. GPR171 is a heterotrimeric guanine nucleotide–binding protein (G protein)– coupled receptor (GPCR) for BigLEN (b-LEN), a peptide derived from proSAAS. To facilitate studies exploring the physiological role of GPR171, we sought to identify small-molecule ligands for this receptor by performing a virtual screen of a compound library for interaction with a homology model of GPR171. We identified MS0015203 as an agonist of GPR171 and demonstrated the selectivity of MS0015203 for GPR171 by testing the binding of this compound to 80 other membrane proteins, including family A GPCRs. Reducing the expression of GPR171 by shRNA (short hairpin RNA)–mediated knockdown blunted the cellular and tissue response to MS0015203. Peripheral injection of MS0015203 into mice increased food intake and body weight, and these responses were significantly attenuated in mice with decreased expression of GPR171 in the hypothalamus. Together, these results suggest that MS0015203 is a useful tool to probe the pharmacological and functional properties of GPR171 and that ligands targeting GPR171 may eventually lead to therapeutics for food-related disorders. PMID:27245612

  18. High-Throughput Screening based Identification of Small Molecule Antagonists of Integrin CD11b/CD18 Ligand Binding

    PubMed Central

    Faridi, Mohd Hafeez; Maiguel, Dony; Brown, Brock T.; Suyama, Eigo; Barth, Constantinos J.; Hedrick, Michael; Vasile, Stefan; Sergienko, Eduard; Schürer, Stephan; Gupta, Vineet

    2010-01-01

    Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique. PMID:20188705

  19. Ruthenium(II) and osmium(II) mixed chelates based on pyrenyl-pyridylimidazole and 2,2'-bipyridine ligands as efficient DNA intercalators and anion sensors.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Maity, Dinesh; Baitalik, Sujoy

    2015-01-20

    We report herein the synthesis and characterization of two monometallic ruthenium(II) and osmium(II) complexes of composition [(bpy)2M(HImzPPy)] (ClO4)2 derived from pyrenylimidazole-10-pyridin-2-yl-9H-9,11-diazacyclopenta[e]pyrene (HImzPPy) and 2,2'-bipyridine (bpy) ligands. X-ray crystallographic study shows that both crystals belong to the triclinic system having space group P1̅. The photophysical properties of 1 and 2 in acetonitrile indicate that the metal-to-ligand charge-transfer excited state is mainly centered in the [M(bpy)2](2+) moiety of the complexes and slightly affected by the extended conjugation of the pyrenylimidazole moiety. Both complexes display one-electron reversible metal-centered oxidative processes and a number of quasi-reversible reductive processes. The binding affinities of the complexes toward calf-thymus DNA (CT-DNA) were thoroughly studied through different methods such as absorption, emission, excited-state lifetime, circular dichroism, and thermal denaturation of DNA and a relative DNA binding study using ethidium bromide. All of these experiments account for the intercalative nature of both 1 and 2 toward CT-DNA as well as their light-switch behavior. The anion recognition study through different spectroscopic techniques reveals that both complexes act as "turn-on" luminescence sensors for H2PO4(-) and "turn-off" sensors toward F(-) and AcO(-). The imidazole N-H proton of the receptors gets deprotonated with the excessive addition of F(-) and AcO(-), while it interacts with H2PO4(-) through hydrogen-bonding interaction. Theoretical calculations (DFT and TD-DFT) were also performed to understand the photophysical properties of the metalloreceptors.

  20. Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening

    PubMed Central

    2016-01-01

    Identifying “druggable” targets and their corresponding therapeutic agents are two fundamental challenges in drug discovery research. The one-bead-one-compound (OBOC) combinatorial library method has been developed to discover peptides or small molecules that bind to a specific target protein or elicit a specific cellular response. The phage display cDNA expression proteome library method has been employed to identify target proteins that interact with specific compounds. Here, we combined these two high-throughput approaches, efficiently interrogated approximately 1013 possible molecular interactions, and identified 91 small molecule compound beads that interacted strongly with the phage library. Of 19 compounds resynthesized, 4 were cytotoxic against cancer cells; one of these compounds was found to interact with EIF5B and inhibit protein translation. As more binding pairs are confirmed and evaluated, the “library-against-library” screening approach and the resulting small molecule–protein domain interaction database may serve as a valuable tool for basic research and drug development. PMID:27053324

  1. Mixed ligand complexes of cobalt(III) and iron(III) containing N2O2-chelating Schiff base: Synthesis, characterisation, antimicrobial activity, antioxidant and DFT study

    NASA Astrophysics Data System (ADS)

    Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.

    2015-11-01

    Six mixed ligand complexes, namely, [Co(acac)L1] (1), [Fe(acac)L1] (2), [Co(acac)L2] (3), [Fe(acac)L2] (4), [Co(acac)L3] (5), and [Fe(acac)L3] (6) (H2L1 = NN/-bis(salicylidene)-trans 1,2 diaminocyclohexane, H2L2 = NN/-bis(salicylidene)-1,2 phenylenediamine, H2L3 = NN/-bis(salicylidene)-4-methyl-1,2-phenylenediamine) were synthesised and characterized using elemental analysis, IR spectra, UV-Vis spectra, mass spectra, magnetic susceptibility measurements, 1H and 13C NMR spectroscopy, thermogravimetric analysis. The molar conductance measurement confirmed the non-electrolytic nature of the complexes in DMF solution. Antioxidant activity of the complexes was studied using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. Biological studies of the complexes have been carried out in vitro for antimicrobial activity against some selected gram-positive and gram-negative bacteria. DFT calculations were performed using GAUSSIAN 09 program to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the complexes.

  2. Role of Interfacial Water Molecules in Proline-rich Ligand Recognition by the Src Homology 3 Domain of Abl*

    PubMed Central

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M. Teresa; Martinez, Jose C.; Luque, Irene

    2010-01-01

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design. PMID:19906645

  3. Ring opening metathesis polymerization-derived block copolymers bearing chelating ligands: synthesis, metal immobilization and use in hydroformylation under micellar conditions

    PubMed Central

    Pawar, Gajanan M; Weckesser, Jochen

    2010-01-01

    Summary Norborn-5-ene-(N,N-dipyrid-2-yl)carbamide (M1) was copolymerized with exo,exo-[2-(3-ethoxycarbonyl-7-oxabicyclo[2.2.1]hept-5-en-2-carbonyloxy)ethyl]trimethylammonium iodide (M2) using the Schrock catalyst Mo(N-2,6-Me2-C6H3)(CHCMe2Ph)(OCMe(CF3)2)2 [Mo] to yield poly(M1-b-M2). In water, poly(M1-b-M2) forms micelles with a critical micelle-forming concentration (cmc) of 2.8 × 10−6 mol L−1; Reaction of poly(M1-b-M2) with [Rh(COD)Cl]2 (COD = cycloocta-1,5-diene) yields the Rh(I)-loaded block copolymer poly(M1-b-M2)-Rh containing 18 mg of Rh(I)/g of block copolymer with a cmc of 2.2 × 10−6 mol L−1. The Rh-loaded polymer was used for the hydroformylation of 1-octene under micellar conditions. The data obtained were compared to those obtained with a monomeric analogue, i.e. CH3CON(Py)2RhCl(COD) (C1, Py = 2-pyridyl). Using the polymer-supported catalyst under micellar conditions, a significant increase in selectivity, i.e. an increase in the n:iso ratio was accomplished, which could be further enhanced by the addition of excess ligand, e.g., triphenylphosphite. Special features of the micellar catalytic set up are discussed. PMID:20502652

  4. Microsolvated and chelated butylzinc cations: formation, relative stability, and unimolecular gas-phase chemistry.

    PubMed

    Fleckenstein, Julia E; Koszinowski, Konrad

    2009-11-23

    Solutions of butylzinc iodide in tetrahydrofuran, acetonitrile, and N,N-dimethylformamide were analyzed by electrospray ionization mass spectrometry. In all cases, microsolvated butylzinc cations [ZnBu(solvent)(n)](+), n=1-3, were detected. The parallel observation of the butylzincate anion [ZnBuI(2)](-) suggests that these ions result from disproportionation of neutral butylzinc iodide in solution. In the presence of simple bidentate ligands (1,2-dimethoxyethane, N,N-dimethyl-2-methoxyethylamine, and N,N,N',N'-tetramethylethylenediamine), chelate complexes of the type [ZnBu(ligand)](+) form quite readily. The relative stabilities of these complexes were probed by competition experiments and analysis of their unimolecular gas-phase reactivity. Fragmentation of mass-selected [ZnBu(ligand)](+) leads to the elimination of butene and formation of [ZnH(ligand)](+). In marked contrast, the microsolvated cations [ZnBu(solvent)(n)](+) lose the attached solvent molecules upon gas-phase fragmentation to produce bare [ZnBu](+), which subsequently dissociates into [C(4)H(9)](+) and Zn. This difference in reactivity resembles the situation in organozinc solution chemistry, in which chelating ligands are needed to activate dialkylzinc compounds for the nucleophilic addition to aldehydes.

  5. Fine-tuning terminal solvent ligands to rationally enhance the energy barrier in dinuclear dysprosium single-molecule magnets.

    PubMed

    Zhang, Kun; Yuan, Chen; Guo, Fu-Sheng; Zhang, Yi-Quan; Wang, Yao-Yu

    2016-12-20

    In search of simple approaches to rationally enhance the energy barriers in polynuclear dysprosium single-molecule magnets, a new system containing two structurally closely related dinuclear dysprosium complexes, namely [Dy2(L)2(DBM)2(DMF)2] (1) and [Dy2(L)2(DBM)2(DMA)2]·2DMA (2) (HDBM = dibenzoylmethane, H2L = 2-hydroxy-N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide), is introduced and the structure-dependent magnetic properties are investigated. The two complexes display only slight variations in the coordination geometries of the Dy(iii) ion but display remarkably different magnetic behaviors. By replacing the DMF (dimethylformamide) ligand in complex 1 with DMA (dimethylacetamide) in 2 while retaining the same coordination atoms, we were able to create a 3-fold enhancement in the energy barrier, from 24 K for complex 1 to 77 K for complex 2. Complete-active-space self-consistent field (CASSCF) calculations revealed that the charge distribution surrounding the Dy(iii) centers in 1 and 2 is the key factor in determining the relaxation properties of the SMMs. The introduction of an electron-donating CH3 group in DMA to replace the hydrogen in DMF resulted in a larger average charge along the magnetic axes of complex 2 compared to complex 1, which resulted in a stronger easy-axis ligand field, thus increasing the energy difference between the ground and the first excited states of complex 2. This work presents a simple method to rationally enhance the energy barrier in polynuclear lanthanide SMMs through fine-tuning of the electrostatic potential of the atoms along the magnetic axis.

  6. [Physico-chemical and toxicological profile of gadolinium chelates as contrast agents for magnetic resonance imaging].

    PubMed

    Idée, J-M; Fretellier, N; Thurnher, M M; Bonnemain, B; Corot, C

    2015-07-01

    Gadolinium chelates (GC) are contrast agents widely used to facilitate or to enable diagnosis using magnetic resonance imaging (MRI). From a regulatory viewpoint, GC are drugs. GC have largely contributed to the success of MRI, which has become a major component of clinician's diagnostic armamentarium. GC are not metabolised and are excreted by the kidneys. They distribute into the extracellular compartment. Because of its high intrinsic toxicity, gadolinium must be administered as a chelate. GC can be classified according to two key molecular features: (a) nature of the chelating moiety: either macrocyclic molecules in which gadolinium is caged in the pre-organized cavity of the ligand, or linear, open-chain molecules, (b) ionicity: Gd chelates can be ionic (meglumine or sodium salts) or non-ionic. The thermodynamic and kinetic stabilities of the various GCs differ according to these structural characteristics. The kinetic stability of macrocyclic GCs is much higher than that of linear GCs and the thermodynamic stability of ionic GCs is generally higher than that of non-ionic GC, thus leading to a lower risk of gadolinium dissociation. This class of drugs has enjoyed an excellent reputation in terms of safety for a long time, until a causal link with a recently-described serious disease, nephrogenic systemic fibrosis (NSF), was evidenced. It is acknowledged that the vast majority of NSF cases are related to the administration of some linear CG in renally-impaired patients. Health authorities, worldwide, released recommendations which drastically reduced the occurrence of new cases.

  7. Potentiometric, spectroscopic and thermal studies on the metal chelates of 1-(2-thiazolylazo)-2-naphthalenol

    NASA Astrophysics Data System (ADS)

    Omar, M. M.; Mohamed, Gehad G.

    2005-03-01

    The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO 2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 °C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L) 2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X]· nH 2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO 2(II) (X = NO 3, n = 0), and [Fe(L)Cl 2(H 2O)]·2H 2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO 2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, Δ H*, Δ S* and Δ G* are calculated from the TG curves.

  8. An Evaluation of the Chelating Agent EDDS for Marigold Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopolycarboxylic acid (APCA) ligands (chelating agents) like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to plants. The offsite runoff and contamina...

  9. The L1 adhesion molecule is a cellular ligand for VLA-5

    PubMed Central

    1995-01-01

    The L1 adhesion molecule is a member of the immunoglobulin superfamily shared by neural and immune cells. In the nervous system L1 can mediate cell binding by a homophilic mechanism. To analyze its function on leukocytes we studied whether L1 could interact with integrins. Here we demonstrate that VLA-5, an RGD-specific fibronectin receptor on a wide variety of cell types, can bind to murine L1. Mouse ESb-MP cells expressing VLA-5 and L1 could be induced to aggregate in the presence of specific mAbs to CD24 (heat-stable antigen), a highly and heterogeneously glycosylated glycophosphatidylinositol-linked differentiation antigen of hematopoietic and neural cells. The aggregation was blocked by both mAbs to L1 and VLA-5, respectively. Aggregation was blocked also by a synthetic RGD-containing peptide derived from the Ig-domain VI of the L1 protein. ESb-MP subclones with low L1 expression could not aggregate. In heterotypic binding assays mouse bone marrow cells could adhere in an L1-dependent fashion to platelets that expressed VLA-5. Also purified L1 coated to polystyrene beads could bind to platelets. The binding of L1-beads was again inhibited by mAbs to L1 and VLA-5, by soluble L1 and the L1-RGD peptide in a dose-dependent manner. Thymocytes or human Nalm-6 tumor cells expressing VLA-5 could adhere to affinity-purified L1 and to the L1- derived RGD-containing peptide coated to glass slides. The adhesion was strongly enhanced in the presence of Mn(2+)-ions and blocked by mAbs to VLA-5. We also demonstrate a direct L1-VLA-5 protein interaction. Our results suggest a novel binding pathway, in which the VLA-5 integrin binds to L1 on adjacent cells. Given its rapid downregulation on lymphocytes after induction of cell proliferation, L1 may be important in integrin-mediated and activation-regulated cell-cell interactions. PMID:8557754

  10. Identification of small-molecule inhibitors against SecA by structure-based virtual ligand screening.

    PubMed

    De Waelheyns, Evelien; Segers, Kenneth; Sardis, Marios Frantzeskos; Anné, Jozef; Nicolaes, Gerry A F; Economou, Anastassios

    2015-11-01

    The rapid rise of antibiotic-resistant bacteria is one of the major concerns in modern medicine. Therefore, to treat bacterial infections, there is an urgent need for new antibacterials-preferably directed against alternative bacterial targets. One such potential target is the preprotein translocation motor SecA. SecA is a peripheral membrane ATPase and a key component of the Sec secretion pathway, the major route for bacterial protein export across or into the cytoplasmic membrane. As SecA is essential for bacterial viability, ubiquitous and highly conserved in bacteria, but not present in eukaryotic cells, it represents an attractive antibacterial target. Using an in silico approach, we have defined several potentially druggable and conserved pockets on the surface of SecA. We show that three of these potentially druggable sites are important for SecA function. A starting collection of ~500 000 commercially available small-molecules was virtually screened against a predicted druggable pocket in the preprotein-binding domain of Escherichia coli SecA using a multi-step virtual ligand screening protocol. The 1040 top-scoring molecules were tested in vitro for inhibition of the translocation ATPase activity of E. coli SecA. Five inhibitors of the translocation ATPase, and not of basal or membrane ATPase, were identified with IC50 values <65 μm. The most potent inhibitor showed an IC50 of 24 μm. The antimicrobial activity was determined for the five most potent SecA inhibitors. Two compounds were found to possess weak antibacterial activity (IC50 ~198 μm) against E. coli, whereas some compounds showed moderate antibacterial activity (IC50 ~100 μm) against Staphylococcus aureus.

  11. Development of a reliable analytical method for extraction spectrophotometric determination of ruthenium(III) from catalyst and fissium alloy using o-methylphenyl thiourea as a chromogenic chelating ligand

    NASA Astrophysics Data System (ADS)

    Kuchekar, Shashikant R.; Shelar, Yogesh S.; Aher, Haribhau R.; Han, Sung H.

    2013-04-01

    A simple and selective method is developed for the extraction spectrophotometric determination of ruthenium(III) using o-methylphenyl thiourea (OMPT) as a chromogenic chelating ligand. The basis of the proposed method is ruthenium(III)-OMPT complex formation in aqueous hydrochloric acid media (3.0 mol L-1) after 5.0 min heating on a boiling water bath and the complex formed is extracted into chloroform. The absorbance of green colored ruthenium(III)-OMPT complex is measured at 590 nm against the reagent blank. Beer's law was obeyed up to 42.5 μg mL-1 of ruthenium(III) and the optimum concentration range is 7.56-39.81 μg mL-1 of ruthenium(III) as evaluated by Ringbom's plot. Molar absorptivity and Sandell's sensitivity of ruthenium(III)-OMPT complex in chloroform are 2.34 × 103 L mol-1 cm-1 and 0.043 μg cm-2 respectively. The composition of ruthenium(III):OMPT complex (1:2) was established from slope ratio method, mole ratio method and Job's continuous variation method. Complex was stable for more than 48 h. The interfering effect of various foreign ions was studied and suitable masking agents are used wherever necessary to enhance the selectivity of the method. Proposed method is successfully applied for determination of ruthenium(III) from binary and ternary synthetic mixtures, synthetic mixtures corresponding to fissium alloy and ruthenium catalyst. Repetition of the method was checked by finding relative standard deviation (R.S.D) for 10 determinations which was 0.23%. A scheme for sequential separation of palladium(II), ruthenium(III), rhodium(III) and platinum(IV) has been developed.

  12. Development of a reliable analytical method for extraction spectrophotometric determination of ruthenium(III) from catalyst and fissium alloy using o-methylphenyl thiourea as a chromogenic chelating ligand.

    PubMed

    Kuchekar, Shashikant R; Shelar, Yogesh S; Aher, Haribhau R; Han, Sung H

    2013-04-01

    A simple and selective method is developed for the extraction spectrophotometric determination of ruthenium(III) using o-methylphenyl thiourea (OMPT) as a chromogenic chelating ligand. The basis of the proposed method is ruthenium(III)-OMPT complex formation in aqueous hydrochloric acid media (3.0molL(-1)) after 5.0min heating on a boiling water bath and the complex formed is extracted into chloroform. The absorbance of green colored ruthenium(III)-OMPT complex is measured at 590nm against the reagent blank. Beer's law was obeyed up to 42.5μgmL(-1) of ruthenium(III) and the optimum concentration range is 7.56-39.81μgmL(-1) of ruthenium(III) as evaluated by Ringbom's plot. Molar absorptivity and Sandell's sensitivity of ruthenium(III)-OMPT complex in chloroform are 2.34×10(3)Lmol(-1) cm(-1) and 0.043μgcm(-2) respectively. The composition of ruthenium(III):OMPT complex (1:2) was established from slope ratio method, mole ratio method and Job's continuous variation method. Complex was stable for more than 48h. The interfering effect of various foreign ions was studied and suitable masking agents are used wherever necessary to enhance the selectivity of the method. Proposed method is successfully applied for determination of ruthenium(III) from binary and ternary synthetic mixtures, synthetic mixtures corresponding to fissium alloy and ruthenium catalyst. Repetition of the method was checked by finding relative standard deviation (R.S.D) for 10 determinations which was 0.23%. A scheme for sequential separation of palladium(II), ruthenium(III), rhodium(III) and platinum(IV) has been developed.

  13. Activating KIR molecules and their cognate ligands prevail in children with a diagnosis of ASD and in their mothers.

    PubMed

    Guerini, Franca R; Bolognesi, Elisabetta; Chiappedi, Matteo; Manca, Salvatorica; Ghezzo, Alessandro; Agliardi, Cristina; Zanette, Michela; Littera, Roberto; Carcassi, Carlo; Sotgiu, Stefano; Clerici, Mario

    2014-02-01

    The activity of natural killer (NK) cells is modulated by the interaction between killer-cell immune globulin-like receptor (KIR) proteins and their cognate HLA ligands; activated NK cells produce inflammatory cytokines and mediate innate immune responses. Activating KIR/HLA complexes (aKIR/HLA) were recently suggested to prevail in children with autism spectrum disorders (ASD), a neurodevelopmental syndrome characterized by brain and behavioral abnormalities and associated with a degree of inflammation. We verified whether such findings could be confirmed by analyzing two sample cohorts of Sardinian and continental Italian ASD children and their mothers. Results showed that aKIR/HLA are increased whereas inhibitory KIR/HLA complexes are reduced in ASD children; notably this skewing was even more significant in their mothers. KIR and HLA molecules are expressed by placental cells and by the trophoblast and their interactions result in immune activation and influence fetal, as well as central nervous system development and plasticity. Data herein suggest that in utero KIR/HLA immune interactions favor immune activation in ASD; this may play a role in the pathogenesis of the disease.

  14. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    PubMed Central

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  15. Series of dinuclear and tetranuclear lanthanide clusters encapsulated by salen-type and β-diketionate ligands: single-molecule magnet and fluorescence properties.

    PubMed

    Sun, Wen-Bin; Han, Bing-Lu; Lin, Po-Heng; Li, Hong-Feng; Chen, Peng; Tian, Yong-Mei; Murugesu, Muralee; Yan, Peng-Fei

    2013-10-07

    Three dinuclear [Ln2H2OL(1)2(acac)2]·solvent (1, Ln = Gd, solvent = 2CH2Cl2; 2, Ln = Tb, no solvent; 3, Ln = Er, solvent = (C2H5)2O), and two tetranuclear lanthanide clusters [Ln4(μ3-OH)2L(2)2(acac)6]·2(solvent) (4, Ln = Tb, solvent = CH3OH; 5, Ln = Dy, solvent = CH3CN) were characterized in terms of structure, fluorescence and magnetism. The dinuclear lanthanide complexes were constructed by a rigid salen-type ligand H2L(1) = N,N'-bis(salicylidene)-o-phenylenediamine and β-diketonate (acac = acetylacetonate) ligands, while the tetranuclear clusters were formed from the flexible ligand H2L(2) = N,N'-bis(salicylidene)-1,2-ethanediamine. Crystal structure analysis indicates that the rigid ligand favors the double-decker sandwich structure (Ln2L(1)2), in which the two lanthanide ions have different coordination numbers and geometry, while the more flexible ligand (H2L(2)) leads to planar tetranuclear clusters. The relationship between their respective magnetic anisotropy and ligand-field geometries and their fluorescence properties was investigated. The Dy and Tb-containing clusters exhibit typical visible fluorescence properties, and single-molecule magnet behavior is seen in complex 5.

  16. In silico strategies for the selection of chelating compounds with potential application in metal-promoted neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Cristina; Rimola, Albert; Alí-Torres, Jorge; Sodupe, Mariona; González-Duarte, Pilar

    2011-01-01

    The development of new strategies to find commercial molecules with promising biochemical features is a main target in the field of biomedicine chemistry. In this work we present an in silico-based protocol that allows identifying commercial compounds with suitable metal coordinating and pharmacokinetic properties to act as metal-ion chelators in metal-promoted neurodegenerative diseases (MpND). Selection of the chelating ligands is done by combining quantum chemical calculations with the search of commercial compounds on different databases via virtual screening. Starting from different designed molecular frameworks, which mainly constitute the binding site, the virtual screening on databases facilitates the identification of different commercial molecules that enclose such scaffolds and, by imposing a set of chemical and pharmacokinetic filters, obey some drug-like requirements mandatory to deal with MpND. The quantum mechanical calculations are useful to gauge the chelating properties of the selected candidate molecules by determining the structure of metal complexes and evaluating their stability constants. With the proposed strategy, commercial compounds containing N and S donor atoms in the binding sites and capable to cross the BBB have been identified and their chelating properties analyzed.

  17. Novel hydrazine molecules as tools to understand the flexibility of vascular adhesion protein-1 ligand-binding site: toward more selective inhibitors.

    PubMed

    Nurminen, Elisa M; Pihlavisto, Marjo; Lázár, László; Pentikäinen, Ulla; Fülöp, Ferenc; Pentikäinen, Olli T

    2011-04-14

    Vascular adhesion protein-1 (VAP-1) belongs to a family of amine oxidases. It plays a role in leukocyte trafficking and in amine compound metabolism. VAP-1 is linked to various diseases, such as Alzheimer's disease, psoriasis, depression, diabetes, and obesity. Accordingly, selective inhibitors of VAP-1 could potentially be used to treat those diseases. In this study, eight novel VAP-1 hydrazine derivatives were synthesized and their VAP-1 and monoamine oxidase (MAO) inhibition ability was determined in vitro. MD simulations of VAP-1 with these new molecules reveal that the VAP-1 ligand-binding pocket is flexible and capable of fitting substantially larger ligands than was previously believed. The increase in the size of the VAP-1 ligands, together with the methylation of the secondary nitrogen atom of the hydrazine moiety, improves the VAP-1 selectivity over MAO.

  18. Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma

    PubMed Central

    Schlößer, Hans A.; Drebber, Uta; Kloth, Michael; Thelen, Martin; Rothschild, Sacha I.; Haase, Simon; Garcia-Marquez, Maria; Wennhold, Kerstin; Berlth, Felix; Urbanski, Alexander; Alakus, Hakan; Schauss, Astrid; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; Warnecke-Ebertz, Ute; Stippel, Dirk L.; Zippelius, Alfred; Büttner, Reinhard; Hallek, Michael; Hölscher, Arnulf H.; Zander, Thomas; Mönig, Stefan P.; von Bergwelt-Baildon, Michael

    2016-01-01

    ABSTRACT Remarkable efficacy of immune checkpoint inhibition has been reported for several types of solid tumors and early studies in gastric adenocarcinoma are promising. A detailed knowledge about the natural biology of immune checkpoints in gastric adenocarcinoma is essential for clinical and translational evaluation of these drugs. This study is a comprehensive analysis of cytotoxic T lymphocyte associated molecule 4 (CTLA-4) and programmed death 1 ligand 1 (PD-L1) expression in gastric adenocarcinoma. PD-L1 and CTLA-4 were stained on tumor sections of 127 Caucasian patients with gastric adenocarcinoma by immunohistochemistry (IHC) and somatic mutation profiling was performed using targeted next-generation sequencing. Expression of PD-L1 and CTLA-4 on lymphocytes in tumor sections, tumor-draining lymph nodes (TDLN) and peripheral blood were studied by flow-cytometry and immune-fluorescence microscopy in an additional cohort. PD-L1 and CTLA-4 were expressed in 44.9% (57/127) and 86.6% (110/127) of the analyzed gastric adenocarcinoma samples, respectively. Positive tumor cell staining for PD-L1 or CTLA-4 was associated with inferior overall survival. Somatic mutational analysis did not reveal a correlation to expression of PD-L1 or CTLA-4 on tumor cells. Expression of PD-1 (52.2%), PD-L1 (42.2%) and CTLA-4 (1.6%) on tumor infiltrating T cells was significantly elevated compared to peripheral blood. Of note, PD-1 and PD-L1 were expressed far higher by tumor-infiltrating lymphocytes than CTLA-4. In conclusion, specific immune checkpoint-inhibitors should be evaluated in this disease and the combination with molecular targeted therapies might be of benefit. An extensive immune monitoring should accompany these studies to better understand their mode of action in the tumor microenvironment. PMID:27467911

  19. Multiple spectra of electron spin resonance in chiral molecule-based magnets networked by a single chiral ligand

    NASA Astrophysics Data System (ADS)

    Mito, M.; Nagano, T.; Tsuruta, K.; Deguchi, H.; Takagi, S.; Kishine, J.; Yoshida, Y.; Inoue, K.

    2013-10-01

    A molecule-based magnet [Cr(CN)6][Mn(R/S)-pnH(H2O)](H2O) (termed R/S-GN) is a chiral crystal without an inversion center and mirror reflection, and its structural network is constructed using a chiral ligand diaminopropane (R/S)-pn. In S-GN, multiple spectra of ESR were observed below the magnetic ordering temperature by Morgunov et al. [Phys. Rev. B 77, 184419 (2008)]. They concluded that the phenomenon at the high field side occurred because the incommensurate magnetic structure resulted in a length-controllable superlattice of domain walls (the so-called chiral soliton lattice, CSL) under a dc magnetic field H applied perpendicular to the magnetic chiral axis. However, there multiple spectra were observed even for H nearly parallel to the chiral axis, a-axis, and their interpretation is unreasonable. Thus, we conducted an X-band electron spin resonance (ESR) measurement of R-GN under conditions similar to those of their experiment and performed Fourier spectrum analyses for the data of R-GN as an approach of physical characterization. By using two Lorentz spectra, the main ESR spectra for H // a were reproduced, and furthermore two prominent periodic modes were found by spectrum analyses based on Fourier transform. Two characteristic periods, p1 and p2 (

  20. Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3

    PubMed Central

    1996-01-01

    Integrin alpha v beta 3 is distinct in its capacity to recognize the sequence Arg-Gly-Asp (RGD) in many extra-cellular matrix (ECM) components. Here, we demonstrate that in addition to the recognition of ECM components, alpha v beta 3 can interact with the neural cell adhesion molecule L1-CAM; a member of the immunoglobulin superfamily (IgSF). M21 melanoma cells displayed significant Ca(++)-dependent adhesion and spreading on immunopurified rat L1 (NILE). This adhesion was found to be dependent on the expression of the alpha v-integrin subunit and could be significantly inhibited by an antibody to the alpha v beta 3 heterodimer. M21 cells also displayed some alpha v beta 3-dependent adhesion and spreading on immunopurified human L1. Ligation between this ligand and alpha v beta 3 was also observed to promote significant haptotactic cell migration. To map the site of alpha v beta 3 ligation we used recombinant L1 fragments comprising the entire extracellular domain of human L1. Significant alpha v beta 3-dependent adhesion and spreading was evident on a L1 fragment containing Ig-like domains 4, 5, and 6. Importantly, mutation of an RGD sequence present in the sixth Ig-like domain of L1 abrogated M21 cell adhesion. We conclude that alpha v beta 3-dependent recognition of human L1 is dependent on ligation of this RGD site. Despite high levels of L1 expression the M21 melanoma cells did not display significant adhesion via a homophilic L1-L1 interaction. These data suggest that M21 melanoma cells recognize and adhere to L1 through a mechanism that is primarily heterophilic and integrin dependent. Finally, we present evidence that melanoma cells can shed and deposit L1 in occluding ECM. In this regard, alpha v beta 3 may recognize L1 in a cell-cell or cell- substrate interaction. PMID:8636223

  1. Chelation in Metal Intoxication

    PubMed Central

    Flora, Swaran J.S.; Pachauri, Vidhu

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537

  2. A density functional theory investigation of the interaction of the tetraaqua calcium cation with bidentate carbonyl ligands.

    PubMed

    Quattrociocchi, Daniel Garcez S; Meuser, Marcos Vinicius Monsores; Ferreira, Glaucio Braga; de M Carneiro, José Walkimar; Stoyanov, Stanislav R; da Costa, Leonardo Moreira

    2017-02-01

    Calcium complexes with bidentate carbonyl ligands are important in biological systems, medicine and industry, where the concentration of Ca(2+) is controlled using chelating ligands. The exchange of two water molecules of [Ca(H2O)6](2+) for one bidentate monosubstituted and homo disubstituted dicarbonyl ligand was investigated using the B3LYP/6-311++G(d,p) method. The ligand substituents NH2, OCH3, OH, CH3, H, F, Cl, CN and NO2 are functional groups with distinct electron-donating and -withdrawing effects that bond directly to the sp(2) C atom of the carbonyl group. The geometry, charge and energy characteristics of the complexes were analyzed to help understand the effects of substituents, spacer length and chelation. Coordination strength was quantified in terms of the enthalpy and free energy of the exchange reaction. The most negative enthalpies were calculated for the coordination of bidentate ligands containing three to five methylene group spacers between carbonyls. The chelate effect contribution was analyzed based on the thermochemistry. The electronic character of the substituent modulates the strength of binding to the metal cation, as ligands containing electron-donor substituents coordinate stronger than those with electron-acceptor substituents. This is reflected in the geometric (bond length and chelating angle), electronic (atomic charges) and energetic (components of the total interacting energy) characteristics of the complexes. Energy decomposition analysis (EDA)-an approach for partitioning of the energy into its chemical origins-shows that the electrostatic component of the coordination is predominant, and yields relevant contribution of the covalent term, especially for the electron-withdrawing substituted ligands. The chelate effect of the bidentate ligands was noticeable when compared with substitution by two monodentate ligands. Graphical abstract The affinity of 18 bidentate carbonyl ligands toward the [Ca(H2O)4](2+) cation is evaluated in

  3. Macrocyclic bifunctional chelating agents

    DOEpatents

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  4. A bis(3-hydroxy-4-pyridinone)-EDTA derivative as a strong chelator for M3+ hard metal ions: complexation ability and selectivity.

    PubMed

    Gama, Sofia; Dron, Paul; Chaves, Silvia; Farkas, Etelka; Santos, M Amélia

    2009-08-21

    The study of chelating compounds is very important to solve problems related to human metal overload. 3-Hydroxy-3-pyridinones (HP), namely deferiprone, have been clinically used for chelating therapy of Fe and Al over the last decade. A multi-disciplinary search for alternative molecules led us to develop poly-(3-hydroxy-4-pyridinones) to increase metal chelation efficacy. We present herein a complexation study of a new bis-(3-hydroxy-4-pyridinone)-EDTA derivative with a set of M(3+) hard metal ions (M = Fe, Al, Ga), as well as Zn(2+), a biologically relevant metal ion. Thus a systematic aqueous solution equilibrium study was performed using potentiometric and spectroscopic techniques (UV-Vis, NMR methods). These set of results enables the establishment of specific models as well as the determination of thermodynamic stability constants and coordination modes of the metal complexes. The results indicate that this ligand has a higher affinity for chelating to these hard metal ions than deferiprone, and that the coordination occurs mostly through the HP moieties. Furthermore, it was also found that this ligand has a higher selectivity for chelating to M(3+) hard metal ions (M = Fe, Al, Ga) than Zn(2+).

  5. FTIR, magnetic, mass spectral, XRD and thermal studies of metal chelates of tenoxicam

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2007-09-01

    Metal chelates of anti-inflammatory drug, tenoxicam (Ten), are synthesized and characterized using elemental analyses, IR, solid reflectance, magnetic, mass spectra, thermal analyses (TGA and DTA) and X-ray powder diffraction techniques. The chelates are found to have the general formulae [M(H 2L) 2(H 2O) x] (A) 2· yH 2O (where H 2L = neutral Ten, A = Cl in case of Ni(II) and Co(II) or AcO in case of Cu(II) and Zn(II) ions, x = 0-2 and y = 0-2.5) and [M(H 2L) 3](A) z· yH 2O (A = SO 4 in case of Fe(II) ion ( z = 1) or Cl in case of Fe(III) ( z = 3) and y = 0-4). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions through the pyridyl- N and carbonyl- O of the amide moiety. The solid reflectance spectra and magnetic moment measurements reveal that these chelates have tetrahedral, square planar and octahedral geometrical structures. Mass spectra are also used to confirm the proposed formulae and the possible fragments resulted from fragmentation of Ten and its Zn(II) and Cu(II) chelates are suggested. The thermal behaviour of the chelates (TG/DTG, DTA) are discussed in detailed manner and revealed that water molecules of crystallization together with anions are removed in the first and second steps while the Ten molecules are removed in the subsequent steps. Different thermodynamic parameters are evaluated and the relative thermal stabilities of the complexes are discussed. X-ray powder diffraction patterns are used to indicate the polymorphic form of Ten and if the complexes have molecular similarity with respect to type of coordination.

  6. A new copper(II) chelate complex with tridentate ligand: Synthesis, crystal and molecular electronic structure of aqua-(diethylenetriamine-N, N‧, N‧‧)-copper(II) sulfate monohydrate and its fire retardant properties

    NASA Astrophysics Data System (ADS)

    Lavrenyuk, H.; Mykhalichko, O.; Zarychta, B.; Olijnyk, V.; Mykhalichko, B.

    2015-09-01

    The crystals of a new aqua-(diethylenetriamine-N, N‧, N‧‧)-copper(II) sulfate monohydrate have been synthesized by direct interaction of solid copper(II) sulfate pentahydrate with diethylenetriamine (deta). The crystal structure of [Cu(deta)H2O]SO4ṡH2O (1) has been determined by X-ray diffraction methods at 100 K and characterized using X-ray powder diffraction pattern: space group P 1 bar, a = 7.2819(4), b = 8.4669(4), c = 8.7020(3) Å, α = 83.590(3), β = 89.620(4), γ = 84.946(4)°, Z = 2. The environment of the Cu(II) atom is a distorted, elongated square pyramid which consists of three nitrogen atoms of the deta molecule and oxygen atom of the water molecule in the basal plane of the square pyramid (the average lengths of the in-plane Cu-N and Cu-O bonds are 2.00 Å). The apical position of the coordination polyhedron is occupied by complementary oxygen atom of the sulfate anion (the length of the axial Cu-O bond is 2.421(1) Å). The crystal packing is governed by strong hydrogen bonds of O-H⋯O and N-H⋯O types. The ab initio quantum-chemical calculations have been performed by the restricted Hartree-Fock method with a basis set 6-31∗G using the structural data of [Cu(deta)H2O]SO4ṡH2O. It has been ascertained that the degenerate d-orbitals of the Cu2+ ion split under the co-action of both the square-pyramidal coordination and the chelation. It is significant that visually observed crystals color (blue-violet) of the [Cu(deta)H2O]SO4ṡH2O complex is in good agreement with the calculated value of wavelength of visible light (λ = 5735 Å) which is closely related to the energy of the absorbed photon (Δ = 2.161 eV). Furthermore, the stereo-chemical aspect of influence of the CuSO4 upon combustibility of modified epoxy-amine polymers has been scrutinized.

  7. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.

    PubMed

    Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J

    2015-01-22

    The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.

  8. Inhibitor Ranking through QM Based Chelation Calculations for Virtual Screening of HIV-1 RNase H Inhibition

    PubMed Central

    Poongavanam, Vasanthanathan; Steinmann, Casper; Kongsted, Jacob

    2014-01-01

    Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors compared to using an empirical scoring function. Furthermore, full protein fragment molecular orbital (FMO) calculations were conducted and subsequently analysed for individual residue stabilization/destabilization energy contributions to the overall binding affinity in order to better understand the true and false predictions. After a successful assessment of the methods based on the use of a training set of molecules, QM based chelation calculations were used as filter in virtual screening of compounds in the ZINC database. By this, we find, compared to regular docking, QM based chelation calculations to significantly reduce the large number of false positives. Thus, the computational models tested in this study could be useful as high throughput filters for searching HIV-1 RNase H active-site molecules in the virtual screening process. PMID:24897431

  9. Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator

    PubMed Central

    Andersson, Ken G.; Oroujeni, Maryam; Garousi, Javad; Mitran, Bogdan; Ståhl, Stefan; Orlova, Anna; Löfblom, John; Tolmachev, Vladimir

    2016-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets. The anti-EGFR ZEGFR:2377 affibody molecule is a potential imaging probe for EGFR detection. The use of the generator-produced radionuclide 99mTc should facilitate clinical translation of an imaging probe due to its low price, availability and favorable dosimetry of the radionuclide. In the present study, we evaluated feasibility of ZEGFR:2377 labeling with 99mTc using a peptide-based cysteine-containing chelator expressed at the C-terminus of ZEGFR:2377. The label was stable in vitro under cysteine challenge. In addition, 99mTc-ZEGFR:2377 was capable of specific binding to EGFR-expressing cells with high affinity (274 pM). Studies in BALB/C nu/nu mice bearing A431 xenografts demonstrated that 99mTc-ZEGFR:2377 accumulates in tumors in an EGFR-specific manner. The tumor uptake values were 3.6±1 and 2.5±0.4% ID/g at 3 and 24 h after injection, respectively. The corresponding tumor-to-blood ratios were 1.8±0.4 and 8±3. The xenografts were clearly visualized at both time-points. This study demonstrated the potential of 99mTc-labeled ZEGFR:2377 for imaging of EGFR in vivo. PMID:27748899

  10. Muffin-like lanthanide complexes with an N5O2-donor macrocyclic ligand showing field-induced single-molecule magnet behaviour.

    PubMed

    Antal, Peter; Drahoš, Bohuslav; Herchel, Radovan; Trávníček, Zdeněk

    2016-09-27

    Three mononuclear lanthanide complexes of a 2-pyridylmethyl pendant-armed 15-membered ligand {(3,12-bis(2-pyridylmethyl)-3,12,18-triaza-6,9-dioxabicyclo-[12.3.1]octadeca-1,14,16-triene); L} with general formula [Ln(L)(H2O)(NO3)](NO3)2 (Ln = Tb (1), Dy (2), and Er (3)) are reported. Based on X-ray diffraction analysis of 1 and 2, the central lanthanide atoms are nine-coordinated with the N5O4 donor set originating from the ligand L and one coordinated water molecule and one monodentate-bonded nitrato ligand. The coordination geometry of the [LnN5O4] cores can be described as a muffin-like shape. Magnetic measurements revealed that all three compounds show field-induced single-molecule magnet behaviour, with estimated energy barriers U ≈ 44-82 K. The experimental study was complemented by CASSCF calculations showing a trend of an increasing first excited energy gap (Tb → Dy → Er) within the muffin-like geometry with the lowest magnetization tunnelling probability for the Dy(III) complex 2.

  11. Mechanism for attenuation of DNA binding by MarR family transcriptional regulators by small molecule ligands.

    PubMed

    Perera, Inoka C; Lee, Yong-Hwan; Wilkinson, Steven P; Grove, Anne

    2009-07-31

    Members of the multiple antibiotic resistance regulator (MarR) family control gene expression in a variety of metabolic processes in bacteria and archaea. Hypothetical uricase regulator (HucR), which belongs to the ligand-responsive branch of the MarR family, regulates uricase expression in Deinococcus radiodurans by binding a shared promoter region between uricase and HucR genes. We show here that HucR responds only to urate and, to a lesser extent, to xanthine by attenuated DNA binding, compared to other intermediates of purine degradation. Using molecular-dynamics-guided mutational analysis, we identified the ligand-binding site in HucR. Electrophoretic mobility shift assays and intrinsic Trp fluorescence have identified W20 from the N-terminal helix and R80 from helix 3, which serves as a scaffold for the DNA recognition helix, as being essential for ligand binding. Using structural data combined with in silico and in vitro analyses, we propose a mechanism for the attenuation of DNA binding in which a conformational change initiated by charge repulsion due to a bound ligand propagates to DNA recognition helices. This mechanism may apply generally to MarR homologs that bind anionic phenolic ligands.

  12. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  13. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  14. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  15. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    SciTech Connect

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  16. Dysprosium(III) complexes with a square-antiprism configuration featuring mononuclear single-molecule magnetic behaviours based on different β-diketonate ligands and auxiliary ligands.

    PubMed

    Zhang, Sheng; Ke, Hongshan; Shi, Quan; Zhang, Jangwei; Yang, Qi; Wei, Qing; Xie, Gang; Wang, Wenyuan; Yang, Desuo; Chen, Sanping

    2016-03-28

    Three mononuclear dysprosium(III) complexes derived from three β-diketonate ligands, 4,4,4-trifluoro-1-(4-methylphenyl)-1,3-butanedione (tfmb), 4,4,4-trifluoro-1-(4-fluorophenyl)-1,3-butanedione (tffb) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (tfnb) as well as auxiliary ligands, 5-nitro-1,10-phenanthroline (5-NO2-Phen), DMF and 2,2'-bipyridine (bpy) have been synthesized and structurally characterized, namely [Dy(5-NO2-Phen)(tfmb)3] (1), [Dy(DMF)2(tffb)3] (2) and [Dy(bpy)2(tfnb)3]·0.5(1,4-dioxane) (3). The metal ions in 1-3 adopt an approximately square-antiprismatic (SAP) coordination environment with D4d axial symmetry. The magnetic properties of 1-3 have been investigated, displaying weak out-of-phase AC signals under a zero-DC field. With an applied DC field of 1200 Oe, the quantum tunnelling of the magnetization was suppressed in 1-3 with the pre-exponential factor τ0 = 5.3 × 10(-7) s and the effective barrier ΔE/kB = 83 K for 1 as well as the pre-exponential factor τ0 = 3.09 × 10(-7) s and the effective barrier ΔE/kB = 39 K for 3. Interestingly, for the frequency dependence of the out-of-phase (χ'') of the AC susceptibility of 2, two slow relaxation of the magnetization processes occurred under the applied magnetic field of 1200 Oe, corresponding to the fast relaxation (FR) phase and slow relaxation (SR) phase, respectively. Arrhenius analysis gave the effective energy barrier (ΔE/kB) of 55 K and the pre-exponential factor (τ0) of 8.23 × 10(-12) for the SR. It is thus very likely that the FR process in complex 2 results from QTM enhanced by dipolar interactions between the Dy ions or the presence of the applied field. The structure-property relationship of some Dy(III) based mononuclear SMMs with the SAP configuration was further discussed.

  17. Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching.

    PubMed

    Parkesh, Raman; Childs-Disney, Jessica L; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A; Disney, Matthew D

    2012-03-14

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3'-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5'CUG/3'GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, sarco(endo)plasmic reticulum Ca(2+) ATPase 1, and cardiac troponin T. Based on these observations, the development of small-molecule ligands that target specifically expanded DM1 repeats could be of use as therapeutics. In the present study, chemical similarity searching was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of in vitro inhibitors of the RNA-protein complex were identified with low micromolar IC(50)'s, which are >20-fold more potent than the query compounds. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with chemical similarity searching.

  18. αdβ2 Integrin Is Expressed on Human Eosinophils and Functions as an Alternative Ligand for Vascular Cell Adhesion Molecule 1 (VCAM-1)

    PubMed Central

    Grayson, Mitchell H.; Van der Vieren, Monica; Sterbinsky, Sherry A.; Michael Gallatin, W.; Hoffman, Patricia A.; Staunton, Donald E.; Bochner, Bruce S.

    1998-01-01

    The β2 family of integrins, CD11a, CD11b, CD11c, and αd, are expressed on most leukocytes. We show that the newest member of this family, αd, is expressed on human eosinophils in peripheral blood, and surface expression can be upregulated within minutes by phorbol ester or calcium ionophore A23187. Culture of eosinophils with interleukin 5 (IL-5) leads to a two- to fourfold increase in αd levels by 3–7 d without a change in α4 integrin expression. Eosinophils isolated from late phase bronchoalveolar lavage fluids express αd at levels similar to that seen after 3 d of IL-5 culture. Regarding αdβ2 ligands, in both freshly isolated and IL-5–cultured eosinophils, as well as αdβ2-transfected Chinese hamster ovary cells, αdβ2 can function as a ligand for vascular cell adhesion molecule 1 (VCAM-1). This conclusion is based on the ability of monoclonal antibodies to αd, β2, or VCAM-1 to block cell attachment in static adhesion assays. In experiments with eosinophils, the relative contribution of αdβ2 integrin– mediated adhesion is enhanced after IL-5 culture. These experiments demonstrate that αdβ2 is an alternative ligand for VCAM-1, and this integrin may play a role in eosinophil adhesion to VCAM-1 in states of chronic inflammation. PMID:9841932

  19. Structure-based virtual screening of small-molecule antagonists of platelet integrin αIIbβ3 that do not prime the receptor to bind ligand

    NASA Astrophysics Data System (ADS)

    Negri, Ana; Li, Jihong; Naini, Sarasija; Coller, Barry S.; Filizola, Marta

    2012-09-01

    Integrin αIIbβ3 has emerged as an important therapeutic target for thrombotic vascular diseases owing to its pivotal role in mediating platelet aggregation through interaction with adhesive ligands. In the search for effective anti-thrombotic agents that can be administered orally without inducing the high-affinity ligand binding state, we recently discovered via high-throughput screening of 33,264 compounds a novel, αIIbβ3-selective inhibitor (RUC-1) of adenosine-5'-diphosphate (ADP) -induced platelet aggregation that exhibits a different chemical scaffold and mode of binding with respect to classical Arg-Gly-Asp (RGD)-mimicking αIIbβ3 antagonists. Most importantly, RUC-1 and its higher-affinity derivative, RUC-2, do not induce major conformational changes in the protein β3 subunit or prime the receptor to bind ligand. To identify additional αIIbβ3-selective chemotypes that inhibit platelet aggregation through similar mechanisms, we screened in silico over 2.5 million commercially available, `lead-like' small molecules based on complementarity to the predicted binding mode of RUC-2 into the RUC-1-αIIbβ3 crystal structure. This first reported structure-based virtual screening application to the αIIbβ3 integrin led to the identification of 2 αIIbβ3-selective antagonists out of 4 tested, which compares favorably with the 0.003 % "hit rate" of our previous high-throughput chemical screening study. The newly identified compounds, like RUC-1 and RUC-2, showed specificity for αIIbβ3 compared to αVβ3 and did not prime the receptor to bind ligand. They thus may hold promise as αIIbβ3 antagonist therapeutic scaffolds.

  20. Development of a nascent galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation.

    PubMed

    Cedeno-Laurent, Filiberto; Barthel, Steven R; Opperman, Matthew J; Lee, David M; Clark, Rachael A; Dimitroff, Charles J

    2010-10-15

    Galectin-1 (Gal-1), a β-galactoside-binding lectin, plays a profound role in modulating adaptive immune responses by altering the phenotype and fate of T cells. Experimental data showing recombinant Gal-1 (rGal-1) efficacy on T cell viability and cytokine production, nevertheless, is controversial due to the necessity of using stabilizing chemicals to help retain Gal-1 structure and function. To address this drawback, we developed a mouse Gal-1 human Ig chimera (Gal-1hFc) that did not need chemical stabilization for Gal-1 ligand recognition, apoptosis induction, and cytokine modulation in a variety of leukocyte models. At high concentrations, Gal-1hFc induced apoptosis in Gal-1 ligand(+) Th1 and Th17 cells, leukemic cells, and granulocytes from synovial fluids of patients with rheumatoid arthritis. Importantly, at low, more physiologic concentrations, Gal-1hFc retained its homodimeric form without losing functionality. Not only did Gal-1hFc-binding trigger IL-10 and Th2 cytokine expression in activated T cells, but members of the CD28 family and several other immunomodulatory molecules were upregulated. In a mouse model of contact hypersensitivity, we found that a non-Fc receptor-binding isoform of Gal-1hFc, Gal-1hFc2, alleviated T cell-dependent inflammation by increasing IL-4(+), IL-10(+), TGF-β(+), and CD25(high)/FoxP3(+) T cells, and by decreasing IFN-γ(+) and IL-17(+) T cells. Moreover, in human skin-resident T cell cultures, Gal-1hFc diminished IL-17(+) T cells and increased IL-4(+) and IL-10(+) T cells. Gal-1hFc will not only be a useful new tool for investigating the role of Gal-1 ligands in leukocyte death and cytokine stimulation, but for studying how Gal-1-Gal-1 ligand binding shapes the intensity of immune responses.

  1. Bis-tridentate Chelates of an Asymmetric Ligand: X-ray Structures and Solution NMR Characterization of Divalent Zinc Triad Metal Ion Complexes of N-(2-pyridylmethyl)-N-(2-(methylthio)ethyl)amine.

    PubMed

    Bebout, Deborah C; Lai, Wei; Stamps, Sarah M; Berry, Steven M; Butcher, Raymond J

    2008-04-25

    Divalent zinc triad metal ion complexes of type M(L)(2)(ClO(4))(2) (L = N-(2-pyridylmethyl)-N-(2-(methylthio)ethyl)amine) with N(4)S(2) metal coordination spheres were isolated and characterized by X-ray crystallography and variable temperature proton NMR. Although bis-tridentate chelates have nine geometric isomers, the crystallographically characterized complexes of all three metal ions had trans facial octahedral coordination geometry with C(i) symmetry. Despite the low coordination number and geometric preferences of d(10) metal ions, which facilitate inter- and intramolecular exchange processes, dilute solutions of these bis-tridentate chelates exhibited slow geometric isomerization. Symmetry, sterics and shielding arguments supported specific isomeric assignments for the major and minor chemical shift environments observed at low temperature. At elevated temperature, rapid intramolecular exchange occurred for all three complexes but slow intermolecular exchange on the coupling constant time scale was evidenced through detection of J(HgH) interactions for Hg(L)(2) (2+). These unusual observations are discussed in the context of the zinc triad metal ion coordination chemistry of related bis-tridentate chelates.

  2. Coordination properties of a metal chelator clioquinol to Zn(2+) studied by static DFT and ab initio molecular dynamics.

    PubMed

    Rodríguez-Santiago, Luis; Alí-Torres, Jorge; Vidossich, Pietro; Sodupe, Mariona

    2015-05-28

    Several lines of evidence supporting the role of metal ions in amyloid aggregation, one of the hallmarks of Alzheimer's disease (AD), have turned metal ion chelation into a promising therapeutic treatment. The design of efficient chelating ligands requires proper knowledge of the electronic and molecular structure of the complexes formed, including their hydration properties. Among various potential chelators, clioquinol (5-chloro-7-iodo-8-hydroxyquinoline, CQH) has been evaluated with relative success in in vitro experiments and even in phase 2 clinical trials. Clioquinol interacts with Zn(ii) to lead to a binary metal/ligand 1 : 2 stoichiometric complex in which the phenolic group of CQH is deprotonated, resulting in Zn(CQ)2 neutral complexes, to which additional water molecules may coordinate. In the present work, the coordinative properties of clioquinol in aqueous solution have been analyzed by means of static, minimal cluster based DFT calculations and explicit solvent ab initio molecular dynamics simulations. Results from static calculations accounting for solvent effects by means of polarized continuum models suggest that the preferred metal coordination environment is tetrahedral Zn(CQ)2, whereas ab initio molecular dynamics simulations point to quasi degenerate penta Zn(CQ)2(H2O) and hexa Zn(CQ)2(H2O)2 coordinated complexes. The possible reasons for these discrepant results are discussed.

  3. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  4. Kinetic identification of protein ligands in a 51,200 small-molecule library using microarrays and a label-free ellipsometric scanner

    NASA Astrophysics Data System (ADS)

    Landry, James P.; Proudian, Andrew P.; Malovichko, Galina; Zhu, Xiangdong

    2013-02-01

    Drug discovery begins by identifying protein-small molecule binding pairs. Afterwards, binding kinetics and biofunctional assays are performed, to reduce candidates for further development. High-throughput screening, typically employing fluorescence, is widely used to find protein ligands in small-molecule libraries, but is rarely used for binding kinetics measurement because: (1) attaching fluorophores to proteins can alter kinetics and (2) most label-free technologies for kinetics measurement are inherently low-throughput and consume expensive sensing surfaces. We addressed this need with polarization-modulated ellipsometric scanning microscopes, called oblique-incidence reflectivity difference (OI-RD). Label-free ligand screening and kinetics measurement are performed simultaneously on small-molecule microarrays printed on relatively inexpensive isocyanate-functionalized glass slides. As a microarray is reacted, an OI-RD microscope tracks the change in surface-bound macromolecule density in real-time at every spot. We report progress applying OI-RD to screen purified proteins and virus particles against a 51,200-compound library from the National Cancer Institute. Four microarrays, each containing 12,800 library compounds, are installed in four flow cells in an automated OI-RD microscope. The slides are reacted serially, each giving 12,800 binding curves with ~30 sec time resolution. The entire library is kinetically screened against a single probe in ~14 hours and multiple probes can be reacted sequentially under automation. Real-time binding detection identifies both high-affinity and low-affinity (transient binding) interactions; fluorescence endpoint images miss the latter. OI-RD and microarrays together is a powerful high-throughput tool for early stage drug discovery and development. The platform also has great potential for downstream steps such as in vitro inhibition assays.

  5. X-Ray Structural Study of Amyloid-Like Fibrils of Tau Peptides Bound to Small-Molecule Ligands.

    PubMed

    Tayeb-Fligelman, Einav; Landau, Meytal

    2017-01-01

    Atomic structures of Tau involved in Alzheimer's disease complexed with small molecule binders are the first step to define the Tau pharmacophore, leading the way to a structure-based design of improved diagnostics and therapeutics. Yet the partially disordered and polymorphic nature of Tau hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers, and their atomic structures can be determined using X-ray microcrystallography. Such structures were successfully used to design amyloid inhibitors. This chapter describes experimental procedures used to determine crystal structures of Tau peptide segments in complex with small-molecule binders.

  6. The up-regulation of ferritin expression using a small-molecule ligand to the native mRNA

    PubMed Central

    Tibodeau, Jennifer D.; Fox, Paige M.; Ropp, Patricia A.; Theil, Elizabeth C.; Thorp, H. Holden

    2006-01-01

    The binding of small molecules to distinctive three-dimensional structures in mRNA provides a new dimension in RNA control, previously limited to the targeting of secondary structures with antisense and RNA interference; such targeting can modulate mRNA function and rates of protein biosynthesis. Small molecules that selectively bind the iron-responsive element (IRE), a specific three-dimensional structure in the noncoding region of the ferritin mRNA model that is recognized by the iron-regulatory protein repressor, were identified by using chemical footprinting. The assay used involved an oxoruthenium(IV) complex that oxidizes guanine bases in RNA sequences. Small molecules that blocked oxidation of guanines in the internal loop region were expected to selectively increase the rate of ferritin synthesis, because the internal loop region of the ferritin IRE is distinctive from those of other IREs. The natural product yohimbine was found (based on gel mobility shifts) to block cleavage of the internal loop RNA site by >50% and seemed to inhibit protein binding. In the presence of yohimbine, the rate of biosynthesis of ferritin in a cell-free expression system (rabbit reticulocyte lysate) increased by 40%. Assignment of the IRE–yohimbine interaction as the origin of this effect was supported by a similar increase in synthesis of luciferase protein in a chimera of the IRE and luciferase gene. The identification of a small, drug-like molecule that recognizes a naturally occurring three-dimensional mRNA structure and regulates protein biosynthesis rates raises the possibility that small molecules can regulate protein biosynthesis by selectively binding to mRNA. PMID:16381820

  7. Small-molecule modulators of the OX40–OX40 ligand co-stimulatory protein–protein interaction

    PubMed Central

    Song, Yun; Margolles-Clark, Emilio; Bayer, Allison; Buchwald, Peter

    2014-01-01

    Background and Purpose The OX40–OX40L protein–protein interaction (PPI) is an important cell-surface signalling co-stimulatory regulator within the TNFR superfamily (TNFRSF) and a promising therapeutic target for immunomodulation. PPIs are difficult to modulate using small-molecules. Here, we describe the identification of a small-molecule OX40 modulator and confirm its partial agonist character. Experimental Approach Cell-free screening assays were developed and used to identify OX40–OX40L inhibitors. Modified versions of this assay were used to elucidate the binding partner and the binding nature of active compounds. OX40-transfected sensor cells with NF-κB reporters were constructed and used to confirm and characterize activity and specificity. Immunomodulatory activity and partial agonist nature were further confirmed by ex vivo T-cell polarization assays. Key Results Several compounds that concentration-dependently affected OX40-OX40L were identified. Cell assays indicated that they were partial agonists with low micromolar potency and adequate selectivity. Under polarizing conditions based on TGF-β, the most promising compound mimicked the effect of an agonistic anti-OX40 antibody in suppressing regulatory T-cell generation and diverting CD4+CD62L+Foxp3− cells to TH9 phenotype in vitro. Conclusions and Implications We identified, to our knowledge, the first small-molecule compounds able to interfere with OX40–OX40L binding and, more importantly, to act as partial agonists of OX40. This is particularly interesting, as small-molecule agonism or activation of PPIs is considered unusually challenging and there are only few known examples. These results provide proof-of-principle evidence for the feasibility of small-molecule modulation of the OX40–OX40L interaction and for the existence of partial agonists for TNFRSF-PPIs. PMID:24930776

  8. Mn8 and Mn16 clusters from the use of 2-(hydroxymethyl)pyridine, and comparison with the products from bulkier chelates: a new high nuclearity single-molecule magnet.

    PubMed

    Taguchi, Taketo; Wernsdorfer, Wolfgang; Abboud, Khalil A; Christou, George

    2010-11-15

    The synthesis, crystal structures, and magnetochemical characterization of two new Mn clusters [Mn(8)O(2)(O(2)CPh)(10)(hmp)(4)(MeOH)(2)] (1; 6Mn(II), 2Mn(III)) and [Mn(16)O(8)(OH)(2)(O(2)CPh)(12)(hmp)(10)(H(2)O)(2)](O(2)CPh)(2) (2; 6Mn(II), 10Mn(III)) are reported. They were obtained from the use of 2-(hydroxymethyl)pyridine (hmpH) under the same reaction conditions but differing in the presence or absence of added base. Thus, the reaction of hmpH with Mn(O(2)CPh)(2) in CH(2)Cl(2)/MeOH led to isolation of octanuclear complex 1, whereas the analogous reaction in the presence of NEt(3) gave hexadecanuclear complex 2. Complexes 1 and 2 possess either very rare or unprecedented core structures that are related to each other: that of 1 can be described as a linked pair of incomplete [Mn(4)O(3)] cubanes, while that of 2 consists of a linked pair of complete [Mn(4)O(4)] cubanes, on either side of which is attached a tetrahedral [Mn(4)(μ(4)-O)] unit. Solid-state direct current (dc) and alternating current (ac) magnetic susceptibility measurements on 1 and 2 establish that they possess S = 5 and 8 ground states, respectively. Complex 2 exhibits frequency-dependent out-of-phase (χ(M)") ac susceptibility signals at temperatures below 3 K suggestive of a single-molecule magnet (SMM). Magnetization versus applied dc field sweeps on single crystals of 2·10MeOH down to 0.04 K exhibited hysteresis, confirming 2 to be a new SMM. Comparison of the structure of 2 (Mn(16)) with Mn(12) or Mn(6) clusters previously obtained under the same reaction conditions but with two Me or two Ph groups, respectively, added next to the alkoxide O atom of hmp(-) indicate their influence on the nuclearity and structure of the products as being due to the overall bulk of the chelate plus the decreased ability of the O atom to bridge.

  9. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  10. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    SciTech Connect

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  11. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington's disease.

    PubMed

    Simmons, Danielle A; Belichenko, Nadia P; Yang, Tao; Condon, Christina; Monbureau, Marie; Shamloo, Mehrdad; Jing, Deqiang; Massa, Stephen M; Longo, Frank M

    2013-11-27

    Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntington's disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and without effects on p75(NTR), could alleviate HD-related pathology in R6/2 and BACHD mouse models of HD. LM22A-4 was administered to R6/2 mice once daily (5-6 d/week) from 4 to 11 weeks of age via intraperitoneal and intranasal routes simultaneously to maximize brain levels. The ligand reached levels in the R6/2 forebrain greater than the maximal neuroprotective dose in vitro and corrected deficits in activation of striatal TrkB and its key signaling intermediates AKT, PLCγ, and CREB. Ligand-induced TrkB activation was associated with a reduction in HD pathologies in the striatum including decreased DARPP-32 levels, neurite degeneration of parvalbumin-containing interneurons, inflammation, and intranuclear huntingtin aggregates. Aggregates were also reduced in the cortex. Notably, LM22A-4 prevented deficits in dendritic spine density of medium spiny neurons. Moreover, R6/2 mice given LM22A-4 demonstrated improved downward climbing and grip strength compared with those given vehicle, though these groups had comparable rotarod performances and survival times. In BACHD mice, long-term LM22A-4 treatment (6 months) produced similar ameliorative effects. These results support the hypothesis that targeted activation of TrkB inhibits HD-related degenerative mechanisms, including spine loss, and may provide a disease mechanism-directed therapy for HD and other neurodegenerative conditions.

  12. A Small Molecule TrkB Ligand Reduces Motor Impairment and Neuropathology in R6/2 and BACHD Mouse Models of Huntington's Disease

    PubMed Central

    Simmons, Danielle A.; Belichenko, Nadia P.; Yang, Tao; Condon, Christina; Monbureau, Marie; Shamloo, Mehrdad; Jing, Deqiang; Massa, Stephen M.

    2013-01-01

    Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntington's disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and without effects on p75NTR, could alleviate HD-related pathology in R6/2 and BACHD mouse models of HD. LM22A-4 was administered to R6/2 mice once daily (5–6 d/week) from 4 to 11 weeks of age via intraperitoneal and intranasal routes simultaneously to maximize brain levels. The ligand reached levels in the R6/2 forebrain greater than the maximal neuroprotective dose in vitro and corrected deficits in activation of striatal TrkB and its key signaling intermediates AKT, PLCγ, and CREB. Ligand-induced TrkB activation was associated with a reduction in HD pathologies in the striatum including decreased DARPP-32 levels, neurite degeneration of parvalbumin-containing interneurons, inflammation, and intranuclear huntingtin aggregates. Aggregates were also reduced in the cortex. Notably, LM22A-4 prevented deficits in dendritic spine density of medium spiny neurons. Moreover, R6/2 mice given LM22A-4 demonstrated improved downward climbing and grip strength compared with those given vehicle, though these groups had comparable rotarod performances and survival times. In BACHD mice, long-term LM22A-4 treatment (6 months) produced similar ameliorative effects. These results support the hypothesis that targeted activation of TrkB inhibits HD-related degenerative mechanisms, including spine loss, and may provide a disease mechanism-directed therapy for HD and other neurodegenerative conditions. PMID:24285878

  13. Single molecule magnets with protective ligand shells on gold and titanium dioxide surfaces: in situ electrospray deposition and x-ray absorption spectroscopy.

    PubMed

    Handrup, Karsten; Richards, Victoria J; Weston, Matthew; Champness, Neil R; O'Shea, James N

    2013-10-21

    Two single molecule magnets based on the dodecamanganese (III, IV) cluster with either benzoate or terphenyl-4-carboxylate ligands, have been studied on the Au(111) and rutile TiO2(110) surfaces. We have used in situ electrospray deposition to produce a series of surface coverages from a fraction of a monolayer to multilayer films in both cases. X-ray absorption spectroscopy measured at the Mn L-edge (Mn 2p) has been used to study the effect of adsorption on the oxidation states of the manganese atoms in the core. In the case of the benzoate-functionalised complex reduction of the manganese metal centres is observed due to the interaction of the manganese core with the underlying surface. In the case of terphenyl-4-carboxylate, the presence of this much larger ligand prevents the magnetic core from interacting with either the gold or the titanium dioxide surfaces and the characteristic Mn(3+) and Mn(4+) oxidation states necessary for magnetic behaviour are preserved.

  14. Matching chelators to radiometals for radiopharmaceuticals.

    PubMed

    Price, Eric W; Orvig, Chris

    2014-01-07

    Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.

  15. Density Functional Theory Study of the Complexation of the Uranyl Dication with Anionic Phosphate Ligands with and without Water Molecules

    SciTech Connect

    Jackson, Virgil E.; Gutowski, Keith E.; Dixon, David A.

    2013-08-01

    The structures, vibrational frequencies and energetics of anhydrous and hydrated complexes of UO2 2+ with the phosphate anions H2PO4 -, HPO4 2-, and PO4 3- were predicted at the density functional theory (DFT) and MP2 molecular orbital theory levels as isolated gas phase species and in aqueous solution by using self-consistent reaction field (SCRF) calculations with different solvation models. The geometries and vibrational frequencies of the major binding modes for these complexes are compared to experiment where possible and good agreement is found. The uranyl moiety is nonlinear in many of the complexes, and the coordination number (CN) 5 in the equatorial plane is the predominant binding motif. The phosphates are found to bind in both monodentate and bidentate binding modes depending on the charge and the number of water molecules. The SCRF calculations were done with a variety of approaches, and different SCRF approaches were found to be optimal for different reaction types. The acidities of HxPO4 3-x in HxPO4 3-x(H2O)4, x = 0-3 complexes were calculated with different SCRF models and compared to experiment. Phosphate anions can displace water molecules from the first solvation shell at the uranyl exothermically. The addition of water molecules can cause the bonding of H2PO4 - and HPO4 2- to change from bidentate to monodentate exothermically while maintaining CN 5. The addition of water can generate monodentate structures capable of cross-linking to other uranyl phosphates to form the types of structures found in the solid state. [UO2(HPO4)(H2O)3] is predicted to be a strong base in the gas phase and in aqueous solution. It is predicted to be a much weaker acid than H3PO4 in the gas phase and in solution.

  16. Ligand-induced changes in 2-aminopurine fluorescence as a probe for small molecule binding to HIV-1 TAR RNA

    PubMed Central

    BRADRICK, THOMAS D.; MARINO, JOHN P.

    2004-01-01

    Replication of human immunodeficiency virus type 1 (HIV-1) is regulated in part through an interaction between the virally encoded trans-activator protein Tat and the trans-activator responsive region (TAR) of the viral RNA genome. Because TAR is highly conserved and its interaction with Tat is required for efficient viral replication, it has received much attention as an antiviral drug target. Here, we report a 2-aminopurine (2-AP) fluorescence-based assay for evaluating potential TAR inhibitors. Through selective incorporation of 2-AP within the bulge (C23 or U24) of a truncated form of the TAR sequence (Δ TAR-ap23 and Δ TAR-ap24), binding of argininamide, a 24-residue arginine-rich peptide derived from Tat, and Neomycin has been characterized using steady-state fluorescence. Binding of argininamide to the 2-AP ΔTAR constructs results in a four- to 11-fold increase in fluorescence intensity, thus providing a sensitive reporter of that interaction (KD ~ 1 mM). Similarly, binding of the Tat peptide results in an initial 14-fold increase in fluorescence (KD ~ 25 nM), but is then followed by a slight decrease that is attributed to an additional, lower-affinity association(s). Using the ΔTAR-ap23 and TAR-ap24 constructs, two classes of Neomycin binding sites are detected; the first molecule of antibiotic binds as a noncompetitive inhibitor of Tat/argininamide (KD ~ 200 nM), whereas the second, more weakly bound molecule(s) becomes associated in a presumably nonspecific manner (KD ~ 4 μM). Taken together, the results demonstrate that the 2-AP fluorescence-detected binding assays provide accurate and general methods for quantitatively assessing TAR interactions. PMID:15273324

  17. Small-Molecule Ligands of Methyl-Lysine Binding Proteins: Optimization of Selectivity for L3MBTL3

    PubMed Central

    James, Lindsey I.; Korboukh, Victoria K.; Krichevsky, Liubov; Baughman, Brandi M.; Herold, J. Martin; Norris, Jacqueline L.; Jin, Jian; Kireev, Dmitri B.; Janzen, William P.; Arrowsmith, Cheryl H.; Frye, Stephen V.

    2013-01-01

    Lysine methylation is a key epigenetic mark, the dysregulation of which is linked to many diseases. Small molecule antagonism of methyl-lysine (Kme) binding proteins that recognize such epigenetic marks can improve our understanding of these regulatory mechanisms and potentially validate Kme binding proteins as drug discovery targets. We previously reported the discovery of 1 (UNC1215), the first potent and selective small molecule chemical probe of a methyl-lysine reader protein, L3MBTL3, which antagonizes the mono- and dimethyl-lysine reading function of L3MBTL3. The design, synthesis, and structure activity relationship studies that led to the discovery of 1 are described herein. These efforts established the requirements for potent L3MBTL3 binding and enabled the design of novel antagonists, such as compound 2 (UNC1679), that maintain in vitro and cellular potency with improved selectivity against other MBT-containing proteins. The antagonists described were also found to effectively interact with unlabeled endogenous L3MBTL3 in cells. PMID:24040942

  18. Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3.

    PubMed

    James, Lindsey I; Korboukh, Victoria K; Krichevsky, Liubov; Baughman, Brandi M; Herold, J Martin; Norris, Jacqueline L; Jin, Jian; Kireev, Dmitri B; Janzen, William P; Arrowsmith, Cheryl H; Frye, Stephen V

    2013-09-26

    Lysine methylation is a key epigenetic mark, the dysregulation of which is linked to many diseases. Small-molecule antagonism of methyl-lysine (Kme) binding proteins that recognize such epigenetic marks can improve our understanding of these regulatory mechanisms and potentially validate Kme binding proteins as drug-discovery targets. We previously reported the discovery of 1 (UNC1215), the first potent and selective small-molecule chemical probe of a methyl-lysine reader protein, L3MBTL3, which antagonizes the mono- and dimethyl-lysine reading function of L3MBTL3. The design, synthesis, and structure-activity relationship studies that led to the discovery of 1 are described herein. These efforts established the requirements for potent L3MBTL3 binding and enabled the design of novel antagonists, such as compound 2 (UNC1679), that maintain in vitro and cellular potency with improved selectivity against other MBT-containing proteins. The antagonists described were also found to effectively interact with unlabeled endogenous L3MBTL3 in cells.

  19. Small-molecule interferon inducers. Toward the comprehension of the molecular determinants through ligand-based approaches.

    PubMed

    Musmuca, Ira; Simeoni, Silvia; Caroli, Antonia; Ragno, Rino

    2009-07-01

    Hepatitis C is becoming an increasingly common cause of mortality especially in the HIV-coinfected group. Due to the efficacy of interferon (IFN) based therapy in the treatment of hepatitis C, various compounds possessing IFN-inducing activity have been hitherto reported. In the present study, we describe how steric, electrostatic, hydrophobic, and hydrogen-bonding interactions might influence the biological activity of a published set of IFN inducers, using a three-dimensional quantitative structure-activity relationship (3-D QSAR) approach. Analyses were conducted evaluating different series of compounds structurally related to 8-hydroxyadenines and 1H-imidazo[4,5-c]quinolines. A ligand-based alignment protocol in combination with the GRID/GOLPE approach was applied: 62 3-D QSAR models were derived using different GRID probes and several training sets. Performed 3-D QSAR investigations proved to be of good statistical value displaying r2, q2CV-LOO, and cross-validated SDEP values of 0.73, 0.61, 0.61 and 0.89, 0.64, 0.58 using the OH or the DRY probe, respectively. Additionally, the predictive performance was evaluated using an external test set of 20 compounds. Analyses of the resulting models led to the definition of a pharmacophore model that can be of interest to explain the observed affinities of known compounds as well as to design novel low molecular weight IFN inducers (IFNIs). To the best of our knowledge, this is the first 3-D QSAR application on IFN-inducing agents.

  20. Development of a dipodal Schiff base ligand with N-imine and O-naphtholate donors: A potential chelator towards Cu(II) metal ion established through potentiometric and spectrophotometric studies

    NASA Astrophysics Data System (ADS)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2015-08-01

    A novel hydroxynaphthaldehyde derived Schiff base ligand N,N'-bis-[2-[(2-hydroxy-1-naphthyl)methyleneamino]ethyl]propanediamide (DOTA2HNAP) containing nitrogen and oxygen donor atoms has been developed. The lowest energy molecular structure of DOTA2HNAP and its complexes with Cu (II) metal ion were examined by molecular mechanics using MM+ force which later was re-optimized by semi-empirical method. The theoretical IR and UV spectra of the ligand were obtained using semi empirical/ZINDO/PM3 and were compared with the experimental ones. The coordinating ability of DOTA2HNAP with H+ and Cu(II) ions was investigated in 1:99 (DMSO: water) binary solvent mixture at 25±1°C by potentiometric and spectrophotometric method. The electronic spectra of the ligand show three distinct peaks (253nm, 320nm and 360nm) implicating existence of the Schiff base in quinone form that was well supported by theoretical spectral studies. Out of various complex species forming in solution, all the metal ions show higher stability of complexes when in 1:1 metal-ligand stoichiometry, binding through two N-imine and two O-naphtholate groups.

  1. Development of a dipodal Schiff base ligand with N-imine and O-naphtholate donors: A potential chelator towards Cu(II) metal ion established through potentiometric and spectrophotometric studies

    SciTech Connect

    Baral, Minati Gupta, Amit; Kanungo, B. K.

    2015-08-28

    A novel hydroxynaphthaldehyde derived Schiff base ligand N,N’-bis-[2-[(2-hydroxy-1-naphthyl)methyleneamino]ethyl]propanediamide (DOTA2HNAP) containing nitrogen and oxygen donor atoms has been developed. The lowest energy molecular structure of DOTA2HNAP and its complexes with Cu (II) metal ion were examined by molecular mechanics using MM+ force which later was re-optimized by semi-empirical method. The theoretical IR and UV spectra of the ligand were obtained using semi empirical/ZINDO/PM3 and were compared with the experimental ones. The coordinating ability of DOTA2HNAP with H{sup +} and Cu(II) ions was investigated in 1:99 (DMSO: water) binary solvent mixture at 25±1°C by potentiometric and spectrophotometric method. The electronic spectra of the ligand show three distinct peaks (253nm, 320nm and 360nm) implicating existence of the Schiff base in quinone form that was well supported by theoretical spectral studies. Out of various complex species forming in solution, all the metal ions show higher stability of complexes when in 1:1 metal-ligand stoichiometry, binding through two N-imine and two O-naphtholate groups.

  2. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  3. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  4. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  5. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  6. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  7. Synthesis, XAFS and X-ray structural studies of mono- and binuclear metal-chelates of N,O,O(N,O,S) tridentate Schiff base pyrazole derived ligands

    NASA Astrophysics Data System (ADS)

    Burlov, Anatolii S.; Uraev, Ali I.; Garnovskii, Dmitrii A.; Lyssenko, Konstantin A.; Vlasenko, Valery G.; Zubavichus, Yan V.; Murzin, Vadim Yu.; Korshunova, Eugenie V.; Borodkin, Gennadii S.; Levchenkov, Sergey I.; Vasilchenko, Igor S.; Minkin, Vladimir I.

    2014-05-01

    The syntheses of a series of novel N,O,O and N,O,S donor tridentate Schiff base ligands H2L1 and H2L2via the condensation of 1-phenyl-3-methyl-4-formylpyrazol-5-ol(thiol) with 2-hydroxymethylaniline and their Co(II), Ni(II), Cu(II), Fe(III), and Mn(II) complexes are reported. The compounds are characterized by the C, H, N, S, metal elemental analysis, IR spectroscopy; 1H NMR data for ligands, low-temperature magnetic measurements, X-ray absorption spectroscopy. The crystal structures for Ni(II) and Cu(II) coordination compounds with the compositions NiL21 and Cu2L21 are established by X-ray crystallography.

  8. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy.

  9. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability

    PubMed Central

    Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-01-01

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd3+ within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd3+. This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  10. Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket

    PubMed Central

    Venkatakrishnan, Balasubramanian; Katen, Sarah P.; Francis, Samson; Chirapu, Srinivas; Finn, M. G.

    2016-01-01

    ABSTRACT Though the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design. IMPORTANCE Hepatitis B virus core protein has multiple roles in the viral life cycle—assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions—making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid “breathes” and is

  11. Triimidosulfonates as Acute Bite-Angle Chelates: Slow Relaxation of the Magnetization in Zero Field and Hysteresis Loop of a Co(II) Complex.

    PubMed

    Carl, Elena; Demeshko, Serhiy; Meyer, Franc; Stalke, Dietmar

    2015-07-06

    Starting from a polyimido sulfonate the four-coordinate, N,N'-chelated Co(II) complex [Co{(NtBu)3 SMe}2 ] (1) was synthesized, and its molecular structure was elucidated by single-crystal X-ray structural analysis. The acute N-Co-N bite angle imposed by the N,N'-chelating ligand (NtBu)3 SMe(-) leads to pronounced C2v distortion of the tetrahedral coordination environment and thus to high anisotropy of the Co(II) ion (D≈-58 cm(-1) ), favorable for single-molecule-magnet (SMM) properties. Magnetic measurements revealed a high barrier to spin reversal (Ueff =75 cm(-1) ) that gives rise to the observation of slow relaxation of the magnetization in zero field and a hysteresis loop at 2 K for this unique complex.

  12. River-derived humic substances as iron chelators in seawater

    PubMed Central

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Hann, Stephan; Laux, Monika; Cervantes Recalde, Maria F.; Jirsa, Franz; Neubauer, Elisabeth; von der Kammer, Frank; Hofmann, Thilo; Keppler, Bernhard K.

    2015-01-01

    The speciation of iron(III) in oxic seawater is dominated by its hydrolysis and sedimentation of insoluble iron(III)-oxyhydroxide. As a consequence, many oceanic areas have very low iron levels in surface seawater which leads to iron deficiency since phytoplankton require iron as a micronutrient in order to grow. Fortunately, iron solubility is not truly as low as Fe(III) solubility measurements in inorganic seawater would suggest, since oceanic waters contain organic molecules which tend to bind the iron and keep it in solution. Various iron-binding organic ligands which combine to stabilize dissolved iron have been detected and thoroughly investigated in recent years. However, the role of iron-binding ligands from terrestrial sources remains poorly constrained. Blackwater rivers supply large amounts of natural organic material (NOM) to the ocean. This NOM (which consists mainly of vascular plant-derived humic substances) is able to greatly enhance iron bioavailability in estuaries and coastal regions, however, breakdown processes lead to a rapid decrease of river-derived NOM concentrations with increasing distance from land. It has therefore been argued that the influence of river-derived NOM on iron biogeochemistry in offshore seawater does not seem to be significant. Here we used a standard method based on 59Fe as a radiotracer to study the solubility of Fe(III)-oxyhydroxide in seawater in the presence of riverine NOM. We aimed to address the question how effective is freshwater NOM as an iron chelator under open ocean conditions where the concentration of land-derived organic material is about 3 orders of magnitude smaller than in coastal regions, and does this iron chelating ability vary between NOM from different sources and between different size fractions of the river-borne NOM. Our results show that the investigated NOM fractions were able to substantially enhance Fe(III)-oxyhydroxide solubility in seawater at concentrations of the NOM ≥ 5

  13. SERS Activity of Silver Nanoparticles Functionalized with A Desferrioxamine B Derived Ligand for FE(III) Binding and Sensing

    NASA Astrophysics Data System (ADS)

    Galinetto, P.; Taglietti, A.; Pasotti, L.; Pallavicini, P.; Dacarro, G.; Giulotto, E.; Grandi, M. S.

    2016-01-01

    We report the SERS activity of colloidal silver nanoparticles functionalized with a ligand, derived from the siderophore desferrioxamine B (desferal, DFO), an iron chelator widely used in biological and medical applications. The ligand was equipped with a sulfur-containing moiety to ensure optimal binding with silver surfaces. By means of Raman and SERS effects we monitored the route of material preparation from the modified DFO-S molecule to the colloidal aggregates. The results indicate that the functionalization of the chelating agent does not affect its binding ability towards Fe(III). The resulting functionalized silver nanoparticles are a promising SERS tag for operation in biological environments. The Fe-O stretching signature, arising when DFO-S grafted to silver nanoparticles binds Fe(III), could provide a tool for cation sensing in solution.

  14. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    PubMed Central

    Sears, Margaret E.

    2013-01-01

    Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease. PMID:23690738

  15. [Arteriosclerosis and chelate therapy].

    PubMed

    Nissel, H

    1986-11-30

    Based on a case history the therapeutic value of an iv-chelate therapy in arteriosclerosis is discussed. Ethylenediaminetetraacetate (EDTA) is used as a standard regime in the treatment of poisoning with heavy metals. The usefulness of EDTA in arteriosclerosis is doubtful: some authors suppose, that Ca-deposits are removed from arteriosclerotic lesions. This concept has not yet been proven by in-vivo experiments. Severe side effects such as hypocalcemia may cause the death of a patient under treatment. Therefore no real indications exist for treatment of arteriosclerosis with EDTA.

  16. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  17. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus.

    PubMed

    Stenqvist, Ann-Christin; Nagaeva, Olga; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2013-12-01

    Apoptosis is crucially important in mediating immune privilege of the fetus during pregnancy. We investigated the expression and in vitro apoptotic activity of two physiologically relevant death messengers, the TNF family members Fas ligand (FasL) and TRAIL in human early and term placentas. Both molecules were intracellularly expressed, confined to the late endosomal compartment of the syncytiotrophoblast, and tightly associated to the generation and secretion of placental exosomes. Using immunoelectron microscopy, we show that FasL and TRAIL are expressed on the limiting membrane of multivesicular bodies where, by membrane invagination, intraluminal microvesicles carrying membranal bioactive FasL and TRAIL are formed and released in the extracellular space as exosomes. Analyzing exosomes secreted from placental explant cultures, to our knowledge, we demonstrate for the first time that FasL and TRAIL are clustered on the exosomal membrane as oligomerized aggregates ready to form death-inducing signaling complex. Consistently, placental FasL- and TRAIL-carrying exosomes triggered apoptosis in Jurkat T cells and activated PBMC in a dose-dependent manner. Limiting the expression of functional FasL and TRAIL to exosomes comprise a dual benefit: 1) storage of exosomal FasL and TRAIL in multivesicular bodies is protected from proteolytic cleavage and 2) upon secretion, delivery of preformed membranal death molecules by exosomes rapidly triggers apoptosis. Our results suggest that bioactive FasL- and TRAIL-carrying exosomes, able to convey apoptosis, are secreted by the placenta and tie up the immunomodulatory and protective role of human placenta to its exosome-secreting ability.

  18. Di- and octa-nuclear dysprosium clusters derived from pyridyl-triazole based ligand: {Dy2} showing single molecule magnetic behaviour.

    PubMed

    Akhtar, Muhammad Nadeem; Liao, Xiao-Fen; Chen, Yan-Cong; Liu, Jun-Liang; Tong, Ming-Liang

    2017-02-28

    Two dysprosium aggregates, formulated as [Dy2(μ-OH)2(H2bpte)2Cl2(MeOH)2]Cl2 (1), and [Dy8(μ-OH)8(bpte)8]·24H2O (2) (H2bpte = 1,2-bis(3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl)ethane), were obtained using solvothermal reactions. Upon changing the metal salt and synthetic reaction conditions, an eight-member {Dy8} (2) ring was isolated. Complex 1 is centrosymmetric in which two {Dy2} clusters are connecting to each other through the hydrogen bonding. Complex 2 forms an eight-member Dy(III) ring with an inner diameter of 4.5 Å and is the first reported {Dy8(μ-OH)8} core in lanthanide-hydroxo clusters. The H2bpte ligand displays trans,trans- and cis,cis-coordination modes in 1 and 2, respectively. Alternating current (ac) magnetic measurements of both complexes were carried out. In 1, the out-of-phase susceptibilities (χ''M) below 9 K confirm the slow relaxation of magnetization, which is a typical characteristic of single-molecule magnets (SMMs).

  19. Label-free and dual-amplified detection of protein via small molecule-ligand linked DNA and a cooperative DNA machine.

    PubMed

    Li, Pei; Wang, Lei; Zhu, Jing; Wu, Yushu; Jiang, Wei

    2015-10-15

    Sensitive detection of protein is essential for both molecular diagnostics and biomedical research. Here, taking folate receptor as the model analyte, we developed a label-free and dual-amplified strategy via small molecular-ligand linked DNA and a cooperative DNA machine which could perform primary amplification and mediate secondary amplification simultaneously. Firstly, the specific binding of folate receptor to the small-molecule folate which linked to a trigger DNA could protect the trigger DNA from exonuclease I digestion, translating folate receptor detection into trigger DNA detection. Subsequently, trigger DNA initiated the DNA machine through hybridizing with the hairpin of the DNA machine, resulting in hairpin conformational change and stem open. The open stem further hybridized with a primer which initiated circular strand-displacement polymerization reaction; meanwhile the rolling circle amplification templates which were initially blocked in the DNA machine were liberated to mediate rolling circle amplification. In such a working model, the DNA machine achieved cooperatively controlling circular strand-displacement polymerization reaction and rolling circle amplification, realizing dual-amplification. Finally, the rolling circle amplification process synthesized a long repeated G-quadruplex sequence, which strongly interacted with N-methyl mesoporphyrin IX, bringing label-free fluorescence signal. This strategy could detect folate receptor as low as 0.23 pM. A recovery over 90% was obtained when folate receptor was detected in spiked human serum, demonstrating the feasibility of this detection strategy in biological samples.

  20. Epstein-Barr Virus–induced Molecule 1 Ligand Chemokine Is Expressed by Dendritic Cells in Lymphoid Tissues and Strongly Attracts Naive T Cells and Activated B Cells

    PubMed Central

    Ngo, Vu N.; Lucy Tang, H.; Cyster, Jason G.

    1998-01-01

    Movement of T and B lymphocytes through secondary lymphoid tissues is likely to involve multiple cues that help the cells navigate to appropriate compartments. Epstein-Barr virus– induced molecule 1 (EBI-1) ligand chemokine (ELC/MIP3β) is expressed constitutively within lymphoid tissues and may act as such a guidance cue. Here, we have isolated mouse ELC and characterized its expression pattern and chemotactic properties. ELC is expressed constitutively in dendritic cells within the T cell zone of secondary lymphoid tissues. Recombinant ELC was strongly chemotactic for naive (L-selectinhi) CD4 T cells and for CD8 T cells and weakly attractive for resting B cells and memory (L-selectinlo) CD4 T cells. After activation through the B cell receptor, the chemotactic response of B cells was enhanced. Like its human counterpart, murine ELC stimulated cells transfected with EBI-1/CC chemokine receptor 7 (CCR7). Our findings suggest a central role for ELC in promoting encounters between recirculating T cells and dendritic cells and in the migration of activated B cells into the T zone of secondary lymphoid tissues. PMID:9653094

  1. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs

    PubMed Central

    Ito, Jun-ichi; Ikeda, Kazuyoshi; Yamada, Kazunori; Mizuguchi, Kenji; Tomii, Kentaro

    2015-01-01

    PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a database for detecting similar small-molecule binding sites on proteins. Since its initial release in 2011, PoSSuM has grown to provide information related to 49 million pairs of similar binding sites discovered among 5.5 million known and putative binding sites. This enlargement of the database is expected to enhance opportunities for biological and pharmaceutical applications, such as predictions of new functions and drug discovery. In this release, we have provided a new service named PoSSuM drug search (PoSSuMds) at http://possum.cbrc.jp/PoSSuM/drug_search/, in which we selected 194 approved drug compounds retrieved from ChEMBL, and detected their known binding pockets and pockets that are similar to them. Users can access and download all of the search results via a new web interface, which is useful for finding ligand analogs as well as potential target proteins. Furthermore, PoSSuMds enables users to explore the binding pocket universe within PoSSuM. Additionally, we have improved the web interface with new functions, including sortable tables and a viewer for visualizing and downloading superimposed pockets. PMID:25404129

  2. Synthesis and optical properties of macrocyclic lanthanide(III) chelates as new reagents for luminescent biolabeling.

    PubMed

    Deslandes, Sébastien; Galaup, Chantal; Poole, Robert; Mestre-Voegtlé, Béatrice; Soldevila, Stéphanie; Leygue, Nadine; Bazin, Hervé; Lamarque, Laurent; Picard, Claude

    2012-11-14

    The convenient and efficient synthesis of two macrocyclic ligands (15- and 18-membered) based on a dipyrido-6,7,8,9-tetrahydrophenazine (dpqc) or 2,2':6',2''-terpyridine (tpy) heterocycle and a DTTA (diethylenetriaminetriacetic acid) skeleton is described. In these ligands the DTTA skeleton contains an additional extracyclic functionality (NH(2) group) suitable for covalent attachment to bioactive molecules. These octa- and nonadentate ligands form very stable and luminescent neutral lanthanide complexes in aqueous solutions at physiological pH. The corresponding Eu(III) and Tb(III) complexes are characterized by a maximum absorption wavelength compatible with nitrogen laser excitation (337 nm) and attractive lifetimes and quantum yields. Further introduction of a maleimide bioconjugatable handle in the Eu(III) complexes was investigated and a valuable luminescence brightness above 1500 dm(3) mol(-1) cm(-1) at 337 nm was obtained with the corresponding Eu(III) tpy-derivative. Finally, these two luminescent chelates were grafted onto thiol residues of a model antibody (Mab GSS11) without loss of their luminescent properties.

  3. Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter.

    PubMed

    Beverina, Luca; Crippa, Maurizio; Sassi, Mauro; Monguzzi, Angelo; Meinardi, Francesco; Tubino, Riccardo; Pagani, Giorgio A

    2009-09-14

    We show the design and synthesis of new perfluorinated nitrosopyrazolone-based ligands and the original method employed for their complexation of erbium ions in the presence of the co-ligand perfluorotriphenylphosphine oxide; the resulting chelate is non-hygroscopic, solution processable and possesses a NIR emission with lifetimes as long as 16 micros.

  4. Coordination polymers of Ag(I) based on iminocarbene ligands involving metal-carbon and metal-heteroatom interactions

    NASA Astrophysics Data System (ADS)

    Netalkar, Sandeep P.; Netalkar, Priya P.; Revankar, Vidyanand K.

    2016-03-01

    The reaction of Ag2O with three novel imino-NHC ligands derived from 2-chloroacetophenone with pendant N-donor functional group incorporated by reaction with methoxyamine and 1-methyl/ethyl/n-butyl-substituted imidazoles afforded one-dimensional coordination polymers with [(-NHCarbene)Ag(NHCarbene-)PF6]n formulation involving both carbon-metal and heteroatom-metal interactions, the carbon and heteroatom involved in coordination to silver being from different molecule of the ligand. The complexes as well as the ligands were characterized by spectroscopic methods as well as the solid state structures determined in case of 2a, 3a and complex 5. The iminocarbene ligands serve as non-chelating building block for supramolecular silver assemblies.

  5. A Small Molecule p75NTR Ligand, LM11A-31, Reverses Cholinergic Neurite Dystrophy in Alzheimer's Disease Mouse Models with Mid- to Late-Stage Disease Progression

    PubMed Central

    Simmons, Danielle A.; Knowles, Juliet K.; Belichenko, Nadia P.; Banerjee, Gargi; Finkle, Carly; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    Degeneration of basal forebrain cholinergic neurons contributes significantly to the cognitive deficits associated with Alzheimer's disease (AD) and has been attributed to aberrant signaling through the neurotrophin receptor p75 (p75NTR). Thus, modulating p75NTR signaling is considered a promising therapeutic strategy for AD. Accordingly, our laboratory has developed small molecule p75NTR ligands that increase survival signaling and inhibit amyloid-β-induced degenerative signaling in in vitro studies. Previous work found that a lead p75NTR ligand, LM11A-31, prevents degeneration of cholinergic neurites when given to an AD mouse model in the early stages of disease pathology. To extend its potential clinical applications, we sought to determine whether LM11A-31 could reverse cholinergic neurite atrophy when treatment begins in AD mouse models having mid- to late stages of pathology. Reversing pathology may have particular clinical relevance as most AD studies involve patients that are at an advanced pathological stage. In this study, LM11A-31 (50 or 75 mg/kg) was administered orally to two AD mouse models, Thy-1 hAPPLond/Swe (APPL/S) and Tg2576, at age ranges during which marked AD-like pathology manifests. In mid-stage male APPL/S mice, LM11A-31 administered for 3 months starting at 6–8 months of age prevented and/or reversed atrophy of basal forebrain cholinergic neurites and cortical dystrophic neurites. Importantly, a 1 month LM11A-31 treatment given to male APPL/S mice (12–13 months old) with late-stage pathology reversed the degeneration of cholinergic neurites in basal forebrain, ameliorated cortical dystrophic neurites, and normalized increased basal forebrain levels of p75NTR. Similar results were seen in female Tg2576 mice. These findings suggest that LM11A-31 can reduce and/or reverse fundamental AD pathologies in late-stage AD mice. Thus, targeting p75NTR is a promising approach to reducing AD-related degenerative processes that have progressed

  6. Macroreticular chelating ion-exchangers.

    PubMed

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  7. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates

    PubMed Central

    Mikhailov, Oleg V.

    2014-01-01

    This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis. PMID:24516711

  8. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates.

    PubMed

    Mikhailov, Oleg V

    2014-01-01

    This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis.

  9. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode.

  10. Novel polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1981-08-24

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. Formulas of the compounds are given. To prepare them polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO/sub 3/H, SO/sub 3/M, NO/sub 2/, CO/sub 2/H or CO/sub 2/M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr/sub 3/ or BCl/sub 3/ in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  11. Polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1984-04-10

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula given in patent. Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO[sub 3]H, SO[sub 3]M, NO[sub 2], CO[sub 2]H or CO[sub 2]M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr[sub 3] or BCl[sub 3] in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated. No Drawings

  12. Polycatecholamide chelating agents

    DOEpatents

    Weitl, Frederick L.; Raymond, Kenneth N.

    1984-01-01

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula ##STR1## Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO.sub.3 H, SO.sub.3 M, NO.sub.2, CO.sub.2 H or CO.sub.2 M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr.sub.3 or BCl.sub.3 in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  13. LigandRNA: computational predictor of RNA-ligand interactions.

    PubMed

    Philips, Anna; Milanowska, Kaja; Lach, Grzegorz; Bujnicki, Janusz M

    2013-12-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.

  14. Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies

    PubMed Central

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Liu, Qiangqiang; Lei, Shan; Peng, Rufang

    2016-01-01

    A series of novel hexadentate enterobactin analogues, which contain three catechol chelating moieties attached to different molecular scaffolds with flexible alkyl chain lengths, were prepared. The solution thermodynamic stabilities of the complexes with uranyl, ferric(III), and zinc(II) ions were then investigated. The hexadentate ligands demonstrate effective binding ability to uranyl ion, and the average uranyl affinities are two orders of magnitude higher than 2,3-dihydroxy-N1,N4-bis[(1,2-hydroxypyridinone-6-carboxamide)ethyl]terephthalamide [TMA(2Li-1,2-HOPO)2] ligand with similar denticity. The high affinity of hexadentate ligands could be due to the presence of the flexible scaffold, which favors the geometric agreement between the ligand and the uranyl coordination preference. The hexadentate ligands also exhibit higher antiradical efficiency than butylated hydroxyanisole (BHA). These results provide a basis for further studies on the potential applications of hexadentate ligands as therapeutic chelating agents. PMID:27671769

  15. Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies

    NASA Astrophysics Data System (ADS)

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Liu, Qiangqiang; Lei, Shan; Peng, Rufang

    2016-09-01

    A series of novel hexadentate enterobactin analogues, which contain three catechol chelating moieties attached to different molecular scaffolds with flexible alkyl chain lengths, were prepared. The solution thermodynamic stabilities of the complexes with uranyl, ferric(III), and zinc(II) ions were then investigated. The hexadentate ligands demonstrate effective binding ability to uranyl ion, and the average uranyl affinities are two orders of magnitude higher than 2,3-dihydroxy-N1,N4-bis[(1,2-hydroxypyridinone-6-carboxamide)ethyl]terephthalamide [TMA(2Li-1,2-HOPO)2] ligand with similar denticity. The high affinity of hexadentate ligands could be due to the presence of the flexible scaffold, which favors the geometric agreement between the ligand and the uranyl coordination preference. The hexadentate ligands also exhibit higher antiradical efficiency than butylated hydroxyanisole (BHA). These results provide a basis for further studies on the potential applications of hexadentate ligands as therapeutic chelating agents.

  16. Deletion of the Mucin-Like Molecule Muc1 Enhances Dendritic Cell Activation in Response to Toll-Like Receptor Ligands

    PubMed Central

    Williams, Marc A.; Bauer, Stephen; Lu, Wenju; Guo, Jia; Walter, Scott; Bushnell, Timothy P.; Lillehoj, Erik P.; Georas, Steve N.

    2010-01-01

    Dendritic cells (DC) are potent professional antigen-presenting cells that drive primary immune responses to infections or other agonists perceived as ‘dangerous’. Muc1 is the only cell surface mucin or MUC gene product that is expressed in DC. Unlike other members of this glycoprotein family, Muc1 possesses a unique cytosolic region capable of signal transduction and attenuating toll-like receptor (TLR) activation. The expression and function of Muc1 has been intensively investigated on epithelial and tumor cells, but relatively little is known about its function on DC. We hypothesized that Muc1 would influence in vitro generation and primary DC activation in response to the TLR4 and TLR5 ligands lipopolysaccharide and flagellin. Compared with Muc1+/+ DC, we found that Muc1−/− DC were constitutively activated, as determined by higher expression of co-stimulatory molecules (CD40, CD80 and CD86), greater secretion of immunoregulatory cytokines (TNF-α and VEGF), and better stimulation of allogeneic naïve CD4+ T cell proliferation. After activation by either LPS or flagellin and co-culture with allogeneic CD4+ T cells, Muc1−/− DC also induced greater secretion of TNF-α and IFN-γ compared to similarly activated Muc1+/+ DC. Taken together, our results indicate that deletion of Muc1 promotes a heightened functional response of DC in response to TLR4 and TLR5 signaling pathways, and suggests a previously under-appreciated role for Muc1 in regulating innate immune responses of DC. PMID:20375631

  17. Desferrithiocin: A Search for Clinically Effective Iron Chelators

    PubMed Central

    2015-01-01

    The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure–activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials. PMID:25207964

  18. Spectral, XRD, SEM and biological activities of transition metal complexes of polydentate ligands containing thiazole moiety

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Marriappan, S. S.; Dharmaraja, J.; Jeyakumar, T.; Muthukumaran, K.

    2008-11-01

    Metal complexes of o-vanillidene-2-aminobenzothiazole have been prepared and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as magnetic susceptibility measurements and thermo gravimetric analysis (TG/DTA). The low molar conductance values reveal the non-electrolytic nature of these complexes. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand). Magnetic susceptibility data coupled with electronic spectra suggest that two ligands coordinate to each metal atom by phenolic oxygen and imino nitrogen to form high spin octahedral complex with Co(II), Mn(II) and Ni(II). The fifth and sixth position of metal ion is satisfied with water molecules. The thermal behaviour (TG/DTA) of the synthesised complexes shows that the complexes loss water molecules in the first step followed by decomposition of the ligand. Spin Hamiltonian parameters predict a distorted tetrahedral geometry for the copper complex. XRD and SEM analysis provide the crystalline nature and the morphology of the metal complexes. The in vitro biological activity of the metal chelates is tested against the Gram positive bacteria ( Bacillus amyloliquifacians) and gram negative bacteria ( Pseudomonas species), fungus ( Aspergillus niger) and yeast ( Sacchromyces cereviaceae). Most of the metal chelates exhibited higher biological activities.

  19. Chelation in metal intoxication--Principles and paradigms.

    PubMed

    Aaseth, Jan; Skaug, Marit Aralt; Cao, Yang; Andersen, Ole

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new oral iron antidotes deferiprone and desferasirox have entered into the clinical arena. Comparisons of these agents and deferoxamine infusions are in progress. General principles for research and development of new chelators are briefly outlined in this review.

  20. Supercritical Fluid Extraction of Metal Chelate: A Review.

    PubMed

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO3) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  1. Competitive coordination between lead and oligoelements with respect to some therapeutic heavy-metal chelators

    NASA Astrophysics Data System (ADS)

    Gourlaouen, C.; Parisel, O.

    The competitive complexation of Ca2+, Fe2+, Cu2+, Zn2+, and Pb2+ toward ethylene diamine tetraacetate (EDTA), dimercaprol and D-penicillamine, three liganding agents commonly used in chelation therapy against heavy metal, especially lead, poisonings is examined by means of B3LYP calculations, natural population analyses, and the topological analysis of the electron localization function. It is shown that Pb2+ can displace any of Ca2+, Fe2+, Cu2+, or Zn2+ chelated by any of dimercaprol or D-penicillamine, but can only displace Ca2+ if EDTA is concerned. The first two chelators thus appear as better entities than EDTA to be used in chelation therapy, where in vivo selective complexation is essential. Moreover, the comparison of the bonding characteristics of Pb2+ with those of the other cations allows deriving three features to be taken into account in designing new chelators expecting to have an increased selectivity toward this cation.

  2. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  3. Novel Chemical Strategies for Labeling Small Molecule Ligands for Androgen, Progestin, and Peroxisome Proliferator-Activated Receptors for Imaging Prostate and Breast Cancer and the Heart

    SciTech Connect

    Katzenellenbogen, John, A.

    2007-04-19

    Summary of Progress The specific aims of this project can be summarized as follows: • Aim 1: Prepare and evaluate radiolabeled ligands for the peroxisome proliferator-activated receptor (PPAR), a new nuclear hormone receptor target for tumor imaging and hormone therapy. • Aim 2: Prepare steroids labeled with a cyclopentadienyl tricarbonyl technetium or rhenium unit. • Aim 3: Prepare and evaluate other organometallic systems of novel design as ligand mimics and halogenated ligands for nuclear hormone receptor-based tumor imaging. As is described in detail below, we made excellent progress on all three of these aims; the highlights of our progress are the following: • we have prepared the first fluorine-18 labeled analogs of ligands for the PPAR receptor and used these in tissue distribution studies in rats • we have developed three new methods for the synthesis of cyclopentadienyltricarbonyl rhenium and technetium (CpRe(CO)3 and CpTc(CO)3) systems and we have adapted these to the synthesis of steroids labeled with these metals, as well as ligands for other receptor systems • we have prepared a number of fluorine-18 labeled steroidal and non-steroidal androgens and measured their tissue distribution in rats • we have prepared iodine and bromine-labeled progestins with high progesterone receptor binding affinity • we have prepared inorganic metal tricarbonyl complexes and steroid receptor ligands in which the metal tricarbonyl unit is an integral part off the ligand core.

  4. New rare earth metal complexes with nitrogen-rich ligands: 5,5'-bitetrazolate and 1,3-bis(tetrazol-5-yl)triazenate-on the borderline between coordination and the formation of salt-like compounds.

    PubMed

    Eulgem, Patrick J; Klein, Axel; Maggiarosa, Nicola; Naumann, Dieter; Pohl, Roland W H

    2008-01-01

    From the two nitrogen-rich ligands BT(2-) (BT=5,5'-bitetrazole) and BTT(3-) (BTT=1,3-bis(1H-tetrazol-5-yl)triazene), a series of novel rare earth metal complexes were synthesised. For the BT ligand, a vast number of these complexes could be structurally characterised by single-crystal XRD, revealing structures ranging from discrete molecular aggregates to salt-like compounds. The isomorphous complexes [La2(BT)3]14 H2O (1) and [Ce2(BT)3]14 H2O (2) reveal discrete molecules in which one BT(2-) acts as a bridging ligand and two BT groups as chelating ligands. The complexes, [M(BT)(H2O)7]2[BT] x (x) H2O (3-5), (M=Nd (3), Sm (4), and Eu (5)), are also isomorphous and consist of [M(BT)(H2O)7]+ ions in which only one BT(2-) acts as a chelate ligand for each metal centre. [Tb(H2O)8]2[BT]3 x H2O (6) and [Er(H2O)8](2)[BT](3)x H2O (7) are salt-like compounds that do not exhibit any significant metal-nitrogen contacts. In the BTT-samarium compound 9, discrete molecules were found in which BTT(3-) acts as a tridentate ligand with three Sm--N bonds.

  5. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  6. Dendritic poly-chelator frameworks for multimeric bioconjugation.

    PubMed

    Reich, Dominik; Wurzer, Alexander; Wirtz, Martina; Stiegler, Veronika; Spatz, Philipp; Pollmann, Julia; Wester, Hans-Jürgen; Notni, Johannes

    2017-02-23

    Starting from multifunctional triazacyclononane-triphosphinate chelator cores, dendritic molecules with the ability to bind metal ions within their framework were synthesized. A cooperative interaction of the chelator cages resulted in a markedly increased affinity towards (67/68)Ga(III). A hexameric PSMA inhibitor conjugate with high affinity (IC50 = 1.2 nM) and favorable in vivo PET imaging properties demonstrated practical applicability. The novel scaffolds are useful for synthesis of structurally well-defined multimodal imaging probes or theranostics.

  7. Electronic structure and optical properties of conjugated molecules: SAC-CI study

    NASA Astrophysics Data System (ADS)

    Ehara, Masahiro; Saha, Biswajit; Poolmee, Potjaman; Promkatkaew, Malinee; Hannongbua, Supa; Lu, Yun-peng; Nakatsuji, Hiroshi

    2012-12-01

    Electronic structure and optical properties of some organic conjugated molecules, that is the oligomers for organic-light emitting diodes (OLED), chelating hetero-atomic conjugated ligands, and UVB blocking molecules, have been investigated by the SAC-CI method. The absorption and emission spectra of these molecules were reproduced accurately. For OLED molecules, chain length dependence of the excitation and emission energies was evaluated for poly para-phenylene vinylene and poly para-phenylene. Thermal effect on the electronic spectra of fluorene-thiophene and its derivatives was examined with taking accounts the Boltzmann distribution. The photophysical properties of the chelating hetero-atomic molecules including pyridine-, benxazole-, and benzothiazole derivatives which are useful for electroluminescent metal complex were systematically calculated. The UVB blocking function of the methoxy substituted cinnamates was investigated with regard to the substitution position. The excited-state geometry relaxation of these molecules was interpreted based on the electrostatic force theory. The present work provides a useful basis for the theoretical design predicting the optical properties of the photo-functional molecules.

  8. Ligand Identification Scoring Algorithm (LISA)

    PubMed Central

    Zheng, Zheng; Merz, Kenneth M.

    2011-01-01

    A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms. PMID:21561101

  9. Ligand Identification Scoring Algorithm (LISA).

    PubMed

    Zheng, Zheng; Merz, Kenneth M

    2011-06-27

    A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects, and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions, and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well-known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms.

  10. Interaction of chelating agents with cadmium in mice and rats.

    PubMed Central

    Eybl, V; Sýkora, J; Koutenský, J; Caisová, D; Schwartz, A; Mertl, F

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl2 and on the whole body retention and tissue distribution of cadmium after the IV application of 115mCdCl2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatment of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination of the retention and distribution of Cd in mice, it was demonstrated that the combined application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of 115mCd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes. PMID:6734561

  11. Lauriston S. Taylor Lecture: the quest for therapeutic actinide chelators.

    PubMed

    Durbin, Patricia W

    2008-11-01

    All of the actinides are radioactive. Taken into the body, they damage and induce cancer in bone and liver, and in the lungs if inhaled, and U(VI) is a chemical kidney poison. Containment of radionuclides is fundamental to radiation protection, but if it is breached accidentally or deliberately, decontamination of exposed persons is needed to reduce the consequences of radionuclide intake. The only known way to reduce the health risks of internally deposited actinides is to accelerate their excretion with chelating agents. Ethylendiaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were introduced in the 1950's. DTPA is now clinically accepted, but its oral activity is low, it must be injected as a Ca(II) or Zn(II) chelate to avoid toxicity, and it is structurally unsuitable for chelating U(VI) or Np(V). Actinide penetration into the mammalian iron transport and storage systems suggested that actinide ions would form stable complexes with the Fe(III)-binding units found in potent selective natural iron chelators (siderophores). Testing of that biomimetic approach began in the late 1970's with the design, production, and assessment for in vivo Pu(IV) chelation of synthetic multidentate ligands based on the backbone structures and Fe(III)-binding groups of siderophores. New efficacious actinide chelators have emerged from that program, in particular, octadentate 3,4,3-LI(1,2-HOPO) and tetradentate 5-LIO(Me-3,2-HOPO) have potential for clinical acceptance. Both are much more effective than CaNa3-DTPA for decorporation of Pu(IV), Am(III), U(VI), and Np(IV,V), they are orally active, and toxicity is acceptably low at effective dosage.

  12. Interaction of chelating agents with cadmium in mice and rats

    SciTech Connect

    Eybl, V.; Sykora, J.; Koutensky, J.; Caisova, D.; Schwartz, A.; Mertl, F.

    1984-03-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl/sub 2/ and on the whole body retention and tissue distribution of cadmium after the IV application of /sup 115mCdCl/sub 2/ was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatement of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl/sub 2/ and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of /sup 115m/Cd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes.

  13. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates

    NASA Astrophysics Data System (ADS)

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar + laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Ω6 value for erbium chelate is and larger photoluminescence intensity at 1.54 μm is, and Ω2 value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 μm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF 3 in β-diketone for erbium chelates.

  14. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates.

    PubMed

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar(+) laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Omega(6) value for erbium chelate is and larger photoluminescence intensity at 1.54 microm is, and Omega(2) value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 microm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF(3) in beta-diketone for erbium chelates.

  15. Novel DOCK clique driven 3D similarity database search tools for molecule shape matching and beyond: adding flexibility to the search for ligand kin.

    PubMed

    Good, Andrew C

    2007-10-01

    With readily available CPU power and copious disk storage, it is now possible to undertake rapid comparison of 3D properties derived from explicit ligand overlay experiments. With this in mind, shape software tools originally devised in the 1990s are revisited, modified and applied to the problem of ligand database shape comparison. The utility of Connolly surface data is highlighted using the program MAKESITE, which leverages surface normal data to a create ligand shape cast. This cast is applied directly within DOCK, allowing the program to be used unmodified as a shape searching tool. In addition, DOCK has undergone multiple modifications to create a dedicated ligand shape comparison tool KIN. Scoring has been altered to incorporate the original incarnation of Gaussian function derived shape description based on STO-3G atomic electron density. In addition, a tabu-like search refinement has been added to increase search speed by removing redundant starting orientations produced during clique matching. The ability to use exclusion regions, again based on Gaussian shape overlap, has also been integrated into the scoring function. The use of both DOCK with MAKESITE and KIN in database screening mode is illustrated using a published ligand shape virtual screening template. The advantages of using a clique-driven search paradigm are highlighted, including shape optimization within a pharmacophore constrained framework, and easy incorporation of additional scoring function modifications. The potential for further development of such methods is also discussed.

  16. Uranyl binary and ternary chelates of tenoxicam Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals.

    PubMed

    El-Gamel, Nadia E A

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) chelates with tenoxicam (Ten) drug (H(2)L(1)) and dl-alanine (Ala) (HL(2)) and also the binary UO(2)(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO(2)(II) binary chelate was isolated in 1:2 ratio with the formula [UO(2)(H(2)L)(2)](NO(3))(2). The ternary chelates were isolated in 1:1:1 (M:H(2)L(1):L(2)) ratios and have the general formulae [M(H(2)L(1))(L(2))(Cl)(n)(H(2)O)(m)].yH(2)O (M=Fe(III) (n=2, m=0, y=2), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=3)); [M(H(2)L(1))(L(2))](X)(z).yH(2)O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO(2)(II) (X=NO(3), z=1, y=2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  17. Uranyl binary and ternary chelates of tenoxicam. Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) chelates with tenoxicam (Ten) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO 2(II) binary chelate was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary chelates were isolated in 1:1:1 (M:H 2L 1:L 2) ratios and have the general formulae [M(H 2L 1)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 2), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 3)); [M(H 2L 1)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  18. Synthesis and evaluation of analogues of HYNIC as bifunctional chelators for technetium.

    PubMed

    Meszaros, Levente K; Dose, Anica; Biagini, Stefano C G; Blower, Philip J

    2011-06-21

    6-Hydrazinonicotinic acid (HYNIC, 1) is a well-established bifunctional technetium-binding ligand often used to synthesise bioconjugates for radiolabelling with Tc-99m. It is capable of efficient capture of technetium at extremely low concentrations, but the structure of the labelled complexes is heterogeneous and incompletely understood. In particular, it is of interest to determine whether, at the no-carrier-added level, it acts in a chelating or non-chelating mode. Here we report two new isomers of HYNIC: 2-hydrazinonicotinic acid (2-HYNIC, 2), which (like 1) is capable of chelation through the mutually ortho hydrazine and pyridine nitrogens and 4-hydrazinonicotinic acid (4-HYNIC, 3), which is not (due to the para-relationship of the hydrazine and pyridine nitrogens). LC-MS shows that the coordination chemistry of 2 with technetium closely parallels that of conventional 1, and no advantages of one over the other in terms of potential labelling efficiency or isomerism were discernable. Both 1 and 2 formed complexes with the loss of 5 protons from the ligand set, whether the co-ligand was tricine or EDDA. Ligand 3, however, failed to complex technetium except at very high ligand concentration: the marked contrast with 1 and 2 suggests that chelation, rather than nonchelating coordination, is a key feature of technetium coordination by HYNIC. Two further new HYNIC analogues, 2-chloro-6-hydrazinonicotinic acid (2-chloro-HYNIC, 4a) and 2,6-dihydrazinonicotinic acid (diHYNIC, 5) were also synthesised. The coordination chemistry of 4a with technetium was broadly parallel to that of 1 and 2 although it was a less efficient chelator, while 5 also behaved as an efficient chelator of technetium, but its coordination chemistry remains poorly defined and requires further investigation before it can sensibly be adopted for (99m)Tc-labelling. The new analogues 4a and 5 present an opportunity to develop trifunctional HYNIC analogues for more complex bioconjugate synthesis.

  19. Synthesis, structure, and single-molecule magnetic properties of rare-earth sandwich complexes with mixed phthalocyanine and Schiff base ligands.

    PubMed

    Wang, Hailong; Cao, Wei; Liu, Tao; Duan, Chunying; Jiang, Jianzhuang

    2013-02-11

    Double- and quadruple-decker complexes of rare-earth metals with mixed phthalocyanine and Schiff base ligands have been synthesized and structurally and magnetically characterized. These complexes (see picture: Dy pink, Ca green, N blue, C black) extend the scope of sandwich-type tetrapyrrole-based rare-earth molecular materials.

  20. Fluorescence Spectroscopy of tRNA[superscript Phe] Y Base in the Presence of Mg[superscript 2+] and Small Molecule Ligands

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students use fluorescence spectroscopy to study tRNA[superscript…

  1. A universal rule for organic ligand exchange.

    PubMed

    You, Hongjun; Wang, Wenjin; Yang, Shengchun

    2014-11-12

    Most synthetic routes to high-quality nanocrystals with tunable morphologies predominantly employ long hydro-carbon molecules as ligands, which are detrimental for electronic and catalytic applications. Here, a rule is found that the adsorption energy of an organic ligand is related to its carbon-chain length. Using the density functional theory method, the adsorption energies of some commonly used ligand molecules with different carbon-chain lengths are calculated, including carboxylate, hydroxyl, and amine molecules adsorbed on metal or metal oxide crystal surface. The results indicate that the adsorption energy of the ligand molecule with a long carbon chain is weaker than that of a smaller molecule with same functional group. This rule provides a theoretical support for a new kind of ligand exchange method in which large organic ligand molecules can be exchanged by small molecules with same functional group to improve the catalytic properties.

  2. Geometric and electronic structures of boron(III)-cored dyes tailored by incorporation of heteroatoms into ligands.

    PubMed

    Sun, Lin; Zhang, Fan; Wang, Xinyang; Qiu, Feng; Xue, Minzhao; Tregnago, Giulia; Cacialli, Franco; Osella, Silvio; Beljonne, David; Feng, Xinliang

    2015-03-01

    Complexation of a boron atom with a series of bidentate heterocyclic ligands successfully gives rise to corresponding BF2-chelated heteroarenes, which could be considered as novel boron(III)-cored dyes. These dye molecules exhibit planar structures and expanded π-conjugated backbones due to the locked conformation with a boron center. The geometric and electronic structures of these BF2 complexes can be tailored by embedding heteroatoms in the unique modes to form positional isomer and isoelectronic structures. The structure-property relationship is further elucidated by studying the photophysical properties, electrochemical behavior and quantum-chemical calculations.

  3. Final report submitted to the Department of Energy [Encapsulation of metal chelate and oxo catalysts in nanoporous hosts

    SciTech Connect

    Bein, Thomas

    2000-10-27

    The focus of this project is directed at the design of novel zeolite-based hybrid catalysts, based on encapsulated transition metal chelate complexes and metal oxo species. One goal is to achieve improved control over the active species in heterogeneous catalysis, as well as improved reactant and product selectivities. This is achieved by combining the catalytic activity of transition metal catalysts with the large surface area of microporous and mesoporous hosts. Furthermore, shape selectivity may be achieved through the well-defined pore structure of zeolites. Several families of complexes have been studied, including nitrogen chelate complexes, chiral salen complexes, and supported molybdenum-oxo species. In the group of nitrogen-containing metal chelate complexes, some are derived from triazacyclononane, while others are derived from tetradentate cyclam-type ligands. These complexes have been studied in solution, encapsulated in the cages of zeolites, and attached to the channel walls of the novel mesoporous MCM-41-type materials. The latter approach is based on covalent grafting of the ligand to the host, followed by metalation. These heterogenized complexes show good activity in highly selective olefin epoxidation reactions. Furthermore, we have investigated the encapsulation of chiral metal chelate complexes, including manganese salen complexes in the cages of EMT zeolite. This large-pore host allowed us to synthesize the entire complex in the zeolite in a multistep sequence. The epoxidation activity of these hybrid systems is truly encapsulated in the host cages: large substrate molecules such as cholesterol were not oxidized. Chiral epoxidation with enantiomeric excess of 80% was achieved. Zeolite-supported molybdenum-oxo species have also been synthesized and investigated. These systems are also very active and selective epoxidation catalysts. Comprehensive characterization with spectroscopic and structural techniques has been performed, including EXAFS

  4. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  5. Characterization of the Structural and Chemical Properties of Copper Chelators in Seawater

    DTIC Science & Technology

    2000-09-30

    are pink). All of the strains that don’t make the ligand contain phycocyanin (the cultures are green). So far we have no explanation for this...thiol that does not co-elute with any of her thiol standards. IMPACT/ APPLICATIONS Successful characterization of this material could lead to new...insight into the sources and chemistry of Cu ligands in seawater. Potential applications could arise if we identify a new class of chelators selective

  6. Questions and Answers on Unapproved Chelation Products

    MedlinePlus

    ... OTC) to prevent or treat diseases. Companies are marketing unapproved OTC chelation therapy products to patients with ... 4. Why did FDA take this action? Companies marketing unapproved OTC chelation products with unsubstantiated treatment claims ...

  7. Iron chelation and multiple sclerosis

    PubMed Central

    Weigel, Kelsey J.; Lynch, Sharon G.; LeVine, Steven M.

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen. PMID:24397846

  8. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, Eugene T.

    1988-01-01

    This invention relates to the preparation of new, naturally produced chelating agents as well as to the method and resulting chelates of desorbing cultures in a bioavailable form involving Pseudomonas species or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 100-1,000 and also forms chelates with uranium of molecular weight in the area of 100-1,000 and 1,000-2,000.

  9. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications.

    PubMed

    Chappell, L L; Deal, K A; Dadachova, E; Brechbiel, M W

    2000-01-01

    225Ac (t(1/2) = 10 days) is an alternative alpha-emitter that has been proposed for radioimmunotherapy (RIT) due to its many favorable properties, such as half-life and mode of decay. The factor limiting use of (225)Ac in RIT is the lack of an acceptably stable chelate for in vivo applications. Herein is described the first reported bifunctional chelate for (225)Ac that has been evaluated for stability for in vivo applications. The detailed synthesis of a bifunctional chelating agent 2-(4-isothiocyanatobenzyl)-1,4,7,10,13, 16-hexaazacyclohexadecane- 1,4,7,10,13,16-hexaacetic acid (HEHA-NCS) is reported. This ligand was conjugated to three monoclonal antibodies, CC49, T101, and BL-3 with chelate-to-protein ratios between 1.4 and 2. The three conjugates were radiolabeled with (225)Ac, and serum stability study of the [(225)Ac]BL-3-HEHA conjugate was performed.

  10. Small Molecule Receptor Protein Tyrosine Phosphatase γ (RPTPγ) Ligands That Inhibit Phosphatase Activity via Perturbation of the Tryptophan-Proline-Aspartate (WPD) Loop

    SciTech Connect

    Sheriff, Steven; Beno, Brett R; Zhai, Weixu; Kostich, Walter A; McDonnell, Patricia A; Kish, Kevin; Goldfarb, Valentina; Gao, Mian; Kiefer, Susan E; Yanchunas, Joseph; Huang, Yanling; Shi, Shuhao; Zhu, Shirong; Dzierba, Carolyn; Bronson, Joanne; Macor, John E; Appiah, Kingsley K; Westphal, Ryan S; O’Connell, Jonathan; Gerritz, Samuel W

    2012-11-09

    Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of tyrosine residues, a process that involves a conserved tryptophan-proline-aspartate (WPD) loop in catalysis. In previously determined structures of PTPs, the WPD-loop has been observed in either an 'open' conformation or a 'closed' conformation. In the current work, X-ray structures of the catalytic domain of receptor-like protein tyrosine phosphatase γ (RPTPγ) revealed a ligand-induced 'superopen' conformation not previously reported for PTPs. In the superopen conformation, the ligand acts as an apparent competitive inhibitor and binds in a small hydrophobic pocket adjacent to, but distinct from, the active site. In the open and closed WPD-loop conformations of RPTPγ, the side chain of Trp1026 partially occupies this pocket. In the superopen conformation, Trp1026 is displaced allowing a 3,4-dichlorobenzyl substituent to occupy this site. The bound ligand prevents closure of the WPD-loop over the active site and disrupts the catalytic cycle of the enzyme.

  11. Seven phenoxido-bridged complexes encapsulated by 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands: single-molecule magnet, magnetic refrigeration and luminescence properties.

    PubMed

    Wang, Shi-Yu; Wang, Wen-Min; Zhang, Hong-Xia; Shen, Hai-Yun; Jiang, Li; Cui, Jian-Zhong; Gao, Hong-Ling

    2016-02-28

    Seven dinuclear complexes based on 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands, [RE2(hfac)4L2] (RE = Y (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6) and Lu (7); hfac(-) = hexafluoroacetylacetonate; HL = 2-[(4-chloro-phenylimino)-methyl]-8-hydroxyquinoline), have been synthesized, and structurally and magnetically characterized. Complexes 1-7 have similar dinuclear structures, in which each RE(III) ion is eight coordinated by two L(-) and two hfac(-) ligands in a distorted dodecahedron geometry. The luminescence spectra indicate that complex 3 exhibits characteristic Tb(III) ion luminescence, while 1 and 7 show HL ligand luminescence. The magnetic studies reveal that 2 features a magnetocaloric effect with the magnetic entropy change of -ΔSm = 16.83 J kg(-1) K(-1) at 2 K for ΔH = 8 T, and 4 displays slow magnetic relaxation behavior with the anisotropic barrier of 6.7 K and pre-exponential factor τ0 = 5.3 × 10(-6) s.

  12. Organic acids rather than histidine predominate in Ni chelation in Alyssum hyperaccumulator xylem exudate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...

  13. An Evaluation of the Chelating Agent EDDS for Floriculture Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopolycarboxylic acid (APCA) ligands (chelating agents) like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to plants. When complexed with Fe, EDTA and...

  14. Development of Peptoid-Based Ligands for the Removal of Cadmium from Biological Media

    PubMed Central

    Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.

    2015-01-01

    Cadmium poisoning poses a serious health concern due to cadmium’s increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate the significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal-ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for of the identification of metal-ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning. PMID:26918113

  15. Development of peptoid-based ligands for the removal of cadmium from biological media

    DOE PAGES

    Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.

    2015-05-14

    Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less

  16. Development of peptoid-based ligands for the removal of cadmium from biological media

    SciTech Connect

    Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.

    2015-05-14

    Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate the significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.

  17. Geometric isomerism in coordination cages based on tris-chelate vertices: a tool to control both assembly and host/guest chemistry.

    PubMed

    Metherell, Alexander J; Ward, Michael D

    2016-10-18

    This 'Perspective' article summarises recent work from the authors' research group on the exploitation of the simple fac/mer geometric isomerism of octahedral metal tris-chelates as a tool to control the chemistry of coordination cages based on bis(pyrazolyl-pyridine) ligands, in two different respects. Firstly this geometric isomerism plays a major role in controlling the guest binding properties of cages because a fac tris-chelate arrangement of pyrazolyl-pyridine chelates around a metal ion vertex results in formation of a convergent set of inwardly-directed C-H protons in a region of high positive electrostatic potential close to a metal cation. This collection of δ+ protons therefore provides a charge-assisted hydrogen-bond donor site, which interacts with the electron-rich regions of guest molecules that are of the correct size and shape to occupy the cage cavity, and the strength of this hydrogen-bonding interaction plays a major role in guest recognition in non-aqueous solvents. Secondly the ability to prepare mononuclear complexes with either a fac or mer arrangement of ligands provides an entry into the controlled, stepwise assembly of heterometallic cages based on a combination of kinetically inert and kinetically labile metal ions at different sites. This has allowed introduction of useful physical properties such as redox activity or luminescence, commonly associated with inert metal ions which are not amenable to participation in thermodynamic self-assembly processes, to be incorporated in a predictable way into the superstructures of coordination cages at specific sites.

  18. Evaluation of the efficiency of DTPA and other new chelating agents for removing neptunium from target organs.

    PubMed

    Paquet, F; Metivier, H; Poncy, J L; Burgada, R; Bailly, T

    1997-05-01

    Diethylenetriamine pentaacetic acid (DTPA) has been tested with 8 other new chelators for neptunium decorporation after systemic contamination in the rat. The ligands were injected intravenously at a dosage of 30 mumol kg-1 and the animals killed 24 h later. The results show that none of the chelators tested was efficient in removing significant amounts of the radionuclide from the body. In order to understand why these chelators were ineffective, in vitro approaches have since been developed in which high concentrations of DTPA were added to Np-bearing ligands in the blood, liver and skeleton. The main conclusions were that under our experimental conditions neptunium was not chelatable after its organ deposition.

  19. Chemistry and bifunctional chelating agents for binding (177)Lu.

    PubMed

    Parus, Józef L; Pawlak, Dariusz; Mikolajczak, Renata; Duatti, Adriano

    2015-01-01

    A short overview of fundamental chemistry of lutetium and of structural characteristics of lutetium coordination complexes, as relevant for understanding the properties of lutetium-177 radiopharmaceuticals, is presented. This includes basic concepts on lutetium electronic structure, lanthanide contraction, coordination geometries, behavior in aqueous solution and thermodynamic stability. An illustration of the structure and binding properties of the most important chelating agents for the Lu(3+) ion in aqueous solution is also reported with specific focus on coordination complexes formed with linear and macrocyclic polydentate amino-carboxylate donor ligands.

  20. Luminescent lanthanide chelates and methods of use

    SciTech Connect

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  1. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    PubMed

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  2. Design of a Hole Trapping Ligand

    DOE PAGES

    La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.; ...

    2017-01-18

    A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less

  3. Treating small fiber neuropathy by topical application of a small molecule modulator of ligand-induced GFRα/RET receptor signaling

    PubMed Central

    Hedstrom, Kristian L.; Murtie, Joshua C.; Albers, Kathryn; Calcutt, Nigel A.; Corfas, Gabriel

    2014-01-01

    Small-fiber neuropathy (SFN) is a disorder of peripheral nerves commonly found in patients with diabetes mellitus, HIV infection, and those receiving chemotherapy. The complexity of disease etiology has led to a scarcity of effective treatments. Using two models of progressive SFN, we show that overexpression of glial cell line-derived neurotrophic factor (GDNF) in skin keratinocytes or topical application of XIB4035, a reported nonpeptidyl agonist of GDNF receptor α1 (GFRα1), are effective treatments for SFN. We also demonstrate that XIB4035 is not a GFRα1 agonist, but rather it enhances GFRα family receptor signaling in conjunction with ligand stimulation. Taken together, our results indicate that topical application of GFRα/RET receptor signaling modulators may be a unique therapy for SFN, and we have identified XIB4035 as a candidate therapeutic agent. PMID:24449858

  4. Controlling the specificity of modularly assembled small molecules for RNA via ligand module spacing: targeting the RNAs that cause myotonic muscular dystrophy.

    PubMed

    Lee, Melissa M; Childs-Disney, Jessica L; Pushechnikov, Alexei; French, Jonathan M; Sobczak, Krzysztof; Thornton, Charles A; Disney, Matthew D

    2009-12-02

    Myotonic muscular dystrophy types 1 and 2 (DM1 and DM2, respectively) are caused by expansions of repeating nucleotides in noncoding regions of RNA. In DM1, the expansion is an rCUG triplet repeat, whereas the DM2 expansion is an rCCUG quadruplet repeat. Both RNAs fold into hairpin structures with periodically repeating internal loops separated by two 5'GC/3'CG base pairs. The sizes of the loops, however, are different: the DM1 repeat forms 1 x 1 nucleotide UU loops while the DM2 repeat forms 2 x 2 nucleotide 5'CU/3'UC loops. DM is caused when the expanded repeats bind the RNA splicing regulator Muscleblind-like 1 protein (MBNL1), thus compromising its function. Therefore, one potential therapeutic strategy for these diseases is to prevent MBNL1 from binding the toxic RNA repeats. Previously, we designed nanomolar inhibitors of the DM2-MBNL1 interaction by modularly assembling 6'-N-5-hexyonate kanamycin A (K) onto a peptoid backbone. The K ligand binds the 2 x 2 pyrimidine-rich internal loops found in the DM2 RNA with high affinity. The best compound identified from that study contains three K modules separated by four propylamine spacing modules and is 20-fold selective for the DM2 RNA over the DM1 RNA. Because the modularly assembled K-containing compounds also bound the DM1 RNA, albeit with lower affinity, and because the loop size is different, we hypothesized that the optimal DM1 RNA binder may display K modules separated by a shorter distance. Indeed, here the ideal DM1 RNA binder has only two propylamine spacing modules separating the K ligands. Peptoids displaying three and four K modules on a peptoid scaffold bind the DM1 RNA with K(d)'s of 20 nM (3-fold selective for DM1 over DM2) and 4 nM (6-fold selective) and inhibit the RNA-protein interaction with IC(50)'s of 40 and 7 nM, respectively. Importantly, by coupling the two studies together, we have determined that appropriate spacing can affect binding selectivity by 60-fold (20- x 3-fold). The trimer and

  5. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.

  6. 1. Medicinal chemistry of a small molecule drug lead: Tamoxilog 2. Electronic communication through ruthenium nanoparticles: Synthesis of custom ligands and nanoparticles

    NASA Astrophysics Data System (ADS)

    Zuckerman, Nathaniel Benjamin

    1. Compound NSC-670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), a widely utilized breast cancer drug. The structure of NSC-670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated in conjunction with the UCSC Chemical Screening Center. The synthesis of a biotinylated affinity probe was also completed in order to extract the protein target(s) of NSC-670224 from yeast and human cell lines in collaboration with the Hartzog lab (UCSC MCD Biology) 2. Stabilization of ruthenium nanoparticles (Ru NPs) through carbene bound ligands has led to a simple and effective means to generate new materials with unique optoelectronic properties. The affinity of freshly prepared Ru NPs to diazo compounds, specifically octyl diazoacetate (ODA), provides a robust nanostructure that can be further functionalized via metathesis of terminal olefins to generate these unique materials. Carbene-stabilized Ru NPs have provided insights into the nature of extended conjugation and intraparticle charge delocalization through covalently bound probes (e.g., ferrocene and pyrene). The growing interest to study electronic communication through Ru NPs has lead to collaborative, multidisciplinary efforts between analytical (Shaowei Chen lab, UCSC), theoretical (Haobin Wang Lab, NMSU), and synthetic organic chemists (Konopelski Lab, UCSC). With this powerful collaboration, new methods to generate stabilized Ru NPs, testing theory with experiment, and efficient means to functionalize NPs have been investigated. The syntheses of custom ligands and their applications to nanoparticle-mediated electronic communication are reported.

  7. A New Ligand-Based Method for Purifying Active Human Plasma-Derived Ficolin-3 Complexes Supports the Phenomenon of Crosstalk between Pattern-Recognition Molecules and Immunoglobulins

    PubMed Central

    Man-Kupisinska, Aleksandra; Michalski, Mateusz; Maciejewska, Anna; Swierzko, Anna S.; Cedzynski, Maciej; Lugowski, Czeslaw; Lukasiewicz, Jolanta

    2016-01-01

    Despite recombinant protein technology development, proteins isolated from natural sources remain important for structure and activity determination. Ficolins represent a class of proteins that are difficult to isolate. To date, three methods for purifying ficolin-3 from plasma/serum have been proposed, defined by most critical step: (i) hydroxyapatite absorption chromatography (ii) N-acetylated human serum albumin affinity chromatography and (iii) anti-ficolin-3 monoclonal antibody-based affinity chromatography. We present a new protocol for purifying ficolin-3 complexes from human plasma that is based on an exclusive ligand: the O-specific polysaccharide of Hafnia alvei PCM 1200 LPS (O-PS 1200). The protocol includes (i) poly(ethylene glycol) precipitation; (ii) yeast and l-fucose incubation, for depletion of mannose-binding lectin; (iii) affinity chromatography using O-PS 1200-Sepharose; (iv) size-exclusion chromatography. Application of this protocol yielded average 2.2 mg of ficolin-3 preparation free of mannose-binding lectin (MBL), ficolin-1 and -2 from 500 ml of plasma. The protein was complexed with MBL-associated serine proteases (MASPs) and was able to activate the complement in vitro. In-process monitoring of MBL, ficolins, and total protein content revealed the presence of difficult-to-remove immunoglobulin G, M and A, in some extent in agreement with recent findings suggesting crosstalk between IgG and ficolin-3. We demonstrated that recombinant ficolin-3 interacts with IgG and IgM in a concentration-dependent manner. Although this association does not appear to influence ficolin-3-ligand interactions in vitro, it may have numerous consequences in vivo. Thus our purification procedure provides Ig-ficolin-3/MASP complexes that might be useful for gaining further insight into the crosstalk and biological activity of ficolin-3. PMID:27232184

  8. Synthesis of Two New Group 13 Benzoato-Chloro Complexes: A Structural Study of Gallium and Indium Chelating Carboxylates

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.; Hepp, Aloysius F.; Woloszynek, Robert; Protasiewicz, John D.; Dequeant, Michael; Ren, Tong

    2010-01-01

    Two new heteroleptic chelated-benzoato gallium (III) and indium (III) complexes have been prepared and structurally characterized. The molecular structures of [GaCl2(4-Mepy)2(O2CPh)]4-Mepy (1) and [InCl(4-Mepy)2(O2CPh)2]4-Mepy (2) have been determined by single-crystal x-ray diffraction. The gallium compound (1) is a distorted octahedron with cis-chloride ligands co-planar with the chelating benzoate and the 4-methylpyridines trans to each other. This is the first example of a Ga(III) structure with a chelating benzoate. The indium compound (2) is a distorted pentagonal bipyramid with two chelating benzoates, one 4-methylpyridine in the plane and a chloride trans to the other 4-methylpyridine. The indium bis-benzoate is an unusual example of a seven-coordinate structure with classical ligands. Both complexes, which due to the chelates, could also be described as pseudo-trigonal bipyramidal, include a three-bladed motif with three roughly parallel aromatic rings that along with a solvent of crystallization and electron-withdrawing chloride ligand(s) stabilize the solid-state structures.

  9. The intra-annular acylamide chelate-coordinated compound: The keto-tautomer of metal (II) milrinone complex

    NASA Astrophysics Data System (ADS)

    Gong, Yun; Liu, Jinzhi; Tang, Wang; Hu, Changwen

    2008-03-01

    In the presence of N, N'-dimethyllformamide (DMF), two isostructural metal (II)-milrinone complexes formulated as M(C 12H 8N 3O) 2 (M = Co 1 and Ni 2) have been synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. The two compounds crystallize in the tetragonal system, chiral space group P4 32 12. They exhibit similar two dimensional (2D) square grid-like framework, in which milrinone acts as a ditopic ligand with its terminal pyridine and intra-annular acylamide groups covalently bridging different metal centers. The intra-annular acylamide ligand shows a chelate-coordinated mode. Compounds 1 and 2 are stable under 200 °C. Compound 3 formulated as (C 12H 9N 3O) 4·H 2O was obtained in the presence of water, the water molecule in the structure leads to the racemization of compound 3 and it crystallizes in the monoclinic system, non-chiral space group P2 1/ c. Milrinone exhibits a keto-form in the three compounds and compounds 1- 3 exhibit different photoluminescence properties.

  10. Five dimeric thiogermanates with transition metal complexes of multidentate chelating amines: Syntheses, structures, magnetism and photoluminescence

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Ning; Guo, Guo-Cong; Wang, Ming-Sheng; Cai, Li-Zhen; Huang, Jin-Shun

    2010-11-01

    Five new thiogermanates, [Ni II(dien) 2] 2(Ge 2S 6) (dien = diethylenetriamine) ( 1), [Ni II(dien) 2](H 2pipe)(Ge 2S 6) (pipe = piperazine) ( 2), {[Mn II(tren)] 2( μ2-Ge 2S 6)} (tren = N,N,N-tris(2-aminoethyl)amine) ( 3) and {[M II(tepa)] 2( μ2-Ge 2S 6)} (M = Mn ( 4a), Ni ( 4b); tepa = tetraethylenepentamine), have been obtained solvothermally in the presence of tri-(L 3), tetra-(L 4) and penta-dentate (L 5) chelating amines and transition metal (TM) ions. Single-crystal X-ray diffraction analyses show that compounds 1- 2 are comprised of discrete (Ge 2S 6) 4- anions and TM complex (TMC) cations, while compounds 3- 4b are composed of each dimeric (Ge 2S 6) 4- anion bridging two TMC cations via TM-S bonds to form a neutral molecule. Notably, two interesting in situ metal/ligand reactions were observed in the solvothermal syntheses of 2 and 3. The present compounds exhibit wide optical gap ranging from 2.94 to 3.39 eV and photoluminescence with the emission maxima occurring around 440 ( 1, 2, 3 and 4b) and 489 nm ( 4a). Magnetic measurements show the presence of weak antiferromagnetic interactions between magnetic centers in the five compounds.

  11. Iron release and uptake by plant ferritin: effects of pH, reduction and chelation.

    PubMed Central

    Laulhere, J P; Briat, J F

    1993-01-01

    Ferritins are iron-storage proteins that accumulate in plastids during seed formation, and also in leaves during senescence or iron overload. Iron release from ferritins occurs during growth of seedlings and greening of plastids. Depending on the concentration of the reducing agent ascorbate, either an overall iron release or uptake by ferritins from iron(III) citrate may occur. We have designed methods to measure these simultaneous and independent uptake and release fluxes. Each individual step of the exchange was studied using different iron chelates and an excess of ligand. It is shown that: (i) the chelated form of iron, and not ionic Fe3+, is the substrate for iron reduction, which controls the subsequent uptake by ferritin; (ii) iron uptake by ferritins is faster at pH 8.4 than at pH 7 or 6 and is inhibited by an excess of strongly binding free ligands; and (iii) strongly binding free ligands are inhibitory during iron release by ascorbate. When reactions are allowed to proceed simultaneously, the iron chelating power is shown to be a key factor in the overall exchange. The interactions of iron chelating power, reducing capacity and pH are discussed with regard to their influence on the biochemical mobilization of iron. Images Figure 1 Figure 6 Figure 7 PMID:8457196

  12. Mathematical modeling of the effects of aerobic and anaerobic chelate bioegradation on actinide speciation.

    SciTech Connect

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-03-19

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems.

  13. Removal of cadmium from fish sauce using chelate resin.

    PubMed

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities.

  14. Chelation technology: a promising green approach for resource management and waste minimization.

    PubMed

    Chauhan, Garima; Pant, K K; Nigam, K D P

    2015-01-01

    Green chemical engineering recognises the concept of developing innovative environmentally benign technologies to protect human health and ecosystems. In order to explore this concept for minimizing industrial waste and for reducing the environmental impact of hazardous chemicals, new greener approaches need to be adopted for the extraction of heavy metals from industrial waste. In this review, a range of conventional processes and new green approaches employed for metal extraction are discussed in brief. Chelation technology, a modern research trend, has shown its potential to develop sustainable technology for metal extraction from various metal-contaminated sites. However, the interaction mechanism of ligands with metals and the ecotoxicological risk associated with the increased bioavailability of heavy metals due to the formation of metal-chelant complexes is still not sufficiently explicated in the literature. Therefore, a need was felt to provide a comprehensive state-of-the-art review of all aspects associated with chelation technology to promote this process as a green chemical engineering approach. This article elucidates the mechanism and thermodynamics associated with metal-ligand complexation in order to have a better understanding of the metal extraction process. The effects of various process parameters on the formation and stability of complexes have been elaborately discussed with respect to optimizing the chelation efficiency. The non-biodegradable attribute of ligands is another important aspect which is currently of concern. Therefore, biotechnological approaches and computational tools have been assessed in this review to illustrate the possibility of ligand degradation, which will help the readers to look for new environmentally safe mobilizing agents. In addition, emerging trends and opportunities in the field of chelation technology have been summarized and the diverse applicability of chelation technology in metal extraction from

  15. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    PubMed

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  16. Terbutaline causes immobilization of single β2-adrenergic receptor-ligand complexes in the plasma membrane of living A549 cells as revealed by single-molecule microscopy

    NASA Astrophysics Data System (ADS)

    Sieben, Anne; Kaminski, Tim; Kubitscheck, Ulrich; Häberlein, Hanns

    2011-02-01

    G-protein-coupled receptors are important targets for various drugs. After signal transduction, regulatory processes, such as receptor desensitization and internalization, change the lateral receptor mobility. In order to study the lateral diffusion of β2-adrenergic receptors (β2AR) complexed with fluorescently labeled noradrenaline (Alexa-NA) in plasma membranes of A549 cells, trajectories of single receptor-ligand complexes were monitored using single-particle tracking. We found that a fraction of 18% of all β2ARs are constitutively immobile. About 2/3 of the β2ARs moved with a diffusion constant of D2 = 0.03+/-0.001 μm2/s and about 17% were diffusing five-fold faster (D3 = 0.15+/-0.02 μm2/s). The mobile receptors moved within restricted domains and also showed a discontinuous diffusion behavior. Analysis of the trajectory lengths revealed two different binding durations with τ1 = 77+/-1 ms and τ2 = 388+/-11 ms. Agonistic stimulation of the β2AR-Alexa-NA complexes with 1 μM terbutaline caused immobilization of almost 50% of the receptors within 35 min. Simultaneously, the mean area covered by the mobile receptors decreased significantly. Thus, we demonstrated that agonistic stimulation followed by cell regulatory processes results in a change in β2AR mobility suggesting that different receptor dynamics characterize different receptor states.

  17. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    PubMed

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  18. Integrating computational and chemical biology tools in the discovery of antiangiogenic small molecule ligands of FGF2 derived from endogenous inhibitors

    PubMed Central

    Foglieni, Chiara; Pagano, Katiuscia; Lessi, Marco; Bugatti, Antonella; Moroni, Elisabetta; Pinessi, Denise; Resovi, Andrea; Ribatti, Domenico; Bertini, Sabrina; Ragona, Laura; Bellina, Fabio; Rusnati, Marco; Colombo, Giorgio; Taraboletti, Giulia

    2016-01-01

    The FGFs/FGFRs system is a recognized actionable target for therapeutic approaches aimed at inhibiting tumor growth, angiogenesis, metastasis, and resistance to therapy. We previously identified a non-peptidic compound (SM27) that retains the structural and functional properties of the FGF2-binding sequence of thrombospondin-1 (TSP-1), a major endogenous inhibitor of angiogenesis. Here we identified new small molecule inhibitors of FGF2 based on the initial lead. A similarity-based screening of small molecule libraries, followed by docking calculations and experimental studies, allowed selecting 7 bi-naphthalenic compounds that bound FGF2 inhibiting its binding to both heparan sulfate proteoglycans and FGFR-1. The compounds inhibit FGF2 activity in in vitro and ex vivo models of angiogenesis, with improved potency over SM27. Comparative analysis of the selected hits, complemented by NMR and biochemical analysis of 4 newly synthesized functionalized phenylamino-substituted naphthalenes, allowed identifying the minimal stereochemical requirements to improve the design of naphthalene sulfonates as FGF2 inhibitors. PMID:27000667

  19. Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper(II) radioisotopes.

    PubMed

    Juran, Stefanie; Walther, Martin; Stephan, Holger; Bergmann, Ralf; Steinbach, Jörg; Kraus, Werner; Emmerling, Franziska; Comba, Peter

    2009-02-01

    The preparation and use of bispidine derivatives (3,7-diazabicyclo[3.3.1]nonane) as chelate ligands for radioactive copper isotopes for diagnosis (64Cu) or therapy (67Cu) are reported. Starting from the hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand 1 with a keto and two ester substituents, the corresponding mono-ol 2 and two dicarboxylic acid derivatives 3 and 5 have been synthesized. A range of techniques, including single-crystal X-ray structure analysis, UV/vis spectroscopy, cyclic voltammetry, thin-layer- (TLC), and high-performance liquid chromatography (HPLC), have been used to characterize the structure and stability of the copper(II)-bispidine complexes. A rapid formation (within 1 min) of stable copper(II)-bispidine complexes under mild conditions (ambient temperature, aqueous solution) has been observed. Challenge experiments of these complexes in the presence of a high excess of competing ligands, such as glutathione, cyclam, or superoxide dismutase (SOD), as well as in rat plasma, gave no evidence of demetalation or transchelation. The bifunctional bispidine derivative 5 can be readily functionalized with biologically active molecules at the pendant carboxylate groups. The coupling of a bombesin analogue betahomo-Glu-betaAla-betaAla-[Cha(13),Nle(14)]BBN(7-14), by condensation of a carboxylate of the bispidine backbone with the N-terminus of the peptide produced the bifunctional ligand 6. The radiocopper(II) complex of this bombesin-bispidine conjugate has a considerable hydrophilicity (log D(o/w) < -2.4), and this leads to a very fast blood clearance (blood: 0.28 +/- 0.02 SUV, 1 h p.i.), low liver tissue accumulation (liver: 1.20 +/- 0.27 SUV, 1 h p.i.), and rapid renal-urinary excretion (kidneys: 6.06 +/- 2.96 SUV, 1 h p.i.) as shown by biodistribution studies of 64Cu-6 in Wistar rats. Preliminary in vivo studies of 64Cu-6 in NMRI nu/nu mice, bearing the human prostate tumor PC-3 showed an accumulation of the conjugate in the tumor (2

  20. Chelation behavior of various flavonols and transfer of flavonol-chelated zinc(II) to alanylaspartic dipeptide: A PCM/DFT investigation

    NASA Astrophysics Data System (ADS)

    Yasarawan, Nuttawisit; Thipyapong, Khajadpai; Ruangpornvisuti, Vithaya

    2016-03-01

    Alanylaspartic dipeptide (AlaAsp) and zinc(II)-flavonol complex could represent a metal-binding site in proteins and a metal-ion releasing agent, respectively. Chelation of zinc(II) by either AlaAsp or flavonol ligands in aqueous solution has been examined using DFT methods with polarizable continuum model (PCM/DFT). Coordination geometry, complexation stoichiometry, coordination bond strength, preferable metal-binding site on ligands and effect of water coordination on the stability of complexes have been addressed. In several cases, the long-range corrected density functional CAM-B3LYP allows the most accurate prediction of both structural and spectroscopic data. The preferential transfer of flavonol-chelated zinc(II) to AlaAsp under solvation is attainable through the ligand-exchange reaction. The energy barrier of such reaction is significantly dependent on the degree of hydrogen bonding within the transition state. In summary, either hydroxylation or methoxylation at particular positions on the 3-hydroxyflavone backbone significantly affects the reactivity of flavonol chelates in the metal-ion transfer.

  1. Single-molecule magnet behaviour in a tetranuclear Dy(III) complex formed from a novel tetrazine-centered hydrazone Schiff base ligand.

    PubMed

    Lacelle, T; Brunet, G; Pialat, A; Holmberg, R J; Lan, Y; Gabidullin, B; Korobkov, I; Wernsdorfer, W; Murugesu, M

    2017-02-21

    Two analogous tetranuclear lanthanide complexes have been synthesized with the general formula [Ln4(vht)4(MeOH)8](NO3)4·aMeOH·bH2O, where H2vht = (3,6-bis(vanillidenehydrazinyl)-1,2,4,5-tetrazine) and Ln = Dy(III) (1), Gd(III) (2). These complexes are characterized by several techniques; including single-crystal X-ray diffraction, SQUID magnetometry and single-crystal micro-SQUID hysteresis loop measurements. Elucidation of the crystal structure of the complexes shows that the lanthanide ions are bridged by a tetrazine ring, a rare bridging moiety for lanthanide ions. Magnetic studies reveal that both 1 and 2 exhibit weak ferromagnetic exchange interactions between Ln ions, and 1 displaying Single-Molecule Magnet (SMM) behaviour with a magnetisation reversal barrier of Ueff = 158 K (τ0 = 1.06 × 10(-7) s).

  2. Beliefs about chelation among thalassemia patients

    PubMed Central

    2012-01-01

    Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ) was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC) of the Thalassemia Clinical Research Network (TCRN). Chelation adherence was based on patient report of doses administered out of those prescribed in the last four weeks. Results Of 371 patients (ages 5-58y, mean 24y), 93% were transfused and 92% receiving chelation (26% deferoxamine (DFO; a slow subcutaneous infusion via portable pump), 63% oral, 11% combination). Patients expressed high “necessity” for transfusion (96%), DFO chelation (92%) and oral chelation (89%), with lower “concern” about treatment (48%, 39%, 19% respectively). Concern about oral chelation was significantly lower than that of DFO (p<0.001). Self-reported adherence to chelation was not associated with views about necessity or concerns, but negatively correlated with perceived sensitivity to DFO (Sensitive Soma scale; r=−0.23, p=0.01) and side effects of oral chelation (r=−0.14, p=0.04). High ferritin iron levels, potentially indicating lower adherence, were found in 41% of patients reporting low necessity of oral chelation compared to 24% reporting high necessity (p=0.048). Concerns about treatment were associated with lower quality of life and more symptoms of anxiety and depression. Conclusions Despite their requirement for multimodal therapy, thalassemia patients have positive views about medicine, more so than in other disease populations. Patients may benefit from education about the tolerability of chelation and strategies to effectively cope with side effects, both of which might be beneficial in lowering body iron burden. Clinicaltrials.gov identifier NCT00661804 PMID:23216870

  3. Linear Free Energy Relationships for Metal-Ligand Complexation: Bidentate Binding to Negatively-Charged Oxygen Donor Atoms

    PubMed Central

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-01-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO(αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand pKa values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for 5 and 6 membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems. PMID:21833149

  4. Linear free energy relationships for metal-ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms

    NASA Astrophysics Data System (ADS)

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-05-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO( αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand p Ka values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for five and six membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems.

  5. A 1,8-naphthalenediol-based unsymmetrical dinucleating ligand.

    PubMed

    Glaser, Thorsten; Liratzis, Ioannis; Fröhlich, Roland

    2005-09-07

    A facile synthesis of 2-formyl-1,8-naphthalenediol is reported. Its potential as a general precursor for the preparation of unsymmetrical multidentate chelating ligand systems based on 1,8-naphthalenediol is demonstrated by the synthesis of the dinucleating ligand L(4-)(H(4)L=N,N'-bis(2-(1,8-naphthalenediol)methylidene)propylenediamine). Reaction of H(4) L with copper acetate results in the formation of the unsymmetrical dinuclear Cu(II) complex [LCu(2)](3), which has been structurally characterized by single-crystal X-ray diffraction. One Cu(II) ion is coordinated by a N(2)O(2) compartment of L(4-) and the other Cu(II) ion is coordinated by an O(4) compartment of L(4-) while they are bridged by two aryloxide functions of L(4-). A dimerization of two molecules of 3 to a tetranuclear entity 3(2) occurs through formation of weak apical Cu--O interactions. Analysis of the temperature dependent magnetic susceptibility measurements (2--290 K) established a strong intradimer exchange coupling J(12)=-371 cm(-1). This strong superexchange interaction fits nicely in a magneto-structural correlation which has been established for dinuclear bis(phenoxide)-bridged Cu(II) complexes demonstrating the electronic equivalence of the aryloxides of a phenol and 1,8-naphthalenediol.

  6. Sulfur containing platinum(II) complexes with N-heterocyclic carbene ligands obtained by reactions of a hydrosulfido complex.

    PubMed

    Maeda, Yuri; Hashimoto, Hideki; Nishioka, Takanori

    2012-10-21

    A hydrosulfido platinum(ii) complex with a chelated N-heterocyclic carbene (NHC) ligand was oxidised with O(2) in the presence of excess hydrogen sulfide, to give a linear tetrasulfido complex, and without hydrogen sulfide, to give a thiosulfato-bridged dinuclear complex. The hydrosulfido complex also reacted with an acetato complex containing the chelating NHC platinum unit to afford a trinuclear platinum complex with two triply bridging sulfido ligands showing an equilibrium in solution between two isomers based on the arrangement of the chelating NHC ligands.

  7. Exploring copper chelation in Alzheimer's disease protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of aging people in the U.S. alone. Clinical studies have indicated that metal chelation is a promising new approach in alleviating the symptoms of AD. Our study explores the as yet undetermined mechanism of copper chelation in amyloid-β, a protein implicated in AD. The structure of amyloid-β is derived from experimental results and incorporates a planar copper-ion-binding structure in a semi-solvated state. We investigate the chelation process using the nudged elastic band method implemented in our ab initio real-space multigrid code. We find that an optimal sequence of unbonding and rebonding events as well as proton transfers are required for a viable chelation process. These findings provide fundamental insight into the process of chelation that may lead to more effective AD therapies.

  8. Quantitative measurement of ligand exchange on iron oxides via radiolabeled oleic acid.

    PubMed

    Davis, Kathleen; Qi, Bin; Witmer, Michael; Kitchens, Christopher L; Powell, Brian A; Mefford, O Thompson

    2014-09-16

    Ligand exchange of hydrophilic molecules on the surface of hydrophobic iron oxide nanoparticles produced via thermal decomposition of chelated iron precursors is a common method for producing aqueous suspensions of particles for biomedical applications. Despite the wide use, relatively little is understood about the efficiency of ligand exchange on the surface of iron oxide nanoparticles and how much of the hydrophobic ligand is removed. To address this issue, we utilized a radiotracer technique to track the exchange of a radiolabeled (14)C-oleic acid ligand with hydrophilic ligands on the surface of magnetite nanoparticles. Iron oxide nanoparticles functionalized with (14)C-oleic acid were modified with poly(ethylene glycol) with terminal functional groups including, L-3,4-dihydroxyphenylalanine, a nitrated L-3,4-dihydroxyphenylalanine, carboxylic acid, a phosphonate, and an amine. Following ligand exchange, the nanoparticles and byproducts were analyzed using liquid scintillation counting and inductively coupled plasma mass spectroscopy. The labeled and unlabeled particles were further characterized by transmission electron microscopy and dynamic light scattering to determine particle size, hydrodynamic diameter, and zeta potential. The unlabeled particles were characterized via thermogravimetric analysis and vibrating sample magnetometry. Radioanalytical determination of the (14)C from (14)C-oleic acid was used to calculate the amount of oleic acid remaining on the surface of the particles after purification and ligand exchange. There was a significant loss of oleic acid on the surface of the particles after ligand exchange with amounts varying for the different functional binding groups on the poly(ethylene glycol). Nonetheless, all samples demonstrated some residual oleic acid associated with the particles. Quantification of the oleic acid remaining after ligand exchange reveals a binding hierarchy in which catechol derived anchor groups displace oleic acid on

  9. Chelate electronic properties control the redox behaviour and superoxide reactivity of seven-coordinate manganese(II) complexes.

    PubMed

    Liu, Gao-Feng; Dürr, Katharina; Puchta, Ralph; Heinemann, Frank W; van Eldik, Rudi; Ivanović-Burmazović, Ivana

    2009-08-28

    We have synthesized and characterized two Mn(II) seven-coordinate complexes with N5 pentadentate ligands, which contain hydrazone and hydrazide groups respectively. We have shown that insertion of hydrazido (amido) groups into the ligand sphere increases the negative charge of the chelate, without changing a donor atom set and coordination geometry, and radically modulate a redox activity of seven-coordinate manganese complexes, which is important for the function of manganese as a superoxide dismutase catalytic center.

  10. Stereoselective coordination: a six-membered P,N-chelate tailored for asymmetric allylic alkylation.

    PubMed

    Császár, Z; Farkas, G; Bényei, A; Lendvay, G; Tóth, I; Bakos, J

    2015-10-07

    Six-membered chelate complexes [Pd(1a-b)Cl2], (2a-b) and [Pd(1a-b)(η(3)-PhCHCHCHPh)]BF4, (3a-b) of P,N-type ligands 1a, ((2S,4S)-2-diphenyl-phosphino-4-isopropylamino-pentane) and 1b, ((2S,4S)-2-diphenyl-phosphino-4-methylamino-pentane) have been prepared. The Pd-complexes have been characterized in solution by 1D and 2D NMR spectroscopy. The observed structures were confirmed by DFT calculations and in the case of 2a also by X-ray crystallography. Unexpectedly, the coordination of the all-carbon-backbone aminophosphine 1a resulted in not only a stereospecific locking of the donor nitrogen atom into one of the two possible configurations but also the conformation of the six-membered chelate rings containing three alkyl substituents was forced into the same single chair structure showing the axially placed isopropyl group on the coordinated N-atom. The stereodiscriminative complexation of 1a led to the formation of a palladium catalyst with a conformationally rigid chelate having a configurationally fixed nitrogen and electronically different coordination sites due to the presence of P and N donors. The stereochemically fixed catalyst provided excellent ee's (up to 96%) and activities in asymmetric allylic alkylation reactions. In contrast, the chelate rings formed by 1b exist in two different chair conformations, both containing axial methyl groups, but with the opposite configurations of the coordinated N-atom. Pd-complexes of 1b provided low enantioselectivities in similar alkylations, therefore emphasizing the importance of the stereoselective coordination of N-atoms in analogous P-N chelates. The factors determining the coordination of the ligands were also studied with respect to the chelate ring conformation and the nitrogen configuration.

  11. Comprehensive radiolabeling, stability, and tissue distribution studies of technetium-99m single amino acid chelates (SAAC).

    PubMed

    Maresca, Kevin P; Hillier, Shawn M; Femia, Frank J; Zimmerman, Craig N; Levadala, Murali K; Banerjee, Sangeeta R; Hicks, Justin; Sundararajan, Chitra; Valliant, John; Zubieta, Jon; Eckelman, William C; Joyal, John L; Babich, John W

    2009-08-19

    Technetium tricarbonyl chemistry has been a subject of interest in radiopharmaceutical development over the past decade. Despite the extensive work done on developing chelates for Tc(I), a rigorous investigation of the impact of changing donor groups and labeling conditions on radiochemical yields and/or distribution has been lacking. This information is crucially important if these platforms are going to be used to develop molecular imaging probes. Previous studies on the coordination chemistry of the {M(CO)(3)}(+) core have established alkylamine, aromatic nitrogen heterocycles, and carboxylate donors as effective chelating ligands. These observations led to the design of tridentate ligands derived from the amino acid lysine. Such amino acid analogues provide a tridentate donor set for chelation to the metal and an amino acid functionality for conjugation to biomolecules. We recently developed a family of single amino acid chelates (SAAC) that serve this function and can be readily incorporated into peptides via solid-phase synthesis techniques. As part of these continuing studies, we report here on the radiolabeling with technetium-99m ((99m)Tc) and stability of a series of SAAC analogues of lysine. The complexes studied include cationic, neutral, and anionic complexes. The results of tissue distribution studies with these novel complexes in normal rats demonstrate a range of distribution in kidney, liver, and intestines.

  12. Effect of trace iron levels and iron withdrawal by chelation on the growth of Candida albicans and Candida vini.

    PubMed

    Holbein, Bruce E; Mira de Orduña, Ramón

    2010-06-01

    The iron requirements of the opportunistic pathogenic yeast, Candida albicans, and the related nonpathogenic spoilage yeast Candida vini were investigated along with their responses to various exogenous iron chelators. The influence of iron as well as the exogenous chelating agents lactoferrin, EDTA, deferiprone, desferrioxamine, bathophenanthroline sulphonate and a novel carried chelator with a hydroxypyridinone-like Fe-ligand functionality, DIBI, on fungal growth was studied in a chemically defined medium deferrated to trace iron levels (<1.2 microg L(-1) or 0.02 microM of Fe). Candida albicans competed better at low iron levels compared with C. vini, which was also more susceptible to most added chelators. Candida albicans was resistant to lactoferrin at physiologically relevant concentrations, but was inhibited by low concentrations of DIBI. Candida vini was sensitive to lactoferrin as well as to DIBI, whose inhibitory activity was shown to be Fe reversible. The pathogenic potential of C. albicans and the nonpathogenic nature of C. vini were consistent with their differing abilities to grow under iron-limiting conditions and in the presence of exogenous iron chelators. Both yeasts could be controlled by appropriately strong chelators. This work provides the first evidence of the iron requirements of the spoilage organism C. vini and its response to exogenous chelators. Efficient iron withdrawal has the potential to provide the basis for new fungal growth control strategies.

  13. Thermal, spectroscopic, and solvent influence studies on mixed-ligand copper(II) complexes containing the bulky ligand: Bis[N-(p-tolyl)imino]acenaphthene.

    PubMed

    El-Ayaan, Usama; Gabr, I M

    2007-05-01

    Four mixed-ligand copper(II) complexes containing the rigid bidentate nitrogen ligand bis[N-(p-tolyl)imino]acenaphthene (abb. p-Tol-BIAN) ligand are reported. These complexes, namely [Cu(p-Tol-BIAN)(2)](ClO(4))(2)1, [Cu(p-Tol-BIAN)(acac)](ClO(4)) 2, [Cu(p-Tol-BIAN)Cl(2)] 3 and [Cu(p-Tol-BIAN)(AcOH)(2)](ClO(4))(2)4 (where acac, acetylacetonate and AcOH, acetic acid) have been prepared and characterized by elemental analysis, spectroscopic, magnetic and molar conductance measurements. ESR spectra suggest a square planar geometry for complexes 1 and 2. In complexes 3 and 4, a distorted tetrahedral arrangement around copper(II) centre was suggested. Solvatochromic behavior of all studied complexes indicates strong solvatochromism of their solutions. The observed solvatochromism is mainly due to the solute-solvent interaction between the chelate cation and the solvent molecules. Thermal properties and decomposition kinetics of all complexes are investigated. The kinetic parameters (E, A, Delta H, Delta S and Delta G) of all thermal decomposition stages have been calculated using the Coats-Redfern and other standard equations.

  14. Synthesis and Properties of Chelating N-Heterocyclic Carbene Rhodium(I) Complexes: Synthetic Experiments in Current Organometallic Chemistry

    ERIC Educational Resources Information Center

    Mata, Jose A.; Poyatos, Macarena; Mas-Marza, Elena

    2011-01-01

    The preparation and characterization of two air-stable Rh(I) complexes bearing a chelating N-heterocyclic carbene (NHC) ligand is described. The synthesis involves the preparation of a Ag(I)-NHC complex and its use as carbene transfer agent to a Rh(I) precursor. The so obtained complex can be further reacted with carbon monoxide to give the…

  15. Amelioration of metal-induced toxicity in Caenorhabditis elegans: utility of chelating agents in the bioremediation of metals.

    PubMed

    Harrington, James M; Boyd, Windy A; Smith, Marjolein V; Rice, Julie R; Freedman, Jonathan H; Crumbliss, Alvin L

    2012-09-01

    The presence of toxic amounts of transition metals in the environment may originate from a range of human activities and natural processes. One method for the removal of toxic levels of metals is through chelation by small molecules. However, chelation is not synonymous with detoxification and may not affect the bioavailability of the metal. To test the bioavailability of chelated metals in vivo, the effects of several metal/chelator combinations were tested in the environmentally relevant organism Caenorhabditis elegans. The effect of metal exposure on nematode growth was used to determine the toxicity of cadmium, copper, nickel, and zinc. The restoration of growth to levels observed in nonexposed nematodes was used to determine the protective effects of the polydentate chelators: acetohydroxamic acid (AHA), cyclam, cysteine, calcium EDTA, desferrioxamine B, 1,2-dimethyl,3-hydroxy,4-pyridinone, and histidine. Cadmium toxicity was removed only by EDTA; copper toxicity was removed by all of the chelators except AHA; nickel toxicity was removed by cyclam, EDTA, and histidine; and zinc toxicity was removed by only EDTA. These results demonstrate the utility of polydentate chelators in the remediation of metal-contaminated systems. They also demonstrate that although the application of a chelator to metal contaminants may be effective, binding alone cannot be used to predict the level of remediation. Remediation depends on a number of factors, including metal complex speciation in the environment.

  16. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  17. mer and fac isomerism in tris chelate diimine metal complexes.

    PubMed

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  18. First observation of enhanced luminescence from single lanthanide chelates on silver nanorods.

    PubMed

    Zhang, Jian; Ray, Krishanu; Fu, Yi; Lakowicz, Joseph R

    2014-08-25

    We used near-field interactions with a silver nanorod (AgNR) to greatly enhance luminescence of a lanthanide (Ln) chelate. The enhancement factor was 280-fold, making single lanthanide luminescence detectable. This is also the first observation on single molecule detection (SMD) of a lanthanide dye.

  19. Characterization of the Structural and Chemical Properties of Copper Chelators in Seawater

    DTIC Science & Technology

    2001-09-30

    is also readily oxidized to a disulfide. Interestingly, we only detect this compound when we de-metallate the ligand (by acidification to pH 2...by ANSI Std Z39-18 APPROACH Molecular-level studies focus on chelators produced by ubiquitous marine phytoplankton and bacteria, rather than...prior to derivatization, suggesting that it is strongly bound to copper at pH 8, blocking derivatization. Further work is ongoing to establish the

  20. Development of a Tetrathioether (S4) Bifunctional Chelate System for Rh-105

    DTIC Science & Technology

    2012-07-01

    bombesin (BBN) targeting vector. Bombesin targets gastrin releasing peptide (GRP) receptors, which have been shown to be over-expressed on the surface of...prostate cancer cells. Here we report the successful synthesis and characterization of a bombesin agonist coupled tetrathioether (S4) bifunctional...1: Synthesis of bombesin (7-14) coupled tetrathioether bifunctional chelate 1a: Synthesize dicarboxylic acid functionalized ligand 3,3,3-S4-(COOH)2

  1. Synthesis, characterization, thermal study and biological evaluation of Cu(II), Co(II), Ni(II) and Zn(II) complexes of Schiff base ligand containing thiazole moiety

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    The novel Schiff base ligand 2-(4-(dimethylamino)benzylidene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 4-dimethylaminobenzaldehyde and its newly synthesized Cu(II), Co(II), Ni(II) and Zn(II) complexes have been characterized by microanalysis, magnetic susceptibility, molar conductance, thermal analysis, FT-IR, 1H NMR, ESI mass, UV-Visible, ESR spectroscopy and powder X-ray diffraction data. The newly synthesized ligand behaves as a bidentate ON donor. The IR results confirmed the bidentate binding of the ligand involving oxygen atom of amide carbonyl and azomethine nitrogen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of all the compounds against Artemia salina. Furthermore, the antioxidant activity of the ligand (L) and its metal complexes were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH), the ligand exhibited potent in vitro - antioxidant activity than its metal complexes.

  2. Shape-controlled Synthesis of Gold Nanoparticles from Gold(III)-chelates of β-diketones

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata; Pal, Anjali; Ghosh, Sujit Kumar; Nath, Sudip; Panigrahi, Sudipa; Praharaj, Snigdhamayee; Basu, Soumen; Pal, Tarasankar

    2005-12-01

    Chelating ligands with β-diketone skeleton have been employed for the first time as reductant to produce ligand stabilized gold nanoparticles of different shapes out of aqueous HAuCl4 solutions. Evolution of stable gold nanoparticles happens to be first order with respect to gold particles having rate constants ˜ ˜10-2 min-1 and subsequent chlorine insertion in the β-diketone skeleton is reported as a general feature. Spherical or triangular or hexagonal particle evolution goes selectively under the influence of different β-diketones in terms of capping and reducing capabilities of the reductants.

  3. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    SciTech Connect

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  4. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  5. Computational study of An-X bonding (An = Th, U; X = p-block-based ligands) in pyrrolic macrocycle-supported complexes from the quantum theory of atoms in molecules and bond energy decomposition analysis.

    PubMed

    O'Brien, Kieran T P; Kaltsoyannis, Nikolas

    2017-01-17

    A systematic computational study of organoactinide complexes of the form [LAnX](n+) has been carried out using density functional theory, the quantum theory of atoms in molecules (QTAIM) and Ziegler-Rauk energy decomposition analysis (EDA) methods. The systems studied feature L = trans-calix[2]benzene[2]pyrrolide, An = Th(iv), Th(iii), U(iii) and X = BH4, BO2C2H4, Me, N(SiH3)2, OPh, CH3, NH2, OH, F, SiH3, PH2, SH, Cl, CH2Ph, NHPh, OPh, SiH2Ph, PHPh2, SPh, CPh3, NPh2, OPh, SiPh3 PPh2, SPh. The PBE0 hybrid functional proved most suitable for geometry optimisations based on comparisons with available experimental data. An-X bond critical point electron densities, energy densities and An-X delocalisation indices, calculated with the PBE functional at the PBE0 geometries, are correlated with An-X bond energies, enthalpies and with the terms in the EDA. Good correlations are found between energies and QTAIM metrics, particularly for the orbital interaction term, provided the X ligand is part of an isoelectronic series and the number of open shell electrons is low (i.e. for the present Th(iv) and Th(iii) systems).

  6. Cadmium coordination polymers based on flexible bis(imidazole) ligands: A rare example for doublet of doublet cadmium polyhedron arrangements

    NASA Astrophysics Data System (ADS)

    Babu, Chatla Naga; Suresh, Paladugu; Sampath, Natarajan; Prabusankar, Ganesan

    2014-10-01

    Two one-dimensional (1D) coordination polymers, [{LCd(O2NO)2(DMF)2}2{(LCd(O2NO)2(DMF))(DMF)}2]n (1) and [L‧Cd(O2NO)(ONO2)(DMF)2]n (2), having an aryl chromophoric unit and a flexible bis(imidazole) tail, 9,10-bis{(benzimidazol)methyl}anthracene (L) and 1,4-bis{(imidazol)methyl}benzene (L‧), with various coordination modes have been obtained. Molecule 1 represents the first structurally characterized one dimensional coordination polymer consisting of both hepta- and octa-coordinated cadmium centers. In 1, two distorted pentagonal bipyramidal Cd(II) centers and two distorted triangular dodecahedral Cd(II) centers are alternately arranged via bridging bidentate N,N-chelating ligand, L. Whereas, a distorted pentagonal bipyramidal Cd(II) center is formed in 2 where the sterically less crowded L‧ serves as a bridging bidentate N,N-chelating ligand. Furthermore, 1 and 2 have been characterized by elemental analysis, FT-IR, 1H NMR, UV-vis and fluorescent techniques.

  7. Chelation in root canal therapy reconsidered.

    PubMed

    Zehnder, Matthias; Schmidlin, Patrick; Sener, Beatrice; Waltimo, Tuomas

    2005-11-01

    The aim of this study was to assess interactions of EDTA and citric acid (CA) with sodium hypochlorite (NaOCl), the indispensable endodontic irrigant. Other chelators were simultaneously evaluated as possible alternatives: sodium triphosphate (STP), amino tris methylenephosphonic acid (ATMA), and 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP). Available chlorine was titrated in chelator-NaOCl solutions. All chelators other than HEBP and STP caused an almost complete, immediate loss of available chlorine in solution. Atomic absorbtion spectrometry and SEM evaluation of root canal walls of instrumented teeth indicated that NaOCl had no negative effect on calcium-complexing ability of chelators. STP was too weak a complexing agent to warrant further studies. Finally, CA-, EDTA-, and HEBP-NaOCl mixtures were evaluated for their antimicrobial capacity. Again, EDTA and CA negatively interfered with NaOCl, while HEBP did not.

  8. Analysis of the Conformational Behavior and Stability of the SAP and TSAP Isomers of Lanthanide(III) NB-DOTA-Type Chelates

    PubMed Central

    Tircso, Gyula; Webber, Benjamin C.; Kucera, Benjamin E.; Young, Victor G.; Woods, Mark

    2011-01-01

    Controlling the water exchange kinetics of macrocyclic Gd3+ chelates, a key parameter in the design of improved magnetic resonance imaging (MRI) contrast media, may be facilitated by selecting the coordination geometry of the chelate. The water exchange kinetics of the mono- capped twisted square antiprism (TSAP) being much closer to optimal than those of the mono capped square antiprism (SAP) render the TSAP isomer more desirable for high relaxivity applications. Two systems have been developed that allow for selection of the TSAP coordination geometry in 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-type Gd3+ chelates, both based upon the macrocycle nitrobenzyl cyclen. In this paper we report investigations into the stability and formation of these chelates. Particular focus is given to the production of two regioisomeric chelates during the chelation reaction. These regioisomers are distinguished by having the nitrobenzyl substituent either on a corner or on the side of the macrocyclic ring. The origin of these two regioisomers appears to stem from a conformation of the ligand in solution in which it is hypothesized that pendant arms lie both above and below the plane of the macrocycle. The conformational changes that then result during the formation of the intermediate H2GdL+ chelate give rise to differing positions of the nitrobenzyl substituent depending upon from which face of the macrocycle the Ln3+ approaches the ligand. PMID:21819053

  9. Unusual dicationic trimetallic aluminum chelates

    NASA Astrophysics Data System (ADS)

    Liu, S.; Munoz-Hernandez, M.-A.; Wei, P.; Atwood, D. A.

    2000-09-01

    The bimetallic compounds, L(AlMeCl) 2 with L=Salpen(tBu) ( N, N'-1,3-propylenenebis(3,5-di- tert-butylsalicylideneimine), Salben(tBu) ( N, N'-1,4-butylenebis(3,5-di- tert-butylsalicylideneimine)) and Salhen(tBu) ( N, N'-1,6 hexylenebis(3,5-di- tert-butylsalicylideneimine)) form the unusual trimetallic dicationic complexes, {[Salpen( tBu) ∗] 2(AlCl) 3]} 2+[GaCl 4] -[GaMe 2Cl 2] - ( 1), {[Salben( tBu) ∗] 2(AlCl) 3]} 2+[GaCl 4] -[GaMe 2Cl 2] - ( 2) and {[Salhen( tBu) ∗] 2(AlCl) 3]} 2+[GaCl 4] -[GaMe 2Cl 2] - ( 3) when combined with GaCl 3 in toluene. In their formation, the ligands of the compounds undergo a unique dealkylation reaction to lose one tBu group from each ligand (marked with an asterisk). These compounds are a new and unique class of aluminum cations. The compounds were characterized by Mp, analyses, IR, 1H NMR, and in the case of 1 and 2, by single-crystal X-ray diffractometry.

  10. Preparation and study of new poly-8-hydroxyquinoline chelators for an anti-Alzheimer strategy.

    PubMed

    Deraeve, Céline; Boldron, Christophe; Maraval, Alexandrine; Mazarguil, Honoré; Gornitzka, Heinz; Vendier, Laure; Pitié, Marguerite; Meunier, Bernard

    2008-01-01

    Fourteen different ligands have been synthesized with two covalently linked 8-hydroxyquinoline motifs that favor metal complexation. These bis-chelators include different bridges at the C2 positions and different substituents to modulate their physicochemical properties. They can form metal complexes in a ratio of one ligand per metal ion with Cu II and Zn II, two metal ions involved in the formation of amyloid aggregates of the toxic Abeta-peptides in the Alzheimer disease. The apparent affinity of all bis-8-hydroxyquinoline ligands for Cu II and Zn II are similar with logK Cu II approximately 16 and logK Zn II approximately 13 and are 10,000 times more efficient than for the corresponding 8-hydroxyquinoline monomers. Their strong chelating capacities allow them to inhibit more efficiently than the corresponding monomers the precipitation of Abeta-peptides induced by Cu II and Zn II and also to inhibit the toxic formation of H2O2 due to copper complexes of Abeta. The best results were obtained with a one-atom linker between the two quinoline units. X-ray analyses of single-crystals of Cu II, Zn II or Ni II complexes of 2,2'-(2,2-propanediyl)-bis(8-hydroxyquinoline), including a one-atom linker, showed that all heteroatoms of the bis-8-hydroxyquinoline ligand chelate the same metal ion in a distorted square-planar geometry. The Cu II and Zn II complexes include a fifth axial ligand and are pentacoordinated.

  11. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  12. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

    1998-11-24

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

  13. Combined chelation based on glycosyl-mono- and bis-hydroxypyridinones for aluminium mobilization: solution and biodistribution studies.

    PubMed

    Chaves, Sílvia; Dron, Paul I; Danalache, Florina A; Sacoto, Diana; Gano, Lurdes; Santos, M Amélia

    2009-11-01

    Taking into account the recognized interest of a poly-pharmacological strategy in chelation therapy, a study of aluminium combined chelation based on 3-hydroxy-4-pyridinone (3,4-HP) compounds with complementary properties, associated to different denticity, size and extrafunctionality, is presented herein. In particular, Al-chelation has been explored, using a tetradentate IDA bis-(3,4-HP) ligand, L, and two N-glycosyl mono-(3,4-HP) derivatives (A or B). Combined complexation studies with the tetradentate and the most promising bidentate ligand (A) evidenced the formation of ternary complexes with high thermodynamic stability (Al-L-A) being the predominant species at physiological pH. In vivo studies on the ability for radiotracer ((67)Ga) removal from loaded mice, as a model of aluminium accumulation in body, have shown that the simultaneous administration to (67)Ga-loaded mice of a mono- and a bis-(3,4-HP) chelator (e.g. A and L) leads to a rapid metal elimination from main organs and whole animal model. This may be rationalized by coadjuvation and eventual synergistic effects, due to complementary accessibility of the chelators to different cellular compartments.

  14. Coupling fast water exchange to slow molecular tumbling in Gd3+ chelates: why faster is not always better

    PubMed Central

    Avedano, Stefano; Botta, Mauro; Haigh, Julian S.; Longo, Dario; Woods, Mark

    2013-01-01

    The influence of dynamics on solution state structure is a widely overlooked consideration in chemistry. Variations in Gd3+ chelate hydration with changing coordination geometry and dissociative water exchange kinetics substantially impact the effectiveness (or relaxivity) of mono-hydrated Gd3+ chelates as T1-shortening contrast agents for MRI. Theory shows that relaxivity is highly dependent upon the Gd3+-water proton distance (rGdH) and yet this distance is almost never considered as a variable in assessing the relaxivity of a Gd3+ chelate as a potential contrast agent. The consequence of this omission can be seen when considering the relaxivity of isomeric Gd3+ chelates that exhibit different dissociative water exchange kinetics. The results described herein show that the relaxivity of a chelate with ‘optimal’ dissociative water exchange kinetics is actually lower than that of an isomeric chelate with ‘sub-optimal’ dissociative water exchange. When the rate of molecular tumbling of these chelates is slowed, an approach that has long been understood to increase relaxivity, the observed difference in relaxivity is increased with the more rapidly exchanging (‘optimal’) chelate exhibiting lower relaxivity than the ‘sub-optimally’ exchanging isomer. The difference between the chelates arises from a non-field dependent parameter: either the hydration number (q) or rGdH. For solution state Gd3+ chelates, changes in the values of q and rGdH are indistinguishable. These parametric expressions simply describe the hydration state of the chelate – i.e. the number and position of closely associating water molecules. The hydration state (q/rGdH6) of a chelate is intrinsically linked to its dissociative water exchange rate kex and the interrelation of these parameters must be considered when examining the relaxivity of Gd3+ chelates. The data presented herein indicates that the changes in the hydration parameter (q/rGdH6) associated with changing dissociative

  15. Self-assembled copper(II) metallacycles derived from asymmetric Schiff base ligands: efficient hosts for ADP/ATP in phosphate buffer.

    PubMed

    Kumar, Amit; Pandey, Rampal; Kumar, Ashish; Gupta, Rakesh Kumar; Dubey, Mrigendra; Mohammed, Akbar; Mobin, Shaikh M; Pandey, Daya Shankar

    2015-10-21

    Novel asymmetric Schiff base ligands 2-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-phenol (H2L(1)) and 1-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-naphthalen-2-ol (H2L(2)) possessing dissimilar N,O-chelating sites and copper(ii) metallacycles (CuL(1))4 (1) and (CuL(2))4 (2) based on these ligands have been described. The ligands and complexes have been thoroughly characterized by satisfactory elemental analyses, and spectral (IR, (1)H, (13)C NMR, ESI-MS, UV/vis) and electrochemical studies. Structures of H2L(2) and 1 have been unambiguously determined by X-ray single crystal analyses. The crystal structure of H2L(2) revealed the presence of two distinct N,O-chelating sites on dissimilar cores (naphthalene and β-ketoaminato groups) offering a diverse coordination environment. Metallacycles 1 and 2 having a cavity created by four Cu(ii) centres coordinated in a homo- and heteroleptic fashion with respective ligands act as efficient hosts for adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) respectively, over other nucleoside polyphosphates (NPPs). The disparate sensitivity of these metallacycles toward ADP and ATP has been attributed to the size of the ligands assuming diverse dimensions and spatial orientations. These are attuned for π-π stacking and electrostatic interactions suitable for different guest molecules under analogous conditions, metallacycle 1 offers better orientation for ADP, while 2 for ATP. The mechanism of the host-guest interaction has been investigated by spectral and electrochemical studies and supported by molecular docking studies.

  16. Ternary complexes between cationic GdIII chelates and anionic metabolites in aqueous solution: an NMR relaxometric study.

    PubMed

    Botta, Mauro; Aime, Silvio; Barge, Alessandro; Bobba, Gabriella; Dickins, Rachel S; Parker, David; Terreno, Enzo

    2003-05-09

    The (1)H and (17)O NMR relaxometric properties of two cationic complexes formed by Gd(III) with a macrocyclic heptadentate triamide ligand, L(1), and its Nmethylated analogue, L(2), have been investigated in aqueous media as a function of pH, temperature and magnetic field strength. The complexes possess two water molecules in their inner coordination sphere for which the rate of exchange has been found to be sensibly faster for the Nmethylated derivative and explained in terms of electronic effects (decrease of the charge density at the metal center) and perturbation of the network of hydrogen-bonded water molecules in the outer hydration sphere. The proton relaxivity shows a marked dependence from pH and decreases of about six units in the pH range 6.5 to 9.0. This has been accounted for by the displacement of the two water molecules by dissolved carbonate which acts as a chelating anion. The formation of ternary complexes with lactate, malonate, citrate, acetate, fluoride and hydrogenphosphate has been monitored by (1)H NMR relaxometric titrations at 20 MHz and pH 6.3 and the value of the affinity constant, K, and of the relaxivity of the adducts could be obtained. Lactate, malonate and citrate interact strongly with the complexes (log K > or =3.7) and coordinate in a bidendate mode by displacing both water molecules. Larger affinity constants have been measured for GdL(2). Acetate, fluoride and hydrogenphosphate form monoaqua ternary complexes which were investigated in detail with regard to their relaxometric properties. The NMR dispersion (NMRD) profiles indicate a large contribution to the relaxivity of the adducts from water molecules belonging to the second hydration shell of the complexes and hydrogen-bonded to the anion. A VT (17)O NMR study has shown a marked increase of the rate of water exchange upon binding which is explained by coordination of the anion in an equatorial site, thus leaving the water molecule in an apical position, more accessible for

  17. Anticancer Activity and Modes of Action of (arene) ruthenium(II) Complexes Coordinated to C-, N-, and O-ligands.

    PubMed

    Biersack, Bernhard

    2016-01-01

    An overview of anticancer active (arene)ruthenium(II) complexes coordinated to period 2 element-based ligand systems, i.e., carbon-, nitrogen-, and oxygen-coordinated ligands, is provided in this mini-review. A bridge is forged from the large group of anticancer active ruthenium compounds with monodentate and chelating nitrogen ligands via complexes of O,O-chelating ligands to organometallic ruthenium derivatives coordinated to carbon. (Arene)ruthenium(II) complexes with reduced side-effects and enhanced efficacy against cancer are highlighted. Pertinent literature is covered up to 2014.

  18. Catalytic oxygenation of sp3 "C-H" bonds with Ir(III) complexes of chelating triazoles and mesoionic carbenes.

    PubMed

    Hohloch, Stephan; Kaiser, Selina; Duecker, Fenja Leena; Bolje, Aljoša; Maity, Ramananda; Košmrlj, Janez; Sarkar, Biprajit

    2015-01-14

    Cp*-Ir(III) complexes with additional chelating ligands are known active pre-catalysts for the oxygenation of C-H bonds. We present here eight examples of such complexes where the denticity of the chelating ligands has been varied from the well-known 2,2'-bpy through pyridyl-triazole, bi-triazole to ligands containing pyridyl-triazolylidene, triazolyl-triazolylidene and bi-triazolylidenes. Additionally, we also compare the catalytic results to complexes containing chelating cyclometallated ligands with additional triazole or triazolylidene donors. Single crystal X-ray structural data are presented for all the new complexes that contain one or more triazolylidene donors of the mesoionic carbene type. We present the first example of a metal complex containing a chelating triazole-triazolylidene ligand. The results of the catalytic screening show that complexes containing unsymmetrical donors of the pyridyl-triazole or pyridyl-triazolylidene types are the most potent pre-catalysts for the C-H oxygenation of cyclooctane in the presence of either m-CPBA or NaIO4 as a sacrificial oxidant. These pre-catalysts can also be used to oxygenate C-H bonds in other substrates such as fluorene and ethyl benzene. The most potent pre-catalysts presented here work with a lower catalyst loading and under milder conditions while delivering better product yields in comparison with related literature known Ir(III) pre-catalysts. These results thus point to the potential of ligands with unsymmetrical donors obtained through the click reaction in oxidation catalysis.

  19. Quasielastic neutron scattering study of POSS ligand dynamics

    SciTech Connect

    Jalarvo, Niina H; Tyagi, Madhusudan; Crawford, Michael

    2015-01-01

    Polyoligosilsesquioxanes are molecules having cage-like structures composed of silicon and oxygen. These molecules can have a wide variety of functional ligands attached to them. Depending on the nature of the ligand, interesting properties and applications are found. In this work we present results from quasielastic neutron scattering measurements of four different POSS molecules that illustrate the presence of strong coupling between the ligand dynamics and the POSS crystal structures.

  20. Chelator-induced phytoextraction of zinc and copper by rice seedlings.

    PubMed

    Yu, Xiao-Zhang; Wang, Dun-Qiu; Zhang, Xue-Hong

    2014-05-01

    Solution culture was carried to investigate capacity of synthetic aminopolycarboxylic acids (ethylenediamine tetraacetate, N-hydroxyethylenediaminetriacetic acid, and diethylenetriamine-pentaacetate) for enhancing botanical removal and transport of heavy metals (Cu and Zn) by plants. Biodegradable organic acids (citric acid, malic acid, and oxalic acid) were also selected as alternatives to compare them with synthesized chelating agents for effectiveness. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in nutrient solutions treated with single or combined metal solutions in presence or absence of chelating compounds. Calculation by chemical equilibrium program VISUAL MINTEQ showed that different chelating compounds had various complex potential with Cu(2+) and Zn(2+) ions, in which synthetic chelators exhibited higher complexed capability than biodegradable organic acids. All applied synthetic aminopolycarboxylic acids significantly decreased removal of metal from nutrient solution (p < 0.01), while more or less effects of organic acids supplied on biosorptive potential were observed with all treatments (p > 0.05), compared with the treatment without metal ligands. Synthetic aminopolycarboxylic acids significantly decreased metal concentrations in plant materials in all treatments (p < 0.01). However, biodegradable organic acids decreased metal concentrations in roots (p < 0.01), but enhanced them in shoots (p < 0.01). Results obtained indicated that synthetic aminopolycarboxylic acids decreased uptake of metals by rice seedlings, but translocation of metals complexed within plant materials was evident. Although exogenous biodegradable organic acids showed negligible effect on botanical removal of metals, metals complexed with organic acids was more mobile than those complexed with other chelating agents. These information collected here had important implication for the use of biodegradable metal chelators in transport of essential micronutrients in

  1. Screening of protease producing fungi for microbial digestion of seed proteins and synthesis of amino acids-metalnutrient chelates.

    PubMed

    Deore, G B; Limaye, A S; Dushing, Y A; Dhobale, S B; Kale, S; Laware, S L

    2013-01-15

    The problem of metalnutrient deficiency is becoming more serious with the introduction of modern agricultural practices. As a result, metalnutrient deficiency is recognized as one of the critical yield limiting factors. Metalnutrients are generally offered in their sulphate or oxide forms. However, it is reported that organically bound minerals generally have a higher bioavailability than inorganic minerals. Chelation makes otherwise unavailable metalnutrients plant available. Amino acids are well known among various chelating agents. In present investigation the fungus Paecilomyces variotii PR-4 was isolated from soil and was used for production of protease and determination of its activity. Proteins from germinating seeds of chick pea, mung bean, soybean and cowpea were hydrolyzed for the production of amino acids. Amino acids were recovered, estimated and utilized for chelation of metalnutrients viz., Zn, Cu, Fe, Mn, Mg, B and Mo. The resultant chelates were employed to detect with Fourier Transform Infra-Red Spectrophotometer (FTIR) analysis. The peaks of most intensive bands in the IR spectra of ligands recorded were present in the intervals of the wave numbers 3500-3300 and 1720-1700 cm(-1). Chelation of metalnutrients led to the broadening of peak and changes of the peak position of hydroxyl groups, which indicated the binding of the carboxylic groups and primary amine groups of amino acids to the metalnutrients. The resultant amino acids-metalnutrient chelates can be utilized as organic fertilizer.

  2. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases

    PubMed Central

    Kell, Douglas B

    2009-01-01

    Background The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. Review We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox

  3. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation.

    PubMed

    Pavani, Christiane; Iamamoto, Yassuko; Baptista, Maurício S

    2012-01-01

    A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.

  4. Preparation of amine group-containing chelating fiber for thorough removal of mercury ions.

    PubMed

    Ma, Nianfang; Yang, Ying; Chen, Shuixia; Zhang, Qikun

    2009-11-15

    An aminated chelating fiber (AF) with high adsorption capacity for mercury ions was prepared by grafting copolymerization of acrylonitrile onto polypropylene fiber, followed by aminating with chelating molecule diethylenetriamine. Effects of reaction conditions such as temperature, reaction time, bath ratio and dosage of catalyst on the grafting yield were studied. Chemical structure, tensile strength and thermal stability of AF were characterized. The adsorption performances for mercury were evaluated by batch adsorption experiments and kinetic experiments. The results show that AF is effective for the removal of mercury over a wide range of pH. The chelating fiber also shows much higher adsorption capacities for mercury, the equilibrium adsorption amount could be as high as 657.9 mg/g for mercury. The high adsorption capacity of Hg(2+) on AF is resulted from the strong chelating interaction between amine groups and mercury ions. Two amine groups coordinate with one mercury ion could be speculated from the adsorption capacity and amine group content on AF. The kinetic adsorption results indicate that the adsorption rates of AF for mercury are very rapid. Furthermore, the residual concentration was less than 1 microg/L with feed concentration of mercury below 1mg/L, which can meet the criterion of drinking water, which indicates that the chelating fiber prepared in this study could be applied to low-level Hg contaminated drinking water purification.

  5. Copper Chelation in Alzheimer's Disease Protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. AD is primarily characterized at the cellular level by densely tangled fibrils of amyloid- β protein. These protein clusters have been found in association with elevated levels of multiple transition metals, with copper being the most egregious. Interestingly, metal chelation has shown promise in attenuating the symptoms of AD in recent clinical studies. We investigate this process by constructing an atomistic model of the amyloid- β-copper complex and profile the energetic viability in each of its subsequent disassociation stages. Our results indicate that five energetic barriers must be overcome for full metal chelation. The energy barriers are biologically viable in the presence water mediated bond and proton transfer between the metal and the protein. We model the chelation reaction using a consecutive path nudged elastic band method implemented in our ab initio real-space multi-grid code to obtain a viable sequence. This reaction model details a physically consistent explanation of the chelation process that could lead to the discovery of more effective chelation agents in the treatment of AD.

  6. f-Element Ion Chelation in Highly Basic Media - Final Report

    SciTech Connect

    Paine, R.T.

    2000-12-12

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelator s for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  7. Novel dinuclear platinum(II) complexes containing mixed nitrogen-sulfur donor ligands.

    PubMed

    Hochreuther, Stephanie; Puchta, Ralph; van Eldik, Rudi

    2011-12-19

    A series of novel dinuclear platinum(II) complexes were synthesized containing a mixed nitrogen-sulfur donor bidentate chelate system in which the two platinum centers are connected by an aliphatic chain of variable length. The bidentate chelating ligands were selected to stabilize the complex toward decomposition. The pK(a) values and reactivity of the four synthesized complexes, namely, [Pt(2)(S(1),S(4)-bis(2-pyridylmethyl)-1,4-butanedithioether)(OH(2))(4)](4+) (4NSpy), [Pt(2)(S(1),S(6)-bis(2-pyridylmethyl)-1,6-hexanedithioether)(OH(2))(4)](4+) (6NSpy), [Pt(2)(S(1),S(8)-bis(2-pyridylmethyl)-1,8-octanedithioether)(OH(2))(4)](4+) (8NSpy), and [Pt(2)(S(1),S(10)-bis(2-pyridylmethyl)-1,10-decanedithioether)(OH(2))(4)](4+) (10NSpy), were investigated. This system is of special interest because only little is known about the substitution behavior of dinuclear platinum complexes that contain a bidentate chelate that forms part of the aliphatic bridging ligand. Moreover, the ligands as well as the dinuclear complexes were examined in terms of their cytotoxic activity, and the 10NSpy complex was found to be active. Spectrophotometric acid-base titrations were performed to determine the pK(a) values of all the coordinated water molecules. The substitution of coordinated water by thiourea was studied under pseudo-first-order conditions as a function of nucleophile concentration, temperature, and pressure, using stopped-flow techniques and UV-vis spectroscopy. The results for the dinuclear complexes were compared to those for the corresponding mononuclear reference complex [Pt(methylthiomethylpyridine)(OH(2))(2)](2+) (Pt(mtp)), by which the effect of the increasing aliphatic chain length of the bridged complexes could be investigated. The results indicate that there is a clear interaction between the two platinum centers, which becomes weaker as the chain length between the metal centers increases. Furthermore, differences and similarities of the N,S-system were compared to

  8. Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions.

    PubMed

    Kullgren, Birgitta; Jarvis, Erin E; An, Dahlia D; Abergel, Rebecca J

    2013-01-01

    Because of the continuing use of nuclear fuel sources and heightened threats of nuclear weapon use, the amount of produced and released radionuclides is increasing daily, as is the risk of larger human exposure to fission product actinides. A rodent model was used to follow the in vivo distribution of representative actinides, administered as free metal ions or complexed with chelating agents including diethylenetriamine pentaacetic acid (DTPA) and the hydroxypyridinonate ligands 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Different metabolic pathways for the different metal ions were evidenced, resulting in intricate ligand- and metal-dependent decorporation mechanisms. While the three studied chelators are known for their unrivaled actinide decorporation efficiency, the corresponding metal complexes may undergo in vivo decomposition and release metal ions in various biological pools. This study sets the basis to further explore the metabolism and in vivo coordination properties of internalized actinides for the future development of viable therapeutic chelating agents.

  9. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  10. Sonochemical synthesis, DNA binding, antimicrobial evaluation and in vitro anticancer activity of three new nano-sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligands as precursors for metal oxides.

    PubMed

    Abdel-Rahman, Laila H; Abu-Dief, Ahmed M; El-Khatib, Rafat M; Abdel-Fatah, Shimaa Mahdy

    2016-09-01

    Three new nano sized Cu(II), Co(II) and Ni(II) complexes of imine ligand derived from the condensation of 2-amino-3-hydroxypyridine and 3-methoxysalicylaldehyde have been prepared and investigated using various chemical techniques such as NMR, elemental analysis, molar conductance, IR, electronic spectra, TGA and magnetic moment measurements. The obtained chemical analysis data showed that the synthesis of 1:1 (metal:ligand) ratio and octahedral geometry was proposed on the basis of magnetic moment and spectral data studies except the Cu(II) complex which is tetrahedral geometry. Nano-sized particles of the investigated complexes were prepared by sonochemistry method. Furthermore, metal oxides nanoparticles were gained by calcination of the prepared corresponding complexes at 500°C and their structures were characterized by powder x-ray and transmittance electron microscopy. Moreover, the free ligand, its complexes and their metal oxides have been checked in vitro against a number of bacteria and fungi in order to assess their antimicrobial activities. In addition to that, DNA binding of the prepared complexes was tested by many routes such as electronic spectra, viscosity and gel electrophoresis. The results showed that the investigated complexes could bind to DNA via an intercalative mode. The cytotoxicity of the Schiff base complexes on human colon carcinoma cells, (HCT-116 cell line) and Breast carcinoma cells, (MCF-7 cell line) showed potent cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard.

  11. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-08-11

    A method is described for extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered. 3 figs.

  12. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.

  13. Objectives and Methods of Iron Chelation Therapy

    PubMed Central

    Hershko, C.; Abrahamov, A.; Konijn, A. M.; Breuer, W.; Cabantchik, I. Z.; Pootrakul, P.; Link, G.

    2003-01-01

    Recent developments in the understanding of the molecular control of iron homeostasis provided novel insights into the mechanisms responsible for normal iron balance. However in chronic anemias associated with iron overload, such mechanisms are no longer sufficient to offer protection from iron toxicity, and iron chelating therapy is the only method available for preventing early death caused mainly by myocardial and hepatic damage. Today, long-term deferoxamine (DFO) therapy is an integral part of the management of thalassemia and other transfusion-dependent anemias, with a major impact on well-being and survival. However, the high cost and rigorous requirements of DFO therapy, and the significant toxicity of deferiprone underline the need for the continued development of new and improved orally effective iron chelators. Within recent years more than one thousand candidate compounds have been screened in animal models. The most outstanding of these compounds include deferiprone (L1); pyridoxal isonicotinoyl hydrazone (PIH) and; bishydroxy- phenyl thiazole. Deferiprone has been used extensively as a substitute for DFO in clinical trials involving hundreds of patients. However, L1 treatment alone fails to achieve a negative iron balance in a substantial proportion of subjects. Deferiprone is less effective than DFO and its potential hepatotoxicity is an issue of current controversy. A new orally effective iron chelator should not necessarily be regarded as one displacing the presently accepted and highly effective parenteral drug DFO. Rather, it could be employed to extend the scope of iron chelating strategies in a manner analogous with the combined use of medications in the management of other conditions such as hypertension or diabetes. Coadministration or alternating use of DFO and a suitable oral chelator may allow a decrease in dosage of both drugs and improve compliance by decreasing the demand on tedious parenteral drug administration. Combined use of DFO

  14. Binding of Soluble Natural Ligands to a Soluble Human T-Cell Receptor Fragment Produced in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Hilyard, Katherine L.; Reyburn, Hugh; Chung, Shan; Bell, John I.; Strominger, Jack L.

    1994-09-01

    An Escherichia coli expression system has been developed to produce milligram quantities of the variable domains of a human T-cell receptor from a cytotoxic T cell that recognizes the HLA-A2-influenza matrix peptide complex as a single polypeptide chain. The recombinant protein was purified by metal-chelate chromatography and then refolded in a redox buffer system. The refolded protein was shown to directly bind both Staphylococcus aureus enterotoxin B and the major histocompatibility complex protein-peptide complex using a BIAcore biosensor. Thus this preparation of a single-chain, variable-domain, T-cell receptor fragment can bind both of its natural ligands and some of it is therefore a functional fragment of the receptor molecule.

  15. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media.

    PubMed

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-09-15

    Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain ("tail") to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N'-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  16. Ligand expansion in ligand-based virtual screening using relevance feedback

    NASA Astrophysics Data System (ADS)

    Abdo, Ammar; Saeed, Faisal; Hamza, Hentabli; Ahmed, Ali; Salim, Naomie

    2012-03-01

    Query expansion is the process of reformulating an original query to improve retrieval performance in information retrieval systems. Relevance feedback is one of the most useful query modification techniques in information retrieval systems. In this paper, we introduce query expansion into ligand-based virtual screening (LBVS) using the relevance feedback technique. In this approach, a few high-ranking molecules of unknown activity are filtered from the outputs of a Bayesian inference network based on a single ligand molecule to form a set of ligand molecules. This set of ligand molecules is used to form a new ligand molecule. Simulated virtual screening experiments with the MDL Drug Data Report and maximum unbiased validation data sets show that the use of ligand expansion provides a very simple way of improving the LBVS, especially when the active molecules being sought have a high degree of structural heterogeneity. However, the effectiveness of the ligand expansion is slightly less when structurally-homogeneous sets of actives are being sought.

  17. New bifunctional ligands for radioimmunoimaging and radioimmunotherapy

    SciTech Connect

    Brechbiel, M.W.

    1988-01-01

    The bifunctional EDTA ligand and two bifunctional DTPA ligands were synthesized by direct aminolysis of an amino acid ester followed by reduction, alkylation, and functional group modification to introduced bifunctionality. The reactive substituent chosen for protein conjugation was the isothiocyanate group. The generality of this approach was demonstrated with 9 different amino acids to produce the respective substituted diethylenetriamines. The remaining three bifunctional DTPA ligands were synthesized via classical peptide methodology producing a dipeptide amide which, after deprotection, was reduced to the triamine and alkylated to produce the ligand. Biodistribution studies of the ligands conjugated to monoclonal antibody B72.3 and labelled with In-111 revealed that superior retention of In-111 was attained and the dose to the liver was minimized when a full intact octadentate bifunctional DTPA chelate was used, e.g. DTPA > EDTA > DTTA (diethylenetritetraacetic acid from use of DTPA dianhydride (CA-DTPA)). The best scintigraphic images were obtained after 72 hours when a DTPA ligand was used to complex the In-111. Biodistribution studies using Yttrium-88 revealed that the disubstituted bifunctional DTPA was necessary to minimize the bone dose from the Yttrium while maintaining a high dose to the tumor.

  18. High Performance Anion Chromatography of Gadolinium Chelates.

    PubMed

    Hajós, Peter; Lukács, Diana; Farsang, Evelin; Horváth, Krisztian

    2016-11-01

    High performance anion chromatography (HPIC) method to separate ionic Gd chelates, [Formula: see text], [Formula: see text], [Formula: see text] and free matrix anions was developed. At alkaline pHs, polydentate complexing agents such as ethylene-diamine-tetraacetate, diethylene-triamine pentaacetate and trans-1,2-diamine-cyclohexane-tetraacetate tend to form stable Gd chelate anions and can be separated by anion exchange. Separations were studied in the simple isocratic chromatographic run over the wide range of pH and concentration of carbonate eluent using suppressed conductivity detection. The ion exchange and complex forming equilibria were quantitatively described and demonstrated in order to understand major factors in the control of selectivity of Gd chelates. Parameters of optimized resolution between concurrent ions were presented on a 3D resolution surface. The applicability of the developed method is represented by the simultaneous analysis of Gd chelates and organic/inorganic anions. Inductively coupled plasma atomic emission spectroscopy  (ICP-AES) analysis was used for confirmation of HPIC results for Gd. Collection protocols for the heart-cutting procedure of chromatograms were applied. SPE procedures were also developed not only to extract traces of free gadolinium ions from samples, but also to remove the high level of interfering anions of the complex matrices. The limit of detection, the recoverability and the linearity of the method were also presented.

  19. Iron-chelating compound from Mycobacterium avium.

    PubMed Central

    McCullough, W G; Merkal, R S

    1976-01-01

    A iron-chelating monohydroxamate was isolated from cultures of Mycobacterium avium grown on an iron-limiting medium. The hydroxyamate metabolite was characterized by chemical degradation and spectral measurements as L-alpha-asparaginyl-L-alpha-(N-hydroxy)-asparagine. PMID:185194

  20. 2012 Philip S. Portoghese Medicinal Chemistry Lectureship: Structure-Based Approaches to Ligands for G Protein-Coupled Adenosine and P2Y Receptors, From Small Molecules to Nanoconjugates +

    PubMed Central

    Jacobson, Kenneth A.

    Adenosine receptor (ARs) and P2Y receptors (P2YRs) that respond to extracellular nucleosides/tides are associated with new directions for therapeutics. The X-ray structures of the A 2A AR complexes with agonists and antagonists are examined in relationship to the G protein-coupled receptor (GPCR) superfamily and applied to drug discovery. Much of the data on AR ligand structure from early SAR studies, now is explainable from the A 2A AR X-ray crystallography. The ligand-receptor interactions in related GPCR complexes can be identified by means of modeling approaches, e.g. molecular docking. Thus, molecular recognition in binding and activation processes has been studied effectively using homology modeling and applied to ligand design. Virtual screening has yielded new nonnucleoside AR antagonists, and existing ligands have been improved with knowledge of the receptor interactions. New agonists are being explored for CNS and peripheral therapeutics based on in vivo activity, such as chronic neuropathic pain. Ligands for receptors more distantly related to the X-ray template, i.e. P2YRs, have been introduced and are mainly used as pharmacological tools for elucidating the physiological role of extracellular nucleotides. Other ligand tools for drug discovery include fluorescent probes, radioactive probes, multivalent probes, and functionalized nanoparticles. PMID:23597047

  1. An affinity selection-mass spectrometry method for the identification of small molecule ligands from self-encoded combinatorial libraries: Discovery of a novel antagonist of E. coli dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Annis, D. Allen; Athanasopoulos, John; Curran, Patrick J.; Felsch, Jason S.; Kalghatgi, Krishna; Lee, William H.; Nash, Huw M.; Orminati, Jean-Paul A.; Rosner, Kristin E.; Shipps, Gerald W., Jr.; Thaddupathy, G. R. A.; Tyler, Andrew N.; Vilenchik, Lev; Wagner, Carston R.; Wintner, Edward A.

    2004-11-01

    The NeoGenesis Automated Ligand Identification System (ALIS), an affinity selection-mass spectrometry (AS-MS) process consisting of a rapid size-exclusion chromatography stage integrated with reverse-phase chromatography, electrospray mass spectrometry, and novel data searching algorithms, was used to screen mass-encoded, 2500-member combinatorial libraries, leading to the discovery of a novel, bioactive ligand for the anti-infective target Escherichia coli dihydrofolate reductase (DHFR). Synthesis of the mass-encoded, ligand-containing library, discussion of the deconvolution process for verifying the structure of the ligand through independent synthesis and screening in a small mixture (sub-library) format, and ALIS-MS/MS techniques to assign its regioisomeric connectivity are presented. ALIS-based competition experiments between the newly discovered ligand and other, known DHFR ligands, and biological activity assessments with stereo- and regioisomers of the hit compound confirm its DHFR-specific biological activity. The method described requires no foreknowledge of the structure or biochemistry of the protein target, consumes less than 1 [mu]g protein to screen >2500 compounds in a single experiment, and enables screening of >250,000 compounds per system per day. These advantages highlight the potential of the ALIS method for drug discovery against genomic targets with unknown biological function, as well as validated targets for which traditional discovery efforts have failed.

  2. The effect of regioisomerism on the coordination chemistry and CEST properties of lanthanide(III) NB-DOTA-tetraamide chelates

    PubMed Central

    Slack, Jacqueline R.; Woods, Mark

    2014-01-01

    Chemical exchange saturation transfer (CEST) offers many advantages as a method of generating contrast in magnetic resonance images. However, many of the exogenous agents currently under investigation suffer from detection limits that are still somewhat short of what can be achieved with more traditional Gd3+ agents. To remedy this limitation we have undertaken an investigation of Ln3+ DOTA-tetraamide chelates (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) that have unusually rigid ligand structures: the nitrobenzyl derivatives of DOTA-tetraamides with (2-phenylethyl)amide substituents. In this report we examine the effect of incorporating hydrophobic amide substituents on water exchange and CEST. The ligand systems chosen afforded a total of three CEST-active isomeric square antiprismatic chelates; each of these chelates was found to have different water exchange and CEST characteristics. The position of a nitrobenzyl substituent on the macrocyclic ring strongly influenced the way in which the chelate and Ln3+ coordination cage distorted. These differential distortions were found to affect the rate of water proton exchange in the chelates. But, by far the greatest effect arose from altering the position of the hydrophobic amide substituent, which, when forced upwards around the water binding site, caused a substantial reduction in the rate of water proton exchange. Such slow water proton exchange afforded a chelate that was 4.5 times more effective as a CEST agent than its isomeric counterparts in dry acetonitrile and at low temperatures and very low presaturation powers. PMID:24287873

  3. Properties, Solution State Behavior, and Crystal Structures of Chelates of DOTMA

    PubMed Central

    Aime, Silvio; Botta, Mauro; Garda, Zoltán; Kucera, Benjamin E.; Tircso, Gyula; Young, Victor G.; Woods, Mark

    2011-01-01

    The chemistry of polyamino carboxylates and their use as ligands for Ln3+ ions is of considerable interest from the point of view of the development of new imaging agents. Of particular interest is the chemistry of the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and its derivatives. Herein we report that the tetramethylated DOTA derivative, DOTMA, possess several properties that, from an imaging agent development point of view, are more advantageous than those of the parent DOTA. In particular, the Ln3+ chelates of DOTMA exhibit a marked preference for the monocapped twisted square antiprismatic coordination isomer which imparts more rapid water exchange kinetics on the chelates; τM298 was determined to be 85 ns for GdDOTMA. Differential analysis of the 17O R2ρ temperature profiles of both GdDOTA and GdDOTMA afforded the τM298 values for the square (SAP) and twisted square antiprismatic (TSAP) isomers of each chelate that were almost identical: 365 ns (SAP) and 52 ns (TSAP). The origin of this accelerated water exchange in the TSAP isomer appears to be the slightly longer Gd–OH2 bond distance (2.50 Å) that is observed in the crystal structure of GdDOTMA which crystallizes in the P2 space group as a TSAP isomer. The Ln3+ chelates of DOTMA also exhibit high thermodynamic stabilities ranging from log KML = 20.5 for CeDOTMA, 23.5 for EuDOTMA and YbDOTMA comparable to, but a shade lower than, those of DOTA. PMID:21819052

  4. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    NASA Astrophysics Data System (ADS)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  5. Less is more: three-coordinate c,n-chelated distannynes and digermynes.

    PubMed

    Novák, Miroslav; Bouška, Marek; Dostál, Libor; Růžička, Aleš; Hoffmann, Alexander; Herres-Pawlis, Sonja; Jambor, Roman

    2015-05-18

    We report here the synthesis of new C,N-chelated chlorostannylenes and germylenes L(3) MCl (M=Sn(1), Ge (2)) and L(4) MCl (M=Sn(3), Ge (4)) containing sterically demanding C,N-chelating ligands L(3, 4) (L(3) =[2,4-di-tBu-6-(Et2 NCH2 )C6 H2 ](-) ; L(4) =[2,4-di-tBu-6-{(C6 H3 -2',6'-iPr2 )N=CH}C6 H2 ](-) ). Reductions of 1-4 yielded three-coordinate C,N-chelated distannynes and digermynes [L(3, 4) M]2 for the first time (5: L(3) , M=Sn, 6: L(3) , M=Ge, 7: L(4) , M=Sn, 8: L(4) , M=Ge). For comparison, the four-coordinate distannyne [L(5) Sn]2 (10) stabilized by N,C,N-chelate L(5) (L(5) =[2,6-{(C6 H3 -2',6'-Me2 )NCH}2 C6 H3 ](-) ) was prepared by the reduction of chlorostannylene L(5) SnCl (9). Hence, we highlight the role of donor-driven stabilization of tetrynes. Compounds 1-10 were characterized by means of elemental analysis, NMR spectroscopy, and in the case of 1, 2, 5-7, and 10, also by single-crystal X-ray diffraction analysis. The bonding situation in either three- or four-coordinate distannynes 5, 7, and 10 was evaluated by DFT calculations. DFT calculations were also used to compare the nature of the metal-metal bond in three-coordinate C,N-chelating distannyne [L(3) Sn]2 (5) and related digermyme [L(3) Ge]2 (6).

  6. Spectral, biological screening of metal chelates of chalcone based Schiff bases of N-(3-aminopropyl) imidazole

    NASA Astrophysics Data System (ADS)

    Kalanithi, M.; Rajarajan, M.; Tharmaraj, P.; Sheela, C. D.

    2012-02-01

    Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol( HL1), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol( HL2), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol( HL3). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry.

  7. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Karatchevtseva, Inna; Bhadbhade, Mohan; Tran, Toan Trong; Aharonovich, Igor; Fanna, Daniel J.; Shepherd, Nicholas D.; Lu, Kim; Li, Feng; Lumpkin, Gregory R.

    2016-02-01

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H2phb) or terephthalic acid (H2tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO2)2(Hphb)2(phb)(DMF)(H2O)3]·4H2O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a μ2-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO2)(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with μ4-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C-O-U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated.

  8. New Chelators for Low Temperature Al(18)F-Labeling of Biomolecules.

    PubMed

    Cleeren, Frederik; Lecina, Joan; Billaud, Emilie M F; Ahamed, Muneer; Verbruggen, Alfons; Bormans, Guy M

    2016-03-16

    The Al(18)F labeling method is a relatively new approach that allows radiofluorination of biomolecules such as peptides and proteins in a one-step procedure and in aqueous solution. However, the chelation of the {Al(18)F}(2+) core with the macrocyclic chelators NOTA or NODA requires heating to 100-120 °C. Therefore, we have developed new polydentate ligands for the complexation of {Al(18)F}(2+) with good radiochemical yields at a temperature of 40 °C. The stability of the new Al(18)F-complexes was tested in phosphate buffered saline (PBS) at pH 7.4 and in rat serum. The stability of the Al(18)F-L3 complex was found to be comparable to that of the previously reported Al(18)F-NODA complex up to 60 min in rat serum. Moreover, the biodistribution of Al(18)F-L3 in healthy mice showed the absence of in vivo defluorination since no significant bone uptake was observed, whereas the major fraction of activity at 60 min p.i. was observed in liver and intestines, indicating hepatobiliary clearance of the radiolabeled ligand. The acyclic chelator H3L3 proved to be a good lead candidate for labeling of heat-sensitive biomolecules with fluorine-18. In order to obtain a better understanding of the different factors influencing the formation and stability of the complex, we carried out more in-depth experiments with ligand H3L3. As a proof of concept, we successfully conjugated the new AlF-chelator with the urea-based PSMA inhibitor Glu-NH-CO-NH-Lys to form Glu-NH-CO-NH-Lys(Ahx)L3, and a biodistribution study in healthy mice was performed with the Al(18)F-labeled construct. This new class of AlF-chelators may have a great impact on PET radiochemical space as it will stimulate the rapid development of new fluorine-18 labeled peptides and other heat-sensitive biomolecules.

  9. Iron-[S,S']-EDDS (FeEDDS) Chelate as an Iron Source for Horticultural Crop Production: Marigold Growth and Nutrition, Spectral Properties, and Photodegradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopolycarboxylic acid (APCA) complexones, commonly referred to as ligands or chelating agents, like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to p...

  10. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    PubMed

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  11. Nanogels from metal-chelating crosslinkers as versatile platforms applied to copper-64 PET imaging of tumors and metastases.

    PubMed

    Lux, Jacques; White, Alexander G; Chan, Minnie; Anderson, Carolyn J; Almutairi, Adah

    2015-01-01

    Metals are essential in medicine for both therapy and diagnosis. We recently created the first metal-chelating nanogel imaging agent, which employed versatile, reproducible chemistry that maximizes chelation stability. Here we demonstrate that our metal chelating crosslinked nanogel technology is a powerful platform by incorporating (64)Cu to obtain PET radiotracers. Polyacrylamide-based nanogels were crosslinked with three different polydentate ligands (DTPA, DOTA, NOTA). NOTA-based nanogels stably retained (64)Cu in mouse serum and accumulated in tumors in vivo as detected by PET/CT imaging. Measurement of radioactivity in major organs ex vivo confirmed this pattern, revealing a high accumulation (12.3% ID/g and 16.6% ID/g) in tumors at 24 and 48 h following administration, with lower accumulation in the liver (8.5% ID/g at 24 h) and spleen (5.5% ID/g). Nanogels accumulated even more efficiently in metastases (29.9% and 30.4% ID/g at 24 and 48 h). These metal-chelating nanogels hold great promise for future application as bimodal PET/MRI agents; chelation of β-emitting radionuclides could enable radiation therapy.

  12. Nanogels from Metal-Chelating Crosslinkers as Versatile Platforms Applied to Copper-64 PET Imaging of Tumors and Metastases

    PubMed Central

    Lux, Jacques; White, Alexander G.; Chan, Minnie; Anderson, Carolyn J.; Almutairi, Adah

    2015-01-01

    Metals are essential in medicine for both therapy and diagnosis. We recently created the first metal-chelating nanogel imaging agent, which employed versatile, reproducible chemistry that maximizes chelation stability. Here we demonstrate that our metal chelating crosslinked nanogel technology is a powerful platform by incorporating 64Cu to obtain PET radiotracers. Polyacrylamide-based nanogels were crosslinked with three different polydentate ligands (DTPA, DOTA, NOTA). NOTA-based nanogels stably retained 64Cu in mouse serum and accumulated in tumors in vivo as detected by PET/CT imaging. Measurement of radioactivity in major organs ex vivo confirmed this pattern, revealing a high accumulation (12.3% ID/g and 16.6% ID/g) in tumors at 24 and 48 h following administration, with lower accumulation in the liver (8.5% ID/g at 24 h) and spleen (5.5% ID/g). Nanogels accumulated even more efficiently in metastases (29.9% and 30.4% ID/g at 24 and 48 h). These metal-chelating nanogels hold great promise for future application as bimodal PET/MRI agents; chelation of β-emitting radionuclides could enable radiation therapy. PMID:25553115

  13. Selective high affinity polydentate ligands and methods of making such

    DOEpatents

    DeNardo, Sally; DeNardo, Gerald; Balhorn, Rodney

    2010-02-16

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  14. Hypercoordinate silicon complexes based on hydrazide ligands. A remarkably flexible molecular system.

    PubMed

    Kost, Daniel; Kalikhman, Inna

    2009-02-17

    Though only one row apart on the periodic table, silicon greatly differs from carbon in its ability to readily form five- and six-coordinate complexes, termed "hypercoordinate silicon compounds". The assorted chemistry of these compounds is varied in both structures and reactivity and has generated a flurry of innovative research endeavors in recent years. This Account summarizes the latest work done on a specific class of hypercoordinate silicon compounds, specifically those with two hydrazide-derived chelate rings. This family is especially interesting due to the ability to form multiple penta- and hexacoordinate complexes, the chemical reactivity of pentacoordinate complexes, and the observation of intermolecular ligand crossovers in hexacoordinate complexes. Pentacoordinate complexes in this family exhibit marked structural flexibility, as demonstrated by the construction of a complete hypothetical Berry-pseudorotation reaction coordinate generated from individual crystallographic molecular structures. Although hexacoordinate complexes generally crystallize as octahedra, with a decrease in the ligand donor strength the complexes can crystallize as bicapped tetrahedra. Hexacoordinate complexes bearing a halogen ligand undergo a solvent-driven equilibrium ionic dissociation, which is controlled by solvent, temperature, counterion, and chelate structure and has been directly demonstrated by conductivity measurements and temperature-dependent (29)Si NMR. Hexacoordinate silicon complexes can also undergo reversible neutral nonionic dissociation of the N-Si dative bond. Ionic pentacoordinate siliconium salts react readily via methyl halide elimination, initiated by their own counterion acting as a base. Pentacoordinate complexes can also undergo intramolecular aldol condensations of imines, which may find potential as a template for organic synthesis. In addition, these complexes are capable of performing an uncatalyzed intramolecular hydrosilylation of imine double

  15. Synthesis and structural features of U VI and V IV chelate complexes with (hhmmbH)Cl·H 2O [hhmmb = {3-hydroxyl-5-(hydroxymethyl)-2-methylpyridine-4-yl-methylene}benzohydrazide], a new Schiff base ligand derived from vitamin B6

    NASA Astrophysics Data System (ADS)

    Back, Davi Fernando; Ballin, Marco Aurélio; de Oliveira, Gelson Manzoni

    2009-10-01

    The Schiff base ligand {3-hydroxyl-5-(hydroxymethyl)-2-methylpyridine-4-yl-methylene}benzohydrazide hydrochloride monohydrated {(hhmmbH)Cl·H 2O} ( 1) was prepared by reaction of pyridoxine hydrochloride with benzoic acid hydrazide. The reaction of 1 with [VO(acac) 2] and triethylamine yields the neutral vanadium IV complex [VO 2(hhmmb)]·Py ( 2), with a distorted quadratic pyramidal configuration. The Schiff base 1 reacts also with UO 2(NO 3) 2·6H 2O and triethylamine under deprotonation giving the uranium VI cationic complexes [UO 2(hhmmb)(H 2O)Cl] + ( 3) and [UO 2(hhmmb)(CH 3OH)Cl] + ( 4), both showing the classical pentagonal bipyrimidal geometry of UO22+ complexes. The structural features of all compounds are discussed.

  16. Relationship among Chelator Adherence, Change in Chelators, and Quality of Life in Thalassemia

    PubMed Central

    Trachtenberg, Felicia L.; Gerstenberger, Eric; Xu, Yan; Mednick, Lauren; Sobota, Amy; Ware, Hannah; Thompson, Alexis A.; Neufeld, Ellis J.; Yamashita, Robert

    2015-01-01

    Purpose Thalassemia, a chronic blood disease, necessitates life-long adherence to blood transfusions and chelation therapy to reduce iron overload. We examine stability of Health-Related Quality of Life (HRQOL) in thalassemia and adherence to chelation therapy over time, especially after changes in chelator choice. Methods Thalassemia Longitudinal Cohort participants in the US, UK, and Canada completed the SF-36v2 (ages 14+), and the PF-28 CHQ (parents of children<14 years). Chelation adherence was defined as self-reported percent of doses administered in the last 4 weeks. Results 258 adults/adolescents (mean 29.7 years) and 133 children (mean 8.5 years) completed a mean of 2.8 years follow-up. Children made few chelator changes, whereas a mean of 2.2 changes was observed among the 37% of adults/adolescents who made chelator changes, mainly, due to patient preference or medical necessity. Physical HRQOL improved among those with lower iron burden (better health status) at baseline who made a single change in chelator, but declined among participants with multiple changes and/or high iron burden (worse health status). Mental health improved among participants with lower iron burden, but iron overload was negatively associated with social functioning. Adherence did not significantly change over follow-up except for an increase after a change from DFO infusion to oral deferasirox (p=0.03). Predictors of lower adherence for adults/adolescents at follow-up included side effects, smoking, younger age, problems preparing DFO, increased number of days per week DFO prescribed, and lower physical QOL. Conclusions Strategies to balance medical needs with family, work, and personal life may assist in adherence. PMID:24682717

  17. Quenching the Quantum Tunneling of Magnetization in Heterometallic Octanuclear {TM(III)4 Dy(III)4 } (TM=Co and Cr) Single-Molecule Magnets by Modification of the Bridging Ligands and Enhancing the Magnetic Exchange Coupling.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan

    2017-01-31

    We report the synthesis, structural characterisation, magnetic properties and provide an ab initio analysis of the magnetic behaviour of two new heterometallic octanuclear coordination complexes containing Co(III) and Dy(III) ions. Single-crystal X-ray diffraction studies revealed molecular formulae of [Co(III)4 Dy(III)4 (μ-OH)4 (μ3 -OMe)4 {O2 CC(CH3 )3 }4 (tea)4 (H2 O)4 ]⋅4 H2 O (1) and [Co(III)4 Dy(III)4 (μ-F)4 (μ3 -OH)4 (o-tol)8 (mdea)4 ]⋅ 3 H2 O⋅EtOH⋅MeOH (2; tea(3-) =triply deprotonated triethanolamine; mdea(2-) =doubly deprotonated N-methyldiethanolamine; o-tol=o-toluate), and both complexes display an identical metallic core topology. Furthermore, the theoretical, magnetic and SMM properties of the isostructural complex, [Cr(III)4 Dy(III)4 (μ-F4 )(μ3 -OMe)1.25 (μ3 -OH)2.75 (O2 CPh)8 (mdea)4 ] (3), are discussed and compared with a structurally similar complex, [Cr(III)4 Dy(III)4 (μ3 -OH)4 (μ-N3 )4 (mdea)4 (O2 CC(CH3 )3 )4 ] (4). DC and AC magnetic susceptibility data revealed single-molecule magnet (SMM) behaviour for 1-4. Each complex displays dynamic behaviour, highlighting the effect of ligand and transition metal ion replacement on SMM properties. Complexes 2, 3 and 4 exhibited slow magnetic relaxation with barrier heights (Ueff ) of 39.0, 55.0 and 10.4 cm(-1) respectively. Complex 1, conversely, did not exhibit slow relaxation of magnetisation above 2 K. To probe the variance in the observed Ueff  values, calculations by using CASSCF, RASSI-SO and POLY_ANISO routine were performed on these complexes to estimate the nature of the magnetic coupling and elucidate the mechanism of magnetic relaxation. Calculations gave values of JDy-Dy as -1.6, 1.6 and 2.8 cm(-1) for complexes 1, 2 and 3, respectively, whereas the JDy-Cr interaction was estimated to be -1.8 cm(-1) for complex 3. The developed mechanism for magnetic relaxation revealed that replacement of the hydroxide ion by fluoride quenched the quantum tunnelling of

  18. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  19. Removal of manganese from water using combined chelation/membrane separation systems.

    PubMed

    Han, S C; Choo, K H; Choi, S J; Benjamin, M M

    2005-01-01

    The addition of the chelating polymer polyacrylic acid (PAA) to assist in the removal of manganese from groundwater by membranes was investigated using membranes with different pore sizes under various operating conditions. Negligible manganese removal was achieved with the UF and NF membranes at acidic pH values, but removals exceeding 90% could be achieved at elevated pH (pH 9), presumably due to the formation of manganese hydroxides. Mn removal increased substantially when PAA was added to the feed solution, due to chelation of Mn by the PAA and rejection of the chelates by the membranes. The chelate could be broken at acidic pH, releasing free PAA that could then be separated from the Mn ions and reused. Smaller PAA molecules were lost in the first regeneration cycle, but negligible PAA was lost in subsequent cycles. In the systems with PAA, nitrate ions were rejected more efficiently than in the PAA-free systems, presumably because of electrical repulsion between nitrate ions and PAA sorbed on the membrane surface. With increasing PAA dose, the volumetric flux first decreased and then increased; the latter result was accompanied by a change in the physical-chemical form of the polymers, as indicated by an increase in turbidity.

  20. Safety evaluation of zinc threoninate chelate.

    PubMed

    Hu, Xiao-bo; Gong, Yi; Li, Lei; Nie, Shao-ping; Wang, Yuan-xing; Xie, Ming-yong

    2010-07-01

    The acute toxicity of zinc threoninate chelate was assessed. The oral lethal dose 50% (LD(50)) was 2710 mg/kg in female rats and 3160 mg/kg in male rats. Genotoxicity was assessed by Ames test in Salmonella typhimurium strains TA97, TA98, TA100, and TA102, by bone marrow mouse micronucleus test and a sperm abnormality test with mice. Thirty-day repeat dose toxicity study was conducted at oral daily doses of 0, 42, 169, and 675 mg/kg in rats. Teratogenicity was assessed at the same daily dose in pregnant rats by gavage. No significant changes in body weight, food consumption, organ weight, relative organ weight, hematology, blood biochemistry, histopathology, behavior, mortality, sperm abnormality, mutagenicity, and micronucleus formation were observed and no clinical signs or adverse effects were detected. Zinc threoninate chelate had no significant teratogenic effect at a daily dose of 42 mg/kg.

  1. Why mercury prefers soft ligands

    SciTech Connect

    Riccardi, Demian M; Guo, Hao-Bo; Gu, Baohua; Parks, Jerry M; Summers, Anne; Miller, S; Liang, Liyuan; Smith, Jeremy C

    2013-01-01

    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

  2. Obligatory Reduction of Ferric Chelates in Iron Uptake by Soybeans

    PubMed Central

    Chaney, Rufus L.; Brown, John C.; Tiffin, Lee O.

    1972-01-01

    The contrasting Fe2+ and Fe3+ chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe3+-chelates. EDDHA binds Fe3+ strongly, but Fe2+ weakly; BPDS binds Fe2+ strongly but Fe3+ weakly. Addition of an excess of BPDS to nutrient solutions containing Fe3+-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)3]4− accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe3+-chelates appear to require reduction of Fe3+-chelate to Fe2+-chelate at the root, with Fe2+ being the principal form of Fe absorbed by soybean. PMID:16658143

  3. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  4. Anionic cyclophanes as potential reversal agents of muscle relaxants by chemical chelation.

    PubMed

    Cameron, Kenneth S; Fielding, Lee; Mason, Rona; Muir, Alan W; Rees, David C; Thorn, Simon; Zhang, Ming Qiang

    2002-03-11

    A series of carboxyl-containing cyclophanes have been designed and synthesised as chemical chelators (or host molecules) of cationic muscle relaxant drugs (or guest molecules). Three of these cyclophane derivatives, 1-3, have been shown by NMR to form 1:1 complexes with the muscle relaxants pancuronium, and gallamine, in D(2)O, with association constants up to 10(4) M(-1). When tested in an in vitro chick biventer muscle preparation, the cyclophanes reversed the neuromuscular block induced by pancuronium and gallamine, with having the most effective reversal against pancuronium (EC(50) 40 microM.

  5. Iron chelation therapy in thalassemia syndromes.

    PubMed

    Cianciulli, Paolo

    2009-12-29

    Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron) the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO) has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce complications, and improve survival and quality of life of transfused patients.

  6. Iron Chelation Therapy in Thalassemia Syndromes

    PubMed Central

    Cianciulli, Paolo

    2009-01-01

    Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron) the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO) has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce complications, and improve survival and quality of life of transfused patients. PMID:21415999

  7. Chelating ability and biological activity of hesperetin Schiff base.

    PubMed

    Lodyga-Chruscinska, Elzbieta; Symonowicz, Marzena; Sykula, Anna; Bujacz, Anna; Garribba, Eugenio; Rowinska-Zyrek, Magdalena; Oldziej, Stanislaw; Klewicka, Elzbieta; Janicka, Magdalena; Krolewska, Karolina; Cieslak, Marcin; Brodowska, Katarzyna; Chruscinski, Longin

    2015-02-01

    Hydrazone hesperetin Schiff base (HHSB) - N-[(±)-[5,7-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)chroman-4-ylidene]amino]benzamide has been synthesized and its crystal structure was determined. This compound was used for the formation of Cu(II) complexes in solid state and in solution which were characterized using different spectroscopic methods. The analyses of potentiometric titration curves revealed that monomeric and dimeric complexes of Cu(II) are formed above pH7. The ESI-MS (electrospray ionization-mass spectrometry) spectra confirmed their formation. The EPR and UV-visible spectra evidenced the involvement of oxygen and nitrogen atoms in Cu(II) coordination. Hydrazone hesperetin Schiff base can show keto-enol tautomerism and coordinate Cu(II) in the keto (O(-), N, Oket) and in the enolate form (O(-), N, O(-)enol). The semi-empirical molecular orbital method PM6 and DFT (density functional theory) calculations have revealed that the more stable form of the dimeric complex is that one in which the ligand is present in the enol form. The CuHHSB complex has shown high efficiency in the cleavage of plasmid DNA in aqueous solution, indicating its potential as chemical nuclease. Studies on DNA interactions, antimicrobial and cytotoxic activities have been undertaken to gain more information on the biological significance of HHSB and copper(II)-HHSB chelate species.

  8. pFe(3+) determination of multidentate ligands by a fluorescence assay.

    PubMed

    Ma, Yongmin; Zhou, Tao; Hider, Robert C

    2015-05-21

    The fluorescence intensity of the iron-CP691 complex in the presence of a competing multidentate ligand is associated with pFe(3+) of the competing ligand and the relative fluorescence has a linear correlation with the pFe(3+) values. A correlation was also found to exist between the relative fluorescence and the ratio of a competing ligand to the probe CP691. Based on this assay, the pFe(3+) value of a range of hexadentate ligands, dendrimers and polymers can be determined when they fall in the range 24.5-30.5. Only small quantities of chelators are required for this assay.

  9. Development of immobilized ligands for actinide separations. Final report, June 1991--May 1994

    SciTech Connect

    Paine, R.T.

    1994-06-01

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined.

  10. Design and synthesis of chelating diamide sorbents for the separation of lanthanides

    SciTech Connect

    Fryxell, Glen E.; Chouyyok, Wilaiwan; Rutledge, Ryan D.

    2011-06-01

    A nanoporous sorbent designed around chelating iminodiacetamide (“IDA-Amide”) moiety was made on mesoporous silica (MCM-41) and evaluated for lanthanide separations (Ce3+, Nd3+, Eu3+, Gd3+, and Lu3+). The effects of solution pH on lanthanide binding were studied, as well as sorption kinetics, and competition from other metal ions. The IDA-Amide SAMMS® demonstrated an interesting difference in the kinetics of sorption of the lanthanide ions in the order of Lu3+ > Eu3+ > Gd3+ > Nd3+ > Ce3+ . The close proximity of the ligands in the IDA-Amide SAMMS® may allow for multiple metal-ligand interactions (“macromolecular chelation”).

  11. Synthesis and biological evaluation of bidentate 3-hydroxypyridin-4-ones iron chelating agents

    PubMed Central

    Saghaie, L.; Sadeghi-aliabadi, H.; Kafiri, M.

    2011-01-01

    A series of 3-hydroxypyridin-4-one derivatives (HPOs) were synthesized and their partition coefficient values (Kpart) were determined. The cytotoxic effects of these iron chelators against Hela cancer cells were also evaluated. The IC50 of HPOs was determined using MTT assay. Among these ligands, compound 4e (Kpart=5.02) with an IC50 of 30 μM and 4f (Kpart=0.1) with an IC50 of 700 μM showed the lowest and highest IC50s, respectively. In conclusion, the introduction of a more hydrophobic functional group (such as butyl in compound 4e) on the nitrogen of pyridinone ring resulted in higher cytotoxic activity of ligands. PMID:22224095

  12. Hydroxypyridinone Chelators: From Iron Scavenging to Radiopharmaceuticals for PET Imaging with Gallium-68

    PubMed Central

    Cusnir, Ruslan; Imberti, Cinzia; Hider, Robert C.; Blower, Philip J.; Ma, Michelle T.

    2017-01-01

    Derivatives of 3,4-hydroxypyridinones have been extensively studied for in vivo Fe3+ sequestration. Deferiprone, a 1,2-dimethyl-3,4-hydroxypyridinone, is now routinely used for clinical treatment of iron overload disease. Hexadentate tris(3,4-hydroxypyridinone) ligands (THP) complex Fe3+ at very low iron concentrations, and their high affinities for oxophilic trivalent metal ions have led to their development for new applications as bifunctional chelators for the positron emitting radiometal, 68Ga3+, which is clinically used for molecular imaging in positron emission tomography (PET). THP-peptide bioconjugates rapidly and quantitatively complex 68Ga3+ at ambient temperature, neutral pH and micromolar concentrations of ligand, making them amenable to kit-based radiosynthesis of 68Ga PET radiopharmaceuticals. 68Ga-labelled THP-peptides accumulate at target tissue in vivo, and are excreted largely via a renal pathway, providing high quality PET images. PMID:28075350

  13. Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry.

    PubMed

    Liu, Huiling; Zhang, Yangjun; Wang, Jinglan; Wang, Dong; Zhou, Chunxi; Cai, Yun; Qian, Xiaohong

    2006-09-15

    The mass spectrometry-based methods with a stable isotope as the internal standard in quantitative proteomics have been developed quickly in recent years. But the use of some stable isotope reagents is limited by the relative high price and synthetic difficulties. We have developed a new method for quantitative proteomics research by using metal element chelated tags (MECT) coupled with mass spectrometry. The bicyclic anhydride diethylenetriamine-N,N,N',N' ',N' '-pentaacetic acid (DTPA) is covalently coupled to primary amines of peptides, and the ligand is then chelated to the rare earth metals Y and Tb. The tagged peptides are mixed and analyzed by LC-ESI-MS/MS. Peptides are quantified by measuring the relative signal intensities for the Y and Tb tag pairs in MS, which permits the quantitation of the original proteins generating the corresponding peptides. The protein is then identified by the corresponding peptide sequence from its MS/MS spectrum. The MECT method was evaluated by using standard proteins as model sample. The experimental results showed that metal chelate-tagged peptides chromatographically coeluted successfully during the reversed-phase LC analysis. The relative quantitation results were accurate for proteins using MECT. DTPA modification of the N-terminal of peptides promoted cleaner fragmentation (only y-series ions) in mass spectrometry and improved the confidence level of protein identification. The MECT strategy provides a simple, rapid, and economical alternative to current mass tagging technologies available.

  14. Mechanism of action of diabetogenic zinc-chelating agents. Model system studies.

    PubMed

    Epand, R M; Stafford, A R; Tyers, M; Nieboer, E

    1985-03-01

    its decomposition products, diethylamine, to accelerate the dissipation of pH gradients across lipid bilayers. Diethylamine is particularly effective in stimulating a rapid dissipation of such pH gradients, even at micromolar concentrations. We have attempted to estimate quantitatively the extent of proton liberation by various zinc-chelating agents. This analysis demonstrated that partitioning of the ligand between organic and aqueous phases, ligand acidity, and zinc complex stability determine the extent of proton release.

  15. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    DOEpatents

    Bazan, Guillermo C.; Chen, Yaofeng

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  16. A novel, cysteine-modified chelation strategy for the incorporation of [MI(CO)3]+ (M = Re, 99mTc) in an α-MSH peptide

    PubMed Central

    Jiang, Han; Kasten, Benjamin B.; Liu, Hongguang; Qi, Shibo; Liu, Yang; Tian, Mei; Barnes, Charles L.; Zhang, Hong; Cheng, Zhen; Benny, Paul D.

    2012-01-01

    Engineering peptide-based targeting agents with residues for site specific and stable complexation of radionuclides is a highly desirable strategy for producing diagnostic and therapeutic agents for cancer and other diseases. In this report, a model N-S-NPy ligand (3) and a cysteine-derived alpha-melanocyte stimulating hormone (α-MSH) peptide (6) were used as novel demonstrations of a widely applicable chelation strategy for incorporation of the [MI(CO)3]+ (M = Re, 99mTc) core into peptide-based molecules for radiopharmaceutical applications. The structural details of the core ligand-metal complexes as model systems were demonstrated by full chemical characterization of fac-[ReI(CO)3(N,S,NPy-3)]+ (4) and comparative high performance liquid chromatography (HPLC) analysis between 4 and [99mTcI(CO)3(N,S,NPy-3)]+ (4a). The α-MSH analogue bearing the N-S-NPy chelate on a modified cysteine residue (6) was generated and complexed with [MI(CO)3]+ to confirm the chelation strategy’s utility when applied in a peptide-based targeting agent. Characterization of the ReI(CO)3-6 peptide conjugate (7) confirmed the efficient incorporation of the metal center, and the 99mTcI(CO)3-6 analogue (7a) was explored as a potential single photon emission computed tomography (SPECT) compound for imaging the melanocortin 1 receptor (MC1R) in melanoma. Peptide 7a showed excellent radiolabeling yields and in vitro stability during amino acid challenge and serum stability assays. In vitro B16F10 melanoma cell uptake of 7a reached a modest value of 2.3 ± 0.08% of applied activity at 2 h at 37 °C while this uptake was significantly reduced by coincubation with a nonlabeled α-MSH analogue, NAPamide (3.2 µM) (P < 0.05). In vivo SPECT/X-ray computer tomography (SPECT/CT) imaging and biodistribution of 7a were evaluated in a B16F10 melanoma xenografted mouse model. SPECT/CT imaging clearly visualized the tumor at 1 h post injection (p.i.) with high tumor-to-background contrast. Blocking

  17. Impact of iron chelators on short-term dissolution of basaltic glass

    NASA Astrophysics Data System (ADS)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney-Carron, Aurélie; Huguenot, David; van Hullebusch, Eric D.; Catillon, Gilles; Razafitianamaharavo, Angelina; Guyot, François

    2015-08-01

    Although microorganisms seem to play an important role in the alteration processes of basaltic glasses in solution, the elementary mechanisms involved remain unclear in particular with regard to the role of organic ligands excreted by the cells. Two glasses, one with Fe and one without Fe were synthesized to model basaltic glass compositions. Fe in the glass was mostly Fe(III) for enhancing interaction with siderophores, yet with small but significant amounts of Fe(II) (between 10% and 30% of iron). The prepared samples were submitted to abiotic alteration experiments in buffered (pH 6.4) diluted solutions of metal-specific ligands, namely oxalic acid (OA, 10 mM), desferrioxamine (DFA, 1 mM) or 2,2‧-bipyridyl (BPI, 1 mM). Element release from the glass into the solution after short term alteration (maximum 1 week) was measured by ICP-OES, and normalized mass losses and relative release ratios (with respect to Si) were evaluated for each element in each experimental condition. The presence of organic ligands had a significant effect on the dissolution of both glasses. Trivalent metals chelators (OA, DFA) impacted on the release of Fe3+ and Al3+, and thus on the global dissolution of both glasses, enhancing all release rates and dissolution stoichiometry (release rates were increased up to 7 times for Al or Fe). As expected, the mostly divalent metal chelator BPI interacted preferentially with Ca2+, Mg2+ and Fe2+. This study thus allows to highlight the central roles of iron and aluminium in interaction with some organic ligands in the alteration processes of basaltic glasses. It thus provides a step toward understanding the biological contribution of this fundamental geological process.

  18. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand

    PubMed Central

    DeLuca, Samuel; Khar, Karen; Meiler, Jens

    2015-01-01

    RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand) making it unfeasible for use in virtual High Throughput Screening (vHTS). To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial ‘low-resolution’ docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10–15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the ‘high-resolution’ full atom refinement step. PMID:26207742

  19. Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral.

    PubMed

    Liu, Xiaofeng; Jin, Weili; Theil, Elizabeth C

    2003-04-01

    Iron is concentrated in ferritin, a spherical protein with a capacious cavity for ferric nanominerals of <4,500 Fe atoms. Global ferritin structure is very stable, resisting 6 M urea and heat (85 degrees C) at neutral pH. Eight pores, each formed by six helices from 3 of the 24 polypeptide subunits, restrict mineral access to reductant, protons, or chelators. Protein-directed transport of Fe and aqueous Fe(3+) chemistry (solubility approximately 10(-18) M) drive mineralization. Ferritin pores are "gated" based on protein crystals and Fe chelation rates of wild-type (WT) and engineered proteins. Pore structure and gate residues, which are highly conserved, thus should be sensitive to environmental changes such as low concentrations of chaotropes. We now demonstrate that urea or guanidine (1-10 mM), far below concentrations for global unfolding, induced multiphasic rate increases in Fe(2+)-bipyridyl formation similar to conservative substitutions of pore residues. Urea (1 M) or the nonconservative LeuPro substitution that fully unfolded pores without urea both induced monophasic rate increases in Fe(2+) chelation rates, indicating unrestricted access between mineral and reductantchelator. The observation of low-melting ferritin subdomains by CD spectroscopy (melting midpoint 53 degrees C), accounting for 10% of ferritin alpha-helices, is unprecedented. The low-melting ferritin subdomains are pores, based on percentage helix and destabilization by either very dilute urea solutions (1 mM) or LeuPro substitution, which both increased Fe(2+) chelation. Biological molecules may have evolved to control gating of ferritin pores in response to cell iron need and, if mimicked by designer drugs, could impact chelation therapies in iron-overload diseases.

  20. Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection.

    PubMed

    Nchimi-Nono, Katia; Wegner, K David; Lindén, Stina; Lecointre, Alexandre; Ehret-Sabatier, Laurence; Shakir, Shakir; Hildebrandt, Niko; Charbonnière, Loïc J

    2013-10-14

    The first example of an activated phosphonated trifunctional chelate (TFC) is presented, which combines a non-macrocyclic coordination site for lanthanide coordination based on two aminobis-methylphosphonate coordinating arms, a central bispyrazolylpyridyl antenna and an N-hydroxysuccinimide ester in para position of the central pyridine as an activated function for the labeling of biomaterial. The synthesis of the TFC is presented together with photo-physical studies of the related Tb and Eu complexes. Excited state lifetime measurements in H2O and D2O confirmed an excellent shielding of the cation from water molecules with a hydration number of zero. The Tb complex provides a high photoluminescence (PL) quantum yield of 24% in aqueous solutions (0.01 M Tris-HCl, pH 7.4) and a very long luminescence lifetime of 2.6 ms. The activated ligand was conjugated to different biological compounds such as streptavidin, and a monoclonal antibody against total prostate specific antigen (TPSA). In combination with AlexaFluor647 (AF647) and crosslinked allophycocyanin (XL665) antibody (ABs) conjugates, homogeneous time-resolved Fluorescence Resonance Energy Transfer (FRET) immunoassays of TPSA were performed in serum samples. The Tb donor-dye acceptor FRET pairs provided large Förster distances of 5.3 nm (AF647) and 7.1 nm (XL665). A detailed time-resolved FRET analysis of Tb donor and dye acceptor PL decays revealed average donor-acceptor distances of 4.2 nm (AF647) and 6.3 nm (XL665) within the sandwich immunocomplex and FRET efficiencies of 0.79 and 0.68, respectively. Very low detection limits of 1.4 ng mL(-1) (43 pM) and 2.4 ng mL(-1) (74 pM) TPSA were determined using a KRYPTOR fluorescence immunoanalyzer. These results demonstrate the applicability of our novel Tb-bioconjugates for highly sensitive clinical diagnostics.

  1. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  2. Preparation, spectral, X-ray powder diffraction and computational studies and genotoxic properties of new azo-azomethine metal chelates

    NASA Astrophysics Data System (ADS)

    Bitmez, Şirin; Sayin, Koray; Avar, Bariş; Köse, Muhammet; Kayraldız, Ahmet; Kurtoğlu, Mükerrem

    2014-11-01

    A new tridentate azo-azomethine ligand, N‧-[{2-hydroxy-5-[(4-nitrophenyl)diazenyl]phenyl}methylidene]benzohydrazidemonohydrate, (sbH·H2O) (1), is prepared by condensation of benzohydrazide and 2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzaldehyde (a) with treatment of a solution of diazonium salt of p-nitroaniline and 2-hydroxybenzaldehyde in EtOH. The five coordination compounds, [Co(sb)2]·4H2O (2), [Ni(sb)2]·H2O (3), [Cu(sb)2]·4H2O (4), [Zn(sb)2]·H2O (5) and [Cd(sb)2]·H2O (6) are prepared by reacting the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions with the ligand. The structures of the compounds are elucidated from the elemental analyses data and spectroscopic studies. It is found the ligand acts as a tridentate bending through phenolic and carbonyl oxygens and nitrogen atom of the Cdbnd Nsbnd group similar to the most of salicylaldimines. Comparison of the infrared spectra of the ligand and its metal complexes confirm that azo-Schiff base behaves as a monobasic tridentate ligand towards the central metal ion with an ONO donor sequence. Upon complexation with the ligand, the Cd(II), and Zn(II) ions form monoclinic structures, while Co(II), Cu(II) and Ni(II) ions form orthorhombic structures. Quantum chemical calculations are performed on tautomers and its metal chelates by using DFT/B3LYP method. Most stable tautomer is determined as tautomer (1a). The geometrical parameters of its metal chelates are obtained as theoretically. The NLO properties of tautomer (1a) and its metal complexes are investigated. Finally, the ligand and its metal complexes are assessed for their genotoxicity.

  3. Nanoparticle multivalency counterbalances the ligand affinity loss upon PEGylation.

    PubMed

    Hennig, Robert; Pollinger, Klaus; Veser, Anika; Breunig, Miriam; Goepferich, Achim

    2014-11-28

    The conjugation of receptor ligands to shielded nanoparticles is a widely used strategy to precisely control nanoparticle-cell interactions. However, it is often overlooked that a ligand's affinity can be severely impaired by its attachment to the polyethylene glycol (PEG) chains that are frequently used to protect colloids from serum protein adsorption. Using the model ligand EXP3174, a small-molecule antagonist for the angiotensin II receptor type 1 (AT1R), we investigated the ligand's affinity before and after its PEGylation and when attached to PEGylated nanoparticles. The PEGylated ligand displayed a 580-fold decreased receptor affinity compared to the native ligand. Due to their multivalency, the nanoparticles regained a low nanomolar receptor affinity, which is in the range of the affinity of the native ligand. Moreover, a four orders of magnitude higher concentration of free ligand was required to displace PEGylated nanoparticles carrying EXP3174 from the receptor. On average, one nanoparticle was decorated with 11.2 ligand molecules, which led to a multivalent enhancement factor of 22.5 compared to the monovalent PEGylated ligand. The targeted nanoparticles specifically bound the AT1R and showed no interaction to receptor negative cells. Our study shows that the attachment of a small-molecule ligand to a PEG chain can severely affect its receptor affinity. Concomitantly, when the ligand is tethered to nanoparticles, the immense avidity greatly increases the ligand-receptor interaction. Based on our results, we highly recommend the affinity testing of receptor ligands before and after PEGylation to identify potent molecules for active nanoparticle targeting.

  4. Synthesis, Characterization, and Application of Metal-Chelating Polymers for Mass Cytometric Bioassays

    NASA Astrophysics Data System (ADS)

    Majonis, Daniel

    This thesis describes the synthesis, characterization, and application of metal-chelating polymers for mass-cytometric bioassays. Mass cytometry is a cell characterization technique in which cells are injected individually into an ICP-MS detector. Signal is provided by staining cell-surface or intracellular antigens with metal-labeled antibodies (Abs). These Abs are labeled through the covalent attachment of metal-chelating polymers which carry multiple copies of a lanthanide isotope. In this work, my first goal was to develop a facile, straightforward synthesis of a new generation of metal-chelating polymers. The synthesis began with reversible addition-fragmentation chain transfer polymerization, and was followed by numerous post-polymerization pendant group transformations to introduce DTPA lanthanide chelators to every repeat unit, and a maleimide at the end of the chain. The second goal was to apply these metal-chelating polymers in bioassay experiments. The DTPA groups were loaded with lanthanide ions, and the maleimide group was used to covalently attach the polymer to an Ab. This goat anti-mouse conjugate was found to carry an average of 2.4 +/- 0.3 polymer chains. Then, primary Ab conjugates were prepared and used in an 11-plex mass cytometry assay in the characterization of umbilical cord blood cells. The third goal was to expand the multiplexity of the assay. In current technology, the number of Abs that can be monitored simultaneously is limited to the 31 commercially available, stable lanthanide isotopes. Thus, I had an interest in preparing metal-chelating polymers that could carry other metals in the 100-220 amu range. I synthesized polymers with four different polyaminocarboxylate ligands, and investigated the loading of palladium and platinum ions into these polymers. Polymer-Ab conjugates prepared with palladium- and platinum-loaded polymers gave curious results, in that only dead cells were recognized. The fourth goal was to create dual

  5. An unprecedented photochromic system with cis-oriented dithienyl-dithiolenes supported by metal chelation.

    PubMed

    Wang, Jiang; Shi, Lin-Xi; Wang, Jin-Yun; Chen, Jin-Xiang; Liu, Sheng-Hua; Chen, Zhong-Ning

    2017-02-14

    4,5-Bis(2-methyl-5-phenylthiophen-3-yl)-1,3-dithiol-2-one (L1o) was elaborately designed to afford dithienyl-dithiolene as a new photochromic ligand. We describe herein the preparation and characterization of unprecedented photochromic dithienyl-dithiolene complexes with cis-orientation of dithienylethene (DTE) stabilized by metal chelation instead of conventional cyclopentene. The treatment of L1o with sodium methoxide in methanol afforded a disodium salt of dithiolate dianion, which reacts with M(dppe)Cl2 (dppe = 1,2-bis(diphenylphosphino)ethane, M = Ni, Pd) to give neutral compounds M(dppe)(dithiolate) as established by X-ray crystallography. The reaction of L1o with NiCl2 in the presence of sodium methoxide allows the isolation of an anionic nickel(ii) bis(dithienyl-dithiolene) complex with photochemical inertness. In contrast, the corresponding reaction with ZnCl2 afforded a dianionic zinc(ii) complex chelated by two dianionic dithienyl-dithiolenes, which displays stepwise photocyclization upon irradiation with UV light at 312 nm as demonstrated experimentally and theoretically. Only when dithienyl-dithiolene behaves as a dicationic ligand instead of neutral or monoanionic species, it is possible to achieve reversible photochromism in the corresponding metal complexes.

  6. Chelators whose affinity for calcium is decreased by illumination

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)

    1987-01-01

    The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.

  7. D-Penicillamine tripodal derivatives as efficient copper(I) chelators.

    PubMed

    Jullien, Anne-Solène; Gateau, Christelle; Lebrun, Colette; Kieffer, Isabelle; Testemale, Denis; Delangle, Pascale

    2014-05-19

    New tripodal metal-chelating agents derived from nitrilotriacetic acid (NTA) and extended by three unnatural amino acids D-penicillamine (D-Pen) are presented. D-Pen is actually the drug most extensively used to treat copper (Cu) overload in Wilson's disease and as such is a very attractive building block for the design of chelating agents. D-Pen is also a bulkier analogue of cysteine, with the β-methylene hydrogen atoms replaced by larger methyl groups. The hindrance of the gem-dimethyl group close to the thiol functions is demonstrated to influence the speciation and stability of the metal complexes. The ligands L(4) (ester) and L(5) (amide) were obtained from NTA and commercial D-Pen synthons in four and five steps with overall yields of 14 and 24%, respectively. Their ability to bind Cu(I), thanks to their three thiolate functions, has been investigated using both spectroscopic and analytical methods. UV, CD, and NMR spectroscopy and mass spectrometry evidence the formation of two Cu(I) complexes with L(5): the mononuclear complex CuL(5) and one cluster (Cu2L(5))2. In contrast, the bulkier ethyl ester derivative L(4) cannot accommodate the mononuclear complex in solution and thus forms exclusively the cluster (Cu2L(4))2. Cu K-edge X-ray absorption spectroscopy (XAS and EXAFS) confirms that Cu(I) is bound in trigonal-planar sulfur-only environments in all of these complexes with Cu- - -S distances ranging from 2.22 to 2.23 Å. Such C3-symmetric CuS3 cores are coordination modes frequently adopted in Cu(I) proteins such as metallothioneins. These two ligands bind Cu(I) tightly and selectively, which makes them promising chelators for intracellular copper detoxification in vivo.

  8. Species-dependent effective concentration of DTPA in plasma for chelation of 241Am

    PubMed Central

    Sueda, Katsuhiko; Sadgrove, Matthew P.; Jay, Michael; Di Pasqua, Anthony J.

    2013-01-01

    Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent that is used to facilitate the elimination of radionuclides, such as americium, from contaminated individuals. Its primary site of action is in the blood, where it competes with various biological ligands, including transferrin and albumin, for the binding of radioactive metals. To evaluate the chelation potential of DTPA under these conditions, the competitive binding of 241Am between DTPA and plasma proteins was studied in rat, beagle and human plasma in vitro. Following incubation of DTPA and 241Am in plasma, the 241Am-bound ligands were fractionated by ultrafiltration and ion-exchange chromatography, and each fraction was assayed for 241Am content by gamma scintillation counting. Dose-response curves of DTPA for 241Am binding were established, and these models were used to calculate the 90% maximal effective concentration, or EC90, of DTPA in each plasma system. The EC90 were determined to be 31.4, 15.9 and 10.0 μM in rat, beagle and human plasma, respectively. These values correspond to plasma concentrations of DTPA that maximize 241Am chelation while minimizing excess DTPA. Based on the pharmacokinetic profile of DTPA in humans, after a standard 30 μmol kg−1 intravenous bolus injection, the plasma concentration of DTPA remains above EC90 for approximately 5.6 h. Likewise, the effective duration of DTPA in rat and beagle were determined to be 0.67 and 1.7 h, respectively. These results suggest that species differences must be considered when translating DTPA efficacy data from animals to humans and offer further insights into improving the current DTPA treatment regimen. PMID:23799506

  9. A sandwich-type triple-decker lanthanide complex with mixed phthalocyanine and Schiff base ligands.

    PubMed

    Gao, Feng; Li, Yu-Yang; Liu, Cai-Ming; Li, Yi-Zhi; Zuo, Jing-Lin

    2013-08-21

    A new triple-decker dinuclear sandwich-type dysprosium complex based on both the phthalocyanine ligand and the tetradentate Schiff base ligand was synthesized, which is of interest for synthetic chemistry and also shows single-molecule magnetic behaviour.

  10. Characterization, HPLC method development and impurity identification for 3,4,3-LI(1,2-HOPO), a potent actinide chelator for radionuclide decorporation.

    PubMed

    Liu, Mingtao; Wang, Jennie; Wu, Xiaogang; Wang, Euphemia; Abergel, Rebecca J; Shuh, David K; Raymond, Kenneth N; Liu, Paul

    2015-01-01

    3,4,3-LI(1,2-HOPO), 1,5,10,14-tetra(1-hydroxy-2-pyridon-6-oyl)-1,5,10,14-tetraazatetradecane), is a potent octadentate chelator of actinides. It is being developed as a decorporation treatment for internal contamination with radionuclides. Conventional HPLC methods exhibited speciation peaks and bridging, likely attributable to the agent's complexation with residual metallic ions in the HPLC system. Derivatization of the target ligand in situ with Fe(III) chloride, however, provided a single homogeneous iron-complex that can readily be detected and analyzed by HPLC. The HPLC method used an Agilent Eclipse XDB-C18 column (150 mm × 4.6mm, 5 μm) at 25°C with UV detection at 280 nm. A gradient elution, with acetonitrile (11% to 100%)/buffer mobile phase, was developed for impurity profiling. The buffer consisted of 0.02% formic acid and 10mM ammonium formate at pH 4.6. An Agilent 1200 LC-6530 Q-TOF/MS system was employed to characterize the [Fe(III)-3,4,3-LI(1,2-HOPO)] derivative and impurities. The proposed HPLC method was validated for specificity, linearity (concentration range 0.13-0.35 mg/mL, r = 0.9999), accuracy (recovery 98.3-103.3%), precision (RSD ≤ 1.6%) and sensitivity (LOD 0.08 μg/mL). The LC/HRMS revealed that the derivative was a complex consisting of one 3,4,3-LI(1,2-HOPO) molecule, one hydroxide ligand, and two iron atoms. Impurities were also identified with LC/HRMS. The validated HPLC method was used in shelf-life evaluation studies which showed that the API remained unchanged for one year at 25°C/60% RH.

  11. Mn(iv) and Mn(v)-radical species supported by the redox non-innocent bis(2-amino-3,5-di-tert-butylphenyl)amine pincer ligand.

    PubMed

    Leconte, Nicolas; Moutet, Jules; Herasymchuk, Khrystyna; Clarke, Ryan M; Philouze, Christian; Luneau, Dominique; Storr, Tim; Thomas, Fabrice

    2017-02-17

    The electron-rich pincer ligand 1 has been synthesized and chelated to manganese. The octahedral Mn(iv) bis(diiminosemiquinonate) and Mn(v) (diiminobenzoquinone) (diiminosemiquinonate) radicals were structurally characterized.

  12. A trinuclear palladium(II) complex containing N,S-coordinating 2-(benzylsulfanyl)anilinide and 1,3-benzothiazole-2-thiolate ligands with a central square-planar PdN4 motif.

    PubMed

    Cross, Edward D; MacDonald, Kristen L; McDonald, Robert; Bierenstiel, Matthias

    2014-01-01

    The reaction of dichlorido(cod)palladium(II) (cod = 1,5-cyclooctadiene) with 2-(benzylsulfanyl)aniline followed by heating in N,N-dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2-1,3-benzothiazole-2-thiolato)bis[μ2-2-(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N-dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has -1 symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer Pd(II) atoms have a square-planar geometry formed by an N,S-chelating 2-(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3-benzothiazole-2-thiolate ligand, while the central Pd(II) core shows an all N-coordinated square-planar geometry. The geometry is perfectly planar within the PdN4 core and the N-Pd-N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3-benzothiazole-2-thiolate ligands are only N-coordinated to one Pd centre. The 1,3-benzothiazole-2-thiolate ligands were formed in situ from 2-(benzylsulfanyl)aniline.

  13. Chelators as antidotes of metal toxicity: therapeutic and experimental aspects.

    PubMed

    Blanusa, Maja; Varnai, Veda M; Piasek, Martina; Kostial, Krista

    2005-01-01

    The effects of chelating drugs used clinically as antidotes to metal toxicity are reviewed. Human exposure to a number of metals such as lead, cadmium, mercury, manganese, aluminum, iron, copper, thallium, arsenic, chromium, nickel and platinum may lead to toxic effects, which are different for each metal. Similarly the pharmacokinetic data, clinical use and adverse effects of most of the chelating drugs used in human metal poisoning are also different for each chelating drug. The chelating drugs with worldwide application are dimercaprol (BAL), succimer (meso-DMSA), unithiol (DMPS), D-penicillamine (DPA), N-acetyl-D-penicillamine (NAPA), calcium disodium ethylenediaminetetraacetate (CaNa(2)EDTA), calcium trisodium or zinc trisodium diethylenetriaminepentaacetate (CaNa(3)DTPA, ZnNa(3)DTPA), deferoxamine (DFO), deferiprone (L1), triethylenetetraamine (trientine), N-acetylcysteine (NAC), and Prussian blue (PB). Several new synthetic homologues and experimental chelating agents have been designed and tested in vivo for their metal binding effects. These include three groups of synthetic chelators, namely the polyaminopolycarboxylic acids (EDTA and DTPA), the derivatives of BAL (DMPS, DMSA and mono- and dialkylesters of DMSA) and the carbodithioates. Many factors have been shown to affect the efficacy of the chelation treatment in metal poisoning. Within this context it has been shown in experiments using young and adult animals that metal toxicity and chelation effects could be influenced by age. These findings may have a bearing in the design of new therapeutic chelation protocols for metal toxicity.

  14. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  15. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  16. New single-molecule magnet based on Mn12 oxocarboxylate clusters with mixed carboxylate ligands, [Mn12O12(CN-o-C6H4CO2)12(CH3CO2)4(H2O)4]·8CH2Cl2: Synthesis, crystal and electronic structure, magnetic properties.

    PubMed

    Kushch, L A; Sasnovskaya, V D; Dmitriev, A I; Yagubskii, E B; Koplak, O V; Zorina, L V; Boukhvalov, D W

    2012-11-28

    A new high symmetry Mn(12) oxocarboxylate cluster [Mn(12)O(12)(CN-o-C(6)H(4)CO(2))(12)(CH(3)CO(2))(4)(H(2)O)(4)]·8CH(2)Cl(2) (1) with mixed carboxylate ligands is reported. It was synthesized by the standard carboxylate substitution method. 1 crystallizes in the tetragonal space group I4(1)/a. Complex 1 contains a [Mn(12)O(12)] core with eight CN-o-C(6)H(4)CO(2) ligands in the axial positions, four CH(3)CO(2) and four CN-o-C(6)H(4)CO(2) in equatorial positions. Four H(2)O molecules are bonded to four Mn atoms in an alternating up, down, up, down arrangement indicating a 1 : 1 : 1 : 1 isomer. The Mn(12) molecules in 1 are self-assembled by complementary hydrogen C-H···N bonds formed with participation of the axial o-cyanobenzoate ligands of the adjacent Mn(12) clusters. The lattice solvent molecules (CH(2)Cl(2)) are weakly interacted with Mn(12) units that results in solvent loss immediately after removal of the crystals from the mother liquor. The electronic structure and the intramolecular exchange parameters have been calculated. Mn 3d bands of 1 are rather broad, and the center of gravity of the bands shifts down from the Fermi level. The overlap between Mn 3d bands and 2p ones of the oxygen atoms from the carboxylate bridges is higher than in the parent Mn(12)-acetate cluster. These changes in the electronic structure provide a significant difference in the exchange interactions in comparison to Mn(12)-acetate. The magnetic properties have been studied on a dried (solvent-free) polycrystalline sample of 1. The dc magnetic susceptibility measurements in the 2-300 K temperature range support a high-spin ground state (S = 10). A bifurcation of temperature dependencies of magnetization taken under zero field cooled and field cooled conditions observed below 4.5 K is due to slow magnetization relaxation. Magnetization versus applied dc field exhibited a stepwise hysteresis loop at 2 K. The ac magnetic susceptibility data revealed the frequency dependent out

  17. The fate of Gd and chelate following intravenous injection of gadodiamide in rats

    PubMed Central

    Uran, Steinar; Friisk, Grete; Martinsen, Ivar; Skotland, Tore

    2010-01-01

    Objective The biodistribution of gadolinium (Gd) and chelate was studied in rats injected intravenously with a commercially available gadodiamide magnetic resonance contrast agent spiked with trace amounts of 14C-labelled GdDTPA-BMA. Methods Biodistribution of the 14C-labelled ligand in whole animals was visualised using quantitative whole-body autoradiography, and quantified in individual tissue samples by analysing for radioactivity using beta-counting. Biodistribution of Gd was measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma sector field mass spectrometry (ICP-SF-MS). Results The injected dose was rapidly excreted, with only 1.0% remaining in the body at 24 h. The radioactivity thereafter was mainly associated with kidney cortex, liver, lung, muscle and skin, with a similar rate of clearance for both ligand and Gd from these tissues. The ratio between 14C-labelled substance and Gd was not significantly different from that of the injected substance in most tissue samples up to 24 h after injection; the ratio then slowly decreased. Conclusions The data clearly show that measurements of Gd concentration alone in tissue samples from animals injected with Gd-based contrast agents (GBCAs) cannot be used as a measure of Gd released from the ligand. To our knowledge, such measurements comparing Gd and ligand concentrations and distribution in tissue samples have not been published previously for any of the commercial GBCAs. PMID:20157815

  18. Myelodysplastic Syndromes and Iron Chelation Therapy

    PubMed Central

    Angelucci, Emanuele; Urru, Silvana Anna Maria; Pilo, Federica; Piperno, Alberto

    2017-01-01

    Over recent decades we have been fortunate to witness the advent of new technologies and of an expanded knowledge and application of chelation therapies to the benefit of patients with iron overload. However, extrapolation of learnings from thalassemia to the myelodysplastic syndromes (MDS) has resulted in a fragmented and uncoordinated clinical evidence base. We’re therefore forced to change our understanding of MDS, looking with other eyes to observational studies that inform us about the relationship between iron and tissue damage in these subjects. The available evidence suggests that iron accumulation is prognostically significant in MDS, but levels of accumulation historically associated with organ damage (based on data generated in the thalassemias) are infrequent. Emerging experimental data have provided some insight into this paradox, as our understanding of iron-induced tissue damage has evolved from a process of progressive bulking of organs through high-volumes iron deposition, to one of ‘toxic’ damage inflicted through multiple cellular pathways. Damage from iron may, therefore, occur prior to reaching reference thresholds, and similarly, chelation may be of benefit before overt iron overload is seen. In this review, we revisit the scientific and clinical evidence for iron overload in MDS to better characterize the iron overload phenotype in these patients, which differs from the classical transfusional and non-transfusional iron overload syndrome. We hope this will provide a conceptual framework to better understand the complex associations between anemia, iron and clinical outcomes, to accelerate progress in this area. PMID:28293409

  19. Spectrophotometric determination and removal of unchelated europium ions from solutions containing Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates.

    PubMed

    Elshan, N G R Dayan; Patek, Renata; Vagner, Josef; Mash, Eugene A

    2014-11-01

    Europium chelates conjugated with peptide ligands are routinely used as probes for conducting in vitro binding experiments. The presence of unchelated Eu ions in these formulations gives high background luminescence and can lead to poor results in binding assays. In our experience, the reported methods for purification of these probes do not achieve adequate removal of unchelated metal ions in a reliable manner. In this work, a xylenol orange-based assay for the quantification of unchelated metal ions was streamlined and used to determine levels of metal ion contamination as well as the success of metal ion removal on attempted purification. We compared the use of Empore chelating disks and Chelex 100 resin for the selective removal of unchelated Eu ions from several Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates. Both purification methods gave complete and selective removal of the contaminant metal ions. However, Empore chelating disks were found to give much higher recoveries of the probes under the conditions used. Related to the issue of probe recovery, we also describe a significantly more efficient method for the synthesis of one such probe using Rink amide AM resin in place of Tentagel S resin.

  20. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers.

    PubMed

    López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A

    2011-12-28

    The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.

  1. Proteome-wide covalent ligand discovery in native biological systems

    PubMed Central

    Backus, Keriann M.; Correia, Bruno E.; Lum, Kenneth M.; Forli, Stefano; Horning, Benjamin D.; González-Páez, Gonzalo E.; Chatterjee, Sandip; Lanning, Bryan R.; Teijaro, John R.; Olson, Arthur J.; Wolan, Dennis W.; Cravatt, Benjamin F.

    2016-01-01

    Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered “undruggable” 1,2. Fragment-based ligand discovery (FBLD) can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries 1,3. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes 4–10, including those that can access regions of proteins that are difficult to access through binding affinity alone 5,10,11. In this manuscript, we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T-cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and −10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems. PMID:27309814

  2. Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator-Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms.

    PubMed

    Captain, Ilya; Deblonde, Gauthier J-P; Rupert, Peter B; An, Dahlia D; Illy, Marie-Claire; Rostan, Emeline; Ralston, Corie Y; Strong, Roland K; Abergel, Rebecca J

    2016-11-21

    Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes (225)Ac and (227)Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log β110 = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the Eu(III) (a lanthanide surrogate for Ac(III)), Zr(IV), and Th(IV) complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal-ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with Zr(IV) and Th(IV). Finally, differences in biodistribution profiles between free and siderocalin-bound (238)Pu(IV)-3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a "lock" to consolidate binding to the therapeutic (225)Ac and (227)Th isotopes or to the positron emission tomography emitter (89)Zr, independent of metal valence state.

  3. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  4. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    PubMed Central

    Tulotta, Claudia; Stefanescu, Cristina; Beletkaia, Elena; Bussmann, Jeroen; Tarbashevich, Katsiaryna; Schmidt, Thomas; Snaar-Jagalska, B. Ewa

    2016-01-01

    ABSTRACT Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. PMID:26744352

  5. Crystal structure of cis-bis-{4-phenyl-1-[(3R)-1,7,7-tri-methyl-2-oxobi-cyclo-[2.2.1]heptan-3-ylidene]thio-semicarbazidato-κ(3) O,N (1),S}cadmium(II) with an unknown solvent mol-ecule.

    PubMed

    Nogueira, Vanessa Senna; Bresolin, Leandro; Näther, Christian; Jess, Inke; de Oliveira, Adriano Bof

    2015-12-01

    The reaction between the racemic mixture of the camphor-4-phenyl-thio-semicarbazone derivative and cadmium acetate dihydrate yielded the title compound, [Cd(C17H20N3OS)2]. The Cd(II) ion is six-coordinated in a distorted octa-hedral environment by two deprotonated thio-semicarbazone ligands acting as an O,N,S-donor in a tridentate chelating mode, forming five-membered chelate rings. In the crystal, the mol-ecules are connected via pairs of N-H⋯S and C-H⋯S inter-actions, building centrosymmetric dimers. One of the ligands is disordered in the campher unit over two sets of sites with site-occupancy factors of 0.7 and 0.3. The structure contains additional solvent mol-ecules, which are disordered and for which no reasonable split model was found. Therefore, the data were corrected for disordered solvent using the SQUEEZE routine [Spek (2015 ▸). Acta Cryst. C71, 9-18] in PLATON. Since the disordered solvents were removed by data processing, and the number of solvent entities was a suggestion only, they were not considered in the chemical formula and subsequent chemical or crystal information.

  6. pH-controlled coordination mode rearrangements of "clickable" Huisgen-based multidentate ligands with [M(I)(CO)3]+ (M = Re, (99m)Tc).

    PubMed

    Bottorff, Shalina C; Moore, Adam L; Wemple, Ariana R; Bučar, Dejan-Krešimir; MacGillivray, Leonard R; Benny, Paul D

    2013-03-18

    The viability of the Huisgen cycloaddition reaction for clickable radiopharmaceutical probes was explored with an alkyne-functionalized 2-[(pyridin-2-ylmethyl)amino]acetic acid (PMAA) ligand system, 3, and fac-[M(I)(OH2)3(CO)3](+) (M = Re, (99m)Tc). Two synthetic strategies, (1) click, then chelate and (2) chelate, then click, were investigated to determine the impact of assembly order on the reactivity of the system. In the click, then chelate approach, fac-[M(I)(OH2)3(CO)3](+) was reacted with the PMAA ligand "clicked" to the benzyl azide, 5, to yield two unique coordination species, fac-[M(I)(CO)3(O,N(amine),N(py)-5)], M = Re (8), (99m)Tc (8A), and fac-[M(I)(CO)3(N(tri),N(amine),N(py)-5)], M = Re (9), (99m)Tc (9A), where coordination is through the triazole (N(tri)), central amine (N(amine)), pyridine (N(py)), or carboxylate (O). Depending on the reaction pH, different ratios of complexes 8(A) and 9(A) were observed, but single species were obtained of (O,N(amine),N(py)) coordination, 8(A), in basic pHs (>9) and (N(tri),N(amine),N(py)) coordination, 9(A), in slightly acidic pHs (<4). In the chelate, then click approach, the (O,N(amine),N(py)) coordination of [M(I)(CO)3](+) was preorganized in the alkyne-functionalized fac-[M(I)(CO)3(O,N(amine),N(py)-3)], M = Re (6), (99m)Tc (6A), followed by standard Cu(I)-catalyzed Huisgen "click" conditions at pH ≈ 7.4, where the (O,N(amine),N(py)) coordination mode remained unchanged upon formation of the triazole product in the clicked molecule. Despite the slow substitution kinetics of the low-spin d(6) metal, the coordination modes (O,N(amine),N(py)) and (N(tri),N(amine),N(py)) were found to reversibly intraconvert between 8(A) and 9(A) based upon changes in pH that mirrored the (O,N(amine),N(py)) coordination in basic pHs and (N(tri),N(amine),N(py)) coordination in acidic pHs. Comparison of the Re and (99m)Tc analogs also revealed faster intraconversion between the coordination modes for (99m)Tc.

  7. Ligand clouds around protein clouds: a scenario of ligand binding with intrinsically disordered proteins.

    PubMed

    Jin, Fan; Yu, Chen; Lai, Luhua; Liu, Zhirong

    2013-01-01

    Intrinsically disordered proteins (IDPs) were found to be widely associated with human diseases and may serve as potential drug design targets. However, drug design targeting IDPs is still in the very early stages. Progress in drug design is usually achieved using experimental screening; however, the structural disorder of IDPs makes it difficult to characterize their interaction with ligands using experiments alone. To better understand the structure of IDPs and their interactions with small molecule ligands, we performed extensive simulations on the c-Myc₃₇₀₋₄₀₉ peptide and its binding to a reported small molecule inhibitor, ligand 10074-A4. We found that the conformational space of the apo c-Myc₃₇₀₋₄₀₉ peptide was rather dispersed and that the conformations of the peptide were stabilized mainly by charge interactions and hydrogen bonds. Under the binding of the ligand, c-Myc₃₇₀₋₄₀₉ remained disordered. The ligand was found to bind to c-Myc₃₇₀₋₄₀₉ at different sites along the chain and behaved like a 'ligand cloud'. In contrast to ligand binding to more rigid target proteins that usually results in a dominant bound structure, ligand binding to IDPs may better be described as ligand clouds around protein clouds. Nevertheless, the binding of the ligand and a non-ligand to the c-Myc₃₇₀₋₄₀₉ target could be clearly distinguished. The present study provides insights that will help improve rational drug design that targets IDPs.

  8. Structures and Electronic Properties of Lithium Chelate-Based Ionic Liquids.

    PubMed

    Si, Dawei; Chen, Kexian; Yao, Jia; Li, Haoran

    2016-04-28

    The conformations, electronic properties, and interaction energies of four chelate-based ionic liquids [Li(EA)][Tf2N], [Li(HDA)][Tf2N], [Li(DEA)][Tf2N], and [Li(DOBA)][Tf2N] have been theoretically explored. The reliability of the located conformers has been confirmed via the comparison between the simulated and experimental infrared spectra. Our results show that the N-Li and O-Li coordinate bonds in cation are elongated as the numbers of coordinate heteroatoms of alkanolamine ligands to Li(+) increased. Also the binding energies between Li(+) and ligands are increased and the interaction energies between cations and Tf2N anion are decreased. The cation-anion interaction energies follow the order of [Li(DOBA)][Tf2N] < [Li(HDA)][Tf2N] < [Li(DEA)][Tf2N] < [Li(EA)][Tf2N], which fall within the energetic ranges of conventional ionic liquids. Interestingly, the strongest stabilization orbital interactions in these ionic liquids and their cations revealed by the natural bond orbital analysis lie in the interaction between the lone pair (LP) of the coordinate heteroatoms in ligands or anion as donors and the vacant valence shell nonbonding orbital (LP*) of Li(+) as acceptors, which are very different from that of conventional ionic liquids. Moreover, the charges transferred from cations to anion are quite similar, and the charge of Li(+) is proposed for possibly predicting the order of the interaction energies of ionic liquids in series. The present study allows for the deeper understanding the differences between chelate-based ionic liquids and conventional ionic liquids.

  9. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    SciTech Connect

    Zhang, Yingjie; Karatchevtseva, Inna; Bhadbhade, Mohan; Tran, Toan Trong; Aharonovich, Igor; Fanna, Daniel J.; Shepherd, Nicholas D.; Lu, Kim; Li, Feng; Lumpkin, Gregory R.

    2016-02-15

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.

  10. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties

    NASA Astrophysics Data System (ADS)

    Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2014-09-01

    Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).

  11. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  12. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    ERIC Educational Resources Information Center

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  13. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.

    PubMed

    Kantar, Cetin; Ari, Cihan; Keskin, Selda

    2015-06-01

    New technologies involving in-situ chemical hexavalent chromium [Cr(VI)] reduction to trivalent chromium [Cr(III)] with natural Fe(II)-containing minerals can offer viable solutions to the treatment of wastewater and subsurface systems contaminated with Cr(VI). Here, the effects of five different chelating agents including citrate, EDTA, oxalate, tartrate and salicylate on reductive Cr(VI) removal from aqueous systems by pyrite were investigated in batch reactors. The Cr(VI) removal was highly dependent on the type of ligand used and chemical conditions (e.g., ligand concentration). While salicylate and EDTA had no or little effect on Cr(VI) removal, the ligands including citrate, tartrate and oxalate significantly enhanced Cr(VI) removal at pH < 7 relative to non-ligand systems. In general, the efficiency of organic ligands on Cr(VI) removal decreased in the order: citrate ≥ oxalate ≈ tartrate > EDTA > salicylate ≈ non-ligand system. Organic ligands enhanced Cr(VI) removal by 1) removing surface oxide layer via the formation of soluble Fe-Cr-ligand complexes, and 2) enhancing the reductive iron redox cycling for the regeneration of new surface sites. While citrate, oxalate and tartrate eliminated the formation of surface Cr (III)-Fe(III)-oxides, the surface phase Cr (III) species was observed in the presence of EDTA and salicylate indicating that Cr(III) complexed with EDTA and salicylate sorbed or precipitated onto pyrite surface, thereby blocking the access of CrO4(2-) to pyrite surface. The binding of Fe(III) with the disulfide reactive sites (≡Fe-S-S-Fe(III)) was essential for the regeneration of new surface sites through pyrite oxidation. Although Fe(III)-S species was detected at the pyrite surface in the presence of citrate, oxalate and tartrate, Fe(III) complexed with EDTA and salicylate did not strongly interact with the disulfide reactive sites due to the formation of non-sorbing Fe(III)-ligand complexes. The absence of surface Fe

  14. Synthesis of zirconia-immobilized copper chelates for catalytic decomposition of hydrogen peroxide and the oxidation of polycyclic aromatic hydrocarbons.

    PubMed

    Baldrian, Petr; Merhautová, Vera; Cajthaml, Tomás; Nerud, Frantisek; Stopka, Pavel; Gorbacheva, Olga; Hrubý, Martin; Benes, Milan J

    2008-08-01

    Chelating sorbents with diethylenetriaminepenta(methylene-phosphonic acid) (DTPMPA) and ethylenediaminetetraacetic acid ligands immobilized on zirconia matrix were prepared and subsequently saturated with Cu(II). All the Cu chelates catalyzed decomposition of H(2)O(2) yielding highly reactive hydroxyl radicals. All of them were also able to catalyze degradation of polycyclic aromatic hydrocarbons (anthracene, benzo[a]pyrene and benzo[b]fluoranthene). The most effective DTPMPA-based catalysts G-32 and G-35 (10 mg ml(-1) with 100 mmol H(2)O(2)) caused almost complete decomposition of 15 ppm anthracene and benzo[a]pyrene during a five day catalytic cycle at 30 degrees C. Anthracene-1,4-dione was the main product of anthracene oxidation by all catalysts. The catalysts were active in several cycles without regeneration.

  15. Clawing Back: Broadening the Notion of Metal Chelators in Medicine

    PubMed Central

    Franz, Katherine J.

    2013-01-01

    The traditional notion of chelation therapy is the administration of a chemical agent to remove metals from the body. But formation of a metal-chelate can have biological ramifications that are much broader than metal elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. This review highlights recent examples that showcase four general strategies of using principles of metal chelation in medicinal contexts beyond the traditional notion of chelation therapy. These strategies include altering metal biodistribution, inhibiting specific metalloenzymes associated with disease, enhancing the reactivity of a metal complex to promote cytotoxicity, and conversely, passivating the reactivity of metals by site-activated chelation to prevent cytotoxicity. PMID:23332666

  16. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  17. Chelation in metal intoxication XXI: chelation in lead intoxication during vitamin B complex deficiency

    SciTech Connect

    Not Available

    1986-09-01

    The vitamin B-complex deficiency increases the vulnerability to neuro- and systemic toxicity of Pb in young rats. Thus, the nutritional status of vitamins like that of protein or minerals seems to influence the etiology of Pb toxicity and may be expected to affect the response toward Pb chelators. 2,3 dimercaptosuccinic acid (DMSA) and N-(2-hydroxyethyl) ethylene-diamine triacetic acid (HEDTA) have been found to be effective antidotes to Pb intoxication. In the present study, these selective metal chelating agents were compared for their ability to reduce the body burden of Pb and restore the altered biochemical parameters in young developing Pb intoxicated rats maintained on normal or vitamin B-complex deficient diet. The investigation was aimed to suggest suitable prophylaxis of Pb poisoning prevalent among children who may also be suffering from vitamin deficiency in developing and poor countries.

  18. Metal-ligand delocalization and spin density in the CuCl{sub 2} and [CuCl{sub 4}]{sup 2−} molecules: Some insights from wave function theory

    SciTech Connect

    Giner, Emmanuel Angeli, Celestino

    2015-09-28

    The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl{sub 2} and [CuCl{sub 4}]{sup 2−} systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.

  19. Interrupting autocrine ligand-receptor binding: comparison between receptor blockers and ligand decoys.

    PubMed Central

    Forsten, K E; Lauffenburger, D A

    1992-01-01

    Stimulation of cell behavioral functions by ligand/receptor binding can be accomplished in autocrine fashion, where cells secrete ligand capable of binding to receptors on their own surfaces. This proximal secretion of autocrine ligands near the surface receptors on the secreting cell suggests that control of these systems by inhibitors of receptor/ligand binding may be more difficult than for systems involving exogenous ligands. Hence, it is of interest to predict the conditions under which successful inhibition of cell receptor binding by the autocrine ligand can be expected. Previous theoretical work using a compartmentalized model for autocrine cells has elucidated the conditions under which addition of solution decoys for the autocrine ligand can interrupt cell receptor/ligand binding via competitive binding of the secreted molecules (Forsten, K. E., and D. A. Lauffenburger. 1992. Biophys. J. 61:1-12.) We now apply a similar modeling approach to examine the addition of solution blockers targeted against the cell receptor. Comparison of the two alternative inhibition strategies reveals that a significantly lower concentration of receptor blockers, compared to ligand decoys, will obtain a high degree of inhibition. The more direct interruption scheme characteristic of the receptor blockers may make them a preferred strategy when feasible. PMID:1330038

  20. Liposomal Cu-64 labeling method using bifunctional chelators: poly(ethylene glycol) spacer and chelator effects.

    PubMed

    Seo, Jai Woong; Mahakian, Lisa M; Kheirolomoom, Azadeh; Zhang, Hua; Meares, Claude F; Ferdani, Riccardo; Anderson, Carolyn J; Ferrara, Katherine W

    2010-07-21

    Two bifunctional Cu-64 chelators (BFCs), (6-(6-(3-(2-pyridyldithio)propionamido)hexanamido)benzyl)-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA-PDP) and 4-(2-(2-pyridyldithioethyl)ethanamido)-11-carboxymethyl-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane (CB-TE2A-PDEA), were synthesized and conjugated to long-circulating liposomes (LCLs) via attachment to a maleimide lipid. An in vitro stability assay of (64)Cu-TETA, (64)Cu-TETA-PEG2k, and (64)Cu-CB-TE2A-PEG2k liposomes showed that more than 86% of the radioactivity remains associated with the liposomal fraction after 48 h of incubation with mouse serum. The in vivo time activity curves (TAC) for the three liposomal formulations showed that approximately 50% of the radioactivity cleared from the blood pool in 16-18 h. As expected, the in vivo biodistribution and TAC data obtained at 48 h demonstrate that the clearance of radioactivity from the liver slows with the incorporation of a poly(ethylene glycol)-2k (PEG2k) brush. Our data suggest that (64)Cu-TETA and (64)Cu-CB-TE2A are similarly stable in the blood pool and accumulation of radioactivity in the liver and spleen is not related to the stability of Cu-64 chelator complex; however, clearance of Cu-64 from the liver and spleen are faster when injected as (64)Cu-TETA-chelated liposomes rather than (64)Cu-CB-TE2A-chelated liposomes.

  1. Liposomal Cu-64 labeling method using bifunctional chelators: polyethylene glycol spacer and chelator effects

    PubMed Central

    Seo, Jai Woong; Mahakian, Lisa M.; Kheirolomoom, Azadeh; Zhang, Hua; Meares, Claude F.; Ferdani, Riccardo; Anderson, Carolyn J.; Ferrara, Katherine W.

    2010-01-01

    Two bifunctional Cu-64 chelators (BFCs), (6-(6-(3-(2-pyridyldithio)propionamido)hexanamido)benzyl)-1,4,8,11-tetraazacyclotetradecane- 1,4,8,11-tetraacetic acid (TETA-PDP) and 4-(2-(2-pyridyldithioethyl)ethanamido)-11-carboxymethyl-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane (CB-TE2A-PDEA), were synthesized and conjugated to long circulating liposomes (LCLs) via attachment to a maleimide lipid. An in vitro stability assay of 64Cu-TETA, 64Cu-TETA-PEG2k, and 64Cu-CB-TE2A-PEG2k liposomes showed that more than 86% of the radioactivity remains associated with the liposomal fraction after 48 hours of incubation with mouse serum. The in vivo time activity curves (TAC) for the three liposomal formulations showed that ~50% of the radioactivity cleared from the blood pool in 16 - 18 hours. As expected, the in vivo biodistribution and TAC data obtained at 48 hours demonstrate that the clearance of radioactivity from the liver slows with the incorporation of a polyethylene glycol-2k (PEG2k) brush. Our data suggest that 64Cu-TETA and 64Cu-CB-TE2A are similarly stable in the blood pool and accumulation of radioactivity in the liver and spleen is not related to the stability of Cu-64 chelator complex; however clearance of Cu-64 from the liver and spleen are faster when injected as 64Cu-TETA-chelated liposomes rather than 64Cu-CB-TE2A-chelated liposomes. PMID:20568726

  2. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    NASA Astrophysics Data System (ADS)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  3. catena-Poly[[[(oxamide dioxime-κ2N,N')copper(II)]-μ-L-tartrato-κ4O1,O2:O3,O4] tetrahydrate]: a chiral nanochannel framework hosting solvent water molecules.

    PubMed

    Bélombé, Michel M; Nenwa, Justin; Kouamo, Jean S T Wankap; Ponou, Siméon; Fischer, Andreas

    2012-05-01

    The crystal structure of the title compound, {[Cu(C(4)H(4)O(6))(C(2)H(6)N(4)O(2))]·4H(2)O}(n), contains the central Cu(II) cation in a distorted octahedral coordination, symmetrically chelated by the two imine N atoms of a neutral oxamide dioxime (H(2)oxado) ligand [Cu-N = 1.9829 (16) Å] and unsymmetrically bis-chelated by two halves of the L-(+)-tartrate(2-) (tart) ligands, each half being linked to the Cu(II) cation via the deprotonated carboxylate group and protonated hydroxy group [Cu-O = 1.9356 (14) and 2.4674 (13) Å, respectively]. The extended asymmetric unit is defined by twofold axes, one passing through the Cu(II) cation and the centre of the oxamide dioxime (H(2)oxado) ligand and the another two (symmetry related) bisecting the central C-C bonds of the tartrate ions. The structure is chiral, consisting of enantiomeric linear-chain polymers oriented along [001], with virtual monomeric {Cu(tart(0.5))(2)(H(2)oxado)} repeat units and with the chains interleaved face-to-face into `twin pillars'. Nanochannels exist, running parallel to the c axis and bisecting a and b, which host `double strings' of solvent water molecules. Extensive hydrogen bonding (O-H···O and N-H···O) between the chains and solvent water molecules, together with extended π-σ interactions, consolidate the bulk crystal structure.

  4. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016.

    PubMed

    Ericson, Mark D; Lensing, Cody J; Fleming, Katlyn A; Schlasner, Katherine N; Doering, Skye R; Haskell-Luevano, Carrie

    2017-03-29

    The discovery of the endogenous melanocortin agonists in the 1950s have resulted in sixty years of melanocortin ligand research. Early efforts involved truncations or select modifications of the naturally occurring agonists leading to the development of many potent and selective ligands. With the identification and cloning of the five known melanocortin receptors, many ligands were improved upon through bench-top in vitro assays. Optimization of select properties resulted in ligands adopted as clinical candidates. A summary of every melanocortin ligand is outside the scope of this review. Instead, this review will focus on the following topics: classic melanocortin ligands, selective ligands, small molecule (non-peptide) ligands, ligands with sex-specific effects, bivalent and multivalent ligands, and ligands advanced to clinical trials. Each topic area will be summarized with current references to update the melanocortin field on recent progress. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.

  5. Selective divalent copper chelation for the treatment of diabetes mellitus.

    PubMed

    Cooper, G J S

    2012-01-01

    latter probably undergoes AGE-modification itself. Defective copper regulation mediates organ damage through two general processes that occur simultaneously in the same individual: elevation of CuII-mediated pro-oxidant stress and impairment of copper-catalyzed antioxidant defence mechanisms. This author has proposed that diabetes-evoked copper dysregulation is an important new target for therapeutic intervention to prevent/reverse organ damage in diabetes, heart failure, and neurodegenerative diseases, and that triethylenetetramine (TETA) is the first in a new class of anti-diabetic molecules, which function by targetting these copper-mediated pathogenic mechanisms. TETA prevents tissue damage and causes organ regeneration by acting as a highly-selective CuII chelator which suppresses copper-mediated oxidative stress and restores anti-oxidant defenses. My group has employed TETA in a comprehensive programme of nonclinical studies and proof-of-principle clinical trials, thereby characterizing copper dysregulation in diabetes and identifying numerous linked cellular and molecular mechanisms though which TETA exerts its therapeutic actions. Many of the results obtained in nonclinical models with respect to the molecular mechanisms of diabetic organ damage have not yet been replicated in patients' tissues so their applicability to the human disease must be considered as inferential until the results of informative clinical studies become available. Based on evidence from the studies reviewed herein, trientine is now proceeding into the later stages of pharmaceutical development for the treatment of heart failure and other diabetic complications.

  6. DNA nuclease activity of Rev-coupled transition metal chelates.

    PubMed

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2012-06-07

    Artificial nucleases containing Rev-coupled metal chelates based on combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK have been tested for DNA nuclease activity. Originally designed to target reactive transition metal chelates (M-chelates) to the HIV-1 Rev response element mRNA, attachment to the arginine-rich Rev peptide also increases DNA-binding affinity for the attached M-chelates. Apparent K(D) values ranging from 1.7 to 3.6 µM base pairs for binding of supercoiled pUC19 plasmid DNA by Ni-chelate-Rev complexes were observed, as a result of electrostatic attraction between the positively-charged Rev peptide and negatively-charged DNA. Attachment of M-chelates to the Rev peptide resulted in enhancements of DNA nuclease activity ranging from 1-fold (no enhancement) to at least 13-fold (for Cu-DTPA-Rev), for the rate of DNA nicking, with second order rate constants for conversion of DNA(supercoiled) to DNA(nicked) up to 6 × 10(6) M(-1) min(-1), and for conversion of DNA(nicked) to DNA(linear) up to 1 × 10(5) M(-1) min(-1). Freifelder-Trumbo analysis and the ratios of linearization and nicking rate constants (k(lin)/k(nick)) revealed concerted mechanisms for nicking and subsequent linearization of plasmid DNA for all of the Rev-coupled M-chelates, consistent with higher DNA residency times for the Rev-coupled M-chelates. Observed rates for Rev-coupled M-chelates were less skewed by differing DNA-binding affinities than for M-chelates lacking Rev, as a result of the narrow range of DNA-binding affinities observed, and therefore relationships between DNA nuclease activity and other catalyst properties, such as coordination unsaturation, the ability to consume ascorbic acid and generate diffusible radicals, and the identity of the metal center, are now clearly illustrated in light of the similar DNA-binding affinities of all M-chelate-Rev complexes. This work

  7. Competitive binding of Pu and Am with bone mineral and novel chelating agents.

    PubMed

    Guilmette, R A; Hakimi, R; Durbin, P W; Xu, J; Raymond, K N

    2003-01-01

    Effective direct removal of actinides such as Pu and Am from bone in vivo has not been accomplished to date, even with the strong chelating agents CaNa3DTPA or ZnNa3DTPA. This study, using an established in vitro system, compared removal of Pu and Am bound to bone mineral by ZnNa3DTPA and 10 chelating agents designed specifically to sequester actinides, including Pu and Am. Ligands tested were tetra, hexa, and octadentate, with linear or branched backbones containing sulfocatechol [CAM(S)], hydroxycatechol [CAM(C)], hydroxipyridinone (1,2-HOPO, Me-3,2-HOPO), or hydroxamate functional groups. The wide range of Pu and Am removal exhibited by the test ligands generally agreed with their metal coordination and chemical properties. The most effective agents for Pu (100 microM concentration, 24-48 h contact) are all octadentate as follows: 3,4,3-LICAM(S) (54% unbound); 3,4,3-LICAM(C) (6.2%); 3,4,3-LI(1,2-HOPO) (3.8%); H(2,2)-(Me-3,2-HOPO) (2.2%) and DFO-(1,2-HOPO) (1.8%). The other ligands removed less than 1% of the bound Pu; and ZnNa3DTPA removed only 0.086%. The most effective ligands for Am removal (100 microM, 24-48 h contact) are as follows: octadentate H(2,2)-(Me-3,2-HOPO) (21% unbound); 3,4,3-LI(1,2-HOPO) (14.5%) and 3,4,3-LICAM(C) (5.9%); hexadentate TREN-(Me-3,2-HOPO) and TREN-(1,2-HOPO) (9.6%); and tetradentate 5-LIO(Me-3,2-HOPO) (5.2%). Am removal by ZnNa3DTPA was about 1.4%. Among the ligands presently considered for possible human use, only 3,4,3-LI(1,2-HOPO) removed potentially useful amounts of both Pu and Am from bone mineral.

  8. Competitive binding of plutonium and americium with bone mineral and novel chelating agents

    SciTech Connect

    Guilmette, Ray A.; Hakimi, R.; Durbin, P. W.; Xu, J.; Raymond, K. N.

    2002-01-01

    Effective direct removal of actinides such as Pu and Am from bone in vivo has not been accomplished to date, even with the strong chelating agents CaNa{sub 3}DTPA or ZnNa{sub 3}DTPA. This study, using an established in vitro system, compared removal of Pu and Am bound to bone mineral by ZnNa{sub 3}DTPA and 10 chelating agents designed specifically to sequester actinides, including Pu and Am. Ligands tested were tetra-, hexa, and octadentate with linear or branched backbones containing sulfocatechol [CAM(S)], hydroxycatechol [CAM(C)], hydroxipyridinone (1,2-HOPO, Me-3,2-HOPO), or hydroxamate functional groups. The wide range of Pu and Am removal exhibited by the test ligands generally agreed with their metal coordination and chemical properties. The most effective agents for Pu (100 {micro}M concentration, 24-48 h contact) are all octadentate as follows: 3,4,3-LICAM(S) (54% unbound), 3,4,3-LICAM(C) (6.2%), 3,4,3-LI(1,2-HOPO) (3.8%), H(2,2)-(Me-3,2-HOPO) (2.2%) and DFO-(1,2-HOPO) (1.8%). The other ligands removed less than 1% of the bound Pu, and ZnNa{sub 3}DTPA removed only 0.086%. The most effective ligands for Am removal (100 {micro}M, 24-48 h contact) are as follows: octadentate H(2,2)-(Me-3,2-HOPO) (21% unbound), 3,4,3-LI(1,2-HOPO) (14.5%), and 3,4,3-LICAM(C) (5.9%), hexadentate TREN-(Me-3,2-HOPO) and TREN-(1,2-HOPO) (9.6%), and tetradentate 5-LIO(Me-3,2-HOPO) (5.2%). Am removal by ZnNa{sub 3}DTPA was about 1.4%. Among the ligands presently considered for possible human use, only 3,4,3-LI(1,2-HOPO) removed potentially useful amounts of both Pu and Am from bone mineral.

  9. Coupling the folding of a β-hairpin with chelation-enhanced luminescence of Tb(III) and Eu(III) ions for specific sensing of a viral RNA†

    PubMed Central

    Penas, Cristina; Mascareñas, José L; Vázquez, M. Eugenio

    2016-01-01

    Rational modification of a natural RNA-binding peptide with a lanthanide EDTA chelator, and a phenanthroline ligand yields a highly selective luminescent sensor. The sensing mechanism relies on the RNA-triggered folding of the peptide into a β-hairpin, which promotes the coordination of the phenanthroline sensitizer, and the efficient sensitization of complexed lanthanide ions. PMID:27293537

  10. Landscape of protein–small ligand binding modes

    PubMed Central

    Kinoshita, Kengo

    2016-01-01

    Abstract Elucidating the mechanisms of specific small‐molecule (ligand) recognition by proteins is a long‐standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein–ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all‐against‐all comparison of 20,040 protein–ligand complexes provided the landscape of the protein–ligand binding modes and its relationships with protein‐ and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R 2 = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein–ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  11. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  12. In vitro copper-chelating properties of flavonoids.

    PubMed

    Ríha, Michal; Karlícková, Jana; Filipský, Tomáš; Jahodár, Ludek; Hrdina, Radomír; Mladenka, Premysl

    2014-10-01

    Copper is an indispensable trace element for human body and the association between a disruption of copper homeostasis and a series of pathological states has been well documented. Flavonoids influence the human health in a complex way and the chelation of transient metal ions indisputably contributes to their mechanism of the action, however, the information about their copper-chelating properties have been sparse. This in vitro study was thus aimed at the detailed examination of flavonoids-copper interactions by two spectrophotometric assays at four (patho)physiologically relevant pH conditions (4.5-7.5), with the emphasis on the structure-activity relationship. The tested flavonoids were compared with the clinically used copper chelator, trientine. Most of the 26 flavonoids chelated copper ions, however, in a variable extent. Only flavones and flavonols were able to form stable complexes with both cupric and cuprous ions. The 3-hydroxy-4-keto group and 5,6,7-trihydroxyl group represented the most efficient chelation sites in flavonols and flavones, respectively, and the 2,3-double bond was essential for the stable copper chelation. Interestingly, the 3´,4´-dihydroxyl (catechol) group was associated only with a weak activity. Although none of the tested flavonoids were more potent than trientine at physiological or slightly acidic conditions, 3-hydroxyflavone, kaempferol and partly baicalein surpassed trientine at acidic conditions. Conclusively, flavonoids containing appropriate structural features were efficient copper chelators and some of them were even more potent than trientine under acidic conditions.

  13. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  14. Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules

    SciTech Connect

    Madhab, Das; He, Yabing; Kim, Jaheon; Guo, Qunsheng; Zhao, Cong-Gui; Hong, Kunlun; Xiang, Sheng-Chang; Zhang, Zhangjing; Thomas, K Mark; Krishna, Rajamani; Chen, Banglin

    2012-01-01

    Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C{sub 2}H{sub 2}/C{sub 2}H{sub 4} separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} has been further examined and compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.

  15. Pyridine-2,6-diyl dinitroxides as room-temperature triplet ligands

    SciTech Connect

    Kawakami, Hinako; Tonegawa, Asato; Ishida, Takayuki

    2016-02-01

    We have proposed tert-butyl 2-pyridyl nitroxide radicals as a promising paramagnetic chelating ligand, where the direct radical-metal bond leads to strong magnetic interaction. We successfully synthesized and isolated PyBN derivatives (pyridine-2,6-diyl bis(tert-butyl nitroxides)). The molecular and crystal structures of the target biradicals, MesPyBN, AntPyBN and tBuOPyBN were determined from the X-ray crystal structure analysis, which possess mesityl, 9-anthryl and tert-butoxy groups at the 5-position of the pyridine ring, respectively. The ground triplet state was characterized by means of SQUID susceptometry for each compound. On heating, the χ{sub m}T values of all the PyBN derivatives increased and reached a plateau at ca. 1.0 cm{sup 3} K mol{sup −1} at 300 K. It implies that biradicals behaved as triplet molecules even at room temperature, or 2J/k{sub B} >> 300 K. From the decay monitored in solution electron-spin resonance spectroscopy, MesPyBN was the most persistent, while tBuOPyBN was the most reactive, of the three.

  16. Homoleptic versus Heteroleptic Formation of Mononuclear Fe(II) Complexes with Tris-Imine Ligands.

    PubMed

    Barrios, Leoní A; Bartual-Murgui, Carlos; Peyrecave-Lleixà, Eugènia; Le Guennic, Boris; Teat, Simon J; Roubeau, Olivier; Aromí, Guillem

    2016-05-02

    We show a marked tendency of Fe(II) to form heteroleptic [Fe(L)(L')](ClO4)2 complexes from pairs of chelating tris-imine 3bpp, tpy, or 2bbp ligands. New synthetic avenues for spin crossover research become thus available, here illustrated with three new heteroleptic compounds with differing magnetic behaviors: [Fe(H4L1)(Cl-tpy)](ClO4)2·C3H6O (1), [Fe(H2L3)(Me3bpp)](ClO4)2·C3H6O (2), [Fe(H4L1)(2bbp)](ClO4)2·3C3H6O (3). Structural studies demonstrate that 1 is in the low-spin (LS) state up to 350 K, while complexes 2 and 3 are, by contrast, in the high-spin (HS) state down to 2 K, as corroborated through magnetic susceptibility measurements. Upon exposure to the atmosphere, the latter exhibits the release of three molecules of acetone per complex, turning into the solvent-free analogue [Fe(H4L1)(2bbp)](ClO4)2 (3a), through a single-crystal-to-single-crystal transformation. This guest extrusion process is accompanied by a spin switch, from HS to LS.

  17. Synthesis, structure and spectral and redox properties of new mixed ligand monomeric and dimeric Ru(II) complexes: predominant formation of the "cis-alpha" diastereoisomer and unusual 3MC emission by dimeric complexes.

    PubMed

    Murali, Mariappan; Palaniandavar, Mallayan

    2006-02-07

    The tetradentate ligands 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane (pdto) and 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane (bbdo) form the complexes [Ru(pdto)(mu-Cl)](2)(ClO(4))(2) 1 and [Ru(bbdo)(mu-Cl)](2)(ClO(4))(2) 2 respectively. The new di-mu-chloro dimers 1 and 2 undergo facile symmetrical bridge cleavage reactions with the diimine ligands 2,2'-bipyridine (bpy) and dipyridylamine (dpa) to form the six-coordinate complexes [Ru(pdto)(bpy)](ClO(4))(2) 3, [Ru(bbdo)(bpy)](ClO(4))(2) 4, [Ru(pdto)(dpa)](ClO(4))(2) 5 and [Ru(bbdo)(dpa)](ClO(4))(2) 6 and with the triimine ligand 2,2':6,2''-terpyridine (terpy) to form the unusual seven-coordinate complexes [Ru(pdto)(terpy)](ClO(4))(2) 7 and [Ru(bbdo)(terpy)](ClO(4))(2) 8. In 1 the dimeric cation [Ru(pdto)(mu-Cl)](2)(2+) is made up of two approximately octahedrally coordinated Ru(II) centers bridged by two chloride ions, which constitute a common edge between the two Ru(II) octahedra. Each ruthenium is coordinated also to two pyridine nitrogen and two thioether sulfur atoms of the tetradentate ligand. The ligand pdto is folded around Ru(II) as a result of the cis-dichloro coordination, which corresponds to a "cis-alpha" configuration [DeltaDelta/LambdaLambda(rac) diastereoisomer] supporting the possibility of some attractive pi-stacking interactions between the parallel py rings at each ruthenium atom. The ruthenium atom in the complex cations 3a and 4 exhibit a distorted octahedral coordination geometry composed of two nitrogen atoms of the bpy and the two thioether sulfur and two py/bzim nitrogen atoms of the pdto/bbdo ligand, which is actually folded around Ru(II) to give a "cis-alpha" isomer. The molecule of complex 5 contains a six-coordinated ruthenium atom chelated by pdto and dpa ligands in the expected distorted octahedral fashion. The (1)H and (13)C NMR spectral data of the complexes throw light on the nature of metal-ligand bonding and the conformations of the chelate rings, which indicates that the dithioether

  18. Chelating ligand-mediated hydrothermal synthesis of samarium orthovanadate with decavanadate as vanadium source.

    PubMed

    Li, Quanguo; Zuo, Wenli; Li, Feng

    2013-01-01

    A new ethylenediaminetetraacetic acid- (EDTA-) mediated hydrothermal route to prepare chrysanthemum-shaped samarium orthovanadate (SmVO₄) nanocrystals with decavanadate (K₆V₁₀O₂₈·9H₂O) as vanadium source has been developed. The present hydrothermal approach is simple and reproducible and employs a relatively mild reaction temperature. The EDTA, pH value, and temperature of the reaction systems play important roles in determining the morphologies and growth process of the SmVO₄ products. The products have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectra (PL), and UV-Vis spectroscopy.

  19. Straightforward synthesis of novel cyclic metallasiloxanes supported by an N,C,N-chelating ligand.

    PubMed

    Fridrichová, Adéla; Mairychová, Barbora; Padělková, Zdeňka; Lyčka, Antonín; Jurkschat, Klaus; Jambor, Roman; Dostál, Libor

    2013-12-14

    The reaction of an N,C,N-intramolecularly coordinated tin(IV) carbonate LSn(Ph)(CO3) (1) and antimony(III) and bismuth(III) oxides (LMO)2 (where M = Sb (2), Bi (3) and L = C6H3-2,6-(CH2NMe2)2) with (HO)SiPh2(O)SiPh2(OH) in 1 : 1 (in the case of 1) or 1 : 2 molar ratio (in the cases of 2 and 3) gave the metallasiloxanes cyclo-LSn(Ph)(OSiPh2)2O (4) and cyclo-LM(OSiPh2)2O (where M = Sb (6) and Bi (7)) containing six-membered MSi2O3 rings. Alternatively, the compounds 4, 6 and 7 can be also prepared reacting Ph2Si(OH)2 and compounds 1, 2 and 3, respectively, in the molar ratio of either 2 : 1 (for 4) or 4 : 1 (for 6 and 7). The reaction of Ph2Si(OH)2 with 1 in 1 : 1 molar ratio gave cyclo-Ph2Si(OSnL(Ph)O)2SiPh2 (5) containing an eight-membered Sn2Si2O4 stannasiloxane ring. The analogous eight-membered stibasiloxane derivative cyclo-Ph2Si(OSbLO)2SiPh2 (8) was obtained as well, while attempts to synthesize the bismuth analogue failed. Compounds 1-3 react with the siloxane cyclo-(Me2SiO)3 providing either eight-membered metallasiloxanes cyclo-LSn(Ph)(OSiMe2O)2SiMe2 (9) and cyclo-LSb(OSiMe2O)2SiMe2 (10) or the six-membered bismutasiloxane cyclo-LBi(OSiMe2)2O (11). All compounds were characterized with the help of elemental analysis, (1)H, (13)C, (29)Si and (119)Sn NMR spectroscopy, and single crystal X-ray diffraction analyses (except 9 and 10).

  20. Ligand substitution reactions of a phenolic quinolyl hydrazone; oxidovanadium (IV) complexes

    PubMed Central

    2011-01-01

    Background Quinoline ring has therapeutic and biological activities. Quinolyl hydrazones constitute a class of excellent chelating agents. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have aimed to study the competency effect of a phenolic quinolyl hydrazone (H2L; primary ligand) with some auxiliary ligands (Tmen, Phen or Oxine; secondary ligands) towards oxidovanadium (IV) ions. Results Mono- and binuclear oxidovanadium (IV) - complexes were obtained from the reaction of a phenolic quinolyl hydrazone with oxidovanadium (IV)- ion in absence and presence of N,N,N',N'- tetramethylethylenediamine (Tmen), 1,10-phenanthroline (Phen) or 8-hydroxyquinoline (Oxine). The phenolic quinolyl hydrazone ligand behaves as monobasic bidentate (NO- donor with O- bridging). All the obtained complexes have the preferable octahedral geometry except the oxinato complex (2) which has a square pyramid geometry with no axial interaction; the only homoleptic complex in this study. Conclusion The ligand exchange (substitution/replacement) reactions reflect the strong competency power of the auxiliary aromatic ligands (Phen/Oxine) compared to the phenolic quinolyl hydrazone (H2L) towards oxidovanadium (IV) ion; (complexes 2 and 3). By contrast, in case of the more flexible aliphatic competitor (Tmen), an adduct was obtained (4). The obtained complexes reflect the strength of the ligand field towards the oxidovanadium (IV)- ion; Oxine or Phen >> phenolic hydrazone (H2L) > Tmen. PMID:21846387

  1. Small Molecules Target Carcinogenic Proteins

    NASA Astrophysics Data System (ADS)

    Gradinaru, Claudiu

    2009-03-01

    An ingenious cellular mechanism of effecting protein localization is prenylation: the covalent attachment of a hydrophobic prenyl group to a protein that facilitates protein association with cell membranes. Fluorescence microscopy was used to investigate whether the oncogenic Stat3 protein can undergo artificial prenylation via high-affinity prenylated small-molecule binding agents and thus be rendered inactive by localization at the plasma membrane instead of nucleus. The measurements were performed on a home-built instrument capable of recording simultaneously several optical parameters (lifetime, polarization, color, etc) and with single-molecule sensitivity. A pH-invariant fluorescein derivative with double moiety was designed to bridge a prenyl group and a small peptide that binds Stat3 with high affinity. Confocal fluorescence images show effective localization of the ligand to the membrane of liposomes. Stat3 predominantly localizes at the membrane only in the presence of the prenylated ligand. Single-molecule FRET (fluorescence resonance energy transfer) between donor-labeled prenylated agents and acceptor-labeled, surface tethered Stat3 protein is used to determine the dynamic heterogeneity of the protein-ligand interaction and follow individual binding-unbinding events in real time. The data indicates that molecules can effect protein localization, validating a therapeutic design that influences protein activity via induced localization.

  2. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.

    PubMed

    Li, Huameng; Li, Chenglong

    2010-07-30

    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively.

  3. Tumor Targeting via Integrin Ligands

    PubMed Central

    Marelli, Udaya Kiran; Rechenmacher, Florian; Sobahi, Tariq Rashad Ali; Mas-Moruno, Carlos; Kessler, Horst

    2013-01-01

    Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side-effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability, and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor-specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug-delivery systems, and discuss the prospects of such therapies to specifically target tumor cells. PMID:24010121

  4. Effect of Ligand Substitution around the Dy(III) on the SMM Properties of Dual-Luminescent Zn-Dy and Zn-Dy-Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2016-05-02

    The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical

  5. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots.

    PubMed

    Li, Qiong; Sun, Kai; Chang, Kaiwen; Yu, Jiangbo; Chiu, Daniel T; Wu, Changfeng; Qin, Weiping

    2013-10-01

    We report a ratiometric fluorescent sensor based on semiconducting polymer dots chelated with terbium ions to detect bacterial spores in aqueous solution. Fluorescent polyfluorene (PFO) dots serve as a scaffold to coordinate with lanthanide ions that can be sensitized by calcium dipicolinate (CaDPA), an important biomarker of bacterial spores. The absorption band of PFO dots extends to deep UV region, allowing both the reference and the sensitizer can be excited with a single wavelength (~275 nm). The fluorescence of PFO remains constant as a reference, while the Tb(3+) ions exhibit enhanced luminescence upon binding with DPA. The sharp fluorescence peaks of β-phase PFO dots and the narrow-band emissions of Tb(3+) ions enable ratiometric and sensitive CaDPA detection with a linear response over nanomolar concentration and a detection limit of ~0.2 nM. The Pdots based sensor also show excellent selectivity to CaDPA over other aromatic ligands. Our results indicate that the Tb(3+) chelated Pdots sensor is promising for sensitive and rapid detection of bacterial spores.

  6. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  7. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  8. Red-Emitting Tetracoordinate Organoboron Chelates: Synthesis, Photophysical Properties, and Fluorescence Microscopy.

    PubMed

    Pais, Vânia F; Ramírez-López, Pedro; Romero-Arenas, Antonio; Collado, Daniel; Nájera, Francisco; Pérez-Inestrosa, Ezequiel; Fernández, Rosario; Lassaletta, José M; Ros, Abel; Pischel, Uwe

    2016-10-21

    Seven tetracoordinate organoboron fluorophores with heterobiaryl N,O- or N,N-chelate ligands were prepared and photophysically characterized (in toluene). The electronic variation of the heteroaromatic moiety provided a means for the fine-tuning of the UV/vis absorption and emission spectra. In the most interesting cases, the spectra were red-shifted to maximum absorbance at wavelengths longer than 500 nm and emission maxima between 620 and 660 nm. The pronounced intramolecular charge-transfer character of the dyes yielded large Stokes shifts (3500-5100 cm(-1)), while maintaining appreciable fluorescence quantum yields of up to 0.2 for emission maxima longer than 600 nm. The lipophilic character of the dyes enabled their application as stains of vesicle substructures in confocal fluorescence microscopy imaging.

  9. Design of targeting ligands in medicinal inorganic chemistry.

    PubMed

    Storr, Tim; Thompson, Katherine H; Orvig, Chris

    2006-06-01

    This tutorial review will highlight recent advances in medicinal inorganic chemistry pertaining to the use of multifunctional ligands for enhanced effect. Ligands that adequately bind metal ions and also include specific targeting features are gaining in popularity due to their ability to enhance the efficacy of less complicated metal-based agents. Moving beyond the traditional view of ligands modifying reactivity, stabilizing specific oxidation states, and contributing to substitution inertness, we will discuss recent work involving metal complexes with multifunctional ligands that target specific tissues, membrane receptors, or endogenous molecules, including enzymes.

  10. Spectral, Magnetic and Biological Studie on Some Bivalent 3d Metal Complexes of Hydrazine Derived Schiff-Base Ligands

    PubMed Central

    Sherazi, Syed K. A.

    1997-01-01

    Metal(II) complexes of hydrazine derived Schiff-base ligands of the type M(L)2Cl2 where M = Co, Cu, Ni and Zn and L = L1 and L2 have been prepared and characterised by molar conductance, magnetic moment, elemental analysis and electronic, IR, H-NMR and 13C spectral data.The different modes of chelation of the ligands and their comparative biological properties against different bacterial species are reported. PMID:18475770

  11. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX

    PubMed Central

    Janowski, Pawel A.; Moriarty, Nigel W.; Kelley, Brian P.; Case, David A.; York, Darrin M.; Adams, Paul D.; Warren, Gregory L.

    2016-01-01

    Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File (CIF) format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that substantially lengthen the refinement time, potentially hindering rapid automated refinement workflows. PHENIX–AFITT refinement uses a full molecular-mechanics force field for user-selected small-molecule ligands during refinement, eliminating the potentially difficult problem of finding or generating high-quality geometry restraints. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, making it ideal for high-throughput workflows. PHENIX–AFITT refinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Here, the results of combining AFITT and the PHENIX software suite on a data set of 189 protein–ligand PDB structures are presented. Refinements using PHENIX–AFITT significantly reduce ligand conformational energy and lead to improved geometries without detriment to the fit to the experimental data. For the data presented, PHENIX–AFITT refinements result in more chemically accurate models for small-molecule ligands. PMID:27599738

  12. The Exochelins of Pathogenic Mycobacteria: Unique, Highly Potent, Lipid- and Water-Soluble Hexadentate Iron Chelators with Multiple Potential Therapeutic Uses

    PubMed Central

    Horwitz, Lawrence D.

    2014-01-01

    Abstract Significance: Exochelins are lipid- and water-soluble siderophores of Mycobacterium tuberculosis with unique properties that endow them with exceptional pharmacologic utility. Exochelins can be utilized as probes to decipher the role of iron in normal and pathological states, and, since they rapidly cross cell membranes and chelate intracellular iron with little or no toxicity, exochelins are potentially useful for the treatment of a number of iron-dependent pathological phenomena. Recent Advances: In animal models, exochelins have been demonstrated to have promise for the treatment of transfusion-related iron overload, restenosis after coronary artery angioplasty, cancer, and oxidative injury associated with acute myocardial infarction and transplantation. Critical Issues: To be clinically effective, iron chelators should be able to rapidly enter cells and chelate iron at key intracellular sites. Desferri-exochelins, and other lipid-soluble chelators, can readily cross cell membranes and remove intracellular free iron; whereas deferoxamine, which is lipid insoluble, cannot do so. Clinical utility also requires that the chelators be nontoxic, which, we hypothesize, includes the capability to prevent iron from catalyzing free radical reactions which produce •OH or other reactive oxygen species. Lipid-soluble iron chelators currently available for clinical application are bidentate (deferiprone) or tridentate (desferasirox) molecules that do not block all six sites on the iron molecule capable of catalyzing free radical reactions. In contrast, desferri-exochelins are hexadentate molecules, and by forming a one-to-one binding relationship with iron, they prevent free radical reactions. Future Directions: Clinical studies are needed to assess the utility of desferri-exochelins in the treatment of iron-dependent pathological disorders. Antioxid. Redox Signal. 21, 2246–2261. PMID:24684595

  13. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth; Xu, Jide

    1999-01-01

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity.

  14. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  15. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  16. Removal of heavy metals from water effluents using supermacroporous metal chelating cryogels.

    PubMed

    Onnby, Linda; Giorgi, Camilla; Plieva, Fatima M; Mattiasson, Bo

    2010-01-01

    Applications of IDA in, for example, immobilized metal ion affinity chromatography for purification of His-tagged proteins are well recognized. The use of IDA as an efficient chelating adsorbent for environmental separations, that is, for the capture of heavy metals, is not studied. Adsorbents based on supermacroporous gels (cryogels) bearing metal chelating functionalities (IDA residues and ligand derived from derivatization of epoxy-cryogel with tris(2-aminoethyl)amine followed by the treatment with bromoacetic acid (defined as TBA ligand)) have been prepared and evaluated on capture of heavy metal ions. The cryogels were prepared in plastic carriers, resulting in desired mechanical stability and named as macroporous gel particles (MGPs). Sorption and desorption experiments for different metals (Cu²+, Zn²+, Cd²+, and Ni²+ with IDA adsorbent and Cu²+ and Zn²+ with TBA adsorbent) were carried out in batch and monolithic modes, respectively. Obtained capacities with Cu²+ were 74 μmol/mL (TBA) and 19 μmol/mL gel (IDA). The metal removal was higher for pH values between pH 3 and 5. Both a