Science.gov

Sample records for molecule inhibitor qlt0267

  1. Small molecule inhibitors of ebola virus infection.

    PubMed

    Picazo, Edwige; Giordanetto, Fabrizio

    2015-02-01

    Ebola viruses are extremely virulent and highly transmissible. They are responsible for sporadic outbreaks of severe hemorrhagic fevers with human mortality rates of up to 90%. No prophylactic or therapeutic treatments in the form of vaccine, biologicals or small molecule, currently exist. Yet, a wealth of antiviral research on ebola virus is being generated and potential inhibitors have been identified in biological screening and medicinal chemistry programs. Here, we detail the state-of-the-art in small molecule inhibitors of ebola virus infection, with >60 examples, including approved drugs, compounds currently in clinical trials, and more exploratory leads, and summarize the associated in vitro and in vivo evidence for their effectiveness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Small Molecule Inhibitors of Protein Arginine Methyltransferases

    PubMed Central

    Hu, Hao; Qian, Kun; Ho, Meng-Chiao; Zheng, Y. George

    2016-01-01

    Introduction Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. Areas covered The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. Expert opinion Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead. PMID:26789238

  3. Development of small-molecule inhibitors targeting adipose triglyceride lipase.

    PubMed

    Mayer, Nicole; Schweiger, Martina; Romauch, Matthias; Grabner, Gernot F; Eichmann, Thomas O; Fuchs, Elisabeth; Ivkovic, Jakov; Heier, Christoph; Mrak, Irina; Lass, Achim; Höfler, Gerald; Fledelius, Christian; Zechner, Rudolf; Zimmermann, Robert; Breinbauer, Rolf

    2013-12-01

    Adipose triglyceride lipase (ATGL) is rate limiting in the mobilization of fatty acids from cellular triglyceride stores. This central role in lipolysis marks ATGL as an interesting pharmacological target as deregulated fatty acid metabolism is closely linked to dyslipidemic and metabolic disorders. Here we report on the development and characterization of a small-molecule inhibitor of ATGL. Atglistatin is selective for ATGL and reduces fatty acid mobilization in vitro and in vivo.

  4. Small molecule inhibitors targeting activator protein 1 (AP-1).

    PubMed

    Ye, Na; Ding, Ye; Wild, Christopher; Shen, Qiang; Zhou, Jia

    2014-08-28

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases.

  5. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  6. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity

    PubMed Central

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325

  7. Identification of Neutrophil Exocytosis Inhibitors (Nexinhibs), Small Molecule Inhibitors of Neutrophil Exocytosis and Inflammation

    PubMed Central

    Johnson, Jennifer L.; Ramadass, Mahalakshmi; He, Jing; Brown, Steven J.; Zhang, Jinzhong; Abgaryan, Lusine; Biris, Nikolaos; Gavathiotis, Evripidis; Rosen, Hugh; Catz, Sergio D.

    2016-01-01

    Neutrophils constitute the first line of cellular defense in response to bacterial and fungal infections and rely on granular proteins to kill microorganisms, but uncontrolled secretion of neutrophil cargos is injurious to the host and should be closely regulated. Thus, increased plasma levels of neutrophil secretory proteins, including myeloperoxidase and elastase, are associated with tissue damage and are hallmarks of systemic inflammation. Here, we describe a novel high-throughput screening approach to identify small molecule inhibitors of the interaction between the small GTPase Rab27a and its effector JFC1, two central regulators of neutrophil exocytosis. Using this assay, we have identified small molecule inhibitors of Rab27a-JFC1 binding that were also active in cell-based neutrophil-specific exocytosis assays, demonstrating the druggability of Rab GTPases and their effectors. These compounds, named Nexinhibs (neutrophil exocytosis inhibitors), inhibit exocytosis of azurophilic granules in human neutrophils without affecting other important innate immune responses, including phagocytosis and neutrophil extracellular trap production. Furthermore, the compounds are reversible and potent inhibitors of the extracellular production of superoxide anion by preventing the up-regulation of the granule membrane-associated subunit of the NADPH oxidase at the plasma membrane. Nexinhibs also inhibit the up-regulation of activation signature molecules, including the adhesion molecules CD11b and CD66b. Importantly, by using a mouse model of endotoxin-induced systemic inflammation, we show that these inhibitors have significant activity in vivo manifested by decreased plasma levels of neutrophil secretory proteins and significantly decreased tissue infiltration by inflammatory neutrophils. Altogether, our data present the first neutrophil exocytosis-specific inhibitor with in vivo anti-inflammatory activity, supporting its potential use as an inhibitor of systemic

  8. Novel Small Molecule Entry Inhibitors of Ebola Virus

    PubMed Central

    Basu, Arnab; Mills, Debra M.; Mitchell, Daniel; Ndungo, Esther; Williams, John D.; Herbert, Andrew S.; Dye, John M.; Moir, Donald T.; Chandran, Kartik; Patterson, Jean L.; Rong, Lijun; Bowlin, Terry L.

    2015-01-01

    Background. The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. Methods. To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus–based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. Results. We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP–Niemann-Pick C1 (NPC1) protein interaction. Conclusions. We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target. PMID:26206510

  9. Small Molecule Glutaminase Inhibitors Block Glutamate Release from Stimulated Microglia

    PubMed Central

    Thomas, Ajit G.; O'Driscoll, Cliona M.; Bressler, Joseph; Kaufmann, Walter E.; Rojas, Camilo J.; Slusher, Barbara S.

    2014-01-01

    Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-L-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest. PMID:24269238

  10. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia.

    PubMed

    Thomas, Ajit G; O'Driscoll, Cliona M; Bressler, Joseph; Kaufmann, Walter; Rojas, Camilo J; Slusher, Barbara S

    2014-01-03

    Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Small-molecule inhibitors of protein-protein interactions.

    PubMed

    Berg, Thorsten

    2008-09-01

    Protein-protein interactions regulate almost all aspects of cellular signaling and aberrant protein-protein interactions have the potential to cause or contribute to human disease. The modulation of these interactions by drug-like molecules would offer previously unavailable opportunities to explore the relevance of pre-selected protein-protein interactions for cellular signaling, as well as benefits to patients. After an initial period of skepticism with regards to feasibility, there is now an encouraging set of data indicating that the effective and selective modulation of protein-protein interactions by drug-like molecules is attainable. This review highlights selected areas of current research that are aimed at identifying potent inhibitors of disease-relevant protein-protein interactions.

  12. Novel Small Molecule Entry Inhibitors of Ebola Virus.

    PubMed

    Basu, Arnab; Mills, Debra M; Mitchell, Daniel; Ndungo, Esther; Williams, John D; Herbert, Andrew S; Dye, John M; Moir, Donald T; Chandran, Kartik; Patterson, Jean L; Rong, Lijun; Bowlin, Terry L

    2015-10-01

    The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus-based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP-Niemann-Pick C1 (NPC1) protein interaction. We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Capping of Aβ42 Oligomers by Small Molecule Inhibitors

    PubMed Central

    2015-01-01

    Aβ42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer’s disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aβ42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1–2 nm and high MW oligomers with heights of 3–5 nm. In both cases, the oligomers are disc-shaped with diameters of ∼10–15 nm. The similar diameters suggest that the low MW species stack to form the high MW oligomers. The ability of Aβ42 inhibitors to interact with these oligomers is probed using atomic force microscopy and NMR spectroscopy. We show that curcumin and resveratrol bind to the N-terminus (residues 5–20) of Aβ42 monomers and cap the height of the oligomers that are formed at 1–2 nm. A second class of inhibitors, which includes sulindac sulfide and indomethacin, exhibit very weak interactions across the Aβ42 sequence and do not block the formation of the high MW oligomers. The correlation between N-terminal interactions and capping of the height of the Aβ oligomers provides insights into the mechanism of inhibition and the pathway of Aβ aggregation. PMID:25422864

  14. Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction

    PubMed Central

    Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela

    2014-01-01

    Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660

  15. Small-Molecule Inhibitors of the SOX18 Transcription Factor.

    PubMed

    Fontaine, Frank; Overman, Jeroen; Moustaqil, Mehdi; Mamidyala, Sreeman; Salim, Angela; Narasimhan, Kamesh; Prokoph, Nina; Robertson, Avril A B; Lua, Linda; Alexandrov, Kirill; Koopman, Peter; Capon, Robert J; Sierecki, Emma; Gambin, Yann; Jauch, Ralf; Cooper, Matthew A; Zuegg, Johannes; Francois, Mathias

    2017-03-16

    Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pharmacophore guided discovery of small-molecule interleukin 15 inhibitors.

    PubMed

    Żyżyńska-Granica, Barbara; Trzaskowski, Bartosz; Niewieczerzał, Szymon; Filipek, Sławomir; Zegrocka-Stendel, Oliwia; Dutkiewicz, Małgorzata; Krzeczyński, Piotr; Kowalewska, Magdalena; Koziak, Katarzyna

    2017-08-18

    Upregulation of interleukin 15 (IL-15) contributes directly i.a. to the development of inflammatory and autoimmune diseases. Selective blockade of IL-15 aimed to treat rheumatoid arthritis, psoriasis and other IL-15-related disorders has been recognized as an efficient therapeutic method. The aim of the study was to identify small molecules which would interact with IL-15 or its receptor IL-15Rα and inhibit the cytokine's activity. Based on the crystal structure of IL-15Rα·IL-15, we created pharmacophore models to screen the ZINC database of chemical compounds for potential IL-15 and IL-15Rα inhibitors. Twenty compounds with the highest predicted binding affinities were subjected to in vitro analysis using human peripheral blood mononuclear cells to validate in silico data. Twelve molecules efficiently reduced IL-15-dependent TNF-α and IL-17 synthesis. Among these, cefazolin - a safe first-generation cephalosporin antibiotic - holds the highest promise for IL-15-directed therapeutic applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Small molecule inhibitors of HCV replication from pomegranate.

    PubMed

    Reddy, B Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-24

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and'no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  18. Small molecule inhibitors of HCV replication from Pomegranate

    PubMed Central

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-01-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and‘no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications. PMID:24958333

  19. Small molecule inhibitors of HCV replication from Pomegranate

    NASA Astrophysics Data System (ADS)

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  20. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents

    PubMed Central

    Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang

    2017-01-01

    Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061

  1. Small Molecule Substrate Phosphorylation Site Inhibitors of Protein Kinases: Approaches and Challenges

    PubMed Central

    2015-01-01

    Protein kinases are important mediators of cellular communication and attractive drug targets for many diseases. Although success has been achieved with developing ATP-competitive kinase inhibitors, the disadvantages of ATP-competitive inhibitors have led to increased interest in targeting sites outside of the ATP binding pocket. Kinase inhibitors with substrate-competitive, ATP-noncompetitive binding modes are promising due to the possibility of increased selectivity and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors has resulted in significantly fewer small molecule substrate phosphorylation site inhibitors being reported compared to ATP-competitive inhibitors. This review surveys reported substrate phosphorylation site inhibitors and methods that can be applied to the discovery of such inhibitors, including a discussion of the challenges inherent to these screening methods. PMID:25494294

  2. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors.

    PubMed

    Bucher, Tabitha; Kartvelishvily, Elena; Kolodkin-Gal, Ilana

    2016-10-09

    This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

  3. Large negatively charged organic host molecules as inhibitors of endonuclease enzymes.

    PubMed

    Tauran, Yannick; Anjard, Christophe; Kim, Beomjoon; Rhimi, Moez; Coleman, Anthony W

    2014-10-07

    Three large negatively charged organic host molecules; β-cyclodextrin sulphate, para-sulphonato-calix[6]arene and para-sulphonato-calix[8]arene have been shown to be effective inhibitors of endonuclease in the low micromolar range, additionally para-sulphonato-calix[8]arene is a partial inhibitor of rhDNase I.

  4. Small Molecule Inhibitors of EGFR Ectodomain for Breast Cancer Therapy

    DTIC Science & Technology

    2011-08-01

    are shown as a control. Effect of EL1-FD1 on tumor cell proliferation . EGFR ectodomain inhibitor EL1-FD1 has been tested against MDA-MB-468...breast cancer cells in a polyHEMA based proliferation assay (Fig. 2). Figure 2. Effects of the EGFR ectodomain inhibitor EL1-FD1 on cell ... proliferation in human breast cancer cell line MDA-MB-468. 5 mg/ml Poly(2-hydroxyethyl methacrylate) (PolyHEMA) powder (Sigma) in 95% ethanol was dissolved at

  5. Small Molecule Inhibitors of EGFR Ectodomain for Breast Cancer Therapy

    DTIC Science & Technology

    2009-08-01

    levels in all samples are shown as a control. 4 Effect of EL1-FD1 on tumor cell proliferation . EGFR ectodomain inhibitor EL1...FD1 has been tested against MDA-MB-468 breast cancer cells in a polyHEMA based proliferation assay (Fig. 2). Figure 2. Effects of the EGFR...ectodomain inhibitor EL1-FD1 on cell proliferation in human breast cancer cell line MDA-MB-468. 5 mg/ml Poly(2-hydroxyethyl methacrylate) (PolyHEMA) powder

  6. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  7. Targeting Staphylococcus aureus Quorum Sensing with Nonpeptidic Small Molecule Inhibitors

    PubMed Central

    2014-01-01

    A series of 3-oxo-C12-HSL, tetramic acid, and tetronic acid analogues were synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were noncompetitive inhibitors of the autoinducing peptide (AIP) activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17, which reduced nasal cell colonization and arthritis in a murine infection model. PMID:24592914

  8. Targeting Staphylococcus aureus quorum sensing with nonpeptidic small molecule inhibitors.

    PubMed

    Murray, Ewan J; Crowley, Rebecca C; Truman, Alex; Clarke, Simon R; Cottam, James A; Jadhav, Gopal P; Steele, Victoria R; O'Shea, Paul; Lindholm, Catharina; Cockayne, Alan; Chhabra, Siri Ram; Chan, Weng C; Williams, Paul

    2014-03-27

    A series of 3-oxo-C12-HSL, tetramic acid, and tetronic acid analogues were synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were noncompetitive inhibitors of the autoinducing peptide (AIP) activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17, which reduced nasal cell colonization and arthritis in a murine infection model.

  9. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  10. Broad Spectrum Pro-Quorum-Sensing Molecules as Inhibitors of Virulence in Vibrios

    PubMed Central

    Ng, Wai-Leung; Perez, Lark; Cong, Jianping; Semmelhack, Martin F.; Bassler, Bonnie L.

    2012-01-01

    Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives. PMID:22761573

  11. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios.

    PubMed

    Ng, Wai-Leung; Perez, Lark; Cong, Jianping; Semmelhack, Martin F; Bassler, Bonnie L

    2012-01-01

    Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

  12. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    PubMed Central

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  13. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41

    PubMed Central

    Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044

  14. Protein interface pharmacophore mapping tools for small molecule protein: protein interaction inhibitor discovery.

    PubMed

    Voet, Arnout; Banwell, Eleanor F; Sahu, Kamlesh K; Heddle, Jonathan G; Zhang, Kam Y J

    2013-01-01

    Protein:protein interactions are becoming increasingly significant as potential drug targets; however, the rational identification of small molecule inhibitors of such interactions remains a challenge. Pharmacophore modelling is a popular tool for virtual screening of compound libraries, and has previously been successfully applied to the discovery of enzymatic inhibitors. However, the application of pharmacophore modelling in the field of protein:protein interaction inhibitors has historically been considered more of a challenge and remains limited. In this review, we explore the interaction mimicry by known inhibitors that originate from in vitro screening, demonstrating the validity of pharmacophore mapping in the generation of queries for virtual screening. We discuss the pharmacophore mapping methods that have been successfully employed in the discovery of first-in-class inhibitors. These successful cases demonstrate the usefulness of a "tool kit" of diverse strategies for application across a range of situations depending on the available structural information.

  15. Identification of Small Molecule Inhibitors of Phosphatidylinositol 3-Kinase and Autophagy*

    PubMed Central

    Farkas, Thomas; Daugaard, Mads; Jäättelä, Marja

    2011-01-01

    Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors. PMID:21930714

  16. Small Molecule Inhibitors of ERG and ETV1 in Prostate Cancer

    DTIC Science & Technology

    2016-06-01

    H, Minas T, Brown L, Kollath L, Vasioukhin V, Nelson P, Corey E, Üren A, Morrissey C. Abstracts: Identifying common molecular features of ERG...Molecule Inhibitor YK-4-279. Brian Winters, Lisha Brown, Ilsa Coleman, Tsion Minas , Xiaotun Zhang, Lori Kollath, Holly Nguyen, Peter Nelson, Eva Corey

  17. Identification of Hedgehog signaling inhibitors with relevant human exposure by small molecule screening.

    PubMed

    Lipinski, Robert J; Bushman, Wade

    2010-08-01

    In animal models, chemical disruption of the Hedgehog (Hh) signaling pathway during embryonic development causes severe birth defects including holoprosencephaly and cleft lip and palate. The exact etiological basis of correlate human birth defects remains uncertain but is likely multifactorial, involving the interaction of genetic and environmental or chemical influences. The Hh transduction mechanism relies upon endogenous small molecule regulation, conferring remarkable pathway sensitivity to inhibition by a structurally diverse set of exogenous small molecules. Here, we employed small molecule screening to identify human exposure-relevant Hh signaling inhibitors. From a library of 4240 compounds, including pharmaceuticals, natural products, and pesticides, three putative Hh pathway inhibitors were identified: tolnaftate, an antifungal agent; ipriflavone, a dietary supplement; and 17-beta-estradiol, a human hormone and pharmaceutical agent. Each compound inhibited Hh signaling in both mouse and human cells. Dose-response assays determined the three compounds to be 8- to 30-fold less potent than the index Hh pathway inhibitor cyclopamine. Despite current limitations in chemical library availability, which narrowed the scope of this study to only a small fraction of all human exposure-relevant small molecules, three structurally diverse environmental Hh signaling inhibitors were identified, highlighting an inherent pathway vulnerability to teratogenic influences. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Identification of Hedgehog Signaling Inhibitors with Relevant Human Exposure by Small Molecule Screening

    PubMed Central

    Lipinski, Robert J.; Bushman, Wade

    2010-01-01

    In animal models, chemical disruption of the Hedgehog (Hh) signaling pathway during embryonic development causes severe birth defects including holoprosencephaly and cleft lip and palate. The exact etiological basis of correlate human birth defects remains uncertain but is likely multifactorial, involving the interaction of genetic and environmental or chemical influences. The Hh transduction mechanism relies upon endogenous small molecule regulation; conferring remarkable pathway sensitivity to inhibition by a structurally diverse set of exogenous small molecules. Here, we employed small molecule screening to identify human exposure-relevant Hh signaling inhibitors. From of a library of 4,240 compounds - including pharmaceuticals, natural products, and pesticides, three putative Hh pathway inhibitors were identified: tolnaftate, an antifungal agent; ipriflavone, a dietary supplement; and 17-β-estradiol, a human hormone and pharmaceutical agent. Each compound inhibited Hh signaling in both mouse and human cells. Dose-response assays determined the three compounds to be 8-to-30 fold less potent than the index Hh pathway inhibitor cyclopamine. Despite current limitations in chemical library availability, which narrowed the scope of this study to only a small fraction of all human exposure-relevant small molecules, three structurally diverse environmental Hh signaling inhibitors were identified, highlighting an inherent pathway vulnerability to teratogenic influences. PMID:20434536

  19. A pièce de resistance: how HIV-1 escapes small molecule CCR5 inhibitors

    PubMed Central

    Moore, John P.; Kuritzkes, Daniel R.

    2009-01-01

    Purpose of review Small molecule inhibitors targeting the CCR5 coreceptor represent a new class of drugs for treating HIV-1 infection. Maraviroc has received regulatory approvals, and vicriviroc is in phase 3 trials. Understanding how resistance to these drugs develops and is diagnosed is essential to guide clinical practice. We review what has been learned from in vitro resistance studies, and how this relates to what is being seen, or can be anticipated, in clinical studies. Recent findings The principal resistance pathway in vitro involves continued use of CCR5 in an inhibitor-insensitive manner; the resistant viruses recognize the inhibitor-CCR5 complex, as well as free CCR5. Switching to use the CXCR4 coreceptor is rare. The principal genetic pathway involves accumulating 2–4 sequence changes in the gp120 V3 region, but a non-V3 pathway is also known. The limited information available from clinical studies suggests that a similar escape process is followed in vivo. However, the most common change associated with virologic failure involves expansion of pre-existing, CXCR4-using viruses that are insensitive to CCR5 inhibitors. Summary HIV-1 escapes small molecule CCR5 inhibitors by continuing to use CCR5 in an inhibitor-insensitive manner, or evades them by expanding naturally insensitive, CXCR4-using variants. PMID:19339950

  20. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    PubMed Central

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  1. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    PubMed

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  2. Small-Molecule Inhibitor Leads of Ribosome-Inactivating Proteins Developed Using the Doorstop Approach

    PubMed Central

    Pang, Yuan-Ping; Park, Jewn Giew; Wang, Shaohua; Vummenthala, Anuradha; Mishra, Rajesh K.; McLaughlin, John E.; Di, Rong; Kahn, Jennifer Nielsen; Tumer, Nilgun E.; Janosi, Laszlo; Davis, Jon; Millard, Charles B.

    2011-01-01

    Ribosome-inactivating proteins (RIPs) are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL), thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2), produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2) from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays. PMID:21455295

  3. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents.

    PubMed

    Patil, Shivaputra A; Patil, Renukadevi; Miller, Duane D

    2012-10-01

    Agents that interfere with tubulin function have a broad anti-tumor spectrum and they represent one of the most significant classes of anticancer agents. In the past few years, several small synthetic molecules that have an indole nucleus as a core structure have been identified as tubulin inhibitors. Among these, several aroylindoles, arylthioindoles, diarylindoles and indolylglyoxyamides have shown good inhibition towards the tubulin polymerization. This article reviews the synthesis, biological activities and SARs of these main classes of indoles. Brief mention has also been made about the fused indole analogs as tubulin inhibitors.

  4. JAK/STAT inhibitors and other small molecule cytokine antagonists for the treatment of allergic disease.

    PubMed

    Howell, Michael D; Fitzsimons, Carolyn; Smith, Paul

    2018-02-14

    To provide an overview of janus kinase (JAK), chemoattractant receptor-homologous molecule expressed on T-helper 2 cells (CRTH2), and phosphodiesterase 4 (PDE4) inhibitors in allergic disorders. PubMed literature review. Articles included in this review discuss the emerging mechanism of action of small molecule inhibitors and their utilization in atopic dermatitis (AD), asthma, and allergic rhinitis (AR). Allergic diseases represent a spectrum of diseases including AD, asthma, and AR. For decades, these diseases have been primarily characterized by increased Th2 signaling and downstream inflammation. In recent years, additional research has identified disease phenotypes and subsets of patients with non-Th2 mediated inflammation. The increasing heterogeneity of disease has prompted investigators to move away from wide-ranging treatment approaches with immunosuppressive agents such as corticosteroids to consider more targeted immunomodulatory approaches focused on specific pathways. In the past decade, inhibitors targeting JAK signaling, PDE4, and CRTH2 have been explored for their potential activity in models of allergic disease and therapeutic benefit in clinical trials. Interestingly, while JAK inhibitors provide an opportunity to interfere with cytokine signaling and could be beneficial in a broad range of allergic diseases, current clinical trials are focused on the treatment of AD. Conversely, both PDE4 and CRTH2 inhibitors have been evaluated in a spectrum of allergic diseases. This review summarizes the varying degrees of success that these small molecules have demonstrated across allergic diseases. Emerging therapies currently in development may provide more consistent benefit to patients with allergic diseases by specifically targeting inflammatory pathways important for disease pathogenesis. Copyright © 2018. Published by Elsevier Inc.

  5. Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid Arthritis

    DTIC Science & Technology

    2016-10-01

    experimental autoimmune encephalomyelitis; Type-1 diabetes ; colitis and others. More recently, our preliminary studies in the adjuvant-induced arthritis...drugs, orally available small molecule Ras- inhibitors such as Salirasib®, to advance the clinical management of RA patients with conceivably fewer side...increases the frequency and function of regulatory T cells and attenuates type-1 diabetes in non-obese diabetic mice. Eur J Pharmacol. 2009;616(1-3

  6. Discovery of a Parenteral Small Molecule Coagulation Factor XIa Inhibitor Clinical Candidate (BMS-962212).

    PubMed

    Pinto, Donald J P; Orwat, Michael J; Smith, Leon M; Quan, Mimi L; Lam, Patrick Y S; Rossi, Karen A; Apedo, Atsu; Bozarth, Jeffrey M; Wu, Yiming; Zheng, Joanna J; Xin, Baomin; Toussaint, Nathalie; Stetsko, Paul; Gudmundsson, Olafur; Maxwell, Brad; Crain, Earl J; Wong, Pancras C; Lou, Zhen; Harper, Timothy W; Chacko, Silvi A; Myers, Joseph E; Sheriff, Steven; Zhang, Huiping; Hou, Xiaoping; Mathur, Arvind; Seiffert, Dietmar A; Wexler, Ruth R; Luettgen, Joseph M; Ewing, William R

    2017-12-14

    Factor XIa (FXIa) is a blood coagulation enzyme that is involved in the amplification of thrombin generation. Mounting evidence suggests that direct inhibition of FXIa can block pathologic thrombus formation while preserving normal hemostasis. Preclinical studies using a variety of approaches to reduce FXIa activity, including direct inhibitors of FXIa, have demonstrated good antithrombotic efficacy without increasing bleeding. On the basis of this potential, we targeted our efforts at identifying potent inhibitors of FXIa with a focus on discovering an acute antithrombotic agent for use in a hospital setting. Herein we describe the discovery of a potent FXIa clinical candidate, 55 (FXIa Ki = 0.7 nM), with excellent preclinical efficacy in thrombosis models and aqueous solubility suitable for intravenous administration. BMS-962212 is a reversible, direct, and highly selective small molecule inhibitor of FXIa.

  7. Emergence of Small-Molecule Non-RGD-Mimetic Inhibitors for RGD Integrins.

    PubMed

    Miller, Lisa M; Pritchard, John M; Macdonald, Simon J F; Jamieson, Craig; Watson, Allan J B

    2017-04-27

    The RGD integrins are recognized therapeutic targets for thrombosis, fibrosis, and cancer, among others. Current inhibitors are designed to mimic the tripeptide sequence (arginine-glycine-aspartic acid) of the natural ligands; however, the RGD-mimetic antagonists for α IIb β 3 have been shown to cause partial agonism, leading to the opposite pharmacological effect. The challenge of obtaining oral activity and synthetic tractability with RGD-mimetic molecules, along with the issues relating to pharmacology, has left integrin therapeutics in need of a new strategy. Recently, a new generation of inhibitor has emerged that lacks the RGD-mimetic. This review will discuss the discovery of these non-RGD-mimetic inhibitors and the progress that has been made in this promising new chemotype.

  8. Recent advances in the discovery of small molecule c-Met Kinase inhibitors.

    PubMed

    Parikh, Palak K; Ghate, Manjunath D

    2018-01-01

    c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) and is the receptor for hepatocyte growth factor (HGF). Binding of HGF to its receptor c-Met, initiates a wide range of cellular signalling, including those involved in proliferation, motility, migration and invasion. Importantly, dysregulated HGF/c-Met signalling is a driving factor for numerous malignancies and promotes tumour growth, invasion, dissemination and/or angiogenesis. Dysregulated HGF/c-Met signalling has also been associated with poor clinical outcomes and resistance acquisition to some approved targeted therapies. Thus, c-Met kinase has emerged as a promising target for cancer drug development. Different therapeutic approaches targeting the HGF/c-Met signalling pathway are under development for targeted cancer therapy, among which small molecule inhibitors of c-Met kinase constitute the largest effort within the pharmaceutical industry. The review is an effort to summarize recent advancements in medicinal chemistry development of small molecule c-Met kinase inhibitors as potential anti-cancer agents which would certainly help future researchers to bring further developments in the discovery of small molecule c-Met kinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Molecular targeting of inhibitor of apoptosis proteins based on small molecule mimics of natural binding partners.

    PubMed

    Kipp, Rachael A; Case, Martin A; Wist, Aislyn D; Cresson, Catherine M; Carrell, Maria; Griner, Erin; Wiita, Arun; Albiniak, Philip A; Chai, Jijie; Shi, Yigong; Semmelhack, Martin F; McLendon, George L

    2002-06-11

    An assay based on a solvent-sensitive fluorogenic dye molecule, badan, is used to test the binding affinity of a library of tetrapeptide molecules for the BIR3 (baculovirus IAP repeat) domain of XIAP (X-linked inhibitor of apoptosis protein). The fluorophore is attached to a tetrapeptide, Ala-Val-Pro-Cys-NH(2), through a thiol linkage and, upon binding to XIAP, undergoes a solvatochromic shift in fluorescence emission. When a molecule (e.g., a natural protein known to bind to XIAP or a tetrapeptide mimic) displaces the dye, the emission shifts back to the spectrum observed in water. As emission intensity is related to the binding of the tetrapeptide, the intensity can be used to determine the equilibrium constant, K, for the displacement of the dye by the tetrapeptide. The results permit residue-specific analysis of the interaction. Furthermore, we show that hydrophobic effects in the fourth position are general and can effectively increase overall affinity.

  10. Discovery of small molecule inhibitors of xyloglucan endotransglucosylase (XET) activity by high-throughput screening

    PubMed Central

    Chormova, Dimitra; Franková, Lenka; Defries, Andrew; Cutler, Sean R.; Fry, Stephen C.

    2015-01-01

    Small molecules (xenobiotics) that inhibit cell-wall-localised enzymes are valuable for elucidating the enzymes’ biological roles. We applied a high-throughput fluorescent dot-blot screen to search for inhibitors of Petroselinum xyloglucan endotransglucosylase (XET) activity in vitro. Of 4216 xenobiotics tested, with cellulose-bound xyloglucan as donor-substrate, 18 inhibited XET activity and 18 promoted it (especially anthraquinones and flavonoids). No compounds promoted XET in quantitative assays with (cellulose-free) soluble xyloglucan as substrate, suggesting that promotion was dependent on enzyme–cellulose interactions. With cellulose-free xyloglucan as substrate, we found 22 XET-inhibitors – especially compounds that generate singlet oxygen (1O2) e.g., riboflavin (IC50 29 μM), retinoic acid, eosin (IC50 27 μM) and erythrosin (IC50 36 μM). The riboflavin effect was light-dependent, supporting 1O2 involvement. Other inhibitors included tannins, sulphydryl reagents and triphenylmethanes. Some inhibitors (vulpinic acid and brilliant blue G) were relatively specific to XET, affecting only two or three, respectively, of nine other wall-enzyme activities tested; others [e.g. (−)-epigallocatechin gallate and riboflavin] were non-specific. In vivo, out of eight XET-inhibitors bioassayed, erythrosin (1 μM) inhibited cell expansion in Rosa and Zea cell-suspension cultures, and 40 μM mycophenolic acid and (−)-epigallocatechin gallate inhibited Zea culture growth. Our work showcases a general high-throughput strategy for discovering wall-enzyme inhibitors, some being plant growth inhibitors potentially valuable as physiological tools or herbicide leads. PMID:26093490

  11. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression.

    PubMed

    Felsenstein, Kenneth M; Saunders, Lindsey B; Simmons, John K; Leon, Elena; Calabrese, David R; Zhang, Shuling; Michalowski, Aleksandra; Gareiss, Peter; Mock, Beverly A; Schneekloth, John S

    2016-01-15

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  12. Interrogating a Hexokinase-Selected Small-Molecule Library for Inhibitors of Plasmodium falciparum Hexokinase

    PubMed Central

    Harris, Michael T.; Walker, Dawn M.; Drew, Mark E.; Mitchell, William G.; Dao, Kevin; Schroeder, Chad E.; Flaherty, Daniel P.; Weiner, Warren S.; Golden, Jennifer E.

    2013-01-01

    Parasites in the genus Plasmodium cause disease throughout the tropic and subtropical regions of the world. P. falciparum, one of the deadliest species of the parasite, relies on glycolysis for the generation of ATP while it inhabits the mammalian red blood cell. The first step in glycolysis is catalyzed by hexokinase (HK). While the 55.3-kDa P. falciparum HK (PfHK) shares several biochemical characteristics with mammalian HKs, including being inhibited by its products, it has limited amino acid identity (∼26%) to the human HKs, suggesting that enzyme-specific therapeutics could be generated. To that end, interrogation of a selected small-molecule library of HK inhibitors has identified a class of PfHK inhibitors, isobenzothiazolinones, some of which have 50% inhibitory concentrations (IC50s) of <1 μM. Inhibition was reversible by dilution but not by treatment with a reducing agent, suggesting that the basis for enzyme inactivation was not covalent association with the inhibitor. Lastly, six of these compounds and the related molecule ebselen inhibited P. falciparum growth in vitro (50% effective concentration [EC50] of ≥0.6 and <6.8 μM). These findings suggest that the chemotypes identified here could represent leads for future development of therapeutics against P. falciparum. PMID:23716053

  13. Chemical complementation: a definitive phenotypic strategy for identifying small molecule inhibitors of elusive cellular targets.

    PubMed

    Vogt, Andreas; Lazo, John S

    2005-08-01

    Forward Pharmacology seeks to identify small or large molecules that modulate a normal or abnormal biological process in living cells or whole organisms and historically has been responsible for the discovery of many clinically used drugs. Forward Pharmacology approaches have become particularly attractive because advances in combinatorial chemistry and laboratory automation have made it possible to generate and interrogate large compound collections in a short period of time. Because many drug discovery efforts are now directed against specific biochemical targets, however, the utility of Forward Pharmacology is limited by the fact that assays to investigate compounds in biological systems are often phenotypic rather than target specific. We discuss here a novel strategy to discover target-based small molecules in intact cells using contemporary Forward Pharmacology in cells with specific genetic manipulations. The method, which we have termed "chemical complementation", is defined as the ability of small molecules to reverse a genetically induced phenotypic change in intact cells. Chemical complementation represents an extension of the commonly used genetic complementation approach, where cDNA libraries are used to investigate the function of genes based on their ability to rescue a specific genetic defect. We present examples of how chemical complementation has been used to identify and credential cell-active, small molecule inhibitors of 2 dual-specificity phosphatases, Cdc25A and MKP-3, which heretofore have eluded small molecule drug discovery efforts.

  14. Advances in treating psoriasis in the elderly with small molecule inhibitors.

    PubMed

    Cline, Abigail; Cardwell, Leah A; Feldman, Steven R

    2017-12-01

    Due to the chronic nature of psoriasis, the population of elderly psoriasis patients is increasing. However, many elderly psoriatic patients are not adequately treated because management is challenging as a result of comorbidities, polypharmacy, and progressive impairment of organ systems. Physicians may hesitate to use systemic or biologic agents in elderly psoriasis patients because of an increased risk of adverse events in this patient population. Small molecule medications are emerging as promising options for elderly patients with psoriasis and other inflammatory conditions. Areas covered: Here we review the efficacy, safety and tolerability of small molecule inhibitors apremilast, tofacitinib, ruxolitinib, baricitinib, and peficitinib in the treatment of psoriasis, with focus on their use in the elderly population. Expert opinion: Although small molecule inhibitors demonstrate efficacy in elderly patients with psoriasis, they will require larger head-to-head studies and post-marketing registries to evaluate their effectiveness and safety in specific patient populations. Apremilast, ruxolitinib, and peficitinib are effective agents with favorable side effect profiles; however, physicians should exercise caution when prescribing tofacitinib or baricitinib in elderly populations due to adverse events. The high cost of these drugs in the U.S. is likely to limit their use.

  15. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    PubMed

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies.

    PubMed

    Borisa, Ankit C; Bhatt, Hardik G

    2017-11-10

    Aurora kinase belongs to serine/threonine kinase family which controls cell division. Therapeutic inhibition of Aurora kinase showed great promise as probable anticancer regime because of its important role during cell division. Here, in this review, we have carried out exhaustive study of various synthetic molecules reported as Aurora kinase inhibitors and developed as lead molecule at various stages of clinical trials from its discovery in 1995 to till date. We reported details of small molecules, specifically inhibiting all 3 types of Aurora kinases, which includes extensive literature search in various database like various scientific journals, patents, scifinder and PubMed database, internet resources, books, etc. IC 50 values of tumor growth inhibition, in-vitro and in-vivo activity along with clinical trial data. Here, we took efforts to describe essence of Aurora kinase and its inhibition which could be used to develop anti-mitotic drug for the treatment of cancer. In conclusion, we also discuss future perspectives for development of novel inhibitors and their scope in drug development process. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease

    PubMed Central

    Balasubramanian, Anuradha; Manzano, Mark; Teramoto, Tadahisa; Pilankatta, Rajendra; Padmanabhan, Radhakrishnan

    2016-01-01

    The mosquito-borne dengue virus serotypes 1-4 (DENV1-4) and West Nile virus (WNV) cause serious illnesses worldwide associated with considerable morbidity and mortality. According to the World Health Organization (WHO) estimates, there are about 390 million infections every year leading to ~500,000 dengue haemorrhagic fever (DHF) cases and ~25,000 deaths, mostly among children. Antiviral therapies could reduce the morbidity and mortality associated with flaviviral infections, but currently there are no drugs available for treatment. In this study, a high-throughput screening assay for the Dengue protease was employed to screen ~120,000 small molecule compounds for identification of inhibitors. Eight of these inhibitors have been extensively analyzed for inhibition of the viral protease in vitro and cell-based viral replication using Renilla luciferase reporter replicon, infectivity (plaque) and cytotoxicity assays. Three of these compounds were identified as potent inhibitors of DENV and WNV proteases, and viral replication of DENV2 replicon and infectious RNA. Fluorescence quenching, kinetic analysis and molecular modeling of these inhibitors into the structure of NS2B-NS3 protease suggest a mode of inhibition for three compounds that they bind to the substrate binding pocket. PMID:27539384

  18. Development of indole compounds as small molecule fusion inhibitors targeting HIV-1 glycoprotein-41

    PubMed Central

    Zhou, Guangyan; Wu, Dong; Snyder, Beth; Ptak, Roger G.; Kaur, Harmeet; Gochin, Miriam

    2011-01-01

    Non-peptide inhibition of fusion remains an important goal in anti-HIV research, due to its potential for low cost prophylaxis or prevention of cell–cell transmission of the virus. We report here on a series of indole compounds that have been identified as fusion inhibitors of gp41 through a structure-based drug design approach. Experimental binding affinities of the compounds for the hydrophobic pocket were strongly correlated to fusion inhibitory data (R2 = 0.91), and corresponding inhibition of viral replication confirmed the hydrophobic pocket as a valid target for low molecular weight fusion inhibitors. The most active compound bound to the hydrophobic pocket and inhibited cell-cell fusion and viral replication at sub-µM levels. A common binding mode for the inhibitors in this series was established by carrying out docking studies using structures of gp41 in the Protein Data Bank. The molecules were flexible enough to conform to the contours of the pocket, and the most active compound was able to adopt a structure mimicking the hydrophobic contacts of the D-peptide PIE7. The results enhance our understanding of indole compounds as inhibitors of gp41. PMID:21928824

  19. Computer-assisted identification of novel small molecule inhibitors targeting GLUT1

    NASA Astrophysics Data System (ADS)

    Wan, Zhining; Li, Xin; Sun, Rong; Li, Yuanyuan; Wang, Xiaoyun; Li, Xinru; Rong, Li; Shi, Zheng; Bao, Jinku

    2015-12-01

    Glucose transporters (GLUTs) are the main carriers of glucose that facilitate the diffusion of glucose in mammalian cells, especially GLUT1. Notably, GLUT1 is a rate-limiting transporter for glucose uptake, and its overexpression is a common characteristic in most cancers. Thus, the inhibition of GLUT1 by novel small compounds to lower glucose levels for cancer cells has become an emerging strategy. Herein, we employed high-throughput screening approaches to identify potential inhibitors against the sugar-binding site of GLUT1. Firstly, molecular docking screening was launched against the specs products, and three molecules (ZINC19909927, ZINC19908826, and ZINC19815451) were selected as candidate GLUT1 inhibitors for further analysis. Then, taking the initial ligand β-NG as a reference, molecular dynamic (MD) simulations and molecular mechanics/generalized born surface area (MM/GBSA) method were applied to evaluate the binding stability and affinity of the three candidates towards GLUT1. Finally, we found that ZINC19909927 might have the highest affinity to occupy the binding site of GLUT1. Meanwhile, energy decomposition analysis identified several residues located in substrate-binding site that might provide clues for future inhibitor discovery towards GLUT1. Taken together, these results in our study may provide valuable information for identifying new inhibitors targeting GLUT1-mediated glucose transport and metabolism for cancer therapeutics.

  20. Small Molecule Inhibitors of Ser/thr Protein Phosphatases: Specificity, Use and Common Forms of Abuse

    PubMed Central

    Swingle, Mark; Ni, Li; Honkanen, Richard E.

    2009-01-01

    Natural product extracts have proven to be a rich source of small molecules that potently inhibit the catalytic activity of certain PPP-family ser/thr protein phosphatases. To date, the list of inhibitors includes, okadaic acid (produced by marine dionoflagelates, Prorocentrum sp. and Dinophysis sp.), calyculin A, dragmacidins (isolated from marine sponges), microcystins, nodularins (cyanobacteria, Microcystis sp. and Nodularia sp.), tautomycin, tautomycetin, cytostatins, phospholine, leustroducsins, phoslactomycins, fostriecin (soil bacteria, Streptomyces sp.) and cantharidin (blister beetles, ~1500 species). Many of these compounds share structural similarities, and several have become readily available for research purposes. Here we will review the specificity of available inhibitors, and present methods for their use in studying sensitive phosphatases. Common mistakes in the employment of these compounds will also be addressed briefly, notably the widespread misconception that they only inhibit the activity of PP1 and PP2A. Inhibitors of PP2B (calcineurin) will only be mentioned in passing, except to state that in our hands cypermethrin, deltamethrin, and fenvalerate, which are sold as potent inhibitors of PP2B, do not inhibit the catalytic activity of PP2B. PMID:17200551

  1. Non-Peptidic Small Molecule Inhibitors against Bcl-2 for Cancer Therapy

    PubMed Central

    Azmi, Asfar S.; Mohammad, Ramzi M.

    2008-01-01

    A critical regulator of the apoptotic machinery is the Bcl-2 family proteins whose over expression confers a protective effect on malignant cells against death signals of apoptosis. Cancer cells that are resistant to various anti-cancer drugs and treatment regimen are found to over express these Bcl-2 proteins such as Bcl-2, Bcl-XL, Mcl-1, Bcl-w and A1/Bfl1. In recent years there has been an exponential growth in the identification as well as synthesis of non-peptidic cell permeable small-molecule inhibitors (SMIs) of protein-protein interaction. The focus of this article is on inhibitors of anti-apoptotic protein Bcl-2. This review summarizes an up to date knowledge of the available SMIs, their mode of action as well as their current status in preclinical as well as clinical development. PMID:18767026

  2. High-throughput Screening of Small Molecule Inhibitors of the Streptococcus Quorum-sensing Signal Pathway.

    PubMed

    Ishii, Seiji; Fukui, Kenji; Yokoshima, Satoshi; Kumagai, Kazuo; Beniyama, Youko; Kodama, Tetsuya; Fukuyama, Tohru; Okabe, Takayoshi; Nagano, Tetsuo; Kojima, Hirotatsu; Yano, Takato

    2017-06-22

    The main components of the quorum-sensing system are expected to be favorable targets for drug development to combat various chronic infectious diseases. ComA of Streptococcus is an ATP-binding cassette transporter containing a peptidase domain (PEP), which is essential for the quorum-sensing signal production. Using high-throughput screening, we found a potent small molecule that suppressed the S. mutans quorum-sensing pathway through inhibition of PEP activity. The compound effectively attenuated the biofilm formation and competence development of S. mutans without inhibiting cell growth. The kinetic and structural studies with this molecule and a related compound unexpectedly revealed an allosteric site of PEP. This relatively hydrophobic site is thought to undergo large structural changes during the catalytic process. These compounds inhibit PEP activity by binding to and suppressing the structural changes of this site. These results showed that PEP is a good target for inhibitors of the Streptococcus quorum-sensing system.

  3. [Quorum sensing in Gram-negative bacteria: signal molecules, inhibitors and their potential therapeutic application].

    PubMed

    Lipa, Paulina; Kozieł, Marta; Janczarek, Monika

    2017-01-01

    Quorum Sensing (QS) is a phenomenon of chemical cell-to-cell communication consisting in the synthesis and secretion of signal molecules called autoinducers into the environment, which contribute in regulation of various physiological processes. QS was identified in different bacterial species, including symbiotic and pathogenic bacteria. QS systems play a crucial role in regulation of expression of genes which control motility, biofilm formation, and synthesis of virulence factors by pathogenic bacteria. These systems recognize signal molecules of different specificity which belong to a few groups and enable intra- and interspecific communication of bacterial cells as well as communication with cells of eukaryotic organisms (hosts). Inhibition of QS called Quorum Quenching (QQ) is now regarded to be a promising strategy to combat bacterial infections. So far, a large group of substances of natural and synthetic origin with a function of QS inhibitors, which can have potential therapeutic applications, has been identified.

  4. A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp

    PubMed Central

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z.; Mathews Griner, Lesley A.; Zheng, Wei; Inglese, James; Austin, Christopher P.; Marugan, Juan J.; Southall, Noel; Neumann, Susanne; Northup, John K.; Ferrer, Marc; Collins, Michael T.

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses. PMID:24667240

  5. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    PubMed

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Small-molecule inhibitors of protein-protein interactions: progressing towards the reality

    PubMed Central

    Arkin, Michelle R.; Tang, Yinyan; Wells, James A.

    2014-01-01

    Summary The past twenty years have seen many advances in our understanding of protein-protein interactions (PPI) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of ‘lead-like’ or ‘drug-like’ molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery - structure, computation, screening, and biomarkers. PPI become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last ten years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery. PMID:25237857

  7. Small-Molecule Inhibitors of Lethal Factor Protease Activity Protect against Anthrax Infection

    PubMed Central

    Crown, Devorah; Jiao, Guan-Sheng; Kim, Seongjin; Johnson, Alan; Leysath, Clinton; Leppla, Stephen H.

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, manifests its pathogenesis through the action of two secreted toxins. The bipartite lethal and edema toxins, a combination of lethal factor or edema factor with the protein protective antigen, are important virulence factors for this bacterium. We previously developed small-molecule inhibitors of lethal factor proteolytic activity (LFIs) and demonstrated their in vivo efficacy in a rat lethal toxin challenge model. In this work, we show that these LFIs protect against lethality caused by anthrax infection in mice when combined with subprotective doses of either antibiotics or neutralizing monoclonal antibodies that target edema factor. Significantly, these inhibitors provided protection against lethal infection when administered as a monotherapy. As little as two doses (10 mg/kg) administered at 2 h and 8 h after spore infection was sufficient to provide a significant survival benefit in infected mice. Administration of LFIs early in the infection was found to inhibit dissemination of vegetative bacteria to the organs in the first 32 h following infection. In addition, neutralizing antibodies against edema factor also inhibited bacterial dissemination with similar efficacy. Together, our findings confirm the important roles that both anthrax toxins play in establishing anthrax infection and demonstrate the potential for small-molecule therapeutics targeting these proteins. PMID:23774434

  8. Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2

    PubMed Central

    Hornyak, Peter; Askwith, Trevor; Walker, Sarah; Komulainen, Emilia; Paradowski, Michael; Pennicott, Lewis E.; Bartlett, Edward J.; Brissett, Nigel C.; Raoof, Ali; Watson, Mandy; Jordan, Allan M.; Ogilvie, Donald J.; Ward, Simon E.; Atack, John R.; Pearl, Laurence H.; Caldecott, Keith W.; Oliver, Antony W.

    2016-01-01

    Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5′-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a ‘humanized’ form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2. PMID:27099339

  9. Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2.

    PubMed

    Hornyak, Peter; Askwith, Trevor; Walker, Sarah; Komulainen, Emilia; Paradowski, Michael; Pennicott, Lewis E; Bartlett, Edward J; Brissett, Nigel C; Raoof, Ali; Watson, Mandy; Jordan, Allan M; Ogilvie, Donald J; Ward, Simon E; Atack, John R; Pearl, Laurence H; Caldecott, Keith W; Oliver, Antony W

    2016-07-01

    Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5'-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a 'humanized' form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2. © 2016 The Author(s).

  10. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1.

    PubMed

    Juneja, Manisha; Kobelt, Dennis; Walther, Wolfgang; Voss, Cynthia; Smith, Janice; Specker, Edgar; Neuenschwander, Martin; Gohlke, Björn-Oliver; Dahlmann, Mathias; Radetzki, Silke; Preissner, Robert; von Kries, Jens Peter; Schlag, Peter Michael; Stein, Ulrike

    2017-06-01

    MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.

  11. High Throughput Screen Identifies Small Molecule Inhibitors Specific for Mycobacterium tuberculosis Phosphoserine Phosphatase*

    PubMed Central

    Arora, Garima; Tiwari, Prabhakar; Mandal, Rahul Shubhra; Gupta, Arpit; Sharma, Deepak; Saha, Sudipto; Singh, Ramandeep

    2014-01-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis makes identification and validation of newer drug targets a global priority. Phosphoserine phosphatase (PSP), a key essential metabolic enzyme involved in conversion of O-phospho-l-serine to l-serine, was characterized in this study. The M. tuberculosis genome harbors all enzymes involved in l-serine biosynthesis including two PSP homologs: Rv0505c (SerB1) and Rv3042c (SerB2). In the present study, we have biochemically characterized SerB2 enzyme and developed malachite green-based high throughput assay system to identify SerB2 inhibitors. We have identified 10 compounds that were structurally different from known PSP inhibitors, and few of these scaffolds were highly specific in their ability to inhibit SerB2 enzyme, were noncytotoxic against mammalian cell lines, and inhibited M. tuberculosis growth in vitro. Surface plasmon resonance experiments demonstrated the relative binding for these inhibitors. The two best hits identified in our screen, clorobiocin and rosaniline, were bactericidal in activity and killed intracellular bacteria in a dose-dependent manner. We have also identified amino acid residues critical for these SerB2-small molecule interactions. This is the first study where we validate that M. tuberculosis SerB2 is a druggable and suitable target to pursue for further high throughput assay system screening. PMID:25037224

  12. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma.

    PubMed

    Faria, Claudia C; Agnihotri, Sameer; Mack, Stephen C; Golbourn, Brian J; Diaz, Roberto J; Olsen, Samantha; Bryant, Melissa; Bebenek, Matthew; Wang, Xin; Bertrand, Kelsey C; Kushida, Michelle; Head, Renee; Clark, Ian; Dirks, Peter; Smith, Christian A; Taylor, Michael D; Rutka, James T

    2015-08-28

    Advances in the molecular biology of medulloblastoma revealed four genetically and clinically distinct subgroups. Group 3 medulloblastomas are characterized by frequent amplifications of the oncogene MYC, a high incidence of metastasis, and poor prognosis despite aggressive therapy. We investigated several potential small molecule inhibitors to target Group 3 medulloblastomas based on gene expression data using an in silico drug screen. The Connectivity Map (C-MAP) analysis identified piperlongumine as the top candidate drug for non-WNT medulloblastomas and the cyclin-dependent kinase (CDK) inhibitor alsterpaullone as the compound predicted to have specific antitumor activity against Group 3 medulloblastomas. To validate our findings we used these inhibitors against established Group 3 medulloblastoma cell lines. The C-MAP predicted drugs reduced cell proliferation in vitro and increased survival in Group 3 medulloblastoma xenografts. Alsterpaullone had the highest efficacy in Group 3 medulloblastoma cells. Genomic profiling of Group 3 medulloblastoma cells treated with alsterpaullone confirmed inhibition of cell cycle-related genes, and down-regulation of MYC. Our results demonstrate the preclinical efficacy of using a targeted therapy approach for Group 3 medulloblastomas. Specifically, we provide rationale for advancing alsterpaullone as a targeted therapy in Group 3 medulloblastoma.

  13. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma

    PubMed Central

    Faria, Claudia C.; Agnihotri, Sameer; Mack, Stephen C.; Golbourn, Brian J.; Diaz, Roberto J.; Olsen, Samantha; Bryant, Melissa; Bebenek, Matthew; Wang, Xin; Bertrand, Kelsey C.; Kushida, Michelle; Head, Renee; Clark, Ian; Dirks, Peter; Smith, Christian A.; Taylor, Michael D.; Rutka, James T.

    2015-01-01

    Advances in the molecular biology of medulloblastoma revealed four genetically and clinically distinct subgroups. Group 3 medulloblastomas are characterized by frequent amplifications of the oncogene MYC, a high incidence of metastasis, and poor prognosis despite aggressive therapy. We investigated several potential small molecule inhibitors to target Group 3 medulloblastomas based on gene expression data using an in silico drug screen. The Connectivity Map (C-MAP) analysis identified piperlongumine as the top candidate drug for non-WNT medulloblastomas and the cyclin-dependent kinase (CDK) inhibitor alsterpaullone as the compound predicted to have specific antitumor activity against Group 3 medulloblastomas. To validate our findings we used these inhibitors against established Group 3 medulloblastoma cell lines. The C-MAP predicted drugs reduced cell proliferation in vitro and increased survival in Group 3 medulloblastoma xenografts. Alsterpaullone had the highest efficacy in Group 3 medulloblastoma cells. Genomic profiling of Group 3 medulloblastoma cells treated with alsterpaullone confirmed inhibition of cell cycle-related genes, and down-regulation of MYC. Our results demonstrate the preclinical efficacy of using a targeted therapy approach for Group 3 medulloblastomas. Specifically, we provide rationale for advancing alsterpaullone as a targeted therapy in Group 3 medulloblastoma. PMID:26061748

  14. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors.

    PubMed

    Peyressatre, Marion; Prével, Camille; Pellerano, Morgan; Morris, May C

    2015-01-23

    Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.

  15. Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling.

    PubMed

    Phoa, Athena F; Browne, Stephen; Gurgis, Fadi M S; Åkerfeldt, Mia C; Döbber, Alexander; Renn, Christian; Peifer, Christian; Stringer, Brett W; Day, Bryan W; Wong, Chin; Chircop, Megan; Johns, Terrance G; Kassiou, Michael; Munoz, Lenka

    2015-12-15

    We recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance. Eight analogues of CMPD1 with varying lipophilicity and basicity were synthesised and tested for efficacy in the cell viability assay using established glioblastoma cell lines and patient-derived primary glioblastoma cells. The mechanism of action for the most potent analogue 15 was determined using MK2 activation and tubulin polymerisation assays, together with the immunofluorescence analysis of the mitotic spindle formation. Apoptosis was analysed by Annexin V staining, immunoblotting analysis of bcl-2 proteins and PARP cleavage. The apoptotic activity of CMPD1 and analogue 15 was comparable across glioblastoma cell lines regardless of the EGFR status. Primary glioblastoma cells of the classical subtype that are characterized by enhanced EGFR activity were most sensitive to the treatment with CMPD1 and 15. In summary, we present mechanism of action for a novel small molecule tubulin inhibitor, compound 15 that inhibits tubulin polymerisation and mitotic spindle formation, induces degradation of anti-apoptotic bcl-2 proteins and leads to apoptosis of glioblastoma cells. We also demonstrate that the enhanced EGFR activity does not decrease the efficacy of tubulin inhibitors developed in this study. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors

    PubMed Central

    Peyressatre, Marion; Prével, Camille; Pellerano, Morgan; Morris, May C.

    2015-01-01

    Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported. PMID:25625291

  17. Identification and characterization of small molecule inhibitors of a PHD finger§

    PubMed Central

    Wagner, Elise K.; Nath, Nidhi; Flemming, Rod; Feltenberger, John B.; Denu, John M.

    2012-01-01

    A number of histone-binding domains are implicated in cancer through improper binding of chromatin. In a clinically reported case of acute myeloid leukemia (AML), a genetic fusion protein between nucleoporin 98 and the third plant homeodomain (PHD) finger of JARID1A drives an oncogenic transcriptional program that is dependent on histone binding by the PHD finger. By exploiting the requirement for chromatin binding in oncogenesis, therapeutics targeting histone readers may represent a new paradigm in drug development. In this study, we developed a novel small molecule screening strategy that utilizes HaloTag technology to identify several small molecules that disrupt binding of the JARID1A PHD finger to histone peptides. Small molecule inhibitors were validated biochemically through affinity pull downs, fluorescence polarization, and histone reader specificity studies. One compound was modified through medicinal chemistry to improve its potency while retaining histone reader selectivity. Molecular modeling and site-directed mutagenesis of JARID1A PHD3 provided insights into the biochemical basis of competitive inhibition. PMID:22994852

  18. Identification of Neutrophil Exocytosis Inhibitors (Nexinhibs), Small Molecule Inhibitors of Neutrophil Exocytosis and Inflammation: DRUGGABILITY OF THE SMALL GTPase Rab27a.

    PubMed

    Johnson, Jennifer L; Ramadass, Mahalakshmi; He, Jing; Brown, Steven J; Zhang, Jinzhong; Abgaryan, Lusine; Biris, Nikolaos; Gavathiotis, Evripidis; Rosen, Hugh; Catz, Sergio D

    2016-12-09

    Neutrophils constitute the first line of cellular defense in response to bacterial and fungal infections and rely on granular proteins to kill microorganisms, but uncontrolled secretion of neutrophil cargos is injurious to the host and should be closely regulated. Thus, increased plasma levels of neutrophil secretory proteins, including myeloperoxidase and elastase, are associated with tissue damage and are hallmarks of systemic inflammation. Here, we describe a novel high-throughput screening approach to identify small molecule inhibitors of the interaction between the small GTPase Rab27a and its effector JFC1, two central regulators of neutrophil exocytosis. Using this assay, we have identified small molecule inhibitors of Rab27a-JFC1 binding that were also active in cell-based neutrophil-specific exocytosis assays, demonstrating the druggability of Rab GTPases and their effectors. These compounds, named Nexinhibs (neutrophil exocytosis inhibitors), inhibit exocytosis of azurophilic granules in human neutrophils without affecting other important innate immune responses, including phagocytosis and neutrophil extracellular trap production. Furthermore, the compounds are reversible and potent inhibitors of the extracellular production of superoxide anion by preventing the up-regulation of the granule membrane-associated subunit of the NADPH oxidase at the plasma membrane. Nexinhibs also inhibit the up-regulation of activation signature molecules, including the adhesion molecules CD11b and CD66b. Importantly, by using a mouse model of endotoxin-induced systemic inflammation, we show that these inhibitors have significant activity in vivo manifested by decreased plasma levels of neutrophil secretory proteins and significantly decreased tissue infiltration by inflammatory neutrophils. Altogether, our data present the first neutrophil exocytosis-specific inhibitor with in vivo anti-inflammatory activity, supporting its potential use as an inhibitor of systemic

  19. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis

    NASA Astrophysics Data System (ADS)

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire

    2016-09-01

    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings.

  20. Structure-Function Correlation of G6, a Novel Small Molecule Inhibitor of Jak2

    PubMed Central

    Majumder, Anurima; Govindasamy, Lakshmanan; Magis, Andrew; Kiss, Róbert; Polgár, Tímea; Baskin, Rebekah; Allan, Robert W.; Agbandje-McKenna, Mavis; Reuther, Gary W.; Keserű, György M.; Bisht, Kirpal S.; Sayeski, Peter P.

    2010-01-01

    Somatic mutations in the Jak2 protein, such as V617F, cause aberrant Jak/STAT signaling and can lead to the development of myeloproliferative neoplasms. This discovery has led to the search for small molecule inhibitors that target Jak2. Using structure-based virtual screening, our group recently identified a novel small molecule inhibitor of Jak2 named G6. Here, we identified a structure-function correlation of this compound. Specifically, five derivative compounds of G6 having structural similarity to the original lead compound were obtained and analyzed for their ability to (i) inhibit Jak2-V617F-mediated cell growth, (ii) inhibit the levels of phospho-Jak2, phospho-STAT3, and phospho-STAT5; (iii) induce apoptosis in human erythroleukemia cells; and (iv) suppress pathologic cell growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Additionally, we computationally examined the interactions of these compounds with the ATP-binding pocket of the Jak2 kinase domain. We found that the stilbenoid core-containing derivatives of G6 significantly inhibited Jak2-V617F-mediated cell proliferation in a time- and dose-dependent manner. They also inhibited phosphorylation of Jak2, STAT3, and STAT5 proteins within cells, resulting in higher levels of apoptosis via the intrinsic apoptotic pathway. Finally, the stilbenoid derivatives inhibited the pathologic growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Collectively, our data demonstrate that G6 has a stilbenoid core that is indispensable for maintaining its Jak2 inhibitory potential. PMID:20667821

  1. Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes

    PubMed Central

    Issaenko, Olga A.; Amerik, Alexander Yu

    2012-01-01

    The ubiquitin-proteasome system (UPS) is usurped by many if not all cancers to regulate their survival, proliferation, invasion, angiogenesis and metastasis. Bioflavonoids curcumin and chalcones exhibit anti-neoplastic selectivity through inhibition of the 26S proteasome-activity within the UPS. Here, we provide evidence for a novel mechanism of action of chalcone-based derivatives AM146, RA-9 and RA-14, which exert anticancer activity by targeting deubiquitinating enzymes (DUB) without affecting 20S proteasome catalytic-core activity. The presence of the α,β-unsaturated carbonyl group susceptible to nucleophilic attack from the sulfhydryl of cysteines in the active sites of DUB determines the capacity of novel small-molecules to act as cell-permeable, partly selective DUB inhibitors and induce rapid accumulation of polyubiquitinated proteins and deplete the pool of free ubiquitin. These chalcone-derivatives directly suppress activity of DUB UCH-L1, UCH-L3, USP2, USP5 and USP8, which are known to regulate the turnover and stability of key regulators of cell survival and proliferation. Inhibition of DUB-activity mediated by these compounds downregulates cell-cycle promoters, e.g., cyclin D1 and upregulates tumor suppressors p53, p27Kip1 and p16Ink4A. These changes are associated with arrest in S-G2/M, abrogated anchorage-dependent growth and onset of apoptosis in breast, ovarian and cervical cancer cells without noticeable alterations in primary human cells. Altogether, this work provides evidence of antitumor activity of novel chalcone-based derivatives mediated by their DUB-targeting capacity; supports the development of pharmaceuticals to directly target DUB as a most efficient strategy compared with proteasome inhibition and also provides a clear rationale for the clinical evaluation of these novel small-molecule DUB inhibitors. PMID:22510564

  2. Development of small-molecule inhibitors of sphingosine-1-phosphate signaling.

    PubMed

    Edmonds, Yvette; Milstien, Sheldon; Spiegel, Sarah

    2011-12-01

    The pleiotropic sphingolipid mediator, sphingosine-1-phosphate, produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2, regulates many cellular and physiological processes important for homeostasis and development and pathophysiology. Many of the actions of S1P are mediated by a family of five specific cell surface receptors that are ubiquitously and specifically expressed, although important direct intracellular targets of S1P have also recently been identified. S1P, SphK1, and or S1P receptors have been linked to onset and progression of numerous diseases, including many types of cancer, and especially inflammatory disorders, such as multiple sclerosis, asthma, rheumatoid arthritis, inflammatory bowel disease, and sepsis. S1P formation and signaling are attractive targets for development of new therapeutics. The effects of a number of inhibitors of SphKs and S1PRs have been examined in animal models of human diseases. The effectiveness of the immunosuppressant FTY720 (known as Fingolimod or Gilenya), recently approved for the treatment of multiple sclerosis, whose actions are mediated by downregulation of S1PR1, has become the gold standard for S1P-centric drugs. Here, we review S1P biology and signaling with an emphasis on potential therapeutic benefits of specific interventions and discuss recent development of small molecule antagonists and agonists that target specific subtypes of S1P receptors as well as inhibitors of SphKs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation

    PubMed Central

    Chakravarty, Debyani; Santos, Elmer; Ryder, Mabel; Knauf, Jeffrey A.; Liao, Xiao-Hui; West, Brian L.; Bollag, Gideon; Kolesnick, Richard; Thin, Tin Htwe; Rosen, Neal; Zanzonico, Pat; Larson, Steven M.; Refetoff, Samuel; Ghossein, Ronald; Fagin, James A.

    2011-01-01

    Advanced human thyroid cancers, particularly those that are refractory to treatment with radioiodine (RAI), have a high prevalence of BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutations. However, the degree to which these cancers are dependent on BRAF expression is still unclear. To address this question, we generated mice expressing one of the most commonly detected BRAF mutations in human papillary thyroid carcinomas (BRAFV600E) in thyroid follicular cells in a doxycycline-inducible (dox-inducible) manner. Upon dox induction of BRAFV600E, the mice developed highly penetrant and poorly differentiated thyroid tumors. Discontinuation of dox extinguished BRAFV600E expression and reestablished thyroid follicular architecture and normal thyroid histology. Switching on BRAFV600E rapidly induced hypothyroidism and virtually abolished thyroid-specific gene expression and RAI incorporation, all of which were restored to near basal levels upon discontinuation of dox. Treatment of mice with these cancers with small molecule inhibitors of either MEK or mutant BRAF reduced their proliferative index and partially restored thyroid-specific gene expression. Strikingly, treatment with the MAPK pathway inhibitors rendered the tumor cells susceptible to a therapeutic dose of RAI. Our data show that thyroid tumors carrying BRAFV600E mutations are exquisitely dependent on the oncoprotein for viability and that genetic or pharmacological inhibition of its expression or activity is associated with tumor regression and restoration of RAI uptake in vivo in mice. These findings have potentially significant clinical ramifications. PMID:22105174

  4. DEVELOPMENT OF SMALL-MOLECULE INHIBITORS OF SPHINGOSINE-1-PHOSPHATE SIGNALING

    PubMed Central

    Edmonds, Yvette; Milstien, Sheldon; Spiegel, Sarah

    2011-01-01

    The pleiotropic sphingolipid mediator, sphingosine-1-phosphate, produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2, regulates many cellular and physiological processes important for homeostasis and development and pathophysiology. Many of the actions of S1P are mediated by a family of five specific cell surface receptors that are ubiquitously and specifically expressed, although important direct intracellular targets of S1P have also recently been identified. S1P, SphK1, and or S1P receptors have been linked to onset and progression of numerous diseases, including many types of cancer, and especially inflammatory disorders, such as multiple sclerosis, asthma, rheumatoid arthritis, inflammatory bowel disease, and sepsis. S1P formation and signaling are attractive targets for development of new therapeutics. The effects of a number of inhibitors of SphKs and S1PRs have been examined in animal models of human diseases. The effectiveness of the immunosuppressant FTY720 (known as Fingolomod or Gilenya), recently approved for the treatment of multiple sclerosis, whose actions are mediated by downregulation of S1PR1, has become the gold standard for S1P-centric drugs. Here, we review S1P biology and signaling with an emphasis on potential therapeutic benefits of specific interventions and discuss recent development of small molecule antagonists and agonists that target specific subtypes of S1P receptors as well as inhibitors of SphKs. PMID:21906625

  5. Interaction of small molecule inhibitors of HIV-1 entry with CCR5

    SciTech Connect

    Seibert, Christoph . E-mail: seiberc@mail.rockefeller.edu; Ying Weiwen; Gavrilov, Svetlana; Tsamis, Fotini; Kuhmann, Shawn E.; Palani, Anandan; Tagat, Jayaram R.; Clader, John W.; McCombie, Stuart W.; Baroudy, Bahige M.; Smith, Steven O.; Dragic, Tatjana; Moore, John P.; Sakmar, Thomas P.

    2006-05-25

    The CC-chemokine receptor 5 (CCR5) is the major coreceptor for macrophage-tropic (R5) HIV-1 strains. Several small molecule inhibitors of CCR5 that block chemokine binding and HIV-1 entry are being evaluated as drug candidates. Here we define how CCR5 antagonists TAK-779, AD101 (SCH-350581) and SCH-C (SCH-351125), which inhibit HIV-1 entry, interact with CCR5. Using a mutagenesis approach in combination with a viral entry assay to provide a direct functional read out, we tested predictions based on a homology model of CCR5 and analyzed the functions of more than 30 amino acid residues. We find that a key set of aromatic and aliphatic residues serves as a hydrophobic core for the ligand binding pocket, while E283 is critical for high affinity interaction, most likely by acting as the counterion for a positively charged nitrogen atom common to all three inhibitors. These results provide a structural basis for understanding how specific antagonists interact with CCR5, and may be useful for the rational design of new, improved CCR5 ligands.

  6. Small molecule inhibitor regorafenib inhibits RET signaling in neuroblastoma cells and effectively suppresses tumor growthin vivo.

    PubMed

    Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Pang, Jonathan C; Woodfield, Sarah E; Tao, Ling; Guan, Shan; Zhang, Huiyuan; Bieerkehazhi, Shayahati; Shi, Yan; Patel, Roma; Vasudevan, Sanjeev A; Yi, Joanna S; Muscal, Jodi A; Xu, Guo-Tong; Yang, Jianhua

    2017-11-28

    Neuroblastoma (NB), the most common extracranial pediatric solid tumor, continues to cause significant cancer-related morbidity and mortality in children. Dysregulation of oncogenic receptor tyrosine kinases (RTKs) has been shown to contribute to tumorigenesis in various human cancers and targeting these RTKs has had therapeutic benefit. RET is an RTK which is commonly expressed in NB, and high expression of RET correlates with poor outcomes in patients with NB. Herein we report that RET is required for NB cell proliferation and that the small molecule inhibitor regorafenib (BAY 73-4506) blocks glial cell derived neurotrophic factor (GDNF)-induced RET signaling in NB cells and inhibits NB growth both in vitro and in vivo . We found that regorafenib significantly inhibited cell proliferation and colony formation ability of NB cells. Moreover, regorafenib suppressed tumor growth in both an orthotopic xenograft NB mouse model and a TH-MYCN transgenic NB mouse model. Finally, regorafenib markedly improved the overall survival of TH-MYCN transgenic tumor-bearing mice. In summary, our study suggests that RET is a potential therapeutic target in NB, and that using a novel RET inhibitor, like regorafenib, should be investigated as a therapeutic treatment option for children with NB.

  7. Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production

    PubMed Central

    Poksay, Karen S.; Sheffler, Douglas J.; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E.; Cosford, Nicholas D. P.; John, Varghese

    2017-01-01

    Alzheimer’s disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds – identified here using cells and tissues expressing wt human APP – in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects. PMID:28261092

  8. Screening for Small Molecule Inhibitors of Statin-Induced APP C-terminal Toxic Fragment Production.

    PubMed

    Poksay, Karen S; Sheffler, Douglas J; Spilman, Patricia; Campagna, Jesus; Jagodzinska, Barbara; Descamps, Olivier; Gorostiza, Olivia; Matalis, Alex; Mullenix, Michael; Bredesen, Dale E; Cosford, Nicholas D P; John, Varghese

    2017-01-01

    Alzheimer's disease (AD) is characterized by neuronal and synaptic loss. One process that could contribute to this loss is the intracellular caspase cleavage of the amyloid precursor protein (APP) resulting in release of the toxic C-terminal 31-amino acid peptide APP-C31 along with the production of APPΔC31, full-length APP minus the C-terminal 31 amino acids. We previously found that a mutation in APP that prevents this caspase cleavage ameliorated synaptic loss and cognitive impairment in a murine AD model. Thus, inhibition of this cleavage is a reasonable target for new therapeutic development. In order to identify small molecules that inhibit the generation of APP-C31, we first used an APPΔC31 cleavage site-specific antibody to develop an AlphaLISA to screen several chemical compound libraries for the level of N-terminal fragment production. This antibody was also used to develop an ELISA for validation studies. In both high throughput screening (HTS) and validation testing, the ability of compounds to inhibit simvastatin- (HTS) or cerivastatin- (validation studies) induced caspase cleavage at the APP-D720 cleavage site was determined in Chinese hamster ovary (CHO) cells stably transfected with wildtype (wt) human APP (CHO-7W). Several compounds, as well as control pan-caspase inhibitor Q-VD-OPh, inhibited APPΔC31 production (measured fragment) and rescued cell death in a dose-dependent manner. The effective compounds fell into several classes including SERCA inhibitors, inhibitors of Wnt signaling, and calcium channel antagonists. Further studies are underway to evaluate the efficacy of lead compounds - identified here using cells and tissues expressing wt human APP - in mouse models of AD expressing mutated human APP, as well as to identify additional compounds and determine the mechanisms by which they exert their effects.

  9. CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor.

    PubMed

    Funnell, Tyler; Tasaki, Shinya; Oloumi, Arusha; Araki, Shinsuke; Kong, Esther; Yap, Damian; Nakayama, Yusuke; Hughes, Christopher S; Cheng, S-W Grace; Tozaki, Hirokazu; Iwatani, Misa; Sasaki, Satoshi; Ohashi, Tomohiro; Miyazaki, Tohru; Morishita, Nao; Morishita, Daisuke; Ogasawara-Shimizu, Mari; Ohori, Momoko; Nakao, Shoichi; Karashima, Masatoshi; Sano, Masaya; Murai, Aiko; Nomura, Toshiyuki; Uchiyama, Noriko; Kawamoto, Tomohiro; Hara, Ryujiro; Nakanishi, Osamu; Shumansky, Karey; Rosner, Jamie; Wan, Adrian; McKinney, Steven; Morin, Gregg B; Nakanishi, Atsushi; Shah, Sohrab; Toyoshiba, Hiroyoshi; Aparicio, Samuel

    2017-02-23

    CDC-like kinase phosphorylation of serine/arginine-rich proteins is central to RNA splicing reactions. Yet, the genomic network of CDC-like kinase-dependent RNA processing events remains poorly defined. Here, we explore the connectivity of genomic CDC-like kinase splicing functions by applying graduated, short-exposure, pharmacological CDC-like kinase inhibition using a novel small molecule (T3) with very high potency, selectivity, and cell-based stability. Using RNA-Seq, we define CDC-like kinase-responsive alternative splicing events, the large majority of which monotonically increase or decrease with increasing CDC-like kinase inhibition. We show that distinct RNA-binding motifs are associated with T3 response in skipped exons. Unexpectedly, we observe dose-dependent conjoined gene transcription, which is associated with motif enrichment in the last and second exons of upstream and downstream partners, respectively. siRNA knockdown of CLK2-associated genes significantly increases conjoined gene formation. Collectively, our results reveal an unexpected role for CDC-like kinase in conjoined gene formation, via regulation of 3'-end processing and associated splicing factors.The phosphorylation of serine/arginine-rich proteins by CDC-like kinase is a central regulatory mechanism for RNA splicing reactions. Here, the authors synthesize a novel small molecule CLK inhibitor and map CLK-responsive alternative splicing events and discover an effect on conjoined gene transcription.

  10. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation

    PubMed Central

    Sidarovich, Anzhalika; Will, Cindy L; Anokhina, Maria M; Ceballos, Javier; Sievers, Sonja; Agafonov, Dmitry E; Samatov, Timur; Bao, Penghui; Kastner, Berthold; Urlaub, Henning; Waldmann, Herbert; Lührmann, Reinhard

    2017-01-01

    Small molecule inhibitors of pre-mRNA splicing are important tools for identifying new spliceosome assembly intermediates, allowing a finer dissection of spliceosome dynamics and function. Here, we identified a small molecule that inhibits human pre-mRNA splicing at an intermediate stage during conversion of pre-catalytic spliceosomal B complexes into activated Bact complexes. Characterization of the stalled complexes (designated B028) revealed that U4/U6 snRNP proteins are released during activation before the U6 Lsm and B-specific proteins, and before recruitment and/or stable incorporation of Prp19/CDC5L complex and other Bact complex proteins. The U2/U6 RNA network in B028 complexes differs from that of the Bact complex, consistent with the idea that the catalytic RNA core forms stepwise during the B to Bact transition and is likely stabilized by the Prp19/CDC5L complex and related proteins. Taken together, our data provide new insights into the RNP rearrangements and extensive exchange of proteins that occurs during spliceosome activation. DOI: http://dx.doi.org/10.7554/eLife.23533.001 PMID:28300534

  11. Small Molecule Ice Recrystallization Inhibitors Enable Freezing of Human Red Blood Cells with Reduced Glycerol Concentrations

    PubMed Central

    Capicciotti, Chantelle J.; Kurach, Jayme D. R.; Turner, Tracey R.; Mancini, Ross S.; Acker, Jason P.; Ben, Robert N.

    2015-01-01

    In North America, red blood cells (RBCs) are cryopreserved in a clinical setting using high glycerol concentrations (40% w/v) with slow cooling rates (~1°C/min) prior to storage at −80°C, while European protocols use reduced glycerol concentrations with rapid freezing rates. After thawing and prior to transfusion, glycerol must be removed to avoid intravascular hemolysis. This is a time consuming process requiring specialized equipment. Small molecule ice recrystallization inhibitors (IRIs) such as β-PMP-Glc and β-pBrPh-Glc have the ability to prevent ice recrystallization, a process that contributes to cellular injury and decreased cell viability after cryopreservation. Herein, we report that addition of 110 mM β-PMP-Glc or 30 mM β-pBrPh-Glc to a 15% glycerol solution increases post-thaw RBC integrity by 30-50% using slow cooling rates and emphasize the potential of small molecule IRIs for the preservation of cells. PMID:25851700

  12. Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations.

    PubMed

    Capicciotti, Chantelle J; Kurach, Jayme D R; Turner, Tracey R; Mancini, Ross S; Acker, Jason P; Ben, Robert N

    2015-04-08

    In North America, red blood cells (RBCs) are cryopreserved in a clinical setting using high glycerol concentrations (40% w/v) with slow cooling rates (~1°C/min) prior to storage at -80°C, while European protocols use reduced glycerol concentrations with rapid freezing rates. After thawing and prior to transfusion, glycerol must be removed to avoid intravascular hemolysis. This is a time consuming process requiring specialized equipment. Small molecule ice recrystallization inhibitors (IRIs) such as β-PMP-Glc and β-pBrPh-Glc have the ability to prevent ice recrystallization, a process that contributes to cellular injury and decreased cell viability after cryopreservation. Herein, we report that addition of 110 mM β-PMP-Glc or 30 mM β-pBrPh-Glc to a 15% glycerol solution increases post-thaw RBC integrity by 30-50% using slow cooling rates and emphasize the potential of small molecule IRIs for the preservation of cells.

  13. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D

    2017-03-22

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  14. Toxicity evaluation of convection-enhanced delivery of small-molecule kinase inhibitors in naïve mouse brainstem.

    PubMed

    Zhou, Zhiping; Ho, Sharon L; Singh, Ranjodh; Pisapia, David J; Souweidane, Mark M

    2015-04-01

    Diffuse intrinsic pontine gliomas (DIPGs) are inoperable and lethal high-grade gliomas lacking definitive therapy. Platelet-derived growth factor receptor (PDGFR) and its downstream signaling molecules are the most commonly overexpressed oncogenes in DIPG. This study tested the effective concentration of PDGFR pathway inhibitors in cell culture and then toxicity of these small-molecule kinase inhibitors delivered to the mouse brainstem via convection-enhanced delivery (CED) for potential clinical application. Effective concentrations of small-molecule kinase inhibitors were first established in cell culture from a mouse brainstem glioma model. Sixteen mice underwent CED, a local drug delivery technique, of saline or of single and multidrug combinations of dasatinib (2 M), everolimus (20 M), and perifosine (0.63 mM) in the pons. Animals were kept alive for 3 days following the completion of infusion. No animals displayed any immediate or delayed neurological deficits postoperatively. Histological analysis revealed edema, microgliosis, acute inflammation, and/or axonal injury in the experimental animals consistent with mild acute drug toxicity. Brainstem CED of small-molecule kinase inhibitors in the mouse did not cause serious acute toxicities. Future studies will be necessary to evaluate longer-term safety to prepare for potential clinical application.

  15. Anti-angiogenic activity of a small molecule STAT3 inhibitor LLL12.

    PubMed

    Bid, Hemant K; Oswald, Duane; Li, Chenglong; London, Cheryl A; Lin, Jiayuh; Houghton, Peter J

    2012-01-01

    Recent data indicate the Signal Transducer and Activator of Transcription 3 (STAT3) pathway is required for VEGF production and angiogenesis in various types of cancers. STAT3 inhibitors have been shown to reduce tumor microvessel density in tumors but a direct anti-angiogenic activity has not been described. We investigated the direct action of a small molecule inhibitor of STAT3 (LLL12) in human umbilical cord vascular endothelial cells (HUVECs) in vitro, in a Matrigel model for angiogenesis in vivo, and its antitumor activity in a xenograft model of osteosarcoma. LLL12 (100 nM) significantly inhibited VEGF-stimulated STAT3 phosphorylation in HUVECs, reduced their proliferation/migration and inhibited VEGF-induced tube formation. Morphologic analysis of LLL12 treated HUVECs demonstrated marked changes in actin/tubulin distribution and bundling. In scid mice, LLL12 reduced microvessel invasion into VEGF-infused Matrigel plugs by ∼90% at a dose of 5 mg/kg daily. Following a period of tumor progression (2 weeks), LLL12 completely suppressed further growth of established OS-1 osteosarcoma xenografts. Pharmacodynamic studies showed robust phosphorylated STAT3 in control tumors, whereas phospho-STAT3 was not detected in LLL12-treated OS-1 tumors. Treated tumors demonstrated decreased proliferation (Ki67 staining), and decreased microvessel density (CD34 staining), but no significant increase in apoptosis (TUNEL staining), relative to controls. Assay of angiogenic factors, using an antibody array, showed VEGF, MMP-9, Angiopoietin1/2, Tissue Factor and FGF-1 expression were dramatically reduced in LLL12-treated tumors compared to control tumors. These findings provide the first evidence that LLL12 effectively inhibits tumor angiogenesis both in vitro and in vivo.

  16. Small-Molecule Inhibitors of Pendrin Potentiate the Diuretic Action of Furosemide.

    PubMed

    Cil, Onur; Haggie, Peter M; Phuan, Puay-Wah; Tan, Joseph-Anthony; Verkman, Alan S

    2016-12-01

    Pendrin is a Cl - /HCO 3 - exchanger expressed in type B and non-A, non-B intercalated cells in the distal nephron, where it facilitates Cl - absorption and is involved in Na + absorption and acid-base balance. Pendrin-knockout mice show no fluid-electrolyte abnormalities under baseline conditions, although mice with double knockout of pendrin and the Na + /Cl - cotransporter (NCC) manifest profound salt wasting. Thus, pendrin may attenuate diuretic-induced salt loss, but this function remains unconfirmed. To clarify the physiologic role of pendrin under conditions not confounded by gene knockout, and to test the potential utility of pendrin inhibitors for diuretic therapy, we tested in mice a small-molecule pendrin inhibitor identified from a high-throughput screen. In vitro, a pyrazole-thiophenesulfonamide, PDS inh -C01, inhibited Cl - /anion exchange mediated by mouse pendrin with a 50% inhibitory concentration of 1-3 µM, without affecting other major kidney tubule transporters. Administration of PDS inh -C01 to mice at predicted therapeutic doses, determined from serum and urine pharmacokinetics, did not affect urine output, osmolality, salt excretion, or acid-base balance. However, in mice treated acutely with furosemide, administration of PDS inh -C01 produced a 30% increase in urine output, with increased Na + and Cl - excretion. In mice treated long term with furosemide, in which renal pendrin is upregulated, PDS inh -C01 produced a 60% increase in urine output. Our findings clarify the role of pendrin in kidney function and suggest pendrin inhibition as a novel approach to potentiate the action of loop diuretics. Such combination therapy might enhance diuresis and salt excretion for treatment of hypertension and edema, perhaps including diuretic-resistant edema. Copyright © 2016 by the American Society of Nephrology.

  17. Small-Molecule Inhibitors of Pendrin Potentiate the Diuretic Action of Furosemide

    PubMed Central

    Cil, Onur; Haggie, Peter M.; Phuan, Puay-wah; Tan, Joseph-Anthony

    2016-01-01

    Pendrin is a Cl−/HCO3− exchanger expressed in type B and non-A, non-B intercalated cells in the distal nephron, where it facilitates Cl− absorption and is involved in Na+ absorption and acid-base balance. Pendrin-knockout mice show no fluid-electrolyte abnormalities under baseline conditions, although mice with double knockout of pendrin and the Na+/Cl− cotransporter (NCC) manifest profound salt wasting. Thus, pendrin may attenuate diuretic-induced salt loss, but this function remains unconfirmed. To clarify the physiologic role of pendrin under conditions not confounded by gene knockout, and to test the potential utility of pendrin inhibitors for diuretic therapy, we tested in mice a small-molecule pendrin inhibitor identified from a high-throughput screen. In vitro, a pyrazole-thiophenesulfonamide, PDSinh-C01, inhibited Cl−/anion exchange mediated by mouse pendrin with a 50% inhibitory concentration of 1–3 µM, without affecting other major kidney tubule transporters. Administration of PDSinh-C01 to mice at predicted therapeutic doses, determined from serum and urine pharmacokinetics, did not affect urine output, osmolality, salt excretion, or acid-base balance. However, in mice treated acutely with furosemide, administration of PDSinh-C01 produced a 30% increase in urine output, with increased Na+ and Cl− excretion. In mice treated long term with furosemide, in which renal pendrin is upregulated, PDSinh-C01 produced a 60% increase in urine output. Our findings clarify the role of pendrin in kidney function and suggest pendrin inhibition as a novel approach to potentiate the action of loop diuretics. Such combination therapy might enhance diuresis and salt excretion for treatment of hypertension and edema, perhaps including diuretic-resistant edema. PMID:27153921

  18. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    NASA Astrophysics Data System (ADS)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were

  19. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro

    PubMed Central

    Yadav, Mukesh Kumar; Go, Yoon Young; Chae, Sung-Won; Song, Jae-Jun

    2015-01-01

    Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered

  20. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    PubMed

    Yadav, Mukesh Kumar; Go, Yoon Young; Chae, Sung-Won; Song, Jae-Jun

    2015-01-01

    Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered

  1. Chemical derivatives of a small molecule deubiquitinase inhibitor have antiviral activity against several RNA viruses.

    PubMed

    Gonzalez-Hernandez, Marta J; Pal, Anupama; Gyan, Kofi E; Charbonneau, Marie-Eve; Showalter, Hollis D; Donato, Nicholas J; O'Riordan, Mary; Wobus, Christiane E

    2014-01-01

    Most antiviral treatment options target the invading pathogen and unavoidably encounter loss of efficacy as the pathogen mutates to overcome replication restrictions. A good strategy for circumventing drug resistance, or for pathogens without treatment options, is to target host cell proteins that are utilized by viruses during infection. The small molecule WP1130 is a selective deubiquitinase inhibitor shown previously to successfully reduce replication of noroviruses and some other RNA viruses. In this study, we screened a library of 31 small molecule derivatives of WP1130 to identify compounds that retained the broad-spectrum antiviral activity of the parent compound in vitro but exhibited improved drug-like properties, particularly increased aqueous solubility. Seventeen compounds significantly reduced murine norovirus infection in murine macrophage RAW 264.7 cells, with four causing decreases in viral titers that were similar or slightly better than WP1130 (1.9 to 2.6 log scale). Antiviral activity was observed following pre-treatment and up to 1 hour postinfection in RAW 264.7 cells as well as in primary bone marrow-derived macrophages. Treatment of the human norovirus replicon system cell line with the same four compounds also decreased levels of Norwalk virus RNA. No significant cytotoxicity was observed at the working concentration of 5 µM for all compounds tested. In addition, the WP1130 derivatives maintained their broad-spectrum antiviral activity against other RNA viruses, Sindbis virus, LaCrosse virus, encephalomyocarditis virus, and Tulane virus. Thus, altering structural characteristics of WP1130 can maintain effective broad-spectrum antiviral activity while increasing aqueous solubility.

  2. ETV6-NTRK3 as a therapeutic target of small molecule inhibitor PKC412

    SciTech Connect

    Chi, Hoang Thanh, E-mail: kk086406@mgs.k.u-tokyo.ac.jp; Ly, Bui Thi Kim; Kano, Yasuhiko

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer ETV6-NTRK3 is an oncogene with transformation activity in multiple cell lineages. Black-Right-Pointing-Pointer PKC412 could block ETV6-NTRK3 activation. Black-Right-Pointing-Pointer Loss of ETV6-NTRK3 phosphorylation leads to inactivation of its downstream signaling pathway. Black-Right-Pointing-Pointer Inhibition of ETV6-NTRK3 activation by PKC412 could be a novel strategy for the treatment. -- Abstract: The ETV6-NTRK3 (EN) fusion gene which encodes a chimeric tyrosine kinase was first identified by cloning of the t(12;15)(p13;q25) translocation in congenital fibrosarcoma (CFS). Since then, EN has been also found in congenital mesoblastic nephroma (CMN), secretory breast carcinoma (SBC) and acute myelogenous leukemia (AML). Using IMS-M2 and M0-91 cell linesmore » harboring the EN fusion gene, and Ba/F3 cells stably transfected with EN, we demonstrated that PKC412, also known as midostaurin, is an inhibitor of EN. Inhibition of EN activity by PKC412 suppressed the activity of it downstream molecules leading to inhibition of cell proliferation and induction of apoptosis. Our data for the first time suggested that PKC412 could serve as therapeutic drug for treatment of patients with this fusion.« less

  3. Anticancer activity of a novel small molecule tubulin inhibitor STK899704.

    PubMed

    Sakchaisri, Krisada; Kim, Sun-Ok; Hwang, Joonsung; Soung, Nak Kyun; Lee, Kyung Ho; Choi, Tae Woong; Lee, Yongjun; Park, Chan-Mi; Thimmegowda, Naraganahalli R; Lee, Phil Young; Shwetha, Bettaswamigowda; Srinivasrao, Ganipisetti; Pham, Thi Thu Huong; Jang, Jae-Hyuk; Yum, Hye-Won; Surh, Young-Joon; Lee, Kyung S; Park, Hwangseo; Kim, Seung Jun; Kwon, Yong Tae; Ahn, Jong Seog; Kim, Bo Yeon

    2017-01-01

    We have identified the small molecule STK899704 as a structurally novel tubulin inhibitor. STK899704 suppressed the proliferation of cancer cell lines from various origins with IC50 values ranging from 0.2 to 1.0 μM. STK899704 prevented the polymerization of purified tubulin in vitro and also depolymerized microtubule in cultured cells leading to mitotic arrest, associated with increased Cdc25C phosphorylation and the accumulation of both cyclin B1 and polo-like kinase 1 (Plk1), and apoptosis. Unlike many anticancer drugs such as Taxol and doxorubicin, STK899704 effectively displayed antiproliferative activity against multidrug-resistant cancer cell lines. The proposed binding mode of STK899704 is at the interface between αβ-tubulin heterodimer overlapping with the colchicine-binding site. Our in vivo carcinogenesis model further showed that STK 899704 is potent in both the prevention and regression of tumors, remarkably reducing the number and volume of skin tumor by STK899704 treatment. Moreover, it was significant to note that the efficacy of STK899704 was surprisingly comparable to 5-fluorouracil, a widely used anticancer therapeutic. Thus, our results demonstrate the potential of STK899704 to be developed as an anticancer chemotherapeutic and an alternative candidate for existing therapies.

  4. ETV6-NTRK3 as a therapeutic target of small molecule inhibitor PKC412

    SciTech Connect

    Chi, Hoang Thanh; Ly, Bui Thi Kim; Kano, Yasuhiko; Tojo, Arinobu; Sato, Yuko

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer ETV6-NTRK3 is an oncogene with transformation activity in multiple cell lineages. Black-Right-Pointing-Pointer PKC412 could block ETV6-NTRK3 activation. Black-Right-Pointing-Pointer Loss of ETV6-NTRK3 phosphorylation leads to inactivation of its downstream signaling pathway. Black-Right-Pointing-Pointer Inhibition of ETV6-NTRK3 activation by PKC412 could be a novel strategy for the treatment. -- Abstract: The ETV6-NTRK3 (EN) fusion gene which encodes a chimeric tyrosine kinase was first identified by cloning of the t(12;15)(p13;q25) translocation in congenital fibrosarcoma (CFS). Since then, EN has been also found in congenital mesoblastic nephroma (CMN), secretory breast carcinoma (SBC) and acute myelogenous leukemia (AML). Using IMS-M2 and M0-91 cell lines harboring the EN fusion gene, and Ba/F3 cells stably transfected with EN, we demonstrated that PKC412, also known as midostaurin, is an inhibitor of EN. Inhibition of EN activity by PKC412 suppressed the activity of it downstream molecules leading to inhibition of cell proliferation and induction of apoptosis. Our data for the first time suggested that PKC412 could serve as therapeutic drug for treatment of patients with this fusion.

  5. Anticancer activity of a novel small molecule tubulin inhibitor STK899704

    PubMed Central

    Lee, Kyung Ho; Choi, Tae Woong; Lee, Yongjun; Park, Chan-Mi; Thimmegowda, Naraganahalli R.; Lee, Phil Young; Shwetha, Bettaswamigowda; Srinivasrao, Ganipisetti; Pham, Thi Thu Huong; Jang, Jae-Hyuk; Yum, Hye-Won; Surh, Young-Joon; Lee, Kyung S.; Park, Hwangseo; Kim, Seung Jun; Kwon, Yong Tae; Ahn, Jong Seog; Kim, Bo Yeon

    2017-01-01

    We have identified the small molecule STK899704 as a structurally novel tubulin inhibitor. STK899704 suppressed the proliferation of cancer cell lines from various origins with IC50 values ranging from 0.2 to 1.0 μM. STK899704 prevented the polymerization of purified tubulin in vitro and also depolymerized microtubule in cultured cells leading to mitotic arrest, associated with increased Cdc25C phosphorylation and the accumulation of both cyclin B1 and polo-like kinase 1 (Plk1), and apoptosis. Unlike many anticancer drugs such as Taxol and doxorubicin, STK899704 effectively displayed antiproliferative activity against multidrug-resistant cancer cell lines. The proposed binding mode of STK899704 is at the interface between αβ-tubulin heterodimer overlapping with the colchicine-binding site. Our in vivo carcinogenesis model further showed that STK 899704 is potent in both the prevention and regression of tumors, remarkably reducing the number and volume of skin tumor by STK899704 treatment. Moreover, it was significant to note that the efficacy of STK899704 was surprisingly comparable to 5-fluorouracil, a widely used anticancer therapeutic. Thus, our results demonstrate the potential of STK899704 to be developed as an anticancer chemotherapeutic and an alternative candidate for existing therapies. PMID:28296906

  6. A small-molecule inhibitor of Haspin alters the kinetochore functions of Aurora B

    PubMed Central

    De Antoni, Anna; Maffini, Stefano; Knapp, Stefan

    2012-01-01

    By phosphorylating Thr3 of histone H3, Haspin promotes centromeric recruitment of the chromosome passenger complex (CPC) during mitosis. Aurora B kinase, a CPC subunit, sustains chromosome bi-orientation and the spindle assembly checkpoint (SAC). Here, we characterize the small molecule 5-iodotubercidin (5-ITu) as a potent Haspin inhibitor. In vitro, 5-ITu potently inhibited Haspin but not Aurora B. Consistently, 5-ITu counteracted the centromeric localization of the CPC without affecting the bulk of Aurora B activity in HeLa cells. Mislocalization of Aurora B correlated with dephosphorylation of CENP-A and Hec1 and SAC override at high nocodazole concentrations. 5-ITu also impaired kinetochore recruitment of Bub1 and BubR1 kinases, and this effect was reversed by concomitant inhibition of phosphatase activity. Forcing localization of Aurora B to centromeres in 5-ITu also restored Bub1 and BubR1 localization but failed to rescue the SAC override. This result suggests that a target of 5-ITu, possibly Haspin itself, may further contribute to SAC signaling downstream of Aurora B. PMID:23071153

  7. A small-molecule inhibitor of Haspin alters the kinetochore functions of Aurora B.

    PubMed

    De Antoni, Anna; Maffini, Stefano; Knapp, Stefan; Musacchio, Andrea; Santaguida, Stefano

    2012-10-15

    By phosphorylating Thr3 of histone H3, Haspin promotes centromeric recruitment of the chromosome passenger complex (CPC) during mitosis. Aurora B kinase, a CPC subunit, sustains chromosome bi-orientation and the spindle assembly checkpoint (SAC). Here, we characterize the small molecule 5-iodotubercidin (5-ITu) as a potent Haspin inhibitor. In vitro, 5-ITu potently inhibited Haspin but not Aurora B. Consistently, 5-ITu counteracted the centromeric localization of the CPC without affecting the bulk of Aurora B activity in HeLa cells. Mislocalization of Aurora B correlated with dephosphorylation of CENP-A and Hec1 and SAC override at high nocodazole concentrations. 5-ITu also impaired kinetochore recruitment of Bub1 and BubR1 kinases, and this effect was reversed by concomitant inhibition of phosphatase activity. Forcing localization of Aurora B to centromeres in 5-ITu also restored Bub1 and BubR1 localization but failed to rescue the SAC override. This result suggests that a target of 5-ITu, possibly Haspin itself, may further contribute to SAC signaling downstream of Aurora B.

  8. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy

    PubMed Central

    Webb, Thomas R; Slavish, Jake; George, Rani E; Look, A Thomas; Xue, Liquan; Jiang, Qin; Cui, Xiaoli; Rentrop, Walter B; Morris, Stephan W

    2009-01-01

    Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms – the most common being nucleophosmin-ALK – in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies – including glioblastoma and breast cancer – via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors. PMID:19275511

  9. Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2*

    PubMed Central

    La Venuta, Giuseppe; Wegehingel, Sabine; Sehr, Peter; Müller, Hans-Michael; Dimou, Eleni; Steringer, Julia P.; Grotwinkel, Mareike; Hentze, Nikolai; Mayer, Matthias P.; Will, David W.; Uhrig, Ulrike; Lewis, Joe D.; Nickel, Walter

    2016-01-01

    Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis. PMID:27382052

  10. Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2.

    PubMed

    La Venuta, Giuseppe; Wegehingel, Sabine; Sehr, Peter; Müller, Hans-Michael; Dimou, Eleni; Steringer, Julia P; Grotwinkel, Mareike; Hentze, Nikolai; Mayer, Matthias P; Will, David W; Uhrig, Ulrike; Lewis, Joe D; Nickel, Walter

    2016-08-19

    Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Multimodal effects of small molecule ROCK and LIMK inhibitors on mitosis, and their implication as anti-leukemia agents.

    PubMed

    Oku, Yusuke; Tareyanagi, Chiaki; Takaya, Shinichi; Osaka, Sayaka; Ujiie, Haruki; Yoshida, Kentaro; Nishiya, Naoyuki; Uehara, Yoshimasa

    2014-01-01

    Accurate chromosome segregation is vital for cell viability. Many cancer cells show chromosome instability (CIN) due to aberrant expression of the genes involved in chromosome segregation. The induction of massive chromosome segregation errors in such cancer cells by small molecule inhibitors is an emerging strategy to kill these cells selectively. Here we screened and characterized small molecule inhibitors which cause mitotic chromosome segregation errors to target cancer cell growth. We screened about 300 chemicals with known targets, and found that Rho-associated coiled-coil kinase (ROCK) inhibitors bypassed the spindle assembly checkpoint (SAC), which delays anaphase onset until proper kinetochore-microtubule interactions are established. We investigated how ROCK inhibitors affect chromosome segregation, and found that they induced microtubule-dependent centrosome fragmentation. Knockdown of ROCK1 and ROCK2 revealed their additive roles in centrosome integrity. Pharmacological inhibition of LIMK also induced centrosome fragmentation similar to that by ROCK inhibitors. Inhibition of ROCK or LIMK hyper-stabilized mitotic spindles and impaired Aurora-A activation. These results suggested that ROCK and LIMK are directly or indirectly involved in microtubule dynamics and activation of Aurora-A. Furthermore, inhibition of ROCK or LIMK suppressed T cell leukemia growth in vitro, but not peripheral blood mononuclear cells. They induced centrosome fragmentation and apoptosis in T cell leukemia cells. These results suggested that ROCK and LIMK can be a potential target for anti-cancer drugs.

  12. Increasing O-GlcNAc levels: An overview of small-molecule inhibitors of O-GlcNAcase.

    PubMed

    Macauley, Matthew S; Vocadlo, David J

    2010-02-01

    The O-GlcNAc modification is found on many nucleocytoplasmic proteins. The dynamic nature of O-GlcNAc, which in some ways is reminiscent of phosphorylation, has enabled investigators to modulate the stoichiometry of O-GlcNAc on proteins in order to study its function. Although several genetic and pharmacological methods for manipulating O-GlcNAc levels have been described, one of the most direct approaches of increasing global O-GlcNAc levels is by using small-molecule inhibitors of O-GlcNAcase (OGA). As the interest in increasing O-GlcNAc levels has grown, so too has the number of OGA inhibitors. This review provides an overview of the available methods of increasing O-GlcNAc levels, with a special emphasis on inhibition of OGA by small molecules. Known inhibitors of OGA are discussed with particular attention on those most suitable for cell-based biological studies. Several examples in which OGA inhibitors have been used to study the functional role of the O-GlcNAc modification in biological systems are discussed, highlighting the pros and cons of different inhibitors. Copyright 2009 Elsevier B.V. All rights reserved.

  13. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients.

    PubMed

    Hussain, S Farzana; Kong, Ling-Yuan; Jordan, Justin; Conrad, Charles; Madden, Timothy; Fokt, Isabella; Priebe, Waldemar; Heimberger, Amy B

    2007-10-15

    Overcoming the profound immunosuppression in patients with solid cancers has impeded efficacious immunotherapy. Signal transducers and activators of transcription 3 (STAT3) has recently emerged as a potential target for effective immunotherapy, and in this study, we describe a novel small molecule inhibitor of STAT3 that can penetrate the central nervous system (CNS) in mice and in physiologically relevant doses in vitro and reverse tolerance in immune cells isolated from glioblastoma multiforme (GBM) patients. Specifically, it induces the expression of costimulatory molecules on peripheral macrophages and tumor-infiltrating microglia, stimulates the production of the immune-stimulatory cytokines interleukin 2 (IL-2), IL-4, IL-12, and IL-15, and induces proliferation of effector T cells from GBM patients that are refractory to CD3 stimulation. We show that the functional enhancement of immune responses after STAT3 inhibition is accompanied by up-regulation of several key intracellular signaling molecules that critically regulate T-cell and monocyte activation. Specifically, the phosphorylation of Syk (Tyr352) in monocytes and ZAP-70 (Tyr319) in T cells are enhanced by the STAT-3 inhibitor in marked contrast to toll-like receptor and T-cell receptor agonists, respectively. This novel small molecule STAT3 inhibitor has tremendous potential for clinical applications with its penetration into the CNS, easy parental administration, direct tumor cytotoxicity, and potent immune adjuvant responses in immunosuppressed cancer patients.

  14. Identification and Mechanism of Action of a Novel Small-Molecule Inhibitor of Arenavirus Multiplication

    PubMed Central

    Ngo, Nhi; Cubitt, Beatrice; Iwasaki, Masaharu

    2015-01-01

    ABSTRACT Several arenaviruses cause hemorrhagic fever disease in humans and represent important public health problems in the regions where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is an important neglected human pathogen. There are no licensed arenavirus vaccines and current antiarenavirus therapy is limited to the use of ribavirin that is only partially effective. Therefore, there is an unmet need for novel antiarenaviral therapeutics. Here, we report the generation of a novel recombinant LCM virus and its use to develop a cell-based high-throughput screen to rapidly identify inhibitors of LCMV multiplication. We used this novel assay to screen a library of 30,400 small molecules and identified compound F3406 (chemical name: N-[3,5-bis(fluoranyl)phenyl]-2-[5,7-bis(oxidanylidene)-6-propyl-2-pyrrolidin-1-yl-[1,3]thiazolo[4,5-d]pyrimidin-4-yl]ethanamide), which exhibited strong anti-LCMV activity in the absence of cell toxicity. Mechanism-of-action studies revealed that F3406 inhibited LCMV cell entry by specifically interfering with the pH-dependent fusion in the endosome compartment that is mediated by LCMV glycoprotein GP2 and required to release the virus ribonucleoprotein into the cell cytoplasm to initiate transcription and replication of the virus genome. We identified residue M437 within the transmembrane domain of GP2 as critical for virus susceptibility to F3406. IMPORTANCE Hemorrhagic fever arenaviruses (HFA) are important human pathogens that cause high morbidity and mortality in areas where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Concerns posed by arenavirus infections are aggravated by the lack of U.S. Food and Drug Administration-licensed arenavirus vaccines and current

  15. Effects of 31 FDA approved small-molecule kinase inhibitors on isolated rat liver mitochondria.

    PubMed

    Zhang, Jun; Salminen, Alec; Yang, Xi; Luo, Yong; Wu, Qiangen; White, Matthew; Greenhaw, James; Ren, Lijun; Bryant, Matthew; Salminen, William; Papoian, Thomas; Mattes, William; Shi, Qiang

    2017-08-01

    The FDA has approved 31 small-molecule kinase inhibitors (KIs) for human use as of November 2016, with six having black box warnings for hepatotoxicity (BBW-H) in product labeling. The precise mechanisms and risk factors for KI-induced hepatotoxicity are poorly understood. Here, the 31 KIs were tested in isolated rat liver mitochondria, an in vitro system recently proposed to be a useful tool to predict drug-induced hepatotoxicity in humans. The KIs were incubated with mitochondria or submitochondrial particles at concentrations ranging from therapeutic maximal blood concentrations (Cmax) levels to 100-fold Cmax levels. Ten endpoints were measured, including oxygen consumption rate, inner membrane potential, cytochrome c release, swelling, reactive oxygen species, and individual respiratory chain complex (I-V) activities. Of the 31 KIs examined only three including sorafenib, regorafenib and pazopanib, all of which are hepatotoxic, caused significant mitochondrial toxicity at concentrations equal to the Cmax, indicating that mitochondrial toxicity likely contributes to the pathogenesis of hepatotoxicity associated with these KIs. At concentrations equal to 100-fold Cmax, 18 KIs were found to be toxic to mitochondria, and among six KIs with BBW-H, mitochondrial injury was induced by regorafenib, lapatinib, idelalisib, and pazopanib, but not ponatinib, or sunitinib. Mitochondrial liability at 100-fold Cmax had a positive predictive power (PPV) of 72% and negative predictive power (NPV) of 33% in predicting human KI hepatotoxicity as defined by product labeling, with the sensitivity and specificity being 62% and 44%, respectively. Similar predictive power was obtained using the criterion of Cmax ≥1.1 µM or daily dose ≥100 mg. Mitochondrial liability at 1-2.5-fold Cmax showed a 100% PPV and specificity, though the NPV and sensitivity were 32% and 14%, respectively. These data provide novel mechanistic insights into KI hepatotoxicity and indicate that

  16. Structure-based Design of Novel Small-Molecule Inhibitors of Plasmodium falciparum

    PubMed Central

    Kortagere, Sandhya; Welsh, William J.; Morrisey, Joanne M.; Daly, Thomas; Ejigiri, Ijeoma; Sinnis, Photini; Vaidya, Akhil B.; Bergman, Lawrence W.

    2010-01-01

    Malaria is endemic in most developing countries, with nearly 500 million cases estimated to occur each year. The need to design a new generation of antimalarial drugs that can combat the most drug-resistant forms of the malarial parasite is well recognized. In this study, we wanted to develop inhibitors of key proteins that form the invasion machinery of the malarial parasite. A critical feature of host-cell invasion by apicomplexan parasites is the interaction between the carboxy terminal tail of myosin A (MyoA) and the myosin tail interacting protein (MTIP). Using the co-crystal structure of the Plasmodium knowlesi MTIP and the MyoA tail peptide as input to the hybrid structure-based virtual screening approach, we identified a series of small molecules as having the potential to inhibit MTIP-MyoA interactions. Of the initial fifteen compounds tested, a pyrazole-urea compound inhibited P. falciparum growth with an EC50 value of 145 nM. We screened an additional 51 compounds belonging to the same chemical class and identified eight compounds with EC50 values less than 400 nM. Interestingly, the compounds appeared to act at several stages of the parasite’s life cycle to block growth and development. The pyrazole-urea compounds identified in this study could be effective antimalarial agents because they competitively inhibit a key protein-protein interaction between MTIP and MyoA responsible for the gliding motility and invasive features of the malarial parasite. PMID:20426475

  17. Chemical Genetics Approach to Engineer Kinesins with Sensitivity towards a Small-Molecule Inhibitor of Eg5.

    PubMed

    Möckel, Martin M; Hund, Corinna; Mayer, Thomas U

    2016-11-03

    Due to their fast and often reversible mode of action, small molecules are ideally suited to dissect biological processes. Yet, the validity of small-molecule studies is intimately tied to the specificity of the applied compounds, thus imposing a great challenge to screens for novel inhibitors. Here, we applied a chemical-genetics approach to render kinesin motor proteins sensitive to inhibition by the well-characterized small molecule S-Trityl-l-cysteine (STLC). STLC specifically inhibits the kinesin Eg5 through binding to a known allosteric site within the motor domain. Transfer of this allosteric binding site into the motor domain of the human kinesins Kif3A and Kif4A sensitizes them towards STLC. Single-molecule microscopy analyses confirmed that STLC inhibits the movement of chimeric but not wild-type Kif4A along microtubules. Thus, our proof-of-concept study revealed that this chemical-genetic approach provides a powerful strategy to specifically inhibit kinesins in vitro for which small-molecule inhibitors are not yet available. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. ALK mutants in the kinase domain exhibit altered kinase activity and differential sensitivity to small molecule ALK inhibitors.

    PubMed

    Lu, Lihui; Ghose, Arup K; Quail, Matthew R; Albom, Mark S; Durkin, John T; Holskin, Beverly P; Angeles, Thelma S; Meyer, Sheryl L; Ruggeri, Bruce A; Cheng, Mangeng

    2009-04-28

    Abnormal expression of constitutively active anaplastic lymphoma kinase (ALK) chimeric proteins in the pathogenesis of anaplastic large-cell lymphoma (ALCL) is well established. Recent studies with small molecule kinase inhibitors have provided solid proof-of-concept validation that inhibition of ALK is sufficient to attenuate the growth and proliferation of ALK (+) ALCL cells. In this study, several missense mutants of ALK in the phosphate anchor and gatekeeper regions were generated and their kinase activity was measured. NPM-ALK L182M, L182V, and L256M mutants displayed kinase activity in cells comparable to or higher than that of NPM-ALK wild type (WT) and rendered BaF3 cells into IL-3-independent growth, while NPM-ALK L182R, L256R, L256V, L256P, and L256Q displayed much weaker or little kinase activity in cells. Similar kinase activities were obtained with corresponding GST-ALK mutants with in vitro kinase assays. With regard to inhibitor response, NPM-ALK L182M and L182V exhibited sensitivity to a fused pyrrolocarbazole (FP)-derived ALK inhibitor comparable to that of NPM-ALK WT but were dramatically less sensitive to a diaminopyrimidine (DAP)-derived ALK inhibitor. On the other hand, NPM-ALK L256M exhibited >30-fold lower sensitivity to both FP-derived and DAP-derived ALK inhibitors. The growth inhibition and cytotoxicity of BaF3/NPM-ALK mutant cells induced by ALK inhibitors were consistent with inhibition of cellular NPM-ALK autophosphorylation. In a mouse survival model, treatment with the orally bioavailable DAP-ALK inhibitor substantially extended the survival of the mice inoculated with BaF3/NPM-ALK WT cells but not those inoculated with BaF3/NPM-ALK L256M cells. Binding of ALK inhibitors to ALK WT and mutants was analyzed using ALK homology models. In summary, several potential active ALK mutants were identified, and our data indicate that some of these mutants are resistant to select small molecule ALK inhibitors. Further characterization of these

  19. Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma.

    PubMed

    Hideshima, Teru; Qi, Jun; Paranal, Ronald M; Tang, Weiping; Greenberg, Edward; West, Nathan; Colling, Meaghan E; Estiu, Guillermina; Mazitschek, Ralph; Perry, Jennifer A; Ohguchi, Hiroto; Cottini, Francesca; Mimura, Naoya; Görgün, Güllü; Tai, Yu-Tzu; Richardson, Paul G; Carrasco, Ruben D; Wiest, Olaf; Schreiber, Stuart L; Anderson, Kenneth C; Bradner, James E

    2016-11-15

    Multiple myeloma (MM) has proven clinically susceptible to modulation of pathways of protein homeostasis. Blockade of proteasomal degradation of polyubiquitinated misfolded proteins by the proteasome inhibitor bortezomib (BTZ) achieves responses and prolongs survival in MM, but long-term treatment with BTZ leads to drug-resistant relapse in most patients. In a proof-of-concept study, we previously demonstrated that blocking aggresomal breakdown of polyubiquitinated misfolded proteins with the histone deacetylase 6 (HDAC6) inhibitor tubacin enhances BTZ-induced cytotoxicity in MM cells in vitro. However, these foundational studies were limited by the pharmacologic liabilities of tubacin as a chemical probe with only in vitro utility. Emerging from a focused library synthesis, a potent, selective, and bioavailable HDAC6 inhibitor, WT161, was created to study the mechanism of action of HDAC6 inhibition in MM alone and in combination with BTZ. WT161 in combination with BTZ triggers significant accumulation of polyubiquitinated proteins and cell stress, followed by caspase activation and apoptosis. More importantly, this combination treatment was effective in BTZ-resistant cells and in the presence of bone marrow stromal cells, which have been shown to mediate MM cell drug resistance. The activity of WT161 was confirmed in our human MM cell xenograft mouse model and established the framework for clinical trials of the combination treatment to improve patient outcomes in MM.

  20. Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma

    PubMed Central

    Hideshima, Teru; Paranal, Ronald M.; Tang, Weiping; Greenberg, Edward; West, Nathan; Colling, Meaghan E.; Estiu, Guillermina; Mazitschek, Ralph; Perry, Jennifer A.; Ohguchi, Hiroto; Cottini, Francesca; Mimura, Naoya; Görgün, Güllü; Tai, Yu-Tzu; Richardson, Paul G.; Carrasco, Ruben D.; Wiest, Olaf; Schreiber, Stuart L.; Anderson, Kenneth C.; Bradner, James E.

    2016-01-01

    Multiple myeloma (MM) has proven clinically susceptible to modulation of pathways of protein homeostasis. Blockade of proteasomal degradation of polyubiquitinated misfolded proteins by the proteasome inhibitor bortezomib (BTZ) achieves responses and prolongs survival in MM, but long-term treatment with BTZ leads to drug-resistant relapse in most patients. In a proof-of-concept study, we previously demonstrated that blocking aggresomal breakdown of polyubiquitinated misfolded proteins with the histone deacetylase 6 (HDAC6) inhibitor tubacin enhances BTZ-induced cytotoxicity in MM cells in vitro. However, these foundational studies were limited by the pharmacologic liabilities of tubacin as a chemical probe with only in vitro utility. Emerging from a focused library synthesis, a potent, selective, and bioavailable HDAC6 inhibitor, WT161, was created to study the mechanism of action of HDAC6 inhibition in MM alone and in combination with BTZ. WT161 in combination with BTZ triggers significant accumulation of polyubiquitinated proteins and cell stress, followed by caspase activation and apoptosis. More importantly, this combination treatment was effective in BTZ-resistant cells and in the presence of bone marrow stromal cells, which have been shown to mediate MM cell drug resistance. The activity of WT161 was confirmed in our human MM cell xenograft mouse model and established the framework for clinical trials of the combination treatment to improve patient outcomes in MM. PMID:27799547

  1. In Silico Docking of Small-Molecule Inhibitors to the Escherichia coli Type III Secretion System EscN ATPase

    DTIC Science & Technology

    2014-07-01

    mallei and Burkholderia pseudomallei, respectively), and YscN (Yersinia pestis ). Figure 1. Schematic of T3SS. During infection, the needle...separately demonstrated their abilities to inhibit YscN activity and protect eukaryotic cells from Y. pestis infection. We tested all members of the...Carmany, D.; Retford, M.; Guelta, M.; Dorsey, R.; Bozue, J.; Lee, M.S.; Olson, M.A. Identification of Small-Molecule Inhibitors of Yersinia pestis Type

  2. Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: Structure–activity relationship and a pharmacophore model

    DOE PAGES

    Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam

    2016-06-18

    Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. In addition, the structure–activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of themmore » show low micromolar IC 50 values.« less

  3. Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: Structure–activity relationship and a pharmacophore model

    SciTech Connect

    Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam

    2016-06-18

    Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. In addition, the structure–activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of them show low micromolar IC50 values.

  4. Screening of Potential Lead Molecule as Novel MurE Inhibitor: Virtual Screening, Molecular Dynamics and In Vitro Studies.

    PubMed

    Zaveri, Kunal; Kiranmayi, Patnala

    2017-01-01

    The prevalence of multi-drug resistance S. aureus is one of the most challenging tasks for the treatment of nosocomial infections. Proteins and enzymes of peptidoglycan biosynthesis pathway are one among the well-studied targets, but many of the enzymes are unexplored as targets. MurE is one such enzyme featured to be a promising target. As MurE plays an important role in ligating the L-lys to stem peptide at third position that is crucial for peptidoglycan synthesis. To screen the potential MurE inhibitor by in silico approach and evaluate the best potential lead molecule by in vitro methods. In the current study, we have employed structure based virtual screening targeting the active site of MurE, followed by Molecular dynamics and in vitro studies. Virtual screening resulted in successful screening of potential lead molecule ((2R)-2-[[1-[(2R)- 2-(benzyloxycarbonylamino) propanoyl] piperidine-4-carbonyl]amino]-5-guanidino-pentan). The molecular dynamics of the MurE and Lead molecule complex emphasizes that lead molecule has shown stable interactions with active site residues Asp 406 and with Glu 460. In vitro studies demonstrate that the lead molecule shows antibacterial activity close to standard antibiotic Vancomycin and higher than that of Ampicillin, Streptomycin and Rifampicin. The MIC of lead molecule at 50μg/mL was observed to be 3.75 μg/mL, MBC being bactericidal with value of 6.25 μg/mL, cytotoxicity showing 34.44% and IC50 of 40.06μg/mL. These results suggest ((2R)-2-[[1-[(2R)-2-(benzyloxycarbonylamino) propanoyl] piperidine-4-carbonyl]amino]-5-guanidino-pentan) as a promising lead molecule for developing a MurE inhibitor against treatment of S. aureus infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Discovery and Validation of a New Class of Small Molecule Toll-Like Receptor 4 (TLR4) Inhibitors

    PubMed Central

    Neal, Matthew D.; Jia, Hongpeng; Eyer, Benjamin; Good, Misty; Guerriero, Christopher J.; Sodhi, Chhinder P.; Afrazi, Amin; Prindle, Thomas; Ma, Congrong; Branca, Maria; Ozolek, John; Brodsky, Jeffrey L.; Wipf, Peter; Hackam, David J.

    2013-01-01

    Many inflammatory diseases may be linked to pathologically elevated signaling via the receptor for lipopolysaccharide (LPS), toll-like receptor 4 (TLR4). There has thus been great interest in the discovery of TLR4 inhibitors as potential anti-inflammatory agents. Recently, the structure of TLR4 bound to the inhibitor E5564 was solved, raising the possibility that novel TLR4 inhibitors that target the E5564-binding domain could be designed. We utilized a similarity search algorithm in conjunction with a limited screening approach of small molecule libraries to identify compounds that bind to the E5564 site and inhibit TLR4. Our lead compound, C34, is a 2-acetamidopyranoside (MW 389) with the formula C17H27NO9, which inhibited TLR4 in enterocytes and macrophages in vitro, and reduced systemic inflammation in mouse models of endotoxemia and necrotizing enterocolitis. Molecular docking of C34 to the hydrophobic internal pocket of the TLR4 co-receptor MD-2 demonstrated a tight fit, embedding the pyran ring deep inside the pocket. Strikingly, C34 inhibited LPS signaling ex-vivo in human ileum that was resected from infants with necrotizing enterocolitis. These findings identify C34 and the β-anomeric cyclohexyl analog C35 as novel leads for small molecule TLR4 inhibitors that have potential therapeutic benefit for TLR4-mediated inflammatory diseases. PMID:23776545

  6. Partial Peptide of α-Synuclein Modified with Small-Molecule Inhibitors Specifically Inhibits Amyloid Fibrillation of α-Synuclein

    PubMed Central

    Yoshida, Wataru; Kobayashi, Natsuki; Sasaki, Yasuhiko; Ikebukuro, Kazunori; Sode, Koji

    2013-01-01

    We have previously reported that pyrroloquinoline quinone (PQQ) prevents the amyloid formation of α-synuclein, amyloid β1–42 (Aβ1–42), and mouse prion protein. Moreover, PQQ-modified α-synuclein and a proteolytic fragment of the PQQ-modified α-synuclein are able to inhibit the amyloid formation of α-synuclein. Here, we identified the peptide sequences that play an important role as PQQ-modified specific peptide inhibitors of α-synuclein. We demonstrate that the PQQ-modified α-Syn36–46 peptide, which is a partial sequence of α-synuclein, prevented α-synuclein amyloid fibril formation but did not inhibit Aβ1–42 fibril formation. In addition, the α-synuclein partial peptide modified with other small-molecule inhibitors, Baicalein and epigallocatechin gallate (EGCG), prevented α-synuclein fibril formation. Currently reported quinone amyloid inhibitors do not have selectivity toward protein molecules. Therefore, our achievements provide a novel strategy for the development of targeted specific amyloid formation inhibitors: the combination of quinone compounds with specific peptide sequence from target proteins involved in amyloid formation. PMID:23358249

  7. A Small-Molecule Inhibitor of Bax and Bak Oligomerization Prevents Genotoxic Cell Death and Promotes Neuroprotection.

    PubMed

    Niu, Xin; Brahmbhatt, Hetal; Mergenthaler, Philipp; Zhang, Zhi; Sang, Jing; Daude, Michael; Ehlert, Fabian G R; Diederich, Wibke E; Wong, Eve; Zhu, Weijia; Pogmore, Justin; Nandy, Jyoti P; Satyanarayana, Maragani; Jimmidi, Ravi K; Arya, Prabhat; Leber, Brian; Lin, Jialing; Culmsee, Carsten; Yi, Jing; Andrews, David W

    2017-04-20

    Aberrant apoptosis can lead to acute or chronic degenerative diseases. Mitochondrial outer membrane permeabilization (MOMP) triggered by the oligomerization of the Bcl-2 family proteins Bax/Bak is an irreversible step leading to execution of apoptosis. Here, we describe the discovery of small-molecule inhibitors of Bax/Bak oligomerization that prevent MOMP. We demonstrate that these molecules disrupt multiple, but not all, interactions between Bax dimer interfaces thereby interfering with the formation of higher-order oligomers in the MOM, but not recruitment of Bax to the MOM. Small-molecule inhibition of Bax/Bak oligomerization allowed cells to evade apoptotic stimuli and rescued neurons from death after excitotoxicity, demonstrating that oligomerization of Bax is essential for MOMP. Our discovery of small-molecule Bax/Bak inhibitors provides novel tools for the investigation of the mechanisms leading to MOMP and will ultimately facilitate development of compounds inhibiting Bax/Bak in acute and chronic degenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. High-throughput screening of a small molecule library for promoters and inhibitors of mesenchymal stem cell osteogenic differentiation.

    PubMed

    Brey, Darren M; Motlekar, Nuzhat A; Diamond, Scott L; Mauck, Robert L; Garino, Jonathon P; Burdick, Jason A

    2011-01-01

    The use of high-throughput screening (HTS) techniques has long been employed by the pharmaceutical industry to increase discovery rates for new drugs that could be useful for disease treatment, yet this technology has only been minimally applied in other applications such as in tissue regeneration. In this work, an assay for the osteogenic differentiation of human mesenchymal stem cells (hMSCs) was developed and used to screen a library of small molecules for their potential as either promoters or inhibitors of osteogenesis, based on levels of alkaline phosphatase activity and cellular viability. From a library of 1,040 molecules, 36 promoters, and 20 inhibitors were identified as hits based on statistical criteria. Osteopromoters from this library were further investigated using standard culture techniques and a wider range of outcomes to verify that these compounds drive cellular differentiation. Several hits led to some improvement in the expression of alkaline phosphatase, osteogenic gene expression, and matrix mineralization by hMSCs when compared to the standard dexamethasone supplemented media and one molecule was investigated in combination with a recently identified biodegradable and osteoconductive polymer. This work illustrates the ability of HTS to more rapidly identify potential molecules to control stem cell differentiation. © 2010 Wiley Periodicals, Inc.

  9. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    SciTech Connect

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  10. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  11. Small-Molecule Inhibitors of Staphylococcus aureus RnpA-Mediated RNA Turnover and tRNA Processing

    PubMed Central

    Eidem, Tess M.; Lounsbury, Nicole; Emery, John F.; Bulger, Jeffrey; Smith, Andrew; Abou-Gharbia, Magid

    2015-01-01

    New agents are urgently needed for the therapeutic treatment of Staphylococcus aureus infections. In that regard, S. aureus RNase RnpA may represent a promising novel dual-function antimicrobial target that participates in two essential cellular processes, RNA degradation and tRNA maturation. Accordingly, we previously used a high-throughput screen to identify small-molecule inhibitors of the RNA-degrading activity of the enzyme and showed that the RnpA inhibitor RNPA1000 is an attractive antimicrobial development candidate. In this study, we used a series of in vitro and cellular assays to characterize a second RnpA inhibitor, RNPA2000, which was identified in our initial screening campaign and is structurally distinct from RNPA1000. In doing so, it was found that S. aureus RnpA does indeed participate in 5′-precursor tRNA processing, as was previously hypothesized. Further, we show that RNPA2000 is a bactericidal agent that inhibits both RnpA-associated RNA degradation and tRNA maturation activities both in vitro and within S. aureus. The compound appears to display specificity for RnpA, as it did not significantly affect the in vitro activities of unrelated bacterial or eukaryotic ribonucleases and did not display measurable human cytotoxicity. Finally, we show that RNPA2000 exhibits antimicrobial activity and inhibits tRNA processing in efflux-deficient Gram-negative pathogens. Taken together, these data support the targeting of RnpA for antimicrobial development purposes, establish that small-molecule inhibitors of both of the functions of the enzyme can be identified, and lend evidence that RnpA inhibitors may have broad-spectrum antimicrobial activities. PMID:25605356

  12. Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4.

    PubMed

    Soni, R; O'Reilly, T; Furet, P; Muller, L; Stephan, C; Zumstein-Mecker, S; Fretz, H; Fabbro, D; Chaudhuri, B

    2001-03-21

    Cyclin-dependent kinase 4 (Cdk4) represents a prime target for the treatment of cancer because most human cancers are characterized by overexpression of its activating partner cyclin D1, loss of the natural Cdk4-specific inhibitor p16, or mutation(s) in Cdk4's catalytic subunit. All of these can cause deregulated cell growth, resulting in tumor formation. We sought to identify a small molecule that could inhibit the kinase activity of Cdk4 in vitro and to then ascertain the effects of that inhibitor on cell growth and tumor volume in vivo. A triaminopyrimidine derivative, CINK4 (a chemical inhibitor of Cdk4), was identified by screening for compounds that could inhibit Cdk4 enzyme activity in vitro. Kinase assays were performed on diverse human Cdks and on other kinases that were expressed in and purified from insect cells to determine the specificity of CINK4. Cell cycle effects of CINK4 on tumor and normal cells were studied by flow cytometry, and changes in phosphorylation of the retinoblastoma protein (pRb), a substrate of Cdk4, were determined by western blotting. The effect of the inhibitor on tumor growth in vivo was studied by use of tumors established through xenografts of HCT116 colon carcinoma cells in mice. Statistical tests were two-sided. CINK4 specifically inhibited Cdk4/cyclin D1 in vitro. It caused growth arrest in tumor cells and in normal cells and prevented pRb phosphorylation. CINK4 treatment resulted in statistically significantly (P: =.031) smaller mean tumor volumes in a mouse xenograft model. Like p16, the natural inhibitor of Cdk4, CINK4 inhibits Cdk4 activity in vitro and slows tumor growth in vivo. The specificity of CINK4 for Cdk4 raises the possibility that this small molecule or one with a similar structure could have therapeutic value.

  13. Small Molecule MYC Inhibitor Conjugated to Integrin-Targeted Nanoparticles Extends Survival in a Mouse Model of Disseminated Multiple Myeloma

    PubMed Central

    Cui, Grace; Senpan, Angana; Yang, Xiaoxia; Lu, Lan; Weilbaecher, Katherine N.; Prochownik, Edward V.; Lanza, Gregory M.; Tomasson, Michael H.

    2015-01-01

    Multiple myeloma pathogenesis is driven by the MYC oncoprotein, its dimerization with MAX, and the binding of this heterodimer to E-Boxes in the vicinity of target genes. The systemic utility of potent small molecule inhibitors of MYC-MAX dimerization was limited by poor bioavailability, rapid metabolism, and inadequate target site penetration. We hypothesized that new lipid-based MYC-MAX dimerization inhibitor prodrugs delivered via integrin-targeted nanoparticles (NP) would overcome prior shortcomings of MYC inhibitor approaches and prolong survival in a mouse model of cancer. An Sn 2 lipase-labile prodrug inhibitor of MYC-MAX dimerization (MI1-PD) was developed which decreased cell proliferation and induced apoptosis in cultured multiple myeloma cell lines alone (P < 0.05) and when incorporated into integrin-targeted lipid-encapsulated NPs (P < 0.05). Binding and efficacy of NPs closely correlated with integrin expression of the target multiple myeloma cells. Using a KaLwRij metastatic multiple myeloma mouse model, VLA-4–targeted NPs (20 nm and 200 nm) incorporating MI1-PD (D) NPs conferred significant survival benefits compared with respective NP controls, targeted (T) no-drug (ND), and untargeted (NT) control NPs (T/D 200: 46 days vs. NT/ND: 28 days, P < 0.05 and T/D 20: 52 days vs. NT/ND: 29 days, P = 0.001). The smaller particles performed better of the two sizes. Neither MI1 nor MI1-PD provided survival benefit when administered systemically as free compounds. These results demonstrate for the first time that a small molecule inhibitor of the MYC transcription factor can be an effective anticancer agent when delivered using a targeted nanotherapy approach. PMID:25824336

  14. Small Molecule MYC Inhibitor Conjugated to Integrin-Targeted Nanoparticles Extends Survival in a Mouse Model of Disseminated Multiple Myeloma.

    PubMed

    Soodgupta, Deepti; Pan, Dipanjan; Cui, Grace; Senpan, Angana; Yang, Xiaoxia; Lu, Lan; Weilbaecher, Katherine N; Prochownik, Edward V; Lanza, Gregory M; Tomasson, Michael H

    2015-06-01

    Multiple myeloma pathogenesis is driven by the MYC oncoprotein, its dimerization with MAX, and the binding of this heterodimer to E-Boxes in the vicinity of target genes. The systemic utility of potent small molecule inhibitors of MYC-MAX dimerization was limited by poor bioavailability, rapid metabolism, and inadequate target site penetration. We hypothesized that new lipid-based MYC-MAX dimerization inhibitor prodrugs delivered via integrin-targeted nanoparticles (NP) would overcome prior shortcomings of MYC inhibitor approaches and prolong survival in a mouse model of cancer. An Sn 2 lipase-labile prodrug inhibitor of MYC-MAX dimerization (MI1-PD) was developed which decreased cell proliferation and induced apoptosis in cultured multiple myeloma cell lines alone (P < 0.05) and when incorporated into integrin-targeted lipid-encapsulated NPs (P < 0.05). Binding and efficacy of NPs closely correlated with integrin expression of the target multiple myeloma cells. Using a KaLwRij metastatic multiple myeloma mouse model, VLA-4-targeted NPs (20 nm and 200 nm) incorporating MI1-PD (D) NPs conferred significant survival benefits compared with respective NP controls, targeted (T) no-drug (ND), and untargeted (NT) control NPs (T/D 200: 46 days vs. 28 days, P < 0.05 and T/D 20: 52 days vs. 29 days, P = 0.001). The smaller particles performed better of the two sizes. Neither MI1 nor MI1-PD provided survival benefit when administered systemically as free compounds. These results demonstrate for the first time that a small molecule inhibitor of the MYC transcription factor can be an effective anticancer agent when delivered using a targeted nanotherapy approach. ©2015 American Association for Cancer Research.

  15. Unravelling the structural interactions between PKR kinase domain and its small molecule inhibitors using computational approaches.

    PubMed

    Barage, Sagar; Kulkarni, Abhijeet; Pal, Jayanta K; Joshi, Manali

    2017-08-01

    The RNA-dependent protein kinase (PKR), an eIF2α kinase plays an important role in anti-viral response, apoptosis and cell survival. It is also implicated to play a role in several cancers, metabolic and neurodegenerative disorders. A few ATP competitive inhibitors of the PKR have been reported in the literature with promising results in vitro and in vivo. The aim of this study was to unravel the structural interactions between these inhibitors and the PKR kinase domain using molecular simulations and docking. Our study reveals that the reported inhibitors bind in the adenine pocket and form hydrogen bonds with the hinge region and vdW interactions with non-polar residues in the binding site. The most potent inhibitor has several favorable interactions with the binding site and induces the P-loop to fold inward, creating a significant hydrophobic enclosure for itself. The computed binding free energies of these inhibitors are in accord with experimental data (IC 50 ). Strategies to design potent and selective PKR inhibitors are discussed to overcome the reported promiscuity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Different approaches toward an automatic structural alignment of drug molecules: Applications to sterol mimics, thrombin and thermolysin inhibitors

    NASA Astrophysics Data System (ADS)

    Klebe, Gerhard; Mietzner, Thomas; Weber, Frank

    1994-12-01

    A relative comparison of the binding properties of different drug molecules requires their mutual superposition with respect to various alignment criteria. In order to validate the results of different alignment methods, the crystallographically observed binding geometries of ligands in the pocket of a common protein receptor have been used. The alignment function in the program SEAL that calculates the mutual superposition of molecules has been optimized with respect to these references. Across the reference data set, alignments could be produced that show mean rms deviations of approximately 1 Å compared to the experimental situation. For structures with obvious skeletal similarities a multiple-flexible fit, linking common pharmacophoric groups by virtual springs, has been incorporated into the molecular mechanics program MOMO. In order to combine conformational searching with comparative alignments, the optimized SEAL approach has been applied to sets of conformers generated by MIMUMBA, a program for conformational analysis. Multiple-flexible fits have been calculated for inhibitors of ergosterol biosynthesis. Sets of different thrombin and thermolysin inhibitors have been conformationally analyzed and subsequently aligned by a combined MIMUMBA/SEAL approach. Since for these examples crystallographic data on their mutual alignment are available, an objective assessment of the computed results could be performed. Among the generated conformers, one geometry could be selected for the thrombin and thermolysin inhibitors that approached reasonably well the experimentally observed alignment.

  17. Call for Action: Invasive Fungal Infections Associated With Ibrutinib and Other Small Molecule Kinase Inhibitors Targeting Immune Signaling Pathways.

    PubMed

    Chamilos, Georgios; Lionakis, Michail S; Kontoyiannis, Dimitrios P

    2018-01-06

    Opportunistic infections caused by Pneumocystis jirovecii, Cryptococcus neoformans, and ubiquitous airborne filamentous fungi have been recently reported in patients with hematological cancers historically considered at low risk for invasive fungal infections (IFIs), after receipt of the Bruton tyrosine kinase inhibitor ibrutinib. The spectrum and severity of IFIs often observed in these patients implies the presence of a complex immunodeficiency that may not be solely attributed to mere inhibition of Bruton tyrosine kinase. In view of the surge in development of small molecule kinase inhibitors for treatment of malignant and autoimmune diseases, it is possible that there would be an emergence of IFIs associated with the effects of these molecules on the immune system. Preclinical assessment of the immunosuppressive effects of kinase inhibitors and human studies aimed at improving patient risk stratification for development of IFIs could lead to prevention, earlier diagnosis, and better outcomes in affected patients. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. Direct inactivation of human immunodeficiency virus type 1 by a novel small-molecule entry inhibitor, DCM205.

    PubMed

    Duong, Yen T; Meadows, D Christopher; Srivastava, Indresh K; Gervay-Hague, Jacquelyn; North, Thomas W

    2007-05-01

    With more than 40 million people living with human immunodeficiency virus (HIV), there is an urgent need to develop drugs that can be used in the form of a topical microbicide to prevent infection through sexual transmission. DCM205 is a recently discovered small-molecule inhibitor of HIV type 1 (HIV-1) that is able to directly inactivate HIV-1 in the absence of a cellular target. DCM205 is active against CXCR4-, CCR5-, and dual-tropic laboratory-adapted and primary strains of HIV-1. DCM205 binds to the HIV-1 envelope glycoprotein, and competition studies map the DCM205 binding at or near the V3 loop of gp120. Binding to this site interferes with the soluble CD4 interaction. With its ability to disable the virus particle, DCM205 represents a promising new class of HIV entry inhibitor that can be used as a strategy in the prevention of HIV-1/AIDS.

  19. A Target-Based High Throughput Screen Yields Trypanosoma brucei Hexokinase Small Molecule Inhibitors with Antiparasitic Activity

    PubMed Central

    Sharlow, Elizabeth R.; Lyda, Todd A.; Dodson, Heidi C.; Mustata, Gabriela; Morris, Meredith T.; Leimgruber, Stephanie S.; Lee, Kuo-Hsiung; Kashiwada, Yoshiki; Close, David; Lazo, John S.; Morris, James C.

    2010-01-01

    Background The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the γ-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay. Methodology/Principal Findings Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were ∼20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03≤EC50<3 µM) with parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics. Conclusions/Significance The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome. PMID:20405000

  20. In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment.

    PubMed

    Allegretta, Giuseppe; Maurer, Christine K; Eberhard, Jens; Maura, Damien; Hartmann, Rolf W; Rahme, Laurence; Empting, Martin

    2017-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium, which causes opportunistic infections in immuno-compromised individuals. Due to its multiple resistances toward antibiotics, the development of new drugs is required. Interfering with Quorum Sensing (QS), a cell-to-cell communication system, has shown to be highly efficient in reducing P. aeruginosa pathogenicity. One of its QS systems employs Pseudomonas Quinolone Signal (PQS) and 4-hydroxy-2-heptylquinoline (HHQ) as signal molecules. Both activate the transcriptional regulator MvfR (Multiple Virulence Factor Regulator), also called PqsR, driving the production of QS molecules as well as toxins and biofilm formation. The aim of this work was to elucidate the effects of QS inhibitors (QSIs), such as MvfR antagonists and PqsBC inhibitors, on the biosynthesis of the MvfR-regulated small molecules 2'-aminoacetophenone (2-AA), dihydroxyquinoline (DHQ), HHQ, PQS, and 4-hydroxy-2-heptylquinoline-N-oxide (HQNO). The employed synthetic MvfR antagonist fully inhibited pqs small molecule formation showing expected sigmoidal dose-response curves for 2-AA, HQNO, HHQ and PQS. Surprisingly, DHQ levels were enhanced at lower antagonist concentrations followed by a full suppression at higher QSI amounts. This particular bi-phasic profile hinted at the accumulation of a biosynthetic intermediate resulting in the observed overproduction of the shunt product DHQ. Additionally, investigations on PqsBC inhibitors showed a reduction of MvfR natural ligands, while increased 2-AA, DHQ and HQNO levels compared to the untreated cells were detected. Moreover, PqsBC inhibitors did not show any significant effect in PA14 pqsC mutant demonstrating their target selectivity. As 2-AA is important for antibacterial tolerance, the QSIs were evaluated in their capability to attenuate persistence. Indeed, persister cells were reduced along with 2-AA inhibition resulting from MvfR antagonism, but not from PqsBC inhibition. In conclusion, antagonizing

  1. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents, an update (2013-2015).

    PubMed

    Patil, Renukadevi; Patil, Siddappa A; Beaman, Kenneth D; Patil, Shivaputra A

    2016-07-01

    Discovery of new indole-based tubulin polymerization inhibitors will continue to dominate the synthetic efforts of many medicinal chemists working in the field. The indole ring system is an essential part of several tubulin inhibitors identified in the recent years. The present review article will update the synthesis, anticancer and tubulin inhibition activities of several important new indole classes such as 2-phenylindoles (28, 29 & 30), oxindoles (35 & 38), indole-3-acrylamides (44), indolines (46), aroylindoles (49), carbozoles (75, 76 & 82), azacarbolines (87) and annulated indoles (100-105).

  2. Mechanism and consequences of RAF kinase activation by small-molecule inhibitors

    PubMed Central

    Holderfield, M; Nagel, T E; Stuart, D D

    2014-01-01

    Despite the clinical success of RAF inhibitors in BRAF-mutated melanomas, attempts to target RAF kinases in the context of RAS-driven or otherwise RAF wild-type tumours have not only been ineffective, but RAF inhibitors appear to aggravate tumorigenesis in these settings. Subsequent preclinical investigation has revealed several regulatory mechanisms, feedback pathways and unexpected enzymatic quirks in the MAPK pathway, which may explain this paradox. In this review, we cover the various proposed molecular mechanisms for the RAF paradox, the clinical consequences and strategies to overcome it. PMID:24642617

  3. Identification of small molecule inhibitors of cytokinesis and single cell wound repair

    PubMed Central

    Clark, Andrew G.; Sider, Jenny R.; Verbrugghe, Koen; Fenteany, Gabriel; von Dassow, George; Bement, William M.

    2013-01-01

    Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used “low tech” in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The “diversity set”, an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in D. excentricus (sand dollar) embryos and single cell wound repair in X. laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processes. PMID:23125193

  4. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.

    PubMed

    Zhu, Jin-Yi; Cuellar, Rebecca A; Berndt, Norbert; Lee, Hee Eun; Olesen, Sanne H; Martin, Mathew P; Jensen, Jeffrey T; Georg, Gunda I; Schönbrunn, Ernst

    2017-09-28

    Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.

  5. Retinal toxicity induced by small-molecule Hsp90 inhibitors in beagle dogs.

    PubMed

    Kanamaru, Chisako; Yamada, Yuichiro; Hayashi, Shuji; Matsushita, Tomochika; Suda, Atsushi; Nagayasu, Miho; Kimura, Kazuya; Chiba, Shuichi

    2014-02-01

    Heat shock protein 90 (Hsp90) is a constitutively expressed molecular chaperone and plays an important role in the folding of client proteins with key regulatory roles in growth, survival, differentiation and metastasis. Because inhibition of Hsp90 degrades multiple oncogenic client proteins, it is considered to be an attractive anticancer therapy, and clinical trials of several Hsp90 inhibitors have been carried out. In the present study, two structurally distinct Hsp90 inhibitors, CH5164840 and CH5449302, were orally administered to beagle dogs to evaluate systemic toxicity. CH5164840 induced symptoms that suggest visual disorder, and ophthalmological observation and electroretinography (ERG) revealed loss of pupillary light reflex and abnormal waveforms, respectively. Histopathological examination showed changes in the photoreceptor cell layer and the outer nuclear layer of retina. On the other hand, while there were no clinical symptoms related to visual disorder, animals treated with CH5449302 showed similar abnormalities of ERG responses and histopathological changes in the photoreceptor cell layer and the outer nuclear layer of retina. The visual symptoms and abnormalities of ERG responses were noted at an earlier stage or lower dose than other toxicities in both compounds. Considering that two structurally distinct Hsp90 inhibitors induced a retinal toxicity in dogs after repeated administration, and that visual disorders were also reported in some clinical trials of Hsp90 inhibitors, it would seem highly likely that Hsp90 inhibition induces retinal toxicity. Also, our study indicated that a detailed ocular examination to evaluate the safety of Hsp90 inhibitors would be useful in both preclinical and clinical studies.

  6. Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy

    PubMed Central

    Adams, Christopher M.; Ebert, Scott M.; Dyle, Michael C.

    2017-01-01

    Purpose of review Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Recent findings Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Summary Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function. PMID:25807353

  7. A single-molecule force-spectroscopic study on stabilization of G-quadruplex DNA by a telomerase inhibitor.

    PubMed

    Funayama, Ryoto; Nakahara, Yoshio; Kado, Shinpei; Tanaka, Mutsuo; Kimura, Keiichi

    2014-08-21

    Single-molecule force spectroscopy was carried out using AFM force measurements for the purpose of direct observation of the stabilization of G-quadruplex DNA by a telomerase inhibitor, which is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin tetrakis(p-toluenesulfonate) (TMPyP). In AFM force measurements, we used an AFM tip and an Au substrate modified chemically with terminal-biotinylated telomere DNA and streptavidin, respectively. The telomere DNA was fully stretched by the AFM tip based on the bridge formation between the AFM tip and the Au substrate through the streptavidin-biotin interaction. The force-extension curves, which reflected the stretching of a single DNA molecule, were distinguished from all of the curves, judging from the rupture force and the contour length. The selected curves were analyzed using a worm-like chain model, and one of the fitting parameters, persistence length (lp), was used as an index for the stabilization of the G-quadruplex structure. Consequently, the lp value was significantly increased by the addition of TMPyP under the experimental conditions where the G-quadruplex structure could be formed. On the other hand, the value was hardly changed by the addition of TMPyP under the conditions except the above. Furthermore, the methodology developed and demonstrated in this work was applied to evaluate the stabilization of G-quadruplex DNA by other telomerase inhibitors such as ethidium bromide and p-xylene-bis(N-pyridinium bromide).

  8. Efficacy of a Mer and Flt3 tyrosine kinase small molecule inhibitor, UNC1666, in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, Alisa B.; Zhang, Weihe; Menachof, Kelly K.; Hill, Amanda A.; Rinella, Sean; Kirkpatrick, Gregory; Page, Lauren S.; Stashko, Michael A.; Jordan, Craig T.; Wei, Qi; Liu, Jing; Zhang, Dehui; DeRyckere, Deborah; Wang, Xiaodong; Frye, Stephen; Earp, H. Shelton; Graham, Douglas K.

    2015-01-01

    Mer and Flt3 receptor tyrosine kinases have been implicated as therapeutic targets in acute myeloid leukemia (AML). In this manuscript we describe UNC1666, a novel ATP-competitive small molecule tyrosine kinase inhibitor, which potently diminishes Mer and Flt3 phosphorylation in AML. Treatment with UNC1666 mediated biochemical and functional effects in AML cell lines expressing Mer or Flt3 internal tandem duplication (ITD), including decreased phosphorylation of Mer, Flt3 and downstream effectors Stat, Akt and Erk, induction of apoptosis in up to 98% of cells, and reduction of colony formation by greater than 90%, compared to treatment with vehicle. These effects were dose-dependent, with inhibition of downstream signaling and functional effects correlating with the degree of Mer or Flt3 kinase inhibition. Treatment of primary AML patient samples expressing Mer and/or Flt3-ITD with UNC1666 also inhibited Mer and Flt3 intracellular signaling, induced apoptosis, and inhibited colony formation. In summary, UNC1666 is a novel potent small molecule tyrosine kinase inhibitor that decreases oncogenic signaling and myeloblast survival, thereby validating dual Mer/Flt3 inhibition as an attractive treatment strategy for AML. PMID:25762638

  9. Nonsmall Cell Lung Cancer Therapy: Insight into Multitargeted Small-Molecule Growth Factor Receptor Inhibitors

    PubMed Central

    Luo, Yu-Hao; Ye, Mao; Liu, Jing

    2013-01-01

    To date, lung cancer is the leading cause of cancer-related death worldwide, among which nonsmall cell lung cancer (NSCLC) comprises about 85%. Taking into account the side effects of surgery, radiation, platinum-based doublet chemotherapy, and the growth self-sufficiency characteristic of cancer cells, drugs have been discovered toward growth factor receptor (GFR) to treat NSCLC. As expected, these drugs provide a greater benefit. To increase the efficacy of such growth factor receptor tyrosine kinase inhibitors (RTKIs), coinhibition of GFR signaling pathways and combination of inhibitors along with radiation or chemotherapy have drew intense insight. Although clinical trials about single-agent RTKIs or their combination strategies suggest their increase potency against cancer, they are not beyond adverse effects, and sometimes the effects are more deadly than chemotherapy. Nevertheless the hope for RTKIs may be proved true by further researches and digging deep into cancer therapeutics. PMID:23936861

  10. Treatment of Endocrine-Resistant Breast Cancer with a Small Molecule c-Myc Inhibitor

    DTIC Science & Technology

    2015-06-01

    resistant ( EDR ) breast cancer cells. Previously we have investigated if the BRD3/4 inhibitor JQ1 inhibits growth of breast cancer cells. We treated parental...with higher efficacy towards the tamoxifen resistant cells. Interestingly, JQ1 also inhibited four estrogen-deprivation-resistant ( EDR ; mimics...tamoxifen-resistant (Tam-R) and estrogen-deprivation-resistant ( EDR ) breast cancer cells in multiple resistant models;  We have demonstrated that in vivo

  11. Studying the Immunomodulatory Effects of Small Molecule Ras Inhibitors in Animal Models of Rheumatoid Arthritis

    DTIC Science & Technology

    2016-10-01

    samples from the FTS treatment arm. In conclusion, these data indeed allowed us to gain further insight into the biology behind the effect of FTS and... biology behind the therapeutic effects of FTS and F-FTS. We found that our Ras-inhibitors are potent down-modulators of the in vivo induction of gene...17A and IL-22). They also validate our working hypothesis that the biology behind the immunomodulatory effect of FTS and F-FTS is primarily

  12. Small Molecule Efflux Pump Inhibitors in Mycobacterium tuberculosis: A Rational Drug Design Perspective.

    PubMed

    Kapp, Erika; Malan, Sarel F; Joubert, Jacques; Sampson, Samantha L

    2018-01-01

    Drug resistance in Mycobacterium tuberculosis (M. tuberculosis) complicates management of tuberculosis. Efflux pumps contribute to low level resistance and acquisition of additional high level resistance mutations through sub-therapeutic concentrations of intracellular antimycobacterials. Various efflux pump inhibitors (EPIs) have been described for M. tuberculosis but little is known regarding the mechanism of efflux inhibition. As knowledge relating to the mechanism of action and drug target is central to the rational drug design of safe and sufficiently selective EPIs, this review aims to examine recent developments in the study of EPIs in M. tuberculosis from a rational drug development perspective and to provide an overview to facilitate systematic development of therapeutically effective EPIs. Review of literature points to a reduction in cellular energy or direct binding to the efflux pump as likely mechanisms for most EPIs described for M. tuberculosis. This review demonstrates that, where a direct interaction with efflux pumps is expected, both molecular structure and general physicochemical properties should be considered to accurately predict efflux pump substrates and inhibitors. Non-competitive EPIs do not necessarily demonstrate the same requirements as competitive inhibitors and it is therefore essential to differentiate between competitive and non-competitive inhibition to accurately determine structure activity relationships for efflux pump inhibition. It is also evident that there are various similarities between inhibitors of prokaryotic and eukaryotic efflux pumps but, depending on the specific chemical scaffolds under investigation, it may be possible to design EPIs that are less prone to inhibition of human P-glycoprotein, thereby reducing side effects and drug-drug interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Dissection of the Dislocation Pathway for Type I Membrane Proteins with a New Small Molecule Inhibitor, Eeyarestatin

    PubMed Central

    Fiebiger, Edda; Hirsch, Christian; Vyas, Jatin M.; Gordon, Eva; Ploegh, Hidde L.; Tortorella, Domenico

    2004-01-01

    The mammalian endoplasmic reticulum (ER)-to-cytosol degradation pathway for disposal of misfolded proteins is an attractive target for therapeutic intervention in diseases that are characterized by impaired protein degradation. The ability to do so is hampered by the small number of specific inhibitors available and by our limited understanding of the individual steps involved in this pathway. Cells that express a class I major histocompatibility complex (MHC) heavy chain-enhanced green fluorescent protein (EGFP) fusion protein and the human cytomegalovirus protein US11, which catalyzes dislocation of the class I MHC EGFP reporter, show only little fluorescence. Treatment with proteasome inhibitors increases their fluorescence by stabilizing EGFP-tagged MHC class I molecules. We used this change in signal intensity as a readout to screen a chemical library of 16,320 compounds and identified two structurally related compounds (eeyarestatin I and II) that interfered with the degradation of both EGFP-heavy chain and its endogenous unmodified class I MHC heavy chain counterpart. Eeyarestatin I also inhibited degradation of a second misfolded type I membrane protein, T-cell receptor α. Both compounds stabilize these dislocation substrates in the ER membrane, without preventing proteasomal turnover of cytosolic substrates. The new inhibitors must therefore interfere with a step that precedes proteasomal degradation. The use of eeyarestatin I thus allows the definition of a new intermediate in dislocation. PMID:14767067

  14. Identification of Small Molecule Inhibitors of Human As(III) S-Adenosylmethionine Methyltransferase (AS3MT).

    PubMed

    Dong, Hui; Madegowda, Mahendra; Nefzi, Adel; Houghten, Richard A; Giulianotti, Marc A; Rosen, Barry P

    2015-12-21

    Arsenic is the most ubiquitous environmental toxin and carcinogen. Long-term exposure to arsenic is associated with human diseases including cancer, cardiovascular disease, and diabetes. Human As(III) S-adenosylmethionine (SAM) methyltransferases (hAS3MT) methylates As(III) to trivalent mono- and dimethyl species that are more toxic and potentially more carcinogenic than inorganic arsenic. Modulators of hAS3MT activity may be useful for the prevention or treatment of arsenic-related diseases. Using a newly developed high-throughput assay for hAS3MT activity, we identified 10 novel noncompetitive small molecule inhibitors. In silico docking analysis with the crystal structure of an AS3MT orthologue suggests that the inhibitors bind in a cleft between domains that is distant from either the As(III) or SAM binding sites. This suggests the presence of a possible allosteric and regulatory site in the enzyme. These inhibitors may be useful tools for future research in arsenic metabolism and are the starting-point for the development of drugs against hAS3MT.

  15. Small Molecule MRP1 Inhibitor Reversan Increases the Therapeutic Index of Chemotherapy in Mouse Model of Neuroblastoma

    PubMed Central

    Burkhart, Catherine A.; Watt, Fujiko; Murray, Jayne; Pajic, Marina; Prokvolit, Anatoly; Xue, Chengyuan; Flemming, Claudia; Smith, Janice; Purmal, Andrei; Isachenko, Nadezhda; Komarov, Pavel G.; Gurova, Katerina V.; Sartorelli, Alan C.; Marshall, Glenn M.; Norris, Murray D.; Gudkov, Andrei V.; Haber, Michelle

    2009-01-01

    The multidrug resistance-associated protein (MRP1) has been closely linked to poor treatment response in several cancers, most notably neuroblastoma. Homozygous deletion of the MRP1 gene in primary murine neuroblastoma tumors resulted in increased sensitivity to MRP1 substrate drugs (vincristine, etoposide, doxorubicin) compared to tumors containing both copies of wild-type MRP1, indicating that MRP1 plays a significant role in the drug resistance in this tumor type and defining this multidrug transporter as a target for pharmacological suppression. Cell-based readout system was created to functionally determine intracellular accumulation of MRP1 substrates using p53-responsive reporter as an indicator of drug-induced DNA damage. Screening of small molecule libraries in this readout system revealed pyrazolopyrimidines as a prominent structural class of potent MRP1 inhibitors. Reversan, the lead compound of this class, increased the efficacy of both vincristine and etoposide in murine models of neuroblastoma (syngeneic and human xenografts). As opposed to the majority of inhibitors of multidrug transporters, Reversan was not toxic by itself nor did it increase the toxicity of chemotherapeutic drug exposure in mice. Therefore, Reversan represents a new class of non-toxic MRP1 inhibitor, which may be clinically useful for the treatment of neuroblastoma and other MRP1 over-expressing drug refractory tumors by increasing their sensitivity to conventional chemotherapy. PMID:19654298

  16. In silico approaches and proportional odds model towards identifying selective ADAM17 inhibitors from anti-inflammatory natural molecules.

    PubMed

    Borah, Pallab Kumar; Chakraborty, Sourav; Jha, Anupam N; Rajkhowa, Sanchaita; Duary, Raj Kumar

    2016-11-01

    ADAM metallopeptidase domain 17 (ADAM17) is an attractive target for the development of new anti-inflammatory drugs. We aimed to identify selective inhibitors of ADAM17 against matrix metalloproteinase enzymes (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, and MMP-16) which have substantial structural similarity. Target proteins were docked with 29 anti-inflammatory natural molecule ligands and a known selective inhibitor IK682. The ligands were screened based on Lipinski rules, interaction with the ADAM17 active site cavity, and then ranked using the proportional odds model multinomial logistic regression. Silymarin was the most selective inhibitor of ADAM17 exhibiting H-bonding with Glu 406, Gly 349, Glu 398, Asn 447, Tyr 433, and Lys 432. Molecular dynamics simulations were carried out for 10ns. The root mean square deviation (RMSD), root mean squared fluctuations (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and H-bonding indicated the induced metastability. A comparison of the principal component analysis revealed that the silymarin complex also explored lesser region compared to IK682 complex. A control study on ADAM17 protein (2OI0) is included. These observations present silymarin (widely present in plants such as milk thistle (Silybum maianum), wild artichokes (Cynara cardunculus), turmeric (Curcuma longa) roots, coriander (Coriandrum sativum) seeds, etc.) as a promising natural template for development of ADAM17 selective drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Single-molecule supercoil-relaxation assay as a screening tool to determine the mechanism and efficacy of human topoisomerase IB inhibitors

    PubMed Central

    Seol, Yeonee; Zhang, Hongliang; Agama, Keli; Lorence, Nicholas; Pommier, Yves; Neuman, Keir C.

    2015-01-01

    Human nuclear type IB topoisomerase (Top1) inhibitors are widely used and powerful anti-cancer agents. In this study, we introduce and validate a single-molecule supercoil relaxation assay as a molecular pharmacology tool for characterizing therapeutically relevant Top1 inhibitors. Using this assay, we determined the effects on Top1 supercoil relaxation activity of four Top1 inhibitors; three clinically relevant: camptothecin, LMP-400, LMP-776 (both indenoisoquinoline derivatives), and one natural product in preclinical development, lamellarin-D. Our results demonstrate that Top1 inhibitors have two distinct effects on Top1 activity: a decrease in supercoil relaxation rate and an increase in religation inhibition. The type and magnitude of the inhibition mode depend both on the specific inhibitor and on the topology of the DNA substrate. In general, the efficacy of inhibition is significantly higher with supercoiled than with relaxed DNA substrates. Comparing single-molecule inhibition with cell growth inhibition (IC50) measurements showed a correlation between the binding time of the Top1 inhibitors and their cytotoxic efficacy, independent of the mode of inhibition. This study demonstrates that the single-molecule supercoil relaxation assay is a sensitive method to elucidate the detailed mechanisms of Top1 inhibitors and is relevant for the cellular efficacy of Top1 inhibitors. PMID:26351326

  18. Screening for small molecule inhibitors of embryonic pathways: Sometimes you gotta crack a few eggs

    PubMed Central

    Hang, Brian I.; Thorne, Curtis A.; Robbins, David J.; Huppert, Stacey S.; Lee, Laura A.; Lee, Ethan

    2012-01-01

    Extract prepared form Xenopus eggs represents a cell-free system that has been shown to recapitulate a multitude of cellular processes, including cell cycle regulation, DNA replication/repair, and cytoskeletal dynamics. In addition, this system has been used to successfully reconstitute the Wnt pathway. Xenopus egg extract, which can be biochemically manipulated, offers an ideal medium in which small molecule screening can be performed in near native milieu. Thus, the use of Xenopus egg extract for small molecule screening represents an ideal bridge between targeted and phenotypic screening approaches. This review focuses on the use of this system for small molecules modulators of major signal transduction pathways (Notch, Hedgehog, and Wnt) that are critical for the development of the early Xenopus embryo. We describe the properties of Xenopus egg extract and our own high throughput screen for small molecules that modulate the Wnt pathway using this cell-free system. We propose that Xenopus egg extract could similarly be adapted for screening for modulators of the Notch and Hedgehog pathways. PMID:22261025

  19. Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase.

    PubMed

    Muratore, Giulia; Goracci, Laura; Mercorelli, Beatrice; Foeglein, Ágnes; Digard, Paul; Cruciani, Gabriele; Palù, Giorgio; Loregian, Arianna

    2012-04-17

    Influenza viruses are the cause of yearly epidemics and occasional pandemics that represent a significant challenge to public health. Current control strategies are imperfect and there is an unmet need for new antiviral therapies. Here, we report the identification of small molecule compounds able to effectively and specifically inhibit growth of influenza A and B viruses in cultured cells through targeting an assembly interface of the viral RNA-dependent RNA polymerase. Using an existing crystal structure of the primary protein-protein interface between the PB1 and PA subunits of the influenza A virus polymerase, we conducted an in silico screen to identify potential small molecule inhibitors. Selected compounds were then screened for their ability to inhibit the interaction between PB1 and PA in vitro using an ELISA-based assay and in cells, to inhibit nuclear import of a binary PB1-PA complex as well as transcription by the full viral ribonucleoprotein complex. Two compounds emerged as effective inhibitors with IC(50) values in the low micromolar range and negligible cytotoxicity. Of these, one compound also acted as a potent replication inhibitor of a variety of influenza A virus strains in Madin-Darby canine kidney (MDCK) cells, including H3N2 and H1N1 seasonal and 2009 pandemic strains. Importantly, this included an oseltamivir-resistant isolate. Furthermore, potent inhibition of influenza B viruses but not other RNA or DNA viruses was seen. Overall, these compounds provide a foundation for the development of a new generation of therapeutic agents exhibiting high specificity to influenza A and B viruses.

  20. Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors.

    PubMed

    Donahue, Elizabeth H; Dawson, Lisa F; Valiente, Esmeralda; Firth-Clark, Stuart; Major, Meriel R; Littler, Eddy; Perrior, Trevor R; Wren, Brendan W

    2014-08-31

    Bacterial sortases are transpeptidases that covalently anchor surface proteins to the peptidoglycan of the Gram-positive cell wall. Sortase protein anchoring is mediated by a conserved cell wall sorting signal on the anchored protein, comprising of a C-terminal recognition sequence containing an "LPXTG-like" motif, followed by a hydrophobic domain and a positively charged tail. We report that Clostridium difficile strain 630 encodes a single sortase (SrtB). A FRET-based assay was used to confirm that recombinant SrtB catalyzes the cleavage of fluorescently labelled peptides containing (S/P)PXTG motifs. Strain 630 encodes seven predicted cell wall proteins with the (S/P)PXTG sorting motif, four of which are conserved across all five C. difficile lineages and include potential adhesins and cell wall hydrolases. Replacement of the predicted catalytic cysteine residue at position 209 with alanine abolishes SrtB activity, as does addition of the cysteine protease inhibitor MTSET to the reaction. Mass spectrometry reveals the cleavage site to be between the threonine and glycine residues of the (S/P)PXTG peptide. Small-molecule inhibitors identified through an in silico screen inhibit SrtB enzymatic activity to a greater degree than MTSET. These results demonstrate for the first time that C. difficile encodes a single sortase enzyme, which cleaves motifs containing (S/P)PXTG in-vitro. The activity of the sortase can be inhibited by mutation of a cysteine residue in the predicted active site and by small-molecule inhibitors.

  1. Structure-based virtual screening identifies a small-molecule inhibitor of the profilin 1-actin interaction.

    PubMed

    Gau, David; Lewis, Taber; McDermott, Lee; Wipf, Peter; Koes, David; Roy, Partha

    2018-02-16

    Profilin 1 (Pfn1) is an important regulator of the actin cytoskeleton and plays a vital role in many actin-based cellular processes. Therefore, identification of a small-molecule intervention strategy targeted against the Pfn1-actin interaction could have broad utility in cytoskeletal research and further our understanding of the role of Pfn1 in actin-mediated biological processes. Based on an already resolved Pfn1-actin complex crystal structure, we performed structure-based virtual screening of small-molecule libraries to seek inhibitors of the Pfn1-actin interaction. We identified compounds that match the pharmacophore of the key actin residues of Pfn1-actin interaction and therefore have the potential to act as competitive inhibitors of this interaction. Subsequent biochemical assays identified two candidate compounds with nearly identical structures that can mitigate the effect of Pfn1 on actin polymerization in vitro As a further proof-of-concept test for cellular effects of these compounds, we performed proximity ligation assays in endothelial cells (ECs) to demonstrate compound-induced inhibition of Pfn1-actin interaction. Consistent with the important role of Pfn1 in regulating actin polymerization and various fundamental actin-based cellular activities (migration and proliferation), treatment of these compounds reduced the overall level of cellular filamentous (F) actin, slowed EC migration and proliferation, and inhibited the angiogenic ability of ECs both in vitro and ex vivo In summary, this study provides the first proof of principle of small-molecule-mediated interference with the Pfn1-actin interaction. Our findings may have potential general utility for perturbing actin-mediated cellular activities and biological processes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.

    PubMed

    Sail, Vibhavari; Rizzo, Alessandro A; Chatterjee, Nimrat; Dash, Radha C; Ozen, Zuleyha; Walker, Graham C; Korzhnev, Dmitry M; Hadden, M Kyle

    2017-07-21

    Translesion synthesis (TLS) is an important mechanism through which proliferating cells tolerate DNA damage during replication. The mutagenic Rev1/Polζ-dependent branch of TLS helps cancer cells survive first-line genotoxic chemotherapy and introduces mutations that can contribute to the acquired resistance so often observed with standard anticancer regimens. As such, inhibition of Rev1/Polζ-dependent TLS has recently emerged as a strategy to enhance the efficacy of first-line chemotherapy and reduce the acquisition of chemoresistance by decreasing tumor mutation rate. The TLS DNA polymerase Rev1 serves as an integral scaffolding protein that mediates the assembly of the active multiprotein TLS complexes. Protein-protein interactions (PPIs) between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) of other TLS DNA polymerases play an essential role in regulating TLS activity. To probe whether disrupting the Rev1-CT/RIR PPI is a valid approach for developing a new class of targeted anticancer agents, we designed a fluorescence polarization-based assay that was utilized in a pilot screen for small molecule inhibitors of this PPI. Two small molecule scaffolds that disrupt this interaction were identified, and secondary validation assays confirmed that compound 5 binds to Rev1-CT at the RIR interface. Finally, survival and mutagenesis assays in mouse embryonic fibroblasts and human fibrosarcoma HT1080 cells treated with cisplatin and ultraviolet light indicate that these compounds inhibit mutagenic Rev1/Polζ-dependent TLS in cells, validating the Rev1-CT/RIR PPI for future anticancer drug discovery and identifying the first small molecule inhibitors of TLS that target Rev1-CT.

  3. Inhibitors

    MedlinePlus

    ... replacement therapy and facilitate inhibitor surveillance. Journal of Thrombosis and Haemostasis. 2012; 10:1055-1061. Soucie JM, Miller CH, Kelly FM, Oakley M, Brown DL, Kucab P. A public health approach to the prevention of inhibitors in hemophilia. American Journal of Preventive ...

  4. Novel small-molecule inhibitors of hepatitis C virus entry block viral spread and promote viral clearance in cell culture.

    PubMed

    Coburn, Glen A; Fisch, Danielle N; Moorji, Sameer M; de Muys, Jean-Marc; Murga, Jose D; Paul, Dorothy; Provoncha, Kathleen P; Rotshteyn, Yakov; Han, Amy Q; Qian, Dapeng; Maddon, Paul J; Olson, William C

    2012-01-01

    Combinations of direct-acting anti-virals offer the potential to improve the efficacy, tolerability and duration of the current treatment regimen for hepatitis C virus (HCV) infection. Viral entry represents a distinct therapeutic target that has been validated clinically for a number of pathogenic viruses. To discover novel inhibitors of HCV entry, we conducted a high throughput screen of a proprietary small-molecule compound library using HCV pseudoviral particle (HCVpp) technology. We independently discovered and optimized a series of 1,3,5-triazine compounds that are potent, selective and non-cytotoxic inhibitors of HCV entry. Representative compounds fully suppress both cell-free virus and cell-to-cell spread of HCV in vitro. We demonstrate, for the first time, that long term treatment of an HCV cell culture with a potent entry inhibitor promotes sustained viral clearance in vitro. We have confirmed that a single amino acid variant, V719G, in the transmembrane domain of E2 is sufficient to confer resistance to multiple compounds from the triazine series. Resistance studies were extended by evaluating both the fusogenic properties and growth kinetics of drug-induced and natural amino acid variants in the HCVpp and HCV cell culture assays. Our results indicate that amino acid variations at position 719 incur a significant fitness penalty. Introduction of I719 into a genotype 1b envelope sequence did not affect HCV entry; however, the overall level of HCV replication was reduced compared to the parental genotype 1b/2a HCV strain. Consistent with these findings, I719 represents a significant fraction of the naturally occurring genotype 1b sequences. Importantly, I719, the most relevant natural polymorphism, did not significantly alter the susceptibility of HCV to the triazine compounds. The preclinical properties of these triazine compounds support further investigation of entry inhibitors as a potential novel therapy for HCV infection.

  5. Phenotypic Screening of Small-Molecule Inhibitors: Implications for Therapeutic Discovery and Drug Target Development in Traumatic Brain Injury.

    PubMed

    Al-Ali, Hassan; Lemmon, Vance P; Bixby, John L

    2016-01-01

    The inability of central nervous system (CNS) neurons to regenerate damaged axons and dendrites following traumatic brain injury (TBI) creates a substantial obstacle for functional recovery. Apoptotic cell death, deposition of scar tissue, and growth-repressive molecules produced by glia further complicate the problem and make it challenging for re-growing axons to extend across injury sites. To date, there are no approved drugs for the treatment of TBI, accentuating the need for relevant leads. Cell-based and organotypic bioassays can better mimic outcomes within the native CNS microenvironment than target-based screening methods and thus should speed the discovery of therapeutic agents that induce axon or dendrite regeneration. Additionally, when used to screen focused chemical libraries such as small-molecule protein kinase inhibitors, these assays can help elucidate molecular mechanisms involved in neurite outgrowth and regeneration as well as identify novel drug targets. Here, we describe a phenotypic cellular (high content) screening assay that utilizes brain-derived primary neurons for screening small-molecule chemical libraries.

  6. A Small Molecule Inhibitor of Pot1 Binding to Telomeric DNA

    PubMed Central

    Altschuler, Sarah E.; Croy, Johnny E.; Wuttke, Deborah S.

    2012-01-01

    Chromosome ends are complex structures, consisting of repetitive DNA sequence terminating in an ssDNA overhang with many associated proteins. Because alteration of these ends is a hallmark of cancer, telomeres and telomere maintenance have been prime drug targets. The universally conserved ssDNA overhang is sequence-specifically bound and regulated by Pot1 (protection of telomeres), and perturbation of Pot1 function has deleterious effects for proliferating cells. The specificity of the Pot1/ssDNA interaction and the key involvement of this protein in telomere maintenance have suggested directed inhibition of Pot1/ssDNA binding as an efficient means of disrupting telomere function. To explore this idea, we developed a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) screen for inhibitors of Pot1/ssDNA interaction. We conducted this screen with the DNA-binding subdomain of S. pombe Pot1 (Pot1pN), which confers the vast majority of Pot1 sequence-specificity and is highly similar to the first domain of human Pot1 (hPOT1). Screening a library of ~20,000 compounds yielded a single inhibitor, which we found interacted tightly with submicromolar affinity. Furthermore, this compound, subsequently identified as the bis-azo dye Congo red, was able to competitively inhibit hPOT1 binding to telomeric DNA. ITC and NMR chemical shift analysis suggest that CR interacts specifically with the ssDNA-binding cleft of Pot1, and that alteration of this surface disrupts CR binding. The identification of a specific inhibitor of ssDNA interaction establishes a new pathway for targeted telomere disruption. PMID:22978652

  7. Identification of a novel small molecule HIF-1alpha translation inhibitor.

    PubMed

    Narita, Takuhito; Yin, Shaoman; Gelin, Christine F; Moreno, Carlos S; Yepes, Manuel; Nicolaou, K C; Van Meir, Erwin G

    2009-10-01

    Hypoxia inducible factor-1 (HIF-1), the central mediator of the cellular response to low oxygen, functions as a transcription factor for a broad range of genes that provide adaptive responses to oxygen deprivation. HIF-1 is overexpressed in cancer and has become an important therapeutic target in solid tumors. In this study, a novel HIF-1alpha inhibitor was identified and its molecular mechanism was investigated. Using a HIF-responsive reporter cell-based assay, a 10,000-member natural product-like chemical compound library was screened to identify novel HIF-1 inhibitors. This led us to discover KC7F2, a lead compound with a central structure of cystamine. The effects of KC7F2 on HIF-1 transcription, translation, and protein degradation processes were analyzed. KC7F2 markedly inhibited HIF-mediated transcription in cells derived from different tumor types, including glioma, breast, and prostate cancers, and exhibited enhanced cytotoxicity under hypoxia. KC7F2 prevented the activation of HIF-target genes such as carbonic anhydrase IX, matrix metalloproteinase 2 (MMP2), endothelin 1, and enolase 1. An investigation into the mechanism of action of KC7F2 showed that it worked through the down-regulation of HIF-1alpha protein synthesis, an effect accompanied by the suppression of the phosphorylation of eukaryotic translation initiation factor 4E binding protein 1 and p70 S6 kinase, key regulators of HIF-1alpha protein synthesis. These results show that KC7F2 is a potent HIF-1 pathway inhibitor and its potential as a cancer therapy agent warrants further study.

  8. Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

    SciTech Connect

    Diaz, Dolores; Ford, Kevin A.; Hartley, Dylan P.; Harstad, Eric B.; Cain, Gary R.; Achilles-Poon, Kirsten; Nguyen, Trung; Peng, Jing; Zheng, Zhong; Merchant, Mark; Sutherlin, Daniel P.; Gaudino, John J.; Kaus, Robert; Lewin-Koh, Sock C.; Choo, Edna F.; Liederer, Bianca M.; Dambach, Donna M.

    2013-01-01

    Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ► Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ► New analysis tools to assess electrostatic effects and ionization are presented. ► Chemical and PK drivers of toxicity can be leveraged to improve safety.

  9. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro

    SciTech Connect

    Hasinoff, Brian B., E-mail: B_Hasinoff@UManitoba.ca; Patel, Daywin

    2010-12-01

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib,more » dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage.« less

  10. Small molecule inhibitors of Ca 2+-S100B reveal two protein conformations

    DOE PAGES

    Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.; ...

    2016-01-04

    The drug pentamidine inhibits calcium-dependent complex formation with p53 ( CaS100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure–activity relationship (SAR) studies were therefore completed in this study with 23 pentamidine analogues, and X-ray structures of CaS100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the “FF-gate”. For symmetric pentamidine analogues ( CaS100B· 5a, CaS100B· 6b) a channel between sites 1 and 2 on S100B was occluded bymore » residue Phe88, but for an asymmetric pentamidine analogue ( CaS100B· 17), this same channel was open. Finally, the CaS100B· 17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B·p53 inhibitor design.« less

  11. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    SciTech Connect

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB a–b-subunit interface and affects multiple steps in the enzyme’s overall reaction, resulting in inhibition not easily overcome by changes in metabolicmore » environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.« less

  12. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    SciTech Connect

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α–β-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolicmore » environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.« less

  13. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    SciTech Connect

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB a–b-subunit interface and affects multiple steps in the enzyme’s overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  14. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    SciTech Connect

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α–β-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  15. Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors

    NASA Astrophysics Data System (ADS)

    Tan, Wen; Mei, Hu; Chao, Li; Liu, Tengfei; Pan, Xianchao; Shu, Mao; Yang, Li

    2013-12-01

    P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter. The over expression of P-gp leads to the development of multidrug resistance (MDR), which is a major obstacle to effective treatment of cancer. Thus, designing effective P-gp inhibitors has an extremely important role in the overcoming MDR. In this paper, both ligand-based quantitative structure-activity relationship (QSAR) and receptor-based molecular docking are used to predict P-gp inhibitors. The results show that each method achieves good prediction performance. According to the results of tenfold cross-validation, an optimal linear SVM model with only three descriptors is established on 857 training samples, of which the overall accuracy (Acc), sensitivity, specificity, and Matthews correlation coefficient are 0.840, 0.873, 0.813, and 0.683, respectively. The SVM model is further validated by 418 test samples with the overall Acc of 0.868. Based on a homology model of human P-gp established, Surflex-dock is also performed to give binding free energy-based evaluations with the overall accuracies of 0.823 for the test set. Furthermore, a consensus evaluation is also performed by using these two methods. Both QSAR and molecular docking studies indicate that molecular volume, hydrophobicity and aromaticity are three dominant factors influencing the inhibitory activities.

  16. High Throughput Screens Yield Small Molecule Inhibitors of Leishmania CRK3:CYC6 Cyclin-Dependent Kinase

    PubMed Central

    Walker, Roderick G.; Thomson, Graeme; Malone, Kirk; Nowicki, Matthew W.; Brown, Elaine; Blake, David G.; Turner, Nicholas J.; Walkinshaw, Malcolm D.; Grant, Karen M.; Mottram, Jeremy C.

    2011-01-01

    Background Leishmania species are parasitic protozoa that have a tightly controlled cell cycle, regulated by cyclin-dependent kinases (CDKs). Cdc2-related kinase 3 (CRK3), an essential CDK in Leishmania and functional orthologue of human CDK1, can form an active protein kinase complex with Leishmania cyclins CYCA and CYC6. Here we describe the identification and synthesis of specific small molecule inhibitors of bacterially expressed Leishmania CRK3:CYC6 using a high throughput screening assay and iterative chemistry. We also describe the biological activity of the molecules against Leishmania parasites. Methodology/Principal Findings In order to obtain an active Leishmania CRK3:CYC6 protein kinase complex, we developed a co-expression and co-purification system for Leishmania CRK3 and CYC6 proteins. This active enzyme was used in a high throughput screening (HTS) platform, utilising an IMAP fluorescence polarisation assay. We carried out two chemical library screens and identified specific inhibitors of CRK3:CYC6 that were inactive against the human cyclin-dependent kinase CDK2:CycA. Subsequently, the best inhibitors were tested against 11 other mammalian protein kinases. Twelve of the most potent hits had an azapurine core with structure activity relationship (SAR) analysis identifying the functional groups on the 2 and 9 positions as essential for CRK3:CYC6 inhibition and specificity against CDK2:CycA. Iterative chemistry allowed synthesis of a number of azapurine derivatives with one, compound 17, demonstrating anti-parasitic activity against both promastigote and amastigote forms of L. major. Following the second HTS, 11 compounds with a thiazole core (active towards CRK3:CYC6 and inactive against CDK2:CycA) were tested. Ten of these hits demonstrated anti-parasitic activity against promastigote L. major. Conclusions/Significance The pharmacophores identified from the high throughput screens, and the derivatives synthesised, selectively target the parasite

  17. Crystal Structure of Lysine Sulfonamide Inhibitor Reveals the Displacement of the Conserved Flap Water Molecule in Human Immunodeficiency Virus Type 1 Protease▿

    PubMed Central

    Nalam, Madhavi N. L.; Peeters, Anik; Jonckers, Tim H. M.; Dierynck, Inge; Schiffer, Celia A.

    2007-01-01

    Human immunodeficiency virus type 1 (HIV-1) protease has been continuously evolving and developing resistance to all of the protease inhibitors. This requires the development of new inhibitors that bind to the protease in a novel fashion. Most of the inhibitors that are on the market are peptidomimetics, where a conserved water molecule mediates hydrogen bonding interactions between the inhibitors and the flaps of the protease. Recently a new class of inhibitors, lysine sulfonamides, was developed to combat the resistant variants of HIV protease. Here we report the crystal structure of a lysine sulfonamide. This inhibitor binds to the active site of HIV-1 protease in a novel manner, displacing the conserved water and making extensive hydrogen bonds with every region of the active site. PMID:17596316

  18. A Novel Small-molecule WNT Inhibitor, IC-2, Has the Potential to Suppress Liver Cancer Stem Cells.

    PubMed

    Seto, Kenzo; Sakabe, Tomohiko; Itaba, Noriko; Azumi, Junya; Oka, Hiroyuki; Morimoto, Minoru; Umekita, Yoshihisa; Shiota, Goshi

    2017-07-01

    The presence of cancer stem cells (CSCs) contributes to metastasis, recurrence, and resistance to chemo/radiotherapy in hepatocellular carcinoma (HCC). The WNT signaling pathway is reportedly linked to the maintenance of stemness of CSCs. In the present study, in order to eliminate liver CSCs and improve the prognosis of patients with HCC, we explored whether small-molecule compounds targeting WNT signaling pathway suppress liver CSCs. The screening was performed using cell proliferation assay and reporter assay. We next investigated whether these compounds suppress liver CSC properties by using flow cytometric analysis and sphere-formation assays. A mouse xenograft model transplanted with CD44-positive HuH7 cells was used to examine the in vivo antitumor effect of IC-2. In HuH7 human HCC cells, 10 small-molecule compounds including novel derivatives, IC-2 and PN-3-13, suppressed cell viability and WNT signaling activity. Among them, IC-2 significantly reduced the CD44-positive population, also known as liver CSCs, and dramatically reduced the sphere-forming ability of both CD44-positive and CD44-negative HuH7 cells. Moreover, CSC marker-positive populations, namely CD90-positive HLF cells, CD133-positive HepG2 cells, and epithelial cell adhesion molecule-positive cells, were also reduced by IC-2 treatment. Finally, suppressive effects of IC-2 on liver CSCs were also observed in a xenograft model using CD44-positive HuH7 cells. The novel derivative of small-molecule WNT inhibitor, IC-2, has the potential to suppress liver CSCs and can serve as a promising therapeutic agent to improve the prognosis of patients with HCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Identification and Biochemical Characterization of Small-Molecule Inhibitors of Clostridium Botulinum Neurotoxin Serotype A

    DTIC Science & Technology

    2009-08-01

    compound dissolved in dimethyl sulfoxide (DMSO) at 10 the final assay concentration, and 4.5 to 6.0 g/ml (110 to 140 nM) BoNT/A LC. The BoNT/B LC... ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Aug. 2009, p. 3478–3486 Vol. 53, No. 8 0066-4804/09/$08.000 doi:10.1128/AAC.00141-09 Copyright © 2009...silico screening and tiered biochemical assays (enzymatic, in vitro, and ex vivo) was used to identify and characterize effective small-molecule

  20. Identification of seco-clavilactone B as a small-molecule actin polymerization inhibitor.

    PubMed

    Miyazaki, So; Sasazawa, Yukiko; Mogi, Takuma; Suzuki, Takehiro; Yoshida, Keisuke; Dohmae, Naoshi; Takao, Ken-Ichi; Simizu, Siro

    2016-04-01

    Phenotype-based chemical screening is an attractive strategy for the identification of bioactive compounds. We searched for a compound that induces cellular morphological change and identified a novel compound that we named seco-clavilactone B (Seco-CB). Treatment with Seco-CB decreased the ratio of filament actin (F-actin) to globular actin (G-actin). An in vitro actin polymerization assay revealed that Seco-CB inhibited actin polymerization directly. Further analysis demonstrated that the inhibitory effect of Seco-CB on actin polymerization was associated with Seco-CB binding to either Thr5 or Cys285 of actin. These data indicate that Seco-CB is a novel actin polymerization inhibitor. © 2016 Federation of European Biochemical Societies.

  1. AnchorQuery: Rapid online virtual screening for small-molecule protein-protein interaction inhibitors.

    PubMed

    Koes, David R; Dömling, Alexander; Camacho, Carlos J

    2018-01-01

    AnchorQuery (http://anchorquery.csb.pitt.edu) is a web application for rational structure-based design of protein-protein interaction (PPI) inhibitors. A specialized variant of pharmacophore search is used to rapidly screen libraries consisting of more than 31 million synthesizable compounds biased by design to preferentially target PPIs. Every library compound is accessible through one-step multi-component reaction (MCR) chemistry and contains an anchor motif that is bioisosteric to an amino acid residue. The inclusion of this anchor not only biases the compounds to interact with proteins, it also enables a rapid, sublinear time pharmacophore search algorithm. AnchorQuery provides all the tools necessary for users to perform online interactive virtual screens of millions of compounds, including pharmacophore elucidation and search, and enrichment analysis. Accessibility: AnchorQuery is freely accessible at http://anchorquery.csb.pitt.edu. © 2017 The Protein Society.

  2. MALT1 Small Molecule Inhibitors Specifically Suppress ABC-DLBCL In Vitro and In Vivo

    PubMed Central

    Fontan, Lorena; Yang, Chenghua; Kabaleeswaran, Venkataraman; Volpon, Laurent; Osborne, Michael J.; Beltran, Elena; Garcia, Monica; Cerchietti, Leandro; Shaknovich, Rita; Yang, Shao Ning; Fang, Fang; Gascoyne, Randy D.; Martinez-Climent, Jose Angel; Glickman, J. Fraser; Borden, Katherine; Wu, Hao; Melnick, Ari

    2014-01-01

    SUMMARY MALT1 cleavage activity is linked to the pathogenesis of activated B cell-like diffuse large B cell lymphoma (ABC-DLBCL), a chemoresistant form of DLBCL. We developed a MALT1 activity assay and identified chemically diverse MALT1 inhibitors. A selected lead compound, MI-2, featured direct binding to MALT1 and suppression of its protease function. MI-2 concentrated within human ABC-DLBCL cells and irreversibly inhibited cleavage of MALT1 substrates. This was accompanied by NF-κB reporter activity suppression, c-REL nuclear localization inhibition, and NF-κB target gene downregulation. Most notably, MI-2 was nontoxic to mice, and displayed selective activity against ABC-DLBCL cell lines in vitro and xenotransplanted ABC-DLBCL tumors in vivo. The compound was also effective against primary human non-germinal center B cell-like DLBCLs ex vivo. PMID:23238016

  3. Quantifying and predicting the promiscuity and isoform specificity of small-molecule cytochrome P450 inhibitors.

    PubMed

    Nath, Abhinav; Zientek, Michael A; Burke, Benjamin J; Jiang, Ying; Atkins, William M

    2010-12-01

    Drug promiscuity (i.e., inhibition of multiple enzymes by a single compound) is increasingly recognized as an important pharmacological consideration in the drug development process. However, systematic studies of functional or physicochemical characteristics that correlate with drug promiscuity are handicapped by the lack of a good way of quantifying promiscuity. In this article, we present a new entropy-based index of drug promiscuity. We apply this index to two high-throughput data sets describing inhibition of cytochrome P450 isoforms by small-molecule drugs and drug candidates, and we demonstrate how drug promiscuity or specificity can be quantified. For these drug-metabolizing enzymes, we find that there is essentially no correlation between a drug's potency and specificity. We also present an index to quantify the susceptibilities of different enzymes to inhibition by diverse substrates. Finally, we use partial least-squares regression to successfully predict isoform specificity and promiscuity of small molecules, using a set of fingerprint-based descriptors.

  4. A small molecule inhibitor of redox-regulated protein translocation into mitochondria.

    PubMed

    Dabir, Deepa V; Hasson, Samuel A; Setoguchi, Kiyoko; Johnson, Meghan E; Wongkongkathep, Piriya; Douglas, Colin J; Zimmerman, Johannes; Damoiseaux, Robert; Teitell, Michael A; Koehler, Carla M

    2013-04-15

    The mitochondrial disulfide relay system of Mia40 and Erv1/ALR facilitates import of the small translocase of the inner membrane (Tim) proteins and cysteine-rich proteins. A chemical screen identified small molecules that inhibit Erv1 oxidase activity, thereby facilitating dissection of the disulfide relay system in yeast and vertebrate mitochondria. One molecule, mitochondrial protein import blockers from the Carla Koehler laboratory (MitoBloCK-6), attenuated the import of Erv1 substrates into yeast mitochondria and inhibited oxidation of Tim13 and Cmc1 in in vitro reconstitution assays. In addition, MitoBloCK-6 revealed an unexpected role for Erv1 in the carrier import pathway, namely transferring substrates from the translocase of the outer membrane complex onto the small Tim complexes. Cardiac development was impaired in MitoBloCK-6-exposed zebrafish embryos. Finally, MitoBloCK-6 induced apoptosis via cytochrome c release in human embryonic stem cells (hESCs) but not in differentiated cells, suggesting an important role for ALR in hESC homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of Sonic Hedgehog.

    PubMed

    Peng, Lee F; Stanton, Benjamin Z; Maloof, Nicole; Wang, Xiang; Schreiber, Stuart L

    2009-11-15

    We report the synthesis and biological activity of a library of aminoalcohol-derived macrocycles from which robotnikinin, a binder to and inhibitor of Sonic Hedgehog, was derived. Using an asymmetric alkylation to set a key stereocenter and an RCM reaction to close the macrocycle, we were able to synthesize compounds for testing. High-throughput screening via small-molecule microarray (SMM) technology led to the discovery of a compound capable of binding ShhN. Follow-up chemistry led to a library of macrocycles with enhanced biological activity relative to the original hit compounds. Differences in ring size and stereochemistry, leading to alterations in the mode of binding, may account for differences in the degree of biological activity. These compounds are the first ones reported that inhibit Shh signaling at the ShhN level.

  6. Identification of a small molecule yeast TORC1 inhibitor with a multiplex screen based on flow cytometry.

    PubMed

    Chen, Jun; Young, Susan M; Allen, Chris; Seeber, Andrew; Péli-Gulli, Marie-Pierre; Panchaud, Nicolas; Waller, Anna; Ursu, Oleg; Yao, Tuanli; Golden, Jennifer E; Strouse, J Jacob; Carter, Mark B; Kang, Huining; Bologa, Cristian G; Foutz, Terry D; Edwards, Bruce S; Peterson, Blake R; Aubé, Jeffrey; Werner-Washburne, Margaret; Loewith, Robbie J; De Virgilio, Claudio; Sklar, Larry A

    2012-04-20

    TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.

  7. Metronomic Small Molecule Inhibitor of Bcl-2 (TW-37) Is Antiangiogenic and Potentiates the Antitumor Effect of Ionizing Radiation

    SciTech Connect

    Zeitlin, Benjamin D.; Spalding, Aaron C.; Campos, Marcia S.; Ashimori, Naoki; Dong Zhihong; Wang Shaomeng; Lawrence, Theodore S.; Noer, Jacques E.

    2010-11-01

    Purpose: To investigate the effect of a metronomic (low-dose, high-frequency) small-molecule inhibitor of Bcl-2 (TW-37) in combination with radiotherapy on microvascular endothelial cells in vitro and in tumor angiogenesis in vivo. Methods and Materials: Primary human dermal microvascular endothelial cells were exposed to ionizing radiation and/or TW-37 and colony formation, as well as capillary sprouting in three-dimensional collagen matrices, was evaluated. Xenografts vascularized with human blood vessels were engineered by cotransplantation of human squamous cell carcinoma cells (OSCC3) and human dermal microvascular endothelial cells seeded in highly porous biodegradable scaffolds into the subcutaneous space of immunodeficient mice. Mice were treated with metronomic TW-37 and/or radiation, and tumor growth was evaluated. Results: Low-dose TW-37 sensitized primary endothelial cells to radiation-induced inhibition of colony formation. Low-dose TW-37 or radiation partially inhibited endothelial cell sprout formation, and in combination, these therapies abrogated new sprouting. Combination of metronomic TW-37 and low-dose radiation inhibited tumor growth and resulted in significant increase in time to failure compared with controls, whereas single agents did not. Notably, histopathologic analysis revealed that tumors treated with TW-37 (with or without radiation) are more differentiated and showed more cohesive invasive fronts, which is consistent with less aggressive phenotype. Conclusions: These results demonstrate that metronomic TW-37 potentiates the antitumor effects of radiotherapy and suggest that patients with head and neck cancer might benefit from the combination of small molecule inhibitor of Bcl-2 and radiation therapy.

  8. Small molecule inhibitors of the Dishevelled-CXXC5 interaction are new drug candidates for bone anabolic osteoporosis therapy.

    PubMed

    Kim, Hyun-Yi; Choi, Sehee; Yoon, Ji-Hye; Lim, Hwan Jung; Lee, Hyuk; Choi, Jiwon; Ro, Eun Ji; Heo, Jung-Nyoung; Lee, Weontae; No, Kyoung Tai; Choi, Kang-Yell

    2016-04-01

    Bone anabolic agents promoting bone formation and rebuilding damaged bones would ideally overcome the limitations of anti-resorptive therapy, the current standard prescription for osteoporosis. However, the currently prescribed parathyroid hormone (PTH)-based anabolic drugs present limitations and adverse effects including osteosarcoma during long-term use. Also, the antibody-based anabolic drugs that are currently being developed present the potential limits in clinical application typical of macromolecule drugs. We previously identified that CXXC5 is a negative feedback regulator of the Wnt/β-catenin pathway via its interaction with Dishevelled (Dvl) and suggested the Dvl-CXXC5 interaction as a potential target for anabolic therapy of osteoporosis. Here, we screened small-molecule inhibitors of the Dvl-CXXC5 interaction via a newly established in vitro assay system. The screened compounds were found to activate the Wnt/β-catenin pathway and enhance osteoblast differentiation in primary osteoblasts. The bone anabolic effects of the compounds were shown using ex vivo-cultured calvaria. Nuclear magnetic resonance (NMR) titration analysis confirmed interaction between Dvl PDZ domain and KY-02061, a representative of the screened compounds. Oral administration of KY-02327, one of 55 newly synthesized KY-02061 analogs, successfully rescued bone loss in the ovariectomized (OVX) mouse model. In conclusion, small-molecule inhibitors of the Dvl-CXXC5 interaction that block negative feedback regulation of Wnt/β-catenin signaling are potential candidates for the development of bone anabolic anti-osteoporosis drugs. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Lifting the Mask: Identification of New Small Molecule Inhibitors of Uropathogenic Escherichia coli Group 2 Capsule Biogenesis

    PubMed Central

    Noah, James W.; Ananthan, Subramaniam; Evans, Carrie W.; Nebane, N. Miranda; Rasmussen, Lynn; Sosa, Melinda; Tower, Nichole A.; White, E. Lucile; Neuenswander, Benjamin; Porubsky, Patrick; Maki, Brooks E.; Rogers, Steven A.; Schoenen, Frank; Seed, Patrick C.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infections (UTIs), with over 100 million UTIs occurring annually throughout the world. Increasing antimicrobial resistance among UPEC limits ambulatory care options, delays effective treatment, and may increase overall morbidity and mortality from complications such as urosepsis. The polysaccharide capsules of UPEC are an attractive target a therapeutic, based on their importance in defense against the host immune responses; however, the large number of antigenic types has limited their incorporation into vaccine development. The objective of this study was to identify small-molecule inhibitors of UPEC capsule biogenesis. A large-scale screening effort entailing 338,740 compounds was conducted in a cell-based, phenotypic screen for inhibition of capsule biogenesis in UPEC. The primary and concentration-response assays yielded 29 putative inhibitors of capsule biogenesis, of which 6 were selected for further studies. Secondary confirmatory assays identified two highly active agents, named DU003 and DU011, with 50% inhibitory concentrations of 1.0 µM and 0.69 µM, respectively. Confirmatory assays for capsular antigen and biochemical measurement of capsular sugars verified the inhibitory action of both compounds and demonstrated minimal toxicity and off-target effects. Serum sensitivity assays demonstrated that both compounds produced significant bacterial death upon exposure to active human serum. DU011 administration in mice provided near complete protection against a lethal systemic infection with the prototypic UPEC K1 isolate UTI89. This work has provided a conceptually new class of molecules to combat UPEC infection, and future studies will establish the molecular basis for their action along with efficacy in UTI and other UPEC infections. PMID:24983234

  10. Structure–Activity Relationship Studies of Indole-Based Compounds as Small Molecule HIV-1 Fusion Inhibitors Targeting Glycoprotein 41

    PubMed Central

    2015-01-01

    We previously described indole-containing compounds with the potential to inhibit HIV-1 fusion by targeting the hydrophobic pocket of transmembrane glycoprotein gp41. Here we report optimization and structure–activity relationship studies on the basic scaffold, defining the role of shape, contact surface area, and molecular properties. Thirty new compounds were evaluated in binding, cell–cell fusion, and viral replication assays. Below a 1 μM threshold, correlation between binding and biological activity was diminished, indicating an amphipathic requirement for activity in cells. The most active inhibitor 6j exhibited 0.6 μM binding affinity and 0.2 μM EC50 against cell–cell fusion and live virus replication and was active against T20 resistant strains. Twenty-two compounds with the same connectivity displayed a consensus pose in docking calculations, with rank order matching the biological activity. The work provides insight into requirements for small molecule inhibition of HIV-1 fusion and demonstrates a potent low molecular weight fusion inhibitor. PMID:24856833

  11. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486.

    PubMed

    Dolan, Bridget M; Duron, Sergio G; Campbell, David A; Vollrath, Benedikt; Shankaranarayana Rao, B S; Ko, Hui-Yeon; Lin, Gregory G; Govindarajan, Arvind; Choi, Se-Young; Tonegawa, Susumu

    2013-04-02

    Fragile X syndrome (FXS) is the most common inherited form of autism and intellectual disability and is caused by the silencing of a single gene, fragile X mental retardation 1 (Fmr1). The Fmr1 KO mouse displays phenotypes similar to symptoms in the human condition--including hyperactivity, repetitive behaviors, and seizures--as well as analogous abnormalities in the density of dendritic spines. Here we take a hypothesis-driven, mechanism-based approach to the search for an effective therapy for FXS. We hypothesize that a treatment that rescues the dendritic spine defect in Fmr1 KO mice may also ameliorate autism-like behavioral symptoms. Thus, we targeted a protein that regulates spines through modulation of actin cytoskeleton dynamics: p21-activated kinase (PAK). Our results demonstrate that a potent small molecule inhibitor of group I PAKs reverses dendritic spine phenotypes in Fmr1 KO mice. Moreover, this PAK inhibitor--which we call FRAX486--also rescues seizures and behavioral abnormalities such as hyperactivity and repetitive movements, thereby supporting the hypothesis that a drug treatment that reverses the spine abnormalities can also treat neurological and behavioral symptoms. Finally, a single administration of FRAX486 is sufficient to rescue all of these phenotypes in adult Fmr1 KO mice, demonstrating the potential for rapid, postdiagnostic therapy in adults with FXS.

  12. Novel small-molecule SIRT1 inhibitors induce cell death in adult T-cell leukaemia cells.

    PubMed

    Kozako, Tomohiro; Suzuki, Takayoshi; Yoshimitsu, Makoto; Uchida, Yuichiro; Kuroki, Ayako; Aikawa, Akiyoshi; Honda, Shin-ichiro; Arima, Naomichi; Soeda, Shinji

    2015-06-19

    Adult T-cell leukaemia/lymphoma (ATL) is an aggressive T-cell malignancy that develops after long-term infection with human T-cell leukaemia virus (HTLV)-1. The identification of new molecular targets for ATL prevention and treatment is desired. SIRT1, a nicotinamide adenine dinucleotide(+) -dependent histone/protein deacetylase, plays crucial roles in various physiological processes, including aging and apoptosis. We previously reported that ATL patients had significantly higher SIRT1 protein levels than healthy controls. Here, we demonstrate that two novel small-molecule SIRT1 inhibitors, NCO-01/04, reduced cell viability and enhanced apoptotic cells in peripheral blood monocyte cells of patients with acute ATL, which has a poor prognosis. NCO-01/04 also reduced the cell viability with DNA fragmentation, Annexin V-positive cells, and caspase activation. However, a caspase inhibitor did not inhibit this caspase-dependent cell death. NCO-01/04 enhanced the endonuclease G level in the nucleus with loss of the mitochondrial transmembrane potential, which can promote caspase-independent death. Interestingly, NCO-01/04 increased the LC3-II-enriched protein fraction, indicating autophagosome accumulation as well as autophagy. Thus, NCO-01/04 simultaneously caused caspase activation and autophagy. These results suggest that NCO-01/04 is highly effective against ATL cells in caspase-dependent or -independent manners with autophagy, and that its clinical application might improve the prognosis of patients with this fatal disease.

  13. A Small Molecule Inhibitor of ITK and RLK Impairs Th1 Differentiation and Prevents Colitis Disease Progression

    PubMed Central

    Cho, Hyoung-Soo; Shin, Hyun Mu; Haberstock-Debic, Helena; Xing, Yan; Owens, Timothy D.; Funk, Jens Oliver; Hill, Ronald J.; Bradshaw, J. Michael

    2015-01-01

    In T cells, the Tec kinases IL-2–inducible T cell kinase (ITK) and resting lymphocyte kinase (RLK) are activated by TCR stimulation and are required for optimal downstream signaling. Studies of CD4+ T cells from Itk−/− and Itk−/−Rlk−/− mice have indicated differential roles of ITK and RLK in Th1, Th2, and Th17 differentiation and cytokine production. However, these findings are confounded by the complex T cell developmental defects in these mice. In this study, we examine the consequences of ITK and RLK inhibition using a highly selective and potent small molecule covalent inhibitor PRN694. In vitro Th polarization experiments indicate that PRN694 is a potent inhibitor of Th1 and Th17 differentiation and cytokine production. Using a T cell adoptive transfer model of colitis, we find that in vivo administration of PRN694 markedly reduces disease progression, T cell infiltration into the intestinal lamina propria, and IFN-γ production by colitogenic CD4+ T cells. Consistent with these findings, Th1 and Th17 cells differentiated in the presence of PRN694 show reduced P-selectin binding and impaired migration to CXCL11 and CCL20, respectively. Taken together, these data indicate that ITK plus RLK inhibition may have therapeutic potential in Th1-mediated inflammatory diseases. PMID:26466958

  14. A Small Molecule Inhibitor of ITK and RLK Impairs Th1 Differentiation and Prevents Colitis Disease Progression.

    PubMed

    Cho, Hyoung-Soo; Shin, Hyun Mu; Haberstock-Debic, Helena; Xing, Yan; Owens, Timothy D; Funk, Jens Oliver; Hill, Ronald J; Bradshaw, J Michael; Berg, Leslie J

    2015-11-15

    In T cells, the Tec kinases IL-2-inducible T cell kinase (ITK) and resting lymphocyte kinase (RLK) are activated by TCR stimulation and are required for optimal downstream signaling. Studies of CD4(+) T cells from Itk(-/-) and Itk(-/-)Rlk(-/-) mice have indicated differential roles of ITK and RLK in Th1, Th2, and Th17 differentiation and cytokine production. However, these findings are confounded by the complex T cell developmental defects in these mice. In this study, we examine the consequences of ITK and RLK inhibition using a highly selective and potent small molecule covalent inhibitor PRN694. In vitro Th polarization experiments indicate that PRN694 is a potent inhibitor of Th1 and Th17 differentiation and cytokine production. Using a T cell adoptive transfer model of colitis, we find that in vivo administration of PRN694 markedly reduces disease progression, T cell infiltration into the intestinal lamina propria, and IFN-γ production by colitogenic CD4(+) T cells. Consistent with these findings, Th1 and Th17 cells differentiated in the presence of PRN694 show reduced P-selectin binding and impaired migration to CXCL11 and CCL20, respectively. Taken together, these data indicate that ITK plus RLK inhibition may have therapeutic potential in Th1-mediated inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. YM155, a small molecule inhibitor of survivin expression, sensitizes cancer cells to hypericin-mediated photodynamic therapy.

    PubMed

    Gyurászová, Katarína; Mikeš, Jaromír; Halaburková, Andrea; Jendželovský, Rastislav; Fedoročko, Peter

    2016-06-08

    Photodynamic therapy (PDT) represents a rapidly developing alternative treatment for various types of cancers. Although considered highly effective, cancer cells can exploit various mechanisms, including the upregulation of apoptosis inhibitors, to overcome the cytotoxic effect of PDT. Survivin, a member of the inhibitor of apoptosis protein family, is known to play a critical role in cancer progression and therapeutic resistance and therefore represents a potential therapeutic target. The aim of this study was to investigate whether YM155, a small molecule inhibitor of survivin expression, can potentiate the cytotoxic effect of hypericin-mediated PDT (HY-PDT). Accordingly, two cell lines resistant to HY-PDT, HT-29 (colorectal adenocarcinoma) and A549 (lung adenocarcinoma), were treated either with HY-PDT alone or in combination with YM155. The efficacy of different treatment regimens was assessed by MTT assay, flow cytometry analysis of metabolic activity, viability, phosphatidylserine externalisation, mitochondrial membrane potential and caspase-3 activity and immunoblotting for the cleavage of poly (ADP-ribose) polymerase (PARP). Here we show for the first time that the repression of survivin expression by YM155 is effective in sensitizing HT-29 and A549 cells to HY-PDT, as measured by the decrease in cell viability and induction of apoptosis. Combined treatment with hypericin and YM155 led to a more severe dissipation of the mitochondrial membrane potential and caused an increase in caspase-3 activation and subsequent PARP cleavage. Our results demonstrate that the repression of survivin expression by YM155 potentially represents a novel alternative strategy to increase the efficacy of HY-PDT in cancer cells that are otherwise weakly responsive or non-responsive to treatment.

  16. Leveraging Structural Diversity and Allosteric Regulatory Mechanisms of Protein Kinases in the Discovery of Small Molecule Inhibitors.

    PubMed

    Verkhivker, Gennady M

    2017-01-01

    Protein kinases are versatile molecule switches that govern functional processes in signal transduction networks and regulate fundamental biological processes of cell cycle and organism development. The continuous growth of biological information and a remarkable breath of structural, genetic, and pharmacological studies on protein kinase genes have significantly advanced our knowledge of the kinase activation, drug binding and allosteric mechanisms underlying kinase regulation and interactions in signaling cascades.. Structural and biochemical studies of the genetic and molecular determinants of protein kinases binding with inhibitors have been the cornerstone of drug discovery efforts in clinical oncology leading to proliferation of effective anticancer therapies. Recent advances in understanding allosteric regulation of protein kinases have fueled unprecedented efforts aiming in the discovery of targeted and allosteric kinase inhibitors that can combat cancer mutants and are at the forefront of the precision medicine initiative in oncology. Despite diversity of regulatory scenarios underlying kinase functions, dimerization-driven activation is a common mechanism of allosteric regulation that is shared by many protein kinase families, most notably ErbB and BRAF kinases that play a central role in growth factor signaling and human disease. In this review, we focused on structural, biochemical and computational studies of the ErbB and BRAF kinases and discuss how diversity of the structural landscape for these kinase genes and dimerization- dependent mechanisms of their regulation can be leveraged in the design and discovery of kinase inhibitors and allosteric modulators of kinase activation. The lessons from this analysis could inform discovery of specific targeted therapies and robust drug combinations for cancer treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. A small-molecule inhibitor of Nipah virus envelope protein-mediated membrane fusion.

    PubMed

    Niedermeier, Sabine; Singethan, Katrin; Rohrer, Sebastian G; Matz, Magnus; Kossner, Markus; Diederich, Sandra; Maisner, Andrea; Schmitz, Jens; Hiltensperger, Georg; Baumann, Knut; Holzgrabe, Ulrike; Schneider-Schaulies, Jürgen

    2009-07-23

    Nipah virus (NiV), a highly pathogenic paramyxovirus, causes respiratory disease in pigs and severe febrile encephalitis in humans with high mortality rates. On the basis of the structural similarity of viral fusion (F) proteins within the family Paramyxoviridae, we designed and tested 18 quinolone derivatives in a NiV and measles virus (MV) envelope protein-based fusion assay beside evaluation of cytotoxicity. We found five compounds successfully inhibiting NiV envelope protein-induced cell fusion. The most active molecules (19 and 20), which also inhibit the syncytium formation induced by infectious NiV and show a low cytotoxicity in Vero cells, represent a promising lead quinolone-type compound structure. Molecular modeling indicated that compound 19 fits well into a particular protein cavity present on the NiV F protein that is important for the fusion process.

  18. Structural Elucidation of a Small Molecule Inhibitor of Protein Disulfide Isomerase

    PubMed Central

    2015-01-01

    Compound libraries provide a starting point for multiple biological investigations, but the structural integrity of compounds is rarely assessed experimentally until a late stage in the research process. Here, we describe the discovery of a neuroprotective small molecule that was originally incorrectly annotated with a chemical structure. We elucidated the correct structure of the active compound using analytical chemistry, revealing it to be the natural product securinine. We show that securinine is protective in a cell model of Huntington disease and identify the binding site of securinine to its target, protein disulfide isomerase using NMR chemical shift perturbation studies. We show that securinine displays favorable pharmaceutical properties, making it a promising compound for in vivo studies in neurodegenerative disease models. In addition to finding this unexpected activity of securinine, this study provides a systematic roadmap to those who encounter compounds with incorrect structural annotation in the course of screening campaigns. PMID:26500720

  19. A Novel Series of Highly Potent Small Molecule Inhibitors of Rhinovirus Replication.

    PubMed

    Kim, Jinwoo; Jung, Yu Kyoung; Kim, Chonsaeng; Shin, Jin Soo; Scheers, Els; Lee, Joo-Youn; Han, Soo Bong; Lee, Chong-Kyo; Neyts, Johan; Ha, Jae-Du; Jung, Young-Sik

    2017-07-13

    Human rhinoviruses (hRVs) are the main causative pathogen for common colds and are associated with the exacerbation of asthma. The wide variety in hRV serotypes has complicated the development of rhinovirus replication inhibitors. In the current investigation, we developed a novel series of benzothiophene derivatives and their analogues (6-8) that potently inhibit the replication of both hRV-A and hRV-B strains. Compound 6g inhibited the replication of hRV-B14, A21, and A71, with respective EC50 values of 0.083, 0.078, and 0.015 μM. The results of a time-of-addition study against hRV-B14 and hRV-A16 and resistant mutation analysis on hRV-B14 implied that 6g acts at the early stage of the viral replication process, interacting with viral capsid protein. A molecular docking study suggested that 6g has a capsid-binding mode similar to that of pleconaril. Finally, derivatives of 6 also displayed significant inhibition against poliovirus 3 (PV3) replication, implying their potential inhibitory activities against other enterovirus species.

  20. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing

    NASA Astrophysics Data System (ADS)

    Briard, Jennie G.; Poisson, Jessica S.; Turner, Tracey R.; Capicciotti, Chantelle J.; Acker, Jason P.; Ben, Robert N.

    2016-03-01

    During cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol. RBC units frozen under these conditions must be subjected to a time-consuming deglycerolization process after thawing in order to remove the glycerol to <1% prior to transfusion thus limiting the use of frozen RBC units in emergency situations. We have identified several low molecular mass ice recrystallization inhibitors (IRIs) that are effective cryoprotectants for human RBCs, resulting in 70-80% intact RBCs using only 15% glycerol and slow freezing rates. These compounds are capable of reducing the average ice crystal size of extracellular ice relative to a 15% glycerol control validating the positive correlation between a reduction in ice crystal size and increased post-thaw recovery of RBCs. The most potent IRI from this study is also capable of protecting frozen RBCs against the large temperature fluctuations associated with transient warming.

  1. Orally Available Small-Molecule Polymerase Inhibitor Cures a Lethal Morbillivirus Infection

    PubMed Central

    Krumm, Stefanie A; Yan, Dan; Hovingh, Elise S; Evers, Taylor J; Enkirch, Theresa; Reddy, G. Prabhakar; Sun, Aiming; Saindane, Manohar T; Arrendale, Richard F; Painter, George; Liotta, Dennis C; Natchus, Michael G; von Messling, Veronika; Plemper, Richard K

    2014-01-01

    Measles virus (MeV) is a highly infectious morbillivirus responsible for major human morbidity and mortality in the non-vaccinated. The related, zoonotic canine distemper virus (CDV) induces morbillivirus disease in ferrets with 100% lethality. We report an orally available, shelf-stable pan-morbillivirus inhibitor that targets the viral polymerase. Prophylactic oral treatment of ferrets infected intranasally with a lethal CDV dose reduced viremia and prolonged survival. Equally infected ferrets receiving post-infection treatment at the onset of viremia showed low-grade viral loads, remained asymptomatic and recovered from infection, while control animals succumbed to the disease. Recovered animals also mounted a robust immune response and were protected against re-challenge with a lethal CDV dose. Drug-resistant viral recombinants were generated and found attenuated and transmission impaired compared to the genetic parent. These findings pioneer a path towards an effective morbillivirus therapy that aids measles eradication by synergizing vaccine and therapeutics to close herd immunity gaps due to vaccine refusal. PMID:24739760

  2. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    PubMed Central

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  3. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing

    PubMed Central

    Briard, Jennie G.; Poisson, Jessica S.; Turner, Tracey R.; Capicciotti, Chantelle J.; Acker, Jason P.; Ben, Robert N.

    2016-01-01

    During cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol. RBC units frozen under these conditions must be subjected to a time-consuming deglycerolization process after thawing in order to remove the glycerol to <1% prior to transfusion thus limiting the use of frozen RBC units in emergency situations. We have identified several low molecular mass ice recrystallization inhibitors (IRIs) that are effective cryoprotectants for human RBCs, resulting in 70–80% intact RBCs using only 15% glycerol and slow freezing rates. These compounds are capable of reducing the average ice crystal size of extracellular ice relative to a 15% glycerol control validating the positive correlation between a reduction in ice crystal size and increased post-thaw recovery of RBCs. The most potent IRI from this study is also capable of protecting frozen RBCs against the large temperature fluctuations associated with transient warming. PMID:27021850

  4. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing.

    PubMed

    Briard, Jennie G; Poisson, Jessica S; Turner, Tracey R; Capicciotti, Chantelle J; Acker, Jason P; Ben, Robert N

    2016-03-29

    During cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol. RBC units frozen under these conditions must be subjected to a time-consuming deglycerolization process after thawing in order to remove the glycerol to <1% prior to transfusion thus limiting the use of frozen RBC units in emergency situations. We have identified several low molecular mass ice recrystallization inhibitors (IRIs) that are effective cryoprotectants for human RBCs, resulting in 70-80% intact RBCs using only 15% glycerol and slow freezing rates. These compounds are capable of reducing the average ice crystal size of extracellular ice relative to a 15% glycerol control validating the positive correlation between a reduction in ice crystal size and increased post-thaw recovery of RBCs. The most potent IRI from this study is also capable of protecting frozen RBCs against the large temperature fluctuations associated with transient warming.

  5. Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure

    SciTech Connect

    Longenecker, Kenton L.; Stamper, Geoffrey F.; Hajduk, Philip J.; Fry, Elizabeth H.; Jakob, Clarissa G.; Harlan, John E.; Edalji, Rohinton; Bartley, Diane M.; Walter, Karl A.; Solomon, Larry R.; Holzman, Thomas F.; Gu, Yu Gui; Lerner, Claude G.; Beutel, Bruce A.; Stoll, Vincent S.

    2010-07-19

    In a broad genomics analysis to find novel protein targets for antibiotic discovery, MurF was identified as an essential gene product for Streptococcus pneumonia that catalyzes a critical reaction in the biosynthesis of the peptidoglycan in the formation of the cell wall. Lacking close relatives in mammalian biology, MurF presents attractive characteristics as a potential drug target. Initial screening of the Abbott small-molecule compound collection identified several compounds for further validation as pharmaceutical leads. Here we report the integrated efforts of NMR and X-ray crystallography, which reveal the multidomain structure of a MurF-inhibitor complex in a compact conformation that differs dramatically from related structures. The lead molecule is bound in the substrate-binding region and induces domain closure, suggestive of the domain arrangement for the as yet unobserved transition state conformation for MurF enzymes. The results form a basis for directed optimization of the compound lead by structure-based design to explore the suitability of MurF as a pharmaceutical target.

  6. Structure-Based Design, Synthesis, and Characterization of Dual Hotspot Small-Molecule HIV-1 Entry Inhibitors

    SciTech Connect

    LaLonde, Judith M.; Kwon, Young Do; Jones, David M.; Sun, Alexander W.; Courter, Joel R.; Soeta, Takahiro; Kobayashi, Toyoharu; Princiotto, Amy M.; Wu, Xueling; Schön, Arne; Freire, Ernesto; Kwong, Peter D.; Mascola, John R.; Sodroski, Joseph; Madani, Navid; Smith, III, Amos B.

    2012-06-19

    Cellular infection by HIV-1 is initiated with a binding event between the viral envelope glycoprotein gp120 and the cellular receptor protein CD4. The CD4-gp120 interface is dominated by two hotspots: a hydrophobic gp120 cavity capped by Phe43{sub CD4} and an electrostatic interaction between residues Arg59{sub CD4} and Asp368{sub gp120}. The CD4 mimetic small-molecule NBD-556 (1) binds within the gp120 cavity; however, 1 and related congeners demonstrate limited viral neutralization breadth. Herein, we report the design, synthesis, characterization, and X-ray structures of gp120 in complex with small molecules that simultaneously engage both binding hotspots. The compounds specifically inhibit viral infection of 42 tier 2 clades B and C viruses and are shown to be antagonists of entry into CD4-negative cells. Dual hotspot design thus provides both a means to enhance neutralization potency of HIV-1 entry inhibitors and a novel structural paradigm for inhibiting the CD4-gp120 protein-protein interaction.

  7. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens

    NASA Astrophysics Data System (ADS)

    Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae

    2015-12-01

    The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.

  8. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy.

    PubMed

    Li, Kui; Tian, Hongqi

    2018-02-20

    Cancer immunotherapy has been increasingly utilised to treat advanced malignancies. The signalling network of immune checkpoints has attracted considerable attention. Immune checkpoint inhibitors are revolutionising the treatment options and expectations for patients with cancer. The reported clinical success of targeting the T-cell immune checkpoint receptors PD-1/PD-L1 has demonstrated the importance of immune modulation. Indeed, antibodies binding to PD-1 or PD-L1 have shown remarkable efficacy. However, antibody drugs have many disadvantages, such as their production cost, stability, and immunogenicity and, therefore, small-molecule inhibitors of PD-1 and its ligand PD-L1 are being introduced. Small-molecule inhibitors could offer inherent advantages in terms of pharmacokinetics and druggability, thereby providing additional methods for cancer treatment and achieving better therapeutic effects. In this review, we first discuss how PD-1/PD-L1-targeting inhibitors modulate the relationship between immune cells and tumour cells in tumour immunotherapy. Second, we discuss how the immunomodulatory potential of these inhibitors can be exploited via rational combinations with immunotherapy and targeted therapy. Third, this review is the first to summarise the current clinical and preclinical evidence regarding small-molecule inhibitors of the PD-1/PD-L1 immune checkpoint, considering features and responses related to the tumours and to the host immune system.

  9. Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

    SciTech Connect

    Diaz, Dolores, E-mail: diaz.dolores@gene.com; Ford, Kevin A.; Hartley, Dylan P.

    2013-01-01

    Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstratedmore » by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ► Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ► New analysis tools to assess electrostatic effects and ionization are presented. ► Chemical and PK drivers of toxicity can be leveraged to improve safety.« less

  10. Small molecule inhibitors of Ago2 decrease Venezuelan equine encephalitis virus replication.

    PubMed

    Madsen, Cathaleen; Hooper, Idris; Lundberg, Lindsay; Shafagati, Nazly; Johnson, Alexandra; Senina, Svetlana; de la Fuente, Cynthia; Hoover, Lisa I; Fredricksen, Brenda L; Dinman, Jonathan; Jacobs, Jonathan L; Kehn-Hall, Kylene

    2014-12-01

    Venezuelan equine encephalitis virus (VEEV) is classified as a Category B Select Agent and potential bioterror weapon for its severe disease course in humans and equines and its potential for aerosol transmission. There are no current FDA licensed vaccines or specific therapies against VEEV, making identification of potential therapeutic targets a priority. With this aim, our research focuses on the interactions of VEEV with host microRNA (miRNA) machinery. miRNAs are small non-coding RNAs that act as master regulators of gene expression by downregulating or degrading messenger RNA, thus suppressing production of the resultant proteins. Recent publications implicate miRNA interactions in the pathogenesis of various viral diseases. To test the importance of miRNA processing for VEEV replication, cells deficient in Ago2, an important component of the RNA-induced silencing complex (RISC), and cells treated with known Ago2 inhibitors, notably acriflavine (ACF), were utilized. Both conditions caused decreased viral replication and capsid expression. ACF treatment promoted increased survival of neuronal cells over a non-treated, infected control and reduced viral titers of fully virulent VEEV as well as Eastern and Western Equine Encephalitis Viruses and West Nile Virus, but not Vesicular Stomatitis Virus. ACF treatment of VEEV TC-83 infected mice resulted in increased in vivo survival, but did not affect survival or viral loads when mice were challenged with fully virulent VEEV TrD. These results suggest that inhibition of Ago2 results in decreased replication of encephalitic alphaviruses in vitro and this pathway may be an avenue to explore for future therapeutic development. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A-770041, a novel and selective small-molecule inhibitor of Lck, prevents heart allograft rejection.

    PubMed

    Stachlewitz, Robert F; Hart, Michelle A; Bettencourt, Brian; Kebede, Tegest; Schwartz, Annette; Ratnofsky, Sheldon E; Calderwood, David J; Waegell, Wendy O; Hirst, Gavin C

    2005-10-01

    Lck, one of eight members of the Src family of tyrosine kinases, is activated after T cell stimulation and is required for T-cell proliferation and interleukin (IL)-2 production. Inhibition of Lck has been a target to prevent lymphocyte activation and acute rejection. Here, we report the pharmacologic characterization of 1-methyl-1H-indole-2-carboxylic acid (4-{1-[4-(4-acetyl-piperazin-l-yl)-cyclohexyl]-4-amino-1H-pyrazolo[3,4-d]pyrimidin-3-yl}-2-methoxy-phenyl)-amide (A-770041), an orally bioavailable pyrazolo[3,4-d]pyrimidine with increased selectivity for Lck compared with previously reported compounds. A-770041 is a 147 nM inhibitor of Lck (1 mM ATP) and is 300-fold selective against Fyn, the other Src family kinase involved in T-cell signaling. Concanavalin A-stimulated IL-2 production in whole blood is inhibited by A-770041 with an EC50 of approximately 80 nM. A-770041 is orally bioavailable (F = 34.1 +/- 7.2% at 10 mg/kg) and has a t(1/2) of 4.1 +/- 0.1 h. Concanavalin A-induced IL-2 production in vivo is inhibited by oral administration of A-770041 (in vivo EC50 = 78 +/- 28 nM). Doses of A-770041 at or above 10 mg/kg/day prevent rejection of hearts transplanted heterotopically in rats from Brown Norway donors to Lewis recipients across a major histocompatibility barrier for least 65 days. Grafts from animals treated with 20 mg/kg/day A-770041 or 10 mg/day Cyclosporin A had minimal microvascular changes or multifocal mononuclear infiltrates. However, mineralization in myocytes from the grafts from A-770041-treated animals was less than animals treated with Cyclosporin A. Lck inhibition is an attractive target to prevent acute rejection.

  12. Identification of small molecule inhibitors for influenza a virus using in silico and in vitro approaches.

    PubMed

    Makau, Juliann Nzembi; Watanabe, Ken; Ishikawa, Takeshi; Mizuta, Satoshi; Hamada, Tsuyoshi; Kobayashi, Nobuyuki; Nishida, Noriyuki

    2017-01-01

    Influenza viruses have acquired resistance to approved neuraminidase-targeting drugs, increasing the need for new drug targets for the development of novel anti-influenza drugs. Nucleoprotein (NP) is an attractive target since it has an indispensable role in virus replication and its amino acid sequence is well conserved. In this study, we aimed to identify new inhibitors of the NP using a structure-based drug discovery algorithm, named Nagasaki University Docking Engine (NUDE), which has been established especially for the Destination for GPU Intensive Machine (DEGIMA) supercomputer. The hit compounds that showed high binding scores during in silico screening were subsequently evaluated for anti-influenza virus effects using a cell-based assay. A 4-hydroxyquinolinone compound, designated as NUD-1, was found to inhibit the replication of influenza virus in cultured cells. Analysis of binding between NUD-1 and NP using surface plasmon resonance assay and fragment molecular orbital calculations confirmed that NUD-1 binds to NP and could interfere with NP-NP interactions essential for virus replication. Time-of-addition experiments showed that the compound inhibited the mid-stage of infection, corresponding to assembly of the NP and other viral proteins. Moreover, NUD-1 was also effective against various types of influenza A viruses including a clinical isolate of A(H1N1)pdm09 influenza with a 50% inhibitory concentration range of 1.8-2.1 μM. Our data demonstrate that the combined use of NUDE system followed by the cell-based assay is useful to obtain lead compounds for the development of novel anti-influenza drugs.

  13. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis.

    PubMed

    Kumar, Virender; Mondal, Goutam; Dutta, Rinku; Mahato, Ram I

    2016-01-01

    In liver fibrosis, secretion of growth factors and hedgehog (Hh) ligands by hepatic parenchyma upon repeated insults results in transdifferentiation of quiescent hepatic stellate cells (HSCs) into active myofibroblasts which secrete excessive amounts of extracellular matrix (ECM) proteins. An Hh inhibitor GDC-0449 and miR-29b1 can play an important role in treating liver fibrosis by inhibiting several pro-fibrotic genes. Our in-silico analysis indicate that miR-29b1 targets several profibrotic genes like collagen type I & IV, c-MYC, PDGF-β and PI3K/AKT which are upregulated in liver fibrosis. Common bile duct ligation (CBDL) resulted in an increase in Ptch-1, Shh and Gli-1 expression. miR-29b1 and GDC-0449 were co-formulated into micelles using methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol-graft-tetraethylenepentamine) (mPEG-b-PCC-g-DC-g-TEPA) copolymer, and injected systemically into CBDL mice. High concentrations of GDC-0449 and miR-29b1 were delivered to liver cells as determined by in situ liver perfusion at 30 min post systemic administration of their micelle formulation. There was a significant decrease in collagen deposition in the liver and serum injury markers, leading to improvement in liver morphology. Combination therapy was more effective in providing hepatoprotection, lowering liver injury related serum enzyme levels, reducing fibrotic protein markers such as collagen, α-SMA, FN-1 and p-AKT compared to monotherapy. In conclusion, inhibition of Hh pathway and restoration of miR-29b1 have the potential to act synergistically in treating CBDL-induced liver fibrosis in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation.

    PubMed

    Anderson, Hannah J; Galileo, Deni S

    2016-06-01

    The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.

  15. Characterization of the biological activity of a potent small molecule Hec1 inhibitor TAI-1.

    PubMed

    Huang, Lynn Y L; Lee, Ying-Shuan; Huang, Jiann-Jyh; Chang, Chia-chi; Chang, Jia-Ming; Chuang, Shih-Hsien; Kao, Kuo-Jang; Tsai, Yung-Jen; Tsai, Pei-Yi; Liu, Chia-Wei; Lin, Her-Sheng; Lau, Johnson Y N

    2014-01-09

    Hec1 (NDC80) is an integral part of the kinetochore and is overexpressed in a variety of human cancers, making it an attractive molecular target for the design of novel anticancer therapeutics. A highly potent first-in-class compound targeting Hec1, TAI-1, was identified and is characterized in this study to determine its potential as an anticancer agent for clinical utility. The in vitro potency, cancer cell specificity, synergy activity, and markers for response of TAI-1 were evaluated with cell lines. Mechanism of action was confirmed with western blotting and immunofluorescent staining. The in vivo potency of TAI-1 was evaluated in three xenograft models in mice. Preliminary toxicity was evaluated in mice. Specificity to the target was tested with a kinase panel. Cardiac safety was evaluated with hERG assay. Clinical correlation was performed with human gene database. TAI-1 showed strong potency across a broad spectrum of tumor cells. TAI-1 disrupted Hec1-Nek2 protein interaction, led to Nek2 degradation, induced significant chromosomal misalignment in metaphase, and induced apoptotic cell death. TAI-1 was effective orally in in vivo animal models of triple negative breast cancer, colon cancer and liver cancer. Preliminary toxicity shows no effect on the body weights, organ weights, and blood indices at efficacious doses. TAI-1 shows high specificity to cancer cells and to target and had no effect on the cardiac channel hERG. TAI-1 is synergistic with doxorubicin, topotecan and paclitaxel in leukemia, breast and liver cancer cells. Sensitivity to TAI-1 was associated with the status of RB and P53 gene. Knockdown of RB and P53 in cancer cells increased sensitivity to TAI-1. Hec1-overexpressing molecular subtypes of human lung cancer were identified. The excellent potency, safety and synergistic profiles of this potent first-in-class Hec1-targeted small molecule TAI-1 show its potential for clinically utility in anti-cancer treatment regimens.

  16. Identification of novel small molecule inhibitors of centrosome clustering in cancer cells

    PubMed Central

    Kawamura, Eiko; Fielding, Andrew B.; Kannan, Nagarajan; Balgi, Aruna; Eaves, Connie J.; Roberge, Michel; Dedhar, Shoukat

    2013-01-01

    Most normal cells have two centrosomes that form bipolar spindles during mitosis, while cancer cells often contain more than two, or “supernumerary” centrosomes. Such cancer cells achieve bipolar division by clustering their centrosomes into two functional poles, and inhibiting this process then leads to cancer-specific cell death. A major problem with clinically used anti-mitotic drugs, such as paclitaxel, is their toxicity in normal cells. To discover new compounds with greater specificity for cancer cells, we established a high-content screen for agents that block centrosome clustering in BT-549 cells, a breast cancer cell line that harbors supernumerary centrosomes. Using this screen, we identified 14 compounds that inhibit centrosome clustering and induce mitotic arrest. Some of these compounds were structurally similar, suggesting a common structural motif important for preventing centrosome clustering. We next compared the effects of these compounds on the growth of several breast and other cancer cell lines, an immortalized normal human mammary epithelial cell line, and progenitor-enriched primary normal human mammary epithelial cells. From these comparisons, we found some compounds that kill breast cancer cells, but not their normal epithelial counterparts, suggesting their potential for targeted therapy. One of these compounds, N2-(3-pyridylmethyl)-5-nitro-2-furamide (Centrosome Clustering Chemical Inhibitor-01, CCCI-01), that showed the greatest differential response in this screen was confirmed to have selective effects on cancer as compared to normal breast progenitors using more precise apoptosis induction and clonogenic growth endpoints. The concentration of CCCI-01 that killed cancer cells in the clonogenic assay spared normal human bone marrow hematopoietic progenitors in the colony-forming cell assay, indicating a potential therapeutic window for CCCI-01, whose selectivity might be further improved by optimizing the compound

  17. Small-molecule Inhibitors of Bacterial AddAB and RecBCD Helicase-nuclease DNA Repair Enzymes

    PubMed Central

    Amundsen, Susan K.; Spicer, Timothy; Karabulut, Ahmet C.; Londoño, Luz Marina; Eberhardt, Christina; Vega, Virneliz Fernandez; Bannister, Thomas D.; Hodder, Peter; Smith, Gerald R.

    2012-01-01

    The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1 – 50 μM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1 – 50 μM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals. PMID:22443934

  18. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice.

    PubMed

    Neelakantan, Harshini; Vance, Virginia; Wetzel, Michael D; Wang, Hua-Yu Leo; McHardy, Stanton F; Finnerty, Celeste C; Hommel, Jonathan D; Watowich, Stanley J

    2018-01-01

    There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD + ) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD + salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD + and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to

  19. Fragment-Based Optimization of Small Molecule CXCL12 Inhibitors for Antagonizing the CXCL12/CXCR4 Interaction

    PubMed Central

    Ziarek, Joshua J.; Liu, Yan; Smith, Emmanuel; Zhang, Guolin; Peterson, Francis C.; Chen, Jun; Yu, Yongping; Chen, Yu; Volkman, Brian F.; Li, Rongshi

    2013-01-01

    The chemokine CXCL12 and its G protein-coupled receptor (GPCR) CXCR4 are high-priority clinical targets because of their involvement in metastatic cancers (also implicated in autoimmune disease and cardiovascular disease). Because chemokines interact with two distinct sites to bind and activate their receptors, both the GPCRs and chemokines are potential targets for small molecule inhibition. A number of chemokines have been validated as targets for drug development, but virtually all drug discovery efforts focus on the GPCRs. However, all CXCR4 receptor antagonists with the exception of MSX-122 have failed in clinical trials due to unmanageable toxicities, emphasizing the need for alternative strategies to interfere with CXCL12/CXCR4-guided metastatic homing. Although targeting the relatively featureless surface of CXCL12 was presumed to be challenging, focusing efforts at the sulfotyrosine (sY) binding pockets proved successful for procuring initial hits. Using a hybrid structure-based in silico/NMR screening strategy, we recently identified a ligand that occludes the receptor recognition site. From this initial hit, we designed a small fragment library containing only nine tetrazole derivatives using a fragment-based and bioisostere approach to target the sY binding sites of CXCL12. Compound binding modes and affinities were studied by 2D NMR spectroscopy, X-ray crystallography, molecular docking and cell-based functional assays. Our results demonstrate that the sY binding sites are conducive to the development of high affinity inhibitors with better ligand efficiency (LE) than typical protein-protein interaction inhibitors (LE ≤ 0.24). Our novel tetrazole-based fragment 18 was identified to bind the sY21 site with a Kd of 24 μM (LE = 0.30). Optimization of 18 yielded compound 25 which specifically inhibits CXCL12-induced migration with an improvement in potency over the initial hit 9. The fragment from this library that exhibited the highest affinity and

  20. Wnt Signaling Orchestration with a Small Molecule DYRK Inhibitor Provides Long-Term Xeno-Free Human Pluripotent Cell Expansion

    PubMed Central

    Hasegawa, Kouichi; Yasuda, Shin-ya; Teo, Jia-Ling; Nguyen, Cu; McMillan, Michael; Hsieh, Chih-Lin; Suemori, Hirofumi; Nakatsuji, Norio; Yamamoto, Masashi; Miyabayashi, Tomoyuki; Lutzko, Carolyn; Pera, Martin F.

    2012-01-01

    An optimal culture system for human pluripotent stem cells should be fully defined and free of animal components. To date, most xeno-free culture systems require human feeder cells and/or highly complicated culture media that contain activators of the fibroblast growth factor (FGF) and transforming growth factor-β (TGFβ) signaling pathways, and none provide for replacement of FGF/TGFβ ligands with chemical compounds. The Wnt/β-catenin signaling pathway plays an important role in mouse embryonic stem cells in leukemia inhibitory factor-independent culture; however, the role of Wnt/β-catenin signaling in human pluripotent stem cell is still poorly understood and controversial because of the dual role of Wnts in proliferation and differentiation. Building on our previous investigations of small molecules modulating Wnt/β-catenin signaling in mouse embryonic stem cells, we identified a compound, ID-8, that could support Wnt-induced human embryonic stem cell proliferation and survival without differentiation. Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) is the target of the small molecule ID-8. Its role in human pluripotent cell renewal was confirmed by DYRK knockdown in human embryonic stem cells. Using Wnt and the DYRK inhibitor ID-8, we have developed a novel and simple chemically defined xeno-free culture system that allows for long-term expansion of human pluripotent stem cells without FGF or TGFβ activation. These culture conditions do not include xenobiotic supplements, serum, serum replacement, or albumin. Using this culture system, we have shown that several human pluripotent cell lines maintained pluripotency (>20 passages) and a normal karyotype and still retained the ability to differentiate into derivatives of all three germ layers. This Wnt-dependent culture system should provide a platform for complete replacement of growth factors with chemical compounds. PMID:23197636

  1. HIV Aspartic Peptidase Inhibitors Modulate Surface Molecules and Enzyme Activities Involved with Physiopathological Events in Fonsecaea pedrosoi.

    PubMed

    Palmeira, Vanila F; Alviano, Daniela S; Braga-Silva, Lys A; Goulart, Fátima R V; Granato, Marcela Q; Rozental, Sonia; Alviano, Celuta S; Santos, André L S; Kneipp, Lucimar F

    2017-01-01

    Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs) currently used in the treatment of human immunodeficiency virus (HIV) have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 μM) for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i) reduction on the conidial granularity; (ii) irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii) a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv) inhibition of ergosterol and lanosterol production; (v) reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi) significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.

  2. Small molecule inhibitors of disulfide bond formation by the bacterial DsbA-DsbB dual enzyme system.

    PubMed

    Halili, Maria A; Bachu, Prabhakar; Lindahl, Fredrik; Bechara, Chérine; Mohanty, Biswaranjan; Reid, Robert C; Scanlon, Martin J; Robinson, Carol V; Fairlie, David P; Martin, Jennifer L

    2015-04-17

    The DsbA:DsbB redox machinery catalyzes disulfide bond formation in secreted proteins and is required for bacterial virulence factor assembly. Both enzymes have been identified as targets for antivirulence drugs. Here, we report synthetic analogues of ubiquinone (dimedone derivatives) that inhibit disulfide bond formation (IC50∼1 μM) catalyzed by E. coli DsbA:DsbB. The mechanism involves covalent modification of a single free cysteine leaving other cysteines unmodified. A vinylogous anhydride in each inhibitor is cleaved by the thiol, which becomes covalently modified to a thioester by a propionyl substituent. Cysteines and lysines on DsbA and DsbB and a nonredox enzyme were modified in a manner that implies some specificity. Moreover, human thioredoxin was not inhibited under the same conditions that inhibited EcDsbA. This proof of concept work uses small molecules that target specific cysteines to validate the DsbA and DsbB dual enzyme system as a viable and potentially druggable antivirulence target.

  3. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486

    PubMed Central

    Dolan, Bridget M.; Duron, Sergio G.; Campbell, David A.; Vollrath, Benedikt; Rao, B. S. Shankaranarayana; Ko, Hui-Yeon; Lin, Gregory G.; Govindarajan, Arvind; Choi, Se-Young; Tonegawa, Susumu

    2013-01-01

    Fragile X syndrome (FXS) is the most common inherited form of autism and intellectual disability and is caused by the silencing of a single gene, fragile X mental retardation 1 (Fmr1). The Fmr1 KO mouse displays phenotypes similar to symptoms in the human condition—including hyperactivity, repetitive behaviors, and seizures—as well as analogous abnormalities in the density of dendritic spines. Here we take a hypothesis-driven, mechanism-based approach to the search for an effective therapy for FXS. We hypothesize that a treatment that rescues the dendritic spine defect in Fmr1 KO mice may also ameliorate autism-like behavioral symptoms. Thus, we targeted a protein that regulates spines through modulation of actin cytoskeleton dynamics: p21-activated kinase (PAK). Our results demonstrate that a potent small molecule inhibitor of group I PAKs reverses dendritic spine phenotypes in Fmr1 KO mice. Moreover, this PAK inhibitor—which we call FRAX486—also rescues seizures and behavioral abnormalities such as hyperactivity and repetitive movements, thereby supporting the hypothesis that a drug treatment that reverses the spine abnormalities can also treat neurological and behavioral symptoms. Finally, a single administration of FRAX486 is sufficient to rescue all of these phenotypes in adult Fmr1 KO mice, demonstrating the potential for rapid, postdiagnostic therapy in adults with FXS. PMID:23509247

  4. Novel Aryl Substituted Pyrazoles as Small Molecule Inhibitors of Cytochrome P450 CYP121A1: Synthesis and Antimycobacterial Evaluation

    PubMed Central

    2017-01-01

    Three series of biarylpyrazole imidazole and triazoles are described, which vary in the linker between the biaryl pyrazole and imidazole/triazole group. The imidazole and triazole series with the short −CH2– linker displayed promising antimycobacterial activity, with the imidazole–CH2– series (7) showing low MIC values (6.25–25 μg/mL), which was also influenced by lipophilicity. Extending the linker to −C(O)NH(CH2)2– resulted in a loss of antimycobacterial activity. The binding affinity of the compounds with CYP121A1 was determined by UV–visible optical titrations with KD values of 2.63, 35.6, and 290 μM, respectively, for the tightest binding compounds 7e, 8b, and 13d from their respective series. Both binding affinity assays and docking studies of the CYP121A1 inhibitors suggest type II indirect binding through interstitial water molecules, with key binding residues Thr77, Val78, Val82, Val83, Met86, Ser237, Gln385, and Arg386, comparable with the binding interactions observed with fluconazole and the natural substrate dicyclotyrosine. PMID:29185746

  5. Prospecting for Novel Plant-Derived Molecules of Rauvolfia serpentina as Inhibitors of Aldose Reductase, a Potent Drug Target for Diabetes and Its Complications

    PubMed Central

    Pathania, Shivalika; Randhawa, Vinay; Bagler, Ganesh

    2013-01-01

    Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects. PMID:23613832

  6. Design and Synthesis of a Cell-Permeable, Drug-Like Small Molecule Inhibitor Targeting the Polo-Box Domain of Polo-Like Kinase 1

    PubMed Central

    Ahn, Mija; Cheong, Chaejoon; Nam, Ky-Youb; Gunasekaran, Pethaiah; Hwang, Eunha; Kim, Nam-Hyung; Shin, Song Yub; Lee, Kyung S.; Ryu, Eunkyung; Bang, Jeong Kyu

    2014-01-01

    Background Polo-like kinase-1 (Plk1) plays a crucial role in cell proliferation and the inhibition of Plk1 has been considered as a potential target for specific inhibitory drugs in anti-cancer therapy. Several research groups have identified peptide-based inhibitors that target the polo-box domain (PBD) of Plk1 and bind to the protein with high affinity in in vitro assays. However, inadequate proteolytic resistance and cell permeability of the peptides hinder the development of these peptide-based inhibitors into novel therapeutic compounds. Methodology/Principal Findings In order to overcome the shortcomings of peptide-based inhibitors, we designed and synthesized small molecule inhibitors. Among these molecules, bg-34 exhibited a high binding affinity for Plk1-PBD and it could cross the cell membrane in its unmodified form. Furthermore, bg-34-dependent inhibition of Plk1-PBD was sufficient for inducing apoptosis in HeLa cells. Moreover, modeling studies performed on Plk1-PBD in complex with bg-34 revealed that bg-34 can interact effectively with Plk1-PBD. Conclusion/Significance We demonstrated that the molecule bg-34 is a potential drug candidate that exhibits anti-Plk1-PBD activity and possesses the favorable characteristics of high cell permeability and stability. We also determined that bg-34 induced apoptotic cell death by inhibiting Plk1-PBD in HeLa cells at the same concentration as PEGylated 4j peptide, which can inhibit Plk1-PBD activity 1000 times more effectively than bg-34 can in in vitro assays. This study may help to design and develop drug-like small molecule as Plk1-PBD inhibitor for better therapeutic activity. PMID:25211362

  7. Design and synthesis of a cell-permeable, drug-like small molecule inhibitor targeting the polo-box domain of polo-like kinase 1.

    PubMed

    Srinivasrao, Ganipisetti; Park, Jung-Eun; Kim, Sungmin; Ahn, Mija; Cheong, Chaejoon; Nam, Ky-Youb; Gunasekaran, Pethaiah; Hwang, Eunha; Kim, Nam-Hyung; Shin, Song Yub; Lee, Kyung S; Ryu, Eunkyung; Bang, Jeong Kyu

    2014-01-01

    Polo-like kinase-1 (Plk1) plays a crucial role in cell proliferation and the inhibition of Plk1 has been considered as a potential target for specific inhibitory drugs in anti-cancer therapy. Several research groups have identified peptide-based inhibitors that target the polo-box domain (PBD) of Plk1 and bind to the protein with high affinity in in vitro assays. However, inadequate proteolytic resistance and cell permeability of the peptides hinder the development of these peptide-based inhibitors into novel therapeutic compounds. In order to overcome the shortcomings of peptide-based inhibitors, we designed and synthesized small molecule inhibitors. Among these molecules, bg-34 exhibited a high binding affinity for Plk1-PBD and it could cross the cell membrane in its unmodified form. Furthermore, bg-34-dependent inhibition of Plk1-PBD was sufficient for inducing apoptosis in HeLa cells. Moreover, modeling studies performed on Plk1-PBD in complex with bg-34 revealed that bg-34 can interact effectively with Plk1-PBD. We demonstrated that the molecule bg-34 is a potential drug candidate that exhibits anti-Plk1-PBD activity and possesses the favorable characteristics of high cell permeability and stability. We also determined that bg-34 induced apoptotic cell death by inhibiting Plk1-PBD in HeLa cells at the same concentration as PEGylated 4j peptide, which can inhibit Plk1-PBD activity 1000 times more effectively than bg-34 can in in vitro assays. This study may help to design and develop drug-like small molecule as Plk1-PBD inhibitor for better therapeutic activity.

  8. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture.

    PubMed

    Raut, Rajendra; Beesetti, Hemalatha; Tyagi, Poornima; Khanna, Ira; Jain, Swatantra K; Jeankumar, Variam U; Yogeeswari, Perumal; Sriram, Dharmarajan; Swaminathan, Sathyamangalam

    2015-02-08

    Dengue has emerged as the most significant of arboviral diseases in the 21st century. It is endemic to >100 tropical and sub-tropical countries around the world placing an estimated 3.6 billion people at risk. It is caused by four genetically similar but antigenically distinct, serotypes of dengue viruses. There is neither a vaccine to prevent nor a drug to treat dengue infections, at the present time. The major objective of this work was to explore the possibility of identifying a small molecule inhibitor of the dengue virus protease and assessing its ability to suppress viral replication in cultured cells. We cloned, expressed and purified recombinant dengue virus type 2 protease. Using an optimized and validated fluorogenic peptide substrate cleavage assay to monitor the activity of this cloned dengue protease we randomly screened ~1000 small molecules from an 'in-house' library to identify potential dengue protease inhibitors. A benzimidazole derivative, named MB21, was found to be the most potent in inhibiting the cloned protease (IC₅₀ = 5.95 μM). In silico docking analysis indicated that MB21 binds to the protease in the vicinity of the active site. Analysis of kinetic parameters of the enzyme reaction suggested that MB21 presumably functions as a mixed type inhibitor. Significantly, this molecule identified as an inhibitor of dengue type 2 protease was also effective in inhibiting each one of the four serotypes of dengue viruses in infected cells in culture, based on analysis of viral antigen synthesis and infectious virus production. Interestingly, MB21 did not manifest any discernible cytotoxicity. This work strengthens the notion that a single drug molecule can be effective against all four dengue virus serotypes. The molecule MB21 could be a potential candidate for 'hit-to-lead' optimization, and may pave the way towards developing a pan-dengue virus antiviral drug.

  9. Accounting for target flexibility and water molecules by docking to ensembles of target structures: the HCV NS5B palm site I inhibitors case study.

    PubMed

    Barreca, Maria Letizia; Iraci, Nunzio; Manfroni, Giuseppe; Gaetani, Rosy; Guercini, Chiara; Sabatini, Stefano; Tabarrini, Oriana; Cecchetti, Violetta

    2014-02-24

    The introduction of new anti-HCV drugs in therapy is an imperative need and is necessary with a view to develop an interferon-free therapy. Thus, the discovery and development of novel small molecule inhibitors of the viral NS5B polymerase represent an exciting area of research for many pharmaceutical companies and academic groups. This study represents a contribution to this field and relies on the identification of the best NS5B model(s) to be used in structure-based computational approaches aimed at identifying novel non-nucleoside inhibitors of one of the protein allosteric sites, namely, palm site I. First, the NS5B inhibitors at palm site I were classified as water-mediated or nonwater-mediated ligands depending on their ability to interact with or displace a specific water molecule. Then, we took advantage of the available X-ray structures of the NS5B/ligand complexes to build different models of protein/water combinations, which were used to investigate the influence on docking studies of solvent sites as well as of the influence of the protein conformations. As the overall trend, we observed improved performance in the docking results of the water-mediated inhibitors by inclusion of explicit water molecules, with an opposite behavior generally happening for the nonwater-mediated inhibitors. The best performing target structures for the two ligand sets were then used for virtual screening simulations of a library containing the known NS5B inhibitors along with related decoys to assess the best performing targets ensembles on the basis of their ability to discriminate active and inactive compounds as well as to generate the correct binding modes. The parallel use of different protein structures/water sets outperformed the use of a single target structure, with the two-protein 3H98/2W-2FVC/7W and 3HKY/NoW-3SKE/NoW models resulting in the best performing ensembles for water-mediated inhibitors and nonwater-mediated inhibitors, respectively. The information

  10. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines

    PubMed Central

    2013-01-01

    the cellular level MET/HGF pathway inclines with myeloma disease progression. Amuvatinib, a small molecule MET kinase inhibitor, is effective in inducing growth inhibition and cell death in myeloma cell lines as well as primary malignant plasma cells. These cytostatic and cytotoxic effects were associated with an impact on MET/HGF pathway. PMID:24326130

  11. Exploratory computational assessment of possible binding modes for small molecule inhibitors of the CD40-CD154 co-stimulatory interaction.

    PubMed

    Ganesan, L; Vidović, D; Schürer, S C; Buchwald, P

    2012-05-01

    Protein-protein interactions (PPI) tend to involve extensive, flat, and featureless interfaces that are difficult to disrupt by small molecule binding. However, recently, PPIs are being recognized as increasingly valuable 'druggable' targets. We have identified several small molecule inhibitors of the immunologically relevant CD40-CD154 co-stimulatory interaction that bind to the homotrimeric CD154, a member of the tumor necrosis factor superfamily (TNFSF). Recently, on the basis of the co-crystal structure of CD154 with another small molecule (BIO8898), it has been suggested that these PPIs could be particularly susceptible to small molecule blockade due to a subunit fracture mechanism resulting in a distortion of the trimeric structure. To investigate whether this mechanism can occur with our organic dye-related inhibitors, we performed exploratory computational docking experiments. Possible druggable pockets that can serve as binding sites for small molecule inhibitors were identified with the FFT map algorithm both along the CD154-CD40 binding interface (competitive, orthosteric model) and in the interior core of the CD154 trimer corresponding to the BIO8898 binding site (allosteric model). Docking experiments (using Glide) were performed at these sites using the PDB ID: 3QD6 (CD40-CD154) and 3LKJ (BIO8898-CD154) co-crystal structures, respectively. The docking algorithm was able to better discriminate binders from non-binders at the deeper allosteric site than at the competitive site. Accordingly, an allosteric inhibitory mechanism that involves intercalation between monomeric subunits seems feasible for our small molecules making the constitutively trimeric CD154 a likely druggable target.

  12. The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis.

    PubMed

    Martiny-Baron, Georg; Holzer, Philipp; Billy, Eric; Schnell, Christian; Brueggen, Joseph; Ferretti, Mireille; Schmiedeberg, Niko; Wood, Jeanette M; Furet, Pascal; Imbach, Patricia

    2010-09-01

    EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein-protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis.

  13. Ultra-High-Throughput Structure-Based Virtual Screening for Small-Molecule Inhibitors of Protein-Protein Interactions

    PubMed Central

    Johnson, David K.; Karanicolas, John

    2016-01-01

    Protein-protein interactions play important roles in virtually all cellular processes, making them enticing targets for modulation by small-molecule therapeutics: specific examples have been well validated in diseases ranging from cancer and autoimmune disorders, to bacterial and viral infections. Despite several notable successes, however, overall these remain a very challenging target class. Protein interaction sites are especially challenging for computational approaches, because the target protein surface often undergoes a conformational change to enable ligand binding: this confounds traditional approaches for virtual screening. Through previous studies, we demonstrated that biased “pocket optimization” simulations could be used to build collections of low-energy pocket-containing conformations, starting from an unbound protein structure. Here, we demonstrate that these pockets can further be used to identify ligands that complement the protein surface. To do so, we first build from a given pocket its “exemplar”: a perfect, but non-physical, pseudo-ligand that would optimally match the shape and chemical features of the pocket. In our previous studies, we used these exemplars to quantitatively compare protein surface pockets to one another. Here, we now introduce this exemplar as a template for pharmacophore-based screening of chemical libraries. Through a series of benchmark experiments, we demonstrate that this approach exhibits comparable performance as traditional docking methods for identifying known inhibitors acting at protein interaction sites. However, because this approach is predicated on ligand/exemplar overlays, and thus does not require explicit calculation of protein-ligand interactions, exemplar screening provides a tremendous speed advantage over docking: 6 million compounds can be screened in about 15 minutes on a single 16-core, dual-GPU computer. The extreme speed at which large compound libraries can be traversed easily enables

  14. Applying Small Molecule Signal Transducer and Activator of Trancription-3 (STAT3) Protein Inhibitors as Pancreatic Cancer Therapeutics

    PubMed Central

    Arpin, Carolynn C.; Mac, Stephen; Jiang, Yanlin; Cheng, Huiwen; Grimard, Michelle; Page, Brent D. G.; Kamocka, Malgorzata M.; Haftchenary, Sina; Su, Han; Ball, Daniel; Rosa, David A.; Lai, Ping-Shan; Gómez-Biagi, Rodolfo F.; Ali, Ahmed M.; Rana, Rahul; Hanenberg, Helmut; Kerman, Kagan; McElyea, Kyle C; Sandusky, George E.; Gunning, Patrick T.; Fishel, Melissa L.

    2016-01-01

    Constitutively activated Signal Transducer and Activator of Transcription 3 (STAT3) protein has been found to be a key regulator of pancreatic cancer and a target for molecular therapeutic intervention. In this study PG-S3-001, a small molecule derived from the SH-4-54 class of STAT3 inhibitors, was found to inhibit patient-derived pancreatic cancer cell proliferation in vitro and in vivo in the low μM range. PG-S3-001 binds the STAT3 protein potently, Kd = 324 nM by SPR, showed no effect in a kinome screen (> 100 cancer-relevant kinases). In vitro studies demonstrated potent cell killing as well as inhibition of STAT3 activation in pancreatic cancer cells. To better model the tumor and its microenvironment, we utilized 3-Dimensional (3D) cultures of patient-derived pancreatic cancer cells in the absence and presence of cancer-associated fibroblasts (CAFs). In this co-culture model, inhibition of tumor growth is maintained following STAT3 inhibition in the presence of CAFs. Confocal microscopy was used to verify tumor cell death following treatment of 3D co-cultures with PG-S3-001. The 3D model was predictive of in vivo efficacy as significant tumor growth inhibition was observed upon administration of PG-S3-001. These studies showed that the inhibition of STAT3 was able to impact the survival of tumor cells in a relevant 3D model, as well as in a xenograft model using patient-derived cells. PMID:26873728

  15. Identification of Small-Molecule Inhibitors of Yersinia pestis Type III Secretion System YscN ATPase

    PubMed Central

    Swietnicki, Wieslaw; Carmany, Daniel; Retford, Michael; Guelta, Mark; Dorsey, Russell; Bozue, Joel; Lee, Michael S.; Olson, Mark A.

    2011-01-01

    Yersinia pestis is a Gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC50 values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species. PMID:21611119

  16. Identification of small-molecule inhibitors of Yersinia pestis Type III secretion system YscN ATPase.

    PubMed

    Swietnicki, Wieslaw; Carmany, Daniel; Retford, Michael; Guelta, Mark; Dorsey, Russell; Bozue, Joel; Lee, Michael S; Olson, Mark A

    2011-01-01

    Yersinia pestis is a gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC(50) values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.

  17. Applying Small Molecule Signal Transducer and Activator of Transcription-3 (STAT3) Protein Inhibitors as Pancreatic Cancer Therapeutics.

    PubMed

    Arpin, Carolyn C; Mac, Stephen; Jiang, Yanlin; Cheng, Huiwen; Grimard, Michelle; Page, Brent D G; Kamocka, Malgorzata M; Haftchenary, Sina; Su, Han; Ball, Daniel P; Rosa, David A; Lai, Ping-Shan; Gómez-Biagi, Rodolfo F; Ali, Ahmed M; Rana, Rahul; Hanenberg, Helmut; Kerman, Kagan; McElyea, Kyle C; Sandusky, George E; Gunning, Patrick T; Fishel, Melissa L

    2016-05-01

    Constitutively activated STAT3 protein has been found to be a key regulator of pancreatic cancer and a target for molecular therapeutic intervention. In this study, PG-S3-001, a small molecule derived from the SH-4-54 class of STAT3 inhibitors, was found to inhibit patient-derived pancreatic cancer cell proliferation in vitro and in vivo in the low micromolar range. PG-S3-001 binds the STAT3 protein potently, Kd = 324 nmol/L by surface plasmon resonance, and showed no effect in a kinome screen (>100 cancer-relevant kinases). In vitro studies demonstrated potent cell killing as well as inhibition of STAT3 activation in pancreatic cancer cells. To better model the tumor and its microenvironment, we utilized three-dimensional (3D) cultures of patient-derived pancreatic cancer cells in the absence and presence of cancer-associated fibroblasts (CAF). In this coculture model, inhibition of tumor growth is maintained following STAT3 inhibition in the presence of CAFs. Confocal microscopy was used to verify tumor cell death following treatment of 3D cocultures with PG-S3-001. The 3D model was predictive of in vivo efficacy as significant tumor growth inhibition was observed upon administration of PG-S3-001. These studies showed that the inhibition of STAT3 was able to impact the survival of tumor cells in a relevant 3D model, as well as in a xenograft model using patient-derived cells. Mol Cancer Ther; 15(5); 794-805. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction

    NASA Astrophysics Data System (ADS)

    Park, Insun; Londhe, Ashwini M.; Lim, Ji Woong; Park, Beoung-Geon; Jung, Seo Yun; Lee, Jae Yeol; Lim, Sang Min; No, Kyoung Tai; Lee, Jiyoun; Pae, Ae Nim

    2017-10-01

    Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD—cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aβ-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)—based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.

  19. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance.

    PubMed

    Fakler, Melanie; Loeder, Sandra; Vogler, Meike; Schneider, Katja; Jeremias, Irmela; Debatin, Klaus-Michael; Fulda, Simone

    2009-02-19

    Defects in apoptosis contribute to poor outcome in pediatric acute lymphoblastic leukemia (ALL), calling for novel strategies that counter apoptosis resistance. Here, we demonstrate for the first time that small molecule inhibitors of the antiapoptotic protein XIAP cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells. XIAP inhibitors at subtoxic concentrations, but not a structurally related control compound, synergize with TRAIL to trigger apoptosis and to inhibit clonogenic survival of acute leukemia cells, whereas they do not affect viability of normal peripheral blood lymphocytes, suggesting some tumor selectivity. Analysis of signaling pathways reveals that XIAP inhibitors enhance TRAIL-induced activation of caspases, loss of mitochondrial membrane potential, and cytochrome c release in a caspase-dependent manner, indicating that they promote a caspase-dependent feedback mitochondrial amplification loop. Of note, XIAP inhibitors even overcome Bcl-2-mediated resistance to TRAIL by enhancing Bcl-2 cleavage and Bak conformational change. Importantly, XIAP inhibitors kill leukemic blasts from children with ALL ex vivo and cooperate with TRAIL to induce apoptosis. In vivo, they significantly reduce leukemic burden in a mouse model of pediatric ALL engrafted in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Thus, XIAP inhibitors present a promising novel approach for apoptosis-based therapy of childhood ALL.

  20. An interaction map of small-molecule kinase inhibitors with anaplastic lymphoma kinase (ALK) mutants in ALK-positive non-small cell lung cancer.

    PubMed

    Ai, Xinghao; Shen, Shengping; Shen, Lan; Lu, Shun

    2015-05-01

    Human anaplastic lymphoma kinase (ALK) has become a well-established target for the treatment of ALK-positive non-small cell lung cancer (NSCLC). Here, we have profiled seven small-molecule inhibitors, including 2 that are approved drugs, against a panel of clinically relevant mutations in ALK tyrosine kinase (TK) domain, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying inhibitor response to ALK TK mutation. We find that (i) the gatekeeper mutation L1196M causes crizotinib resistance by simultaneously increasing and decreasing the binding affinities of, respectively, ATP and inhibitor to ALK, whereas the secondary mutation C1156Y, which is located far away from the ATP-binding site of ALK TK domain, causes the resistance by inducing marked allosteric effect on the site, (ii) the 2nd and 3rd generation kinase inhibitors exhibit relatively high sensitivity towards ALK mutants as compared to 1st generation inhibitors, (iii) the pan-kinase inhibitor staurosporine is insensitive for most mutations due to its high structural compatibility, and (iv) ATP affinity to ALK is generally reduced upon most clinically relevant mutations. Furthermore, we also identify six novel mutation-inhibitor pairs that are potentially associated with drug resistance. In addition, the G1202R and C1156Y mutations are expected to generally cause resistance for many existing inhibitors, since they can address significant effect on the geometric shape and physicochemical property of ALK active pocket. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease.

    PubMed

    Konno, Hiroyuki; Wakabayashi, Masaki; Takanuma, Daiki; Saito, Yota; Akaji, Kenichi

    2016-03-15

    Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai's cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Superior Efficacy and Selectivity of Novel Small-Molecule Kinase Inhibitors of T790M-Mutant EGFR in Preclinical Models of Lung Cancer.

    PubMed

    Rho, Jin Kyung; Lee, In Yong; Choi, Yun Jung; Choi, Chang-Min; Hur, Jae-Young; Koh, Jong Sung; Lee, Jaekyoo; Suh, Byung-Chul; Song, Ho-Juhn; Salgaonkar, Paresh; Lee, Jungmi; Lee, Jaesang; Jung, Dong Sik; Kim, Sang-Yeob; Woo, Dong-Cheol; Baek, In-Jeoung; Lee, Joo-Yong; Ha, Chang Hoon; Sung, Young Hoon; Kim, Jeong Kon; Kim, Woo Sung; Song, Joon Seon; Kim, Cheol Hyeon; Bivona, Trever G; Lee, Jae Cheol

    2017-03-01

    The clinical utility of approved EGFR small-molecule kinase inhibitors is plagued both by toxicity against wild-type EGFR and by metastatic progression in the central nervous system, a disease sanctuary site. Here, we report the discovery and preclinical efficacy of GNS-1486 and GNS-1481, two novel small-molecule EGFR kinase inhibitors that are selective for T790M-mutant isoforms of EGFR. Both agents were effective in multiple mouse xenograft models of human lung adenocarcinoma (T790M-positive or -negative), exhibiting less activity against wild-type EGFR than existing approved EGFR kinase inhibitors (including osimertinib). In addition, GNS-1486 showed superior potency against intracranial metastasis of EGFR-mutant lung adenocarcinoma. Our results offer a preclinical proof of concept for new EGFR kinase inhibitors with the potential to improve therapeutic index and efficacy against brain metastases in patients. Cancer Res; 77(5); 1200-11. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site | Center for Cancer Research

    Cancer.gov

    The lowest energy-binding conformation of an inhibitor bound to the dimeric interface of HIV-1 integrase core domain. The yellow region represents a unique allosteric binding site identified by affinity labeling and mass spectrometry and validated through mutagenesis. This site can provide a potential platform for the rational design of inhibitors selective for disruption of integrase multimerization.

  4. Pharmacophore modelling as a virtual screening tool for the discovery of small molecule protein-protein interaction inhibitors.

    PubMed

    Voet, Arnout; Zhang, Kam Y J

    2012-01-01

    Pharmacophore searches have become a popular tool for virtual screening of libraries to identify novel active substances that can be potentially developed into drugs. While they have been applied for years on common drug targets, their application in the discovery of protein-protein interaction inhibitors remains limited. This review describes current pharmacophore modelling methods applied in the discovery of novel inhibitors targeting protein-protein interactions. We first address the mimicry of protein-protein interactions with their respective inhibitors as observed in crystal structure complexes. This mimicry can be exploited to derive a pharmacophore query from protein-protein complex structures. We then discuss several cases where pharmacophore queries were utilized for the discovery of first-in-class inhibitors of their respective protein-protein interaction targets. These examples have demonstrated the usefulness of pharmacophore modelling in the quest for protein-protein interaction inhibitors.

  5. Theoretical models of inhibitory activity for inhibitors of protein-protein interactions: targeting menin-mixed lineage leukemia with small molecules.

    PubMed

    Jedwabny, Wiktoria; Kłossowski, Szymon; Purohit, Trupta; Cierpicki, Tomasz; Grembecka, Jolanta; Dyguda-Kazimierowicz, Edyta

    2017-12-01

    Development and binding affinity predictions of inhibitors targeting protein-protein interactions (PPI) still represent a major challenge in drug discovery efforts. This work reports application of a predictive non-empirical model of inhibitory activity for PPI inhibitors, exemplified here for small molecules targeting the menin-mixed lineage leukemia (MLL) interaction. Systematic ab initio analysis of menin-inhibitor complexes was performed, revealing the physical nature of these interactions. Notably, the non-empirical protein-ligand interaction energy comprising electrostatic multipole and approximate dispersion terms ( E (10)El,MTP + E Das ) produced a remarkable correlation with experimentally measured inhibitory activities and enabled accurate activity prediction for new menin-MLL inhibitors. Importantly, this relatively simple and computationally affordable non-empirical interaction energy model outperformed binding affinity predictions derived from commonly used empirical scoring functions. This study demonstrates high relevance of the non-empirical model we developed for binding affinity prediction of inhibitors targeting protein-protein interactions that are difficult to predict using empirical scoring functions.

  6. Small-molecule inhibitors of hepatitis C virus (HCV) non-structural protein 5A (NS5A): a patent review (2010-2015).

    PubMed

    Ivanenkov, Yan A; Aladinskiy, Vladimir A; Bushkov, Nikolay A; Ayginin, Andrey A; Majouga, Alexander G; Ivachtchenko, Alexandre V

    2017-04-01

    Non-structural 5A (NS5A) protein has achieved a considerable attention as an attractive target for the treatment of hepatitis C (HCV). A number of novel NS5A inhibitors have been reported to date. Several drugs having favorable ADME properties and mild side effects were launched into the pharmaceutical market. For instance, daclatasvir was launched in 2014, elbasvir is currently undergoing registration, ledipasvir was launched in 2014 as a fixed-dose combination with sofosbuvir (NS5B inhibitor). Areas covered: Thomson integrity database and SciFinder database were used as a valuable source to collect the patents on small-molecule NS5A inhibitors. All the structures were ranked by the date of priority. Patent holder and antiviral activity for each scaffold claimed were summarized and presented in a convenient manner. A particular focus was placed on the best-in-class bis-pyrrolidine-containing NS5A inhibitors. Expert opinion: Several first generation NS5A inhibitors have recently progressed into advanced clinical trials and showed superior efficacy in reducing viral load in infected subjects. Therapy schemes of using these agents in combination with other established antiviral drugs with complementary mechanisms of action can address the emergence of resistance and poor therapeutic outcome frequently attributed to antiviral drugs.

  7. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors

    SciTech Connect

    Whitehead, Lewis; Dobler, Markus R.; Radetich, Branko

    2013-11-20

    Herein we report the discovery of a family of novel yet simple, amino-acid derived class I HDAC inhibitors that demonstrate isoform selectivity via access to the internal acetate release channel. Isoform selectivity criteria is discussed on the basis of X-ray crystallography and molecular modeling of these novel inhibitors bound to HDAC8, potentially revealing insights into the mechanism of enzymatic function through novel structural features revealed at the atomic level.

  8. Probing the interaction mechanism of small molecule inhibitors with matriptase based on molecular dynamics simulation and free energy calculations.

    PubMed

    Sun, Dong-Ru; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2017-03-01

    Matriptase is a serine protease associated with a wide variety of human tumors and carcinoma progression. Up to now, many promising anti-cancer drugs have been developed. However, the detailed structure-function relationship between inhibitors and matriptase remains elusive. In this work, molecular dynamics simulation and binding free energy studies were performed to investigate the biochemistry behaviors of two class inhibitors binding to matriptase. The binding free energies predicted by MM/GBSA methods are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. The key residues responsible for achieving strong binding have been identified by the MM/GBSA free energy decomposition analysis. Especially, Trp215 and Phe99 had an important impact on active site architecture and ligand binding. The results clearly identify the two class inhibitors exist different binding modes. Through summarizing the two different modes, we have mastered some important and favorable interaction patterns between matriptase and inhibitors. Our findings would be helpful for understanding the interaction mechanism between the inhibitor and matriptase and afford important guidance for the rational design of potent matriptase inhibitors.

  9. Qualitative and quantitative pharmacophore-similarity assessment of anthranilamide-based factor Xa inhibitors: applications on similar molecules with identical biological endpoints.

    PubMed

    Kumar, Sivakumar Prasanth; Rawal, Rakesh M; Pandya, Himanshu A; Jasrai, Yogesh T

    2016-01-01

    It is a conventional practice to exclude molecules with identical biological endpoints to avoid bias in the resulting hypothesis model. Despite the diverse chemical functionalities, the receptor interactions of such molecules are often unexplored. The present study motivates the selection of these molecules diversified by single atom or functional group compared to internal molecules as external set and helps in the understanding of corresponding effects toward receptor interactions and biological endpoints. Applied on anthranilamide-series of factor Xa analogs, the inhibitory activities were correlated (r(2) = 0.99) and validated (q(2) = 0.68) with distance-based pharmacophore descriptors using support vector machine. The selected external set molecules exhibited better prediction accuracy by securing activities less than one residual threshold. The effect on inhibitory activity was assessed by the examination of pharmacophore-similarity and its interactions with key residues of Human factor Xa enzyme using molecular docking approach. Furthermore, qualitative pharmacophore models were developed on the subset of molecular dataset divided as most actives, moderately actives and least actives, to recognize crucial activity governing pharmacophore features. The outcome of this study will bring new insights about the requirements of pharmacophore features and prioritizes its selection in the design and optimization of potent Xa inhibitors.

  10. High-Affinity Small-Molecule Inhibitors of the Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a Natural Protein-Protein Interaction

    SciTech Connect

    He, Shihan; Senter, Timothy J.; Pollock, Jonathan

    2014-10-02

    The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ~288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interactionmore » with IC 50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.« less

  11. Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells

    PubMed Central

    Li, Minglun; Ping, Gong; Plathow, Christian; Trinh, Thuy; Lipson, Kenneth E; Hauser, Kai; Krempien, Robert; Debus, Juergen; Abdollahi, Amir; Huber, Peter E

    2006-01-01

    Background Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy. Methods Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed. Results In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation

  12. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis.

    PubMed

    Kollareddy, Madhu; Sherrard, Alice; Park, Ji Hyun; Szemes, Marianna; Gallacher, Kelli; Melegh, Zsombor; Oltean, Sebastian; Michaelis, Martin; Cinatl, Jindrich; Kaidi, Abderrahmane; Malik, Karim

    2017-09-10

    Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity

    SciTech Connect

    Hasinoff, Brian B., E-mail: B_Hasinoff@UManitoba.c

    2010-04-15

    The use of the new anticancer tyrosine kinase inhibitors (TKI) has revolutionized the treatment of certain cancers. However, the use of some of these results in cardiotoxicity. Large-scale profiling data recently made available for the binding of 7 of the 9 FDA-approved tyrosine kinase inhibitors to a panel of 317 kinases has allowed us to correlate kinase inhibitor binding selectivity scores with TKI-induced damage to neonatal rat cardiac myocytes. The tyrosine kinase selectivity scores, but not the serine-threonine kinase scores, were highly correlated with the myocyte damaging effects of the TKIs. Additionally, we showed that damage to myocytes gave amore » good rank order correlation with clinical cardiotoxicity. Finally, strength of TKI binding to colony-stimulating factor 1 receptor (CSF1R) was highly correlated with myocyte damage, thus possibly implicating this kinase in contributing to TKI-induced cardiotoxicity.« less

  14. Efficacy of Immunobiologic and Small Molecule Inhibitor Drugs for Psoriasis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials.

    PubMed

    de Carvalho, André Vicente Esteves; Duquia, Rodrigo Pereira; Horta, Bernardo Lessa; Bonamigo, Renan Rangel

    2017-03-01

    Psoriasis is an immune-mediated inflammatory disease for which treatment has evolved over the past few years due to the introduction of immunobiologic and small molecule inhibitor medications. A better understanding of the comparative efficacies of drugs may help doctors to choose the most appropriate treatment for patients. The aim of this study was to conduct a systematic review and meta-analysis to assess the efficacy of immunobiologic and small molecule inhibitor drugs for patients with moderate to severe psoriasis. The EMBASE, PUBMED, LILACS, Web of Science and ClinicalTrials.org databases were searched for trials published to 21 July 2016. Only randomized, double-blind, placebo-controlled clinical trials that evaluated the efficacy of immunobiologics or small molecule inhibitors for moderate to severe plaque-type psoriasis were selected by two independent authors. No restrictions were used. Two authors independently extracted the data and a random-effects model meta-analysis was performed. The Psoriasis Area and Severity Index (PASI) 75 was considered the primary outcome, measured at the primary endpoint of each study. Thirty-eight studies were included in our analysis. The overall pooled effect favored biologics and small molecule inhibitors over placebo (risk difference [RD] 0.59, 95% confidence interval [CI] 0.58-0.60). Ixekizumab at a dose of 160 mg on week 0 and then every 2 weeks (RD 0.84, 95% CI 0.81-0.88), brodalumab 210 mg (RD 0.79, 95% CI 0.76-0.82), infliximab 5 mg/kg (RD 0.76, 95% CI 0.73-0.79), and secukinumab 300 mg (RD 0.76, 95% CI 0.71-0.81) showed a greater chance of response (PASI 75) when compared with placebo. The methodology of a traditional meta-analysis does not allow for drugs to be ranked. Included studies used short-term endpoints (10-16 weeks) to evaluate the primary outcome, therefore long-term efficacy could not be determined. The anti-IL-17 drugs brodalumab, ixekizumab and secukinumab showed an equal or greater chance of

  15. Discovery and evaluation of 1H-pyrrolo[2,3-b]pyridine based selective and reversible small molecule BTK inhibitors for the treatment of rheumatoid arthritis.

    PubMed

    Thakkar, Mahesh; Bhuniya, Debnath; Kaduskar, Rahul; Mengawade, Tanaji; Naik, Keshav; Salunkhe, Videsh; Bhalerao, Amit; Kurhade, Santosh; Mavinahalli, Jagadeesh; Jain, Vaibhav; Petla, Rajkanth; Avaragolla, Satheesh; Ray, Swagatam; Rouduri, Sreekanth; Dhanave, Avinash; De, Siddhartha; Pathade, Vishal; Tambe, Ashwini; Raje, Amol A; Madgula, Vamsi; Joshi, Sachin; Nadeem, Ahmed; Bala, Madhu; Umrani, Dhananjay; Hariharan, Narayanan; Kulkarni, Bheemashankar; Mookhtiar, Kasim A

    2017-04-15

    In a pursuit to identify reversible and selective BTK inhibitors, two series based on 7H-pyrrolo[2,3-d]pyrimidine and 1H-pyrrolo[2,3-b]pyridine as the hinge binding core, have been identified. Structure activity relationship (SAR) exploration led to identification of two advanced lead molecules, 11 and 13, which demonstrated desired BTK inhibitory potency in different cellular assays, excellent selectivity in a panel of 50 diverse kinases, favorable in vivo PK properties in mice and anti-arthritic effect in a mouse model of CIA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. PI-273, a Substrate-Competitive, Specific Small-Molecule Inhibitor of PI4KIIα, Inhibits the Growth of Breast Cancer Cells.

    PubMed

    Li, Jiangmei; Gao, Zhen; Zhao, Dan; Zhang, Lunfeng; Qiao, Xinhua; Zhao, Yingying; Ding, Hong; Zhang, Panpan; Lu, Junyan; Liu, Jia; Jiang, Hualiang; Luo, Cheng; Chen, Chang

    2017-11-15

    While phosphatidylinositol 4-kinase (PI4KIIα) has been identified as a potential target for antitumor therapy, the clinical applications of PI4KIIα are limited by a lack of specific inhibitors. Here we report the first small-molecule inhibitor (SMI) of human PI4KIIα. Docking-based and ligand-based virtual screening strategies were first employed to identify promising hits, followed by two rounds of kinase activity inhibition validation. 2-(3-(4-Chlorobenzoyl)thioureido)-4-ethyl-5-methylthiophene-3-carboxamide (PI-273) exhibited the greatest inhibitory effect on PI4KIIα kinase activity (IC50 = 0.47 μmol/L) and suppressed cell proliferation. Surface plasmon resonance and thermal shift assays indicated that PI-273 interacted directly with PI4KIIα. Kinetic analysis identified PI-273 as a reversible competitive inhibitor with respect to the substrate phosphatidylinositol (PI), which contrasted with most other PI kinase inhibitors that bind the ATP binding site. PI-273 reduced PI4P content, cell viability, and AKT signaling in wild-type MCF-7 cells, but not in PI4KIIα knockout MCF-7 cells, indicating that PI-273 is highly selective for PI4KIIα. Mutant analysis revealed a role of palmitoylation insertion in the selectivity of PI-273 for PI4KIIα. In addition, PI-273 treatment retarded cell proliferation by blocking cells in G2-M, inducing cell apoptosis and suppressing colony-forming ability. Importantly, PI-273 significantly inhibited MCF-7 cell-induced breast tumor growth without toxicity. PI-273 is the first substrate-competitive, subtype-specific inhibitor of PI4KIIα, the use of which will facilitate evaluations of PI4KIIα as a cancer therapeutic target. Cancer Res; 77(22); 6253-66. ©2017 AACR. ©2017 American Association for Cancer Research.

  17. A Small Molecule Inhibitor of Tgf-β Signaling Replaces Sox2 in Reprogramming by Inducing Nanog

    PubMed Central

    Ichida, Justin K.; Blanchard, Joel; Lam, Kelvin; Son, Esther Y.; Chung, Julia E.; Egli, Dieter; Loh, Kyle M.; Carter, Ava C.; Di Giorgio, Francesco P.; Koszka, Kathryn; Huangfu, Danwei; Akutsu, Hidenori; Liu, David R.; Rubin, Lee L.; Eggan, Kevin

    2012-01-01

    Summary The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem (iPS) cells. However, the transgenic methods used to deliver reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity. To this end, we have used high-content chemical screening to identify small molecules that can replace Sox2 in reprogramming. We show that one of these molecules functions in reprogramming by inhibiting Tgf-β signaling in a stable and trapped intermediate cell type that forms during the process. We find that this inhibition promotes the completion of reprogramming through induction of the transcription factor Nanog. PMID:19818703

  18. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog.

    PubMed

    Ichida, Justin K; Blanchard, Joel; Lam, Kelvin; Son, Esther Y; Chung, Julia E; Egli, Dieter; Loh, Kyle M; Carter, Ava C; Di Giorgio, Francesco P; Koszka, Kathryn; Huangfu, Danwei; Akutsu, Hidenori; Liu, David R; Rubin, Lee L; Eggan, Kevin

    2009-11-06

    The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity. To this end, we have used high-content chemical screening to identify small molecules that can replace Sox2 in reprogramming. We show that one of these molecules functions in reprogramming by inhibiting Tgf-beta signaling in a stable and trapped intermediate cell type that forms during the process. We find that this inhibition promotes the completion of reprogramming through induction of the transcription factor Nanog.

  19. Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via encoded library technology (ELT).

    PubMed

    Deng, Hongfeng; O'Keefe, Heather; Davie, Christopher P; Lind, Kenneth E; Acharya, Raksha A; Franklin, G Joseph; Larkin, Jonathan; Matico, Rosalie; Neeb, Michael; Thompson, Monique M; Lohr, Thomas; Gross, Jeffrey W; Centrella, Paolo A; O'Donovan, Gary K; Bedard, Katie L Sargent; van Vloten, Kurt; Mataruse, Sibongile; Skinner, Steven R; Belyanskaya, Svetlana L; Carpenter, Tiffany Y; Shearer, Todd W; Clark, Matthew A; Cuozzo, John W; Arico-Muendel, Christopher C; Morgan, Barry A

    2012-08-23

    The metalloprotease ADAMTS-5 is considered a potential target for the treatment of osteoarthritis. To identify selective inhibitors of ADAMTS-5, we employed encoded library technology (ELT), which enables affinity selection of small molecule binders from complex mixtures by DNA tagging. Selection of ADAMTS-5 against a four-billion member ELT library led to a novel inhibitor scaffold not containing a classical zinc-binding functionality. One exemplar, (R)-N-((1-(4-(but-3-en-1-ylamino)-6-(((2-(thiophen-2-yl)thiazol-4-yl)methyl)amino)-1,3,5-triazin-2-yl)pyrrolidin-2-yl)methyl)-4-propylbenzenesulfonamide (8), inhibited ADAMTS-5 with IC(50) = 30 nM, showing >50-fold selectivity against ADAMTS-4 and >1000-fold selectivity against ADAMTS-1, ADAMTS-13, MMP-13, and TACE. Extensive SAR studies showed that potency and physicochemical properties of the scaffold could be further improved. Furthermore, in a human osteoarthritis cartilage explant study, compounds 8 and 15f inhibited aggrecanase-mediated (374)ARGS neoepitope release from aggrecan and glycosaminoglycan in response to IL-1β/OSM stimulation. This study provides the first small molecule evidence for the critical role of ADAMTS-5 in human cartilage degradation.

  20. Diverse Small Molecule Inhibitors of Human Apurinic/Apyrimidinic Endonuclease APE1 Identified from a Screen of a Large Public Collection

    PubMed Central

    Dorjsuren, Dorjbal; Kim, Daemyung; Vyjayanti, Vaddadi N.; Maloney, David J.; Jadhav, Ajit; Wilson, David M.; Simeonov, Anton

    2012-01-01

    The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment. PMID:23110144

  1. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  2. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    SciTech Connect

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore; Rice, Amy J.; Ojeda, Isabel; Light, Samuel; Minasov, George; Vargas, Jason; Nagarathnam, Dhanapalan; Anderson, Wayne F.; Johnson, Michael E.

    2016-12-26

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.

  3. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    PubMed

    Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.

  4. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    SciTech Connect

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore

    2016-12-26

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activitymore » (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.« less

  5. Co-targeting PI3K, mTOR, and IGF1R with small molecule inhibitors for treating undifferentiated pleomorphic sarcoma

    PubMed Central

    May, Caitlin D.; Landers, Sharon M.; Bolshakov, Svetlana; Ma, XiaoYan; Ingram, Davis R.; Kivlin, Christine M.; Watson, Kelsey L.; Sannaa, Ghadah A. Al; Bhalla, Angela D.; Wang, Wei-Lien

    2017-01-01

    ABSTRACT Undifferentiated pleomorphic sarcomas (UPSs) are aggressive mesenchymal malignancies with no definitive cell of origin or specific recurrent genetic hallmarks. These tumors are largely chemoresistant; thus, identification of potential therapeutic targets is necessary to improve patient outcome. Previous studies demonstrated that high expression of activated protein kinase B (AKT) in patients with UPS corresponds to poor disease-specific survival. Here, we demonstrate that inhibiting phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) signaling using a small molecule inhibitor reduced UPS cell proliferation and motility and xenograft growth; however, increased phosphorylation of insulin-like growth factor 1 receptor (IGF1R) indicated the potential for adaptive resistance following treatment through compensatory receptor activation. Co-treatment with a dual PI3K/mTOR inhibitor and an anti-IGF1R kinase inhibitor reduced in vivo tumor growth rates despite a lack of antiproliferative effects in vitro. Moreover, this combination treatment significantly decreased UPS cell migration and invasion, which is linked to changes in p27 subcellular localization. Our results demonstrate that targeted inhibition of multiple components of the IGF1R/PI3K/mTOR pathway was more efficacious than single-agent therapy and suggest that co-targeting this pathway could be a beneficial therapeutic strategy for patients with UPS. PMID:29099264

  6. Co-targeting PI3K, mTOR, and IGF1R with small molecule inhibitors for treating undifferentiated pleomorphic sarcoma.

    PubMed

    May, Caitlin D; Landers, Sharon M; Bolshakov, Svetlana; Ma, XiaoYan; Ingram, Davis R; Kivlin, Christine M; Watson, Kelsey L; Sannaa, Ghadah A Al; Bhalla, Angela D; Wang, Wei-Lien; Lazar, Alexander J; Torres, Keila E

    2017-10-03

    Undifferentiated pleomorphic sarcomas (UPSs) are aggressive mesenchymal malignancies with no definitive cell of origin or specific recurrent genetic hallmarks. These tumors are largely chemoresistant; thus, identification of potential therapeutic targets is necessary to improve patient outcome. Previous studies demonstrated that high expression of activated protein kinase B (AKT) in patients with UPS corresponds to poor disease-specific survival. Here, we demonstrate that inhibiting phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) signaling using a small molecule inhibitor reduced UPS cell proliferation and motility and xenograft growth; however, increased phosphorylation of insulin-like growth factor 1 receptor (IGF1R) indicated the potential for adaptive resistance following treatment through compensatory receptor activation. Co-treatment with a dual PI3K/mTOR inhibitor and an anti-IGF1R kinase inhibitor reduced in vivo tumor growth rates despite a lack of antiproliferative effects in vitro. Moreover, this combination treatment significantly decreased UPS cell migration and invasion, which is linked to changes in p27 subcellular localization. Our results demonstrate that targeted inhibition of multiple components of the IGF1R/PI3K/mTOR pathway was more efficacious than single-agent therapy and suggest that co-targeting this pathway could be a beneficial therapeutic strategy for patients with UPS.

  7. WNT-C59, a Small-Molecule WNT Inhibitor, Efficiently Induces Anterior Cortex That Includes Cortical Motor Neurons From Human Pluripotent Stem Cells.

    PubMed

    Motono, Makoto; Ioroi, Yoshihiko; Ogura, Takenori; Takahashi, Jun

    2016-04-01

    The recapitulation of human neural development in a controlled, defined manner from pluripotent stem cells (PSCs) has considerable potential for studies of human neural development, circuit formation and function, and the construction of in vitro models of neurological diseases. The inhibition of Wnt signaling, often by the recombinant protein DKK1, is important for the induction of cortical neurons. Here, we report a novel differentiation method using a small-molecule WNT inhibitor, WNT-C59 (C59), to efficiently induce human anterior cortex. We compared two types of small molecules, C59 and XAV939 (XAV), as substitutes for DKK1 to induce cortical neurons from PSCs in serum-free embryoid body-like aggregate culture. DKK1 and XAV inhibited only the canonical pathway of Wnt signaling, whereas C59 inhibited both the canonical and noncanonical pathways. C59 efficiently induced CTIP2+/COUP-TF1- cells, which are characteristic of the cells found in the anterior cortex. In addition, when grafted into the cortex of adult mice, the C59-induced cells showed abundant axonal fiber extension toward the spinal cord. These results raise the possibility of C59 contributing to cell replacement therapy for motor neuron diseases or insults. For a cell therapy against damaged corticospinal tract caused by neurodegenerative diseases or insults, cortical motor neurons are needed. Currently, their induction from pluripotent stem cells is considered very promising; however, an efficient protocol to induce motor neurons is not available. For efficient induction of anterior cortex, where motor neurons are located, various WNT inhibitors were investigated. It was found that one of them could induce anterior cortical cells efficiently. In addition, when grafted into the cortex of adult mice, the induced cells showed more abundant axonal fiber extension toward spinal cord. These results raise the possibility that this inhibitor contributes to a cell-replacement therapy for motor neuron

  8. WNT-C59, a Small-Molecule WNT Inhibitor, Efficiently Induces Anterior Cortex That Includes Cortical Motor Neurons From Human Pluripotent Stem Cells

    PubMed Central

    Motono, Makoto; Ioroi, Yoshihiko; Ogura, Takenori

    2016-01-01

    The recapitulation of human neural development in a controlled, defined manner from pluripotent stem cells (PSCs) has considerable potential for studies of human neural development, circuit formation and function, and the construction of in vitro models of neurological diseases. The inhibition of Wnt signaling, often by the recombinant protein DKK1, is important for the induction of cortical neurons. Here, we report a novel differentiation method using a small-molecule WNT inhibitor, WNT-C59 (C59), to efficiently induce human anterior cortex. We compared two types of small molecules, C59 and XAV939 (XAV), as substitutes for DKK1 to induce cortical neurons from PSCs in serum-free embryoid body-like aggregate culture. DKK1 and XAV inhibited only the canonical pathway of Wnt signaling, whereas C59 inhibited both the canonical and noncanonical pathways. C59 efficiently induced CTIP2+/COUP-TF1− cells, which are characteristic of the cells found in the anterior cortex. In addition, when grafted into the cortex of adult mice, the C59-induced cells showed abundant axonal fiber extension toward the spinal cord. These results raise the possibility of C59 contributing to cell replacement therapy for motor neuron diseases or insults. Significance For a cell therapy against damaged corticospinal tract caused by neurodegenerative diseases or insults, cortical motor neurons are needed. Currently, their induction from pluripotent stem cells is considered very promising; however, an efficient protocol to induce motor neurons is not available. For efficient induction of anterior cortex, where motor neurons are located, various WNT inhibitors were investigated. It was found that one of them could induce anterior cortical cells efficiently. In addition, when grafted into the cortex of adult mice, the induced cells showed more abundant axonal fiber extension toward spinal cord. These results raise the possibility that this inhibitor contributes to a cell-replacement therapy for motor

  9. FRAX597, a Small Molecule Inhibitor of the p21-activated Kinases, Inhibits Tumorigenesis of Neurofibromatosis Type 2 (NF2)-associated Schwannomas*

    PubMed Central

    Licciulli, Silvia; Maksimoska, Jasna; Zhou, Chun; Troutman, Scott; Kota, Smitha; Liu, Qin; Duron, Sergio; Campbell, David; Chernoff, Jonathan; Field, Jeffrey; Marmorstein, Ronen; Kissil, Joseph L.

    2013-01-01

    The p21-activated kinases (PAKs) are immediate downstream effectors of the Rac/Cdc42 small G-proteins and implicated in promoting tumorigenesis in various types of cancer including breast and lung carcinomas. Recent studies have established a requirement for the PAKs in the pathogenesis of Neurofibromatosis type 2 (NF2), a dominantly inherited cancer disorder caused by mutations at the NF2 gene locus. Merlin, the protein product of the NF2 gene, has been shown to negatively regulate signaling through the PAKs and the tumor suppressive functions of Merlin are mediated, at least in part, through inhibition of the PAKs. Knockdown of PAK1 and PAK2 expression, through RNAi-based approaches, impairs the proliferation of NF2-null schwannoma cells in culture and inhibits their ability to form tumors in vivo. These data implicate the PAKs as potential therapeutic targets. High-throughput screening of a library of small molecules combined with a structure-activity relationship approach resulted in the identification of FRAX597, a small-molecule pyridopyrimidinone, as a potent inhibitor of the group I PAKs. Crystallographic characterization of the FRAX597/PAK1 complex identifies a phenyl ring that traverses the gatekeeper residue and positions the thiazole in the back cavity of the ATP binding site, a site rarely targeted by kinase inhibitors. FRAX597 inhibits the proliferation of NF2-deficient schwannoma cells in culture and displayed potent anti-tumor activity in vivo, impairing schwannoma development in an orthotopic model of NF2. These studies identify a novel class of orally available ATP-competitive Group I PAK inhibitors with significant potential for the treatment of NF2 and other cancers. PMID:23960073

  10. Molecular Basis of Human Diseases and Targeted Therapy Based on Small-Molecule Inhibitors of ER Stress-Induced Signaling Pathways.

    PubMed

    Rozpedek, W; Nowak, A; Pytel, D; Diehl, J Alan; Majsterek, I

    2017-01-01

    The Endoplasmic Reticulum (ER) provides a conserved protein quality control system and plays a fundamental role in cell growth and homeostasis. Disturbances in the ER homeostasis may originate especially from hypoxia, glucose deficiency, presence of mutant proteins, that directly impair protein folding capacity and after deposition of unfolded and misfolded proteins within ER lumen trigger ER stress conditions. This subsequently activates the Unfolded Protein Response (UPR) branches, which have a dual pro-adaptive or pro-apoptotic role depending on the severity and time of duration of ER stress conditions. This review is the first to offer a detailed overview on molecular mechanisms of all major ER stress-dependent signaling branches, that are activated through three specific ER transmembrane receptors of impaired protein folding: Protein kinase RNA (PKR)-like ER kinase (PERK), Inositol-requiring enzyme-1 (IRE1) and Activating transcription factor 6 (ATF6). Molecular crosstalk among ER transmembrane receptors-dependent pathways determines a final UPR response, but the recent data reported that especially PERK over-activation has a significant impact on the development and progression of a wide spectrum of disease entities. Based on these findings, small-molecules, highly specific PERK inhibitors may provide effective, groundbreaking treatment strategy against human diseases. However, after foregoing in vitro cellular and in vivo animal models conducted examination, supplementary investigations of PERK inhibitors are required for their further clinical use. Future research may answer the question of how to minimize toxicity and side effects of characterized small-molecule PERK inhibitors, that may be used, as breakthrough drugs, alone or in combination with currently known models of therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Yazdankhah, Meysam; Ai, Jafar; Khakbiz, Mehrdad; Faghihi, Faezeh; Tajerian, Roksana; Bayat, Neda

    2017-05-01

    Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.

  12. Small Molecule R1498 as a Well-Tolerated and Orally Active Kinase Inhibitor for Hepatocellular Carcinoma and Gastric Cancer Treatment via Targeting Angiogenesis and Mitosis Pathways

    PubMed Central

    Zhang, Chao; Wu, Xihan; Zhang, Meifang; Zhu, Liangcheng; Zhao, Rong; Xu, Danqing; Lin, Zhaohu; Liang, Chungen; Chen, Taiping; Chen, Li; Ren, Yi; Zhang, Joe; Qin, Ning; Zhang, Xiongwen

    2013-01-01

    Protein kinases play important roles in tumor development and progression. Lots of kinase inhibitors have entered into market and show promising clinical benefits. Here we report the discovery of a novel small molecule, well-tolerated, orally active kinase inhibitor, R1498, majorly targeting both angiogenic and mitotic pathways for the treatment of hepatocellular carcinoma (HCC) and gastric cancer (GC). A series of biochemical and cell-based assays indicated that the target kinase cluster of R1498 included Aurora kinases and VEGFR2 et al. R1498 showed moderate in vitro growth inhibition on a panel of tumor cells with IC50 of micromole range. The in vivo anti-tumor efficacy of R1498 was evaluated on a panel of GC and HCC xenografts in a parallel comparison with another multikinase inhibitor sorafenib. R1498 demonstrated superior efficacy and toxicity profile over sorafenib in all test models with >80% tumor growth inhibition and tumor regression in some xenogratfts. The therapeutic potential of R1498 was also highlighted by its efficacy on three human GC primary tumor derived xenograft models with 10–30% tumor regression rate. R1498 was shown to actively inhibit the Aurora A activity in vivo, and decrease the vascularization in tumors. Furthermore, R1498 presented good in vivo exposure and therapeutic window in the pharmacokinetic and dose range finding studies. Theses evidences indicate that R1498 is a potent, well-tolerated, orally active multitarget kinase inhibitor with a unique antiangiogenic and antiproliferative profile, and provide strong confidence for further development for HCC and GC therapy. PMID:23755206

  13. Alteration of RNA Splicing by Small-Molecule Inhibitors of the Interaction between NHP2L1 and U4.

    PubMed

    Diouf, Barthelemy; Lin, Wenwei; Goktug, Asli; Grace, Christy R R; Waddell, Michael Brett; Bao, Ju; Shao, Youming; Heath, Richard J; Zheng, Jie J; Shelat, Anang A; Relling, Mary V; Chen, Taosheng; Evans, William E

    2018-02-01

    Splicing is an important eukaryotic mechanism for expanding the transcriptome and proteome, influencing a number of biological processes. Understanding its regulation and identifying small molecules that modulate this process remain a challenge. We developed an assay based on time-resolved fluorescence resonance energy transfer (TR-FRET) to detect the interaction between the protein NHP2L1 and U4 RNA, which are two key components of the spliceosome. We used this assay to identify small molecules that interfere with this interaction in a high-throughput screening (HTS) campaign. Topotecan and other camptothecin derivatives were among the top hits. We confirmed that topotecan disrupts the interaction between NHP2L1 and U4 by binding to U4 and inhibits RNA splicing. Our data reveal new functions of known drugs that could facilitate the development of therapeutic strategies to modify splicing and alter gene function.

  14. Repurposing of Proton Pump Inhibitors as first identified small molecule inhibitors of endo-β-N-acetylglucosaminidase (ENGase) for the treatment of NGLY1 deficiency, a rare genetic disease.

    PubMed

    Bi, Yiling; Might, Matthew; Vankayalapati, Hariprasad; Kuberan, Balagurunathan

    2017-07-01

    N-Glycanase deficiency, or NGLY1 deficiency, is an extremely rare human genetic disease. N-Glycanase, encoded by the gene NGLY1, is an important enzyme involved in protein deglycosylation of misfolded proteins. Deglycosylation of misfolded proteins precedes the endoplasmic reticulum (ER)-associated degradation (ERAD) process. NGLY1 patients produce little or no N-glycanase (Ngly1), and the symptoms include global developmental delay, frequent seizures, complex hyperkinetic movement disorder, difficulty in swallowing/aspiration, liver dysfunction, and a lack of tears. Unfortunately, there has not been any therapeutic option available for this rare disease so far. Recently, a proposed molecular mechanism for NGLY1 deficiency suggested that endo-β-N-acetylglucosaminidase (ENGase) inhibitors may be promising therapeutics for NGLY1 patients. Herein, we performed structure-based virtual screening utilizing FDA-approved drug database on this ENGase target to enable repurposing of existing drugs. Several Proton Pump Inhibitors (PPIs), a series of substituted 1H-benzo [d] imidazole, and 1H-imidazo [4,5-b] pyridines, among other scaffolds, have been identified as potent ENGase inhibitors. An electrophoretic mobility shift assay was employed to assess the inhibition of ENGase activity by these PPIs. Our efforts led to the discovery of Rabeprazole Sodium as the most promising hit with an IC50 of 4.47±0.44μM. This is the first report that describes the discovery of small molecule ENGase inhibitors, which can potentially be used for the treatment of human NGLY1 deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Importance of functional groups in predicting the activity of small molecule inhibitors for Bcl-2 and Bcl-xL.

    PubMed

    Kanakaveti, Vishnupriya; Sakthivel, Ramasamy; Rayala, S K; Gromiha, M Michael

    2017-08-01

    Evasion of apoptosis owing to aberrant expression of Bcl-2 (B-cell lymphoma-2) anti-apoptotic proteins is a promising hallmark of cancer. These proteins are associated with resistance to chemotherapy and radiation. Currently available QSAR models are limited to a set of inhibitors corresponding to a particular chemical scaffold, and unified models are required to identify the differential specificity of diverse compounds toward inhibiting these targets. In this study, we predicted the factors driving differential activity and specificity implementing multiplexed QSAR analysis for a dataset of 1,649 reported inhibitors of Bcl-2 (B-cell lymphoma-2) and Bcl-xL (B-cell lymphoma-extra large). We developed QSAR models for seven diverse scaffolds and critically analyzed the chemical space with coupling factors. The correlation values of QSAR models for Bcl-2 and Bcl-xL range from 0.95 to 0.985. The MAE and sMAPE of the models were in the range of 0.052-5.4 nm and 0.41%-10%, respectively, signifying model robustness. The crucial descriptors and moieties accounting for the activity were benchmarked against experimentally determined binding patterns. The comprehensive analysis made in the study explores latent features of the chemical space in a broad perspective. Further, we have developed a user-friendly Web server for predicting a specific/dual inhibitor of Bcl-2 and Bcl-xL [http://www.iitm.ac.in/bioinfo/APPLE/]. © 2017 John Wiley & Sons A/S.

  16. Targeting the Type II Secretion System: Development, Optimization, and Validation of a High-Throughput Screen for the Identification of Small Molecule Inhibitors

    PubMed Central

    Waack, Ursula; Johnson, Tanya L.; Chedid, Khalil; Xi, Chuanwu; Simmons, Lyle A.; Mobley, Harry L. T.; Sandkvist, Maria

    2017-01-01

    Nosocomial pathogens that develop multidrug resistance present an increasing problem for healthcare facilities. Due to its rapid rise in antibiotic resistance, Acinetobacter baumannii is one of the most concerning gram-negative species. A. baumannii typically infects immune compromised individuals resulting in a variety of outcomes, including pneumonia and bacteremia. Using a murine model for bacteremia, we have previously shown that the type II secretion system (T2SS) contributes to in vivo fitness of A. baumannii. Here, we provide support for a role of the T2SS in protecting A. baumannii from human complement as deletion of the T2SS gene gspD resulted in a 100-fold reduction in surviving cells when incubated with human serum. This effect was abrogated in the absence of Factor B, a component of the alternative pathway of complement activation, indicating that the T2SS protects A. baumannii against the alternative complement pathway. Because inactivation of the T2SS results in loss of secretion of multiple enzymes, reduced in vivo fitness, and increased sensitivity to human complement, the T2SS may be a suitable target for therapeutic intervention. Accordingly, we developed and optimized a whole-cell high-throughput screening (HTS) assay based on secreted lipase activity to identify small molecule inhibitors of the T2SS. We tested the reproducibility of our assay using a 6,400-compound library. With small variation within controls and a dynamic range between positive and negative controls, the assay had a z-factor of 0.65, establishing its suitability for HTS. Our screen identified the lipase inhibitors Orlistat and Ebelactone B demonstrating the specificity of the assay. To eliminate inhibitors of lipase activity and lipase expression, two counter assays were developed and optimized. By implementing these assays, all seven tricyclic antidepressants present in the library were found to be inhibitors of the lipase, highlighting the potential of identifying

  17. In silico discovery and validation of potent small-molecule inhibitors targeting the activation function 2 site of human oestrogen receptor α.

    PubMed

    Singh, Kriti; Munuganti, Ravi Shashi Nayana; Leblanc, Eric; Lin, Yu Lun; Leung, Euphemia; Lallous, Nada; Butler, Miriam; Cherkasov, Artem; Rennie, Paul S

    2015-02-25

    Current approaches to inhibit oestrogen receptor-alpha (ERα) are focused on targeting its hormone-binding pocket and have limitations. Thus, we propose that inhibitors that bind to a coactivator-binding pocket on ERα, called activation function 2 (AF2), might overcome some of these limitations. In silico virtual screening was used to identify small-molecule ERα AF2 inhibitors. These compounds were screened for inhibition of ERα transcriptional activity using stably transfected T47D-KBluc cell line. A direct physical interaction between the AF2 binders and the ERα protein was measured using biolayer interferometry (BLI) and an ERα coactivator displacement assay. Cell viability was assessed by MTS assay in ERα-positive MCF7 cells, tamoxifen-resistant (TamR) cell lines TamR3 and TamR6, and ERα-negative MDA-MB-453 and HeLa cell lines. In addition, ERα inhibition in TamR cells and the effect of compounds on mRNA and protein expression of oestrogen-dependent genes, pS2, cathepsin D and cell division cycle 2 (CDC2) were determined. Fifteen inhibitors from two chemical classes, derivatives of pyrazolidine-3,5-dione and carbohydrazide, were identified. In a series of in vitro assays, VPC-16230 of the carbohydrazide chemical class emerged as a lead ERα AF2 inhibitor that significantly downregulated ERα transcriptional activity (half-maximal inhibitory concentration = 5.81 μM). By directly binding to the ERα protein, as confirmed by BLI, VPC-16230 effectively displaced coactivator peptides from the AF2 pocket, confirming its site-specific action. VPC-16230 selectively suppressed the growth of ERα-positive breast cancer cells. Furthermore, it significantly inhibited ERα mediated transcription in TamR cells. More importantly, it reduced mRNA and protein levels of pS2, cathepsin D and CDC2, validating its ER-directed activity. We identified VPC-16230 as an ERα AF2-specific inhibitor that demonstrated promising antiproliferative effects in breast cancer cell

  18. Computer-Aided Lead Optimization: Improved Small-Molecule Inhibitor of the Zinc Endopeptidase of Botulinum Neurotoxin Serotype A

    DTIC Science & Technology

    2007-08-01

    generation force field for the simulation of proteins, nucleic acids , and organic molecules. J Am Chem Soc 117: 5179–5197. 49. Berendsen HJC, Postma JPM...free energy perturbation calculation of the MMDS-derived model of the 1-bound endopeptidase using a published method [24] with modifications...described in MATERIALS AND METHODS . These computational observa- tions were consistent with the experimentally determined Ki app of 762.4 mM (DG ranging from

  19. Small molecule inhibitors of Ca2+-S100B reveal two protein conformations

    SciTech Connect

    Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.; Wilder, Paul T.; McKnight, Laura E.; Raman, E. Prabhu; Neau, David B.; Bezawada, Padmavani; Alasady, Milad J.; Charpentier, Thomas H.; Varney, Kristen M.; Toth, Eric A.; MacKerell, Alexander D.; Coop, Andrew; Weber, David J.

    2016-01-04

    The drug pentamidine inhibits calcium-dependent complex formation with p53 (CaS100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure–activity relationship (SAR) studies were therefore completed in this study with 23 pentamidine analogues, and X-ray structures of CaS100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the “FF-gate”. For symmetric pentamidine analogues (CaS100B·5a, CaS100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue (CaS100B·17), this same channel was open. Finally, the CaS100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B·p53 inhibitor design.

  20. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.

    PubMed

    Wang, Hao; Mann, Paul A; Xiao, Li; Gill, Charles; Galgoci, Andrew M; Howe, John A; Villafania, Artjohn; Barbieri, Christopher M; Malinverni, Juliana C; Sher, Xinwei; Mayhood, Todd; McCurry, Megan D; Murgolo, Nicholas; Flattery, Amy; Mack, Matthias; Roemer, Terry

    2017-05-18

    Riboswitches are bacterial-specific, broadly conserved, non-coding RNA structural elements that control gene expression of numerous metabolic pathways and transport functions essential for cell growth. As such, riboswitch inhibitors represent a new class of potential antibacterial agents. Recently, we identified ribocil-C, a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Here, we provide a mechanistic characterization of the antibacterial effects of ribocil-C as well as of roseoflavin (RoF), an antimetabolite analog of RF, among medically significant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis. We provide genetic, biophysical, computational, biochemical, and pharmacological evidence that ribocil-C and RoF specifically inhibit dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for MRSA growth and pathogenesis. Such a dual-targeting mechanism is specifically required to develop broad-spectrum Gram-positive antibacterial agents targeting RF metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 4SC-101, a novel small molecule dihydroorotate dehydrogenase inhibitor, suppresses systemic lupus erythematosus in MRL-(Fas)lpr mice.

    PubMed

    Kulkarni, Onkar P; Sayyed, Sufyan G; Kantner, Claudia; Ryu, Mi; Schnurr, Max; Sárdy, Miklós; Leban, Johann; Jankowsky, Ruediger; Ammendola, Aldo; Doblhofer, Robert; Anders, Hans-Joachim

    2010-06-01

    Immunosuppressive treatments of systemic lupus (SLE) remain associated with significant toxicities; hence, compounds with better toxicity profiles are needed. Dihydroorotate dehydrogenase (DHODH) inhibition with leflunomide has proven to be effective in autoimmune diseases including SLE, but leflunomide can cause a variety of side effects. We hypothesized that 4SC-101, a novel DHODH inhibitor with a more favorable toxicity profile, would be as effective as high-dose cyclophosphamide (CYC) in controlling experimental SLE of female MRL(Fas)lpr mice. Daily oral gavage of 30, 100, and 300 mg/kg 4SC-101 from 12 to 22 weeks of age was compared with either vehicle or CYC treatment (30 mg/kg/week, i.p.) in terms of efficacy and toxicity. Three hundred milligrams per kilogram 4SC-101 was as effective as CYC in depleting spleen autoreactive T cells, B cells, and plasma cells as well as the respective DNA and RNA serum autoantibodies. This was associated with a comparable amelioration of the renal, dermal, and pulmonary SLE manifestations of MRL(Fas)lpr mice. However, even the highest dose of 4SC-101 had no effect on bone marrow neutrophil counts, which were significantly reduced in CYC-treated mice. Together, the novel DHODH inhibitor 4SC-101 is as effective as high dose CYC in controlling SLE without causing myelosuppression. Hence, DHODH inhibition with 4SC-101 might be suitable to treat active SLE with fewer side effects than CYC.

  2. 4SC-101, A Novel Small Molecule Dihydroorotate Dehydrogenase Inhibitor, Suppresses Systemic Lupus Erythematosus in MRL-(Fas)lpr Mice

    PubMed Central

    Kulkarni, Onkar P.; Sayyed, Sufyan G.; Kantner, Claudia; Ryu, Mi; Schnurr, Max; Sárdy, Miklós; Leban, Johann; Jankowsky, Ruediger; Ammendola, Aldo; Doblhofer, Robert; Anders, Hans-Joachim

    2010-01-01

    Immunosuppressive treatments of systemic lupus (SLE) remain associated with significant toxicities; hence, compounds with better toxicity profiles are needed. Dihydroorotate dehydrogenase (DHODH) inhibition with leflunomide has proven to be effective in autoimmune diseases including SLE, but leflunomide can cause a variety of side effects. We hypothesized that 4SC-101, a novel DHODH inhibitor with a more favorable toxicity profile, would be as effective as high-dose cyclophosphamide (CYC) in controlling experimental SLE of female MRL(Fas)lpr mice. Daily oral gavage of 30, 100, and 300 mg/kg 4SC-101 from 12 to 22 weeks of age was compared with either vehicle or CYC treatment (30 mg/kg/week, i.p.) in terms of efficacy and toxicity. Three hundred milligrams per kilogram 4SC-101 was as effective as CYC in depleting spleen autoreactive T cells, B cells, and plasma cells as well as the respective DNA and RNA serum autoantibodies. This was associated with a comparable amelioration of the renal, dermal, and pulmonary SLE manifestations of MRL(Fas)lpr mice. However, even the highest dose of 4SC-101 had no effect on bone marrow neutrophil counts, which were significantly reduced in CYC-treated mice. Together, the novel DHODH inhibitor 4SC-101 is as effective as high dose CYC in controlling SLE without causing myelosuppression. Hence, DHODH inhibition with 4SC-101 might be suitable to treat active SLE with fewer side effects than CYC. PMID:20413687

  3. A small molecule inhibitor of mutant IDH2 rescues cardiomyopathy in a D-2-hydroxyglutaric aciduria type II mouse model.

    PubMed

    Wang, Fang; Travins, Jeremy; Lin, Zhizhong; Si, Yaguang; Chen, Yue; Powe, Josh; Murray, Stuart; Zhu, Dongwei; Artin, Erin; Gross, Stefan; Santiago, Stephanie; Steadman, Mya; Kernytsky, Andrew; Straley, Kimberly; Lu, Chenming; Pop, Ana; Struys, Eduard A; Jansen, Erwin E W; Salomons, Gajja S; David, Muriel D; Quivoron, Cyril; Penard-Lacronique, Virginie; Regan, Karen S; Liu, Wei; Dang, Lenny; Yang, Hua; Silverman, Lee; Agresta, Samuel; Dorsch, Marion; Biller, Scott; Yen, Katharine; Cang, Yong; Su, Shin-San Michael; Jin, Shengfang

    2016-11-01

    D-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions. We generated a D2HGA type II mouse model by introducing the Idh2R140Q mutation at the native chromosomal locus. Idh2R140Q mice displayed significantly elevated 2HG levels and recapitulated multiple defects seen in patients. AGI-026, a potent, selective inhibitor of the human IDH2R140Q-mutant enzyme, suppressed 2HG production, rescued cardiomyopathy, and provided a survival benefit in Idh2R140Q mice; treatment withdrawal resulted in deterioration of cardiac function. We observed differential expression of multiple genes and metabolites that are associated with cardiomyopathy, which were largely reversed by AGI-026. These findings demonstrate the potential therapeutic benefit of an IDH2R140Q inhibitor in patients with D2HGA type II.

  4. Identification of small molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen

    PubMed Central

    Xu, Miao; Lee, Emily M.; Wen, Zhexing; Cheng, Yichen; Huang, Wei-Kai; Qian, Xuyu; TCW, Julia; Kouznetsova, Jennifer; Ogden, Sarah C.; Hammack, Christy; Jacob, Fadi; Nguyen, Ha Nam; Itkin, Misha; Hanna, Catherine; Shinn, Paul; Allen, Chase; Michael, Samuel G.; Simeonov, Anton; Huang, Wenwei; Christian, Kimberly M.; Goate, Alison; Brennand, Kristen J.; Huang, Ruili; Xia, Menghang; Ming, Guo-li; Zheng, Wei; Song, Hongjun; Tang, Hengli

    2017-01-01

    In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ~6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds, and we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, Emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and 3-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, an FDA approved category B anthelmintic drug, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development. PMID:27571349

  5. Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL)

    PubMed Central

    Melagraki, Georgia; Rinotas, Vagelis; Papaneophytou, Christos; Leonis, Georgios; Mavromoustakos, Thomas; Kontopidis, George

    2017-01-01

    We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure–based with ligand–based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases. PMID:28426652

  6. The Role of Histone Deacetylases in Neurodegenerative Diseases and Small-Molecule Inhibitors as a Potential Therapeutic Approach

    NASA Astrophysics Data System (ADS)

    Bürli, Roland W.; Thomas, Elizabeth; Beaumont, Vahri

    Neurodegenerative disorders are devastating for patients and their social environment. Their etiology is poorly understood and complex. As a result, there is clearly an urgent need for therapeutic agents that slow down disease progress and alleviate symptoms. In this respect, interference with expression and function of multiple gene products at the epigenetic level has offered much promise, and histone deacetylases play a crucial role in these processes. This review presents an overview of the biological pathways in which these enzymes are involved and illustrates the complex network of proteins that governs their activity. An overview of small molecules that interfere with histone deacetylase function is provided.

  7. Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies

    PubMed Central

    San José-Enériz, Edurne; Agirre, Xabier; Rabal, Obdulia; Vilas-Zornoza, Amaia; Sanchez-Arias, Juan A.; Miranda, Estibaliz; Ugarte, Ana; Roa, Sergio; Paiva, Bruno; Estella-Hermoso de Mendoza, Ander; Alvarez, Rosa María; Casares, Noelia; Segura, Victor; Martín-Subero, José I.; Ogi, François-Xavier; Soule, Pierre; Santiveri, Clara M.; Campos-Olivas, Ramón; Castellano, Giancarlo; de Barrena, Maite Garcia Fernandez; Rodriguez-Madoz, Juan Roberto; García-Barchino, Maria José; Lasarte, Juan Jose; Avila, Matias A; Martinez-Climent, Jose Angel; Oyarzabal, Julen; Prosper, Felipe

    2017-01-01

    The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours. PMID:28548080

  8. Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies.

    PubMed

    San José-Enériz, Edurne; Agirre, Xabier; Rabal, Obdulia; Vilas-Zornoza, Amaia; Sanchez-Arias, Juan A; Miranda, Estibaliz; Ugarte, Ana; Roa, Sergio; Paiva, Bruno; Estella-Hermoso de Mendoza, Ander; Alvarez, Rosa María; Casares, Noelia; Segura, Victor; Martín-Subero, José I; Ogi, François-Xavier; Soule, Pierre; Santiveri, Clara M; Campos-Olivas, Ramón; Castellano, Giancarlo; de Barrena, Maite Garcia Fernandez; Rodriguez-Madoz, Juan Roberto; García-Barchino, Maria José; Lasarte, Juan Jose; Avila, Matias A; Martinez-Climent, Jose Angel; Oyarzabal, Julen; Prosper, Felipe

    2017-05-26

    The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours.

  9. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines.

    PubMed

    Couto, Jason I; Bear, Misty D; Lin, Jiayuh; Pennel, Michael; Kulp, Samuel K; Kisseberth, William C; London, Cheryl A

    2012-12-17

    STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS). Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.

  10. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders.

    PubMed

    Roskoski, Robert

    2018-02-03

    Platelet-derived growth factor (PDGF) was discovered as a serum-derived component necessary for the growth of smooth muscle cells, fibroblasts, and glial cells. The PDGF family is a product of four gene products and consists of five dimeric isoforms: PDGF-AA, PDGF-BB, PDGF-CC, PDGF-DD, and the PDGF-AB heterodimer. This growth factor family plays an essential role in embryonic development and in wound healing in the adult. These growth factors mediate their effects by binding to and activating their receptor protein-tyrosine kinases, which are encoded by two genes: PDGFRA and PDGFRB. The functional receptors consist of the PDGFRα/α and PDGFRβ/β homodimers and the PDGFRα/β heterodimer. Although PDGF signaling is most closely associated with mesenchymal cells, PDGFs and PDGF receptors are widely expressed in the mammalian central nervous system. The PDGF receptors contain an extracellular domain that is made up of five immunoglobulin-like domains (Ig-d1/2/3/4/5), a transmembrane segment, a juxtamembrane segment, a protein-tyrosine kinase domain that contains an insert of about 100 amino acid residues, and a carboxyterminal tail. Although uncommon, activating mutations in the genes for PDGF or PDGF receptors have been documented in various neoplasms including dermatofibrosarcoma protuberans (DFSP) and gastrointestinal stromal tumors (GIST). In most neoplastic diseases, PDGF expression and action appear to involve the tumor stroma. Moreover, this family is pro-angiogenic. More than ten PDGFRα/β multikinase antagonists have been approved by the FDA for the treatment of several neoplastic disorders and interstitial pulmonary fibrosis (www.brimr.org/PKI/PKIs.htm). Type I protein kinase inhibitors interact with the active enzyme form with DFG-D of the proximal activation segment directed inward toward the active site (DFG-D in ). In contrast, type II inhibitors bind to their target with the DFG-D pointing away from the active site (DFG-D out ). We used the Schr

  11. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  12. The small molecule survivin inhibitor YM155 may be an effective treatment modality for colon cancer through increasing apoptosis

    SciTech Connect

    Li, Wan Lu; Lee, Mi-Ra; Cho, Mee-Yon

    2016-03-04

    Survivin has a known beneficial role in the survival of both cancer cells and normal cells. Therapies targeting survivin have been proposed as an alternative treatment modality for various tumors; however, finding the proper indication for this toxic therapy is critical for reducing unavoidable side effects. We recently observed that high survivin expression in CD133{sup +} cells is related to chemoresistance in Caco-2 colon cancer cells. However, the effect of survivin-targeted therapy on CD133{sup +} colon cancer is unknown. In this study, we investigated the roles of CD133 and survivin expression in colon cancer biology in vitro and comparatively analyzed the anticancer effects of survivin inhibitor on CD133{sup +} cells (ctrl-siRNA group) and small interfering RNA (siRNA)-induced CD133{sup −} cells (CD133-siRNA group) obtained from a single colon cancer cell line. CD133 knockdown via siRNA transfection did not change the tumorigenicity of cells, although in vitro survivin expression levels in CD133{sup +} cells were higher than those in siRNA-induced CD133{sup −} cells. The transfection procedure seemed to induce survivin expression. Notably, a significant number of CD133{sup −} cells (33.8%) was found in the cell colonies of the CD133-siRNA group. In the cell proliferation assay after treatment, YM155 and a combination of YM155 and 5-fluorouracil (5-FU) proved to be far more effective than 5-FU alone. A significantly increased level of apoptosis was observed with increasing doses of YM155 in all groups. However, significant differences in therapeutic effect and apoptosis among the mock, ctrl-siRNA, and CD133-siRNA groups were not detected. Survivin inhibitor is an effective treatment modality for colon cancer; however, the role of CD133 and the use of survivin expression as a biomarker for this targeted therapy must be verified.

  13. VER-155008, a small molecule inhibitor of HSP70 with potent anti-cancer activity on lung cancer cell lines.

    PubMed

    Wen, Wei; Liu, Wuxin; Shao, Yongfeng; Chen, Liang

    2014-05-01

    Lung cancer is the most common malignancy and exhibits significant morbidity and mortality worldwide. Among all lung cancer subtypes, non-small-cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Although there have been intensive investigations on the underlying mechanism of NSCLC development and progression, the exact molecular basis is not well understood. Further insights on important molecular regulators of lung cancer are needed for development of novel therapeutics. The heat shock protein (HSP) family is a group of molecular chaperones that assist in protein folding, modification, and transportation. Different HSPs are essential for tumor cell survival by binding diverse client proteins and regulating homeostasis. In the current study, we sought to characterize HSP70 and HSP90 as potent regulators of NSCLC growth. Our results indicate that differential expression of HSP70 is associated with the malignant phenotype of NSCLC cell lines and plays an important regulatory role in NSCLC cell proliferation. Moreover, a specific inhibitor of HSP70, VER-155008 significantly inhibits NSCLC proliferation and cell cycle progression. We showed that this effect is largely abolished by HSP70 overexpression, indicating that the inhibitory effect of VER-155008 on cell growth is specifically through HSP70 inhibition. In addition, 17-AAD, an inhibitor of HSP90, exerts a potent synergistic effect on NSCLC proliferation with VER-155008. We also observed that inhibition of HSP70 by VER-155008 can sensitize A549 cells to ionizing radiation. These data provide proof-of-principle that VER-155008 can be a good candidate for NSCLC treatment and HSP machinery is a good target for developing NSCLC therapeutics.

  14. A High-Throughput Screening Method for Small-Molecule Inhibitors of the Aberrant Mutant SOD1 and Dynein Complex Interaction

    PubMed Central

    Tang, Xiaohu; Seyb, Kathleen I.; Huang, Mickey; Schuman, Eli R.; Shi, Ping; Zhu, Haining; Glicksman, Marcie A.

    2013-01-01

    Aberrant protein-protein interactions are attractive drug targets in a variety of neurodegenerative diseases due to the common pathology of accumulation of protein aggregates. In amyotrophic lateral sclerosis, mutations in SOD1 cause the formation of aggregates and inclusions that may sequester other proteins and disrupt cellular processes. It has been demonstrated that mutant SOD1, but not wild-type SOD1, interacts with the axonal transport motor dynein and that this interaction contributes to motor neuron cell death, suggesting that disrupting this interaction may be a potential therapeutic target. However, it can be challenging to configure a high-throughput screening (HTS)–compatible assay to detect inhibitors of a protein-protein interaction. Here we describe the development and challenges of an HTS for small-molecule inhibitors of the mutant SOD1-dynein interaction. We demonstrate that the interaction can be formed by coexpressing the A4V mutant SOD1 and dynein intermediate complex in cells and that this interaction can be disrupted by compounds added to the cell lysates. Finally, we show that some of the compounds identified from a pilot screen to inhibit the protein-protein interaction with this method specifically disrupt the interaction between the dynein complex and mtSOD1 but not the dynein complex itself when applied to live cells. PMID:22140121

  15. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy.

    PubMed

    Pillaiyar, Thanigaimalai; Manickam, Manoj; Namasivayam, Vigneshwaran; Hayashi, Yoshio; Jung, Sang-Hun

    2016-07-28

    Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus that infected more than 8000 individuals and resulted in more than 800 (10-15%) fatalities in 2003. The causative agent of SARS has been identified as a novel human coronavirus (SARS-CoV), and its viral protease, SARS-CoV 3CL(pro), has been shown to be essential for replication and has hence been recognized as a potent drug target for SARS infection. Currently, there is no effective treatment for this epidemic despite the intensive research that has been undertaken since 2003 (over 3500 publications). This perspective focuses on the status of various efficacious anti-SARS-CoV 3CL(pro) chemotherapies discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, natural products, and virtual screening. We describe here mainly peptidomimetic and small molecule inhibitors of SARS-CoV 3CL(pro). Attempts have been made to provide a complete description of the structural features and binding modes of these inhibitors under many conditions.

  16. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    PubMed

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  17. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures

    PubMed Central

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  18. Transcriptional Responses of Escherichia coli to a Small-Molecule Inhibitor of LolCDE, an Essential Component of the Lipoprotein Transport Pathway

    PubMed Central

    Lorenz, Christian; Dougherty, Thomas J.

    2016-01-01

    ABSTRACT In Gram-negative bacteria, a dedicated machinery consisting of LolABCDE components targets lipoproteins to the outer membrane. We used a previously identified small-molecule inhibitor of the LolCDE complex of Escherichia coli to assess the global transcriptional consequences of interference with lipoprotein transport. Exposure of E. coli to the LolCDE inhibitor at concentrations leading to minimal and significant growth inhibition, followed by transcriptome sequencing, identified a small group of genes whose transcript levels were decreased and a larger group whose mRNA levels increased 10- to 100-fold compared to those of untreated cells. The majority of the genes whose mRNA concentrations were reduced were part of the flagellar assembly pathway, which contains an essential lipoprotein component. Most of the genes whose transcript levels were elevated encode proteins involved in selected cell stress pathways. Many of these genes are involved with envelope stress responses induced by the mislocalization of outer membrane lipoproteins. Although several of the genes whose RNAs were induced have previously been shown to be associated with the general perturbation of the cell envelope by antibiotics, a small subset was affected only by LolCDE inhibition. Findings from this work suggest that the efficiency of the Lol system function may be coupled to a specific monitoring system, which could be exploited in the development of reporter constructs suitable for use for screening for additional inhibitors of lipoprotein trafficking. IMPORTANCE Inhibition of the lipoprotein transport pathway leads to E. coli death and subsequent lysis. Early significant changes in the levels of RNA for a subset of genes identified to be associated with some periplasmic and envelope stress responses were observed. Together these findings suggest that disruption of this key pathway can have a severe impact on balanced outer membrane synthesis sufficient to affect viability. PMID

  19. The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells

    PubMed Central

    Schaefer, Susanne; Svenstrup, Tina H.

    2017-01-01

    Many types of cancer express high levels of heat shock proteins (HSPs) that are molecular chaperones regulating protein folding and stability ensuring protection of cells from potentially lethal stress. HSPs in cancer cells promote survival, growth and spreading even in situations of growth factors deprivation by associating with oncogenic proteins responsible for cell transformation. Hence, it is not surprising that the identification of potent inhibitors of HSPs, notably HSP90, has been the primary research focus, in recent years. Exposure of cancer cells to HSP90 inhibitors, including 17-AAG, has been shown to cause resistance to chemotherapeutic treatment mostly attributable to induction of the heat shock response and increased cellular levels of pro-survival chaperones. In this study, we show that treatment of glioblastoma cells with 17-AAG leads to HSP90 inhibition indicated by loss of stability of the EGFR client protein, and significant increase in HSP70 expression. Conversely, co-treatment with the small-molecule kinase inhibitor D11 leads to suppression of the heat shock response and inhibition of HSF1 transcriptional activity. Beside HSP70, Western blot and differential mRNA expression analysis reveal that combination treatment causes strong down-regulation of the small chaperone protein HSP27. Finally, we demonstrate that incubation of cells with both agents leads to enhanced cytotoxicity and significantly high levels of LC3-II suggesting autophagy induction. Taken together, results reported here support the notion that including D11 in future treatment regimens based on HSP90 inhibition can potentially overcome acquired resistance induced by the heat shock response in brain cancer cells. PMID:28542269

  20. The small molecule survivin inhibitor YM155 may be an effective treatment modality for colon cancer through increasing apoptosis

    SciTech Connect

    Li, Wan Lu, E-mail: lvvlchina@msn.cn; Lee, Mi-Ra, E-mail: mira1125@yonsei.ac.kr; Cho, Mee-Yon, E-mail: meeyon@yonsei.ac.kr

    2016-03-04

    Survivin has a known beneficial role in the survival of both cancer cells and normal cells. Therapies targeting survivin have been proposed as an alternative treatment modality for various tumors; however, finding the proper indication for this toxic therapy is critical for reducing unavoidable side effects. We recently observed that high survivin expression in CD133{sup +} cells is related to chemoresistance in Caco-2 colon cancer cells. However, the effect of survivin-targeted therapy on CD133{sup +} colon cancer is unknown. In this study, we investigated the roles of CD133 and survivin expression in colon cancer biology in vitro and comparatively analyzed themore » anticancer effects of survivin inhibitor on CD133{sup +} cells (ctrl-siRNA group) and small interfering RNA (siRNA)-induced CD133{sup −} cells (CD133-siRNA group) obtained from a single colon cancer cell line. CD133 knockdown via siRNA transfection did not change the tumorigenicity of cells, although in vitro survivin expression levels in CD133{sup +} cells were higher than those in siRNA-induced CD133{sup −} cells. The transfection procedure seemed to induce survivin expression. Notably, a significant number of CD133{sup −} cells (33.8%) was found in the cell colonies of the CD133-siRNA group. In the cell proliferation assay after treatment, YM155 and a combination of YM155 and 5-fluorouracil (5-FU) proved to be far more effective than 5-FU alone. A significantly increased level of apoptosis was observed with increasing doses of YM155 in all groups. However, significant differences in therapeutic effect and apoptosis among the mock, ctrl-siRNA, and CD133-siRNA groups were not detected. Survivin inhibitor is an effective treatment modality for colon cancer; however, the role of CD133 and the use of survivin expression as a biomarker for this targeted therapy must be verified.« less

  1. Discovery of novel STAT3 small molecule inhibitors via in silico site-directed fragment-based drug design.

    PubMed

    Yu, Wenying; Xiao, Hui; Lin, Jiayuh; Li, Chenglong

    2013-06-13

    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been validated as an attractive therapeutic target for cancer therapy. To stop both STAT3 activation and dimerization, a viable strategy is to design inhibitors blocking its SH2 domain phosphotyrosine binding site that is responsible for both actions. A new fragment-based drug design (FBDD) strategy, in silico site-directed FBDD, was applied in this study. A designed novel compound, 5,8-dioxo-6-(pyridin-3-ylamino)-5,8-dihydronaphthalene-1-sulfonamide (LY5), was confirmed to bind to STAT3 SH2 by fluorescence polarization assay. In addition, four out of the five chosen compounds have IC50 values lower than 5 μM for the U2OS cancer cells. 8 (LY5) has an IC50 range in 0.5-1.4 μM in various cancer cell lines. 8 also suppresses tumor growth in an in vivo mouse model. This study has demonstrated the utility of this approach and could be used to other drug targets in general.

  2. A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice

    PubMed Central

    Illendula, Anuradha; Pulikkan, John A.; Zong, Hongliang; Grembecka, Jolanta; Xue, Liting; Sen, Siddhartha; Zhou, Yunpeng; Boulton, Adam; Kuntimaddi, Aravinda; Gao, Yan; Rajewski, Roger A.; Guzman, Monica L.; Castilla, Lucio H.; Bushweller, John H.

    2015-01-01

    Acute myeloid leukemia (AML) is the most common form of adult leukemia. The transcription factor fusion CBFβ-SMMHC (core binding factor β and the smooth-muscle myosin heavy chain), expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wild-type CBFβ for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and induces AML. Current inv(16) AML treatment with nonselective cytotoxic chemotherapy results in a good initial response but limited long-term survival. Here, we report the development of a protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFβ-SMMHC and disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary inv(16) AML patient blasts with AI-10-49 triggers selective cell death. These data suggest that direct inhibition of the oncogenic CBFβ-SMMHC fusion protein may be an effective therapeutic approach for inv(16) AML, and they provide support for transcription factor targeted therapy in other cancers. PMID:25678665

  3. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524

    PubMed Central

    Baron, Anna P; von Schubert, Conrad; Cubizolles, Fabien; Siemeister, Gerhard; Hitchcock, Marion; Mengel, Anne; Schröder, Jens; Fernández-Montalván, Amaury; von Nussbaum, Franz; Mumberg, Dominik; Nigg, Erich A

    2016-01-01

    The kinase Bub1 functions in the spindle assembly checkpoint (SAC) and in chromosome congression, but the role of its catalytic activity remains controversial. Here, we use two novel Bub1 inhibitors, BAY-320 and BAY-524, to demonstrate potent Bub1 kinase inhibition both in vitro and in intact cells. Then, we compared the cellular phenotypes of Bub1 kinase inhibition in HeLa and RPE1 cells with those of protein depletion, indicative of catalytic or scaffolding functions, respectively. Bub1 inhibition affected chromosome association of Shugoshin and the chromosomal passenger complex (CPC), without abolishing global Aurora B function. Consequently, inhibition of Bub1 kinase impaired chromosome arm resolution but exerted only minor effects on mitotic progression or SAC function. Importantly, BAY-320 and BAY-524 treatment sensitized cells to low doses of Paclitaxel, impairing both chromosome segregation and cell proliferation. These findings are relevant to our understanding of Bub1 kinase function and the prospects of targeting Bub1 for therapeutic applications. DOI: http://dx.doi.org/10.7554/eLife.12187.001 PMID:26885717

  4. Targeting voltage-gated calcium channels: developments in peptide and small-molecule inhibitors for the treatment of neuropathic pain

    PubMed Central

    Vink, S; Alewood, PF

    2012-01-01

    Chronic pain affects approximately 20% of people worldwide and places a large economic and social burden on society. Despite the availability of a range of analgesics, this condition is inadequately treated, with complete alleviation of symptoms rarely occurring. In the past 30 years, the voltage-gated calcium channels (VGCCs) have been recognized as potential targets for analgesic development. Although the majority of the research has been focused on Cav2.2 in particular, other VGCC subtypes such as Cav3.2 have recently come to the forefront of analgesic research. Venom peptides from marine cone snails have been proven to be a valuable tool in neuroscience, playing a major role in the identification and characterization of VGCC subtypes and producing the first conotoxin-based drug on the market, the ω-conotoxin, ziconotide. This peptide potently and selectively inhibits Cav2.2, resulting in analgesia in chronic pain states. However, this drug is only available via intrathecal administration, and adverse effects and a narrow therapeutic window have limited its use in the clinic. Other Cav2.2 inhibitors are currently in development and offer the promise of an improved route of administration and safety profile. This review assesses the potential of targeting VGCCs for analgesic development, with a main focus on conotoxins that block Cav2.2 and the developments made to transform them into therapeutics. PMID:22725651

  5. A Small Molecule Inhibitor of PDK1/PLCγ1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion

    PubMed Central

    Raimondi, Claudio; Calleja, Veronique; Ferro, Riccardo; Fantin, Alessandro; Riley, Andrew M.; Potter, Barry V. L.; Brennan, Caroline H.; Maffucci, Tania; Larijani, Banafshé; Falasca, Marco

    2016-01-01

    Strong evidence suggests that phospholipase Cγ1 (PLCγ1) is a suitable target to counteract tumourigenesis and metastasis dissemination. We recently identified a novel signalling pathway required for PLCγ1 activation which involves formation of a protein complex with 3-phosphoinositide-dependent protein kinase 1 (PDK1). In an effort to define novel strategies to inhibit PLCγ1-dependent signals we tested here whether a newly identified and highly specific PDK1 inhibitor, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5), could affect PDK1/PLCγ1 interaction and impair PLCγ1-dependent cellular functions in cancer cells. Here, we demonstrate that 2-O-Bn-InsP5 interacts specifically with the pleckstrin homology domain of PDK1 and impairs formation of a PDK1/PLCγ1 complex. 2-O-Bn-InsP5 is able to inhibit the epidermal growth factor-induced PLCγ1 phosphorylation and activity, ultimately resulting in impaired cancer cell migration and invasion. Importantly, we report that 2-O-Bn-InsP5 inhibits cancer cell dissemination in zebrafish xenotransplants. This work demonstrates that the PDK1/PLCγ1 complex is a potential therapeutic target to prevent metastasis and it identifies 2-O-Bn-InsP5 as a leading compound for development of anti-metastatic drugs. PMID:27199173

  6. Common Pharmacophore of Structurally Distinct Small-Molecule Inhibitors of Intracellular Retrograde Trafficking of Ribosome Inactivating Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Shichao; Park, Jewn Giew; Kahn, Jennifer Nielsen; Tumer, Nilgun E.; Pang, Yuan-Ping

    2013-12-01

    We reported previously (+/-)-2-(5-methylthiophen-2-yl)-3-phenyl-2,3-dihydroquinazolin-4(1H)-one [(+/-)-Retro-2cycl] as the chemical structure of Retro-2 that showed mouse protection against ricin, a notorious ribosome inactivating protein (RIP). Herein we report our chemical resolution of (+/-)-Retro-2cycl, analog synthesis, and cell-based evaluation showing that the two optically pure enantiomers and their achiral analog have nearly the same degree of cell protection against ricin as (+/-)-Retro-2cycl. We also report our computational studies explaining the lack of stereo preference and revealing a common pharmacophore of structurally distinct inhibitors of intracellular retrograde trafficking of RIPs. This pharmacophore comprises a central aromatic ring o-substituted by an aromatic ring and a moiety bearing an O or S atom attached to sp2 C atom(s). These results offer new insights into lead identification and optimization for RIP antidote development to minimize the global health threat caused by ribosome-inactivating proteins.

  7. High-Throughput Screening Reveals a Small-Molecule Inhibitor of the Renal Outer Medullary Potassium Channel and Kir7.1

    PubMed Central

    Lewis, L. Michelle; Bhave, Gautam; Chauder, Brian A.; Banerjee, Sreedatta; Lornsen, Katharina A.; Redha, Rey; Fallen, Katherine; Lindsley, Craig W.; Weaver, C. David

    2009-01-01

    The renal outer medullary potassium channel (ROMK) is expressed in the kidney tubule and critically regulates sodium and potassium balance. The physiological functions of other inward rectifying K+ (Kir) channels expressed in the nephron, such as Kir7.1, are less well understood in part due to the lack of selective pharmacological probes targeting inward rectifiers. In an effort to identify Kir channel probes, we performed a fluorescence-based, high-throughput screen (HTS) of 126,009 small molecules for modulators of ROMK function. Several antagonists were identified in the screen. One compound, termed VU590, inhibits ROMK with submicromolar affinity, but has no effect on Kir2.1 or Kir4.1. Low micromolar concentrations inhibit Kir7.1, making VU590 the first small-molecule inhibitor of Kir7.1. Structure-activity relationships of VU590 were defined using small-scale parallel synthesis. Electrophysiological analysis indicates that VU590 is an intracellular pore blocker. VU590 and other compounds identified by HTS will be instrumental in defining Kir channel structure, physiology, and therapeutic potential. PMID:19706730

  8. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye.

    PubMed

    Huu, Viet Anh Nguyen; Luo, Jing; Zhu, Jie; Zhu, Jing; Patel, Sherrina; Boone, Alexander; Mahmoud, Enas; McFearin, Cathryn; Olejniczak, Jason; de Gracia Lux, Caroline; Lux, Jacques; Fomina, Nadezda; Huynh, Michelle; Zhang, Kang; Almutairi, Adah

    2015-02-28

    Therapies for macular degeneration and diabetic retinopathy require intravitreal injections every 4-8 weeks. Injections are uncomfortable, time-consuming, and carry risks of infection and retinal damage. However, drug delivery via noninvasive methods to the posterior segment of the eye has been a major challenge due to the eye's unique anatomy and physiology. Here we present a novel nanoparticle depot platform for on-demand drug delivery using a far ultraviolet (UV) light-degradable polymer, which allows noninvasively triggered drug release using brief, low-power light exposure. Nanoparticles stably retain encapsulated molecules in the vitreous, and can release cargo in response to UV exposure up to 30 weeks post-injection. Light-triggered release of nintedanib (BIBF 1120), a small molecule angiogenesis inhibitor, 10 weeks post-injection suppresses choroidal neovascularization (CNV) in rats. Light-sensitive nanoparticles are biocompatible and cause no adverse effects on the eye as assessed by electroretinograms (ERG), corneal and retinal tomography, and histology. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    PubMed

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (kcat) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of kcat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  10. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS.

    PubMed

    Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2016-06-03

    Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A small molecule inhibitor of ETV1, YK-4-279, prevents prostate cancer growth and metastasis in a mouse xenograft model.

    PubMed

    Rahim, Said; Minas, Tsion; Hong, Sung-Hyeok; Justvig, Sarah; Çelik, Haydar; Kont, Yasemin Saygideger; Han, Jenny; Kallarakal, Abraham T; Kong, Yali; Rudek, Michelle A; Brown, Milton L; Kallakury, Bhaskar; Toretsky, Jeffrey A; Üren, Aykut

    2014-01-01

    The erythroblastosis virus E26 transforming sequences (ETS) family of transcription factors consists of a highly conserved group of genes that play important roles in cellular proliferation, differentiation, migration and invasion. Chromosomal translocations fusing ETS factors to promoters of androgen responsive genes have been found in prostate cancers, including the most clinically aggressive forms. ERG and ETV1 are the most commonly translocated ETS proteins. Over-expression of these proteins in prostate cancer cells results in a more invasive phenotype. Inhibition of ETS activity by small molecule inhibitors may provide a novel method for the treatment of prostate cancer. We recently demonstrated that the small molecule YK-4-279 inhibits biological activity of ETV1 in fusion-positive prostate cancer cells leading to decreased motility and invasion in-vitro. Here, we present data from an in-vivo mouse xenograft model. SCID-beige mice were subcutaneously implanted with fusion-positive LNCaP-luc-M6 and fusion-negative PC-3M-luc-C6 tumors. Animals were treated with YK-4-279, and its effects on primary tumor growth and lung metastasis were evaluated. YK-4-279 treatment resulted in decreased growth of the primary tumor only in LNCaP-luc-M6 cohort. When primary tumors were grown to comparable sizes, YK-4-279 inhibited tumor metastasis to the lungs. Expression of ETV1 target genes MMP7, FKBP10 and GLYATL2 were reduced in YK-4-279 treated animals. ETS fusion-negative PC-3M-luc-C6 xenografts were unresponsive to the compound. Furthermore, YK-4-279 is a chiral molecule that exists as a racemic mixture of R and S enantiomers. We established that (S)-YK-4-279 is the active enantiomer in prostate cancer cells. Our results demonstrate that YK-4-279 is a potent inhibitor of ETV1 and inhibits both the primary tumor growth and metastasis of fusion positive prostate cancer xenografts. Therefore, YK-4-279 or similar compounds may be evaluated as a potential therapeutic tool for

  12. Preclinical Characterization of PC786, an Inhaled Small-Molecule Respiratory Syncytial Virus L Protein Polymerase Inhibitor

    PubMed Central

    Coates, Matthew; Brookes, Daniel; Kim, Young-In; Allen, Heather; Fordyce, Euan A. F.; Meals, Elizabeth A.; Colley, Thomas; Ciana, Claire-Lise; Parra, Guillaume F.; Sherbukhin, Vladimir; Stockwell, Jennifer A.; Thomas, Jennifer C.; Hunt, S. Fraser; Anderson-Dring, Lauren; Onions, Stuart T.; Cass, Lindsey; Murray, Peter J.; Strong, Pete; DeVincenzo, John P.; Rapeport, Garth

    2017-01-01

    ABSTRACT Although respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants and young children, attempts to develop an effective therapy have so far proved unsuccessful. Here we report the preclinical profiles of PC786, a potent nonnucleoside RSV L protein polymerase inhibitor, designed for inhalation treatment of RSV infection. PC786 demonstrated a potent and selective antiviral activity against laboratory-adapted or clinical isolates of RSV-A (50% inhibitory concentration [IC50], <0.09 to 0.71 nM) and RSV-B (IC50, 1.3 to 50.6 nM), which were determined by inhibition of cytopathic effects in HEp-2 cells without causing detectable cytotoxicity. The underlying inhibition of virus replication was confirmed by PCR analysis. The effects of PC786 were largely unaffected by the multiplicity of infection (MOI) and were retained in the face of established RSV replication in a time-of-addition study. Persistent anti-RSV effects of PC786 were also demonstrated in human bronchial epithelial cells. In vivo intranasal once daily dosing with PC786 was able to reduce the virus load to undetectable levels in lung homogenates from RSV-infected mice and cotton rats. Treatment with escalating concentrations identified a dominant mutation in the L protein (Y1631H) in vitro. In addition, PC786 potently inhibited RSV RNA-dependent RNA polymerase (RdRp) activity in a cell-free enzyme assay and minigenome assay in HEp-2 cells (IC50, 2.1 and 0.5 nM, respectively). Thus, PC786 was shown to be a potent anti-RSV agent via inhibition of RdRp activity, making topical treatment with this compound a novel potential therapy for the treatment of human RSV infections. PMID:28652242

  13. Cell cycle reactivation of cochlear progenitor cells in neonatal FUCCI mice by a GSK3 small molecule inhibitor

    PubMed Central

    Roccio, M.; Hahnewald, S.; Perny, M.; Senn, P.

    2015-01-01

    Due to the lack of regenerative capacity of the mammalian auditory epithelium, sensory hair cell loss results in permanent hearing deficit. Nevertheless, a population of tissue resident stem/progenitor cells has been recently described. Identification of methods to trigger their activity could lead to exploitation of their potential therapeutically. Here we validate the use of transgenic mice reporting cell cycle progression (FUCCI), and stemness (Lgr5-GFP), as a valuable tool to identify regulators of cell cycle re-entry of supporting cells within the auditory epithelium. The small molecule compound CHIR99021 was used to inhibit GSK3 activity. This led to a significant increase in the fraction of proliferating sphere-forming cells, labeled by the FUCCI markers and in the percentage of Lgr5-GFP + cells, as well as a selective increase in the fraction of S-G2-M cells in the Lgr5 + population. Using whole mount cultures of the organ of Corti we detected a statistically significant increment in the fraction of proliferating Sox2 supporting cells after CHIR99021 treatment, but only rarely appearance of novel MyoVIIa+/Edu + hair cells. In conclusion, these tools provide a robust mean to identify novel regulators of auditory organ regeneration and to clarify the contribution of stem cell activity. PMID:26643939

  14. Interaction Between HIV-1 Nef and Calnexin: From Modeling to Small Molecule Inhibitors Reversing HIV-Induced Lipid Accumulation.

    PubMed

    Hunegnaw, Ruth; Vassylyeva, Marina; Dubrovsky, Larisa; Pushkarsky, Tatiana; Sviridov, Dmitri; Anashkina, Anastasia A; Üren, Aykut; Brichacek, Beda; Vassylyev, Dmitry G; Adzhubei, Alexei A; Bukrinsky, Michael

    2016-09-01

    HIV-infected patients are at an increased risk of developing atherosclerosis, in part because of downmodulation and functional impairment of ATP-binding cassette A1 (ABCA1) cholesterol transporter by the HIV-1 protein Nef. The mechanism of this effect involves Nef interacting with an ER chaperone calnexin and disrupting calnexin binding to ABCA1, leading to ABCA1 retention in ER, its degradation and resulting suppression of cholesterol efflux. However, molecular details of Nef-calnexin interaction remained unknown, limiting the translational impact of this finding. Here, we used molecular modeling and mutagenesis to characterize Nef-calnexin interaction and to identify small molecule compounds that could block it. We demonstrated that the interaction between Nef and calnexin is direct and can be reconstituted using recombinant proteins in vitro with a binding affinity of 89.1 nmol/L measured by surface plasmon resonance. The cytoplasmic tail of calnexin is essential and sufficient for interaction with Nef, and binds Nef with an affinity of 9.4 nmol/L. Replacing lysine residues in positions 4 and 7 of Nef with alanines abrogates Nef-calnexin interaction, prevents ABCA1 downregulation by Nef, and preserves cholesterol efflux from HIV-infected cells. Through virtual screening of the National Cancer Institute library of compounds, we identified a compound, 1[(7-oxo-7H-benz[de]anthracene-3-yl)amino]anthraquinone, which blocked Nef-calnexin interaction, partially restored ABCA1 activity in HIV-infected cells, and reduced foam cell formation in a culture of HIV-infected macrophages. This study identifies potential targets that can be exploited to block the pathogenic effect of HIV infection on cholesterol metabolism and prevent atherosclerosis in HIV-infected subjects. © 2016 American Heart Association, Inc.

  15. MLN8054, A Small Molecule Inhibitor of Aurora Kinase A, Sensitizes Androgen-Resistant Prostate Cancer to Radiation;Aurora kinase A; MLN8054; Prostate cancer; Radiation

    SciTech Connect

    Moretti, Luigi; Niermann, Kenneth; Schleicher, Stephen; Giacalone, Nicholas J.; Varki, Vinod; Kim, Kwang Woon; Kopsombut, Prapaporn; Jung, Dae Kwang; Bo Lu

    2011-07-15

    Purpose: To determine whether MLN8054, an Aurora kinase A (Aurora-A) inhibitor causes radiosensitization in androgen-insensitive prostate cancer cells in vitro and in vivo. Methods and Materials: In vitro studies consisted of culturing PC3 and DU145 prostate cancer cells and then immunoblotting Aurora A and phospho-Aurora A after radiation and/or nocodazole with MLN8054. Phases of the cell cycle were measured with flow cytometry. PC3 and DU145 cell lines were measured for survival after treatment with MLN8054 and radiation. Immunofluorescence measured {gamma}-H2AX in the PC3 and DU145 cells after treatment. In vivo studies looked at growth delay of PC3 tumor cells in athymic nude mice. PC3 cells grew for 6 to 8 days in mice treated with radiation, MLN8054, or combined for 7 more days. Tumors were resected and fixed on paraffin and stained for von Willebrand factor, Ki67, and caspase-3. Results: In vitro inhibition of Aurora-A by MLN8054 sensitized prostate cancer cells, as determined by dose enhancement ratios in clonogenic assays. These effects were associated with sustained DNA double-strand breaks, as evidenced by increased immunofluorescence for {gamma}-H2AX and significant G2/M accumulation and polyploidy. In vivo, the addition of MLN8054 (30 mg/kg/day) to radiation in mouse prostate cancer xenografts (PC3 cells) significantly increased tumor growth delay and apoptosis (caspase-3 staining), with reduction in cell proliferation (Ki67 staining) and vascular density (von Willebrand factor staining). Conclusion: MLN8054, a novel small molecule Aurora-A inhibitor showed radiation sensitization in androgen-insensitive prostate cancer in vitro and in vivo. This warrants the clinical development of MLN8054 with radiation for prostate cancer patients.

  16. High-Throughput Screening for Small Molecule Inhibitors of LARG-Stimulated RhoA Nucleotide Binding via a Novel Fluorescence Polarization Assay

    PubMed Central

    Evelyn, Chris R.; Ferng, Timothy; Rojas, Rafael J.; Larsen, Martha J.; Sondek, John; Neubig, Richard R.

    2009-01-01

    Guanine nucleotide-exchange factors (GEFs) stimulate guanine nucleotide exchange and the subsequent activation of Rho-family proteins in response to extracellular stimuli acting upon cytokine, tyrosine kinase, adhesion, integrin, and G-protein coupled receptors (GPCRs). Upon Rho activation, several downstream events occur, such as morphological and cytokskeletal changes, motility, growth, survival, and gene transcription. The RhoGEF Leukemia-Associated RhoGEF (LARG) is a member of the Regulators of G-protein Signaling Homology Domain (RH) family of GEFs originally identified as a result of chromosomal translocation in acute myeloid leukemia. Using a novel fluorescence polarization guanine nucleotide binding assay utilizing BODIPY-Texas Red-GTPγS (BODIPY-TR-GTPγS), we performed a ten-thousand compound high-throughput screen for inhibitors of LARG-stimulated RhoA nucleotide binding. Five compounds identified from the high-throughput screen were confirmed in a non-fluorescent radioactive guanine nucleotide binding assay measuring LARG-stimulated [35S] GTPγS binding to RhoA, thus ruling out non-specific fluorescent effects. All five compounds selectively inhibited LARG-stimulated RhoA [35S] GTPγS binding, but had little to no effect upon RhoA or Gαo [35S] GTPγS binding. Therefore, these five compounds should serve as promising starting points for the development of small molecule inhibitors of LARG-mediated nucleotide exchange as both pharmacological tools and therapeutics. In addition, the fluorescence polarization guanine nucleotide binding assay described here should serve as a useful approach for both high-throughput screening and general biological applications. PMID:19196702

  17. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae

    PubMed Central

    Chatterjee, Tanaya; Sheikh, Irshad Ali; Chakravarty, Devlina; Chakrabarti, Pinak; Sarkar, Paramita; Saha, Tultul; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul

    2015-01-01

    Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders. PMID:26540279

  18. In vivo analysis of insulin-like growth factor type 1 receptor humanized monoclonal antibody MK-0646 and small molecule kinase inhibitor OSI-906 in colorectal cancer

    PubMed Central

    LEIPHRAKPAM, PREMILA D.; AGARWAL, EKTA; MATHIESEN, MICHELLE; HAFERBIER, KATIE L.; BRATTAIN, MICHAEL G.; CHOWDHURY, SANJIB

    2014-01-01

    The development and characterization of effective anticancer drugs against colorectal cancer (CRC) is of urgent need since it is the second most common cause of cancer death. The study was designed to evaluate the effects of two IGF-1R antagonists, MK-0646, a recombinant fully humanized monoclonal antibody and OSI-906, a small molecule tyrosine kinase inhibitor on CRC cells. Xenograft study was performed on IGF-1R-dependent CRC cell lines for analyzing the antitumor activity of MK-0646 and OSI-906. Tumor proliferation and apoptosis were assessed using Ki67 and TUNEL assays, respectively. We also performed in vitro characterization of MK-0646 and OSI-906 treatment on CRC cells to identify mechanisms associated with drug-induced cell death. Exposure of the GEO and CBS tumor xenografts to MK-0646 or OSI-906 led to a decrease in tumor growth. TUNEL analysis showed an increase of approximately 45–55% in apoptotic cells in both MK-0646 and OSI-906 treated tumor samples. We report the novel finding that treatment with IGF-1R antagonists led to downregulation of X-linked inhibitor of apoptosis (XIAP) protein involved in cell survival and inhibition of cell death. In conclusion, IGF-1R antagonists (MK-0646 and OSI-906) demonstrated single agent inhibition of subcutaneous CRC xenograft growth. This was coupled to pro-apoptotic effects resulting in downregulation of XIAP and inhibition of cell survival. We report a novel mechanism by which MK-0646 and OSI-906 elicits cell death in vivo and in vitro. Moreover, these results indicate that MK-0646 and OSI-906 may be potential anticancer candidates for the treatment of patients with IGF-1R-dependent CRC. PMID:24173770

  19. Early intervention with a small molecule inhibitor for tumor nefosis factor-α prevents cognitive deficits in a triple transgenic mouse model of Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background Chronic neuroinflammation is an important component of Alzheimer’s disease and could contribute to neuronal dysfunction, injury and loss that lead to disease progression. Multiple clinical studies implicate tumor necrosis factor-α as an inflammatory mediator of neurodegeneration in patients with Alzheimer’s because of elevated levels of this cytokine in the cerebrospinal fluid, hippocampus and cortex. Current Alzheimer’s disease interventions are symptomatic treatments with limited efficacy that do not address etiology. Thus, a critical need exists for novel treatments directed towards modifying the pathophysiology and progression. Methods To investigate the effect of early immune modulation on neuroinflammation and cognitive outcome, we treated triple transgenic Alzheimer’s disease mice (harboring PS1M146V, APPSwe, and tauP301L transgenes) with the small molecule tumor necrosis factor-α inhibitors, 3,6′-dithiothalidomide and thalidomide, beginning at four months of age. At this young age, mice do not exhibit plaque or tau pathology but do show mild intraneuronal amyloid beta protein staining and a robust increase in tumor necrosis factor-α. After 10 weeks of treatment, cognitive performance was assessed using radial arm maze and neuroinflammation was assessed using biochemical, stereological and flow cytometric endpoints. Results 3,6′-dithiothalidomide reduced tumor necrosis factor-α mRNA and protein levels in the brain and improved working memory performance and the ratio of resting to reactive microglia in the hippocampus of triple transgenic mice. In comparison to non-transgenic controls, triple transgenic Alzheimer’s disease mice had increased total numbers of infiltrating peripheral monomyelocytic/granulocytic leukocytes with enhanced intracytoplasmic tumor necrosis factor-α, which was reduced after treatment with 3,6′-dithiothalidomide. Conclusions These results suggest that modulation of tumor necrosis factor-α with small

  20. Pore Polarity and Charge Determine Differential Block of Kir1.1 and Kir7.1 Potassium Channels by Small-Molecule Inhibitor VU590.

    PubMed

    Kharade, Sujay V; Sheehan, Jonathan H; Figueroa, Eric E; Meiler, Jens; Denton, Jerod S

    2017-09-01

    VU590 was the first publicly disclosed, submicromolar-affinity (IC 50 = 0.2 μ M), small-molecule inhibitor of the inward rectifier potassium (Kir) channel and diuretic target, Kir1.1. VU590 also inhibits Kir7.1 (IC 50 ∼ 8 μ M), and has been used to reveal new roles for Kir7.1 in regulation of myometrial contractility and melanocortin signaling. Here, we employed molecular modeling, mutagenesis, and patch clamp electrophysiology to elucidate the molecular mechanisms underlying VU590 inhibition of Kir1.1 and Kir7.1. Block of both channels is voltage- and K + -dependent, suggesting the VU590 binding site is located within the pore. Mutagenesis analysis in Kir1.1 revealed that asparagine 171 (N171) is the only pore-lining residue required for high-affinity block, and that substituting negatively charged residues (N171D, N171E) at this position dramatically weakens block. In contrast, substituting a negatively charged residue at the equivalent position in Kir7.1 enhances block by VU590, suggesting the VU590 binding mode is different. Interestingly, mutations of threonine 153 (T153) in Kir7.1 that reduce constrained polarity at this site (T153C, T153V, T153S) make wild-type and binding-site mutants (E149Q, A150S) more sensitive to block by VU590. The Kir7.1-T153C mutation enhances block by the structurally unrelated inhibitor VU714 but not by a higher-affinity analog ML418, suggesting that the polar side chain of T153 creates a barrier to low-affinity ligands that interact with E149 and A150. Reverse mutations in Kir1.1 suggest that this mechanism is conserved in other Kir channels. This study reveals a previously unappreciated role of membrane pore polarity in determination of Kir channel inhibitor pharmacology. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of Candida albicans Filamentation

    PubMed Central

    Romo, Jesus A.; Pierce, Christopher G.; Chaturvedi, Ashok K.; Lazzell, Anna L.; McHardy, Stanton F.

    2017-01-01

    ABSTRACT Candida albicans remains the main etiologic agent of candidiasis, the most common fungal infection and now the third most frequent infection in U.S. hospitals. The scarcity of antifungal agents and their limited efficacy contribute to the unacceptably high morbidity and mortality rates associated with these infections. The yeast-to-hypha transition represents the main virulence factor associated with the pathogenesis of C. albicans infections. In addition, filamentation is pivotal for robust biofilm development, which represents another major virulence factor for candidiasis and further complicates treatment. Targeting pathogenic mechanisms rather than growth represents an attractive yet clinically unexploited approach in the development of novel antifungal agents. Here, we performed large-scale phenotypic screening assays with 30,000 drug-like small-molecule compounds within ChemBridge’s DIVERSet chemical library in order to identify small-molecule inhibitors of C. albicans filamentation, and our efforts led to the identification of a novel series of bioactive compounds with a common biaryl amide core structure. The leading compound of this series, N-[3-(allyloxy)-phenyl]-4-methoxybenzamide, was able to prevent filamentation under all liquid and solid medium conditions tested, suggesting that it impacts a common core component of the cellular machinery that mediates hypha formation under different environmental conditions. In addition to filamentation, this compound also inhibited C. albicans biofilm formation. This leading compound also demonstrated in vivo activity in clinically relevant murine models of invasive and oral candidiasis. Overall, our results indicate that compounds within this series represent promising candidates for the development of novel anti-virulence approaches to combat C. albicans infections. PMID:29208749

  2. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β42 monomer: insights from molecular dynamics simulations.

    PubMed

    Shuaib, Suniba; Goyal, Bhupesh

    2017-02-28

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by loss of intellectual functioning of brain and memory loss. According to amyloid cascade hypothesis, aggregation of amyloid-β42 (Aβ42) peptide can generate toxic oligomers and their accumulation in the brain is responsible for the onset of AD. In spite of carrying out a large number of experimental studies on inhibition of Aβ42 aggregation by small molecules, the detailed inhibitory mechanism remains elusive. In the present study, comparable molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a sulfonamide inhibitor C1 (2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide), reported for its in vitro and in vivo anti-aggregation activity against Aβ42. MD simulations reveal that C1 stabilizes native α-helix conformation of Aβ42 by interacting with key residues in the central helix region (13-26) with hydrogen bonds and π-π interactions. C1 lowers the solvent-accessible surface area of the central hydrophobic core (CHC), KLVFF (16-20), that confirms burial of hydrophobic residues leading to the dominance of helical conformation in the CHC region. The binding free energy analysis with MM-PBSA demonstrates that Ala2, Phe4, Tyr10, Gln15, Lys16, Leu17, Val18, Phe19, Phe20, Glu22, and Met35 contribute maximum to binding free energy (-43.1 kcal/mol) between C1 and Aβ42 monomer. Overall, MD simulations reveal that C1 inhibits Aβ42 aggregation by stabilizing native helical conformation and inhibiting the formation of aggregation-prone β-sheet conformation. The present results will shed light on the underlying inhibitory mechanism of small molecules that show potential in vitro anti-aggregation activity against Aβ42.

  3. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of Candida albicans Filamentation.

    PubMed

    Romo, Jesus A; Pierce, Christopher G; Chaturvedi, Ashok K; Lazzell, Anna L; McHardy, Stanton F; Saville, Stephen P; Lopez-Ribot, Jose L

    2017-12-05

    Candida albicans remains the main etiologic agent of candidiasis, the most common fungal infection and now the third most frequent infection in U.S. hospitals. The scarcity of antifungal agents and their limited efficacy contribute to the unacceptably high morbidity and mortality rates associated with these infections. The yeast-to-hypha transition represents the main virulence factor associated with the pathogenesis of C. albicans infections. In addition, filamentation is pivotal for robust biofilm development, which represents another major virulence factor for candidiasis and further complicates treatment. Targeting pathogenic mechanisms rather than growth represents an attractive yet clinically unexploited approach in the development of novel antifungal agents. Here, we performed large-scale phenotypic screening assays with 30,000 drug-like small-molecule compounds within ChemBridge's DIVERSet chemical library in order to identify small-molecule inhibitors of C. albicans filamentation, and our efforts led to the identification of a novel series of bioactive compounds with a common biaryl amide core structure. The leading compound of this series, N-[3-(allyloxy)-phenyl]-4-methoxybenzamide, was able to prevent filamentation under all liquid and solid medium conditions tested, suggesting that it impacts a common core component of the cellular machinery that mediates hypha formation under different environmental conditions. In addition to filamentation, this compound also inhibited C. albicans biofilm formation. This leading compound also demonstrated in vivo activity in clinically relevant murine models of invasive and oral candidiasis. Overall, our results indicate that compounds within this series represent promising candidates for the development of novel anti-virulence approaches to combat C. albicans infections.IMPORTANCE Since fungi are eukaryotes, there is a limited number of fungus-specific targets and, as a result, the antifungal arsenal is

  4. Preclinical activity of P276-00, a novel small-molecule cyclin-dependent kinase inhibitor in the therapy of multiple myeloma.

    PubMed

    Raje, N; Hideshima, T; Mukherjee, S; Raab, M; Vallet, S; Chhetri, S; Cirstea, D; Pozzi, S; Mitsiades, C; Rooney, M; Kiziltepe, T; Podar, K; Okawa, Y; Ikeda, H; Carrasco, R; Richardson, P G; Chauhan, D; Munshi, N C; Sharma, S; Parikh, H; Chabner, B; Scadden, D; Anderson, K C

    2009-05-01

    Cyclin D dysregulation and overexpression is noted in the majority of multiple myeloma (MM) patients, suggesting its critical role in MM pathogenesis. Here, we sought to identify the effects of targeting cyclin D in MM. We first confirmed cyclin D mRNA overexpression in 42 of 64 (65%) patient plasma cells. Silencing cyclin D1 resulted in >50% apoptotic cell death suggesting its validity as a potential therapeutic target. We next evaluated P276-00, a clinical-grade small-molecule cyclin-dependent kinase inhibitor as a way to target the cyclins. P276-00 resulted in dose-dependent cytotoxicity in MM cells. Cell-cycle analysis confirmed either growth arrest or caspase-dependent apoptosis; this was preceded by inhibition of Rb-1 phosphorylation with associated downregulation of a range of cyclins suggesting a regulatory role of P276-00 in cell-cycle progression through broad activity. Proliferative stimuli such as interleukin-6, insulin-like growth factor-1 and bone-marrow stromal cell adherence induced cyclins; P276-00 overcame these growth, survival and drug resistance signals. Because the cyclins are substrates of proteasome degradation, combination studies with bortezomib resulted in synergism. Finally, in vivo efficacy of P276-00 was confirmed in an MM xenograft model. These studies form the basis of an ongoing phase I study in the treatment of relapsed/refractory MM.

  5. A small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse prostate model.

    PubMed

    Basu, Hirak S; Thompson, Todd A; Church, Dawn R; Clower, Cynthia C; Mehraein-Ghomi, Farideh; Amlong, Corey A; Martin, Christopher T; Woster, Patrick M; Lindstrom, Mary J; Wilding, George

    2009-10-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiologic factor in prostate cancer (CaP) occurrence, recurrence, and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase, the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells, as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data show that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays CaP progression.

  6. A Small Molecule Polyamine Oxidase Inhibitor Blocks Androgen-Induced Oxidative Stress and Delays Prostate Cancer Progression in the TRAMP Mouse Model

    PubMed Central

    Basu, Hirak S.; Thompson, Todd A.; Church, Dawn R.; Clower, Cynthia C.; Mehraein-Ghomi, Farideh; Amlong, Corey A.; Martin, Christopher T.; Woster, Patrick M.; Lindstrom, Mary J.; Wilding, George

    2009-01-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiological factor in prostate cancer (CaP) occurrence, recurrence and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data demonstrate that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays prostate cancer progression. PMID:19773450

  7. Discovery of a small-molecule pBcl-2 inhibitor that overcomes pBcl-2-mediated resistance to apoptosis.

    PubMed

    Song, Ting; Yu, Xiaoyan; Liu, Yubo; Li, Xiangqian; Chai, Gaobo; Zhang, Zhichao

    2015-03-23

    Although the role of Bcl-2 phosphorylation is still under debate, it has been identified in a resistance mechanism to BH3 mimetics, for example ABT-737 and S1. We identified an S1 analogue, S1-16, as a small-molecule inhibitor of pBcl-2. S1-16 efficiently kills EEE-Bcl-2 (a T69E, S70E, and S87E mutant mimicking phosphorylation)-expressing HL-60 cells and high endogenously expressing pBcl-2 cells, by disrupting EEE-Bcl-2 or native pBcl-2 interactions with Bax and Bak, followed by apoptosis. In vitro binding assays showed that S1-16 binds to the BH3 binding groove of EEE-Bcl-2 (Kd =0.38 μM by ITC; IC50 =0.16 μM by ELISA), as well as nonphosphorylated Bcl-2 (npBcl-2; Kd =0.38 μM; IC50 =0.12 μM). However, ABT-737 and S1 had much weaker affinities to EEE-Bcl-2 (IC50 =1.43 and >10 μM, respectively), compared with npBcl-2 (IC50 =0.011 and 0.74 μM, respectively). The allosteric effect on BH3 binding groove by Bcl-2 phosphorylation in the loop region was illustrated for the first time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Small-Molecule Inhibitor of T. gondii Motility Induces the Posttranslational Modification of Myosin Light Chain-1 and Inhibits Myosin Motor Activity

    PubMed Central

    Heaslip, Aoife T.; Leung, Jacqueline M.; Carey, Kimberly L.; Catti, Federica; Warshaw, David M.; Westwood, Nicholas J.; Ballif, Bryan A.; Ward, Gary E.

    2010-01-01

    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains. PMID:20084115

  9. A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity.

    PubMed

    Heaslip, Aoife T; Leung, Jacqueline M; Carey, Kimberly L; Catti, Federica; Warshaw, David M; Westwood, Nicholas J; Ballif, Bryan A; Ward, Gary E

    2010-01-15

    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.

  10. Design, synthesis, and evaluation of bioactive molecules; Quantification of tricyclic pyrones from pharmacokinetic studies; Nanodelivery of siRNA; and Synthesis of viral protease inhibitors

    NASA Astrophysics Data System (ADS)

    Weerasekara, Sahani Manjitha

    Four research projects were carried out and they are described in this dissertation. Glycogen synthase kinase-3 beta (GSK3?) plays a pivotal and central role in the pathogenesis of Alzheimer's disease (AD) and protein kinase C (PKC) controls the function of other proteins via phosphorylation and involves in tumor promotion. In pursuit of identifying novel GSK3beta and/or PKC inhibitors, substituted quinoline molecules were designed and synthesized based on the structure-activity-relationship studies. Synthesized molecules were evaluated for their neural protective activities and selected molecules were further tested for inhibitory activities on GSK3beta and PKC enzymes. Among these compounds, compound 2 was found to have better GSK3beta enzyme inhibitory and MC65 cell protection activities at low nanomolar concentrations and poor PKC inhibitory activity whereas compound 3 shows better PKC inhibitory activity. This demonstrates the potential for uses of quinoline scaffold in designing novel compounds for AD and cancer. Pharmacokinetics and distribution profiles of two anti-Alzheimer molecules, CP2 and TP70, discovered in our laboratory were assessed using HPLC/MS. Plasma samples of mice and rats fed with TP70 via different routes over various times were analyzed to quantify the amounts of TP70 in plasma of both species. Distribution profiles of TP70 in various tissues of mice were studied and results show that TP70 penetrated the blood brain barrier and accumulated in the brain tissue in significant amounts. Similarly, the amount of CP2 in plasma of mice was analyzed. The HPLC analysis revealed that both compounds have good PK profiles and bioavailability, which would make them suitable candidates for further in vivo efficacy studies. Nanodelivery of specific dsRNA for suppressing the western corn rootworm (WCR, Diabrotica virgifera virgifera) genes was studied using modified chitosan or modified polyvinylpyrrolidinone (PVP) as nanocarriers. Computational

  11. F18, a Novel Small-Molecule Nonnucleoside Reverse Transcriptase Inhibitor, Inhibits HIV-1 Replication Using Distinct Binding Motifs as Demonstrated by Resistance Selection and Docking Analysis

    PubMed Central

    Lu, Xiaofan; Liu, Li; Zhang, Xu; Lau, Terrence Chi Kong; Tsui, Stephen Kwok Wing; Kang, Yuanxi; Zheng, Purong; Zheng, Bojian

    2012-01-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are one of the key components of antiretroviral therapy drug regimen against human immunodeficiency virus type 1 (HIV-1) replication. We previously described a newly synthesized small molecule, 10-chloromethyl-11-demethyl-12-oxo-calanolide A (F18), a (+)-calanolide A analog, as a novel anti-HIV-1 NNRTI (H. Xue et al., J. Med. Chem. 53:1397–1401, 2010). Here, we further investigated its antiviral range, drug resistance profile, and underlying mechanism of action. F18 consistently displayed potent activity against primary HIV-1 isolates, including various subtypes of group M, circulating recombinant form (CRF) 01_AE, and laboratory-adapted drug-resistant viruses. Moreover, F18 displayed distinct profiles against 17 NNRTI-resistant pseudoviruses, with an excellent potency especially against one of the most prevalent strains with the Y181C mutation (50% effective concentration, 1.0 nM), which was in stark contrast to the extensively used NNRTIs nevirapine and efavirenz. Moreover, we induced F18-resistant viruses by in vitro serial passages and found that the mutation L100I appeared to be the dominant contributor to F18 resistance, further suggesting a binding motif different from that of nevirapine and efavirenz. F18 was nonantagonistic when used in combination with other antiretrovirals against both wild-type and drug-resistant viruses in infected peripheral blood mononuclear cells. Interestingly, F18 displayed a highly synergistic antiviral effect with nevirapine against nevirapine-resistant virus (Y181C). Furthermore, in silico docking analysis suggested that F18 may bind to the HIV-1 reverse transcriptase differently from other NNRTIs. This study presents F18 as a new potential drug for clinical use and also presents a new mechanism-based design for future NNRTI. PMID:22037848

  12. F18, a novel small-molecule nonnucleoside reverse transcriptase inhibitor, inhibits HIV-1 replication using distinct binding motifs as demonstrated by resistance selection and docking analysis.

    PubMed

    Lu, Xiaofan; Liu, Li; Zhang, Xu; Lau, Terrence Chi Kong; Tsui, Stephen Kwok Wing; Kang, Yuanxi; Zheng, Purong; Zheng, Bojian; Liu, Gang; Chen, Zhiwei

    2012-01-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are one of the key components of antiretroviral therapy drug regimen against human immunodeficiency virus type 1 (HIV-1) replication. We previously described a newly synthesized small molecule, 10-chloromethyl-11-demethyl-12-oxo-calanolide A (F18), a (+)-calanolide A analog, as a novel anti-HIV-1 NNRTI (H. Xue et al., J. Med. Chem. 53:1397-1401, 2010). Here, we further investigated its antiviral range, drug resistance profile, and underlying mechanism of action. F18 consistently displayed potent activity against primary HIV-1 isolates, including various subtypes of group M, circulating recombinant form (CRF) 01_AE, and laboratory-adapted drug-resistant viruses. Moreover, F18 displayed distinct profiles against 17 NNRTI-resistant pseudoviruses, with an excellent potency especially against one of the most prevalent strains with the Y181C mutation (50% effective concentration, 1.0 nM), which was in stark contrast to the extensively used NNRTIs nevirapine and efavirenz. Moreover, we induced F18-resistant viruses by in vitro serial passages and found that the mutation L100I appeared to be the dominant contributor to F18 resistance, further suggesting a binding motif different from that of nevirapine and efavirenz. F18 was nonantagonistic when used in combination with other antiretrovirals against both wild-type and drug-resistant viruses in infected peripheral blood mononuclear cells. Interestingly, F18 displayed a highly synergistic antiviral effect with nevirapine against nevirapine-resistant virus (Y181C). Furthermore, in silico docking analysis suggested that F18 may bind to the HIV-1 reverse transcriptase differently from other NNRTIs. This study presents F18 as a new potential drug for clinical use and also presents a new mechanism-based design for future NNRTI.

  13. The Small Molecule Inhibitor G6 Significantly Reduces Bone Marrow Fibrosis and the Mutant Burden in a Mouse Model of Jak2-Mediated Myelofibrosis

    PubMed Central

    Kirabo, Annet; Park, Sung O.; Wamsley, Heather L.; Gali, Meghanath; Baskin, Rebekah; Reinhard, Mary K.; Zhao, Zhizhuang J.; Bisht, Kirpal S.; Keserű, György M.; Cogle, Christopher R.; Sayeski, Peter P.

    2013-01-01

    Philadelphia chromosome–negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are disorders characterized by abnormal hematopoiesis. Among these myeloproliferative neoplasms, myelofibrosis has the most unfavorable prognosis. Furthermore, currently available therapies for myelofibrosis have little to no efficacy in the bone marrow and hence, are palliative. We recently developed a Janus kinase 2 (Jak2) small molecule inhibitor called G6 and found that it exhibits marked efficacy in a xenograft model of Jak2-V617F–mediated hyperplasia and a transgenic mouse model of Jak2-V617F–mediated polycythemia vera/essential thrombocytosis. However, its efficacy in Jak2-mediated myelofibrosis has not previously been examined. Here, we hypothesized that G6 would be efficacious in Jak2-V617F–mediated myelofibrosis. To test this, mice expressing the human Jak2-V617F cDNA under the control of the vav promoter were administered G6 or vehicle control solution, and efficacy was determined by measuring parameters within the peripheral blood, liver, spleen, and bone marrow. We found that G6 significantly reduced extramedullary hematopoiesis in the liver and splenomegaly. In the bone marrow, G6 significantly reduced pathogenic Jak/STAT signaling by 53%, megakaryocytic hyperplasia by 70%, and the Jak2 mutant burden by 68%. Furthermore, G6 significantly improved the myeloid to erythroid ratio and significantly reversed the myelofibrosis. Collectively, these results indicate that G6 is efficacious in Jak2-V617F–mediated myelofibrosis, and given its bone marrow efficacy, it may alter the natural history of this disease. PMID:22796437

  14. In vitro and in vivo antitumor activities of T-3764518, a novel and orally available small molecule stearoyl-CoA desaturase 1 inhibitor.

    PubMed

    Nishizawa, Satoru; Sumi, Hiroyuki; Satoh, Yoshihiko; Yamamoto, Yukiko; Kitazawa, Satoshi; Honda, Kohei; Araki, Hideo; Kakoi, Kazuyo; Imamura, Keisuke; Sasaki, Masako; Miyahisa, Ikuo; Satomi, Yoshinori; Nishigaki, Ryuuichi; Hirayama, Megumi; Aoyama, Kazunobu; Maezaki, Hironobu; Hara, Takahito

    2017-07-15

    Most cancer cells are characterized by elevated lipid biosynthesis. The rapid proliferation of cancer cells requires de novo synthesis of fatty acids. Stearoyl-CoA desaturase-1 (SCD1), a key enzyme for lipogenesis, is overexpressed in various types of cancer and plays an important role in cancer cell proliferation. Therefore, it has been studied as a candidate target for cancer therapy. In this study, we demonstrate the pharmacological properties of T-3764518, a novel and orally available small molecule inhibitor of SCD1. T-3764518 inhibited stearoyl-CoA desaturase-catalyzed conversion of stearoyl-CoA to oleoyl-CoA in colorectal cancer HCT-116 cells and their growth. Further, it slowed tumor growth in an HCT-116 and a mesothelioma MSTO-211H mouse xenograft model. Comprehensive lipidomic analyses revealed that T-3764518 increases the membrane ratio of saturated: unsaturated fatty acids in various lipid species such as phosphatidylcholines and diacylglycerols in both cultured cells and HCT-116 xenografts. Treatment-associated lipidomic changes were followed by activated endoplasmic reticulum (ER) stress responses such as increased immunoglobulin heavy chain-binding protein expression in HCT-116 cells. These T-3764518-induced changes led to an increase in cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptosis. Additionally, bovine serum albumin conjugated with oleic acid, an SCD1 product, prevented cell growth inhibition and ER stress responses by T-3764518, indicating that these outcomes were not attributable to off-target effects. These results indicate that T-3764518 is a promising new anticancer drug candidate. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. In Situ Proteome Profiling and Bioimaging Applications of Small-Molecule Affinity-Based Probes Derived From DOT1L Inhibitors.

    PubMed

    Zhu, Biwei; Zhang, Hailong; Pan, Sijun; Wang, Chenyu; Ge, Jingyan; Lee, Jun-Seok; Yao, Shao Q

    2016-06-01

    DOT1L is the sole protein methyltransferase that methylates histone H3 on lysine 79 (H3K79), and is a promising drug target against cancers. Small-molecule inhibitors of DOT1L such as FED1 are potential anti-cancer agents and useful tools to investigate the biological roles of DOT1L in human diseases. FED1 showed excellent in vitro inhibitory activity against DOT1L, but its cellular effect was relatively poor. In this study, we designed and synthesized photo-reactive and "clickable" affinity-based probes (AfBPs), P1 and P2, which were cell-permeable and structural mimics of FED1. The binding and inhibitory effects of these two probes against DOT1L protein were extensively investigated in vitro and in live mammalian cells (in situ). The cellular uptake and sub-cellular localization properties of the probes were subsequently studied in live-cell imaging experiments, and our results revealed that, whereas both P1 and P2 readily entered mammalian cells, most of them were not able to reach the cell nucleus where functional DOT1L resides. This offers a plausible explanation for the poor cellular activity of FED1. Finally with P1/P2, large-scale cell-based proteome profiling, followed by quantitative LC-MS/MS, was carried out to identify potential cellular off-targets of FED1. Amongst the more than 100 candidate off-targets identified, NOP2 (a putative ribosomal RNA methyltransferase) was further confirmed to be likely a genuine off-target of FED1 by preliminary validation experiments including pull-down/Western blotting (PD/WB) and cellular thermal shift assay (CETSA). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A small molecule inhibitor of NFκB blocks ER stress and the NLRP3 inflammasome and prevents progression of pancreatitis.

    PubMed

    Kanak, Mazhar A; Shahbazov, Rauf; Yoshimatsu, Gumpei; Levy, Marlon F; Lawrence, Michael C; Naziruddin, Bashoo

    2017-03-01

    The underlying molecular mechanism that leads to development of chronic pancreatitis remains elusive. The aim of this study is to understand the downstream inflammatory signaling involved in progression of chronic pancreatitis, and to use withaferin A (WA), a small molecule inhibitor of nuclear factor κB (NFκB), to prevent progression of chronic pancreatitis. Two different protocols were used to induce pancreatitis in mice: standard and stringent administration of cerulein. The severity of pancreatitis was assessed by means of pancreatic histology and serum amylase levels. Immunohistochemistry and flow-cytometric analysis was performed to visualize immune cell infiltration into the pancreas. Real-time PCR and Western blot were used to analyze the downstream signaling mechanism involved in the development of chronic pancreatitis. The severity of cerulein-induced pancreatitis was reduced significantly by WA, used as either preventive or curative treatment. Immune cell infiltration into the pancreas and acinar cell death were efficiently reduced by WA treatment. Expression of proinflammatory and proapoptotic genes regulated by NFκB activation was increased by cerulein treatment, and WA suppressed these genes significantly. Sustained endoplasmic reticulum stress activation by cerulein administration was reduced. NLRP3 inflammasome activation in cerulein-induced pancreatitis was identified, and this was also potently blocked by WA. The human pancreatitis tissue gene signature correlated with the mouse model. Our data provide evidence for the role of NFκB in the pathogenesis of chronic pancreatitis, and strongly suggest that WA could be used as a potential therapeutic drug to alleviate some forms of chronic pancreatitis.

  17. Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways

    PubMed Central

    Ivanov, Vladimir N.; Wu, Jinhua; Hei, Tom K.

    2017-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The challenging problem in cancer treatment is to find a way to upregulate radiosensitivity of GBM while protecting neurons and neural stem/progenitor cells in the brain. The goal of the present study was upregulation of the cytotoxic effect of γ-irradiation in GBM by non-psychotropic and non-toxic cannabinoid, cannabidiol (CBD). We emphasized three main aspects of signaling mechanisms induced by CBD treatment (alone or in combination with γ-irradiation) in human GBM that govern cell death: 1) CBD significantly upregulated the active (phosphorylated) JNK1/2 and MAPK p38 levels with the subsequent downregulation of the active phospho-ERK1/2 and phospho-AKT1 levels. MAPK p38 was one of the main drivers of CBD-induced cell death, while death levels after combined treatment of CBD and radiation were dependent on both MAPK p38 and JNK. Both MAPK p38 and JNK regulate the endogenous TRAIL expression. 2) NF-κB p65-P(Ser536) was not the main target of CBD treatment and this transcription factor was found at high levels in CBD-treated GBM cells. Additional suppression of p65-P(Ser536) levels using specific small molecule inhibitors significantly increased CBD-induced apoptosis. 3) CBD treatment substantially upregulated TNF/TNFR1 and TRAIL/TRAIL-R2 signaling by modulation of both ligand and receptor levels followed by apoptosis. Our results demonstrate that radiation-induced death in GBM could be enhanced by CBD-mediated signaling in concert with its marginal effects for neural stem/progenitor cells and astrocytes. It will allow selecting efficient targets for sensitization of GBM and overcoming cancer therapy-induced severe adverse sequelae. PMID:29088769

  18. Interaction of the cell adhesion molecule CHL1 with vitronectin, integrins, and the plasminogen activator inhibitor-2 promotes CHL1-induced neurite outgrowth and neuronal migration.

    PubMed

    Katic, Jelena; Loers, Gabriele; Kleene, Ralf; Karl, Nicole; Schmidt, Carsten; Buck, Friedrich; Zmijewski, Jaroslaw W; Jakovcevski, Igor; Preissner, Klaus T; Schachner, Melitta

    2014-10-29

    The cell adhesion molecule close homolog of L1 (CHL1) plays important functional roles in the developing and adult nervous system. In search of the binding partners that mediate the diverse and sometimes opposing functions of CHL1, the extracellular matrix-associated proteins vitronectin and plasminogen activator inhibitor-2 (PAI-2) were identified as novel CHL1 interaction partners and tested for involvement in CHL1-dependent functions during mouse cerebellar development. CHL1-induced cerebellar neurite outgrowth and cell migration at postnatal days 6-8 were inhibited by a CHL1-derived peptide comprising the integrin binding RGD motif, and by antibodies against vitronectin or several integrins, indicating a vitronectin-dependent integrin-mediated pathway. A PAI-2-derived peptide, or antibodies against PAI-2, urokinase type plasminogen activator (uPA), uPA receptor, and several integrins reduced cell migration. CHL1 colocalized with vitronectin, PAI-2, and several integrins in cerebellar granule cells, suggesting an association among these proteins. Interestingly, at the slightly earlier age of 4-5 d, cerebellar neurons did not depend on CHL1 for neuritogenesis and cell migration. However, differentiation of progenitor cells into neurons at this stage was dependent on homophilic CHL1-CHL1 interactions. These observations indicate that homophilic CHL1 trans-interactions regulate differentiation of neuronal progenitor cells at early postnatal stages, while heterophilic trans-interactions of CHL1 with vitronectin, integrins, and the plasminogen activator system regulate neuritogenesis and neuronal cell migration at a later postnatal stage of cerebellar morphogenesis. Thus, within very narrow time windows in postnatal cerebellar development, distinct types of molecular interactions mediated by CHL1 underlie the diverse functions of this protein. Copyright © 2014 the authors 0270-6474/14/3414606-18$15.00/0.

  19. Binding diversity of a noncovalent-type low-molecular-weight serine protease inhibitor and function of a catalytic water molecule: X-ray crystal structure of PKSI-527--inhibited trypsin.

    PubMed

    Tomoo, K; Satoh, K; Tsuda, Y; Wanaka, K; Okamoto, S; Hijikata-Okunomiya, A; Okada, Y; Ishida, T

    2001-03-01

    PKSI-527 is a noncovalent-type low-molecular-weight inhibitor. The X-ray crystal structure of the trypsin-PKSI-527 complex revealed a binding mode (Form II) different from the previously reported one (Form I) [Nakamura, M. et al. (1995) Biochem. Biophys. Res. Commun. 213, 583--587]. In contrast to the previous case, the electron density of the inhibitor revealed the whole structure clearly. Each structural part of the inhibitor in Forms I and II was differently located at the active site, although the modes of binding of the terminal amino group to the Asp189 carboxyl group were similar. This binding diversity, which is a characteristic of the noncovalent-type low-molecular-weight inhibitor, provides a suitable example for estimating the possible mechanism toward the enzymatic inhibition, together with the structural basis necessary for a specific inhibitor. The mode of binding in Form II reflects the inhibitor-specific situation and is in contrast with the substrate-mimetic binding mode for Form I. Based on the generally accepted catalytic mechanism for serine protease, we propose that a water molecule located at the catalytic site plays an important role in blocking the catalytic function of the reactive Ser193 OH group.

  20. A new class of orthosteric uPAR·uPA small-molecule antagonists are allosteric inhibitors of the uPAR·vitronectin interaction.

    PubMed

    Liu, Degang; Zhou, Donghui; Wang, Bo; Knabe, William Eric; Meroueh, Samy O

    2015-06-19

    The urokinase receptor (uPAR) is a GPI-anchored cell surface receptor that is at the center of an intricate network of protein-protein interactions. Its immediate binding partners are the serine proteinase urokinase (uPA), and vitronectin (VTN), a component of the extracellular matrix. uPA and VTN bind at distinct sites on uPAR to promote extracellular matrix degradation and integrin signaling, respectively. Here, we report the discovery of a new class of pyrrolone small-molecule inhibitors of the tight ∼1 nM uPAR·uPA protein-protein interaction. These compounds were designed to bind to the uPA pocket on uPAR. The highest affinity compound, namely 7, displaced a fluorescently labeled α-helical peptide (AE147-FAM) with an inhibition constant Ki of 0.7 μM and inhibited the tight uPAR·uPAATF interaction with an IC50 of 18 μM. Biophysical studies with surface plasmon resonance showed that VTN binding is highly dependent on uPA. This cooperative binding was confirmed as 7, which binds at the uPAR·uPA interface, also inhibited the distal VTN·uPAR interaction. In cell culture, 7 blocked the uPAR·uPA interaction in uPAR-expressing human embryonic kidney (HEK-293) cells and impaired cell adhesion to VTN, a process that is mediated by integrins. As a result, 7 inhibited integrin signaling in MDA-MB-231 cancer cells as evidenced by a decrease in focal adhesion kinase (FAK) phosphorylation and Rac1 GTPase activation. Consistent with these results, 7 blocked breast MDA-MB-231 cancer cell invasion with IC50 values similar to those observed in ELISA and surface plasmon resonance competition studies. Explicit-solvent molecular dynamics simulations show that the cooperativity between uPA and VTN is attributed to stabilization of uPAR motion by uPA. In addition, free energy calculations revealed that uPA stabilizes the VTNSMB·uPAR interaction through more favorable electrostatics and entropy. Disruption of the uPAR·VTNSMB interaction by 7 is consistent with the

  1. Role of an Indole-Thiazolidine Molecule PPAR Pan-Agonist and COX Inhibitor on Inflammation and Microcirculatory Damage in Acute Gastric Lesions

    PubMed Central

    Santin, José Roberto; Daufenback Machado, Isabel; Rodrigues, Stephen F. P.; Teixeira, Simone; Muscará, Marcelo N.; Lins Galdino, Suely; da Rocha Pitta, Ivan; Farsky, Sandra H. P.

    2013-01-01

    The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H+ in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil

  2. Targeting the apoptotic machinery in pancreatic cancers using small-molecule antagonists of the X-linked inhibitor of apoptosis protein

    PubMed Central

    Karikari, Collins A.; Roy, Indrajit; Tryggestad, Eric; Feldmann, Georg; Pinilla, Clemencia; Welsh, Kate; Reed, John C.; Armour, Elwood P.; Wong, John; Herman, Joseph; Rakheja, Dinesh; Maitra, Anirban

    2011-01-01

    Resistance to apoptosis is a hallmark of many solid tumors, including pancreatic cancers, and may be the underlying basis for the suboptimal response to chemo-radiation therapies. Overexpression of a family of inhibitor of apoptosis proteins (IAP) is commonly observed in pancreatic malignancies. We determined the therapeutic efficacy of recently described small-molecule antagonists of the X-linked IAP (XIAP) in preclinical models of pancreatic cancer. Primary pancreatic cancers were assessed for XIAP expression by immunohistochemistry, using a pancreatic cancer tissue microarray. XIAP small-molecule antagonists (“XAntag”; compounds 1396-11 and 1396-12) and the related compound 1396-28 were tested in vitro in a panel of human pancreatic cancer cell lines (Panc1, Capan1, and BxPC3) and in vivo in s.c. xenograft models for their ability to induce apoptosis and impede neoplastic growth. In addition, pancreatic cancer cell lines were treated with XAntags in conjunction with either tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) or with radiation to determine potential synergy for such dual targeting of the apoptotic machinery. XIAP was overexpressed in 14 of 18 (77%) of primary pancreatic cancers. The XAntags 1396-11 and 1396-12, but not the inactive isomer 1396-28, induced profound apoptosis in multiple pancreatic cancer cell lines tested in vitro, with a IC50 in the range of 2 to 5 μmol/L. Mechanistic specificity of the XAntags for the baculoviral IAP repeat-2 domain of XIAP was shown by preferential activation of downstream “effector” caspases (caspase-3 and caspase-7) versus the upstream “initiator” caspase-9. S.c. BxPC3 xenograft growth in athymic mice was significantly inhibited by monotherapy with XAntags; treated xenografts showed marked apoptosis and increased cleavage of caspase-3. Notably, striking synergy was demonstrable when XAntags were combined with either TRAIL or radiation therapy, as measured by growth inhibition in

  3. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    PubMed Central

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  4. Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia.

    PubMed

    Saxena, Anil K; Roy, Kuldeep K; Singh, Supriya; Vishnoi, S P; Kumar, Anil; Kashyap, Vivek Kr; Kremer, Laurent; Srivastava, Ranjana; Srivastava, Brahm S

    2013-07-01

    The mycobacterial Rv3097c-encoded lipase LipY is considered as a true lipase involved in the hydrolysis of triacylglycerol stored in lipid inclusion bodies for the survival of dormant mycobacteria. To date, orlistat is the only known LipY inhibitor. In view of the important emerging role of this enzyme, a search for small-molecule inhibitors of LipY was made, leading to the identification of some new compounds (8a-8d, 8f, 8h and 8i) with potent inhibitory activities against recombinant LipY, with no cytotoxicity [50% inhibitory concentration (CC(50)) ≥ 500 μg/mL]. The compounds 6a, 8c and 8f potently inhibited (>90%) the growth of Mycobacterium tuberculosis H37Rv grown under hypoxia (oxygen-depleted condition) but had no effect on aerobically grown bacilli, suggesting that these new small molecules are highly selective towards the growth inhibition of hypoxic cultures of M. tuberculosis and hence provide new leads for combating latent tuberculosis. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  5. New small molecule inhibitors of histone methyl transferase DOT1L with a nitrile as a non-traditional replacement for heavy halogen atoms.

    PubMed

    Spurr, Sophie S; Bayle, Elliott D; Yu, Wenyu; Li, Fengling; Tempel, Wolfram; Vedadi, Masoud; Schapira, Matthieu; Fish, Paul V

    2016-09-15

    A number of new nucleoside derivatives are disclosed as inhibitors of DOT1L activity. SARs established that DOT1L inhibition could be achieved through incorporation of polar groups and small heterocycles at the 5-position (5, 6, 12) or by the application of alternative nitrogenous bases (18). Based on these results, CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L activity where the polar 5-nitrile group was shown by crystallography to bind in the hydrophobic pocket of DOT1L. In addition, we show that a polar nitrile group can be used as a non-traditional replacement for heavy halogen atoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma.

    PubMed

    Siu, K T; Ramachandran, J; Yee, A J; Eda, H; Santo, L; Panaroni, C; Mertz, J A; Sims Iii, R J; Cooper, M R; Raje, N

    2017-08-01

    Inhibition of the bromodomain and extra-terminal (BET) proteins is a promising therapeutic strategy for various hematologic cancers. Previous studies suggest that BET inhibitors constrain tumor cell proliferation and survival mainly through the suppression of MYC transcription and activity. However, suppression of the transcription of additional genes also contributes to the antitumor activity of BET inhibitors but is less well understood. Here we examined the therapeutic potential of CPI-0610, a potent BET inhibitor currently undergoing phase I clinical testing, in multiple myeloma (MM). CPI-0610 displays potent cytotoxicity against MM cell lines and patient-derived MM cells through G1 cell cycle arrest and caspase-dependent apoptosis. CPI-0610-mediated BET inhibition overcomes the protective effects conferred by cytokines and bone marrow stromal cells. We also confirmed the in vivo efficacy of CPI-0610 in a MM xenograft mouse model. Our study found IKZF1 and IRF4 to be among the primary targets of CPI-0610, along with MYC. Given that immunomodulatory drugs (IMiDs) stabilize cereblon and facilitate Ikaros degradation in MM cells, we combined it with CPI-0610. Combination studies of CPI-0610 with IMiDs show in vitro synergism, in part due to concomitant suppression of IKZF1, IRF4 and MYC, providing a rationale for clinical testing of this drug combination in MM patients.

  7. In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT.

    PubMed

    Moses, Sylvestor A; Ali, M Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A Geoffrey; Zhang, Shuxing; Mash, Eugene A; Powis, Garth; Meuillet, Emmanuelle J

    2009-06-15

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl)benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties.

  8. In vitro and In vivo Activity of Novel Small-Molecule Inhibitors Targeting the Pleckstrin Homology Domain of Protein Kinase B/AKT

    PubMed Central

    Moses, Sylvestor A.; Ali, M. Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A. Geoffrey; Zhang, Shuxing; Mash, Eugene A.; Powis, Garth; Meuillet, Emmanuelle J.

    2010-01-01

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl) benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties. PMID:19491272

  9. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors.

    PubMed

    Eleftheriou, P; Petrou, A; Geronikaki, A; Liaras, K; Dirnali, S; Anna, M

    2015-01-01

    PTP1B is a protein tyrosine phosphatase involved in insulin receptor desensitization. PTP1B inhibition prolongs the activated state of the receptor, practically enhancing the effect of insulin. Thus PTP1B has become a drug target for the treatment of type II diabetes. PTP1b is an enzyme with multiple binding sites for competitive and allosteric inhibitors. Prediction of inhibitory action using docking analysis has limited success in case of enzymes with multiple binding sites, since the selection of the right crystal structure depends on the kind of inhibitor. In the present study, a two-step strategy for the prediction of PTP1b inhibitory action was applied to 12 compounds. Based on the study of known inhibitors, we isolated the structural characteristics required for binding to each binding site. As a first step, 3D-structures of the molecules were produced and their structural parameters were measured and used for prediction of the binding site of the compound. These results were used for the selection of the appropriate crystal structure for docking analysis of each compound, and the final prediction was based on the estimated binding energies. This strategy effectively predicted the activity of all compounds. A linear correlation was found between estimated binding energy and inhibition measured in vitro (r = -0.894).

  10. A Small-Molecule Inhibitor of Iron-Sulfur Cluster Assembly Uncovers a Link between Virulence Regulation and Metabolism in Staphylococcus aureus.

    PubMed

    Choby, Jacob E; Mike, Laura A; Mashruwala, Ameya A; Dutter, Brendan F; Dunman, Paul M; Sulikowski, Gary A; Boyd, Jeffrey M; Skaar, Eric P

    2016-11-17

    The rising problem of antimicrobial resistance in Staphylococcus aureus necessitates the discovery of novel therapeutic targets for small-molecule intervention. A major obstacle of drug discovery is identifying the target of molecules selected from high-throughput phenotypic assays. Here, we show that the toxicity of a small molecule termed '882 is dependent on the constitutive activity of the S. aureus virulence regulator SaeRS, uncovering a link between virulence factor production and energy generation. A series of genetic, physiological, and biochemical analyses reveal that '882 inhibits iron-sulfur (Fe-S) cluster assembly most likely through inhibition of the Suf complex, which synthesizes Fe-S clusters. In support of this, '882 supplementation results in decreased activity of the Fe-S cluster-dependent enzyme aconitase. Further information regarding the effects of '882 has deepened our understanding of virulence regulation and demonstrates the potential for small-molecule modulation of Fe-S cluster assembly in S. aureus and other pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Small Molecule Pyrazolo[3,4-d]Pyrimidinone Inhibitor of Zipper-Interacting Protein Kinase Suppresses Calcium Sensitization of Vascular Smooth Muscle.

    PubMed

    MacDonald, Justin A; Sutherland, Cindy; Carlson, David A; Bhaidani, Sabreena; Al-Ghabkari, Abdulhameed; Swärd, Karl; Haystead, Timothy A J; Walsh, Michael P

    2016-01-01

    A novel inhibitor of zipper-interacting protein kinase (ZIPK) was used to examine the involvement of ZIPK in the regulation of smooth muscle contraction. Pretreatment of de-endothelialized rat caudal arterial smooth muscle strips with the pyrazolo[3,4-d]pyrimidinone inhibitor 2-((1-(3-chlorophenyl)-4-oxo-4,5-dihydro-1H-pyrazolo [3,4-d]-pyrimidin-6-yl)thio)propanamide (HS38) decreased the velocity of contraction (time to reach half-maximal force) induced by the phosphatase inhibitor calyculin A in the presence of Ca(2+) without affecting maximal force development. This effect was reversed following washout of HS38 and correlated with a reduction in the rate of phosphorylation of myosin 20-kDa regulatory light chains (LC20) but not of protein kinase C-potentiated inhibitory protein for myosin phosphatase of 17 kDa (CPI-17), prostate apoptosis response-4, or myosin phosphatase-targeting subunit 1 (MYPT1), all of which have been implicated in the regulation of vascular contractility. A structural analog of HS38, with inhibitory activity toward proviral integrations of Moloney (PIM) virus 3 kinase but not ZIPK, had no effect on calyculin A-induced contraction or protein phosphorylations. We conclude that a pool of constitutively active ZIPK is involved in regulation of vascular smooth muscle contraction through direct phosphorylation of LC20 upon inhibition of myosin light chain phosphatase activity. HS38 also significantly attenuated both phasic and tonic contractile responses elicited by phenylephrine, angiotensin II, endothelin-1, U46619, and K(+)-induced membrane depolarization in the presence of Ca(2+), which correlated with inhibition of phosphorylation of LC20, MYPT1, and CPI-17. These effects of HS38 suggest that ZIPK also lies downstream from G protein-coupled receptors that signal through both Gα12/13 and Gαq/11. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells

    PubMed Central

    Li, Luyuan; Paz, Ana C.; Wilky, Breelyn A.; Johnson, Britt; Galoian, Karina; Rosenberg, Andrew; Hu, Guozhi; Tinoco, Gabriel; Bodamer, Olaf; Trent, Jonathan C.

    2015-01-01

    Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas. PMID:26368816

  13. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells.

    PubMed

    Li, Luyuan; Paz, Ana C; Wilky, Breelyn A; Johnson, Britt; Galoian, Karina; Rosenberg, Andrew; Hu, Guozhi; Tinoco, Gabriel; Bodamer, Olaf; Trent, Jonathan C

    2015-01-01

    Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas.

  14. A Novel Small-Molecule Inhibitor of the Mycobacterium tuberculosis Demethylmenaquinone Methyltransferase MenG Is Bactericidal to Both Growing and Nutritionally Deprived Persister Cells

    PubMed Central

    Sukheja, Paridhi; Kumar, Pradeep; Mittal, Nisha; Li, Shao-Gang; Singleton, Eric; Russo, Riccardo; Perryman, Alexander L.; Shrestha, Riju; Awasthi, Divya; Husain, Seema; Soteropoulos, Patricia; Brukh, Roman; Connell, Nancy; Freundlich, Joel S.

    2017-01-01

    ABSTRACT Active tuberculosis (TB) and latent Mycobacterium tuberculosis infection both require lengthy treatments to achieve durable cures. This problem has partly been attributable to the existence of nonreplicating M. tuberculosis “persisters” that are difficult to kill using conventional anti-TB treatments. Compounds that target the respiratory pathway have the potential to kill both replicating and persistent M. tuberculosis and shorten TB treatment, as this pathway is essential in both metabolic states. We developed a novel respiratory pathway-specific whole-cell screen to identify new respiration inhibitors. This screen identified the biphenyl amide GSK1733953A (DG70) as a likely respiration inhibitor. DG70 inhibited both clinical drug-susceptible and drug-resistant M. tuberculosis strains. Whole-genome sequencing of DG70-resistant colonies identified mutations in menG (rv0558), which is responsible for the final step in menaquinone biosynthesis and required for respiration. Overexpression of menG from wild-type and DG70-resistant isolates increased the DG70 MIC by 4× and 8× to 30×, respectively. Radiolabeling and high-resolution mass spectrometry studies confirmed that DG70 inhibited the final step in menaquinone biosynthesis. DG70 also inhibited oxygen utilization and ATP biosynthesis, which was reversed by external menaquinone supplementation. DG70 was bactericidal in actively replicating cultures and in a nutritionally deprived persistence model. DG70 was synergistic with the first-line TB drugs isoniazid, rifampin, and the respiratory inhibitor bedaquiline. The combination of DG70 and isoniazid completely sterilized cultures in the persistence model by day 10. These results suggest that MenG is a good therapeutic target and that compounds targeting MenG along with standard TB therapy have the potential to shorten TB treatment duration. PMID:28196957

  15. Identification of small molecule inhibitors of cisplatin-induced hair cell death: results of a 10,000 compound screen in the zebrafish lateral line.

    PubMed

    Thomas, Andrew J; Wu, Patricia; Raible, David W; Rubel, Edwin W; Simon, Julian A; Ou, Henry C

    2015-03-01

    The zebrafish lateral line can be used to identify small molecules that protect against cisplatin-induced hair cell death. Cisplatin is a commonly used chemotherapeutic agent, which causes hearing loss by damaging hair cells of the inner ear. There are currently no FDA-approved pharmacologic strategies for preventing this side effect. The zebrafish lateral line has been used successfully in the past to study hair cell death and protection. In this study, we used the zebrafish lateral line to screen a library of 10,000 small molecules for protection against cisplatin-induced hair cell death. Dose-response relationships for identified protectants were determined by quantifying hair cell protection. The effect of each protectant on uptake of a fluorescent cisplatin analog was also quantified. From this screen, we identified 2 compounds exhibiting dose-dependent protection: cisplatin hair cell protectant 1 and 2 (CHCP1 and 2). CHCP1 reduced the uptake of a fluorescent cisplatin analog, suggesting its protective effects may be due to decreased cisplatin uptake. CHCP2 did not affect uptake, which suggests an intracellular mechanism of action. Evaluation of analogs of CHCP2 revealed 3 additional compounds that significantly reduced cisplatin-induced hair cell death, although none exceed the effectiveness or potency of the parent compound. The zebrafish lateral line was used to identify 2 small molecules that protected against cisplatin-induced hair cell death.

  16. A salicylic acid-based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2)

    PubMed Central

    Zhang, Xian; He, Yantao; Liu, Sijiu; Yu, Zhihong; Jiang, Zhong-Xing; Yang, Zhenyun; Dong, Yuanshu; Nabinger, Sarah C.; Wu, Li; Gunawan, Andrea M.; Wang, Lina; Chan, Rebecca J.; Zhang, Zhong-Yin

    2010-01-01

    The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias and solid tumors. Thus there is considerable interest in SHP2 as a potential target for anti-cancer and anti-leukemia therapy. We report a salicylic acid-based combinatorial library approach aimed to bind both active site and unique nearby sub-pockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anti-cancer and anti-leukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors. PMID:20170098

  17. Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release

    PubMed Central

    Estacion, Mark; Turner, Jamie; Mis, Malgorzata A.; Wilbrey, Anna; Payne, Elizabeth C.; Gutteridge, Alex; Cox, Peter J.; Doyle, Rachel; Printzenhoff, David; Lin, Zhixin; Marron, Brian E.; West, Christopher; Swain, Nigel A.; Storer, R. Ian; Stupple, Paul A.; Castle, Neil A.; Hounshell, James A.; Rivara, Mirko; Randall, Andrew; Dib-Hajj, Sulayman D.; Krafte, Douglas; Waxman, Stephen G.; Patel, Manoj K.; Butt, Richard P.; Stevens, Edward B.

    2016-01-01

    Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7’s role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission. PMID:27050761

  18. Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches

    NASA Astrophysics Data System (ADS)

    Katritch, Vsevolod; Byrd, Chelsea M.; Tseitin, Vladimir; Dai, Dongcheng; Raush, Eugene; Totrov, Maxim; Abagyan, Ruben; Jordan, Robert; Hruby, Dennis E.

    2007-10-01

    Essential for viral replication and highly conserved among poxviridae, the vaccinia virus I7L ubiquitin-like proteinase (ULP) is an attractive target for development of smallpox antiviral drugs. At the same time, the I7L proteinase exemplifies several interesting challenges from the rational drug design perspective. In the absence of a published I7L X-ray structure, we have built a detailed 3D model of the I7L ligand binding site (S2-S2' pocket) based on exceptionally high structural conservation of this site in proteases of the ULP family. The accuracy and limitations of this model were assessed through comparative analysis of available X-ray structures of ULPs, as well as energy based conformational modeling. The 3D model of the I7L ligand binding site was used to perform covalent docking and VLS of a comprehensive library of about 230,000 available ketone and aldehyde compounds. Out of 456 predicted ligands, 97 inhibitors of I7L proteinase activity were confirmed in biochemical assays (˜20% overall hit rate). These experimental results both validate our I7L ligand binding model and provide initial leads for rational optimization of poxvirus I7L proteinase inhibitors. Thus, fragments predicted to bind in the prime portion of the active site can be combined with fragments on non-prime side to yield compounds with improved activity and specificity.

  19. Synthesis and biological evaluation of new 3-(6-hydroxyindol-2-yl)-5-(Phenyl) pyridine or pyrazine V-Shaped molecules as kinase inhibitors and cytotoxic agents.

    PubMed

    Kassis, Pamela; Brzeszcz, Joanna; Bénéteau, Valérie; Lozach, Olivier; Meijer, Laurent; Le Guével, Rémi; Guillouzo, Christiane; Lewiński, Krzysztof; Bourg, Stéphane; Colliandre, Lionel; Routier, Sylvain; Mérour, Jean-Yves

    2011-11-01

    We here report the synthesis and biological evaluation of new 3-[(2-indolyl)]-5-phenyl-3,5-pyridine, 3-[(2-indolyl)]-5-phenyl-2,4-pyridine and 3-[(2-indolyl)]-5-phenyl-2,6-pyrazine derivatives designed as potential CDK inhibitors. Indoles and phenyls were used to generate several substitutions of the pyridine and pyrazine rings. The synthesis included Stille or Suzuki type reactions, which were carried out on the 3,5-dibromopyridine, 2,4-dichloropyridine and 2,6-dichloro-1-4-pyrazine moieties. Cell effects of the V-shaped family were in the micromolar range. Kinase assays were conducted and showed that compound 11 inhibited CDK5 with an inhibitory concentration of 160 nM with a moderate selectivity over GSK3 compared to the reference C which exhibited a slightly lower activity on CDK5 (1.5 μM). Compound 11 was also found to be the most potent compound in the series and was identified as a new lead for DYRK1A inhibitor discovery (IC(50) = 60 nM). Docking studies were carried out in order to investigate the inhibition of DYRK1A. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Structural Basis for Rational Design of Inhibitors Targeting Trypanosoma cruzi Sterol 14α-Demethylase: Two Regions of the Enzyme Molecule Potentiate Its Inhibition

    PubMed Central

    2015-01-01

    Chagas disease, which was once thought to be confined to endemic regions of Latin America, has now gone global, becoming a new worldwide challenge with no cure available. The disease is caused by the protozoan parasite Trypanosoma cruzi, which depends on the production of endogenous sterols, and therefore can be blocked by sterol 14α-demethylase (CYP51) inhibitors. Here we explore the spectral binding parameters, inhibitory effects on T. cruzi CYP51 activity, and antiparasitic potencies of a new set of β-phenyl imidazoles. Comparative structural characterization of the T. cruzi CYP51 complexes with the three most potent inhibitors reveals two opposite binding modes of the compounds ((R)-6, EC50 = 1.2 nM, vs (S)-2/(S)-3, EC50 = 1.0/5.5 nM) and suggests the entrance into the CYP51 substrate access channel and the heme propionate-supporting ceiling of the binding cavity as two distinct areas of the protein that enhance molecular recognition and therefore could be used for the development of more effective antiparasitic drugs. PMID:25033013

  1. Inhibition of ceramide glucosylation sensitizes lung cancer cells to ABC294640, a first-in-class small molecule SphK2 inhibitor.

    PubMed

    Guan, Shuhong; Liu, Yuan Y; Yan, Tingzan; Zhou, Jun

    2016-08-05

    Sphingosine kinase 2 (SphK2) is proposed as a novel oncotarget for lung cancer. Here, we studied the anti-lung cancer cell activity by ABC294640, a first-in-class SphK2 inhibitor. We showed that ABC294640 suppressed growth of primary and A549 human lung cancer cells, but sparing SphK2-low lung epithelial cells. Inhibition of SphK2 by ABC294640 increased ceramide accumulation, but decreased pro-survival sphingosine-1-phosphate (S1P) content, leading to lung cancer cell apoptosis activation. Significantly, we show that glucosylceramide synthase (GCS) might be a major resistance factor of ABC294640. The GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) or GCS shRNA/siRNA knockdown facilitated ABC294640-induced ceramide production and lung cancer cell apoptosis. Reversely, forced overexpression of GCS reduced ABC294640's sensitivity, resulting in decreased ceramide accumulation and apoptosis induction in A549 cells. These findings provide further evidences to support that targeting SphK2 by ABC294640 may be a rational treatment option for lung cancer. Ceramide glucosylation inhibition may further sensitize lung cancer cells to ABC294640. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Application of high-throughput screening to identify a novel αIIb-specific small- molecule inhibitor of αIIbβ3-mediated platelet interaction with fibrinogen

    PubMed Central

    Blue, Robert; Murcia, Marta; Karan, Charles; Jiroušková, Markéta

    2008-01-01

    Small-molecule αIIbβ3 antagonists competitively block ligand binding by spanning between the D224 in αIIb and the MIDAS metal ion in β3. They variably induce conformational changes in the receptor, which may have undesirable consequences. To identify αIIbβ3 antagonists with novel structures, we tested 33 264 small molecules for their ability to inhibit the adhesion of washed platelets to immobilized fibrinogen at 16 μM. A total of 102 compounds demonstrated 50% or more inhibition, and one of these (compound 1, 265 g/mol) inhibited ADP-induced platelet aggregation (IC50: 13± 5 μM), the binding of soluble fibrinogen to platelets induced by mAb AP5, and the binding of soluble fibrinogen and a cyclic RGD peptide to purified αIIbβ3. Compound 1 did not affect the function of GPIb, α2β1, or the other β3 family receptor αVβ3. Molecular docking simulations suggest that compound 1 interacts with αIIb but not β3. Compound 1 induced partial exposure of an αIIb ligand-induced binding site (LIBS), but did not induce exposure of 2 β3 LIBS. Transient exposure of purified αIIbβ3 to eptifibatide, but not compound 1, enhanced fibrinogen binding (“priming”). Compound 1 provides a prototype for small molecule selective inhibition of αIIbβ3, without receptor priming, via targeting αIIb. PMID:17978171

  3. N-Arylsulfonylsubstituted-1H indole derivatives as small molecule dual inhibitors of signal transducer and activator of transcription 3 (STAT3) and tubulin.

    PubMed

    Zhou, Qiang; Zhu, Jinjin; Chen, Jinglei; Ji, Peng; Qiao, Chunhua

    2018-01-01

    Signal transducer and activator of transcription (STAT3) is a proposed therapeutic target for the development of anti-cancer agents. In this report, a series of N-arylsulfonylsubstituted-1H indole derivatives were designed and synthesized as STAT3 inhibitors, their anti-proliferative activities were evaluated against a number of tumor cells, some potent compounds exhibited IC 50 values less than 10 μM. The most potent compound 4a was further confirmed to inhibit STAT3 phosphorylation at Tyr705. It was further revealed that 4a arrested the cell cycle at the G2/M phase and inhibited tubulin polymerization. This study describes a series of N-arylsulfonylsubstituted-1H indole derivatives as potent anti-cancer agents targeting both STAT3 and tubulin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 2. Identification of small-molecule inhibitors via coupling with virtual screening.

    PubMed

    Toledo-Sherman, Leticia; Deretey, Eugen; Slon-Usakiewicz, Jacek J; Ng, William; Dai, Jin-Rui; Foster, J Estelle; Redden, Peter R; Uger, Marni D; Liao, Linda C; Pasternak, Andrew; Reid, Neil

    2005-05-05

    We have integrated two complementary methods, high-throughput virtual screening with a "high-content" wet screening technique based on frontal affinity chromatography with mass spectrometry detection (FAC-MS), for identification of hits against the erythropoietin-producing hepatocellular B2 (EphB2) receptor tyrosine kinase domain. Both an EphB2-directed virtual screen combining docking and scoring and a kinase-directed pharmacophore search strategy were used to identify a compound set enriched in bioactive compounds against EphB2. The coupling of virtual screening methodologies with FAC-MS is a unique hybrid approach that can be used to increase the efficacy of both hit discovery and optimization efforts in drug discovery and has successfully identified hits, in particular 19a (36% shift, IC(50) = 5.2 microM, K(d) = 3.3 microM), as inhibitors for EphB2, a potential cancer target.

  5. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor.

    PubMed

    Kalverda, Arnout P; Gowdy, James; Thompson, Gary S; Homans, Steve W; Henderson, Peter J F; Patching, Simon G

    2014-06-01

    Using the sugar transport protein, GalP, from Escherichia coli, which is a homologue of human GLUT transporters, we have overcome the challenges for achieving high-resolution [(15)N-(1)H]- and [(13)C-(1)H]-methyl-TROSY NMR spectra with a 52 kDa membrane protein that putatively has 12 transmembrane-spanning α-helices and used the spectra to detect inhibitor binding. The protein reconstituted in DDM detergent micelles retained structural and functional integrity for at least 48 h at a temperature of 25 °C as demonstrated by circular dichroism spectroscopy and fluorescence measurements of ligand binding, respectively. Selective labelling of tryptophan residues reproducibly gave 12 resolved signals for tryptophan (15)N backbone positions and also resolved signals for (15)N side-chain positions. For improved sensitivity isoleucine, leucine and valine (ILV) methyl-labelled protein was prepared, which produced unexpectedly well resolved [(13)C-(1)H]-methyl-TROSY spectra showing clear signals for the majority of methyl groups. The GalP/GLUT inhibitor forskolin was added to the ILV-labelled sample inducing a pronounced chemical shift change in one Ile residue and more subtle changes in other methyl groups. This work demonstrates that high-resolution TROSY NMR spectra can be achieved with large complex α-helical membrane proteins without the use of elevated temperatures. This is a prerequisite to applying further labelling strategies and NMR experiments for measurement of dynamics, structure elucidation and use of the spectra to screen ligand binding.

  6. In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumor-initiating cells.

    PubMed

    McKenzie, Brienne A; Zemp, Franz J; Pisklakova, Alexandra; Narendran, Aru; McFadden, Grant; Lun, Xueqing; Kenchappa, Rajappa S; Kurz, Ebba U; Forsyth, Peter A

    2015-08-01

    Brain tumor-initiating cells (BTICs) are stem-like cells hypothesized to form a disease reservoir that mediates tumor recurrence in high-grade gliomas. Oncolytic virotherapy uses replication-competent viruses to target and kill malignant cells and has been evaluated in clinic for glioma therapy with limited results. Myxoma virus (MyxV) is a safe and highly effective oncolytic virus (OV) in conventional glioma models but, as seen with other OVs, is only modestly effective for patient-derived BTICs. The objective of this study was to determine whether MyxV treatment against human BTICs could be improved by combining chemotherapeutics and virotherapy. A 73-compound library of drug candidates in clinical use or preclinical development was screened to identify compounds that sensitize human BTICs to MyxV treatment in vitro, and synergy was evaluated mathematically in lead compounds using Chou-Talalay analyses. The effects of combination therapy on viral gene expression and viral replication were also assessed. Eleven compounds that enhance MyxV efficacy were identified, and 6 were shown to synergize with the virus using Chou-Talalay analyses. Four of the synergistic compounds were shown to significantly increase viral gene expression, indicating a potential mechanism for synergy. Three highly synergistic compounds (axitinib, a VEGFR inhibitor; rofecoxib, a cyclooxygenase-2 inhibitor; and pemetrexed, a folate anti-metabolite) belong to classes of compounds that have not been previously shown to synergize with oncolytic viruses in vitro. This study has identified multiple novel drug candidates that synergistically improve MyxV efficacy in a preclinical BTIC glioma model. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing

    PubMed Central

    Melo, Sonia; Villanueva, Alberto; Moutinho, Catia; Davalos, Veronica; Spizzo, Riccardo; Ivan, Cristina; Rossi, Simona; Setien, Fernando; Casanovas, Oriol; Simo-Riudalbas, Laia; Carmona, Javier; Carrere, Jordi; Vidal, August; Aytes, Alvaro; Puertas, Sara; Ropero, Santiago; Kalluri, Raghu; Croce, Carlo M.; Calin, George A.; Esteller, Manel

    2011-01-01

    MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression at the posttranscriptional level and are critical for many cellular pathways. The disruption of miRNAs and their processing machineries also contributes to the development of human tumors. A common scenario for miRNA expression in carcinogenesis is emerging that shows that impaired miRNA production and/or down-regulation of these transcripts occurs in many neoplasms. Several of these lost miRNAs have tumor-suppressor features, so strategies to restore their expression globally in malignancies would be a welcome addition to the current therapeutic arsenal against cancer. Herein, we show that the small molecule enoxacin, a fluoroquinolone used as an antibacterial compound, enhances the production of miRNAs with tumor suppressor functions by binding to the miRNA biosynthesis protein TAR RNA-binding protein 2 (TRBP). The use of enoxacin in human cell cultures and xenografted, orthotopic, and metastatic mouse models reveals a TRBP-dependent and cancer-specific growth-inhibitory effect of the drug. These results highlight the key role of disrupted miRNA expression patterns in tumorigenesis, and suggest a unique strategy for restoring the distorted microRNAome of cancer cells to a more physiological setting. PMID:21368194

  8. RX-207, a Small Molecule Inhibitor of Protein Interaction with Glycosaminoglycans (SMIGs), Reduces Experimentally Induced Inflammation and Increases Survival Rate in Cecal Ligation and Puncture (CLP)-Induced Sepsis.

    PubMed

    Juhas, Stefan; Harris, Nicholas; Il'kova, Gabriela; Rehák, Pavol; Zsila, Ferenc; Yurgenzon Kogan, Faina; Lahmy, Orly; Zhuk, Regina; Gregor, Paul; Koppel, Juraj

    2018-02-01

    The fused quinazolinone derivative, RX-207, is chemically and functionally related to small molecule inhibitors of protein binding to glycosaminoglycans (SMIGs). Composed of a planar aromatic amine scaffold, it inhibits protein binding to glycosaminoglycans (GAGs). RX-207 reduced neutrophil migration in thioglycollate-induced peritonitis (37%), inhibited carrageenan-induced paw edema (32%) and cerulein-induced pancreatitis (28%), and increased animal survival in the mouse model of cecal ligation and puncture (CLP)-induced sepsis (60%). The mechanism of RX-207 action, analyzed by UV spectroscopy, confirmed that which was elucidated for chemically related anti-inflammatory SMIGs. RX-207 binding to cell surface GAGs can account for the inhibition of neutrophil recruitment via the micro-vasculature and as a consequence, the reduction of neutrophil mediated tissue damage in the animal models of inflammation and improved survival of mice in CLP-induced sepsis.

  9. A High-Throughput, Cell-Based Screening Method for siRNA and Small Molecule Inhibitors of mTORC1 Signaling Using the In Cell Western Technique

    PubMed Central

    2010-01-01

    The mTORC1 pathway is a central regulator of cell growth, and defective mTORC1 regulation plays a causative role in a variety of human diseases, including cancer, tumor syndromes such as the tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), and metabolic diseases such as diabetes and obesity. Given the importance of mTORC1 signaling in these diseases, there has been significant interest in developing screening methods suitable for identifying inhibitors of mTORC1 activation. To this end, we have developed a high-throughput, cell-based assay for the detection of rpS6-phosphorylation as a measure of mTORC1 signaling. This assay takes advantage of the “In Cell Western” (ICW) technique using the Aerius infrared imaging system (LI-COR® Biosciences). The ICW procedure involves fixation and immunostaining of cells in a manner similar to standard immunofluorescence methods but takes advantage of secondary antibodies conjugated to infrared-excitable fluorophores for quantitative detection by the Aerius® scanner. In addition, the cells are stained with an infrared-excitable succinimidyl ester dye, which covalently modifies free amine groups in fixed cells and provides a quantitative measure of cell number. We present validation data and pilot screens in a 384-well format demonstrating that this assay provides a statistically robust method for both small molecule and siRNA screening approaches designed to identify inhibitors of mTORC1 signaling. PMID:20085456

  10. Synthesis and Structure-Activity Relationships of Small Molecule Inhibitors of the Simian Virus 40 T Antigen Oncoprotein, an Anti-Polyomaviral Target

    PubMed Central

    Gupta, Tushar; Seguin, Sandlin P.; Liang, Mary; Resnick, Lynn; Goldberg, Margot T.; Manos-Turvey, Alexandra; Pipas, James M.; Wipf, Peter; Brodsky, Jeffrey L.

    2014-01-01

    Polyomavirus infections are common and relatively benign in the general human population but can become pathogenic in immunosuppressed patients. Because most treatments for polyomavirus-associated diseases nonspecifically target DNA replication, existing treatments for polyomavirus infection possess undesirable side effects. However, all polyomaviruses express Large Tumor Antigen (T Ag), which is unique to this virus family and may serve as a therapeutic target. Previous screening of pyrimidinone-peptoid hybrid compounds identified MAL2-11B and a MAL2-11B tetrazole derivative as inhibitors of viral replication and T Ag ATPase activity (IC50 of ~20-50μM). To improve upon this scaffold and to develop a structure-activity relationship for this new class of antiviral agents, several iterative series of MAL2-11B derivatives were synthesized. The replacement of a flexible methylene chain linker with a benzyl group or, alternatively, the addition of an ortho-methyl substituent on the biphenyl side chain in MAL2-11B yielded analogs with modestly improved IC50s (~15 μM), which retained antiviral activity. After combining both structural motifs, a new lead compound was identified that inhibited T Ag ATPase activity with an IC50 of ~5 μM. We suggest that the knowledge gained from the structure-activity relationship and a further refinement cycle of the MAL2-11B scaffold will provide a specific, novel therapeutic treatment option for polyomavirus infections and their associated diseases. PMID:25440730

  11. Adapting AlphaLISA high throughput screen to discover a novel small-molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers

    PubMed Central

    Prabhu, Lakshmi; Wei, Han; Chen, Lan; Demir, Özlem; Sandusky, George; Sun, Emily; Wang, John; Mo, Jessica; Zeng, Lifan; Fishel, Melissa; Safa, Ahmad; Amaro, Rommie; Korc, Murray; Zhang, Zhong-Yin; Lu, Tao

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC) are notoriously challenging for treatment. Hyperactive nuclear factor κB (NF-κB) is a common culprit in both cancers. Previously, we discovered that protein arginine methyltransferase 5 (PRMT5) methylated and activated NF-κB. Here, we show that PRMT5 is highly expressed in PDAC and CRC. Overexpression of PRMT5 promoted cancer progression, while shRNA knockdown showed an opposite effect. Using an innovative AlphaLISA high throughput screen, we discovered a lead compound, PR5-LL-CM01, which exhibited robust tumor inhibition effects in both cancers. An in silico structure prediction suggested that PR5-LL-CM01 inhibits PRMT5 by binding with its active pocket. Importantly, PR5-LL-CM01 showed higher anti-tumor efficacy than the commercial PRMT5 inhibitor, EPZ015666, in both PDAC and CRC. This study clearly highlights the significant potential of PRMT5 as a therapeutic target in PDAC and CRC, and establishes PR5-LL-CM01 as a promising basis for new drug development in the future. PMID:28591716

  12. Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells.

    PubMed

    Zagani, Rachid; El-Assaad, Wissal; Gamache, Isabelle; Teodoro, Jose G

    2015-09-29

    The G0/G1 switch gene 2 (G0S2) is methylated and silenced in a wide range of human cancers. The protein encoded by G0S2 is an endogenous inhibitor of lipid catabolism that directly binds adipose triglyceride lipase (ATGL). ATGL is the rate-limiting step in triglyceride metabolism. Although the G0S2 gene is silenced in cancer, the impact of ATGL in the growth and survival of cancer cells has never been addressed. Here we show that ectopic expression of G0S2 in non-small cell lung carcinomas (NSCL) inhibits triglyceride catabolism and results in lower cell growth. Similarly, knockdown of ATGL increased triglyceride levels, attenuated cell growth and promoted apoptosis. Conversely, knockdown of endogenous G0S2 enhanced the growth and invasiveness of cancer cells. G0S2 is strongly induced in acute promyelocytic leukemia (APL) cells in response to all trans retinoic acid (ATRA) and we show that inhibition of ATGL in these cells by G0S2 is required for efficacy of ATRA treatment. Our data uncover a novel tumor suppressor mechanism by which G0S2 directly inhibits activity of a key intracellular lipase. Our results suggest that elevated ATGL activity may be a general property of many cancer types and potentially represents a novel target for chemotherapy.

  13. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study

    PubMed Central

    Anreddy, Nagaraju; Chen, Kang; Patel, Atish; Alqahtani, Saeed; Zhang, Yun-Kai; Wang, Yi-Jun; Sodani, Kamlesh; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng

    2015-01-01

    Paclitaxel exhibits clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. Here, we determine the effect of NVP-BHG712, a specific EphB4 receptor inhibitor, on 1) paclitaxel resistance in HEK293 cells transfected with ABCC10, 2) the growth of tumors in athymic nude mice that received NVP-BHG712 and paclitaxel systemically and 3) the pharmacokinetics of paclitaxel in presence or absence of NVP-BHG712. NVP-BHG712 (0.5 μM), in HEK293/ABCC10 cells, significantly enhanced the intracellular accumulation of paclitaxel by inhibiting the efflux activity of ABCC10 without altering the expression level of the ABCC10 protein. Furthermore, NVP-BHG712 (25 mg/kg, p.o., q3d × 6), in combination with paclitaxel (15 mg/kg, i.p., q3d × 6), significantly inhibited the growth of ABCC10-expressing tumors in athymic nude mice. NVP-BHG712 administration significantly increased the levels of paclitaxel in the tumors but not in plasma compared to paclitaxel alone. The combination of NVP-BHG712 and paclitaxel could serve as a novel and useful therapeutic strategy to attenuate paclitaxel resistance mediated by the expression of the ABCC10 transporter. PMID:25402202

  14. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1.

    PubMed

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna; Zajac, Ewa; Saldova, Radka; Senske, Michael; Ugarte-Berzal, Estefanía; Martens, Erik; Van den Steen, Philippe E; Van Damme, Jo; Garcia-Pardo, Angeles; Froeyen, Matheus; Deryugina, Elena I; Quigley, James P; Moestrup, Søren K; Rudd, Pauline M; Sagi, Irit; Opdenakker, Ghislain

    2015-01-15

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers and heterocomplexes, but our knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast with a conventional notion of a dimeric nature of MMP-9 homomultimers, we demonstrate that these are reduction-sensitive trimers. Based on the information from electrophoresis, AFM and TEM, we generated a 3D structure model of the proMMP-9 trimer. Remarkably, the proMMP-9 trimers possessed a 50-fold higher affinity for TIMP-1 than the monomers. In vivo, this finding was reflected in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers compared with monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1.

  15. Design, synthesis and evaluation of small molecule CD4-mimics as entry inhibitors possessing broad spectrum anti-HIV-1 activity.

    PubMed

    Curreli, Francesca; Belov, Dmitry S; Ramesh, Ranjith R; Patel, Naisargi; Altieri, Andrea; Kurkin, Alexander V; Debnath, Asim K

    2016-11-15

    Since our first discovery of a CD4-mimic, NBD-556, which targets the Phe43 cavity of HIV-1 gp120, we and other groups made considerable progress in designing new CD4-mimics with viral entry-antagonist property. In our continued effort to make further progress we have synthesized twenty five new analogs based on our earlier reported viral entry antagonist, NBD-11021. These compounds were tested first in HIV-1 Env-pseudovirus based single-cycle infection assay as well as in a multi-cycle infection assay. Four of these new compounds showed much improved antiviral potency as well as cytotoxicity. We selected two of the best compounds 45A (NBD-14009) and 46A (NBD-14010) to test against a panel of 51 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates. These compounds showed noticeable breadth of antiviral potency with IC 50 of as low as 150nM. These compounds also inhibited cell-to-cell fusion and cell-to-cell HIV-1 transmission. The study is expected to pave the way of designing more potent and selective HIV-1 entry inhibitors targeted to the Phe43 cavity of HIV-1 gp120. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism.

    PubMed

    Adams, Sharlene; Miller, Glenn T; Jesson, Michael I; Watanabe, Takeshi; Jones, Barry; Wallner, Barbara P

    2004-08-01

    The amino boronic dipeptide, PT-100 (Val-boro-Pro), a dipeptidyl peptidase (DPP) inhibitor, has been shown to up-regulate gene expression of certain cytokines in hematopoietic tissue via a high-affinity interaction, which appears to involve fibroblast activation protein. Because fibroblast activation protein is also expressed in stroma of lymphoid tissue and tumors, the effect of PT-100 on tumor growth was studied in mice in vivo. PT-100 has no direct cytotoxic effect on tumors in vitro. Oral administration of PT-100 to mice slowed growth of syngeneic tumors derived from fibrosarcoma, lymphoma, melanoma, and mastocytoma cell lines. In WEHI 164 fibrosarcoma and EL4 and A20/2J lymphoma models, PT-100 caused regression and rejection of tumors. The antitumor effect appeared to involve tumor-specific CTL and protective immunological memory. PT-100 treatment of WEHI 164-inoculated mice increased mRNA expression of cytokines and chemokines known to promote T-cell priming and chemoattraction of T cells and innate effector cells. The role of innate activity was further implicated by observation of significant, although reduced, inhibition of WEHI 164 and A20/2J tumors in immunodeficient mice. PT-100 also demonstrated ability to augment antitumor activity of rituximab and trastuzumab in xenograft models of human CD20(+) B-cell lymphoma and HER-2(+) colon carcinoma where antibody-dependent cytotoxicity can be mediated by innate effector cells responsive to the cytokines and chemokines up-regulated by PT-100. Although CD26/DPP-IV is a potential target for PT-100 in the immune system, it appeared not to be involved because antitumor activity and stimulation of cytokine and chemokine production was undiminished in CD26(-/-) mice.

  17. Affinity Map of Bromodomain Protein 4 (BRD4) Interactions with the Histone H4 Tail and the Small Molecule Inhibitor JQ1*

    PubMed Central

    Jung, Marie; Philpott, Martin; Müller, Susanne; Schulze, Jessica; Badock, Volker; Eberspächer, Uwe; Moosmayer, Dieter; Bader, Benjamin; Schmees, Norbert; Fernández-Montalván, Amaury; Haendler, Bernard

    2014-01-01

    Bromodomain protein 4 (BRD4) is a member of the bromodomain and extra-terminal domain (BET) protein family. It binds to acetylated histone tails via its tandem bromodomains BD1 and BD2 and forms a complex with the positive transcription elongation factor b, which controls phosphorylation of RNA polymerase II, ultimately leading to stimulation of transcription elongation. An essential role of BRD4 in cell proliferation and cancer growth has been reported in several recent studies. We analyzed the binding of BRD4 BD1 and BD2 to different partners and showed that the strongest interactions took place with di- and tetra-acetylated peptides derived from the histone 4 N-terminal tail. We also found that several histone 4 residues neighboring the acetylated lysines significantly influenced binding. We generated 10 different BRD4 BD1 mutants and analyzed their affinities to acetylated histone tails and to the BET inhibitor JQ1 using several complementary biochemical and biophysical methods. The impact of these mutations was confirmed in a cellular environment. Altogether, the results show that Trp-81, Tyr-97, Asn-140, and Met-149 play similarly important roles in the recognition of acetylated histones and JQ1. Pro-82, Leu-94, Asp-145, and Ile-146 have a more differentiated role, suggesting that different kinds of interactions take place and that resistance mutations compatible with BRD4 function are possible. Our study extends the knowledge on the contribution of individual BRD4 amino acids to histone and JQ1 binding and may help in the design of new BET antagonists with improved pharmacological properties. PMID:24497639

  18. Discovery of a novel small molecule inhibitor targeting the frataxin/ubiquitin interaction via structure-based virtual screening and bioassays.

    PubMed

    Lavecchia, Antonio; Di Giovanni, Carmen; Cerchia, Carmen; Russo, Annapina; Russo, Giulia; Novellino, Ettore

    2013-04-11

    Friedreich's ataxia (FRDA) is an autosomal recessive neuro- and cardiodegenerative disorder for which there are no proven effective treatments. FRDA is caused by decreased expression and/or function of the mitochondrial protein frataxin. Here, we report findings that frataxin is degraded via the ubiquitin-proteasomal pathway and that it is ubiquitinated at residue K(147) in Calu-6 cells. A theoretical model of the frataxin-K(147)/Ub complex, constructed by combining bioinformatics interface predictions with information-driven docking, revealed a hitherto unnoticed, potential ubiquitin-binding domain in frataxin. Through structure-based virtual screening and cell-based assays, we discovered a novel small molecule (compound (+)-11) able to prevent frataxin ubiquitination and degradation. (+)-11 was synthesized and tested for specific binding to frataxin by an UF-LC/MS based ligand-binding assay. Follow-up scaffold-based searches resulted in the identification of a lead series with micromolar activity in disrupting the frataxin/Ub interaction. This study also suggests that frataxin could be a potential target for FRDA drug development.

  19. A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance

    PubMed Central

    Pierce, Christopher G; Chaturvedi, Ashok K; Lazzell, Anna L; Powell, Alexander T; Saville, Stephen P; McHardy, Stanton F; Lopez-Ribot, Jose L

    2015-01-01

    Background/Objectives: Candida albicans is the principal causative agent of candidiasis, the most common fungal infection in humans. Candidiasis represents the third-to-fourth most frequent nosocomial infection worldwide, as this normal commensal of humans causes opportunistic infections in an expanding population of immune- and medically compromised patients. These infections are frequently associated with biofilm formation, which complicates treatment and contributes to unacceptably high mortality rates. Methods: To address the pressing need for new antifungals, we have performed a high-content screen of 20,000 small molecules in a chemical library (NOVACore) to identify compounds that inhibit C. albicans biofilm formation, and conducted a series of follow-up studies to examine the in vitro and in vivo activity of the identified compounds. Results: The screen identified a novel series of diazaspiro-decane structural analogs that were largely represented among the bioactive compounds. Characterization of the leading compound from this series indicated that it inhibits processes associated with C. albicans virulence, most notably biofilm formation and filamentation, without having an effect on overall growth or eliciting resistance. This compound demonstrated in vivo activity in clinically relevant murine models of both invasive and oral candidiasis and as such represents a promising lead for antifungal drug development. Furthermore, these results provide proof of concept for the implementation of antivirulence approaches against C. albicans and other fungal infections that would be less likely to foster the emergence of resistance. PMID:26691764

  20. High-content image-based screening of a signal transduction pathway inhibitor small-molecule library against highly pathogenic RNA viruses.

    PubMed

    Mudhasani, Rajini; Kota, Krishna P; Retterer, Cary; Tran, Julie P; Tritsch, Sarah R; Zamani, Rouzbeh; Whitehouse, Chris A; Bavari, Sina

    2015-01-01

    High-content image-based screening was developed as an approach to test a small-molecule library of compounds targeting signal transduction pathways for antiviral activity against multiple highly pathogenic RNA viruses. Of the 2843 compounds screened, 120 compounds exhibited ≥60% antiviral activity. Four compounds (E225-0969, E528-0039, G118-0778, and G544-0735), which were most active against Rift Valley fever virus (RVFV) and showed broad-spectrum antiviral activity, were selected for further evaluation for their concentration-response profile and cytotoxicity. These compounds did not show any visible cytotoxicity at the highest concentration of compound tested (200 µM). All four of these compounds were more active than ribavirin against several viruses. One compound, E225-0969, had the lowest effective concentration (EC50 = 1.9-8.92 µM) for all the viruses tested. This compound was 13- and 43-fold more inhibitory against RVFV and Chikungunya virus (CHIKV), respectively, than ribavirin. The highest selectivity index (>106.2) was for E225-0969 against CHIKV. Time-of-addition assays suggested that all four lead compounds targeted early steps in the viral life cycle (entry and/or replication) but not virus egress. Overall, this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals against highly pathogenic viruses. © 2014 Society for Laboratory Automation and Screening.

  1. Kv1.3 in Psoriatic Disease: PAP-1, a small molecule inhibitor of Kv1.3 is effective in the SCID mouse psoriasis - xenograft model

    PubMed Central

    Kundu-Raychaudhuri, Smriti; Chen, Yi-Je; Wulff, Heike; Raychaudhuri, Siba P

    2015-01-01

    Kv1.3 channels regulate the activation/proliferation of effector memory T cells and thus play a critical role in the pathogenesis of autoimmune diseases. Using a combination of immunohistochemistry, confocal microscopy, flow cytometry and electrophysiology methods we observed a significant enrichment of activated Kv1.3+ memory T cells in psoriasis plaques and synovial fluid from patients with psoriasis/psoriatic arthritis (PsA) compared to non-lesional psoriatic skin, normal skin or peripheral blood lympho-mononuclear cells. In in vitro studies performed with lesional mononuclear cells or T cells derived from skin and joints of psoriatic disease, the small molecule Kv1.3 blocker PAP-1 dose-dependently inhibited proliferation and suppressed IL-2 and IFN-γ production. To further substantiate the pathologic role of Kv1.3highTEM cells in psoriatic disease we tested whether PAP-1 is able to improve psoriatic disease pathology in the SCID mouse-psoriasis skin xenograft model. Following four weeks of daily treatment with 2% PAP-1 ointment we noticed about 50% reduction in the epidermal thickness (rete peg length) and the number of CD3+ lymphocytes/mm2 of dermis decreased by 85%. Vehicle treated and untreated plaques in contrast remained unchanged and showed no reduction in epidermis thickness and infiltrating CD3+ T cells and HLA-DR+ T cells. Based on these results we propose the development of Kv1.3 targeted topical immunotherapy for psoriasis and possibly for other inflammatory skin conditions, where effector memory T cells are involved in the pathogenesis. PMID:25175978

  2. The small-molecule TNF-α inhibitor, UTL-5g, delays deaths and increases survival rates for mice treated with high doses of cisplatin

    PubMed Central

    Media, Joseph; Chen, Ben; Valeriote, Fredrick

    2013-01-01

    Purpose UTL-5g is a novel small-molecule chemoprotector that lowers hepatotoxicity, nephrotoxicity, and myelotoxicity induced by cisplatin through TNF-α inhibition among other factors. The objective of this study was to investigate whether UTL-5g can reduce the overall acute toxicity of cisplatin and increase cisplatin tolerability in mice. Materials and Methods BDF1 female mice were treated individually with UTL-5g (suspended in Ora-Plus) by oral gavage at 60 mg/kg, 30 min before i.p. injection of cisplatin at 10, 15, and 20 mg/kg respectively on Day 0. Starting from Day 1, individual mice were again treated daily by the same dose of UTL-5g for 4 consecutive days. Survivals and bodyweights were monitored. Results UTL-5g treatment increased the survival rate and delayed the time to death for mice treated with 150% of the maximum tolerated dose (MTD) of cisplatin (15 mg/kg). Likewise, at 200% of the MTD of cisplatin (20 mg/kg), treatment of UTL-5g increased the survival rate and delayed the time to death. Treatment of UTL-5g did not have a significant effect on weight-loss induced by cisplatin indicating that bodyweight may not be a sensitive enough measure for chemoprotection of UTL-5g against cisplatin. Conclusions In summary, UTL-5g delayed deaths and increased survival rates of mice treated by high doses of cisplatin indicating that UTL-5g is capable of reducing the overall acute toxicity of cisplatin and increased cisplatin tolerability in mice; this is in line with the specific chemoprotective effects of UTL-5g previously reported. Further investigation of UTL-5g in combination with cisplatin is warranted. PMID:23881213

  3. The small-molecule TNF-α inhibitor, UTL-5g, delays deaths and increases survival rates for mice treated with high doses of cisplatin.

    PubMed

    Shaw, Jiajiu; Media, Joseph; Chen, Ben; Valeriote, Fredrick

    2013-09-01

    UTL-5g is a novel small-molecule chemoprotector that lowers hepatotoxicity, nephrotoxicity, and myelotoxicity induced by cisplatin through TNF-α inhibition among other factors. The objective of this study was to investigate whether UTL-5g can reduce the overall acute toxicity of cisplatin and increase cisplatin tolerability in mice. BDF1 female mice were treated individually with UTL-5g (suspended in Ora-Plus) by oral gavage at 60 mg/kg, 30 min before i.p. injection of cisplatin at 10, 15, and 20 mg/kg, respectively, on Day 0. Starting from Day 1, individual mice were again treated daily by the same dose of UTL-5g for 4 consecutive days. Survivals and body weights were monitored. UTL-5g treatment increased the survival rate and delayed the time to death for mice treated with 150 % of the maximum tolerated dose (MTD) of cisplatin (15 mg/kg). Likewise, at 200 % of the MTD of cisplatin (20 mg/kg), treatment of UTL-5g increased the survival rate and delayed the time to death. Treatment of UTL-5g did not have a significant effect on weight loss induced by cisplatin, indicating that body weight may not be a sensitive-enough measure for chemoprotection of UTL-5g against cisplatin. In summary, UTL-5g delayed deaths and increased survival rates of mice treated by high doses of cisplatin, indicating that UTL-5g is capable of reducing the overall acute toxicity of cisplatin and increased cisplatin tolerability in mice; this is in line with the specific chemoprotective effects of UTL-5g previously reported. Further investigation of UTL-5g in combination with cisplatin is warranted.

  4. Using a simple HPLC approach to identify the enzymatic products of UTL-5g, a small molecule TNF-α inhibitor, from porcine esterase and from rabbit esterase

    PubMed Central

    Swartz, Kenneth; Zhang, Yiguan; Valeriote, Frederick; Chen, Ben; Shaw, Jiajiu

    2013-01-01

    UTL-5g is a novel small-molecule chemoprotector that lowers hepatotoxicity, nephrotoxicity, and myelotoxicity induced by cisplatin through TNF-α inhibition among other factors. As a prelude to investigating the metabolites of UTL-5g, we set out to identify the enzymatic products of UTL-5g under the treatment of both porcine liver esterase (PLE) and rabbit liver esterase (RLE). First, a number of mixtures made by UTL-5g and PLE were incubated at 25 °C. At predetermined time points, individual samples were quenched by acetonitrile, vortexed, and centrifuged. The supernatants were then analyzed by reversed-phase HPLC (using a C18 column). The retention times and UV/Vis spectra of individual peaks were compared to those of UTL-5g and its two postulated enzymatic products; thus the enzymatic products of UTL-5g were tentatively identified. Secondly, a different HPLC method (providing different retentions times) was used to cross-check and to confirm the identities of the two enzymatic products. Based on the observations, it was concluded that under the treatment of PLE, the major enzymatic products of UTL-5g were 5-methyliosxazole-3-carboxylic acid (ISOX) and 2,4-dichloroaniline (DCA). Treatment of UTL-5g by RLE also provided the same enzymatic products of UTL-5g from esterase. These results indicate that the peptide bond in UTL-5g was cleaved by PLE/RLE. Michaelis–Menten kinetics showed that the Km values of UTL-5g were 2.07 mM with PLE and 0.37 mM with RLE indicating that UTL-5g had a higher affinity with RLE. In summary, by a simple HPLC approach, we have concluded that the peptide bond in UTL-5g was cleaved by esterase from either porcine liver or rabbit liver in vitro and afforded DCA (at a mole ratio of 1:1) and ISOX. However, further studies are needed in order to determine whether UTL-5g is metabolized by microsomal enzymes to produce ISOX and DCA. PMID:24126042

  5. Using a simple HPLC approach to identify the enzymatic products of UTL-5g, a small molecule TNF-α inhibitor, from porcine esterase and from rabbit esterase.

    PubMed

    Swartz, Kenneth; Zhang, Yiguan; Valeriote, Frederick; Chen, Ben; Shaw, Jiajiu

    2013-12-01

    UTL-5g is a novel small-molecule chemoprotector that lowers hepatotoxicity, nephrotoxicity, and myelotoxicity induced by cisplatin through TNF-α inhibition among other factors. As a prelude to investigating the metabolites of UTL-5g, we set out to identify the enzymatic products of UTL-5g under the treatment of both porcine liver esterase (PLE) and rabbit liver esterase (RLE). First, a number of mixtures made by UTL-5g and PLE were incubated at 25°C. At predetermined time points, individual samples were quenched by acetonitrile, vortexed, and centrifuged. The supernatants were then analyzed by reversed-phase HPLC (using a C18 column). The retention times and UV/vis spectra of individual peaks were compared to those of UTL-5g and its two postulated enzymatic products; thus the enzymatic products of UTL-5g were tentatively identified. Secondly, a different HPLC method (providing different retentions times) was used to cross-check and to confirm the identities of the two enzymatic products. Based on the observations, it was concluded that under the treatment of PLE, the major enzymatic products of UTL-5g were 5-methyliosxazole-3-carboxylic acid (ISOX) and 2,4-dichloroaniline (DCA). Treatment of UTL-5g by RLE also provided the same enzymatic products of UTL-5g from esterase. These results indicate that the peptide bond in UTL-5g was cleaved by PLE/RLE. Michaelis-Menten kinetics showed that the Km values of UTL-5g were 2.07mM with PLE and 0.37mM with RLE indicating that UTL-5g had a higher affinity with RLE. In summary, by a simple HPLC approach, we have concluded that the peptide bond in UTL-5g was cleaved by esterase from either porcine liver or rabbit liver in vitro and afforded DCA (at a mole ratio of 1:1) and ISOX. However, further studies are needed in order to determine whether UTL-5g is metabolized by microsomal enzymes to produce ISOX and DCA. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The Rho-kinase inhibitor fasudil restores normal motor nerve conduction velocity in diabetic rats by assuring the proper localization of adhesion-related molecules in myelinating Schwann cells.

    PubMed

    Kanazawa, Yasushi; Takahashi-Fujigasaki, Junko; Ishizawa, Sho; Takabayashi, Naoko; Ishibashi, Kumiko; Matoba, Keiichiro; Kawanami, Daiji; Yokota, Tamotsu; Tajima, Naoko; Utsunomiya, Kazunori

    2013-09-01

    The Rho/Rho-kinase signaling pathway has been shown to be involved in the complications of diabetes. In this study, we found that fasudil, a specific Rho-kinase inhibitor, had a beneficial effect on the motor nerve conduction velocity (MNCV), which is delayed in rats with streptozotocin (STZ)-induced diabetes. Cadherin-dependent adherens junctions (AJs) in myelinating Schwann cells, necessary for proper myelin formation and rapid propagation of action potentials, are regulated by Rho/Rho-kinase signaling. These AJ structures are maintained by E-cadherin and catenin complexes such as β-catenin and p120 catenin. To elucidate the mechanism underlying the effect of fasudil on MNCV, we examined alterations in AJ structure in the peripheral nerves of the experimental rats. Our results showed that the activities of Rho and Rho-kinase increased simultaneously in the sciatic nerves of the diabetic rats. Fasudil restored the MNCV by suppressing the up-regulation of the Rho-kinase. In the diabetic state, enhanced Rho and Rho-kinase activity reduced p120 catenin expression and altered the distribution of p120 catenin and E-cadherin, which are normally localized in the paranodal compartment of the nodes of Ranvier and Schmidt-Lanterman incisures where autotypic AJs stabilize myelin structure. Fasudil restored normal p120 catenin expression and the distribution of p120 catenin and E-cadherin in the myelin sheath. In conclusion, reduced expression and altered distribution of the adhesion molecules in the myelin sheath might contribute to the slowing of the MNCV in the diabetic rats. Fasudil, through its effect on the distribution of the adhesion-related molecules, might prevent slowing of the MNCV. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Serum levels of adhesion molecules ICAM-1 and VCAM-1 and tissue inhibitor of metalloproteinases, TIMP-1, are elevated in patients with autoimmune thyroid disorders: relevance to vascular inflammation.

    PubMed

    Jublanc, C; Beaudeux, J L; Aubart, F; Raphael, M; Chadarevian, R; Chapman, M J; Bonnefont-Rousselot, D; Bruckert, E

    2011-10-01

    Serum levels of ICAM-1 (Inter Cellular Adhesion Molecule-1), VCAM-1 (Vascular cell Adhesion Molecule-1-I), TIMP-1 (tissue inhibitor of metalloproteinases 1) and MMP-9 (Metalloproteinase 9) are well established markers of inflammation. The physiopathological link between inflammation, atherosclerosis and autoimmunity is well demonstrated. However, serum levels of these biomarkers in patients with autoimmune-mediated dysthyroidism, including their evolution after improvement of the thyroid disorder have not been assessed. So, we evaluated the circulating levels of these markers in autoimmune and in non-autoimmune-mediated dysthyroid patients, and their evolution after treatment of thyroid disease. We conducted a prospective study to evaluate these markers before and after treatment in hyperthyroid patients (n = 33; 28 patients with autoimmune disease), hypothyroid patients (n = 38; 33 patients with autoimmune disease) and euthyroid subjects (n = 33). At baseline, serum levels of ICAM-1, VCAM-1 and TIMP-1 were significantly elevated in patients with hyperthyroidism as compared to euthyroid and hypothyroid patients (respectively p = 0.0005 and p < 0.0001). In multivariate analysis, the differences remained significant for VCAM-1 and TIMP-1. Median levels of ICAM-1, VCAM-1 and TIMP-1 were significantly higher in patients with autoimmune-mediated dysthyroidism compared to euthyroid patients (respectively p < 0.0001 and p = 0.002). In hyperthyroid patients, ICAM-1, VCAM-1 and TIMP-1 concentrations fell significantly after they had become euthyroid (respectively p = 0.0006; p < 0.0001 and p = 0.0009), although VCAM-1 values remained higher than those observed in the control group (p = 0.005). We found that autoimmune-mediated dysthyroidism were associated with increased peripheral blood concentrations of VCAM-1, ICAM-1 and TIMP-1. Whether these biological abnormalities translate into increase intima remodelling and atherosclerosis remains to be studied. Copyright © 2010

  8. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  9. Trichloroacetimidates as Alkylating Reagents and Their Application in the Synthesis of Pyrroloindoline Natural Products and Synthesis of Small Molecule Inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP)

    NASA Astrophysics Data System (ADS)

    Adhikari, Arijit A.

    was applied towards the synthesis of natural products and their analogs. The pyrroloindoline ring system is found in many alkaloids and cyclic peptides which mainly differ in the substitution at the C3a position. To provide rapid access to these natural products a diversity-oriented strategy was established via displacement of C3a-trichloroacetimidate pyrroloindoline. Carbon, oxygen, sulfur and nitrogen nucleophiles were all shown to undergo substitution reactions with these trichloroacetimidates in the presence of a Lewis acid catalyst. In order to demonstrate the utility of this new method it was applied towards the synthesis of arundinine and a formal synthesis of psychotriasine. Current investigations involve the application of this method towards the synthesis of a complex pyrroloindoline natural product kapakahine C and the progress made therein has been discussed. The reactivity of trichloroacetimidates was also investigated for the selective C3-alkylation of 2,3-disubstituted indoles to provide indolenines. Indolenines serve as useful intermediates in the synthesis of many complex alkaloids. Different benzylic and allylic trichloroacetimidates were shown to provide 3,3'-disubstituted indolenines with high yields in the presence of catalytic amounts of Lewis acids. Various substituted indoles were evaluated under these reaction conditions. This methodology was also applied towards the synthesis of the core tetracyclic ring system found in communesin natural products. In addition to the above work, synthesis of small molecule inhibitors of Src Homology 2 Domain-Containing Inositol Phosphatase (SHIP) has also been described. Aberrations in the phosphoinositide 3-kinase (PI3K) cellular signaling pathway can lead to diseased cellular states like cancer. Herein we have reported stereoselective synthesis of two quinoline based small molecule SHIP inhibitors. The lead compounds and their analogs were tested for their activities against SHIP by Malachite green assay

  10. Small Molecule Inhibitors of CXCR4

    PubMed Central

    Debnath, Bikash; Xu, Shili; Grande, Fedora; Garofalo, Antonio; Neamati, Nouri

    2013-01-01

    CXCR4 is a G-protein-coupled receptor involved in a number of physiological processes in the hematopoietic and immune systems. The SDF-1/CXCR4 axis is significantly associated with several diseases, such as HIV, cancer, WHIM syndrome, rheumatoid arthritis, pulmonary fibrosis and lupus. For example, CXCR4 is one of the major co-receptors for HIV entry into target cells, while in cancer it plays an important role in tumor cell metastasis. Several promising CXCR4 antagonists have been developed to block SDF-1/CXCR4 interactions that are currently under different stages of development. The first in class CXCR4 antagonist, plerixafor, was approved by the FDA in 2008 for the mobilization of hematopoietic stem cells and several other drugs are currently in clinical trials for cancer, HIV, and WHIM syndrome. While the long-term safety data for the first generation CXCR4 antagonists are not yet available, several new compounds are under preclinical development in an attempt to provide safer and more efficient treatment options for HIV and cancer patients. PMID:23382786

  11. In Silico Design of Monomolecular Drug Carriers for the Tyrosine Kinase Inhibitor Drug Imatinib Based on Calix- and Thiacalix[n]arene Host Molecules: A DFT and Molecular Dynamics Study.

    PubMed

    Galindo-Murillo, Rodrigo; Sandoval-Salinas, María Eugenia; Barroso-Flores, Joaquín

    2014-02-11

    The use of functionalized calix- and thia-calix[n]arenes is proposed as the basis for our in silico design of a suitable drug carrier for the tyrosine kinase inhibitor, Imatinib. Their mutual electronic properties and interaction energies, Eint, were assessed with the use of Density Functional Theory (DFT) methods under the NBODel methodology. Three structural variables for the host molecules were considered: R = {SO3H (1), t-Bu (2), i-Pr (3), COOH (4), (CH2)2OH (5), (CH2)2NH2 (6)}; b = {CH2, S}; n = {5, 6, 8}, and two possible orientations for the insertion of Imatinib within the macrocycle cavity: pyridine moiety pointing inward (N1) and piperazine pointing inward (N2). In total, we explored 72 different assemblies. Initial molecular mechanics geometry optimizations with the UFF potential were undertaken for every host-guest complex, with further optimization at the B97D/6-31G(d,p) level of theory. Using the same optimized structures, Molecular Dynamics (MD) simulations were carried out on all 72 assemblies using the General Amber Force Field and the AMBER 12 MD package. Electronic parameters were fitted using the RESP method, and the complexes were run for 100 ns. Potential of mean force was obtained for the most stable systems using umbrella sampling and the Weighted Histogram Analysis Method. Calix[n]arenes families 1 and 5 (R = SO3H and (CH2)2OH, respectively) with n = 6 constitute the most promising candidates to become drug carriers within our parameter space due to their more negative Eint values and increased flexibility to allow the inclusion of the drug.

  12. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  13. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  14. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  15. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  16. Energy-Based Pharmacophore and Three-Dimensional Quantitative Structure--Activity Relationship (3D-QSAR) Modeling Combined with Virtual Screening To Identify Novel Small-Molecule Inhibitors of Silent Mating-Type Information Regulation 2 Homologue 1 (SIRT1).

    PubMed

    Pulla, Venkat Koushik; Sriram, Dinavahi Saketh; Viswanadha, Srikant; Sriram, Dharmarajan; Yogeeswari, Perumal

    2016-01-25

    Silent mating-type information regulation 2 homologue 1 (SIRT1), being the homologous enzyme of silent information regulator-2 gene in yeast, has multifaceted functions. It deacetylates a wide range of histone and nonhistone proteins; hence, it has good therapeutic importance. SIRT1 was believed to be overexpressed in many cancers (prostate, colon) and inflammatory disorders (rheumatoid arthritis). Hence, designing inhibitors against SIRT1 could be considered valuable. Both structure-based and ligand-based drug design strategies were employed to design novel inhibitors utilizing high-throughput virtual screening of chemical databases. An energy-based pharmacophore was generated using the crystal structure of SIRT1 bound with a small molecule inhibitor and compared with a ligand-based pharmacophore model that showed four similar features. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed and validated to be employed in the virtual screening protocol. Among the designed compounds, Lead 17 emerged as a promising SIRT1 inhibitor with IC50 of 4.34 μM and, at nanomolar concentration (360 nM), attenuated the proliferation of prostate cancer cells (LnCAP). In addition, Lead 17 significantly reduced production of reactive oxygen species, thereby reducing pro inflammatory cytokines such as IL6 and TNF-α. Furthermore, the anti-inflammatory potential of the compound was ascertained using an animal paw inflammation model induced by carrageenan. Thus, the identified SIRT1 inhibitors could be considered as potent leads to treat both cancer and inflammation.

  17. Bilge Inhibitors

    DTIC Science & Technology

    1982-02-01

    Candidate Commercial Inhibitors 17 Water -Displacement Compounds and Candidate Materials 41 PHASE III - OPTIMIZATION OF INHIBITOR FORMULATION 47 Polarization...provided excellent corrosion pro- tection for aluminum, copper, and high-strength steels in normal as well as the chloride-contaminated water of the Air...formulations consiating of nontoxic water -soluble inorganic compounds such as borax, nitrite, phosphate, and silicate. Numerous other combinations

  18. Sirtuin inhibitors as anticancer agents

    PubMed Central

    Hu, Jing; Jing, Hui; Lin, Hening

    2015-01-01

    Sirtuins are a class of enzymes with nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylase function. By deacylating various substrate proteins, including histones, transcription factors, and metabolic enzymes, sirtuins regulate various biological processes, such as transcription, cell survival, DNA damage and repair, and longevity. Small molecules that can inhibit sirtuins have been developed and many of them have shown anti-cancer activity. Here we summarize the major biological findings that connect sirtuins to cancer and the different types of sirtuin inhibitors developed. Interestingly, biological data suggest that sirtuins have both tumor-suppressing and tumor-promoting roles. However, most pharmacological studies with small molecule inhibitors suggest that inhibiting sirtuin is a promising anti-cancer strategy. We discuss possible explanations for this discrepancy and suggest possible future directions to further establish sirtuin inhibitors as anticancer agents. PMID:24962284

  19. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  20. Novel Small-Molecule Antibacterial Agents

    DTIC Science & Technology

    2014-07-01

    botulinum toxin inhibitors 5a: 5f-1a: 5f-c: 5a: 5f-1a: 5f-c: ...SECURITY CLASSIFICATION OF: The specific aim of this proposal is to develop improved small-molecule botulinum neurotoxin serotype A endopeptidase (BoNTAe...Report Title The specific aim of this proposal is to develop improved small-molecule botulinum neurotoxin serotype A endopeptidase (BoNTAe)

  1. [Proteasome inhibitor].

    PubMed

    Yagi, Hideo

    2014-06-01

    The ubiquitin-proteasome system plays an essential role in degradation of eukaryotic intracellular protein, including cell cycle regulation, cell growth and proliferation, and survival. Cancer cells generally have higher level of proteasome activity compared with normal cells, suggesting proteasome inhibition could be therapeutic target in oncology. Bortezomib, the first proteasome inhibitor introduced into the clinic, is approved for the treatment of patients with multiple myeloma (MM). Although it was approved as single agent in the relapsed setting, bortezomib is now predominantly used in combination with conventional and novel targeted agents because bortezomib has demonstrated additive and synergistic activity in preclinical studies. Recently, several second-generation proteasome inhibitors, such as carfilzomib and MLN9708, have been developed and entered into clinical trials. These agents were investigated in frontline MM in combination with lenalidomide and low-dose dexamethasone. These studies demonstrated positive efficacy and safety, and it is expected that they will be approved in near future.

  2. Therapeutic substitution post-patent expiry: the cases of ACE inhibitors and proton pump inhibitors.

    PubMed

    Vandoros, Sotiris

    2014-05-01

    This paper examines whether there is a switch in total (originator and generic) consumption after generic entry from molecules that face generic competition towards other molecules of the same class, which are still in-patent. Data from six European countries for the time period 1991 to 2006 are used to study the cases of angiotensin-converting enzyme inhibitors and proton pump inhibitors. Empirical evidence shows that patent expiry of captopril and enalapril led to a switch in total (off-patent originator and generic) consumption towards other in-patent angiotensin-converting enzyme inhibitors, whereas patent expiry of omeprazole led to a switch in consumption towards other proton pump inhibitors. This phenomenon makes generic policies ineffective and results in an increase in pharmaceutical expenditure due to the absence of generic alternatives in the market of in-patent molecules. Copyright © 2013 John Wiley & Sons, Ltd.

  3. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis.

    PubMed

    He, Wenrong; Brumos, Javier; Li, Hongjiang; Ji, Yusi; Ke, Meng; Gong, Xinqi; Zeng, Qinglong; Li, Wenyang; Zhang, Xinyan; An, Fengying; Wen, Xing; Li, Pengpeng; Chu, Jinfang; Sun, Xiaohong; Yan, Cunyu; Yan, Nieng; Xie, De-Yu; Raikhel, Natasha; Yang, Zhenbiao; Stepanova, Anna N; Alonso, Jose M; Guo, Hongwei

    2011-11-01

    The interactions between phytohormones are crucial for plants to adapt to complex environmental changes. One example is the ethylene-regulated local auxin biosynthesis in roots, which partly contributes to ethylene-directed root development and gravitropism. Using a chemical biology approach, we identified a small molecule, l-kynurenine (Kyn), which effectively inhibited ethylene responses in Arabidopsis thaliana root tissues. Kyn application repressed nuclear accumulation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Moreover, Kyn application decreased ethylene-induced auxin biosynthesis in roots, and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE RELATEDs (TAA1/TARs), the key enzymes in the indole-3-pyruvic acid pathway of auxin biosynthesis, were identified as the molecular targets of Kyn. Further biochemical and phenotypic analyses revealed that Kyn, being an alternate substrate, competitively inhibits TAA1/TAR activity, and Kyn treatment mimicked the loss of TAA1/TAR functions. Molecular modeling and sequence alignments suggested that Kyn effectively and selectively binds to the substrate pocket of TAA1/TAR proteins but not those of other families of aminotransferases. To elucidate the destabilizing effect of Kyn on EIN3, we further found that auxin enhanced EIN3 nuclear accumulation in an EIN3 BINDING F-BOX PROTEIN1 (EBF1)/EBF2-dependent manner, suggesting the existence of a positive feedback loop between auxin biosynthesis and ethylene signaling. Thus, our study not only reveals a new level of interactions between ethylene and auxin pathways but also offers an efficient method to explore and exploit TAA1/TAR-dependent auxin biosynthesis.

  4. Interactions among Quorum Sensing Inhibitors

    PubMed Central

    Anand, Rajat; Rai, Navneet; Thattai, Mukund

    2013-01-01

    Many pathogenic bacteria use quorum sensing (QS) systems to regulate the expression of virulence genes in a density-dependent manner. In one widespread QS paradigm the enzyme LuxI generates a small diffusible molecule of the acyl-homoserine lactone (AHL) family; high cell densities lead to high AHL levels; AHL binds the transcription factor LuxR, triggering it to activate gene expression at a virulence promoter. The emergence of antibiotic resistance has generated interest in alternative anti-microbial therapies that target QS. Inhibitors of LuxI and LuxR have been developed and tested in vivo, and can act at various levels: inhibiting the synthesis of AHL by LuxI, competitively or non-competitively inhibiting LuxR, or increasing the turnover of LuxI, LuxR, or AHL. Here use an experimentally validated computational model of LuxI/LuxR QS to study the effects of using inhibitors individually and in combination. The model includes the effect of transcriptional feedback, which generates highly non-linear responses as inhibitor levels are increased. For the ubiquitous LuxI-feedback virulence systems, inhibitors of LuxI are more effective than those of LuxR when used individually. Paradoxically, we find that LuxR competitive inhibitors, either individually or in combination with other inhibitors, can sometimes increase virulence by weakly activating LuxR. For both LuxI-feedback and LuxR-feedback systems, a combination of LuxR non-competitive inhibitors and LuxI inhibitors act multiplicatively over a broad parameter range. In our analysis, this final strategy emerges as the only robust therapeutic option. PMID:23626795

  5. Interactions among quorum sensing inhibitors.

    PubMed

    Anand, Rajat; Rai, Navneet; Thattai, Mukund

    2013-01-01

    Many pathogenic bacteria use quorum sensing (QS) systems to regulate the expression of virulence genes in a density-dependent manner. In one widespread QS paradigm the enzyme LuxI generates a small diffusible molecule of the acyl-homoserine lactone (AHL) family; high cell densities lead to high AHL levels; AHL binds the transcription factor LuxR, triggering it to activate gene expression at a virulence promoter. The emergence of antibiotic resistance has generated interest in alternative anti-microbial therapies that target QS. Inhibitors of LuxI and LuxR have been developed and tested in vivo, and can act at various levels: inhibiting the synthesis of AHL by LuxI, competitively or non-competitively inhibiting LuxR, or increasing the turnover of LuxI, LuxR, or AHL. Here use an experimentally validated computational model of LuxI/LuxR QS to study the effects of using inhibitors individually and in combination. The model includes the effect of transcriptional feedback, which generates highly non-linear responses as inhibitor levels are increased. For the ubiquitous LuxI-feedback virulence systems, inhibitors of LuxI are more effective than those of LuxR when used individually. Paradoxically, we find that LuxR competitive inhibitors, either individually or in combination with other inhibitors, can sometimes increase virulence by weakly activating LuxR. For both LuxI-feedback and LuxR-feedback systems, a combination of LuxR non-competitive inhibitors and LuxI inhibitors act multiplicatively over a broad parameter range. In our analysis, this final strategy emerges as the only robust therapeutic option.

  6. Checkpoint inhibitors in hematological malignancies.

    PubMed

    Ok, Chi Young; Young, Ken H

    2017-05-08

    Inhibitory molecules such as PD-1, CTLA-4, LAG-3, or TIM-3 play a role to keep a balance in immune function. However, many cancers exploit such molecules to escape immune surveillance. Accumulating data support that their functions are dysregulated in lymphoid neoplasms, including plasma cell myeloma, myelodysplastic syndrome, and acute myeloid leukemia. In lymphoid neoplasms, aberrations in 9p24.1 (PD-L1, PD-L2, and JAK2 locus), latent Epstein-Barr virus infection, PD-L1 3'-untranslated region disruption, and constitutive JAK-STAT pathway are known mechanisms to induce PD-L1 expression in lymphoma cells. Clinical trials demonstrated that PD-1 blockade is an attractive way to restore host's immune function in hematological malignancies, particularly classical Hodgkin lymphoma. Numerous clinical trials exploring PD-1 blockade as a single therapy or in combination with other immune checkpoint inhibitors in patients with hematologic cancers are under way. Although impressive clinical response is observed with immune checkpoint inhibitors in patients with certain cancers, not all patients respond to immune checkpoint inhibitors. Therefore, to identify best candidates who would have excellent response to checkpoint inhibitors is of utmost importance. Several possible biomarkers are available, but consensus has not been made and pursuit to discover the best biomarker is ongoing.

  7. Physics of Molecules

    NASA Astrophysics Data System (ADS)

    Williams, D.; Murdin, P.

    2000-11-01

    Many varieties of molecule have been detected in the Milky Way and in other galaxies. The processes by which these molecules are formed and destroyed are now broadly understood (see INTERSTELLAR CHEMISTRY). These molecules are important components of galaxies in two ways. Firstly, radiation emitted by molecules enables us to trace the presence of diffuse gas, to infer its physical properties and ...

  8. Molecule detection with sunlight

    NASA Astrophysics Data System (ADS)

    Acuna, Guillermo P.; Tinnefeld, Philip

    2017-10-01

    Single-molecule detection commonly requires focused laser beams because of the small absorption cross-sections of dye molecules. Now, researchers have shown that thousands of dye molecules in nanoparticles can transfer light excitation to a single acceptor dye, enabling single-molecule detection at sunlight excitation power.

  9. Tubulin inhibitors: a patent survey.

    PubMed

    Nepali, Kunal; Ojha, Ritu; Sharma, Sahil; Bedi, Preet M S; Dhar, Kanaya L

    2014-05-01

    Tubulin is one of the most useful and strategic molecular targets for anticancer drugs. The dynamic process of microtubule assembly and disassembly can be blocked by various agents that bind to distinct sites in the β-tubulin subunit. By interfering with microtubule function in vitro, these agents arrest cells in mitosis, eventually leading to cell death, by both apoptosis and necrosis. So far, three binding domains have been identified a) the colchicine site close to the α/β interface, b) the area where the vinca alkaloids bind, and c) the taxane-binding pocket. This review compiles the patent literature up to 2013 and offers a detailed account of all the advances on Tubulin inhibitors (lead molecules) along with in depth knowledge about the number of novel scaffolds, modified analogs and derivatives of the lead molecules. Colchicine binding site remains the most explored site indicated by the patent survey as majority of the patents revolves around phenstatin and combretastatin based molecules where the key structural feature for tubulin inhibition is an appropriate arrangement of the two aromatic rings at an appropriate distance and optimal dihedral angle maximizing interactions with tubulin. A brief account of promising tubulin inhibitors in stages of clinical development and some strategies for the development of potent molecules overcoming the problem of drug resistance have also been discussed.

  10. Sirtuin activators and inhibitors.

    PubMed

    Villalba, José M; Alcaín, Francisco J

    2012-01-01

    Sirtuins 1-7 (SIRT1-7) belong to the third class of deacetylase enzymes, which are dependent on NAD(+) for activity. Sirtuins activity is linked to gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection, and healthy aging. Because sirtuins modulation could have beneficial effects on human diseases there is a growing interest in the discovery of small molecules modifying their activities. We review here those compounds known to activate or inhibit sirtuins, discussing the data that support the use of sirtuin-based therapies. Almost all sirtuin activators have been described only for SIRT1. Resveratrol is a natural compound which activates SIRT1, and may help in the treatment or prevention of obesity, and in preventing tumorigenesis and the aging-related decline in heart function and neuronal loss. Due to its poor bioavailability, reformulated versions of resveratrol with improved bioavailability have been developed (resVida, Longevinex(®) , SRT501). Molecules that are structurally unrelated to resveratrol (SRT1720, SRT2104, SRT2379, among others) have been also developed to stimulate sirtuin activities more potently than resveratrol. Sirtuin inhibitors with a wide range of core structures have been identified for SIRT1, SIRT2, SIRT3 and SIRT5 (splitomicin, sirtinol, AGK2, cambinol, suramin, tenovin, salermide, among others). SIRT1 inhibition has been proposed in the treatment of cancer, immunodeficiency virus infections, Fragile X mental retardation syndrome and for preventing or treating parasitic diseases, whereas SIRT2 inhibitors might be useful for the treatment of cancer and neurodegenerative diseases. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  11. Sirtuin activators and inhibitors

    PubMed Central

    Villalba, José M.; Alcaín, Francisco J.

    2012-01-01

    Sirtuins 1-7 (SIRT1-7) belong to the third class of deacetylase enzymes, which are dependent on NAD+ for activity. Sirtuins activity is linked to gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection and healthy aging. Because sirtuins modulation could have beneficial effects on human diseases there is a growing interest in the discovery of small molecules modifying their activity. We review here those compounds known to activate or inhibit sirtuins, discussing the data that support the use of sirtuin-based therapies. Almost all sirtuin activators have been described only for SIRT1. Resveratrol is a natural compound which activates SIRT1, and may help in the treatment or prevention of obesity, and in preventing tumorigenesis and the aging-related decline in heart function and neuronal loss. Due to its poor bioavailability, reformulated versions of resveratrol with improved bioavailability have been developed (resVida, Longevinex®, SRT501). Molecules that are structurally unrelated to resveratrol (SRT1720, SRT2104, SRT2379, among others) have been also developed to stimulate sirtuin activities more potently than resveratrol. Sirtuin inhibitors with a wide range of core structures have been identified for SIRT1, SIRT2, SIRT3 and SIRT5 (splitomicin, sirtinol, AGK2, cambinol, suramin, tenovin, salermide, among others). SIRT1 inhibition has been proposed in the treatment of cancer, immunodeficiency virus infections, Fragile X mental retardation syndrome and for preventing or treating parasitic diseases, whereas SIRT2 inhibitors might be useful for the treatment of cancer and neurodegenerative diseases. PMID:22730114

  12. [New anticoagulants - direct thrombin inhibitors].

    PubMed

    Brand, B; Graf, L

    2012-11-01

    Direct thrombin-inhibitors inactivate not only free but also fibrin-bound thrombin. The group of parenteral direct thrombin-inhibitors includes the recombinant hirudins lepirudin and desirudin, the synthetic hirudin bivalirudin, and the small molecule argatroban. All these compounds do not interact with PF4/heparin-antibodies. Therefore, argatroban as well as bivalirudin are currently used to treat heparin-induced thrombocytopenia (HIT). The oral direct thrombin-inhibitor dabigatran etexilate is already licensed in many countries for the treatment of non-valvular atrial fibrillation. Dabigatran etexilate reveals a stable and predictable effect that allows a medication without dose adjustment or monitoring. The substance shows only few interactions with other drugs but strong inhibitors of p-glycoprotein can increase plasma levels of dabigatran substantially. After oral intake, the prodrug dabigatran etexilate is cleaved by esterase-mediated hydrolyses to the active compound dabigatran. Elimination of dabigatran is predominantly renal. Safety and efficacy of dabigatran etexilate were tested in an extensive clinical study program. Non-inferiority compared to current standard treatments was shown for prophylaxis of venous thromboembolic events after total knee and hip replacement, for stroke prevention in atrial fibrillation, and for treatment of acute venous thromboembolism. In daily practice, Dabigatran etexilate competes against the new direct factor Xa-inhibitors. In the absence of direct comparative clinical trials, it is not yet clear if one class of substances has distinct advantages over the other.

  13. Cardiotoxicity of immune checkpoint inhibitors

    PubMed Central

    Varricchi, Gilda; Galdiero, Maria Rosaria; Marone, Giancarlo; Criscuolo, Gjada; Triassi, Maria; Bonaduce, Domenico; Marone, Gianni; Tocchetti, Carlo Gabriele

    2017-01-01

    Cardiac toxicity after conventional antineoplastic drugs (eg, anthracyclines) has historically been a relevant issue. In addition, targeted therapies and biological molecules can also induce cardiotoxicity. Immune checkpoint inhibitors are a novel class of anticancer drugs, distinct from targeted or tumour type-specific therapies. Cancer immunotherapy with immune checkpoint blockers (ie, monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and its ligand (PD-L1)) has revolutionised the management of a wide variety of malignancies endowed with poor prognosis. These inhibitors unleash antitumour immunity, mediate cancer regression and improve the survival in a percentage of patients with different types of malignancies, but can also produce a wide spectrum of immune-related adverse events. Interestingly, PD-1 and PD-L1 are expressed in rodent and human cardiomyocytes, and early animal studies have demonstrated that CTLA-4 and PD-1 deletion can cause autoimmune myocarditis. Cardiac toxicity has largely been underestimated in recent reviews of toxicity of checkpoint inhibitors, but during the last years several cases of myocarditis and fatal heart failure have been reported in patients treated with checkpoint inhibitors alone and in combination. Here we describe the mechanisms of the most prominent checkpoint inhibitors, specifically ipilimumab (anti-CTLA-4, the godfather of checkpoint inhibitors) patient and monoclonal antibodies targeting PD-1 (eg, nivolumab, pembrolizumab) and PD-L1 (eg, atezolizumab). We also discuss what is known and what needs to be done about cardiotoxicity of checkpoint inhibitors in patients with cancer. Severe cardiovascular effects associated with checkpoint blockade introduce important issues for oncologists, cardiologists and immunologists. PMID:29104763

  14. [Biophysics of single molecules].

    PubMed

    Serdiuk, I N; Deriusheva, E I

    2011-01-01

    The modern methods of research of biological molecules whose application led to the development of a new field of science, biophysics of single molecules, are reviewed. The measurement of the characteristics of single molecules enables one to reveal their individual features, and it is just for this reason that much more information can be obtained from one molecule than from the entire ensample of molecules. The high sensitivity of the methods considered in detail makes it possible to come close to the solution of the basic problem of practical importance, namely, the determination of the nucleotide sequence of a single DNA molecule.

  15. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel small molecule Hypoxia Inducible Factor-1 (HIF-1) pathway inhibitors and anti-cancer agents

    PubMed Central

    Mun, Jiyoung; Jabbar, Adnan Abdul; Devi, Narra Sarojini; Yin, Shaoman; Wang, Yingzhe; Tan, Chalet; Culver, Deborah; Snyder, James P.; Van Meir, Erwin G.; Goodman, Mark M.

    2013-01-01

    The Hypoxia Inducible Factor (HIF) pathway is an attractive target for cancer as it controls tumor adaptation to growth under hypoxia and mediates chemo- and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, as a novel small molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; logP7.4: 3.7). Here we describe the synthesis of twelve N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental logP7.4 values of 8 of the 12 new analogs ranged from 1.2 ∼ 3.1. Aqueous solubilities of 3 analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g. a solubility improvement of ∼9,000-fold. The pharmacological optimization had minimal impact on drug efficacy as the compounds retained IC50 values at or below 5 μM in our HIF-dependent reporter assay. PMID:22746274

  16. Structure-Based Design of Inhibitors to the Cytotoxin Ricin

    DTIC Science & Technology

    2007-04-01

    to compete with this large scale substrate binding is taxing. The 9DG platform molecule is an inhibitor, as are the 7- methyl and 7-propargyl groups...Inhibitors which bind to the RTA substrate specificity site have been identified. A platform, 9-deazaguanine, has been shown to bind in the RTA active...dimensional structure of ricin and this model serves as a template for the design of small molecules that can bind tightly and inactivate the toxin. These

  17. Radiolabeled prostate-specific membrane antigen small-molecule inhibitors.

    PubMed

    Will, Leon; Sonni, Ida; Kopka, Klaus; Kratochwil, Clemens; Giesel, Frederik L; Haberkorn, Uwe

    2017-06-01

    Prostate cancer (PC) is one of the most common malignancies worldwide. Prostate-specific membrane antigen (PSMA) has been found to be expressed in most PCs and represents an ideal target for diagnostic and therapeutic purposes. Numerous PSMA tracers have been recently developed. This review aims to provide an overview on the clinical influence of PSMA tracers in primary staging, biochemical recurrence (BCR) of PC and advanced, metastatic PC. Additionally, the use of PSMA tracers in systemic radioligand therapy (RLT) of metastatic castration-resistant prostate cancer (mCRPC), as well as non-prostatic specific uptake of PSMA tracers and the use of PSMA imaging to manage therapy have been described. A computerized search of the literature (PubMed) was conducted in order to find evidence on the role of PSMA tracers in the diagnosis and therapy of PC. PSMA positron-emission tomography/computed tomography (PET/CT) outperforms conventional imaging in the settings of primary PC, BCR and advanced PC. Especially in BCR of PC, PSMA PET/CT shows clinical value with significantly higher detection rates than standard modalities. The use of PSMA PET/CT resulted in a change of the therapeutic management in up to half of the cases. Regarding RLT, smaller studies were able to show positive clinical effects of 177Lu-labeled PSMA tracers without the occurrence of severe side effects. The currently available data clearly shows that PSMA targeting has a clinical impact on the diagnosis of PC, and that RLT using radiolabeled PSMA tracers has high potentiality in the settings of resistance to conventional therapeutic approaches.

  18. Formation of Ultracold Molecules

    SciTech Connect

    Cote, Robin

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate lasermore » excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.« less

  19. Formation of Ultracold Molecules

    SciTech Connect

    Cote, Robin

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  20. Inhibitors of Protein Methyltransferases as Chemical Tools

    PubMed Central

    Luo, Minkui

    2016-01-01

    Protein methyltransferases (PMTs) play essential roles in many biological processes through methylation of histones and diverse nonhistone substrates. Dysregulation of these enzymes has been implicated in many diseases including cancers. While PMT-associated biology can be probed via genetic perturbation, this approach targets full-length PMTs rather than their methyltransferase activities and often lacks temporal, spatial and dose controls (timing, location and amount of dosed compounds). In contrast, small-molecule inhibitors of PMTs can be designed to specifically target the methyltransferase domains in a temporal, spatial and dose-dependent manner. This utility has motivated the development of hundreds of PMT inhibitors, but meanwhile can make it challenging to select the most suitable PMT inhibitors to interrogate PMT-associated biology. This perspective aims to provide timely guidance to evaluate these PMT inhibitors in their relevant biological contexts. PMID:26646500

  1. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    PubMed Central

    Battles, Michael B; Langedijk, Johannes P; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H M; Koul, Anil; Arnoult, Eric; Peeples, Mark E; Roymans, Dirk; McLellan, Jason S

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors. PMID:26641933

  2. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    SciTech Connect

    Battles, Michael B.; Langedijk, Johannes P.; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M.; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H. M.; Koul, Anil; Arnoult, Eric; Peeples, Mark E.; Roymans, Dirk; McLellan, Jason S.

    2015-12-07

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. In this paper, we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Finally and collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.

  3. Ultracold Polar Molecules

    DTIC Science & Technology

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0005 Ultracold Polar Molecules Jeremy Hutson UNIVERSITY OF DURHAM Final Report 04/01/2016 DISTRIBUTION A: Distribution approved...DATES COVERED (From - To) 15-Jan-2010 to 14-Jul-2015 4. TITLE AND SUBTITLE Final Report on Grant FA8655-10-1-3033 on Ultracold Polar Molecules 5a...formation of ultracold 87RbCs molecules in their rovibrational ground state by magnetoassociation followed by STIRAP, resulting in 14 papers acknowledging

  4. Single-molecule probes

    NASA Astrophysics Data System (ADS)

    Goldner, Laurie S.; Weston, Kenneth D.; Heinz, William F.; Hwang, Jeeseong; DeJong, Eric S.; Marino, John P.

    2001-06-01

    The technology to rapidly manipulate and screen individual molecules lies at the frontier of measurement science, with impacts in bio- and nano-technology. Fundamental biological and chemical processes can now be probed with unprecedented detail, one molecule at a time. These single molecule probes are most often fluorescent dye molecules embedded in a material or attached to a target molecule, such as a protein or nucleic acid, whose behavior us under study. The fluorescence from a single dye molecule can be detected, its spectrum and lifetime measured and its absorption or emission dipole calculated. From this information, the rotational and translational dynamics of the fluorophore can be calculated, as can details of its photophysics. To the extent that these properties reflect the properties of the target molecule, we can use these fluorescent tags to probe the dynamics and structure of the target. In this work we discuss the dependence of the physical and photophysical dynamics of fluorescent molecules on their local environment, and we use confocal microscopy to study single molecules in thin films, on surfaces, and in various liquid and gaseous environments.

  5. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  6. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg

    2017-04-01

    Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).

  7. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  8. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)

  9. Dynamics of Activated Molecules

    SciTech Connect

    Mullin, Amy S.

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR lightmore » sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.« less

  10. The Molecule Pages database

    PubMed Central

    Saunders, Brian; Lyon, Stephen; Day, Matthew; Riley, Brenda; Chenette, Emily; Subramaniam, Shankar

    2008-01-01

    The UCSD-Nature Signaling Gateway Molecule Pages (http://www.signaling-gateway.org/molecule) provides essential information on more than 3800 mammalian proteins involved in cellular signaling. The Molecule Pages contain expert-authored and peer-reviewed information based on the published literature, complemented by regularly updated information derived from public data source references and sequence analysis. The expert-authored data includes both a full-text review about the molecule, with citations, and highly structured data for bioinformatics interrogation, including information on protein interactions and states, transitions between states and protein function. The expert-authored pages are anonymously peer reviewed by the Nature Publishing Group. The Molecule Pages data is present in an object-relational database format and is freely accessible to the authors, the reviewers and the public from a web browser that serves as a presentation layer. The Molecule Pages are supported by several applications that along with the database and the interfaces form a multi-tier architecture. The Molecule Pages and the Signaling Gateway are routinely accessed by a very large research community. PMID:17965093

  11. Dynamics of Activated Molecules

    SciTech Connect

    Mullin, Amy S.

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  12. Simultaneous determination of a novel c-Met/AXL dual-target small-molecule inhibitor BPI-9016M and its metabolites in human plasma by liquid chromatography-tandem mass spectrometry: Application in a pharmacokinetic study in Chinese advanced solid tumor patients.

    PubMed

    Cui, Xinge; Zheng, Xin; Jiang, Ji; Tan, Fenlai; Ding, Lieming; Hu, Pei

    2017-11-15

    BPI-9016M is a novel dual-target small-molecule inhibitor targeting c-Met and AXL, which was developed by Betta Pharmaceuticals Co., Ltd (Hangzhou, China). It has great potential in the treatment of advanced cancer. A high throughput quantitation method, based on liquid chromatography-tandem mass spectrometry, was developed and validated for the simultaneous determination of BPI-9016M and its main metabolite, M1 and M2-2, in human plasma with a sample preparation method of precipitation of protein. Liquid chromatographic separation was performed with a gradient elution of formic acid-10mM ammonium acetate aqueous solution (1:1000, v/v) and acetonitrile at a flow rate of 0.4mL/min within 2.2min. A Waters ACQUITY UPLC BEH C18 column (1.7μm, 2.1×50mm) was chosen, of which the temperature was set to be 40°C. Mass spectrometric detection, which were achieved in positive mode, were performed by multiple reaction monitoring with SCIEX API 5500 Qtrap equipped with an ESI ion source. This method showed good linearity, accuracy and precision in the range of 0.4-200ng/mL for BPI-9016M and 0.8-800ng/mL for M1 and M2-2, with high recovery and slight matrix effect for all analytes. And under the conditions same as stability assessments in method validation, the three analytes stayed stable during the entire destiny of a clinical sample from the collection of whole blood to the analysis of plasma by this method. The validated method was successfully applied to a first-in-human, dose-escalation phase I clinical trial in Chinese advanced solid tumor patients for the pharmacokinetic research of BPI-9016M tablet after oral administration. The concentration-time curves of BPI-9016M, M1, M2-2 were detailly captured with good veracity. And according to the results of hemolysis assessment, plasma concentrations of analytes in hemolyzed plasma samples could be reported normally without label. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sulphonamides as corrosion inhibitor: Experimental and DFT studies

    NASA Astrophysics Data System (ADS)

    Obayes, Hasan R.; Al-Amiery, Ahmed A.; Alwan, Ghadah H.; Abdullah, Thamer Adnan; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2017-06-01

    Inhibitors are synthetic and natural molecules have various functional groups like double or triple bonds and heteroatoms; N, O or S, which permit adsorption onto the MS (metal surface). These inhibitors have the ability to adsorb onto the MS and block the active site that was reducing the corrosion rate. Inhibition efficiencies of the investigated compounds: Sulfacetamide (SAM), Sulfamerazine (SMR), Sulfapyridine (SPY) and Sulfathiazole (STI), as inhibitors in corrosive solution were evaluated based on weight loss technique. Nitro and Amino groups were chosen for the study of the substituted reaction of four corrosion inhibitor compounds: SAM, SMR, SPY and STI, theoretically utilizing the thickness capacities hypothesis DFT (density functions theory) method with the level [rB3LYP/6-311G(d,p)]. Our research demonstrated that the nitration of studied molecules lead to a diminishing in inhibition efficiencies, group lead to an increase in inhibition efficiency. Compared with corrosion inhibitor molecules these results gave a significant improvement in inhibition efficiency for corrosion inhibitor molecules.

  14. Of Molecules and Models.

    ERIC Educational Resources Information Center

    Brinner, Bonnie

    1992-01-01

    Presents an activity in which models help students visualize both the DNA process and transcription. After constructing DNA, RNA messenger, and RNA transfer molecules; students model cells, protein synthesis, codons, and RNA movement. (MDH)

  15. Optical Centrifuge for Molecules

    NASA Astrophysics Data System (ADS)

    Karczmarek, Joanna; Wright, James; Corkum, Paul; Ivanov, Misha

    1999-04-01

    Strong infrared fields can be used for controlled spinning of molecules to very high angular momentum states. The angular momentum acquired can be sufficient to break molecular bonds. The approach is suitable for all anisotropic molecules, and we illustrate it by dissociating a homonuclear diatomic Cl2, with optical centrifuge efficiently separating Cl35 and Cl37 isotopes and thus demonstrating high sensitivity to the moment of inertia.

  16. Drug Delivery Strategies of Chemical CDK Inhibitors.

    PubMed

    Alvira, Daniel; Mondragón, Laura

    2016-01-01

    The pharmacological use of new therapeutics is often limited by a safe and effective drug-delivery system. In this sense, new chemical CDK inhibitors are not an exception. Nanotechnology may be able to solve some of the main problems limiting cancer treatments such as more specific delivery of therapeutics and reduction of toxic secondary effects. It provides new delivery systems able to specifically target cancer cells and release the active molecules in a controlled fashion. Specifically, silica mesoporous supports (SMPS) have emerged as an alternative for more classical drug delivery systems based on polymers. In this chapter, we describe the synthesis of a SMPS containing the CDK inhibitor roscovitine as cargo molecule and the protocols for confirmation of the proper cargo release of the nanoparticles in cell culture employing cell viability, cellular internalization, and cell death induction studies.

  17. Replacing sulfa drugs with novel DHPS inhibitors.

    PubMed

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-07-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target.

  18. Replacing sulfa drugs with novel DHPS inhibitors

    PubMed Central

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-01-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target. PMID:23859210

  19. Recent developments in small molecule therapies for renal cell carcinoma.

    PubMed

    Song, Minsoo

    2017-12-15

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and is known to be the 10th most common type of cancer in the world. Most of the currently available RCC drugs are tyrosine kinase inhibitors (TKIs). However, combination therapies of TKIs and immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) and programmed cell death protein 1 ligand 1 (PD-L1) inhibitors are the focus of most of the final stage clinical trials. Meanwhile, other small molecule therapies for RCC that target indoleamine-2,3-dioxygenase (IDO1), glutaminase, C-X-C chemokine receptor 4 (CXCR4), and transglutaminase 2 (TG2) are emerging as the next generation of therapeutics. In this review, these three major streams for the development of small molecule drugs for RCC are described. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Behavior of atypical amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Ko, John

    1997-08-01

    The physical behavior of several atypical amphiphilic molecules was studied in various environments including micelles, model bilayer membranes, and emulsions. The molecules under investigation were nor-chenodeoxycholic acid (nor-CDCA), ursodeoxycholic acid (UDCA), sphingosine (Sp), sphingosine hydrochloride (SpċHCl), and tetrahydrolipstatin (THL). The bile acids, nor-CDCA and UDCA, were studied using 13C-Nuclear Magnetic Resonance ([13C) -NMR) in micelles of taurocholate and in bilayers of phosphatidylcholine. The pK a values of the bile acids in each environment were determined by [13C) -NMR and are as follows: 6.08 ±.03 for nor-CDCA and 6.27 ±.01 for UDCA in micelles, and 7.04 ± 12 for nor-CDCA and 6.89 ±.05 for UDCA in vesicles. Using line shape analysis, the transbilayer movement rate at 36oC for nor-CDCA and UDCA was calculated to be 580 sec--1 and 409 sec-1, respectively. [13C) -NMR titration of Sp gave pK a values of 9.09 ±.02 in micelles and 9.69 ±.21 in bilayers. Differential scanning calorimetry (DSC) and X-ray diffraction were used to establish the Spċwater and SpċHClċwater phase diagrams. Anhydrous and hydrated samples ranging from 5- 90% water were analyzed. The DSC thermograms traced out the transition temperatures of each molecule while the X- ray diffraction patterns revealed their chain and crystalline lattice packing structures. In general, sphingosine exists as a hydrated crystal with β packing phase below 43oC and melts into an Lα phase. Sphingosine hydrochloride, however, exists as a gel phase (L_beta or /beta/sp') below 42oC that swells to 61% hydration. At low water concentrations (0-64%), a lamellar liquid crystal phase (L_alpha) is formed above the chain melting transition of 42oC. At medium concentration (65%), a Hexagonal I phase is present, and at high water concentrations (66-90%), a micellar phase is present. THL, a specific inhibitor of lipases, was analyzed with [ 13C) -NMR to study its behavior in various environments

  1. Molecules in galaxies

    NASA Astrophysics Data System (ADS)

    Omont, Alain

    The main achievements, current developments and prospects of molecular studies in external galaxies are reviewed. They are put in the context of the results of several decades of studies of molecules in the local interstellar medium, their chemistry and their importance for star formation. CO observations have revealed the gross structure of molecular gas in galaxies. Together with other molecules, they are among the best tracers of star formation at galactic scales. Our knowledge about molecular abundances in various local galactic environments is progressing. They trace physical conditions and metallicity, and they are closely related to dust processes and large aromatic molecules. Major recent developments include mega-masers, and molecules in active galactic nuclei; millimetre emission of molecules at very high redshift; and infrared H2 emission as a tracer of warm molecular gas, shocks and photodissociation regions. The advent of sensitive giant interferometers from the centimetre to sub-millimetre range, especially ALMA in the near future in the mm/submm range, will open a new area for molecular studies in galaxies and their use to trace star formation at all distances.

  2. Ion-Molecule Reactions

    NASA Astrophysics Data System (ADS)

    Farrar, James

    The observation of ion-molecule reactions has a history that goes back to the beginning of the twentieth century, when J. J. Thomson discovered that operating his positive ray parabola apparatus in a hydrogen atmosphere produced signals at a mass to charge ratio of 3, which he correctly attributed to the species H3 [67.1]. Later studies showed that this species was produced by a reaction between the primary ionization product H2 + and molecular hydrogen. Most ion-molecule reactions proceed without an activation barrier and their cross sections are governed by the long range attractive potential of the approaching reactants (Sect. 64.2.4). Reaction rates based on long range potential capture models [67.2] predict rates in excess of 10-9 cm3molecule-1s-1, corresponding to thermal energy cross sections (Sect. 47.1.7) of 10-16-10-15 cm2. The importance of ion-molecule reactions in such widely diverse areas as planetary atmospheres, (Sect. 84.1), electrical discharges and plasmas (Sect. 87.1.4), particularly in semiconductor processing, in the formation of molecules in interstellar space (Chapt. 82), and in flames and combustion systems (Sect. 88.1), has borne out that prediction. This chapter discusses applications of single-collision scattering methods to the study of reactive collision dynamics of ionic species with neutral partners.

  3. High-throughput screening to identify inhibitors of lysine demethylases

    PubMed Central

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several high-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the high-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors. PMID:25687466

  4. Molecules in η Carinae

    NASA Astrophysics Data System (ADS)

    Loinard, Laurent; Menten, Karl M.; Güsten, Rolf; Zapata, Luis A.; Rodríguez, Luis F.

    2012-04-01

    We report the detection toward η Carinae of six new molecules, CO, CN, HCO+, HCN, HNC, and N2H+, and of two of their less abundant isotopic counterparts, 13CO and H13CN. The line profiles are moderately broad (~100 km s-1), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO+ do not appear to be underabundant in η Carinae. On the other hand, molecules containing nitrogen or the 13C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of η Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  5. Single-Molecule Bioelectronics

    PubMed Central

    Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.

    2014-01-01

    Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  6. Positronium ions and molecules

    NASA Technical Reports Server (NTRS)

    Ho, Y. K.

    1990-01-01

    Recent theoretical studies on positronium ions and molecules are discussed. A positronium ion is a three particle system consisting of two electrons in singlet spin state, and a positron. Recent studies include calculations of its binding energy, positron annihilation rate, and investigations of its doubly excited resonant states. A positronium molecule is a four body system consisting of two positrons and two electrons in an overall singlet spin state. The recent calculations of its binding energy against the dissociation into two positronium atoms, and studies of auto-detaching states in positronium molecules are discussed. These auto-dissociating states, which are believed to be part of the Rydberg series as a result of a positron attaching to a negatively charged positronium ion, Ps-, would appear as resonances in Ps-Ps scattering.

  7. Photochemistry of interstellar molecules

    NASA Technical Reports Server (NTRS)

    Stief, L. J.

    1971-01-01

    The photochemistry of two diatomic and eight polyatomic molecules is discussed quantitatively. For an interstellar molecule, the lifetime against photodecomposition depends upon the absorption cross section, the quantum yield or probability of dissociation following photon absorption, and the interstellar radiation field. The constant energy density of Habing is used for the unobserved regions of interstellar radiation field, and the field in obscuring clouds is estimated by combining the constant flux with the observed interstellar extinction curve covering the visible and ultraviolet regions. Lifetimes against photodecomposition in the unobscured regions and as a function of increasing optical thickness in obscuring clouds are calculated for the ten species. The results show that, except for CO, all the molecules have comparable lifetimes of less than one hundred years. Thus they can exist only in dense clouds and can never have been exposed to the unobscured radiation. The calculations further show that the lifetimes in clouds of moderate opacity are of the order of one million years.

  8. Small molecule annotation for the Protein Data Bank

    PubMed Central

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M.; Chen, Minyu; Conroy, Matthew J.; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P.; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A.

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100 000 structures contain more than 20 000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule<