A state space based approach to localizing single molecules from multi-emitter images.
Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J
2017-01-28
Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.
NASA Astrophysics Data System (ADS)
Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.
2018-02-01
In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.
Thermoelectric effect in molecular electronics
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Datta, Supriyo
2003-06-01
We provide a theoretical estimate of the thermoelectric current and voltage over a Phenyldithiol molecule. We also show that the thermoelectric voltage is (1) easy to analyze, (2) insensitive to the detailed coupling to the contacts, (3) large enough to be measured, and (4) give valuable information, which is not readily accessible through other experiments, on the location of the Fermi energy relative to the molecular levels. The location of the Fermi-energy is poorly understood and controversial even though it is a central factor in determining the nature of conduction (n or p type). We also note that the thermoelectric voltage measured over Guanine molecules with a scanning tunneling microscope by Poler et al., indicate conduction through the highest occupied molecular orbital level, i.e., p-type conduction.
Wang, B; Lou, Z; Park, B; Kwon, Y; Zhang, H; Xu, B
2015-01-07
We used atomic force microscopy (AFM) and surface plasmon resonance (SPR) to study the surface conformations of an anti-ricin aptamer and its specific binding affinity for ricin molecules. The effect of surface modification of the Au(111) substrate on the aptamer affinity was also estimated. The AFM topography images had a resolution high enough to distinguish different aptamer conformations. The specific binding site on the aptamer molecule was clearly located by the AFM recognition images. The aptamer on a Au(111) surface modified with carboxymethylated-dextran (CD) showed both similarities to and differences from the one without CD modification. The influence of CD modification was evaluated using AFM images of various aptamer conformations on the Au(111) surface. The affinity between ricin and the anti-ricin aptamer was estimated using the off-rate values measured using AFM and SPR. The SPR measurements of the ricin sample were conducted in the range from 83.3 pM to 8.33 nM, and the limit of detection was estimated as 25 pM (1.5 ng mL(-1)). The off-rate values of the ricin-aptamer interactions were estimated using both single-molecule dynamic force spectroscopy (DFS) and SPR as (7.3 ± 0.4) × 10(-4) s(-1) and (1.82 ± 0.067) × 10(-2) s(-1), respectively. The results show that single-molecule measurements can obtain different reaction parameters from bulk solution measurements. In AFM single-molecule measurements, the various conformations of the aptamer immobilized on the gold surface determined the availability of each specific binding site to the ricin molecules. The SPR bulk solution measurements averaged the signals from specific and non-specific interactions. AFM images and DFS measurements provide more specific information on the interactions of individual aptamer and ricin molecules.
Single-protein detection in crowded molecular environments in cryo-EM images
Rickgauer, J Peter; Grigorieff, Nikolaus; Denk, Winfried
2017-01-01
We present an approach to study macromolecular assemblies by detecting component proteins’ characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and—in the presence of protein background—a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material. DOI: http://dx.doi.org/10.7554/eLife.25648.001 PMID:28467302
Wijetunge, Chalini D; Saeed, Isaam; Boughton, Berin A; Roessner, Ute; Halgamuge, Saman K
2015-01-01
Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net.
2015-01-01
Background Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Results Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. Conclusions The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net. PMID:26680279
Bingemann, Dieter; Allen, Rachel M.
2012-01-01
We describe a statistical method to analyze dual-channel photon arrival trajectories from single molecule spectroscopy model-free to identify break points in the intensity ratio. Photons are binned with a short bin size to calculate the logarithm of the intensity ratio for each bin. Stochastic photon counting noise leads to a near-normal distribution of this logarithm and the standard student t-test is used to find statistically significant changes in this quantity. In stochastic simulations we determine the significance threshold for the t-test’s p-value at a given level of confidence. We test the method’s sensitivity and accuracy indicating that the analysis reliably locates break points with significant changes in the intensity ratio with little or no error in realistic trajectories with large numbers of small change points, while still identifying a large fraction of the frequent break points with small intensity changes. Based on these results we present an approach to estimate confidence intervals for the identified break point locations and recommend a bin size to choose for the analysis. The method proves powerful and reliable in the analysis of simulated and actual data of single molecule reorientation in a glassy matrix. PMID:22837704
Imaging Large Cohorts of Single Ion Channels and Their Activity
Hiersemenzel, Katia; Brown, Euan R.; Duncan, Rory R.
2013-01-01
As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the subtypes of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nano-scale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein–protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviors, interactions, and conductance activities of many thousands of channel molecules and vesicles in living cells. PMID:24027557
Kyrychenko, Alexander; Sevriukov, Igor Yu.; Syzova, Zoya A.; Ladokhin, Alexey S.; Doroshenko, Andrey O.
2014-01-01
Successful use of fluorescence sensing in elucidating the biophysical properties of lipid membranes requires knowledge of the distribution and location of an emitting molecule in the bilayer. We report here that 2,6-bis(1H-benzimidazol-2-yl)pyridine (BBP), which is almost non-fluorescent in aqueous solutions, reveals a strong emission enhancement in a hydrophobic environment of a phospholipid bilayer, making it interesting for fluorescence probing of water content in a lipid membrane. Comparing the fluorescence behavior of BBP in a wide variety of solvents with those in phospholipid vesicles, we suggest that the hydrogen bonding interactions between a BBP fluorophore and water molecules play a crucial role in the observed “light switch effect”. Therefore, the loss of water-induced fluorescence quenching inside a membrane are thought to be due to deep penetration of BBP into the hydrophobic, water-free region of a bilayer. Characterized by strong quenching by transition metal ions in solution, BBP also demonstrated significant shielding from the action of the quencher in the presence of phospholipid vesicles. We used the increase in fluorescence intensity, measured upon titration of probe molecules with lipid vesicles, to estimate the partition constant and the Gibbs free energy (ΔG) of transfer of BBP from aqueous buffer into a membrane. Partitioning BBP revealed strongly favorable ΔG, which depends only slightly on the lipid composition of a bilayer, varying in a range from -6.5 to -7.0 kcal/mol. To elucidate the binding interactions of the probe with a membrane on the molecular level, a distribution and favorable location of BBP in a POPC bilayer were modeled via atomistic molecular dynamics (MD) simulations using two different approaches: (i) free, diffusion-driven partitioning of the probe molecules into a bilayer and (ii) constrained umbrella sampling of a penetration profile of the dye molecule across a bilayer. Both of these MD approaches agreed with regard to the preferred location of a BBP fluorophore within the interfacial region of a bilayer, located between the hydrocarbon acyl tails and the initial portion of the lipid headgroups. MD simulations also revealed restricted permeability of water molecules into this region of a POPC bilayer, determining the strong fluorescence enhancement observed experimentally for the membrane-partitioned form of BBP. PMID:21211898
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-12-01
Random walk particle tracking methods are a computationally efficient family of methods to solve reactive transport problems. While the number of particles in most realistic applications is in the order of 106-109, the number of reactive molecules even in diluted systems might be in the order of fractions of the Avogadro number. Thus, each particle actually represents a group of potentially reactive molecules. The use of a low number of particles may result not only in loss of accuracy, but also may lead to an improper reproduction of the mixing process, limited by diffusion. Recent works have used this effect as a proxy to model incomplete mixing in porous media. In this work, we propose using a Kernel Density Estimation (KDE) of the concentrations that allows getting the expected results for a well-mixed solution with a limited number of particles. The idea consists of treating each particle as a sample drawn from the pool of molecules that it represents; this way, the actual location of a tracked particle is seen as a sample drawn from the density function of the location of molecules represented by that given particle, rigorously represented by a kernel density function. The probability of reaction can be obtained by combining the kernels associated to two potentially reactive particles. We demonstrate that the observed deviation in the reaction vs time curves in numerical experiments reported in the literature could be attributed to the statistical method used to reconstruct concentrations (fixed particle support) from discrete particle distributions, and not to the occurrence of true incomplete mixing. We further explore the evolution of the kernel size with time, linking it to the diffusion process. Our results show that KDEs are powerful tools to improve computational efficiency and robustness in reactive transport simulations, and indicates that incomplete mixing in diluted systems should be modeled based on alternative mechanistic models and not on a limited number of particles.
NASA Astrophysics Data System (ADS)
Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.
2018-02-01
The 1-50 GHz PRebiotic Interstellar MOlecular Survey (PRIMOS) contains 50 molecular absorption lines observed in clouds located in the line-of-sight to Sgr B2(N). The line-of-sight material is associated with diffuse and translucent clouds located in the Galactic center, bar, and spiral arms in the disk. We measured the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues observed in this material. We used absorption by optically thin transitions of c-C3H2 to estimate the molecular hydrogen columns, and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. Finally, we discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic bar and in or near the Galactic center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance. We also determine that the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C/13C ratio, whereas H2CO/H213CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of AV. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A10
Hydrogen atoms can be located accurately and precisely by x-ray crystallography.
Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan
2016-05-01
Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.
Hydrogen atoms can be located accurately and precisely by x-ray crystallography
Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M.; Woźniak, Krzysztof; Jayatilaka, Dylan
2016-01-01
Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors. PMID:27386545
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1973-01-01
The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.
Method for oil pipeline leak detection based on distributed fiber optic technology
NASA Astrophysics Data System (ADS)
Chen, Huabo; Tu, Yaqing; Luo, Ting
1998-08-01
Pipeline leak detection is a difficult problem to solve up to now. Some traditional leak detection methods have such problems as high rate of false alarm or missing detection, low location estimate capability. For the problems given above, a method for oil pipeline leak detection based on distributed optical fiber sensor with special coating is presented. The fiber's coating interacts with hydrocarbon molecules in oil, which alters the refractive indexed of the coating. Therefore the light-guiding properties of the fiber are modified. Thus pipeline leak location can be determined by OTDR. Oil pipeline lead detection system is designed based on the principle. The system has some features like real time, multi-point detection at the same time and high location accuracy. In the end, some factors that probably influence detection are analyzed and primary improving actions are given.
Limiting assumptions in molecular modeling: electrostatics.
Marshall, Garland R
2013-02-01
Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.
Henning, Paul E.; Rigo, M. Veronica; Geissinger, Peter
2012-01-01
A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units. PMID:22654644
Morphology and the Strength of Intermolecular Contact in Protein Crystals
NASA Technical Reports Server (NTRS)
Matsuura, Yoshiki; Chernov, Alexander A.
2002-01-01
The strengths of intermolecular contacts (macrobonds) in four lysozyme crystals were estimated based on the strengths of individual intermolecular interatomic interaction pairs. The periodic bond chain of these macrobonds accounts for the morphology of protein crystals as shown previously. Further in this paper, the surface area of contact, polar coordinate representation of contact site, Coulombic contribution on the macrobond strength, and the surface energy of the crystal have been evaluated. Comparing location of intermolecular contacts in different polymorphic crystal modifications, we show that these contacts can form a wide variety of patches on the molecular surface. The patches are located practically everywhere on this surface except for the concave active site. The contacts frequently include water molecules, with specific intermolecular hydrogen-bonds on the background of non-specific attractive interactions. The strengths of macrobonds are also compared to those of other protein complex systems. Making use of the contact strengths and taking into account bond hydration we also estimated crystal-water interfacial energies for different crystal faces.
NASA Astrophysics Data System (ADS)
Brémard, C.; Buntinx, G.; Ginestet, G.
1997-06-01
Combined experimental spectroscopy (Raman and DRIFT), Monte Carlo simulations and geometry optimizations were used to investigate the location and conformation of benzophenone and benzil molecules incorporated into faujasitic Na 56FAU zeolite. The benzophenone and benzil molecules are located within the supercage, the CO fragment pointing towards the extraframework Na + cations. The geometry of the incorporated molecules is found to be slightly modified relative to the free molecule. At high coverage, the benzil molecules are associated in pairs in the supercage.
The Excess Chemical Potential of Water at the Interface with a Protein from End Point Simulations.
Zhang, Bin W; Cui, Di; Matubayasi, Nobuyuki; Levy, Ronald M
2018-05-03
We use end point simulations to estimate the excess chemical potential of water in the homogeneous liquid and at the interface with a protein in solution. When the pure liquid is taken as the reference, the excess chemical potential of interfacial water is the difference between the solvation free energy of a water molecule at the interface and in the bulk. Using the homogeneous liquid as an example, we show that the solvation free energy for growing a water molecule can be estimated by applying UWHAM to the simulation data generated from the initial and final states (i.e., "the end points") instead of multistate free energy perturbation simulations because of the possible overlaps of the configurations sampled at the end points. Then end point simulations are used to estimate the solvation free energy of water at the interface with a protein in solution. The estimate of the solvation free energy at the interface from two simulations at the end points agrees with the benchmark using 32 states within a 95% confidence interval for most interfacial locations. The ability to accurately estimate the excess chemical potential of water from end point simulations facilitates the statistical thermodynamic analysis of diverse interfacial phenomena. Our focus is on analyzing the excess chemical potential of water at protein receptor binding sites with the goal of using this information to assist in the design of tight binding ligands.
NASA Astrophysics Data System (ADS)
Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei
2018-05-01
The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.
Short cell-penetrating peptides: a model of interactions with gene promoter sites.
Khavinson, V Kh; Tarnovskaya, S I; Linkova, N S; Pronyaeva, V E; Shataeva, L K; Yakutseni, P P
2013-01-01
Analysis of the main parameters of molecular mechanics (number of hydrogen bonds, hydrophobic and electrostatic interactions, DNA-peptide complex minimization energy) provided the data to validate the previously proposed qualitative models of peptide-DNA interactions and to evaluate their quantitative characteristics. Based on these estimations, a three-dimensional model of Lys-Glu and Ala-Glu-Asp-Gly peptide interactions with DNA sites (GCAG and ATTTC) located in the promoter zones of genes encoding CD5, IL-2, MMP2, and Tram1 signal molecules.
Continuous time-of-flight ion mass spectrometer
Funsten, Herbert O.; Feldman, William C.
2004-10-19
A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.
DNA conformation on surfaces measured by fluorescence self-interference.
Moiseev, Lev; Unlü, M Selim; Swan, Anna K; Goldberg, Bennett B; Cantor, Charles R
2006-02-21
The conformation of DNA molecules tethered to the surface of a microarray may significantly affect the efficiency of hybridization. Although a number of methods have been applied to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules. Here we describe the application of an interferometric technique called spectral self-interference fluorescence microscopy to the precise measurement of the average location of a fluorescent label in a DNA layer relative to the surface and thus determine specific information on the conformation of the surface-bound DNA molecules. Using spectral self-interference fluorescence microscopy, we have estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and the amount of hybridization. The data provide important proofs of concept for the capabilities of novel optical surface analytical methods of the molecular disposition of DNA on surfaces. The determination of DNA conformations on surfaces and hybridization behavior provide information required to move DNA interfacial applications forward and thus impact emerging clinical and biotechnological fields.
Investigating plausible mechanisms for the photo-induced partial unfolding of a globular protein
NASA Astrophysics Data System (ADS)
Parker, James E.
Two hypotheses are proposed to explain the photo-induced unfolding of β-lactoglobulin (BLG) that occurs when non-covalently bound to a dye molecule, meso-tetrakis (p-sulfonatophenyl) porphyrin (TSPP), and illuminated by a laser in the post-Tanford transition configuration. The first involves a photo-induced electron transfer from the porphyrin to the protein. The second involves the production of kynurenine by singlet oxygen that is generated during photo-excitation of the porphyrin. To evaluate these hypotheses, a series of computational and experimental results have been combined to establish the physical state of the BLG-TSPP complex and to estimate the likelihood of a post-irradiation event to initiate the partial unfolding. Determining the binding site location is crucial to establish the position of the photo-induced events and the likely end-product. A study of the vibronic state of the BLG-TSPP complex using resonant Raman and absorption spectroscopy coupled with density functional theory (DFT) and docking simulations is used to estimate the location of the binding site. Once the binding site is found, molecular dynamics simulations of the post-irradiation event relaxations in the protein are used to estimate the resulting secondary structure. This structure is compared to experimental estimates of the secondary structure of the unfolded protein to determine which hypothesis is the most likely mechanism to explain the unfolding.
Marqueño, Tomas; Santamaria-Perez, David; Ruiz-Fuertes, Javier; Chuliá-Jordán, Raquel; Jordá, Jose L; Rey, Fernando; McGuire, Chris; Kavner, Abby; MacLeod, Simon; Daisenberger, Dominik; Popescu, Catalin; Rodriguez-Hernandez, Placida; Muñoz, Alfonso
2018-06-04
We report the formation of an ultrahigh CO 2 -loaded pure-SiO 2 silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO 2 medium. The CO 2 -filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO 2 molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to that of the parental empty one. The structure of CO 2 -loaded silicalite-1 was also monitored at high pressures and temperatures, and its thermal expansivity was estimated.
Rate Coefficient Measurements and Theoretical Analysis of the OH + ( E)-CF3CH═CHCF3 Reaction.
Baasandorj, Munkhbayar; Marshall, Paul; Waterland, Robert L; Ravishankara, A R; Burkholder, James B
2018-05-04
Rate coefficients, k, for the gas-phase reaction of the OH radical with ( E)-CF 3 CH═CHCF 3 (( E)-1,1,1,4,4,4-hexafluoro-2-butene, HFO-1336mzz(E)) were measured over a range of temperatures (211-374 K) and bath gas pressures (20-300 Torr; He, N 2 ) using a pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) technique. k 1 ( T) was independent of pressure over this range of conditions with k 1 (296 K) = (1.31 ± 0.15) × 10 -13 cm 3 molecule -1 s -1 and k 1 ( T) = (6.94 ± 0.80) × 10 -13 exp[-(496 ± 10)/ T] cm 3 molecule -1 s -1 , where the uncertainties are 2σ, and the pre-exponential term includes estimated systematic error. Rate coefficients for the OD reaction were also determined over a range of temperatures (262-374 K) at 100 Torr (He). The OD rate coefficients were ∼15% greater than the OH values and showed similar temperature dependent behavior with k 2 ( T) = (7.52 ± 0.44) × 10 -13 exp[-(476 ± 20)/ T] and k 2 (296 K) = (1.53 ± 0.15) × 10 -13 cm 3 molecule -1 s -1 . The rate coefficients for reaction 1 were also measured using a relative rate technique between 296 and 375 K with k 1 (296 K) measured to be (1.22 ± 0.1) × 10 -13 cm 3 molecule -1 s -1 , in agreement with the PLP-LIF results. In addition, the 296 K rate coefficient for the O 3 + ( E)-CF 3 CH═CHCF 3 reaction was determined to be <5.2 × 10 -22 cm 3 molecule -1 s -1 . A theoretical computational analysis is presented to interpret the observed positive temperature dependence for the addition reaction and the significant decrease in OH reactivity compared to the ( Z)-CF 3 CH═CHCF 3 stereoisomer reaction. The estimated atmospheric lifetime of ( E)-CF 3 CH═CHCF 3 , due to loss by reaction with OH, is estimated to be ∼90 days, while the actual lifetime will depend on the location and season of its emission. Infrared absorption spectra of ( E)-CF 3 CH═CHCF 3 were measured and used to estimate the 100 year time horizon global warming potentials (GWP) of 32 (atmospherically well-mixed) and 14 (lifetime-adjusted).
Nanostructure sensor of presence and concentration of a target molecule
NASA Technical Reports Server (NTRS)
Schipper, John F. (Inventor)
2009-01-01
Method and system (i) to determine when a selected target molecule is present or absent in a fluid, (2) to estimate concentration of the target molecule in the fluid and (3) estimate possible presence of a second (different) target molecule in the fluid, by analyzing differences in resonant frequencies of vibration of a thin beam suspended in the fluid, after the fluid has moved across the beam.
Optimal Background Estimators in Single-Molecule FRET Microscopy.
Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria
2016-09-20
Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem*
Katsevich, E.; Katsevich, A.; Singer, A.
2015-01-01
In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule under examination exhibits structural variability, which poses a fundamental challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging, since only projections of the molecules are observed, but not the molecules themselves. In this paper, we formulate a general problem of covariance estimation from noisy projections of samples. This problem has intimate connections with matrix completion problems and high-dimensional principal component analysis. We propose an estimator and prove its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the projection covariance transform, is an important object in covariance estimation for tomographic problems involving structural variation. Inverting it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise. PMID:25699132
Wu, Allison Chia-Yi; Rifkin, Scott A
2015-03-27
Recent techniques for tagging and visualizing single molecules in fixed or living organisms and cell lines have been revolutionizing our understanding of the spatial and temporal dynamics of fundamental biological processes. However, fluorescence microscopy images are often noisy, and it can be difficult to distinguish a fluorescently labeled single molecule from background speckle. We present a computational pipeline to distinguish the true signal of fluorescently labeled molecules from background fluorescence and noise. We test our technique using the challenging case of wide-field, epifluorescence microscope image stacks from single molecule fluorescence in situ experiments on nematode embryos where there can be substantial out-of-focus light and structured noise. The software recognizes and classifies individual mRNA spots by measuring several features of local intensity maxima and classifying them with a supervised random forest classifier. A key innovation of this software is that, by estimating the probability that each local maximum is a true spot in a statistically principled way, it makes it possible to estimate the error introduced by image classification. This can be used to assess the quality of the data and to estimate a confidence interval for the molecule count estimate, all of which are important for quantitative interpretations of the results of single-molecule experiments. The software classifies spots in these images well, with >95% AUROC on realistic artificial data and outperforms other commonly used techniques on challenging real data. Its interval estimates provide a unique measure of the quality of an image and confidence in the classification.
Adaptive and iterative methods for simulations of nanopores with the PNP-Stokes equations
NASA Astrophysics Data System (ADS)
Mitscha-Baude, Gregor; Buttinger-Kreuzhuber, Andreas; Tulzer, Gerhard; Heitzinger, Clemens
2017-06-01
We present a 3D finite element solver for the nonlinear Poisson-Nernst-Planck (PNP) equations for electrodiffusion, coupled to the Stokes system of fluid dynamics. The model serves as a building block for the simulation of macromolecule dynamics inside nanopore sensors. The source code is released online at http://github.com/mitschabaude/nanopores. We add to existing numerical approaches by deploying goal-oriented adaptive mesh refinement. To reduce the computation overhead of mesh adaptivity, our error estimator uses the much cheaper Poisson-Boltzmann equation as a simplified model, which is justified on heuristic grounds but shown to work well in practice. To address the nonlinearity in the full PNP-Stokes system, three different linearization schemes are proposed and investigated, with two segregated iterative approaches both outperforming a naive application of Newton's method. Numerical experiments are reported on a real-world nanopore sensor geometry. We also investigate two different models for the interaction of target molecules with the nanopore sensor through the PNP-Stokes equations. In one model, the molecule is of finite size and is explicitly built into the geometry; while in the other, the molecule is located at a single point and only modeled implicitly - after solution of the system - which is computationally favorable. We compare the resulting force profiles of the electric and velocity fields acting on the molecule, and conclude that the point-size model fails to capture important physical effects such as the dependence of charge selectivity of the sensor on the molecule radius.
Addressing individual metal ion centers in supramolecules by STS
NASA Astrophysics Data System (ADS)
Alam, M. S.; Ako, A. M.; Ruben, M.; Thompson, L. K.; Lehn, J.-M.
2005-03-01
As the information of STM measurements arises from electronic structure, separating information on the topography is not straightforward for complex molecules. Scanning tunneling spectroscopy (STS) measurements give information about the molecular energy levels, which are next to the molecules Fermi level. Using a home built STM working under ambient conditions, we succeeded to combine high resolution topography mapping with simultaneous current-voltage characteristics (STS) measurements on single molecules deposited on highly oriented pyrolytic graphite surfaces. We present our recent results on grid-type molecules [Co4L4] (L=4,6-bis(2',2''-bipyridyl-6-yl)pyrimidine) and [Mn9L6] (L=2POAP-2H) as well as on ring-shaped Fe ion chains [Fe6Cl6L6] (L=1-Ecosyliminodiethanol). Small, regular molecule clusters as well as separated single molecules were observed. We found a rather large contrast at the expected location of the metal centers in our molecules, i.e. the location of the individual metal ions in their organic matrix is directly addressable by STS.
Tonal Interface to MacroMolecules (TIMMol): A Textual and Tonal Tool for Molecular Visualization
ERIC Educational Resources Information Center
Cordes, Timothy J.; Carlson, C. Britt; Forest, Katrina T.
2008-01-01
We developed the three-dimensional visualization software, Tonal Interface to MacroMolecules or TIMMol, for studying atomic coordinates of protein structures. Key features include audio tones indicating x, y, z location, identification of the cursor location in one-dimensional and three-dimensional space, textual output that can be easily linked…
Furer, V L; Vandyukov, A E; Majoral, J P; Caminade, A M; Gottis, S; Laurent, R; Kovalenko, V I
2018-05-29
The interaction of the phosphoric dendrimer with gold was performed by means of vibrational spectroscopy and quantum chemistry. Stable complexes are formed with a PN-PS linkage, whereas with an isolated PS bond this does not occur. The change in geometric parameters and delocalization of electric charge under the influence of gold was discovered. The classification of bands in the experimental vibrational spectra of the dendrimer and its complex was carried out. HOMO of molecule of the dendrimer is localized on the SPNP linkage, whereas the LUMO is located on the terminal group. In the SPNP linkage there is a noticeable delocalization of the charge which leads to a change in the reactivity of this group. Interaction energy was estimated as the difference between the energies of the complex and the energies of the molecules of the dendrimer G' 0 and two molecules AuCl and is equal to 25.2 eV. The ionization energy IE and electron affinity EA for AuCl are higher than for dendrimer, therefore, when the complex is formed, these quantities increases. Chemical potential and the electrophilicity index in the complex also increases. Copyright © 2018 Elsevier B.V. All rights reserved.
Estimating Genomic Distance from DNA Sequence Location in Cell Nuclei by a Random Walk Model
NASA Astrophysics Data System (ADS)
van den Engh, Ger; Sachs, Rainer; Trask, Barbara J.
1992-09-01
The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.
Jiang, Shenghang; Park, Seongjin; Challapalli, Sai Divya; Fei, Jingyi; Wang, Yong
2017-01-01
We report a robust nonparametric descriptor, J′(r), for quantifying the density of clustering molecules in single-molecule localization microscopy. J′(r), based on nearest neighbor distribution functions, does not require any parameter as an input for analyzing point patterns. We show that J′(r) displays a valley shape in the presence of clusters of molecules, and the characteristics of the valley reliably report the clustering features in the data. Most importantly, the position of the J′(r) valley (rJm′) depends exclusively on the density of clustering molecules (ρc). Therefore, it is ideal for direct estimation of the clustering density of molecules in single-molecule localization microscopy. As an example, this descriptor was applied to estimate the clustering density of ptsG mRNA in E. coli bacteria. PMID:28636661
Ramos, Sergio Luis L M; Ogino, Michihiko; Oguni, Masaharu
2015-01-28
We investigated the thermal properties of liquid methylcyclohexane and racemic sec-butylcyclohexane, as representatives of a molecular system with only dispersion-force intermolecular interactions, confined in the pores (thickness/diameter d = 12, 6, 1.1 nm) of silica gels by adiabatic calorimetry. The results imply a heterogeneous picture for molecular aggregate under confinement consisting of an interfacial region and an inner pore one. In the vicinity of a glass-transition temperature T(g,bulk) of bulk liquid, two distinguishable relaxation phenomena were observed for the confined systems and their origins were attributed to the devitrification, namely glass transition, processes of (1) a layer of interfacial molecules adjacent to the pore walls and (2) the molecules located in the middle of the pore. A third glass-transition phenomenon was observed at lower temperatures and ascribed to a secondary relaxation process. The glass transition of the interfacial-layer molecules was found to proceed at temperatures rather above T(g,bulk), whereas that of the molecules located in the inner pore region occurred at temperatures below T(g,bulk). We discuss the reason why the molecules located in different places in the pores reveal the respectively different dynamical properties.
NASA Astrophysics Data System (ADS)
Hawdon, Aaron; McJannet, David; Wallace, Jim
2014-06-01
The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.
Ugras, Serpil; Sezen, Kazim; Kati, Hatice; Demirbag, Zihni
2013-02-01
A novel bioactive molecule produced by Bacillus thuringiensis subsp. kurstaki Bn1 (Bt-Bn1), isolated from a common pest of hazelnut, Balaninus nucum L. (Coleoptera: Curculionidae), was determined, purified, and characterized in this study. The Bt-Bn1 strain was investigated for antibacterial activity with an agar spot assay and well diffusion assay against B. cereus, B. weinhenstephenensis, L. monocytogenes, P. savastanoi, P. syringae, P. lemoignei, and many other B. thuringiensis strains. The production of bioactive molecule was determined at the early logarithmic phase in the growth cycle of strain Bt-Bn1 and its production continued until the beginning of the stationary phase. The mode of action of this molecule displayed bacteriocidal or bacteriolytic effect depending on the concentration. The bioactive molecule was purified 78-fold from the bacteria supernatant with ammonium sulfate precipitation, dialysis, ultrafiltration, gel filtration chromatography, and HPLC, respectively. The molecular mass of this molecule was estimated via SDS-PAGE and confirmed by the ESI-TOFMS as 3,139 Da. The bioactive molecule was also determined to be a heat-stable, pH-stable (range 6-8), and proteinase K sensitive antibacterial peptide, similar to bacteriocins. Based on all characteristics determined in this study, the purified bacteriocin was named as thuricin Bn1 because of the similarities to the previously identified thuricin-like bacteriocin produced by the various B. thuringiensis strains. Plasmid elution studies showed that gene responsible for the production of thuricin Bn1 is located on the chromosome of Bt-Bn1. Therefore, it is a novel bacteriocin and the first recorded one produced by an insect originated bacterium. It has potential usage for the control of many different pathogenic and spoilage bacteria in the food industry, agriculture, and various other areas.
Gikanga, Benson; Adeniji, Nia S; Patapoff, Thomas W; Chih, Hung-Wei; Yi, Li
2016-04-20
Antibody-drug conjugates (ADCs) require thorough characterization and understanding of product quality attributes. The framework of many ADCs comprises one molecule of antibody that is usually conjugated with multiple drug molecules at various locations. It is unknown whether the drug release rate from the ADC is dependent on drug location, and/or local environment, dictated by the sequence and structure of the antibody carrier. This study addresses these issues with valine-citrulline-monomethylauristatin E (vc-MMAE)-based ADC molecules conjugated at reduced disulfide bonds, by evaluating the cathepsin B catalyzed drug release rate of ADC molecules with different drug distributions or antibody carriers. MMAE drug release rates at different locations on ADC I were compared to evaluate the impact of drug location. No difference in rates was observed for drug released from the V(H), V(L), or C(H)2 domains of ADC I. Furthermore, four vc-MMAE ADC molecules were chosen as substrates for cathepsin B for evaluation of Michaelis-Menten parameters. There was no significant difference in K(M) or k(cat) values, suggesting that different sequences of the antibody carrier do not result in different drug release rates. Comparison between ADCs and small molecules containing vc-MMAE moieties as substrates for cathepsin B suggests that the presence of IgG1 antibody carrier, regardless of its bulkiness, does not impact drug release rate. Finally, a molecular dynamics simulation on ADC II revealed that the val-cit moiety at each of the eight possible conjugation sites was, on average, solvent accessible over 50% of its maximum solvent accessible surface area (SASA) during a 500 ns trajectory. Combined, these results suggest that the cathepsin cleavage sites for conjugated drugs are exposed enough for the enzyme to access and that the drug release rate is rather independent of drug location or monoclonal antibody carrier. Therefore, the distribution of drug conjugation at different sites is not a critical parameter to control in manufacturing of the vc-MMAE-based ADC conjugated at reduced disulfide bonds.
Fisher information theory for parameter estimation in single molecule microscopy: tutorial
Chao, Jerry; Ward, E. Sally; Ober, Raimund J.
2016-01-01
Estimation of a parameter of interest from image data represents a task that is commonly carried out in single molecule microscopy data analysis. The determination of the positional coordinates of a molecule from its image, for example, forms the basis of standard applications such as single molecule tracking and localization-based superresolution image reconstruction. Assuming that the estimator used recovers, on average, the true value of the parameter, its accuracy, or standard deviation, is then at best equal to the square root of the Cramér-Rao lower bound. The Cramér-Rao lower bound can therefore be used as a benchmark in the evaluation of the accuracy of an estimator. Additionally, as its value can be computed and assessed for different experimental settings, it is useful as an experimental design tool. This tutorial demonstrates a mathematical framework that has been specifically developed to calculate the Cramér-Rao lower bound for estimation problems in single molecule microscopy and, more broadly, fluorescence microscopy. The material includes a presentation of the photon detection process that underlies all image data, various image data models that describe images acquired with different detector types, and Fisher information expressions that are necessary for the calculation of the lower bound. Throughout the tutorial, examples involving concrete estimation problems are used to illustrate the effects of various factors on the accuracy of parameter estimation, and more generally, to demonstrate the flexibility of the mathematical framework. PMID:27409706
Liu, Lijun; Baase, Walter A; Michael, Miya M; Matthews, Brian W
2009-09-22
Both large-to-small and nonpolar-to-polar mutations in the hydrophobic core of T4 lysozyme cause significant loss in stability. By including supplementary stabilizing mutations we constructed a variant that combines the cavity-creating substitution Leu99 --> Ala with the buried charge mutant Met102 --> Glu. Crystal structure determination confirmed that this variant has a large cavity with the side chain of Glu102 located within the cavity wall. The cavity includes a large disk-shaped region plus a bulge. The disk-like region is essentially nonpolar, similar to L99A, while the Glu102 substituent is located in the vicinity of the bulge. Three ordered water molecules bind within this part of the cavity and appear to stabilize the conformation of Glu102. Glu102 has an estimated pKa of about 5.5-6.5, suggesting that it is at least partially charged in the crystal structure. The polar ligands pyridine, phenol and aniline bind within the cavity, and crystal structures of the complexes show one or two water molecules to be retained. Nonpolar ligands of appropriate shape can also bind in the cavity and in some cases exclude all three water molecules. This disrupts the hydrogen-bond network and causes the Glu102 side chain to move away from the ligand by up to 0.8 A where it remains buried in a completely nonpolar environment. Isothermal titration calorimetry revealed that the binding of these compounds stabilizes the protein by 4-6 kcal/mol. For both polar and nonpolar ligands the binding is enthalpically driven. Large negative changes in entropy adversely balance the binding of the polar ligands, whereas entropy has little effect on the nonpolar ligand binding.
Complex molecules in Sagittarius B2(N): The importance of grain chemistry
NASA Technical Reports Server (NTRS)
Miao, Yanti; Mehringer, David M.; Kuan, Yi-Jheng; Snyder, Lewis E.
1995-01-01
The complex molecules vinyl cyanide (CH2CHCN), methyl formate (HCOOCH3), and ethyl cyanide (CH3CH2CN) were observed in the Sgr B2 star-forming region with the BIMA millimeter wavelength array. A region with diameter less than 0.1 pc toward the Sgr B2(N) molecular core is found to be the major source of these molecules. Also, this source is coincident with continuum emission from dust and a center of H2O maser activity. Ultracompact (UC) H 11 regions are located within 0.1 pc. Strikingly, none of these molecules is detected toward Sgr B2(M), a core located 1 minute south of Sgr B2(N). The existence of complex molecules, a large mass of dust, high-velocity H2O masers, and UC H 11 regions strongly suggests that the Sgr B2(N) region has just begun to form stars, while the absence of strong dust emission and large molecules suggests Sgr B2(M) is more evolved. The detection of large molecules coincident with continuum emission from dust supports the idea found in current chemical models that grain chemistry is of crucial importance for the formation of these molecules.
Karami, Leila; Jalili, Seifollah
2015-01-01
Liposomal cytarabine, DepoCyt, is a chemotherapy agent which is used in cancer treatment. This form of cytarabine has more efficacy and fewer side effects relative to the other forms. Since DepoCyt contains the cytarabine encapsulated within phosphatidylcholine and the sterol molecules, we modeled dioleoylphosphatidylcholine (DOPC)/cholesterol bilayer membrane as a carrier for cytarabine to study drug-bilayer interactions. For this purpose, we performed a series of united-atom molecular dynamics (MD) simulations for 25 ns to investigate the interactions between cytarabine and cholesterol-containing DOPC lipid bilayers. Only the uncharged form of cytarabine molecule was investigated. In this study, different levels of the cholesterol content (0, 20, and 40%) were used. MD simulations allowed us to determine dynamical and structural properties of the bilayer membrane and to estimate the preferred location and orientation of the cytarabine molecule inside the bilayer membrane. Properties such as membrane thickness, area per lipid, diffusion coefficient, mass density, bilayer packing, order parameters, and intermolecular interactions were examined. The results show that by increasing the cholesterol concentration in the lipid bilayers, the bilayer thickness increases and area per lipid decreases. Moreover, in accordance with the experiments, our calculations show that cholesterol molecules have ordering effect on the hydrocarbon acyl chains. Furthermore, the cytarabine molecule preferentially occupies the polar region of the lipid head groups to form specific interactions (hydrogen bonds). Our results fully support the experimental data. Our finding about drug-bilayer interaction is crucial for the liposomal drug design.
Hydrogen Cyanide In Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore
2018-01-01
The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.
USDA-ARS?s Scientific Manuscript database
The molecular details of DNA aptamer-ricin interactions were investigated. The toxic protein ricin molecules were immobilized on Au(111) surface using N-hydroxysuccinimide (NHS) ester to specifically react with lysine residues located on the ricin B chains. A single ricin molecule was visualized in ...
Concerted hydrogen atom exchange between three HF molecules
NASA Technical Reports Server (NTRS)
Komornicki, Andrew; Dixon, David A.; Taylor, Peter R.
1992-01-01
We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low.
Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone
NASA Astrophysics Data System (ADS)
Braun, Doris E.; Griesser, Ulrich J.
2018-02-01
The observed moisture- and temperature dependent transformations of the dapsone (4,4'-diaminodiphenyl sulfone, DDS) 0.33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and a stable anhydrate at room temperature (form III) differ only by approximately 1 kJ mol–1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study addresses the critical class of non-stoichiometric hydrates, highlighting that only a multidisciplinary investigation can unravel hydrate formation at a molecular level, knowledge which is a requirement in modern drug development.
Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone.
Braun, Doris E; Griesser, Ulrich J
2018-01-01
The observed moisture- and temperature dependent transformations of the dapsone (4,4'-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III ) differ only by ~1 kJ mol -1 . The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arletti, Rossella, E-mail: rossella.arletti@unito.it; Martucci, Annalisa; Alberti, Alberto
This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determinedmore » by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.« less
Selectivity of Glycine for Facets on Gold Nanoparticles.
Shao, Qing; Hall, Carol K
2018-04-05
The performance of nanoparticles in medical applications depends on their interactions with various molecules. Despite extensive research on this subject, it remains unclear where on an inhomogeneous nanoparticle molecules prefer to adsorb. Here we investigate the selectivity of glycine molecules for facets on five bare gold nanoparticles with diameters from 1.0 to 5.0 nm. Well-tempered metadynamics simulations are conducted to calculate the adsorption free-energy landscapes of a glycine molecule on various locations for the five gold nanoparticles in explicit water. We also calculate the glycine molecule's adsorption free energies on the five gold nanoparticles in vacuum and on three flat gold surfaces as a reference. The simulation results show that glycine molecules prefer to adsorb on the (110) facet for the 1.0 and 2.0 nm nanoparticles, the edges for the 3.0 nm nanoparticle, and the (111) facet for the 4.0 and 5.0 nm nanoparticles in water. The effect of water solvent on the selectivity is investigated through comparing the adsorption free-energy landscapes for glycine molecules on the nanoparticles in water and in vacuum. The area of the facet plays a key role in determining the selectivity of glycine molecules for the different facets, especially the shift of the selectivity as the nanoparticle diameter changes. Our simulations suggest that nanoparticle size and shape can be engineered to control the preferred adsorption location of molecules.
NASA Astrophysics Data System (ADS)
Haider, Shahid A.; Kazemzadeh, Farnoud; Wong, Alexander
2017-03-01
An ideal laser is a useful tool for the analysis of biological systems. In particular, the polarization property of lasers can allow for the concentration of important organic molecules in the human body, such as proteins, amino acids, lipids, and carbohydrates, to be estimated. However, lasers do not always work as intended and there can be effects such as mode hopping and thermal drift that can cause time-varying intensity fluctuations. The causes of these effects can be from the surrounding environment, where either an unstable current source is used or the temperature of the surrounding environment is not temporally stable. This intensity fluctuation can cause bias and error in typical organic molecule concentration estimation techniques. In a low-resource setting where cost must be limited and where environmental factors, like unregulated power supplies and temperature, cannot be controlled, the hardware required to correct for these intensity fluctuations can be prohibitive. We propose a method for computational laser intensity stabilisation that uses Bayesian state estimation to correct for the time-varying intensity fluctuations from electrical and thermal instabilities without the use of additional hardware. This method will allow for consistent intensities across all polarization measurements for accurate estimates of organic molecule concentrations.
Observation of pendular butterfly Rydberg molecules
Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H.; Ott, Herwig
2016-01-01
Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron–perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance. PMID:27703143
Neutron Nucleic Acid Crystallography.
Chatake, Toshiyuki
2016-01-01
The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.
Nascimento, Dayane K D; Souza, Ivone A DE; Oliveira, Antônio F M DE; Barbosa, Mariana O; Santana, Marllon A N; Pereira, Daniel F; Lira, Eduardo C; Vieira, Jeymesson R C
2016-09-01
Mangroves represent areas of high biological productivity and it is a region rich in bioactive substances used in medicine production. Conocarpus erectus (Combretaceae) known as button mangrove is one of the species found in mangroves and it is used in folk medicine in the treatment of anemia, catarrh, conjunctivitis, diabetes, diarrhea, fever, gonorrhea, headache, hemorrhage, orchitis, rash, bumps and syphilis. The present study aimed to investigate the acute toxicity of aqueous extract of leaves of C. erectus in Swiss albino mice. The plant material was collected in Vila Velha mangroves, located in Itamaracá (PE). The material was subjected to a phytochemical screening where extractive protocols to identify majority molecules present in leaves were used. The evaluation of acute toxicity of aqueous extract of C. erectus followed the model of Acute Toxicity Class based on OECD 423 Guideline, 2001. The majority molecules were identified: flavonoids, tannins and saponins. The LD50 was estimated at 2,000 mg/kg bw. Therefore, the aqueous extract showed low acute toxicity classified in category 5.
Free enthalpies of replacing water molecules in protein binding pockets.
Riniker, Sereina; Barandun, Luzi J; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F
2012-12-01
Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH(3) group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH(3) at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.
Free enthalpies of replacing water molecules in protein binding pockets
NASA Astrophysics Data System (ADS)
Riniker, Sereina; Barandun, Luzi J.; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F.
2012-12-01
Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH3 group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH3 at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.
Real Time Oil Reservoir Evaluation Using Nanotechnology
NASA Technical Reports Server (NTRS)
Li, Jing (Inventor); Meyyappan, Meyya (Inventor)
2011-01-01
A method and system for evaluating status and response of a mineral-producing field (e.g., oil and/or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence/absence of each of two or more target molecules in the fluid, relative humidity, temperature and/or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.
Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone
Braun, Doris E.; Griesser, Ulrich J.
2018-01-01
The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359
General Requirement for Harvesting Antennae at Ca2+ and H+ Channels and Transporters
Martínez, Cristián; Kalise, Dante; Barros, L. Felipe
2010-01-01
The production and dissipation of energy in cells is intimately linked to the movement of small molecules in and out of enzymes, channels, and transporters. An analytical model of diffusion was described previously, which was used to estimate local effects of these proteins acting as molecular sources. The present article describes a simple but more general model, which can be used to estimate the local impact of proteins acting as molecular sinks. The results show that the enzymes, transporters, and channels, whose substrates are present at relatively high concentrations like ATP, Na+, glucose, lactate, and pyruvate, do not operate fast enough to deplete their vicinity to a meaningful extent, supporting the notion that for these molecules the cytosol is a well-mixed compartment. One specific consequence of this analysis is that the well-documented cross-talk existing between the Na+/K+ ATPase and the glycolytic machinery should not be explained by putative changes in local ATP concentration. In contrast, Ca2+ and H+ transporters like the Na+/Ca2+ exchanger NCX and the Na+/H+ exchanger NHE, show experimental rates of transport that are two to three orders of magnitude faster than the rates at which the aqueous phase may possibly feed their binding sites. This paradoxical result implies that Ca2+ and H+ transporters do not extract their substrates directly from the bulk cytosol, but from an intermediate “harvesting” compartment located between the aqueous phase and the transport site. PMID:20877432
NASA Astrophysics Data System (ADS)
Ruth, Anthony; Collins, Laura; Gomes, Kenjiro; Janko, Boldizsar
We present a real-space representation of molecules which results in the normal bonding rules and electronic structure of chemistry without atom-centered coulomb potentials. Using a simple mapping, we can generate atomless molecules from the structure of real molecules. Additionally, molecules without atoms show similar covalent bonding energies and transfer of charge in ionic bonds as real molecules. The atomless molecules contain only the valence and conduction electronic structure of the real molecule. Using the framework of the Atoms in Molecules (AIM) theory of Bader, we prove that the topological features of the valence charge distribution of molecules without atoms are identical to that of real molecules. In particular, the charge basins of atomless molecules show identical location and quantities of representative charge. We compare the accuracy, computational cost, and intuition gained from electronic structure calculations of molecules without atoms with the use of pseudopotentials to represent atomic cores in density functional theory. A. R. acknowledges support from a NASA Space Technology Research Fellowship.
Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C
2011-09-01
An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy
NASA Astrophysics Data System (ADS)
Minh, David D. L.; Adib, Artur B.
2008-05-01
An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.
A priori predictions of the rotational constants for HC13N, HC15N, C5O
NASA Technical Reports Server (NTRS)
DeFrees, D. J.; McLean, A. D.
1989-01-01
Ab initio molecular orbital theory is used to estimate the rotational constant for several carbon-chain molecules that are candidates for discovery in interstellar space. These estimated rotational constants can be used in laboratory or astronomical searches for the molecules. The rotational constant for HC13N is estimated to be 0.1073 +/- 0.0002 GHz and its dipole moment 5.4 D. The rotational constant for HC15N is estimated to be 0.0724 GHz, with a somewhat larger uncertainty. The rotational constant of C5O is estimated to be 1.360 +/- 2% GHz and its dipole moment 4.4. D.
Molecular electrostatics for probing lone pair-π interactions.
Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R
2013-11-14
An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.
Methods to estimate historical daily streamflow for ungaged stream locations in Minnesota
Lorenz, David L.; Ziegeweid, Jeffrey R.
2016-03-14
Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water; however, streamgages cannot be installed at every location where streamflow information is needed. Therefore, methods for estimating streamflow at ungaged stream locations need to be developed. This report presents a statewide study to develop methods to estimate the structure of historical daily streamflow at ungaged stream locations in Minnesota. Historical daily mean streamflow at ungaged locations in Minnesota can be estimated by transferring streamflow data at streamgages to the ungaged location using the QPPQ method. The QPPQ method uses flow-duration curves at an index streamgage, relying on the assumption that exceedance probabilities are equivalent between the index streamgage and the ungaged location, and estimates the flow at the ungaged location using the estimated flow-duration curve. Flow-duration curves at ungaged locations can be estimated using recently developed regression equations that have been incorporated into StreamStats (http://streamstats.usgs.gov/), which is a U.S. Geological Survey Web-based interactive mapping tool that can be used to obtain streamflow statistics, drainage-basin characteristics, and other information for user-selected locations on streams.
Intermolecular Casimir-Polder forces in water and near surfaces
NASA Astrophysics Data System (ADS)
Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias
2014-09-01
The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.
Volume of reaction by the Archibald ultracentrifuge method (lobster hemocyanin).
Saxena, V P; Kegeles, G; Kikas, R
1976-07-01
Samples of lobster hemocyanin (Homarus americanus) under conditions of reversible reaction between whole (25 S) and half (17 S) molecules have been subjected to accurately known nitrogen pressures in analytical ultracentrifuge cells. A modified pressurization chamber of the type developed by Schumaker and colleagues has been constructed for this purpose. The molecular weight was then determined at the top (liquid-gas) meniscus, by means of the Archibald method. The logarithmic dependence upon pressure of the derived equilibrium constant then gave directly the volume of reaction. Experiments were performed in veronal-citrate buffers at pH 8, where the molar volume of formation of whole (dodecameric) molecules from half molecules appears to be negative, and at pH 8.46 in veronal-citrate buffer in the presence of 0.003 molar free calcium ion, where the molar volume of formation was estimated to be + 390 cm3/mole. In glycine-sodium hydroxide buffer at pH 9.6 containing 0.0047 molar free calcium, the molar volume of formation of whole molecules was estimated to be +120 +/- 70 cm3, corresponding to an estimated difference in partial specific volume between whole molecules and half molecules of only 1.3 (10)-4cm3/gram. The correctness of the sign of this value in glycine buffer has been verified by pressure-jump light-scattering experiments.
The Role of Experience in Location Estimation: Target Distributions Shift Location Memory Biases
ERIC Educational Resources Information Center
Lipinski, John; Simmering, Vanessa R.; Johnson, Jeffrey S.; Spencer, John P.
2010-01-01
Research based on the Category Adjustment model concluded that the spatial distribution of target locations does not influence location estimation responses [Huttenlocher, J., Hedges, L., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. "Cognition, 93", 75-97]. This conflicts with earlier results showing…
Singh, Narender; Guha, Rajarshi; Giulianotti, Marc; Pinilla, Clemencia; Houghten, Richard; Medina-Franco, Jose L.
2009-01-01
A multiple criteria approach is presented, that is used to perform a comparative analysis of four recently developed combinatorial libraries to drugs, Molecular Libraries Small Molecule Repository (MLSMR) and natural products. The compound databases were assessed in terms of physicochemical properties, scaffolds and fingerprints. The approach enables the analysis of property space coverage, degree of overlap between collections, scaffold and structural diversity and overall structural novelty. The degree of overlap between combinatorial libraries and drugs was assessed using the R-NN curve methodology, which measures the density of chemical space around a query molecule embedded in the chemical space of a target collection. The combinatorial libraries studied in this work exhibit scaffolds that were not observed in the drug, MLSMR and natural products collections. The fingerprint-based comparisons indicate that these combinatorial libraries are structurally different to current drugs. The R-NN curve methodology revealed that a proportion of molecules in the combinatorial libraries are located within the property space of the drugs. However, the R-NN analysis also showed that there are a significant number of molecules in several combinatorial libraries that are located in sparse regions of the drug space. PMID:19301827
Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng
2015-05-01
In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O} n , the Zn(II) cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water mol-ecules in a distorted N2O4 octa-hedral geometry; among the four coordinate water mol-ecules, two are located on the same twofold rotation axis. The 1,4-bis-[4-(1H-imidazol-1-yl)benzo-yl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the Zn(II) cations, forming polymeric chains propagating along [201]. In the crystal, O-H⋯O and weak C-H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water mol-ecules into a three-dimensional supra-molecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions.
Laser-excited fluorescence for measuring atmospheric pollution
NASA Technical Reports Server (NTRS)
Menzies, R. T.
1975-01-01
System measures amount of given pollutant at specific location. Infrared laser aimed at location has wavelength that will cause molecules of pollutant to fluoresce. Detector separates fluorescence from other radiation and measures its intensity to indicate concentration of pollutant.
Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Castano, Diego J.
1987-01-01
Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.
Mora Osorio, Camilo Andrés; González Barrios, Andrés Fernando
2016-12-07
Calculation of the Gibbs free energy changes of biological molecules at the oil-water interface is commonly performed with Molecular Dynamics simulations (MD). It is a process that could be performed repeatedly in order to find some molecules of high stability in this medium. Here, an alternative method of calculation has been proposed: a group contribution method (GCM) for peptides based on MD of the twenty classic amino acids to obtain free energy change during the insertion of any peptide chain in water-dodecane interfaces. Multiple MD of the twenty classic amino acids located at the interface of rectangular simulation boxes with a dodecane-water medium were performed. A GCM to calculate the free energy of entire peptides is then proposed. The method uses the summation of the Gibbs free energy of each amino acid adjusted in function of its presence or absence in the chain as well as its hydrophobic characteristics. Validation of the equation was performed with twenty-one peptides all simulated using MD in dodecane-water rectangular boxes in previous work, obtaining an average relative error of 16%.
Triclinic lysozyme at 0.65 angstrom resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.; Dauter, M.; Alkire, R.
The crystal structure of triclinic hen egg-white lysozyme (HEWL) has been refined against diffraction data extending to 0.65 {angstrom} resolution measured at 100 K using synchrotron radiation. Refinement with anisotropic displacement parameters and with the removal of stereochemical restraints for the well ordered parts of the structure converged with a conventional R factor of 8.39% and an R{sub free} of 9.52%. The use of full-matrix refinement provided an estimate of the variances in the derived parameters. In addition to the 129-residue protein, a total of 170 water molecules, nine nitrate ions, one acetate ion and three ethylene glycol molecules weremore » located in the electron-density map. Eight sections of the main chain and many side chains were modeled with alternate conformations. The occupancies of the water sites were refined and this step is meaningful when assessed by use of the free R factor. A detailed description and comparison of the structure are made with reference to the previously reported triclinic HEWL structures refined at 0.925 {angstrom} (at the low temperature of 120 K) and at 0.95 {angstrom} resolution (at room temperature).« less
Zabashta, Y F; Kasprova, A V; Senchurov, S P; Grabovskii, Y E
2012-06-01
It has been established after conducting an X-ray diffraction study of the structure of hair treated with the thioglycolic acid solution that the preferable location of thioglycolic acid molecules should be the intrafibrillar unordered areas. Based on this fact it has been concluded that the redistribution of disulphide bonds of hair occurs mainly in the mentioned above areas when treated with thioglycolic acid solution. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Technical Reports Server (NTRS)
Liu, G.
1985-01-01
One of the major concerns in the design of an active control system is obtaining the information needed for effective feedback. This involves the combination of sensing and estimation. A sensor location index is defined as the weighted sum of the mean square estimation errors in which the sensor locations can be regarded as estimator design parameters. The design goal is to choose these locations to minimize the sensor location index. The choice of the number of sensors is a tradeoff between the estimation quality based upon the same performance index and the total costs of installing and maintaining extra sensors. An experimental study for choosing the sensor location was conducted on an aeroelastic system. The system modeling which includes the unsteady aerodynamics model developed by Stephen Rock was improved. Experimental results verify the trend of the theoretical predictions of the sensor location index for different sensor locations at various wind speeds.
Fast estimation of diffusion tensors under Rician noise by the EM algorithm.
Liu, Jia; Gasbarra, Dario; Railavo, Juha
2016-01-15
Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve system (CNS). This biological tissue contains much anatomic, structural and orientational information of fibers in human brain. Spectral data from the displacement distribution of water molecules located in the brain tissue are collected by a magnetic resonance scanner and acquired in the Fourier domain. After the Fourier inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a consequence, the recorded magnitude data are corrupted by Rician noise. Statistical estimation of diffusion leads a non-linear regression problem. In this paper, we present a fast computational method for maximum likelihood estimation (MLE) of diffusivities under the Rician noise model based on the expectation maximization (EM) algorithm. By using data augmentation, we are able to transform a non-linear regression problem into the generalized linear modeling framework, reducing dramatically the computational cost. The Fisher-scoring method is used for achieving fast convergence of the tensor parameter. The new method is implemented and applied using both synthetic and real data in a wide range of b-amplitudes up to 14,000s/mm(2). Higher accuracy and precision of the Rician estimates are achieved compared with other log-normal based methods. In addition, we extend the maximum likelihood (ML) framework to the maximum a posteriori (MAP) estimation in DTI under the aforementioned scheme by specifying the priors. We will describe how close numerically are the estimators of model parameters obtained through MLE and MAP estimation. Copyright © 2015 Elsevier B.V. All rights reserved.
Prasad, Anup K; Singh, Ramesh P; Kafatos, Menas
2012-04-01
The oxides of nitrogen--NO(x) (NO and NO(2))--are an important constituent of the troposphere. The availability of relatively higher spatial (0.25° grid) and temporal (daily) resolution data from ozone monitoring instrument (OMI) onboard Aura helps us to better differentiate between the point sources such as thermal power plants from large cities and rural areas compared to previous sensors. The annual and seasonal (summer and winter) distributions shows very high mean tropospheric NO(2) in specific pockets over India especially over the Indo-Gangetic plains (up to 14.2 × 10(15) molecules/cm(2)). These pockets correspond with the known locations of major thermal power plants. The tropospheric NO(2) over India show a large seasonal variability that is also observed in the ground NO(2) data. The multiple regression analysis show that the influence of a unit of power plant (in gigawatts) over tropospheric NO(2) (×10(15) molecules/cm(2)) is around ten times compared to a unit of population (in millions) over India. The OMI data show that the NO(2) increases by 0.794 ± 0.12 (×10(15) molecules/cm(2); annual) per GW compared to a previous estimate of 0.014 (×10(15) molecules/cm(2)) over India. The increase of tropospheric NO(2) per gigawatt is found to be 1.088 ± 0.18, 0.898 ± 0.14, and 0.395 ± 0.13 (×10(15) molecules/cm(2)) during winter, summer, and monsoon seasons, respectively. The strong seasonal variation is attributed to the enhancement or suppression of NO(2) due to various controlling factors which is discussed here. The recent increasing trend (2005-2007) over rural thermal power plants pockets like Agori and Korba is due to recent large capacity additions in these regions.
NASA Astrophysics Data System (ADS)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xuan; Deeb, Claire; Kostcheev, Sergei
We report a self-developing anisotropic gold/polymer hybrid nanosystem that precisely places dye molecules at the plasmonic hotspot of metal nanostructures for sensing and photonics applications. Unlike conventional molecule-particle configurations, the anisotropic hybrid nanosystem (AHN) introduces an anisotropic spatial distribution of dye-containing active medium. This allows us to precisely overlap the near-field spatial distribution with the active medium and rule out the contribution from the background molecules. This overlap effect selectively highlights the optical response of the molecules of interest, i.e., molecules located at the hotspots. Our AHN consists of gold nanodimers whose gaps have been filled with methylene blue molecules.more » They have been studied by plasmon-enhanced Raman spectroscopy as a probing tool. The AHN opens new doors not only for fundamental studies and photonics applications of molecule-particle interactions, but also for molecular trapping methods at the nanoscale.« less
Braun, Joerg E; Serebrov, Victor
2017-01-01
Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.
Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.
Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L
2008-10-01
In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.
NASA Astrophysics Data System (ADS)
Alata, Ivan; Broquier, Michel; Dedonder-Lardeux, Claude; Jouvet, Christophe; Kim, Minho; Sohn, Woon Yong; Kim, Sang-su; Kang, Hyuk; Schütz, Markus; Patzer, Alexander; Dopfer, Otto
2011-02-01
Vibrational and electronic spectra of protonated naphthalene (NaphH+) microsolvated by one and two water molecules were obtained by photofragmentation spectroscopy. The IR spectrum of the monohydrated species is consistent with a structure with the proton located on the aromatic molecule, NaphH+-H2O. Similar to isolated NaphH+, the first electronic transition of NaphH+-H2O (S1) occurs in the visible range near 500 nm. The doubly hydrated species lacks any absorption in the visible range (420-600 nm) but absorbs in the UV range, similar to neutral Naph. This observation is consistent with a structure, in which the proton is located on the water moiety, Naph-(H2O)2H+. Ab initio calculations for [Naph-(H2O)n]H+ confirm that the excess proton transfers from Naph to the solvent cluster upon attachment of the second water molecule.
Takeuchi, Hiroshi
2018-05-08
Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Emets, A I; Baiard, U V; Nyporko, A Iu; Swire-Clark, G A; Blium, Ia B
2009-01-01
The identification of point mutation locations on beta-tubulin molecules of amiprophosmethyl- and trifluralin-resistant Nicotiana plumbaginifolia lines have described in the work. It was shown that in the first case this mutation is connected with the substitution ofserine residue on proline in position 248; in the second case--with the substitution of phenilalanine on serine in position 317 of beta-tubulin amino acid sequence. Three-dimensional models of beta-tubulin molecule from Chlamydomonas with well-known location of mutations conferring dinitroaniline- and phosphorotioamidate resistance (substitution of lysine residue to methionine on position 350), and beta-tubulin from Nicotiana plumbaginifolia have been reconstructed. On the basis of analysis of site of interaction with dinitroanilines and phosphorotioamides on Chlamydomonas beta-tubulin molecule it was concluded that the revealed mutations on Nicotiana plumbaginifolia beta-tubulin affect amino acid residues participating in formation of this site.
Submillimeter, millimeter, and microwave spectral line catalogue, revision 3
NASA Technical Reports Server (NTRS)
Pickett, H. M.; Poynter, R. L.; Cohen, E. A.
1992-01-01
A computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10,000 GHz (i.e., wavelengths longer than 30 micrometers) is described. The catalog can be used as a planning or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, the lower state energy, and the quantum number assignment. This edition of the catalog has information on 206 atomic and molecular species and includes a total of 630,924 lines. The catalog was constructed by using theoretical least square fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalog will add more atoms and molecules and update the present listings as new data appear. The catalog is available as a magnetic data tape recorded in card images, with one card image per spectral line, from the National Space Science Data Center, located at Goddard Space Flight Center.
Histone-poly(A) hybrid molecules as tools to block nuclear pores.
Cremer, G; Wojtech, E; Kalbas, M; Agutter, P S; Prochnow, D
1995-04-01
Histone-poly(A) hybrid molecules were used for transport experiments with resealed nuclear envelopes and after attachment of a cleavable cross-linker (SASD) to identify nuclear proteins. In contrast to histones, the hybrid molecules cannot be accumulated in resealed nuclear envelopes, and in contrast to poly(A), the export of hybrids from preloaded nuclear envelopes is completely impaired. The experiments strongly confirm the existence of poly(A) as an export signal in mRNA which counteracts the nuclear location signals (NLS) in histones. The contradicting transport signals in the hybrid molecules impair translocation through the nuclear pore complex. The failure to accumulate hybrid molecules into resealed nuclear envelopes results from the covalent attachment of polyadenylic acid to histones in a strict 1:1 molar ratio. This was demonstrated in control transport experiments where radiolabeled histones were simply mixed with nonlabeled poly(A) or radiolabeled poly(A) mixed with nonlabeled histones. In comparison, control uptake experiments with histones covalently linked to a single UMP-mononucleotide are strongly enhanced. Such controls exclude the conceivable possibility of a simple masking of the nuclear location signal in the histones by the covalent attached poly(A) moiety. Photoreactive histone-poly(A) hybrid analogs serve to identify nuclear envelope proteins--presumably in the nuclear pore--with molecular weights of 110, 80, and 71.4 kDa.
Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts
NASA Astrophysics Data System (ADS)
Bahri-Laleh, Naeimeh
2016-08-01
Adsorption of different poison molecules on activated MgCl2 is investigated within DFT using a cluster model of the MgCl2 surface with (MgCl2)16 formula containing four 4-coordinated and eight 5-coordinated Mg atoms as (110) and (104) surfaces, respectively. Studied poison molecules are chosen as possible impurities in hydrocarbon solvents and monomer feeds and contain water, hydrogensulfide, carbondioxide, molecular oxygen and methanol. First, adsorption of 1-4 molecules of different poisons to the (104) and (110) lateral cuts of MgCl2, as well as their adsorption on [MgCl2]/TiCl2Et active center and AlEt3 cocatalyst is considered. Results reveal that poisons strongly stabilize both crystal surfaces, mostly Ti active center relative to the unpoisoned solid. Second, energy barrier (ETS) for ethylene insertion in the presence of different poisons located on the first and second Mg atom relative to the active Ti is calculated. While poison molecule located on the second Mg does not change ETS, coordination of it into the first Mg atom increases ETS by 0.9-1.2 kcal mol-1. In the last part of this manuscript, the stereoselective behavior of active Ti species, with and without poison molecules and external electron donor, is fully explored.
NASA Astrophysics Data System (ADS)
Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Derewinski, Miroslaw A.; Xu, Zhijie; Gray, Michel J.; Prodinger, Sebastian; Ramasamy, Karthikeyan K.
2016-11-01
The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set-based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution.
Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Derewinski, Miroslaw A.; Xu, Zhijie; Gray, Michel J.; Prodinger, Sebastian; Ramasamy, Karthikeyan K.
2016-01-01
The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set–based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution. PMID:27876869
Prych, Edmund A.
1995-01-01
Long-term average deep-percolation rates of water from precipitation on the U.S. Department of Energy Hanford Site in semiarid south-central Washington, as estimated by a chloride mass-balance method, range from 0.008 to 0.30 mm/yr (millimeters per year) at nine locations covered by a variety of fine-grain soils and vegetated with sagebrush and other deep-rooted plants plus sparse shallow-rooted grasses. Deep-percolation rates estimated using a chlorine-36 bomb-pulse method at three of the nine locations range from 2.1 to 3.4 mm/yr. Because the mass-balance method may underestimate percolation rates and the bomb-pulse method probably overestimates percolation rates, estimates by the two methods probably bracket actual rates. These estimates, as well as estimates by previous investigators who used different methods, are a small fraction of mean annual precipitation, which ranges from about 160 to 210 mm/yr at the different test locations. Estimates by the mass-balance method at four locations in an area that is vegetated only with sparse shallow-rooted grasses range from 0.39 to 2.0 mm/yr. Chlorine-36 data at one location in this area were sufficient only to determine that the upper limit of deep percolation is more than 5.1 mm/yr. Although estimates for locations in this area are larger than the estimates for locations with deep-rooted plants, they are at the lower end of the range of estimates for this area made by previous investigators.
Silva, Mónica A; Jonsen, Ian; Russell, Deborah J F; Prieto, Rui; Thompson, Dave; Baumgartner, Mark F
2014-01-01
Argos recently implemented a new algorithm to calculate locations of satellite-tracked animals that uses a Kalman filter (KF). The KF algorithm is reported to increase the number and accuracy of estimated positions over the traditional Least Squares (LS) algorithm, with potential advantages to the application of state-space methods to model animal movement data. We tested the performance of two Bayesian state-space models (SSMs) fitted to satellite tracking data processed with KF algorithm. Tracks from 7 harbour seals (Phoca vitulina) tagged with ARGOS satellite transmitters equipped with Fastloc GPS loggers were used to calculate the error of locations estimated from SSMs fitted to KF and LS data, by comparing those to "true" GPS locations. Data on 6 fin whales (Balaenoptera physalus) were used to investigate consistency in movement parameters, location and behavioural states estimated by switching state-space models (SSSM) fitted to data derived from KF and LS methods. The model fit to KF locations improved the accuracy of seal trips by 27% over the LS model. 82% of locations predicted from the KF model and 73% of locations from the LS model were <5 km from the corresponding interpolated GPS position. Uncertainty in KF model estimates (5.6 ± 5.6 km) was nearly half that of LS estimates (11.6 ± 8.4 km). Accuracy of KF and LS modelled locations was sensitive to precision but not to observation frequency or temporal resolution of raw Argos data. On average, 88% of whale locations estimated by KF models fell within the 95% probability ellipse of paired locations from LS models. Precision of KF locations for whales was generally higher. Whales' behavioural mode inferred by KF models matched the classification from LS models in 94% of the cases. State-space models fit to KF data can improve spatial accuracy of location estimates over LS models and produce equally reliable behavioural estimates.
Silva, Mónica A.; Jonsen, Ian; Russell, Deborah J. F.; Prieto, Rui; Thompson, Dave; Baumgartner, Mark F.
2014-01-01
Argos recently implemented a new algorithm to calculate locations of satellite-tracked animals that uses a Kalman filter (KF). The KF algorithm is reported to increase the number and accuracy of estimated positions over the traditional Least Squares (LS) algorithm, with potential advantages to the application of state-space methods to model animal movement data. We tested the performance of two Bayesian state-space models (SSMs) fitted to satellite tracking data processed with KF algorithm. Tracks from 7 harbour seals (Phoca vitulina) tagged with ARGOS satellite transmitters equipped with Fastloc GPS loggers were used to calculate the error of locations estimated from SSMs fitted to KF and LS data, by comparing those to “true” GPS locations. Data on 6 fin whales (Balaenoptera physalus) were used to investigate consistency in movement parameters, location and behavioural states estimated by switching state-space models (SSSM) fitted to data derived from KF and LS methods. The model fit to KF locations improved the accuracy of seal trips by 27% over the LS model. 82% of locations predicted from the KF model and 73% of locations from the LS model were <5 km from the corresponding interpolated GPS position. Uncertainty in KF model estimates (5.6±5.6 km) was nearly half that of LS estimates (11.6±8.4 km). Accuracy of KF and LS modelled locations was sensitive to precision but not to observation frequency or temporal resolution of raw Argos data. On average, 88% of whale locations estimated by KF models fell within the 95% probability ellipse of paired locations from LS models. Precision of KF locations for whales was generally higher. Whales’ behavioural mode inferred by KF models matched the classification from LS models in 94% of the cases. State-space models fit to KF data can improve spatial accuracy of location estimates over LS models and produce equally reliable behavioural estimates. PMID:24651252
Intercalation of paracetamol into the hydrotalcite-like host
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovanda, Frantisek, E-mail: Frantisek.Kovanda@vscht.cz; Maryskova, Zuzana; Kovar, Petr
2011-12-15
Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 Degree-Sign C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly nearmore » the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Paracetamol was intercalated in Mg-Al hydrotalcite-like host by rehydration/reconstruction procedure. Black-Right-Pointing-Pointer Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. Black-Right-Pointing-Pointer Molecular simulations showed disordered arrangement of guest molecules in the interlayer. Black-Right-Pointing-Pointer Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.« less
Adsorption properties of AlN on Si(111) surface: A density functional study
NASA Astrophysics Data System (ADS)
Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting
2018-04-01
In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.
NASA Astrophysics Data System (ADS)
Adib, Artur B.
In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.
Linear estimation of coherent structures in wall-bounded turbulence at Re τ = 2000
NASA Astrophysics Data System (ADS)
Oehler, S.; Garcia–Gutiérrez, A.; Illingworth, S.
2018-04-01
The estimation problem for a fully-developed turbulent channel flow at Re τ = 2000 is considered. Specifically, a Kalman filter is designed using a Navier–Stokes-based linear model. The estimator uses time-resolved velocity measurements at a single wall-normal location (provided by DNS) to estimate the time-resolved velocity field at other wall-normal locations. The estimator is able to reproduce the largest scales with reasonable accuracy for a range of wavenumber pairs, measurement locations and estimation locations. Importantly, the linear model is also able to predict with reasonable accuracy the performance that will be achieved by the estimator when applied to the DNS. A more practical estimation scheme using the shear stress at the wall as measurement is also considered. The estimator is still able to estimate the largest scales with reasonable accuracy, although the estimator’s performance is reduced.
Hydrated states of MgSO4 at equatorial latiudes on Mars
Feldman, W.C.; Mellon, M.T.; Maurice, S.; Prettyman, T.H.; Carey, J.W.; Vaniman, D.T.; Bish, D.L.; Fialips, C.I.; Chipera, S.J.; Kargel, J.S.; Elphic, R.C.; Funsten, H.O.; Lawrence, D.J.; Tokar, R.L.
2004-01-01
The stability of water ice, epsomite, and hexahydrite to loss of H 2O molecules to the atmosphere at equatorial latitudes of Mars was studied to determine their potential contributions to the measured abundance of water-equivalent hydrogen (WEH). Calculation of the relative humidity based on estimates of yearly averages of water-vapor pressures and temperatures at the Martian surface was used for this purpose. Water ice was found to be sufficiently unstable everywhere within 45?? of the equator that if the observed WEH is due to water ice, it requires a low-permeability cover layer near the surface to isolate the water ice below from the atmosphere above. In contrast, epsomite or hexahydrite may be stable in many near-equatorial locations where significant amounts of WEH are observed. Copyright 2004 by the American Geophysical Union.
Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules
NASA Astrophysics Data System (ADS)
Veetil, Aneesh T.; Chakraborty, Kasturi; Xiao, Kangni; Minter, Myles R.; Sisodia, Sangram S.; Krishnan, Yamuna
2017-12-01
Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.
Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas
Fromm, David P.; Kinkhabwala, Anika; Schuck, P. James; Moerner, W. E.; Sundaramurthy, Arvind; Kino, Gordon S.
2006-01-01
Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >107, much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules. PMID:16483189
Lin, Chun-Yu; Hu, Kuang-Yu; Ho, Shih-Hu; Song, Yen-Ling
2006-01-01
Clip domain serine protease homologs (c-SPHs) are involved in various innate immune functions in arthropods such as antimicrobial activity, cell adhesion, pattern recognition, opsonization, and regulation of the prophenoloxidase system. In the present study, we cloned a c-SPH cDNA from tiger shrimp (Penaeus monodon) hemocytes. It is 1337 bp in length with a coding region of 1068 bp consisting a protein of 355 amino acid residues. The deduced protein includes one clip domain and one catalytically inactive serine protease-like (SP-like) domain. Its molecular weight is estimated to be 38 kDa with an isoelectric point of 7.9. The predicted cutting site of the signal peptide is located between Gly(21) and Gln(22). We aligned 15 single clip domain SPH protein sequences from 12 arthropod species; the identity of these clip domains is low and that of SP-like domains is from 34% to 46%. The conserved regions are located near the amino acid residues which served as substrate interaction sites in catalytically active serine protease. Phylogenetically, the tiger shrimp c-SPH is most similar to a low molecular mass masquerade-like protein of crayfish, but less similar to c-SPHs in Chelicerata and Insecta. Nested reverse transcription polymerase chain reaction (RT-PCR) revealed that c-SPH mRNA is expressed most in tissues with the highest hemocyte abundance. Antimicrobial and opsonization activities of the molecule were not detected. The expression of c-SPH mRNA in hemocytes was up-regulated at the 12-day post beta-glucan immersion. Recombinant c-SPH could significantly enhance hemocyte adhesion. The result suggests that the shrimp c-SPH protein plays a role in innate immunity.
Papadimitriou, Vassileios C; Burkholder, James B
2016-08-25
Rate coefficients, k(T), for the OH radical + (E)-(CF3)2CFCH═CHF ((E)-1,3,4,4,4-pentafluoro-3-(trifluoromethyl)-1-butene, HFO-1438ezy(E)) gas-phase reaction were measured using pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) between 214 and 380 K and 50 and 450 Torr (He or N2 bath gas) and with a relative rate method at 296 K between 100 and 400 Torr (synthetic air). Over the range of pressures included in this study, no pressure dependence in k(T) was observed. k(296 K) obtained using the two techniques agreed to within ∼3% with (3.26 ± 0.26) × 10(-13) cm(3) molecule(-1) s(-1) (2σ absolute uncertainty) obtained using the PLP-LIF technique. k(T) displayed non-Arrhenius behavior that is reproduced by (7.34 ± 0.30) × 10(-19)T(2) exp[(481 ± 10)/T) cm(3) molecule(-1) s(-1). With respect to OH reactive loss, the atmospheric lifetime of HFO-1438ezy(E) is estimated to be ∼36 days and HFO-1438ezy(E) is considered a very short-lived substance (VSLS) (the actual lifetime will depend on the time and location of the HFO-1438ezy(E) emission). On the basis of the HFO-1438ezy(E) infrared absorption spectrum measured in this work and its estimated lifetime, a radiative efficiency of 0.306 W m(-2) ppb(-1) (well-mixed gas) was calculated and its 100-year time-horizon global warming potential, GWP100, was estimated to be 8.6. CF3CFO, HC(O)F, and CF2O were identified using infrared spectroscopy as stable end products in the oxidation of HFO-1438ezy(E) in the presence of O2. Two additional fluorinated products were observed and theoretical calculations of the infrared spectra of likely degradation products are presented. The photochemical ozone creation potential of HFO-1438ezy(E) was estimated to be ∼2.15.
Effective diffusion coefficient including the Marangoni effect
NASA Astrophysics Data System (ADS)
Kitahata, Hiroyuki; Yoshinaga, Natsuhiko
2018-04-01
Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.
Detection of presence of chemical precursors
NASA Technical Reports Server (NTRS)
Li, Jing (Inventor); Meyyappan, Meyya (Inventor); Lu, Yijiang (Inventor)
2009-01-01
Methods and systems for determining if one or more target molecules are present in a gas, by exposing a functionalized carbon nanostructure (CNS) to the gas and measuring an electrical parameter value EPV(n) associated with each of N CNS sub-arrays. In a first embodiment, a most-probable concentration value C(opt) is estimated, and an error value, depending upon differences between the measured values EPV(n) and corresponding values EPV(n;C(opt)) is computed. If the error value is less than a first error threshold value, the system interprets this as indicating that the target molecule is present in a concentration C.apprxeq.C(opt). A second embodiment uses extensive statistical and vector space analysis to estimate target molecule concentration.
NASA Astrophysics Data System (ADS)
Zhuo, Shuping; Wei, Jichong; Ju, Guanzhi
The intrapair and interpair correlation energies of MF2 (M = Be, Mg, Ca) set molecules are calculated and analysed, and the transferability of inner core correlation effects of Mδ+ are investigated. A detailed analysis of the comparison of correlation energies of neutral atoms with their corresponding ions of Mδ+ and Fδ-/2 is given in terms of the correlation contribution of this component. The study reveals that the total correlation energy of MF2 molecules can be obtained by summing the correlation contributions of Mδ+ and two Fδ-/2 components. This simple estimation method does shed light on the importance of searching useful means for the calculation of electron correlation energy for large biological systems.
Cover estimation and payload location using Markov random fields
NASA Astrophysics Data System (ADS)
Quach, Tu-Thach
2014-02-01
Payload location is an approach to find the message bits hidden in steganographic images, but not necessarily their logical order. Its success relies primarily on the accuracy of the underlying cover estimators and can be improved if more estimators are used. This paper presents an approach based on Markov random field to estimate the cover image given a stego image. It uses pairwise constraints to capture the natural two-dimensional statistics of cover images and forms a basis for more sophisticated models. Experimental results show that it is competitive against current state-of-the-art estimators and can locate payload embedded by simple LSB steganography and group-parity steganography. Furthermore, when combined with existing estimators, payload location accuracy improves significantly.
MARS Science Laboratory Post-Landing Location Estimation Using Post2 Trajectory Simulation
NASA Technical Reports Server (NTRS)
Davis, J. L.; Shidner, Jeremy D.; Way, David W.
2013-01-01
The Mars Science Laboratory (MSL) Curiosity rover landed safely on Mars August 5th, 2012 at 10:32 PDT, Earth Received Time. Immediately following touchdown confirmation, best estimates of position were calculated to assist in determining official MSL locations during entry, descent and landing (EDL). Additionally, estimated balance mass impact locations were provided and used to assess how predicted locations compared to actual locations. For MSL, the Program to Optimize Simulated Trajectories II (POST2) was the primary trajectory simulation tool used to predict and assess EDL performance from cruise stage separation through rover touchdown and descent stage impact. This POST2 simulation was used during MSL operations for EDL trajectory analyses in support of maneuver decisions and imaging MSL during EDL. This paper presents the simulation methodology used and results of pre/post-landing MSL location estimates and associated imagery from Mars Reconnaissance Orbiter s (MRO) High Resolution Imaging Science Experiment (HiRISE) camera. To generate these estimates, the MSL POST2 simulation nominal and Monte Carlo data, flight telemetry from onboard navigation, relay orbiter positions from MRO and Mars Odyssey and HiRISE generated digital elevation models (DEM) were utilized. A comparison of predicted rover and balance mass location estimations against actual locations are also presented.
Mechanical response of collagen molecule under hydrostatic compression.
Saini, Karanvir; Kumar, Navin
2015-04-01
Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moriguchi, Tetsuji; Yakeya, Daisuke; Tsuge, Akihiko; Jalli, Venkataprasad
2018-04-01
Three new thiophene condensed fluorescent pyrene derivatives have been synthesized by a two-step process, via. Wittig reaction followed by iodine promoted photocyclization. These molecules have been characterized by 1H NMR and EI-MS. Further, the molecular structures of 4a, 4b and 4c has been confirmed by single crystal X-ray diffraction analysis. The protons located in the fjord and cove-regions of molecules 4b and 4c showed downfield shifts of the protons. Molecule 4a crystallized under monoclinic system with space group P21/c, molecule 4b crystallized under monoclinic system with space group C2/c and the molecule 4c crystalized under triclinic system with space group P-1. Molecules 4a, 4b and 4c showed strong absorption maxima wavelengths at 305, 358 and 330 nm, respectively. The molar extinctinction coefficients (ε) of the compounds 4a, 4b and 4c indicated molecule 4c has better ability to absorb UV light, molecule 4b has better fluorescence intensity than molecule 4a and 4c.
Linear electric field time-of-flight ion mass spectrometer
Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM
2008-06-10
A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.
NASA Technical Reports Server (NTRS)
Shih, Wei-Chuan (Inventor)
2017-01-01
The present disclosure relates the use of a stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates to produce a label-free, multiplexed molecular sensing and imaging technique. A NPGD SERS substrate is stamped onto a surface containing one or more target molecules, followed by SERS measurement of the target molecules located between the surface and SERS substrate. The target molecules may be deposited on the surface, which may be a carrier substrate such as polydimethylsiloxane (PDMS).
2013-08-05
pyrrole Hk protons of the receptor. Additionally, a C–H…π interaction between the phenyl ring and H4 and two more H- bonds between the hydroxyl group of...C3 and an amino He and pyrrole Hk proton of the receptor were observed. Side views b) parallel and c) perpendicular to the biphenyl linkage of the...located on the biphenyl base and pyrroles , suggesting a geometry where one molecule of β-Man is encaged by two molecules of 1, and the two molecules of
Columnar to Nematic Mesophase Transition: Binary Mixtures of Copper Soaps with Hydrocarbons
NASA Astrophysics Data System (ADS)
Seghrouchni, R.; Skoulios, A.
1995-09-01
Copper (II) soaps are known to produce columnar mesophases at high temperatures. The polar groups of the soap molecules are stacked over one another within columns surrounded by the paraffin chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. Upon addition of a hydrocarbon, the mesophases swell homogeneously. The hydrocarbon molecules locate themselves among the disordered chains of the soap molecules, the columnar cores remain perfectly unchanged, keeping a constant intra-columnar stacking period, and the hexagonal lattice expands in proportion to the amount of hydrocarbon added to the system. Beyond a certain degree of swelling, the columnar mesophases suddenly turn into a nematic mesophase through a first-order phase transition. The structural elements that align parallel to the nematic director are the very same molecular columns that are involved in the columnar mesophases. The columnar to nematic mesophase transition was studied systematically as a function of the molecular size of the soaps and hydrocarbons used as diluents and discussed on a molecular level, emphasizing such aspects as the persistence length of the paraffin chains and the location of the solvent molecules among the columns.
COMDYN: Software to study the dynamics of animal communities using a capture-recapture approach
Hines, J.E.; Boulinier, T.; Nichols, J.D.; Sauer, J.R.; Pollock, K.H.
1999-01-01
COMDYN is a set of programs developed for estimation of parameters associated with community dynamics using count data from two locations or time periods. It is Internet-based, allowing remote users either to input their own data, or to use data from the North American Breeding Bird Survey for analysis. COMDYN allows probability of detection to vary among species and among locations and time periods. The basic estimator for species richness underlying all estimators is the jackknife estimator proposed by Burnham and Overton. Estimators are presented for quantities associated with temporal change in species richness, including rate of change in species richness over time, local extinction probability, local species turnover and number of local colonizing species. Estimators are also presented for quantities associated with spatial variation in species richness, including relative richness at two locations and proportion of species present in one location that are also present at a second location. Application of the estimators to species richness estimation has been previously described and justified. The potential applications of these programs are discussed.
Plasmonic tunnel junctions for single-molecule redox chemistry.
de Nijs, Bart; Benz, Felix; Barrow, Steven J; Sigle, Daniel O; Chikkaraddy, Rohit; Palma, Aniello; Carnegie, Cloudy; Kamp, Marlous; Sundararaman, Ravishankar; Narang, Prineha; Scherman, Oren A; Baumberg, Jeremy J
2017-10-20
Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.
Koley, Somnath; Ghosh, Subhadip
2016-11-30
An insight study reveals the strong synergistic solvation behaviours from reporter dye molecules within the acetonitrile (ACN)-water (WT) binary mixture. Synergism of a binary mixture refers to some unique changes of the physical and thermodynamic properties of the solvent mixture, originating from the interactions among its cosolvents, which are absent within the pure cosolvents. Synergistic solvation of a binary mixture is likely to be fundamental for greater stabilization of an excited state solute dipole; at least to some extent greater as compared to one stabilized by any of its cosolvents alone. A dynamic Stokes shift due to the solvation of an excited dipole in the ACN-WT binary mixture is found to be highly relevant to the ground state physical properties of the solute molecule (polarity, hydrophilicity, acidity, etc.). Largely different solvation times in the ACN-WT mixture are observed from different dye molecules with widely varying polarities. However, earlier study shows that dye molecules, irrespective of their varying polarities, exhibit very similar solvation times within a pure solvent (J. Phys. Chem. B, 2014, 118, 7577-7785). On further study with fluorescence correlation spectroscopy (FCS) we observed that, unlike the translational diffusion coefficient (D t ) of a dye molecule within a pure solvent, which remains the same irrespective of the location of the dye molecule inside the solvent, a broad distribution among the D t values of a dye molecule is obtained from different locations within the ACN-WT binary mixture. Lastly our 1 H NMR study in the ACN-WT binary mixture shows the existence of strong hydrogen bond interactions among the cosolvents in the ACN-WT mixture.
Animated molecular dynamics simulations of hydrated caesium-smectite interlayers
Sutton, Rebecca; Sposito, Garrison
2002-01-01
Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.
Rudling, Axel; Orro, Adolfo; Carlsson, Jens
2018-02-26
Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.
NASA Astrophysics Data System (ADS)
Menon, Vidya V.; Foto, Egemen; Mary, Y. Sheena; Karatas, Esin; Panicker, C. Yohannan; Yalcin, Gözde; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Yildiz, Ilkay
2017-02-01
FT-IR and FT-Raman spectra of 5-nitro-2-phenoxymethylbenzimidazole were recorded and analyzed theoretically and experimentally. The splitting of Nsbnd H stretching mode in the IR spectrum with a red shift from the calculated value indicates the weakening of the NH bond. The theoretical calculations give the phenyl ring breathing modes at 999 cm-1 for mono substituted benzene ring and at 1040 cm-1 for tri-substituted benzene ring. The theoretical NMR chemical shifts are in agreement with the experimental chemical shifts. The most reactive sites for electrophilic and nucleophilic attack are predicted from the MEP analysis. HOMO of π nature is delocalized over the entire molecule whereas the LUMO is located over the complete molecule except mono-substituted phenyl ring and oxygen atom. Reactive sites of the title molecule have been located with the help of ALIE surfaces and Fukui functions. In order to determine locations prone to autoxidation and locations interesting for starting of degradation, bond dissociation energies have been calculated for all single acyclic bonds. For the determination of atoms with pronounced interactions with water we have calculated radial distribution functions obtained after molecular dynamics simulations. The calculated first hyperpolarizability of the title compound is 58.03 times that of standard nonlinear optical material urea. The substrate binding site interactions of the title compound with Topo II enzyme is reported by using molecular docking study. Biological activity studies show that the title compound can be leaded for developing new anticancer agents.
Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative
NASA Astrophysics Data System (ADS)
Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian
2018-03-01
A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.
Beuming, Thijs; Che, Ye; Abel, Robert; Kim, Byungchan; Shanmugasundaram, Veerabahu; Sherman, Woody
2012-03-01
Water plays an essential role in determining the structure and function of all biological systems. Recent methodological advances allow for an accurate and efficient estimation of the thermodynamic properties of water molecules at the surface of proteins. In this work, we characterize these thermodynamic properties and relate them to various structural and functional characteristics of the protein. We find that high-energy hydration sites often exist near protein motifs typically characterized as hydrophilic, such as backbone amide groups. We also find that waters around alpha helices and beta sheets tend to be less stable than waters around loops. Furthermore, we find no significant correlation between the hydration site-free energy and the solvent accessible surface area of the site. In addition, we find that the distribution of high-energy hydration sites on the protein surface can be used to identify the location of binding sites and that binding sites of druggable targets tend to have a greater density of thermodynamically unstable hydration sites. Using this information, we characterize the FKBP12 protein and show good agreement between fragment screening hit rates from NMR spectroscopy and hydration site energetics. Finally, we show that water molecules observed in crystal structures are less stable on average than bulk water as a consequence of the high degree of spatial localization, thereby resulting in a significant loss in entropy. These findings should help to better understand the characteristics of waters at the surface of proteins and are expected to lead to insights that can guide structure-based drug design efforts. Copyright © 2011 Wiley Periodicals, Inc.
Jirapatnakul, Artit C; Fotin, Sergei V; Reeves, Anthony P; Biancardi, Alberto M; Yankelevitz, David F; Henschke, Claudia I
2009-01-01
Estimation of nodule location and size is an important pre-processing step in some nodule segmentation algorithms to determine the size and location of the region of interest. Ideally, such estimation methods will consistently find the same nodule location regardless of where the the seed point (provided either manually or by a nodule detection algorithm) is placed relative to the "true" center of the nodule, and the size should be a reasonable estimate of the true nodule size. We developed a method that estimates nodule location and size using multi-scale Laplacian of Gaussian (LoG) filtering. Nodule candidates near a given seed point are found by searching for blob-like regions with high filter response. The candidates are then pruned according to filter response and location, and the remaining candidates are sorted by size and the largest candidate selected. This method was compared to a previously published template-based method. The methods were evaluated on the basis of stability of the estimated nodule location to changes in the initial seed point and how well the size estimates agreed with volumes determined by a semi-automated nodule segmentation method. The LoG method exhibited better stability to changes in the seed point, with 93% of nodules having the same estimated location even when the seed point was altered, compared to only 52% of nodules for the template-based method. Both methods also showed good agreement with sizes determined by a nodule segmentation method, with an average relative size difference of 5% and -5% for the LoG and template-based methods respectively.
Stuckey, Marla H.; Koerkle, Edward H.; Ulrich, James E.
2012-01-01
BaSE uses the map correlation method and flow-duration exceedance probability regression equations to estimate baseline daily mean streamflow for an ungaged location. The output from BaSE is a Microsoft Excel® report file that summarizes the reference streamgage and ungaged location information, including basin characteristics, percent difference in basin characteristics between the two locations, any warning associated with the basin characteristics, mean and median streamflow for the ungaged location, and a daily hydrograph of streamflow for water years 1960–2008 for the ungaged location. The daily mean streamflow for the ungaged location can be exported as a text file to be used as input into other statistical software packages. BaSE estimates daily mean streamflow for baseline conditions only, and any alterations to streamflow from regulation, large water use, or substantial mining are not reflected in the estimated streamflow.
ERIC Educational Resources Information Center
Ho, Chung-Cheng
2016-01-01
For decades, direction finding has been an important research topic in many applications such as radar, location services, and medical diagnosis for treatment. For those kinds of applications, the precision of location estimation plays an important role, since that, having a higher precision location estimate method is always desirable. Although…
NASA Astrophysics Data System (ADS)
Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna, T.; Mykkeltveit, S.
2017-01-01
Declared North Korean nuclear tests in 2006, 2009, 2013 and 2016 were observed seismically at regional and teleseismic distances. Waveform similarity allows the events to be located relatively with far greater accuracy than the absolute locations can be determined from seismic data alone. There is now significant redundancy in the data given the large number of regional and teleseismic stations that have recorded multiple events, and relative location estimates can be confirmed independently by performing calculations on many mutually exclusive sets of measurements. Using a 1-D global velocity model, the distances between the events estimated using teleseismic P phases are found to be approximately 25 per cent shorter than the distances between events estimated using regional Pn phases. The 2009, 2013 and 2016 events all take place within 1 km of each other and the discrepancy between the regional and teleseismic relative location estimates is no more than about 150 m. The discrepancy is much more significant when estimating the location of the more distant 2006 event relative to the later explosions with regional and teleseismic estimates varying by many hundreds of metres. The relative location of the 2006 event is challenging given the smaller number of observing stations, the lower signal-to-noise ratio and significant waveform dissimilarity at some regional stations. The 2006 event is however highly significant in constraining the absolute locations in the terrain at the Punggye-ri test-site in relation to observed surface infrastructure. For each seismic arrival used to estimate the relative locations, we define a slowness scaling factor which multiplies the gradient of seismic traveltime versus distance, evaluated at the source, relative to the applied 1-D velocity model. A procedure for estimating correction terms which reduce the double-difference time residual vector norms is presented together with a discussion of the associated uncertainty. The modified velocity gradients reduce the residuals, the relative location uncertainties and the sensitivity to the combination of stations used. The traveltime gradients appear to be overestimated for the regional phases, and teleseismic relative location estimates are likely to be more accurate despite an apparent lower precision. Calibrations for regional phases are essential given that smaller magnitude events are likely not to be recorded teleseismically. We discuss the implications for the absolute event locations. Placing the 2006 event under a local maximum of overburden at 41.293°N, 129.105°E would imply a location of 41.299°N, 129.075°E for the January 2016 event, providing almost optimal overburden for the later four events.
Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.
Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît
2011-01-01
Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.
Statistical Analysis of Big Data on Pharmacogenomics
Fan, Jianqing; Liu, Han
2013-01-01
This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905
Water-soluble conductive polymers
Aldissi, Mahmoud
1989-01-01
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Water-soluble conductive polymers
Aldissi, Mahmoud
1990-01-01
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Water-soluble conductive polymers
Aldissi, M.
1988-02-12
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
NASA Astrophysics Data System (ADS)
Lerner, Michael G.; Meagher, Kristin L.; Carlson, Heather A.
2008-10-01
Use of solvent mapping, based on multiple-copy minimization (MCM) techniques, is common in structure-based drug discovery. The minima of small-molecule probes define locations for complementary interactions within a binding pocket. Here, we present improved methods for MCM. In particular, a Jarvis-Patrick (JP) method is outlined for grouping the final locations of minimized probes into physical clusters. This algorithm has been tested through a study of protein-protein interfaces, showing the process to be robust, deterministic, and fast in the mapping of protein "hot spots." Improvements in the initial placement of probe molecules are also described. A final application to HIV-1 protease shows how our automated technique can be used to partition data too complicated to analyze by hand. These new automated methods may be easily and quickly extended to other protein systems, and our clustering methodology may be readily incorporated into other clustering packages.
Yuan, Ying; Dego, Oudessa Kerro; Chen, Xueyan; Abadin, Eurife; Chan, Shangfeng; Jory, Lauren; Kovacevic, Steven; Almeida, Raul A; Oliver, Stephen P
2014-12-01
The objective was to identify and sequence the sua gene (GenBank no. DQ232760; http://www.ncbi.nlm.nih.gov/genbank/) and detect Streptococcus uberis adhesion molecule (SUAM) expression by Western blot using serum from naturally S. uberis-infected cows in strains of S. uberis isolated in milk from cows with mastitis from geographically diverse areas of the world. All strains evaluated yielded a 4.4-kb sua-containing PCR fragment that was subsequently sequenced. Deduced SUAM AA sequences from those S. uberis strains evaluated shared >97% identity. The pepSUAM sequence located at the N terminus of SUAM was >99% identical among strains of S. uberis. Streptococcus uberis adhesion molecule expression was detected in all strains of S. uberis tested. These results suggest that sua is ubiquitous among strains of S. uberis isolated from diverse geographic locations and that SUAM is immunogenic. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Faucheu, Jenny; Chazeau, Laurent; Gauthier, Catherine; Cavaillé, Jean-Yves; Goikoetxea, Monika; Minari, Roque; Asua, José M
2009-09-01
Among other uses, latexes are a successful alternative to solvent-borne binders for coatings. Efforts are made to produce hybrid nanostructured latexes containing an acrylic phase and an alkyd phase. However, after the film-forming process, the surfactant used to stabilize these latexes remains in the film, and its location can have a drastic effect on the application properties. Among the processing parameters, the alkyd hydrophobicity can strongly influence this location. This article aims at the imaging of these surfactant molecules in two hybrid latexes with different hydrophobicity level of the alkyd resin. A first part of this paper is dedicated to the understanding of the contrast provided by the surfactant in environmental STEM imaging of latexes. Then, the influence of surfactant-polymer affinity on the surfactant location after film-forming of those hybrid alkyd/acrylate latexes is studied by this technique. It is shown that in the hybrid latex with an alkyd shell (obtained with the most hydrophilic resin), the surfactant molecules tend to remain buried in the alkyd phase. Conversely, in the hybrid latex with an acrylate shell (in the case of the most hydrophobic resin), the surfactant molecules tend to gather into islands like in pure acrylate latex films.
A novel spiroindoline targets cell cycle and migration via modulation of microtubule cytoskeleton.
Kumar, Naveen; Hati, Santanu; Munshi, Parthapratim; Sen, Subhabrata; Sehrawat, Seema; Singh, Shailja
2017-05-01
Natural product-inspired libraries of molecules with diverse architectures have evolved as one of the most useful tools for discovering lead molecules for drug discovery. In comparison to conventional combinatorial libraries, these molecules have been inferred to perform better in phenotypic screening against complicated targets. Diversity-oriented synthesis (DOS) is a forward directional strategy to access such multifaceted library of molecules. From a successful DOS campaign of a natural product-inspired library, recently a small molecule with spiroindoline motif was identified as a potent anti-breast cancer compound. Herein we report the subcellular studies performed for this molecule on breast cancer cells. Our investigation revealed that it repositions microtubule cytoskeleton and displaces AKAP9 located at the microtubule organization centre. DNA ladder assay and cell cycle experiments further established the molecule as an apoptotic agent. This work further substantiated the amalgamation of DOS-phenotypic screening-sub-cellular studies as a consolidated blueprint for the discovery of potential pharmaceutical drug candidates.
Signaling gateway molecule pages—a data model perspective
Dinasarapu, Ashok Reddy; Saunders, Brian; Ozerlat, Iley; Azam, Kenan; Subramaniam, Shankar
2011-01-01
Summary: The Signaling Gateway Molecule Pages (SGMP) database provides highly structured data on proteins which exist in different functional states participating in signal transduction pathways. A molecule page starts with a state of a native protein, without any modification and/or interactions. New states are formed with every post-translational modification or interaction with one or more proteins, small molecules or class molecules and with each change in cellular location. State transitions are caused by a combination of one or more modifications, interactions and translocations which then might be associated with one or more biological processes. In a characterized biological state, a molecule can function as one of several entities or their combinations, including channel, receptor, enzyme, transcription factor and transporter. We have also exported SGMP data to the Biological Pathway Exchange (BioPAX) and Systems Biology Markup Language (SBML) as well as in our custom XML. Availability: SGMP is available at www.signaling-gateway.org/molecule. Contact: shankar@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21505029
Darlix, J L; Gabus, C; Nugeyre, M T; Clavel, F; Barré-Sinoussi, F
1990-12-05
The retroviral genome consists of two identical RNA molecules joined at their 5' ends by the Dimer Linkage Structure (DLS). To study the mechanism of dimerization and the DLS of HIV-1 RNA, large amounts of bona fide HIV-1 RNA and of mutants have been synthesized in vitro. We report that HIV-1 RNA forms dimeric molecules and that viral nucleocapsid (NC) protein NCp15 greatly activates dimerization. Deletion mutagenesis in the RNA 5' 1333 nucleotides indicated that a small domain of 100 nucleotides, located between positions 311 to 415 from the 5' end, is necessary and sufficient to promote HIV-1 RNA dimerization. This dimerization domain encompasses an encapsidation element located between the 5' splice donor site and initiator AUG of gag and shows little sequence variations in different strains of HIV-1. Furthermore, cross-linking analysis of the interactions between NC and HIV-1 RNA (311 to 415) locates a major contact site in the encapsidation element of HIV-1 RNA. The genomic RNA dimer is tightly associated with nucleocapsid protein molecules in avian and murine retroviruses, and this ribonucleoprotein structure is believed to be the template for reverse transcription. Genomic RNA-protein interactions have been analyzed in human immunodeficiency virus (HIV) virions and results showed that NC protein molecules are tightly bound to the genomic RNA dimer. Since retroviral RNA dimerization and packaging appear to be under the control of the same cis element, the encapsidation sequences, and trans-acting factor, the NC protein, they are probably related events in the course of virion assembly.
Seismic reflections identify finite differences in gas hydrate resources
Dillon, William P.; Max, M.
1999-01-01
Gas hydrate is a gas-bearing, ice-like crystalline solid. The substance's build ing blocks consist of a gas molecule (generally methane) sur-rounded by a cage of water molecules. The total amount of methane in hydrate in the world is immense - the most recent speculative estimate centers on values of 21x1015 cu meters. Thus, it may represent a future energy resource. This estimate was presented by Keith Kvenvolden at the International Symposium on Methane Hydrates, Resources in the Near Future, sponsor ed by Japanese National Oil Company (Tokyo, October, 1998).But, as with any natural resource, there is a need to find naturally occurring concentrations in order to effectively extract gas. We need to answer four basic questions:Do methane hydrate concentrations suitable for methane extraction exist?How can we recognize these concentrations?Where are concentrations located?What processes control methane hydrate concentrations?Gas hydrate occurs naturally at the pressure/ temperature/chemical conditions that are present within ocean floor sediments at water depths greater than about 500 meters. The gas hydrate stability zone (GHSZ) extends from the sea bottom downward to a depth where the natural increase in temperature causes the hydrate to melt (dissociate), even though the downward pressure increase is working to increase gas hydrate stability.Thus, the base of the GHSZ tends to parallel the seafloor at any given water depth (pressure), because the sub-seafloor isotherms (depths of constant temperature) generally parallel the seafloor. The layer at which gas hydrate is stable commonly extends from the sea floor to several hundred meters below it. The gas in most gas hydrates is methane, generated by bacteria in the sediments. In some cases, it can be higher carbon-number, thermogenic hydrocarbon gases that rise from greater depths.
USDA-ARS?s Scientific Manuscript database
Mitochondria are essential subcellular organelles found in eukaryotic cells. Knowing information on a protein’s subcellular or sub subcellular location provides in-depth insights about the microenvironment where it interacts with other molecules and is crucial for inferring the protein’s function. T...
A New Method of Estimating Atomic Charges by Electronegativity Equilibration.
ERIC Educational Resources Information Center
Smith, Derek W.
1990-01-01
Presented is a modification of Bratsch's prescription so that difficult problems are obviated while simple, familiar Pauling electronegativities are retained. Discussed are the equilibration of electronegativity in molecules, group electronegativities, coordination compounds and molecules with dative bonds, ions, and correlation with core…
Dutta, Rupam; Ghosh, Surajit; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni
2017-03-15
The presence of different surfactants can alter the physicochemical behaviors of aqueous organized assemblies. In this article, we have investigated the location of hydrophobic molecule (Coumarin 153, C153) and hydrophilic molecule (Rhodamine 6G perchlorate, R6G) during micelle-vesicle-micelle transition in aqueous medium in presence of anionic surfactant, sodium dodecylbenzenesulfonate (SDBS) and cationic imidazolium-based surfactant, 1-alkyl-3-methylimidazolium chloride (C n mimCl; n=12, 16). Initially, the physicochemical properties of anionic micellar solution of SDBS has been investigated in presence of imidazolium-based surfactant, C n mimCl (n=12, 16) in aqueous medium by visual observation, turbidity measurement, zeta potential (ζ), dynamics light scattering (DLS), and transmission electron microscopy (TEM). Zeta potential (ζ) measurement clearly indicates that the incorporation efficiency of C 16 mimCl in SDBS micelle is better than the other one due to the involvement of strong hydrophobic as well as electrostatic interaction between the two associated molecules. Turbidity and DLS measurements clearly suggest the formation of vesicles over a wide range of concentration. Finally, the rotational motion of C153 and R6G has also been monitored at different mole fractions of C n mimCl in SDBS-C n mimCl (n=12, 16) solution mixtures. The hydrophobic C153 molecules preferentially located in the bilayer region of vesicle, whereas hydrophilic R6G can be solubilized at surface of the bilayer, inner water pool or outer surface of vesicles. It is observed that rotational motion of R6G is altered significantly in SDBS-C n mimCl solution mixtures in presence of different mole fractions of C n mimCl. Additionally, the translational diffusion motion of R6G is monitored using fluorescence correlation spectroscopy (FCS) techniques to get a complete scenario about the location and translational diffusion of R6G. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Coeckelenbergh, Y.; Macelroy, R. D.; Rein, R.
1978-01-01
The investigation of specific interactions among biological molecules must take into consideration the stereochemistry of the structures. Thus, models of the molecules are essential for describing the spatial organization of potentially interacting groups, and estimations of conformation are required for a description of spatial organization. Both the function of visualizing molecules, and that of estimating conformation through calculations of energy, are part of the molecular modeling system described in the present paper. The potential uses of the system in investigating some aspects of the origin of life rest on the assumption that translation of conformation from genetic elements to catalytic elements would have been required for the development of the first replicating systems subject to the process of biological evolution.
Harata, K; Schubert, W D; Muraki, M
2001-11-01
Ultica dioica agglutinin, a plant lectin from the stinging nettle, consists of a total of seven individual isolectins. One of these structures, isolectin I, was determined at 1.9 A resolution by the X-ray method. The crystals belong to the space group P2(1) and the asymmetric unit contains two molecules related by local twofold symmetry. The molecule consists of two hevein-like chitin-binding domains lacking distinct secondary structure, but four disulfide bonds in each domain maintain the tertiary structure. The backbone structure of the two independent molecules is essentially identical and this is similarly true of the sugar-binding sites. In the crystal, the C-terminal domains bind Zn(2+) ions at the sugar-binding site. Owing to their location near a pseudo-twofold axis, the two zinc ions link the two independent molecules in a tail-to-tail arrangement: thus, His47 of molecule 1 and His67 of molecule 2 coordinate the first zinc ion, while the second zinc ion links Asp75 of molecule 1 and His47 of molecule 2.
Takakusagi, Yoichi; Takakusagi, Kaori; Sugawara, Fumio; Sakaguchi, Kengo
2018-01-01
Identification of target proteins that directly bind to bioactive small molecule is of great interest in terms of clarifying the mode of action of the small molecule as well as elucidating the biological phenomena at the molecular level. Of the experimental technologies available, T7 phage display allows comprehensive screening of small molecule-recognizing amino acid sequence from the peptide libraries displayed on the T7 phage capsid. Here, we describe the T7 phage display strategy that is combined with quartz-crystal microbalance (QCM) biosensor for affinity selection platform and bioinformatics analysis for small molecule-recognizing short peptides. This method dramatically enhances efficacy and throughput of the screening for small molecule-recognizing amino acid sequences without repeated rounds of selection. Subsequent execution of bioinformatics programs allows combinatorial and comprehensive target protein discovery of small molecules with its binding site, regardless of protein sample insolubility, instability, or inaccessibility of the fixed small molecules to internally located binding site on larger target proteins when conventional proteomics approaches are used.
Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.
Germain, Ryan R; Wolak, Matthew E; Arcese, Peter; Losdat, Sylvain; Reid, Jane M
2016-11-01
Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding depression. All three spatial animal models estimated small location variance in breeding date, but because relatedness and breeding location were virtually uncorrelated, modelling location variance did not alter the estimated additive genetic variances. Our results show that sex-specific additive genetic effects on breeding date can be strongly positively correlated, which would affect any predicted rates of microevolutionary change in response to sexually antagonistic or congruent selection. Further, we show that inbreeding effects on breeding date can also be sex specific and that genetic effects can exceed phenotypic variation stemming from fine-scale location-based variation within a wild population. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Free energy barriers for escape of water molecules from protein hydration layer.
Roy, Susmita; Bagchi, Biman
2012-03-08
Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these "slow" water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.
NASA Astrophysics Data System (ADS)
Wania, F.; Lei, Y. D.; Wang, C.; Abbatt, J. P. D.; Goss, K.-U.
2014-12-01
Several methods have been presented in the literature to predict an organic chemical's equilibrium partitioning between the water insoluble organic matter (WIOM) component of aerosol and the gas phase, Ki,WIOM, as a function of temperature. They include (i) polyparameter linear free energy relationships calibrated with empirical aerosol sorption data, as well as (ii) the solvation models implemented in SPARC and (iii) the quantum-chemical software COSMOtherm, which predict solvation equilibria from molecular structure alone. We demonstrate that these methods can be used to predict Ki,WIOM for large numbers of individual molecules implicated in secondary organic aerosol (SOA) formation, including those with multiple functional groups. Although very different in their theoretical foundations, these methods give remarkably consistent results for the products of the reaction of normal alkanes with OH, i.e. their partition coefficients Ki,WIOM generally agree within one order of magnitude over a range of more than ten orders of magnitude. This level of agreement is much better than that achieved by different vapour pressure estimation methods that are more commonly used in the SOA community. Also, in contrast to the agreement between vapour pressure estimates, the agreement between the Ki,WIOM estimates does not deteriorate with increasing number of functional groups. Furthermore, these partitioning coefficients Ki,WIOM predicted SOA mass yields in agreement with those measured in chamber experiments of the oxidation of normal alkanes. If a Ki,WIOM prediction method was based on one or more surrogate molecules representing the solvation properties of the mixed OM phase of SOA, the choice of those molecule(s) was found to have a relatively minor effect on the predicted Ki,WIOM, as long as the molecule(s) are not very polar. This suggests that a single surrogate molecule, such as 1-octanol or a hypothetical SOA structure proposed by Kalberer et al. (2004), may often be sufficient to represent the WIOM component of the SOA phase, greatly simplifying the prediction. The presented methods could substitute for vapour-pressure-based methods in studies such as the explicit modelling of SOA formation from single precursor molecules in chamber experiments.
Conserved nematode signaling molecules elicit plant defenses and pathogen resistance
USDA-ARS?s Scientific Manuscript database
Nematodes, which are ubiquitous in soil and are estimated to cause $100 B of agricultural damage annually, produce novel, highly conserved small sugar-based molecules call ascarosides. Ascarosides play critical roles in nematode development and behavior. We report here that plants recognize these un...
Estimation of distributed Fermat-point location for wireless sensor networking.
Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien
2011-01-01
This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.
Bank, R A; Tekoppele, J M; Janus, G J; Wassen, M H; Pruijs, H E; Van der Sluijs, H A; Sakkers, R J
2000-07-01
The brittleness of bone in patients with osteogenesis imperfecta (OI) has been attributed to an aberrant collagen network. However, the role of collagen in the loss of tissue integrity has not been well established. To gain an insight into the biochemistry and structure of the collagen network, the cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) and the level of triple helical hydroxylysine (Hyl) were determined in bone of OI patients (types I, III, and IV) as well as controls. The amount of triple helical Hyl was increased in all patients. LP levels in OI were not significantly different; in contrast, the amount of HP (and as a consequence the HP/LP ratio and the total pyridinoline level) was significantly increased. There was no relationship between the sum of pyridinolines and the amount of triple helical Hyl, indicating that lysyl hydroxylation of the triple helix and the telopeptides are under separate control. Cross-linking is the result of a specific three-dimensional arrangement of collagens within the fibril; only molecules that are correctly aligned are able to form cross-links. Inasmuch as the total amount of pyridinoline cross-links in OI bone is similar to control bone, the packing geometry of intrafibrillar collagen molecules is not disturbed in OI. Consequently, the brittleness of bone is not caused by a disorganized intrafibrillar collagen packing and/or loss of cross-links. This is an unexpected finding, because mutant collagen molecules with a random distribution within the fibril are expected to result in disruptions of the alignment of neighboring collagen molecules. Pepsin digestion of OI bone revealed that collagen located at the surface of the fibril had lower cross-link levels compared with collagen located at the inside of the fibril, indicating that mutant molecules are not distributed randomly within the fibril but are located preferentially at the surface of the fibril.
Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.
Bhattarai, Ajaya; Wilczura-Wachnik, H
2014-01-30
The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer. Copyright © 2013 Elsevier B.V. All rights reserved.
Single-Molecule Probing of Adsorption and Diffusion on Silica Surfaces
NASA Astrophysics Data System (ADS)
Wirth, Mary J.; Legg, Michael A.
2007-05-01
Single-molecule spectroscopy has emerged as a valuable tool in probing kinetics and dynamic equilibria in adsorption because advances in instrumentation and technology have enabled researchers to obtain high signal-to-noise ratios for common dyes at room temperature. Single-molecule spectroscopy was applied to the study of an important problem in chromatography: peak broadening and asymmetry in the chromatograms of pharmaceuticals, peptides, and proteins. Using DiI, a cationic dye that exhibits the same problematic chromatographic behavior, investigators showed that the adsorption sites that cause chromatographic problems are located at defects on the silica crystal surface.
Line-Constrained Camera Location Estimation in Multi-Image Stereomatching.
Donné, Simon; Goossens, Bart; Philips, Wilfried
2017-08-23
Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images. Existing solutions use sparse feature matching for camera location estimation. In this paper, we propose a novel method that uses dense correspondences to do the same, leveraging an existing depth estimation framework to also yield the camera locations along the line. We illustrate the effectiveness of the proposed technique for camera location estimation both visually for the rectification of epipolar plane images and quantitatively with its effect on the resulting depth estimation. Our proposed approach yields a valid alternative for sparse techniques, while still being executed in a reasonable time on a graphics card due to its highly parallelizable nature.
Thompson, Nicola D; Edwards, Jonathan R; Bamberg, Wendy; Beldavs, Zintars G; Dumyati, Ghinwa; Godine, Deborah; Maloney, Meghan; Kainer, Marion; Ray, Susan; Thompson, Deborah; Wilson, Lucy; Magill, Shelley S
2013-03-01
To evaluate the accuracy of weekly sampling of central line-associated bloodstream infection (CLABSI) denominator data to estimate central line-days (CLDs). Obtained CLABSI denominator logs showing daily counts of patient-days and CLD for 6-12 consecutive months from participants and CLABSI numerators and facility and location characteristics from the National Healthcare Safety Network (NHSN). Convenience sample of 119 inpatient locations in 63 acute care facilities within 9 states participating in the Emerging Infections Program. Actual CLD and estimated CLD obtained from sampling denominator data on all single-day and 2-day (day-pair) samples were compared by assessing the distributions of the CLD percentage error. Facility and location characteristics associated with increased precision of estimated CLD were assessed. The impact of using estimated CLD to calculate CLABSI rates was evaluated by measuring the change in CLABSI decile ranking. The distribution of CLD percentage error varied by the day and number of days sampled. On average, day-pair samples provided more accurate estimates than did single-day samples. For several day-pair samples, approximately 90% of locations had CLD percentage error of less than or equal to ±5%. A lower number of CLD per month was most significantly associated with poor precision in estimated CLD. Most locations experienced no change in CLABSI decile ranking, and no location's CLABSI ranking changed by more than 2 deciles. Sampling to obtain estimated CLD is a valid alternative to daily data collection for a large proportion of locations. Development of a sampling guideline for NHSN users is underway.
Davis, J Q; Bennett, V
1994-11-04
Neurofascin, L1, NrCAM, NgCAM, and neuroglian are membrane-spanning cell adhesion molecules with conserved cytoplasmic domains that are believed to play important roles in development of the nervous system. This report presents biochemical evidence that the cytoplasmic domains of these molecules associate directly with ankyrins, a family of spectrin-binding proteins located on the cytoplasmic surface of specialized plasma membrane domains. Rat neurofascin and NrCAM together comprise over 0.5% of the membrane protein in adult brain tissue. Linkage of these ankyrin-binding cell adhesion molecules to spectrin-based structures may provide a major class of membrane-cytoskeletal connections in adult brain as well as earlier stages of development.
An Efficient Location Verification Scheme for Static Wireless Sensor Networks.
Kim, In-Hwan; Kim, Bo-Sung; Song, JooSeok
2017-01-24
In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors.
An Efficient Location Verification Scheme for Static Wireless Sensor Networks
Kim, In-hwan; Kim, Bo-sung; Song, JooSeok
2017-01-01
In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors. PMID:28125007
Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels
NASA Technical Reports Server (NTRS)
Wei, Chenyu; Srivastava, Deepak
2003-01-01
A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using Fokker-Planck equation and direct molecular dynamics (MD) simulations. The mean transport or translocation time tau is found to depend on the chemical potential energy, entropy and diffusion coefficient. A power law dependence tau approx. N(sup 2)is found where N is number of monomers in a molecule. For 10(exp 5)-unit long polyethylene molecules, tau is estimated to be approx. 1micro-s. The diffusion coefficient of long polymer molecules inside CNTs, like that of short ones, are found to be few orders of magnitude larger than in ordinary silicate based zeolite systems.
NASA Astrophysics Data System (ADS)
Nikitin, Sergei Yu
2009-07-01
Formulas are derived for evaluating the diffusion coefficient and size of gas molecules from transient coherent anti-Stokes Raman scattering measurements. Numerical estimates are presented for hydrogen.
NASA Astrophysics Data System (ADS)
Kristyán, Sándor
1997-11-01
In the author's previous work (Chem. Phys. Lett. 247 (1995) 101 and Chem. Phys. Lett. 256 (1996) 229) a simple quasi-linear relationship was introduced between the number of electrons, N, participating in any molecular system and the correlation energy: -0.035 ( N - 1) > Ecorr[hartree] > - 0.045( N -1). This relationship was developed to estimate more accurately correlation energy immediately in ab initio calculations by using the partial charges of atoms in the molecule, easily obtained after Hartree-Fock self-consistent field (HF-SCF) calculations. The method is compared to the well-known B3LYP, MP2, CCSD and G2M methods. Correlation energy estimations for negatively (-1) charged atomic ions are also reported.
Localizing the Subunit Pool for the Temporally Regulated Polar Pili of Caulobacter crescentus.
1987-01-01
was determined that the cellular location for un- assembled was the cell cytoplasm. All cell membranes and regions of muclear material were poorly...to colloidal gold. It was determined that the cellular location for unassembled pilin was the cell cytoplasm. All cell membranes and regions of nuclear...to determine the cellular location of the pilin pool. Because pilin is a small (8000 m.w. ) and hydrophobic molecule (3), problems with 3 non-specific
Novel scheme to compute chemical potentials of chain molecules on a lattice
NASA Astrophysics Data System (ADS)
Mooij, G. C. A. M.; Frenkel, D.
We present a novel method that allows efficient computation of the total number of allowed conformations of a chain molecule in a dense phase. Using this method, it is possible to estimate the chemical potential of such a chain molecule. We have tested the present method in simulations of a two-dimensional monolayer of chain molecules on a lattice (Whittington-Chapman model) and compared it with existing schemes to compute the chemical potential. We find that the present approach is two to three orders of magnitude faster than the most efficient of the existing methods.
Chen, Bor-Sen
2016-01-01
Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella’s rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the “brake component” in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each “brake component” were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the “brake component”. Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate “brake component” in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains. PMID:27096615
USDA-ARS?s Scientific Manuscript database
Nitrous oxide (N2O) is one of the most important greenhouse gases. The global warming potentials (GWP) of nitrous oxide (N2O) is 310 more, than that of carbon dioxide (CO2) during a 100 year time scale on molecule for molecule basis. Natural sources of N2O include wetlands. Sub-Saharan Africa is occ...
Study of the Rotational Structure of the v 2 Inversion Band of the 15NH2D Molecule
NASA Astrophysics Data System (ADS)
Fomchenko, A. L.; Belova, A. S.; Kwabia Tchana, F.
2018-04-01
The Fourier spectrum of the 15NH2D molecule in the range from 650 to 1150 cm-1, where the ν2 vibrationinversion band is located, is first studied. Analysis of the given band allows the energy rovibrational structure of the examined state to be determined. The inverse spectroscopic problem is solved based on the data obtained.
Analyzing animal movements using Brownian bridges.
Horne, Jon S; Garton, Edward O; Krone, Stephen M; Lewis, Jesse S
2007-09-01
By studying animal movements, researchers can gain insight into many of the ecological characteristics and processes important for understanding population-level dynamics. We developed a Brownian bridge movement model (BBMM) for estimating the expected movement path of an animal, using discrete location data obtained at relatively short time intervals. The BBMM is based on the properties of a conditional random walk between successive pairs of locations, dependent on the time between locations, the distance between locations, and the Brownian motion variance that is related to the animal's mobility. We describe two critical developments that enable widespread use of the BBMM, including a derivation of the model when location data are measured with error and a maximum likelihood approach for estimating the Brownian motion variance. After the BBMM is fitted to location data, an estimate of the animal's probability of occurrence can be generated for an area during the time of observation. To illustrate potential applications, we provide three examples: estimating animal home ranges, estimating animal migration routes, and evaluating the influence of fine-scale resource selection on animal movement patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gun’ko, Vladimir M.; Sir Harry Ricardo Laboratories, School of Computing, Engineering and Mathematics, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ; Nasiri, Rasoul
2015-01-21
The evaporation/condensation coefficient (β) and the evaporation rate (γ) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional ωB97X-D with the cc-pVTZ and cc-pVDZ basis sets) and in liquid phase (solvation method: SMD/ωB97X-D). It is shown that β depends more strongly on a number of neighbouring molecules interacting with an evaporating molecule at a droplet surface (this number is estimated through changes in the surface Gibbs free energy ofmore » solvation) than on pressure in the gas phase or conformerisation and cross-conformerisation of molecules in both phases. Thus, temperature and the surrounding effects at droplet surfaces are the dominant factors affecting the values of β for n-dodecane molecules. These values are shown to be similar (at reduced temperatures T/T{sub c} < 0.8) or slightly larger (at T/T{sub c} > 0.8) than the values of β calculated by the molecular dynamics force fields (MD FF) methods. This endorses the reliability of the previously developed classical approach to estimation of β by the MD FF methods, except at temperatures close to the critical temperature.« less
Immersion Refractometry of Isolated Bacterial Cell Walls
Marquis, Robert E.
1973-01-01
Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid model. PMID:4201772
Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data
Bakun, W.H.; Gomez, Capera A.; Stucchi, M.
2011-01-01
Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.
McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.
2012-01-01
Living cells are structured to create a range of microenvironments that support specific chemical reactions and processes. Understanding how cells function therefore requires detailed knowledge of both the subcellular architecture and the location of specific molecules within this framework. Here we review the development of two correlated cellular imaging techniques that fulfill this need. Cells are first imaged using cryogenic fluorescence microscopy to determine the location of molecules of interest that have been labeled with fluorescent tags. The same specimen is then imaged using soft X-ray tomography to generate a high-contrast, 3D reconstruction of the cells. Data from the two modalities are then combined to produce a composite, information-rich view of the cell. This correlated imaging approach can be applied across the spectrum of problems encountered in cell biology, from basic research to biotechnological and biomedical applications such as the optimization of biofuels and the development of new pharmaceuticals. PMID:22242730
Seismic imaging of gas hydrate reservoir heterogeneities
NASA Astrophysics Data System (ADS)
Huang, Jun-Wei
Natural gas hydrate, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The presence of gas hydrate has been confirmed by core samples recovered from boreholes. Interests in the distribution of natural gas hydrate stem from its potential as a future energy source, geohazard to drilling activities and their possible impact on climate change. However the current geophysical investigations of gas hydrate reservoirs are still too limited to fully resolve the location and the total amount of gas hydrate due to its complex nature of distribution. The goal of this thesis is twofold, i.e., to model (1) the heterogeneous gas hydrate reservoirs and (2) seismic wave propagation in the presence of heterogeneities in order to address the fundamental questions: where are the location and occurrence of gas hydrate and how much is stored in the sediments. Seismic scattering studies predict that certain heterogeneity scales and velocity contrasts will generate strong scattering and wave mode conversion. Vertical Seismic Profile (VSP) techniques can be used to calibrate seismic characterization of gas hydrate expressions on surface seismograms. To further explore the potential of VSP in detecting the heterogeneities, a wave equation based approach for P- and S-wave separation is developed. Tests on synthetic data as well as applications to field data suggest alternative acquisition geometries for VSP to enable wave mode separation. A new reservoir modeling technique based on random medium theory is developed to construct heterogeneous multi-variable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this new technique, I modeled the density, and P- and S-wave velocities in combination with a modified Biot-Gassmann theory and provided a first order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768x10 6 m3/km2 of natural gas trapped within hydrate, nearly an order of magnitude lower than earlier estimates which excluded effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D Finite Difference method to study seismic attenuation. Thus a framework is built to further tune the models of gas hydrate reservoirs with constraints from well logs other disciplinary data.
Water-induced ethanol dewetting transition.
Ren, Xiuping; Zhou, Bo; Wang, Chunlei
2012-07-14
The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.
Scheible, Max B; Pardatscher, Günther; Kuzyk, Anton; Simmel, Friedrich C
2014-03-12
The combination of molecular self-assembly based on the DNA origami technique with lithographic patterning enables the creation of hierarchically ordered nanosystems, in which single molecules are positioned at precise locations on multiple length scales. Based on a hybrid assembly protocol utilizing DNA self-assembly and electron-beam lithography on transparent glass substrates, we here demonstrate a DNA origami microarray, which is compatible with the requirements of single molecule fluorescence and super-resolution microscopy. The spatial arrangement allows for a simple and reliable identification of single molecule events and facilitates automated read-out and data analysis. As a specific application, we utilize the microarray to characterize the performance of DNA strand displacement reactions localized on the DNA origami structures. We find considerable variability within the array, which results both from structural variations and stochastic reaction dynamics prevalent at the single molecule level.
Optical Control of Internal Conversion in Pyrazine
NASA Astrophysics Data System (ADS)
Barry, Grant; Singha, Sima; Hu, Zhan; Seideman, Tamar; Gordon, Robert
2014-03-01
We apply quantum control schemes previously reserved for atoms and small molecules to more complex polyatomic molecules. Pyrazine was chosen as a model polyatomic molecule for its well-studied conical intersection seam between the S1 and S2 potential energy surfaces (PESs). Using shaped ultraviolet femtosecond laser pulses, we demonstrate optical control of the excited state dynamics of this molecule under collisionless conditions. This was achieved in a pump-probe experiment by employing a genetic algorithm programmed to suppress ionization of the pyrazine molecules at a preselected time. Our findings indicate that the optimized pulses localize the wave packet for times up to 1.5 ps at a location on the coupled S1/S2 PESs where ionization is energetically forbidden. Our approach is general and does not require knowledge of the molecular Hamiltonian. Funding provided by National Science Foundation grant no. CHE-0848198.
Searching for Prebiotically Important Molecules in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Gibb, Erika L.; Brown, L. R.; Sudholt, E.
2012-05-01
Understanding how prebiotic molecules form and are distributed around young stars is an important step in determining how and where life can form in planetary systems. In general, protoplanetary disks consist of a cold, dense midplane where, beyond the frost line, water and organic molecules will condense onto dust grains as icy coatings. The surface of the disk is exposed to stellar and interstellar radiation, giving rise to a photon-dominated region characterized by ionization and dissociation products. Between these two layers is a warm molecular layer where a rich molecular chemistry is predicted to occur. The warm molecular layer is somewhat protected from ionizing radiation by the dust and polycyclic aromatic hydrocarbons (PAHs) in the surface region. We present a high-resolution (λ / Δλ 25,000), near-infrared spectroscopic survey of the L-band toward T Tauri star GV Tau N. The data were acquired with the NIRSPEC instrument on the Keck II telescope, located on Mauna Kea, HI. We detected strong HCN absorption lines that we interpret to be located in the warm molecular layer of a nearly edge-on protoplanetary disk. We discuss significant differences in spectra acquired in 2006 and 2010 and implications for the material in the disk of GV Tau N, including rotational temperatures, abundances, and inferred location. This work was supported by the NSF Stellar Astronomy Program (Grant #0908230) and the NASA Exobiology program (NNX11AG44G).
Spatial Distribution and Kinematics of the Molecular Material Associated with eta Carinae
NASA Astrophysics Data System (ADS)
Loinard, Laurent; Kamiński, Tomasz; Serra, Paolo; Menten, Karl M.; Zapata, Luis A.; Rodríguez, Luis F.
2016-12-01
Single-dish submillimeter observations have recently revealed the existence of a substantial, chemically peculiar molecular gas component located in the innermost circumstellar environment of the very massive luminous blue variable star, η Carinae. Here, we present 5″-resolution interferometric observations of the 1\\to 0 rotational transition of hydrogen cyanide (HCN) toward this star obtained with the Australia Telescope Compact Array. The emission is concentrated in the central few arcseconds around η Carinae and shows a clear 150 km s-1 velocity gradient running from west-north-west (blue) to east-south-east (red). Given the extent, location, and kinematics of this molecular material, we associate it with the complex of dusty arcs and knots seen in mid-infrared emission near the center of the Homunculus nebula. Indeed, the shielding provided by this dust could help explain how molecules survive in the presence of the intense UV radiation field produced by η Carinae. The dust located in the central few arcseconds around η Carinae and the molecular component described here most likely formed in situ and out of material expelled by the massive interacting binary system. Thus, η Carinae offers us a rare glimpse of the processes that lead to the formation of dust and molecules around massive stars, which are relevant to the interpretation of dust and molecule detections at high redshifts.
Ultra-cold molecules in an atomic Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Wynar, Roahn Helden
2000-08-01
This thesis is about photoassociation of Bose-condensed 87Rb. Most importantly we report that state selected 87Rb2 molecules were created at rest in a condensate of 87Rb using two-photon photoassociation. Additionally, we have identified three weakly bound states of the 87Rb2 S+u3 , potential for the |1, -1> + |1, - 1> collisional channel. The binding energies of these states are 529.4 +/- .07, 636.0094 +/- .0012, and 24.24 +/- .01 MHz respectively. We have also carried out a detailed study of the density dependence of the shift and width of the two-photon lineshape. This shift and width is modeled using the theory of Bohn and Julienne [34] and in addition to the precise measurement of binding energy we also report the first measurement of an atom molecule scattering length, aam, which we conclude is -180 +/- 150 a0, and the inelastic collision rate, Kinel < 8 × 10-11 cm-3/s. Stimulated Raman free bound coupling in an atomic Bose- Einstein condensate may lead to the formation of a molecular condensate. In order to evaluate this possibility we present a many-body quantum mean field theory of a Bose-Einstein condensate that includes a density dependent coherent coupling between atoms and molecules. This theory yields two coupled equations, one for the evolution of atomic condensate amplitude and one for the evolution of molecular condensate amplitude. The nature of the atomic-molecular condensate evolution is shown to depend on six, model parameters including the coherent coupling, given by c
Optimal regionalization of extreme value distributions for flood estimation
NASA Astrophysics Data System (ADS)
Asadi, Peiman; Engelke, Sebastian; Davison, Anthony C.
2018-01-01
Regionalization methods have long been used to estimate high return levels of river discharges at ungauged locations on a river network. In these methods, discharge measurements from a homogeneous group of similar, gauged, stations are used to estimate high quantiles at a target location that has no observations. The similarity of this group to the ungauged location is measured in terms of a hydrological distance measuring differences in physical and meteorological catchment attributes. We develop a statistical method for estimation of high return levels based on regionalizing the parameters of a generalized extreme value distribution. The group of stations is chosen by optimizing over the attribute weights of the hydrological distance, ensuring similarity and in-group homogeneity. Our method is applied to discharge data from the Rhine basin in Switzerland, and its performance at ungauged locations is compared to that of other regionalization methods. For gauged locations we show how our approach improves the estimation uncertainty for long return periods by combining local measurements with those from the chosen group.
Generation of various radicals in nitrogen plasma and their behavior in media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhm, Han S., E-mail: hsuhm@kw.ac.kr
2015-12-15
Research on the generation of radicals in nitrogen plasma shows that the most dominant radicals are excited nitrogen molecules in the metastable state of N{sub 2}(A{sub 3}∑{sub u}{sup +}). Hydroxyl molecules are generated from the dissociation of water molecules upon contact with excited nitrogen molecules. The estimated densities of various radicals in nitrogen plasma with an electron temperature of 1 eV are presented in this study. The behavior of these radicals in media is also investigated. Excited nitrogen molecules in the N{sub 2}(A{sub 3}∑{sub u}{sup +}) state from a plasma jet are injected into water, after which the molecules disappear instantaneouslymore » within a few tens of nm, producing hydroxyl molecules. Hydrogen peroxide, hydrogen dioxide, and nitrogen monoxide molecules can diffuse much deeper into water, implying the possibility that a chemical reaction between hydrogen dioxide and nitrogen monoxide molecules produces hydroxyl molecules in deep water, even though density in this case may not be very high.« less
NASA Astrophysics Data System (ADS)
Yabuta, H.; Cody, G. D.; Alexander, C. M. O'd.
2006-03-01
CuO-NaOH degradation of the insoluble organic matter (IOM) from the Murchison meteorite was conducted. A variety of carboxylic acids were indentified. Oxalic acid was most abundant. It was estimated that approximately ~30% of the IOM included ether groups containing molecules.
Determining the Carbon-Carbon Distance in an Organic Molecule with a Ruler
ERIC Educational Resources Information Center
Simoni, Jose A.; Tubino, Matthieu; Ricchi, Reinaldo Alberto, Jr.
2004-01-01
The procedure to estimate the carbon-carbon bond distance in the naphthalene molecule is described. The procedure is easily performed and can be done either at home or in the classroom, with the restriction that the mass of the naphthalene must be determined using an analytical or a precise balance.
NASA Astrophysics Data System (ADS)
Gerola, Adriana Passarella; de Morais, Flavia Amanda Pedroso; Costa, Paulo Fernando A.; Kimura, Elza; Caetano, Wilker; Hioka, Noboru
2017-02-01
The spectrophotometric properties of chlorophylls' derivatives (Chls) formulated in the Pluronics® F-127 and P-123 were evaluated and the results have shown that the Chls were efficiently solubilized in these drug delivery systems as monomers. The relative location of the Chls in the Pluronics® was estimated from the Stokes shift and micropolarity of the micellar environment. Chls with phytyl chain were located in the micellar core, where the micropolarity is similar to ethanol, while phorbides' derivatives (without phytyl chain) were located in the outer shell of the micelle, i.e., more polar environment. In addition, the thermal stability of the micellar formulations was evaluated through electronic absorption, fluorescence emission and resonance light scattering with lowering the temperature. The Chls promote the stability of the micelles at temperatures below the Critical Micellar Temperature (CMT) of these surfactants. For F-127 formulations, the water molecules drive through inside the nano-structure at temperatures below the CMT, which increased the polarity of this microenvironment and directly affected the spectrophotometric properties of the Chls with phytyl chain. The properties of the micellar microenvironment of P-123, with more hydrophobic core due to the small PEO/PPO fraction, were less affected by lowering the temperature than for F-127. These results enable us to better understand the Chls behavior in micellar copolymers and allowed us to design new drug delivery system that maintains the photosensitizer's properties for photodynamic applications.
Prediction of Water Binding to Protein Hydration Sites with a Discrete, Semiexplicit Solvent Model.
Setny, Piotr
2015-12-08
Buried water molecules are ubiquitous in protein structures and are found at the interface of most protein-ligand complexes. Determining their distribution and thermodynamic effect is a challenging yet important task, of great of practical value for the modeling of biomolecular structures and their interactions. In this study, we present a novel method aimed at the prediction of buried water molecules in protein structures and estimation of their binding free energies. It is based on a semiexplicit, discrete solvation model, which we previously introduced in the context of small molecule hydration. The method is applicable to all macromolecular structures described by a standard all-atom force field, and predicts complete solvent distribution within a single run with modest computational cost. We demonstrate that it indicates positions of buried hydration sites, including those filled by more than one water molecule, and accurately differentiates them from sterically accessible to water but void regions. The obtained estimates of water binding free energies are in fair agreement with reference results determined with the double decoupling method.
1989-01-01
We have investigated the modulation of L-type calcium channel currents in isolated ventricular cells by the dihydropyridine derivative amlodipine, a weak base with a pKa of 8.6. Under conditions that favor neutral drug molecules, amlodipine block resembles other, previously described, neutral dihydropyridine derivatives: block is more pronounced at depolarized voltages, repetitive pulsing is not needed to promote block, and recovery is complete at hyperpolarized voltages. When the drug is ionized, depolarized voltages still enhance block, however, the time course is slow and speeded by repetitive pulses that open channels. Recovery from block by ionized drug molecules is very slow and incomplete, but can be rapidly modified by changes in external hydrogen ion concentration. We conclude from these observations that the degree of ionization of the drug molecule can affect access to the dihydropyridine receptor and that external protons can interact with the drug-receptor complex even if channels are blocked and closed. These observations place limitations on the location of this receptor in the ventricular cell membrane. PMID:2549176
Estimating corresponding locations in ipsilateral breast tomosynthesis views
NASA Astrophysics Data System (ADS)
van Schie, Guido; Tanner, Christine; Karssemeijer, Nico
2011-03-01
To improve cancer detection in mammography, breast exams usually consist of two views per breast. To combine information from both views, radiologists and multiview computer-aided detection (CAD) systems need to match corresponding regions in the two views. In digital breast tomosynthesis (DBT), finding corresponding regions in ipsilateral volumes may be a difficult and time-consuming task for radiologists, because many slices have to be inspected individually. In this study we developed a method to quickly estimate corresponding locations in ipsilateral tomosynthesis views by applying a mathematical transformation. First a compressed breast model is matched to the tomosynthesis view containing a point of interest. Then we decompress, rotate and compress again to estimate the location of the corresponding point in the ipsilateral view. In this study we use a simple elastically deformable sphere model to obtain an analytical solution for the transformation in a given DBT case. The model is matched to the volume by using automatic segmentation of the pectoral muscle, breast tissue and nipple. For validation we annotated 181 landmarks in both views and applied our method to each location. Results show a median 3D distance between the actual location and estimated location of 1.5 cm; a good starting point for a feature based local search method to link lesions for a multiview CAD system. Half of the estimated locations were at most 1 slice away from the actual location, making our method useful as a tool in mammographic workstations to interactively find corresponding locations in ipsilateral tomosynthesis views.
Hidden momentum of electrons, nuclei, atoms, and molecules
NASA Astrophysics Data System (ADS)
Cameron, Robert P.; Cotter, J. P.
2018-04-01
We consider the positions and velocities of electrons and spinning nuclei and demonstrate that these particles harbour hidden momentum when located in an electromagnetic field. This hidden momentum is present in all atoms and molecules, however it is ultimately canceled by the momentum of the electromagnetic field. We point out that an electron vortex in an electric field might harbour a comparatively large hidden momentum and recognize the phenomenon of hidden hidden momentum.
NASA Astrophysics Data System (ADS)
Jung, Kyoung Hoon; Hyun, Soon-Young; Song, Dong-Mee; Shin, Dong-Myung
2003-01-01
The photoalignment of liquid crystal (LC) molecules located onto polyimide films with chalcone derivatives using linearly polarized UV (LPUV) light is investigated. The LPUV light irradiation generated dimerization products of the chalcones followed by isomerization of the chalcone derivatives. The alignment directions of LC molecules were either homeotropic or planar with respect to plane of polyimide film, depending upon the alkyl chain length attached on the chalcones.
Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry
Gao, Jian; Louie, Katherine B.; Steinke, Philipp; ...
2017-05-26
Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm withmore » corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule ( < 2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is < 3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.« less
MedlinePlus Videos and Cool Tools
... network of tiny blood vessels called capillaries, which are located in the walls of the alveoli. The ... time, the carbon dioxide molecules in the alveoli are blown out of the body with the next ...
NASA Astrophysics Data System (ADS)
Reiß, Edda; Hölzel, Ralph; von Nickisch-Rosenegk, Markus; Bier, Frank F.
2006-09-01
In this article the usefulness of the enzyme phi29 DNA polymerase and the principle of rolling circle amplification (RCA) for creating single-stranded DNA (ssDNA) nanostructures is described. Currently we are working on the spatial orientation of a growing ssDNA molecule during its RCA-based synthesis by the application of a hydrodynamic force. Starting at an immobilized primer at single molecule level, the aim is to construct a nanostructure of known location and orientation, providing multiple repeating binding sites that can be addressed via complementary base-pairing. Proof-of-principle experiments demonstrate the potential of the enzymatic reaction. ssDNA molecules of more than 20 μm length were created at an immobilized primer and detected by means of fluorescence microscopy.
The dimerization of half-molecule fragments of transferrin.
Williams, J; Moreton, K
1988-01-01
Partial proteolysis was used to prepare half-molecule fragments of hen ovotransferrin. N-Terminal and C-terminal fragments associate to form an N-terminal fragment-C-terminal fragment dimer. Variant forms of the N- and C-terminal fragments can be prepared in which a few amino acid residues are lacking from the C-terminal ends of the fragments. These variant fragments are partially or completely unable to associate; the suggestion that the molecular recognition sites are located in these C-terminal stretches of the N-terminal half-molecule (320-332) and of the C-terminal half-molecule (683-686) is in agreement with X-ray-crystallography data for human lactotransferrin [Anderson, Baker, Dodson, Norris, Rumball, Waters & Baker (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1769-1773]. PMID:3415649
Structure of nascent replicative form DNA of coliphage M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Mitra, S.
Nascent replicative form type II (RFII) DNA of coliphage M13 synthesized in an Escherichia coli mutant deficient in the 5' ..-->.. 3' exonuclease associated with DNA polymerase I contains ribonucleotides that are retained in the covalently closed RFI DNA sealed in vitro by the joint action of T5 phage DNA polymerase and T4 phage DNA ligase. These RFI molecules are labile to alkali and RNase H, unlike the RFI produced either in vivo or from RFII with E. coli DNA polymerase I and E. coli DNA ligase. The ribonucleotides are located at one site and predominantly in one strand ofmore » the nascent RF DNA. Furthermore, these molecules contain multiple small gaps, randomly located, and one large gap in the intracistronic region.« less
Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin
2017-10-13
Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.
Photoionization bands of rubidium molecule
NASA Astrophysics Data System (ADS)
Rakić, M.; Pichler, G.
2018-03-01
We studied the absorption spectrum of dense rubidium vapor generated in a T-type sapphire cell with a special emphasis on the structured photoionization continuum observed in the 200-300 nm spectral region. The photoionization spectrum has a continuous atomic contribution with a pronounced Seaton-Cooper minimum at about 250 nm and a molecular photoionization contribution with many broad bands. We discuss the possible origin of the photoionization bands as stemming from the absorption from the ground state of the Rb2 molecule to excited states of Rb2+* and to doubly excited autoionizing states of Rb2** molecule. All these photoionization bands are located above the Rb+ and Rb2+ ionization limits.
High sensitivity fluorescent single particle and single molecule detection apparatus and method
Mathies, Richard A.; Peck, Konan; Stryer, Lubert
1990-01-01
Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.
Estimation of the size of drug-like chemical space based on GDB-17 data.
Polishchuk, P G; Madzhidov, T I; Varnek, A
2013-08-01
The goal of this paper is to estimate the number of realistic drug-like molecules which could ever be synthesized. Unlike previous studies based on exhaustive enumeration of molecular graphs or on combinatorial enumeration preselected fragments, we used results of constrained graphs enumeration by Reymond to establish a correlation between the number of generated structures (M) and the number of heavy atoms (N): logM = 0.584 × N × logN + 0.356. The number of atoms limiting drug-like chemical space of molecules which follow Lipinsky's rules (N = 36) has been obtained from the analysis of the PubChem database. This results in M ≈ 10³³ which is in between the numbers estimated by Ertl (10²³) and by Bohacek (10⁶⁰).
Nichols, J.D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.
1998-01-01
Inferences about spatial variation in species richness and community composition are important both to ecological hypotheses about the structure and function of communities and to community-level conservation and management. Few sampling programs for animal communities provide censuses, and usually some species present. We present estimators useful for drawing inferences about comparative species richness and composition between different sampling locations when not all species are detected in sampling efforts. Based on capture-recapture models using the robust design, our methods estimate relative species richness, proportion of species in one location that are also found in another, and number of species found in one location but not in another. The methods use data on the presence or absence of each species at different sampling occasions (or locations) to estimate the number of species not detected at any occasions (or locations). This approach permits estimation of the number of species in the sampled community and in subsets of the community useful for estimating the fraction of species shared by two communities. We provide an illustration of our estimation methods by comparing bird species richness and composition in two locations sampled by routes of the North American Breeding Bird Survey. In this example analysis, the two locations (an associated bird communities) represented different levels of urbanization. Estimates of relative richness, proportion of shared species, and number of species present on one route but not the other indicated that the route with the smaller fraction of urban area had greater richness and a larer number of species that were not found on the more urban route than vice versa. We developed a software package, COMDYN, for computing estimates based on the methods. Because these estimation methods explicitly deal with sampling in which not all species are detected, we recommend their use for addressing questions about species richness and community composition.
Holder, Christopher T; Cleland, Joshua C; LeDuc, Stephen D; Andereck, Zac; Hogan, Chris; Martin, Kristen M
2016-04-01
The potential environmental effects of increased U.S. biofuel production often vary depending upon the location and type of land used to produce biofuel feedstocks. However, complete, annual data are generally lacking regarding feedstock production by specific location. Corn is the dominant biofuel feedstock in the U.S., so here we present methods for estimating where bioethanol corn feedstock is grown annually and how much is used by U.S. ethanol biorefineries. We use geospatial software and publicly available data to map locations of biorefineries, estimate their corn feedstock requirements, and estimate the feedstock production locations and quantities. We combined these data and estimates into a Bioethanol Feedstock Geospatial Database (BFGD) for years 2005-2010. We evaluated the performance of the methods by assessing how well the feedstock geospatial model matched our estimates of locally-sourced feedstock demand. On average, the model met approximately 89 percent of the total estimated local feedstock demand across the studied years-within approximately 25-to-40 kilometers of the biorefinery in the majority of cases. We anticipate that these methods could be used for other years and feedstocks, and can be subsequently applied to estimate the environmental footprint of feedstock production. Methods used to develop the Bioethanol Feedstock Geospatial Database (BFGD) provide a means of estimating the amount and location of U.S. corn harvested for use as U.S. bioethanol feedstock. Such estimates of geospatial feedstock production may be used to evaluate environmental impacts of bioethanol production and to identify conservation priorities. The BFGD is available for 2005-2010, and the methods may be applied to additional years, locations, and potentially other biofuels and feedstocks.
Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-12-01
We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.
Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-09-01
We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.
NASA Astrophysics Data System (ADS)
Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-12-01
We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.
NASA Astrophysics Data System (ADS)
Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-09-01
We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.
Inferring subunit stoichiometry from single molecule photobleaching
2013-01-01
Single molecule photobleaching is a powerful tool for determining the stoichiometry of protein complexes. By attaching fluorophores to proteins of interest, the number of associated subunits in a complex can be deduced by imaging single molecules and counting fluorophore photobleaching steps. Because some bleaching steps might be unobserved, the ensemble of steps will be binomially distributed. In this work, it is shown that inferring the true composition of a complex from such data is nontrivial because binomially distributed observations present an ill-posed inference problem. That is, a unique and optimal estimate of the relevant parameters cannot be extracted from the observations. Because of this, a method has not been firmly established to quantify confidence when using this technique. This paper presents a general inference model for interpreting such data and provides methods for accurately estimating parameter confidence. The formalization and methods presented here provide a rigorous analytical basis for this pervasive experimental tool. PMID:23712552
Borrás, Esther; Tortajada-Genaro, Luis Antonio; Ródenas, Milagros; Vera, Teresa; Coscollá, Clara; Yusá, Vicent; Muñoz, Amalia
2015-11-01
The phosphorothioate structure is highly present in several organophosphorus pesticides. However, there is insufficient information about its degradation process after the release to the atmosphere and the secondary pollutants formed. Herein, the atmospheric reaction of chlorpyrifos-methyl (o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate), is described for semi-urban or rural locations. The photo-oxidation under low NOx conditions (5-55 ppbV) was reproduced in a large outdoor simulation chamber, observing a rapid degradation (lifetime<3.5 h). The formation of gaseous products and particulate matter (aerosol yield 2-8%) was monitored. The chemical composition of minor products (gaseous and particulate) was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate, dimethyl 3,5,6-trichloropyridin-2-yl phosphate, o-methyl o-(3,5,6-trichloropyridin-2-yl) hydrogen phosphorothioate, 3,5,6-trichloropyridin-2-yl dihydrogen phosphate, 3,5,6-trichloropyridin-2-ol, and 3,5,6-trichloropyridine-2,4-diol. An atmospheric degradation mechanism has been proposed based on an oxidation started with OH-nucleophilic attack to P=S bond. The results have been extrapolated to other organothiophosphorus molecules, such as malathion, parathion, diazinon and methidathion, among many others, to estimate their photo-oxidative degradation and the expected products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Combining path integration and remembered landmarks when navigating without vision.
Kalia, Amy A; Schrater, Paul R; Legge, Gordon E
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.
Combining Path Integration and Remembered Landmarks When Navigating without Vision
Kalia, Amy A.; Schrater, Paul R.; Legge, Gordon E.
2013-01-01
This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information. PMID:24039742
System for estimating fatigue damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonds, Jeffrey; Guzzo, Judith Ann; Liu, Shaopeng
In one aspect, a system for estimating fatigue damage in a riser string is provided. The system includes a plurality of accelerometers which can be deployed along a riser string and a communications link to transmit accelerometer data from the plurality of accelerometers to one or more data processors in real time. With data from a limited number of accelerometers located at sensor locations, the system estimates an optimized current profile along the entire length of the riser including riser locations where no accelerometer is present. The optimized current profile is then used to estimate damage rates to individual risermore » components and to update a total accumulated damage to individual riser components. The number of sensor locations is small relative to the length of a deepwater riser string, and a riser string several miles long can be reliably monitored along its entire length by fewer than twenty sensor locations.« less
Using cell phone location to assess misclassification errors in air pollution exposure estimation.
Yu, Haofei; Russell, Armistead; Mulholland, James; Huang, Zhijiong
2018-02-01
Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Location- and lesion-dependent estimation of mammographic background tissue complexity.
Avanaki, Ali; Espig, Kathryn; Kimpe, Tom
2017-01-01
We specify a notion of perceived background tissue complexity (BTC) that varies with lesion shape, lesion size, and lesion location in the image. We propose four unsupervised BTC estimators based on: perceived pre and postlesion similarity of images, lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), tissue anomaly detection, and local energy. The latter two are existing methods adapted for location- and lesion-dependent BTC estimation. For evaluation, we ask human observers to measure BTC (threshold visibility amplitude of a given lesion inserted) at specified locations in a mammogram. As expected, both human measured and computationally estimated BTC vary with lesion shape, size, and location. BTCs measured by different human observers are correlated ([Formula: see text]). BTC estimators are correlated to each other ([Formula: see text]) and less so to human observers ([Formula: see text]). With change in lesion shape or size, LBA estimated BTC changes in the same direction as human measured BTC. Proposed estimators can be generalized to other modalities (e.g., breast tomosynthesis) and used as-is or customized to a specific human observer, to construct BTC-aware model observers with applications, such as optimization of contrast-enhanced medical imaging systems and creation of a diversified image dataset with characteristics of a desired population.
Location- and lesion-dependent estimation of mammographic background tissue complexity
Avanaki, Ali; Espig, Kathryn; Kimpe, Tom
2017-01-01
Abstract. We specify a notion of perceived background tissue complexity (BTC) that varies with lesion shape, lesion size, and lesion location in the image. We propose four unsupervised BTC estimators based on: perceived pre and postlesion similarity of images, lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), tissue anomaly detection, and local energy. The latter two are existing methods adapted for location- and lesion-dependent BTC estimation. For evaluation, we ask human observers to measure BTC (threshold visibility amplitude of a given lesion inserted) at specified locations in a mammogram. As expected, both human measured and computationally estimated BTC vary with lesion shape, size, and location. BTCs measured by different human observers are correlated (ρ=0.67). BTC estimators are correlated to each other (0.84<ρ<0.95) and less so to human observers (ρ≤0.81). With change in lesion shape or size, LBA estimated BTC changes in the same direction as human measured BTC. Proposed estimators can be generalized to other modalities (e.g., breast tomosynthesis) and used as-is or customized to a specific human observer, to construct BTC-aware model observers with applications, such as optimization of contrast-enhanced medical imaging systems and creation of a diversified image dataset with characteristics of a desired population. PMID:28097214
Bazak, Lily; Haviv, Ami; Barak, Michal; Jacob-Hirsch, Jasmine; Deng, Patricia; Zhang, Rui; Isaacs, Farren J; Rechavi, Gideon; Li, Jin Billy; Eisenberg, Eli; Levanon, Erez Y
2014-03-01
RNA molecules transmit the information encoded in the genome and generally reflect its content. Adenosine-to-inosine (A-to-I) RNA editing by ADAR proteins converts a genomically encoded adenosine into inosine. It is known that most RNA editing in human takes place in the primate-specific Alu sequences, but the extent of this phenomenon and its effect on transcriptome diversity are not yet clear. Here, we analyzed large-scale RNA-seq data and detected ∼1.6 million editing sites. As detection sensitivity increases with sequencing coverage, we performed ultradeep sequencing of selected Alu sequences and showed that the scope of editing is much larger than anticipated. We found that virtually all adenosines within Alu repeats that form double-stranded RNA undergo A-to-I editing, although most sites exhibit editing at only low levels (<1%). Moreover, using high coverage sequencing, we observed editing of transcripts resulting from residual antisense expression, doubling the number of edited sites in the human genome. Based on bioinformatic analyses and deep targeted sequencing, we estimate that there are over 100 million human Alu RNA editing sites, located in the majority of human genes. These findings set the stage for exploring how this primate-specific massive diversification of the transcriptome is utilized.
Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B
1994-03-01
The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Paul; Ubachs, Wim; Bethlem, Hendrick L.
2011-12-15
Recently, methanol was identified as a sensitive target system to probe variations of the proton-to-electron mass ratio {mu}[Jansen et al., Phys. Rev. Lett. 106, 100801 (2011)]. The high sensitivity of methanol originates from the interplay between overall rotation and hindered internal rotation of the molecule; that is, transitions that convert internal rotation energy into overall rotation energy, or vice versa, have an enhanced sensitivity coefficient, K{sub {mu}}. As internal rotation is a common phenomenon in polyatomic molecules, it is likely that other molecules display similar or even larger effects. In this paper we generalize the concepts that form the foundationmore » of the high sensitivity in methanol and use this to construct an approximate model which makes it possible to estimate the sensitivities of transitions in internal rotor molecules with C{sub 3v} symmetry, without performing a full calculation of energy levels. We find that a reliable estimate of transition sensitivities can be obtained from the three rotational constants (A, B, and C) and three torsional constants (F, V{sub 3}, and {rho}). This model is verified by comparing obtained sensitivities for methanol, acetaldehyde, acetamide, methyl formate, and acetic acid with a full analysis of the molecular Hamiltonian. Of the molecules considered, methanol is by far the most suitable candidate for laboratory and cosmological tests searching for a possible variation of {mu}.« less
Identification of Anthropogenic CO2 Using Triple Oxygen and Clumped Isotopes.
Laskar, Amzad H; Mahata, Sasadhar; Liang, Mao-Chang
2016-11-01
Quantification of contributions from various sources of CO 2 is important for understanding the atmospheric CO 2 budget. Considering the number and diversity of sources and sinks, the widely used proxies such as concentration and conventional isotopic compositions (δ 13 C and δ 18 O) are not always sufficient to fully constrain the CO 2 budget. Additional constraints may help in understanding the mechanisms of CO 2 production and consumption. The anomaly in triple oxygen isotopes or 17 O excess (denoted by Δ 17 O) and molecules containing two rare isotopes, called clumped isotopes, are two recently developed tracers with potentials to independently constrain some important processes that regulate CO 2 in the atmosphere. The clumped isotope for CO 2 , denoted by Δ 47 , is the excess of 13 C 16 O 18 O over a random distribution of isotopes in a CO 2 molecule. We measured the concentrations of δ 13 C, δ 18 O, Δ 17 O, and Δ 47 in air CO 2 samples collected from the Hsuehshan tunnel (length: 12.9 km), and applied linear and polynomial regressions to obtain the fossil fuel end-members for all these isotope proxies. The other end-members, the values of all these proxies for background air CO 2 , are either assumed or taken as the values obtained over the tunnel and ocean. The fossil fuel (anthropogenic) CO 2 end-member values for δ 13 C, δ 18 O, Δ 17 O, and Δ 47 are estimated using the two component mixing approach: the derived values are -26.76 ± 0.25‰, 24.57 ± 0.33‰, -0.219 ± 0.021‰, and 0.267 ± 0.036‰, respectively. These four major CO 2 isotope tracers along with the concentration were used to estimate the anthropogenic contribution in the atmospheric CO 2 in urban and suburban locations. We demonstrate that Δ 17 O and Δ 47 have the potential to independently estimate anthropogenic contribution, and the advantages of these two over the conventional isotope proxies are discussed.
Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs
NASA Astrophysics Data System (ADS)
Huang, J.; Bellefleur, G.; Milkereit, B.
2008-12-01
Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth. With parallel 3-D viscoelastic Finite Difference (FD) software, we conducted a 3D numerical experiment of near offset Vertical Seismic Profile. The synthetic results implied that the strong attenuation observed in the field data might be caused by the scattering.
Use of satellite telemetry for study of a gyrfalcon in Greenland
Klugman, S.S.; Fuller, M.R.; Howey, P.W.; Yates, M.A.; Oar, J.J.; Seegar, J.M.; Seegar, W.S.; Mattox, G.M.; Maechtle, T.L.
1993-01-01
Long-term research in Greenland has yielded 1 8 years of incidental sightings and 2 years of surveys and observations of gyrfalcons(Falco rusticolus) around Sondrestromfjord, Greenland. Gyrfalcons nest on cliffs along fjords and near rivers and lakes throughout our 2590 sq. km study area. Nestlings are present mid-June to July. In 1990, we marked one adult female gyrfalcon with a 65 g radio-transmitter to obtain location estimates via the ARGOS polar orbiting satellite system. The unit transmitted 8 hours/day every two days. We obtained 145 locations during 5 weeks of the nestling and fledgling stage of breeding. We collected 1-9 locations/day, with a mean of 4/day. We calculated home range estimates based on the Minimum Convex Polygon( MCP) and Harmonic Mean (HM methods and tested subsets of the data based on location quality and number of transmission hours per day. Home range estimated by MCP using higher quality locations was approximately 589 sq. km. Home range estimates were larger when lower-quality locations were included in the estimates. Estimates based on data collected for 4 hours/day were similar to those for 8 hours/day. In the future, it might be possible to extend battery life of the transmitters by reducing the number of transmission hours/day. A longer-lived transmitter could provide information on movements and home ranges throughout the year.
Assessment of Receiver Signal Strength Sensing for Location Estimation Based on Fisher Information
Nielsen, John; Nielsen, Christopher
2016-01-01
Currently there is almost ubiquitous availability of wireless signaling for data communications within commercial building complexes resulting in receiver signal strength (RSS) observables that are typically sufficient for generating viable location estimates of mobile wireless devices. However, while RSS observables are generally plentiful, achieving an accurate estimation of location is difficult due to several factors affecting the electromagnetic coupling between the mobile antenna and the building access points that are not modeled and hence contribute to the overall estimation uncertainty. Such uncertainty is typically mitigated with a moderate redundancy of RSS sensor observations in combination with other constraints imposed on the mobile trajectory. In this paper, the Fisher Information (FI) of a set of RSS sensor observations in the context of variables related to the mobile location is developed. This provides a practical method of determining the potential location accuracy for the given set of wireless signals available. Furthermore, the information value of individual RSS measurements can be quantified and the RSS observables weighted accordingly in estimation combining algorithms. The practical utility of using FI in this context was demonstrated experimentally with an extensive set of RSS measurements recorded in an office complex. The resulting deviation of the mobile location estimation based on application of weighted likelihood processing to the experimental RSS data was shown to agree closely with the Cramer Rao bound determined from the FI analysis. PMID:27669262
2016-06-10
house the odorant receptor neurons (Amer 48 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED 3 and...Mehlhorn 2006, Hallem et al. 2006, Paluch et al. 2010). The insect olfactory process starts 49 when odorant molecules enter the pores located on the...sensilla. Each sensillum contains 50 olfactory receptor neurons that have odorant receptors on its surface. As the molecule enters the 51 pores, the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Paul
Spectroscopic imaging tools and methods, based on scanning tunneling microscopes (STMs), are being developed and applied to examine buried layers and interfaces with ultrahigh resolution. These new methods measure buried contacts, molecule-substrate bonds, buried dipoles in molecular layers, and key structural aspects of adsorbed molecules, such as tilt angles. We are developing the ability to locate lateral projections of molecular parts as a means of determining the structures of molecular layers. We are developing the ability to measure the orientation of buried functionality.
Shackelford, S D; Wheeler, T L; Koohmaraie, M
2004-03-01
Experiments were conducted to compare the effects of two cookery methods, two shear force procedures, and sampling location within non-callipyge and callipyge lamb LM on the magnitude, variance, and repeatability of LM shear force data. In Exp. 1, 15 non-callipyge and 15 callipyge carcasses were sampled, and Warner-Bratzler shear force (WBSF) was determined for both sides of each carcass at three locations along the length (anterior to posterior) of the LM, whereas slice shear force (SSF) was determined for both sides of each carcass at only one location. For approximately half the carcasses within each genotype, LM chops were cooked for a constant amount of time using a belt grill, and chops of the remaining carcasses were cooked to a constant endpoint temperature using open-hearth electric broilers. Regardless of cooking method and sampling location, repeatability estimates were at least 0.8 for LM WBSF and SSF. For WBSF, repeatability estimates were slightly higher at the anterior location (0.93 to 0.98) than the posterior location (0.88 to 0.90). The difference in repeatability between locations was probably a function of a greater level of variation in shear force at the anterior location. For callipyge LM, WBSF was higher (P < 0.001) at the anterior location than at the middle or posterior locations. For non-callipyge LM, WBSF was lower (P < 0.001) at the anterior location than at the middle or posterior locations. Consequently, the difference in WBSF between callipyge and non-callipyge LM was largest at the anterior location. Experiment 2 was conducted to obtain an estimate of the repeatability of SSF for lamb LM chops cooked with the belt grill using a larger number of animals (n = 87). In Exp. 2, LM chops were obtained from matching locations of both sides of 44 non-callipyge and 43 callipyge carcasses. Chops were cooked with a belt grill and SSF was measured, and repeatability was estimated to be 0.95. Repeatable estimates of lamb LM tenderness can be achieved either by cooking to a constant endpoint temperature with electric broilers or cooking for a constant amount of time with a belt grill. Likewise, repeatable estimates of lamb LM tenderness can be achieved with WBSF or SSF. However, use of belt grill cookery and the SSF technique could decrease time requirements which would decrease research costs.
Cross-cultural similarities and differences in North Americans' geographic location judgments.
Friedman, Alinda; Kerkman, Dennis D; Brown, Norman R; Stea, David; Cappello, Hector M
2005-12-01
We examined some potential causes of bias in geographic location estimates by comparing location estimates of North American cities made by Canadian, U.S., and Mexican university students. All three groups placed most Mexican cities near the equator, which implies that all three groups were influenced by shared beliefs about the locations of geographical regions relative to global reference points. However, the groups divided North America into different regions and differed in the relative accuracy of the estimates within them, which implies that there was an influence of culture-specific knowledge. The data support a category-based system of plausible reasoning, in which biases in judgments are multiply determined, and underscore the utility of the estimation paradigm as a tool in cross-cultural cognitive research.
Mixed QM/MM molecular electrostatic potentials.
Hernández, B; Luque, F J; Orozco, M
2000-05-01
A new method is presented for the calculation of the Molecular Electrostatic Potential (MEP) in large systems. Based on the mixed Quantum Mechanics/Molecular Mechanics (QM/MM) approach, the method assumes both a quantum and classical description for the molecule, and the calculation of the MEP in the space surrounding the molecule is made using this dual treatment. The MEP at points close to the molecule is computed using a full QM formalism, while a pure classical evaluation of the MEP is used for points located at large distances from the molecule. The algorithm allows the user to select the desired level of accuracy in the MEP, so that the definition of the regions where the MEP is computed at the classical or QM levels is adjusted automatically. The potential use of this QM/MM MEP in molecular modeling studies is discussed.
Blinov, Michael L.; Moraru, Ion I.
2011-01-01
Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833
NASA Astrophysics Data System (ADS)
Samanta, Suman; Patra, Pulak Kumar; Banerjee, Saon; Narsimhaiah, Lakshmi; Sarath Chandran, M. A.; Vijaya Kumar, P.; Bandyopadhyay, Sanjib
2018-06-01
In developing countries like India, global solar radiation (GSR) is measured at very few locations due to non-availability of radiation measuring instruments. To overcome the inadequacy of GSR measurements, scientists developed many empirical models to estimate location-wise GSR. In the present study, three simple forms of Angstrom equation [Angstrom-Prescott (A-P), Ogelman, and Bahel] were used to estimate GSR at six geographically and climatologically different locations across India with an objective to find out a set of common constants usable for whole country. Results showed that GSR values varied from 9.86 to 24.85 MJ m-2 day-1 for different stations. It was also observed that A-P model showed smaller errors than Ogelman and Bahel models. All the models well estimated GSR, as the 1:1 line between measured and estimated values showed Nash-Sutcliffe efficiency (NSE) values ≥ 0.81 for all locations. Measured data of GSR pooled over six selected locations was analyzed to obtain a new set of constants for A-P equation which can be applicable throughout the country. The set of constants (a = 0.29 and b = 0.40) was named as "One India One Constant (OIOC)," and the model was named as "MOIOC." Furthermore, the developed constants are validated statistically for another six locations of India and produce close estimation. High R 2 values (≥ 76%) along with low mean bias error (MBE) ranging from - 0.64 to 0.05 MJ m-2 day-1 revealed that the new constants are able to predict GSR with lesser percentage of error.
NASA Astrophysics Data System (ADS)
Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang
2018-05-01
Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.
Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization
NASA Astrophysics Data System (ADS)
Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.
2017-08-01
Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.
Adsorption of small molecules on the [Zn-Zn]2+ linkage in zeolite. A DFT study of ferrierite
NASA Astrophysics Data System (ADS)
Benco, Lubomir
2017-02-01
In zeolites monovalent Zn(I) forms a sub-nano particles [Zn-Zn]2+ stabilized in rings of the zeolite framework, which exhibit interesting catalytic properties. This work reports on adsorption properties of [Zn-Zn]2+ particles in zeolite ferrierite investigated for a set of probing diatomic (N2, O2, H2, CO, NO) and triatomic (CO2, N2O, NO2, H2O) molecules using dispersion-corrected DFT. Three [Zn-Zn]2+ sites are compared differing in the location and stability. On all sites molecules form physisorbed clusters with the molecule connected on-top of the Zn-Zn linkage. In physisorbed clusters adsorption induces only slight change of bonding and the geometry of the Zn-Zn linkage. Some molecules can form stable chemisorbed clusters in which the molecule is integrated between two Zn+ cations. The sandwich-like chemisorption causes pronounced changes of bonding and can lead to the transfer of the electron density between two Zn+ cations and to a change of the oxidation state. The knowledge of bonding of small molecules can help understanding of the mechanism of conversion reactions catalyzed by sub-nano [Zn-Zn] particles.
Estimation of polyclonal IgG4 hybrids in normal human serum.
Young, Elizabeth; Lock, Emma; Ward, Douglas G; Cook, Alexander; Harding, Stephen; Wallis, Gregg L F
2014-07-01
The in vivo or in vitro formation of IgG4 hybrid molecules, wherein the immunoglobulins have exchanged half molecules, has previously been reported under experimental conditions. Here we estimate the incidence of polyclonal IgG4 hybrids in normal human serum and comment on the existence of IgG4 molecules with different immunoglobulin light chains. Polyclonal IgG4 was purified from pooled or individual donor human sera and sequentially fractionated using light-chain affinity and size exclusion chromatography. Fractions were analysed by SDS-PAGE, immunoblotting, ELISA, immunodiffusion and matrix-assisted laser-desorption mass spectrometry. Polyclonal IgG4 purified from normal serum contained IgG4κ, IgG4λ and IgG4κ/λ molecules. Size exclusion chromatography showed that IgG4 was principally present in monomeric form (150 000 MW). SDS-PAGE, immunoblotting and ELISA showed the purity of the three IgG4 samples. Immunodiffusion, light-chain sandwich ELISA and mass spectrometry demonstrated that both κ and λ light chains were present on only the IgG4κ/λ molecules. The amounts of IgG4κ/λ hybrid molecules ranged from 21 to 33% from the five sera analysed. Based on the molecular weight these molecules were formed of two IgG4 heavy chains plus one κ and one λ light chain. Polyclonal IgG (IgG4-depleted) was similarly fractionated according to light-chain specificity. No evidence of hybrid IgG κ/λ antibodies was observed. These results indicate that hybrid IgG4κ/λ antibodies compose a substantial portion of IgG4 from normal human serum. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qishi; Berry, M. L..; Grieme, M.
We propose a localization-based radiation source detection (RSD) algorithm using the Ratio of Squared Distance (ROSD) method. Compared with the triangulation-based method, the advantages of this ROSD method are multi-fold: i) source location estimates based on four detectors improve their accuracy, ii) ROSD provides closed-form source location estimates and thus eliminates the imaginary-roots issue, and iii) ROSD produces a unique source location estimate as opposed to two real roots (if any) in triangulation, and obviates the need to identify real phantom roots during clustering.
Markov chain Monte Carlo linkage analysis: effect of bin width on the probability of linkage.
Slager, S L; Juo, S H; Durner, M; Hodge, S E
2001-01-01
We analyzed part of the Genetic Analysis Workshop (GAW) 12 simulated data using Monte Carlo Markov chain (MCMC) methods that are implemented in the computer program Loki. The MCMC method reports the "probability of linkage" (PL) across the chromosomal regions of interest. The point of maximum PL can then be taken as a "location estimate" for the location of the quantitative trait locus (QTL). However, Loki does not provide a formal statistical test of linkage. In this paper, we explore how the bin width used in the calculations affects the max PL and the location estimate. We analyzed age at onset (AO) and quantitative trait number 5, Q5, from 26 replicates of the general simulated data in one region where we knew a major gene, MG5, is located. For each trait, we found the max PL and the corresponding location estimate, using four different bin widths. We found that bin width, as expected, does affect the max PL and the location estimate, and we recommend that users of Loki explore how their results vary with different bin widths.
The role of experience in location estimation: Target distributions shift location memory biases.
Lipinski, John; Simmering, Vanessa R; Johnson, Jeffrey S; Spencer, John P
2010-04-01
Research based on the Category Adjustment model concluded that the spatial distribution of target locations does not influence location estimation responses [Huttenlocher, J., Hedges, L., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93, 75-97]. This conflicts with earlier results showing that location estimation is biased relative to the spatial distribution of targets [Spencer, J. P., & Hund, A. M. (2002). Prototypes and particulars: Geometric and experience-dependent spatial categories. Journal of Experimental Psychology: General, 131, 16-37]. Here, we resolve this controversy by using a task based on Huttenlocher et al. (Experiment 4) with minor modifications to enhance our ability to detect experience-dependent effects. Results after the first block of trials replicate the pattern reported in Huttenlocher et al. After additional experience, however, participants showed biases that significantly shifted according to the target distributions. These results are consistent with the Dynamic Field Theory, an alternative theory of spatial cognition that integrates long-term memory traces across trials relative to the perceived structure of the task space. Copyright 2009 Elsevier B.V. All rights reserved.
Visualizing the Search for Radiation-damaged DNA Bases in Real Time.
Lee, Andrea J; Wallace, Susan S
2016-11-01
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
Visualizing the search for radiation-damaged DNA bases in real time
NASA Astrophysics Data System (ADS)
Lee, Andrea J.; Wallace, Susan S.
2016-11-01
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
Estimates of air drying times for several hardwoods and softwoods
W.T. Simpson; C.A. Hart
2000-01-01
Published data on estimated air drying times of lumber are of limited usefulness because they are restricted to a specific location or to the time of year the lumber is stacked for drying. At best, these estimates give a wide range of possible times over a broad range of possible locations and stacking dates. This report describes a method for estimating air drying...
Method for estimating air-drying times of lumber
William T. Simpson; C. Arthur Hart
2001-01-01
Published information on estimated air-drying times of lumber is of limited usefulness because it is restricted to a specific location or to the time of year the lumber is stacked for drying. At best, these estimates give a wide range of possible times over a broad range of possible locations and stacking dates. In this paper, we describe a method for estimating air-...
Botek, Edith; Giribet, Claudia; Ruiz de Azúa, Martín; Martín Negri, Ricardo; Bernik, Delia
2008-07-31
The IPPP-CLOPPA-INDO/S method is introduced to investigate the static molecular polarizability in macromolecules. As an example of application, the polarizability of phospholipidic compounds, with and without the presence of water molecules has been estimated. The IPPP technique was employed to calculate the polarizability of the polar head and the hydrocarbon chains separately to analyze the feasibility of evaluating the total polarizability of the molecule by addition of these two projected results. INDO/S dipole moments of different fragments of the complex molecule were obtained by means of localized molecular orbitals in order to evaluate the charge transfer in the system.
Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation
NASA Astrophysics Data System (ADS)
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien
2018-04-01
We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.
Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation
NASA Astrophysics Data System (ADS)
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien
2018-06-01
We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.
Influence of electric field on the hydrogen bond network of methanol.
Suresh, S J; Prabhu, Arun Laxman; Arora, Abhinav
2007-04-07
The understanding of the structure of hydrogen (H) bonding liquids in electric (E) fields is important in the context of several areas of research, such as electrochemistry, surface science, and thermodynamics of electrolyte solutions. We had earlier presented a general thermodynamic framework for this purpose, and had shown that the application of E field enhances H-bond interactions among water molecules. The present investigation with methanol suggests a different result-the H-bond structure, as indicated by the average number of H bonds per molecule, goes through a maxima with increasing field strength. This result is explained based on the symmetry in the location of the H-bonding sites in the two types of molecules.
Solute location in a nanoconfined liquid depends on charge distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Jacob A.; Thompson, Ward H., E-mail: wthompson@ku.edu
2015-07-28
Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar,more » excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.« less
Reactive oxygen species, essential molecules, during plant-pathogen interactions.
Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander
2016-06-01
Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Adsorption of squaraine molecules to Au(111) and Ag(001) surfaces
NASA Astrophysics Data System (ADS)
Luft, Maike; Groß, Boris; Schulz, Matthias; Lützen, Arne; Schiek, Manuela; Nilius, Niklas
2018-02-01
The adsorption of anilino squaraines, an important chromophore for the use in organic solar cells, to Ag(001) and Au(111) has been studied with scanning tunneling microscopy. Self-assembly into square building blocks with eight molecules per unit cell is revealed on the Ag surface, while no ordering effects occur on gold. The squaraine-silver interaction is mediated by the carbonyl and hydroxyl oxygens located in the center of the molecule. The intermolecular coupling, on the other hand, is governed by hydrogen bonds formed between the terminal isobutyl groups and oxygen species of adjacent molecules. The latter gets maximized by rotating the molecules by a few degrees against a perfect square alignment. A similar molecular pattern does not form on Au(111) due to symmetry mismatch. Moreover, the high electronegativity of gold reduces the directing effect of oxygen-metal bonds that trigger the ordering process on silver. As a consequence, only frustrated three-fold symmetric units that do not expand into an ordered molecular network are present on the gold surface.
Vibrational spectroscopic and structural investigations on fullerene: A DFT approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed
2016-05-06
The molecular structure of fullerene (C{sub 60}) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electronmore » affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.« less
Self-consistent-field study of conduction through conjugated molecules
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Stafström, Sven
2001-07-01
Current-voltage (I-V) characteristics of individual molecules connected by metallic leads are studied theoretically. Using the Pariser-Parr-Pople quantum chemical method to model the molecule enables us to include electron-electron interactions in the Hartree approximation. The self-consistent-field method is used to calculate charging together with other properties for the total system under bias. Thereafter the Landauer formula is used to calculate the current from the transmission amplitudes. The most important parameter to understand charging is the position of the chemical potentials of the leads in relation to the molecular levels. At finite bias, the main part of the potential drop is located at the molecule-lead junctions. Also, the potential of the molecule is shown to partially follow the chemical potential closest to the highest occupied molecular orbital (HOMO). Therefore, the resonant tunneling steps in the I-V curves are smoothed giving a I-V resembling a ``Coulomb-gap.'' However, the charge of the molecule is not quantized since the molecule is small with quite strong interactions with the leads. The calculations predict an increase in the current at the bias corresponding to the energy gap of the molecule irrespective of the metals used in the leads. When the bias is increased further, charge is redistributed from the HOMO level to the lowest unoccupied molecular orbital of the molecule. This gives a step in the I-V curves and a corresponding change in the potential profile over the molecule. Calculations were mainly performed on polyene molecules. Molecules asymmetrically coupled to the leads model the I-V curves for molecules contacted by a scanning tunneling microscopy tip. I-V curves for pentapyrrole and another molecule that show negative differential conductance are also analyzed. The charging of these two systems depends on the shape of the molecular wave functions.
In search of the `impenetrable' volume of a molecule in a noncovalent complex
NASA Astrophysics Data System (ADS)
Murray, Jane S.; Politzer, Peter
2018-03-01
We propose to characterise the "impenetrable" volumes of molecules A and B in a complex A--B by finding that contour of its electronic density that separates the molecular surfaces of A and B but leaves them almost touching. The volume of the complex within that contour is always less than within the 0.001 au contour. The percent difference measures the interpenetration of the two molecules at equilibrium, and is found to directly correlate with the binding energy of the complex. We interpret the volume of each molecule that is enclosed by the almost-touching contour as that molecule's impenetrable volume relative to its particular partner. The percents by which the molecules' relative impenetrable volumes differ from their 0.001 au volumes in the free states also correlate with the strengths of the interactions. This allows the "absolute" impenetrable volume of any molecule to be estimated as ∼25% of its 0.001 au volume in the free state. However this absolute impenetrable volume is only approached by the molecule in a relatively strong interaction.
Archfield, Stacey A.; Steeves, Peter A.; Guthrie, John D.; Ries, Kernell G.
2013-01-01
Streamflow information is critical for addressing any number of hydrologic problems. Often, streamflow information is needed at locations that are ungauged and, therefore, have no observations on which to base water management decisions. Furthermore, there has been increasing need for daily streamflow time series to manage rivers for both human and ecological functions. To facilitate negotiation between human and ecological demands for water, this paper presents the first publicly available, map-based, regional software tool to estimate historical, unregulated, daily streamflow time series (streamflow not affected by human alteration such as dams or water withdrawals) at any user-selected ungauged river location. The map interface allows users to locate and click on a river location, which then links to a spreadsheet-based program that computes estimates of daily streamflow for the river location selected. For a demonstration region in the northeast United States, daily streamflow was, in general, shown to be reliably estimated by the software tool. Estimating the highest and lowest streamflows that occurred in the demonstration region over the period from 1960 through 2004 also was accomplished but with more difficulty and limitations. The software tool provides a general framework that can be applied to other regions for which daily streamflow estimates are needed.
Control of microtubule trajectory within an electric field by altering surface charge density
Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji
2015-01-01
One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins. PMID:25567007
Control of microtubule trajectory within an electric field by altering surface charge density.
Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji
2015-01-08
One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins.
Location Estimation of Urban Images Based on Geographical Neighborhoods
NASA Astrophysics Data System (ADS)
Huang, Jie; Lo, Sio-Long
2018-04-01
Estimating the location of an image is a challenging computer vision problem, and the recent decade has witnessed increasing research efforts towards the solution of this problem. In this paper, we propose a new approach to the location estimation of images taken in urban environments. Experiments are conducted to quantitatively compare the estimation accuracy of our approach, against three representative approaches in the existing literature, using a recently published dataset of over 150 thousand Google Street View images and 259 user uploaded images as queries. According to the experimental results, our approach outperforms three baseline approaches and shows its robustness across different distance thresholds.
Machine Learning Estimation of Atom Condensed Fukui Functions.
Zhang, Qingyou; Zheng, Fangfang; Zhao, Tanfeng; Qu, Xiaohui; Aires-de-Sousa, João
2016-02-01
To enable the fast estimation of atom condensed Fukui functions, machine learning algorithms were trained with databases of DFT pre-calculated values for ca. 23,000 atoms in organic molecules. The problem was approached as the ranking of atom types with the Bradley-Terry (BT) model, and as the regression of the Fukui function. Random Forests (RF) were trained to predict the condensed Fukui function, to rank atoms in a molecule, and to classify atoms as high/low Fukui function. Atomic descriptors were based on counts of atom types in spheres around the kernel atom. The BT coefficients assigned to atom types enabled the identification (93-94 % accuracy) of the atom with the highest Fukui function in pairs of atoms in the same molecule with differences ≥0.1. In whole molecules, the atom with the top Fukui function could be recognized in ca. 50 % of the cases and, on the average, about 3 of the top 4 atoms could be recognized in a shortlist of 4. Regression RF yielded predictions for test sets with R(2) =0.68-0.69, improving the ability of BT coefficients to rank atoms in a molecule. Atom classification (as high/low Fukui function) was obtained with RF with sensitivity of 55-61 % and specificity of 94-95 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Continuous diffraction of molecules and disordered molecular crystals
Yefanov, Oleksandr M.; Ayyer, Kartik; White, Thomas A.; Barty, Anton; Morgan, Andrew; Mariani, Valerio; Oberthuer, Dominik; Pande, Kanupriya
2017-01-01
The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified ‘noisy Wilson’ distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202–206]. PMID:28808434
Molecular quenching and relaxation in a plasmonic tunable system
NASA Astrophysics Data System (ADS)
Baffou, Guillaume; Girard, Christian; Dujardin, Erik; Colas Des Francs, Gérard; Martin, Olivier J. F.
2008-03-01
Molecular fluorescence decay is significantly modified when the emitting molecule is located near a plasmonic structure. When the lateral sizes of such structures are reduced to nanometer-scale cross sections, they can be used to accurately control and amplify the emission rate. In this Rapid Communication, we extend Green’s dyadic method to quantitatively investigate both radiative and nonradiative decay channels experienced by a single fluorescent molecule confined in an adjustable dielectric-metal nanogap. The technique produces data in excellent agreement with current experimental work.
Buchbauer, G; Zechmeister-Machhart, F; Weiss-Greiler, P; Wolschann, P
1997-04-01
The synthesis and odour properties of the new santalol analogue, methyl-beta-santalol, are described. The additional methyl group adjacent to the hydroxyl function of the standard molecule, beta-santalol, deprives the new compound of the sandalwood note. The synthesis and the odour evaluation of this compound supports the proposed model for sandalwood fragrance as it shows that the methyl group located at the osmophoric center prevents association of the molecule with the hypothetical receptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camden, Jon P.
2013-07-12
A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).
Method for imaging informational biological molecules on a semiconductor substrate
NASA Technical Reports Server (NTRS)
Coles, L. Stephen (Inventor)
1994-01-01
Imaging biological molecules such as DNA at rates several times faster than conventional imaging techniques is carried out using a patterned silicon wafer having nano-machined grooves which hold individual molecular strands and periodically spaced unique bar codes permitting repeatably locating all images. The strands are coaxed into the grooves preferably using gravity and pulsed electric fields which induce electric charge attraction to the molecular strands in the bottom surfaces of the grooves. Differential imaging removes substrate artifacts.
Communication: Finding destructive interference features in molecular transport junctions.
Reuter, Matthew G; Hansen, Thorsten
2014-11-14
Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule-electrode couplings, and we demonstrate its utility with several examples.
Autonomous Landmark Calibration Method for Indoor Localization
Kim, Jae-Hoon; Kim, Byoung-Seop
2017-01-01
Machine-generated data expansion is a global phenomenon in recent Internet services. The proliferation of mobile communication and smart devices has increased the utilization of machine-generated data significantly. One of the most promising applications of machine-generated data is the estimation of the location of smart devices. The motion sensors integrated into smart devices generate continuous data that can be used to estimate the location of pedestrians in an indoor environment. We focus on the estimation of the accurate location of smart devices by determining the landmarks appropriately for location error calibration. In the motion sensor-based location estimation, the proposed threshold control method determines valid landmarks in real time to avoid the accumulation of errors. A statistical method analyzes the acquired motion sensor data and proposes a valid landmark for every movement of the smart devices. Motion sensor data used in the testbed are collected from the actual measurements taken throughout a commercial building to demonstrate the practical usefulness of the proposed method. PMID:28837071
NASA Astrophysics Data System (ADS)
Fortin, W.; Goldberg, D.; Kucuk, H. M.
2017-12-01
Gas hydrates are naturally occurring compounds, which, at a molecular scale, are lattice structures of ice embedded with various gas molecules in the lattice voids. Volumetric estimates of associated hydrocarbons vary greatly due to the difficulty in remotely estimating hydrate concentrations in marine sediments but embedded hydrocarbon stores are thought to represent a significant portion of global deposits. Inherent hydrate instabilities obscure our understanding of and complicates processes related to resource extraction and hydrate response to disturbances in the local environment. Understanding the spatial extent and variability of hydrate deposits have important implications for potential economic production, climate change, and assessing natural hazards risks. Seismic reflection techniques are capable of determining the extent of gas hydrate deposits, often through the observation of bottom simulating reflectors (BSRs). However, BSRs are not present everywhere gas hydrates exist. Using high resolution prestack time migrated seismic data and prestack waveform inversion (PWI) we produce highly resolved velocity models and compare them to co-located well logs. Coupling our PWI results with velocity-porosity relationships and nearby well control, we map hydrate properties at GC955 and WR313. Integrating small scale heterogeneities and variations along the velocity model with in-situ measurements, we develop a workflow aimed to quantify hydrate concentrations observed in seismic data over large areas in great detail regardless of the existence of a BSR.
Adjusting for radiotelemetry error to improve estimates of habitat use.
Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant
2002-01-01
Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...
Swetapadma, Aleena; Yadav, Anamika
2015-01-01
Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088
The Role of Categories and Spatial Cuing in Global-Scale Location Estimates
ERIC Educational Resources Information Center
Friedman, Alinda
2009-01-01
Seven independent groups estimated the location of North American cities using both spatial and numeric response modes and a variety of perceptual and memory supports. These supports included having location markers for each city color coded by nation and identified by name, giving participants the opportunity to see and update all their estimates…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Yasutoshi; Furuhata, Tomohisa; Nakamura, Yusuke
1997-05-01
Among its known functions, tumor suppressor gene p53 serves as a transcriptional regulator and mediates various signals through activation of downstream genes. We recently identified a novel gene, GML (glycosylphosphatidylinositol (GPI)-anchored molecule-like protein), whose expression is specifically induced by wildtype p53. To characterize the GML gene further, we determined 35.8 kb of DNA sequence that included a consensus binding sequence for p53 and the entire GML gene. The GML gene consists of four exons, and the p53-binding sequence is present in the 5{prime}-flanking region. In genomic organization this gene resembles genes encoding murine Ly-6 glycoproteins, a human homologue of themore » Ly-6 family called RIG-E, and CD59; products of these genes, known as GPI-anchored proteins, are variously involved in signal transduction, cell-cell adhesion, and cell-matrix attachment. FISH analysis revealed that the GML gene is located on human chromosome 8q24.3. Genes encoding at least two other GPI-anchored molecules, E48 and RIG-E, are also located in this region. 20 refs., 2 figs., 1 tab.« less
Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling.
Mattei, Michael; Kang, Gyeongwon; Goubert, Guillaume; Chulhai, Dhabih V; Schatz, George C; Jensen, Lasse; Van Duyne, Richard P
2017-01-11
Electrochemical atomic force microscopy tip-enhanced Raman spectroscopy (EC-AFM-TERS) was employed for the first time to observe nanoscale spatial variations in the formal potential, E 0' , of a surface-bound redox couple. TERS cyclic voltammograms (TERS CVs) of single Nile Blue (NB) molecules were acquired at different locations spaced 5-10 nm apart on an indium tin oxide (ITO) electrode. Analysis of TERS CVs at different coverages was used to verify the observation of single-molecule electrochemistry. The resulting TERS CVs were fit to the Laviron model for surface-bound electroactive species to quantitatively extract the formal potential E 0' at each spatial location. Histograms of single-molecule E 0' at each coverage indicate that the electrochemical behavior of the cationic oxidized species is less sensitive to local environment than the neutral reduced species. This information is not accessible using purely electrochemical methods or ensemble spectroelectrochemical measurements. We anticipate that quantitative modeling and measurement of site-specific electrochemistry with EC-AFM-TERS will have a profound impact on our understanding of the role of nanoscale electrode heterogeneity in applications such as electrocatalysis, biological electron transfer, and energy production and storage.
Simulation analyses of space use: Home range estimates, variability, and sample size
Bekoff, Marc; Mech, L. David
1984-01-01
Simulations of space use by animals were run to determine the relationship among home range area estimates, variability, and sample size (number of locations). As sample size increased, home range size increased asymptotically, whereas variability decreased among mean home range area estimates generated by multiple simulations for the same sample size. Our results suggest that field workers should ascertain between 100 and 200 locations in order to estimate reliably home range area. In some cases, this suggested guideline is higher than values found in the few published studies in which the relationship between home range area and number of locations is addressed. Sampling differences for small species occupying relatively small home ranges indicate that fewer locations may be sufficient to allow for a reliable estimate of home range. Intraspecific variability in social status (group member, loner, resident, transient), age, sex, reproductive condition, and food resources also have to be considered, as do season, habitat, and differences in sampling and analytical methods. Comparative data still are needed.
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
The Alarmin Properties of DNA and DNA-associated Nuclear Proteins.
Magna, Melinda; Pisetsky, David S
2016-05-01
The communication of cell injury and death is a critical element in host defense. Although immune cells can serve this function by elaborating cytokines and chemokines, somatic cells can repurpose nuclear macromolecules to function as damage-associated molecular patterns (DAMPs) or alarmins to exert similar activity. Among these molecules, DNA, high-mobility group box-1, and histone proteins can all act as DAMPs once they are in an extracellular location. This review describes current information on the role of the nuclear DAMPs, their translocation to the outside of cells, and pathways of activation after uptake into the inside of immune cells. MEDLINE and PubMed databases were searched for citations (1990-2016) in English related to the following terms: DAMPs, high-mobility group box-1, DNA, histones, cell death, danger, and immune activation. Selected articles with the most relevant studies were included for a more detailed consideration. Although nuclear molecules have important structural and genetic regulatory roles inside the cell nucleus, when released into the extracellular space during cell death, these molecules can acquire immune activity and serve as alarmins or DAMPs. Although apoptosis is generally considered the source of extracellular nuclear material, other cell death pathways such as necroptosis, NETosis, and pyroptosis can contribute to the release of nuclear molecules. Importantly, the release of nuclear DAMPs occurs with both soluble and particulate forms of these molecules. The activity of nuclear molecules may depend on posttranslational modifications, redox changes, and the binding of other molecules. Once in an extracellular location, nuclear DAMPs can engage the same pattern recognition receptors as do pathogen-associated molecular patterns. These interactions can activate immune cells and lead to cytokine and chemokine production. Among these receptors, internal receptors for DNA are key to the response to this molecule; the likely function of these internal sensors is the recognition of DNA from intracellular infection by bacteria or viruses. Activation of these receptors requires translocation of extracellular DNA into specialized compartments. In addition to nuclear DNA, mitochondrial DNA can also serve as a DAMP. The communication of cell injury and death is a critical element in host defense and involves the repurposing of nuclear molecules as immune triggers. As such, the presence of extracellular nuclear material can serve as novel biomarkers for conditions involving cell injury and death. Targeting of these molecules may also represent an important new approach to therapy. Published by Elsevier Inc.
Effect of particle size on the glass transition.
Larsen, Ryan J; Zukoski, Charles F
2011-05-01
The glass transition temperature of a broad class of molecules is shown to depend on molecular size. This dependency results from the size dependence of the pair potential. A generalized equation of state is used to estimate how the volume fraction at the glass transition depends on the size of the molecule, for rigid molecule glass-formers. The model shows that at a given pressure and temperature there is a size-induced glass transition: For molecules larger than a critical size, the volume fraction required to support the effective pressure due to particle attractions is above that which characterizes the glassy state. This observation establishes the boundary between nanoparticles, which exist in liquid form only as dispersions in low molecular weight solvents and large molecules which form liquids that have viscosities below those characterized by the glassy state.
NASA Astrophysics Data System (ADS)
Abbasi, Amirali; Sardroodi, Jaber Jahanbin
2018-02-01
We presented a density functional theory study of the adsorption of O3 and NO2 molecules on ZnO nanoparticles. Various adsorption geometries of O3 and NO2 over the nanoparticles were considered. For both O3 and NO2 adsorption systems, it was found that the adsorption on the N-doped nanoparticle is more favorable in energy than that on the pristine one. Therefore, the N-doped ZnO has a better efficiency to be utilized as O3 and NO2 detection device. For all cases, the binding sites were located on the zinc atoms of the nanoparticle. The charge analysis based on natural bond orbital (NBO) analysis indicates that charge was transferred from the surface to the adsorbed molecule. The projected density of states of the interacting atoms represent the formation of chemical bonds at the interface region. Molecular orbitals of the adsorption systems indicate that the HOMOs were mainly localized on the adsorbed O3 and NO2 molecules, whereas the electronic densities in the LUMOs were dominant at the ZnO nanocrystal surface. By examining the distribution of spin densities, we found that the magnetization was mainly located over the adsorbed molecules. For NO2 adsorbate, we found that the symmetric and asymmetric stretches were shifted to a lower frequency. The bending stretch mode was shifted to the higher frequency. Our DFT results thus provide a theoretical basis for why the adsorption of O3 and NO2 molecules on the N-doped ZnO nanoparticles may increase, giving rise to design and development of innovative and highly efficient sensor devices for O3 and NO2 recognition.
Ryu, Kyoung-Seok; Tugarinov, Vitali; Clore, G Marius
2014-10-15
The kinetics of translocation of the homeodomain transcription factor HoxD9 between specific sites of the same or opposite polarities on the same DNA molecule have been studied by (15)Nz-exchange NMR spectroscopy. We show that exchange occurs by two facilitated diffusion mechanisms: a second-order intermolecular exchange reaction between specific sites located on different DNA molecules without the protein dissociating into free solution that predominates at high concentrations of free DNA, and a first-order intramolecular process involving direct transfer between specific sites located on the same DNA molecule. Control experiments using a mixture of two DNA molecules, each possessing only a single specific site, indicate that transfer between specific sites by full dissociation of HoxD9 into solution followed by reassociation is too slow to measure by z-exchange spectroscopy. Intramolecular transfer with comparable rate constants occurs between sites of the same and opposing polarity, indicating that both rotation-coupled sliding and hopping/flipping (analogous to geminate recombination) occur. The half-life for intramolecular transfer (0.5-1 s) is many orders of magnitude larger than the calculated transfer time (1-100 μs) by sliding, leading us to conclude that the intramolecular transfer rates measured by z-exchange spectroscopy represent the rate-limiting step for a one-base-pair shift from the specific site to the immediately adjacent nonspecific site. At zero concentration of added salt, the intramolecular transfer rate constants between sites of opposing polarity are smaller than those between sites of the same polarity, suggesting that hopping/flipping may become rate-limiting at very low salt concentrations.
Mellaerts, Randy; Jammaer, Jasper A G; Van Speybroeck, Michiel; Chen, Hong; Van Humbeeck, Jan; Augustijns, Patrick; Van den Mooter, Guy; Martens, Johan A
2008-08-19
The ordered mesoporous silica material SBA-15 was loaded with the model drugs itraconazole and ibuprofen using three different procedures: (i) adsorption from solution, (ii) incipient wetness impregnation, and (iii) heating of a mixture of drug and SBA-15 powder. The location of the drug molecules in the SBA-15 particles and molecular interactions were investigated using nitrogen adsorption, TGA, DSC, DRS UV-vis, and XPS. The in vitro release of hydrophobic model drugs was evaluated in an aqueous environment simulating gastric fluid. The effectiveness of the loading method was found to be strongly compound dependent. Incipient wetness impregnation using a concentrated itraconazole solution in dichloromethane followed by solvent evaporation was most efficient for dispersing itraconazole in SBA-15. The itraconazole molecules were located on the mesopore walls and inside micropores of the mesopore walls. When SBA-15 was loaded by slurrying it in a diluted itraconazole solution from which the solvent was evaporated, the itraconazole molecules ended up in the mesopores that they plugged locally. At a loading of 30 wt %, itraconazole exhibited intermolecular interactions inside the mesopores revealed by UV spectroscopy and endothermic events traced with DSC. The physical mixing of itraconazole and SBA-15 powder followed by heating above the itraconazole melting temperature resulted in formulations in which glassy itraconazole particles were deposited externally on the SBA-15 particles. Loading with ibuprofen was successful with each of the three loading procedures. Ibuprofen preferably is positioned inside the micropores. In vitro release experiments showed fast release kinetics provided the drug molecules were evenly deposited over the mesoporous surface.
Rodriguez-Cruz, S E; Jockusch, R A; Williams, E R
1999-09-29
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.
Three-Dimensional RNA Structure of the Major HIV-1 Packaging Signal Region
Stephenson, James D.; Li, Haitao; Kenyon, Julia C.; Symmons, Martyn; Klenerman, Dave; Lever, Andrew M.L.
2013-01-01
Summary HIV-1 genomic RNA has a noncoding 5′ region containing sequential conserved structural motifs that control many parts of the life cycle. Very limited data exist on their three-dimensional (3D) conformation and, hence, how they work structurally. To assemble a working model, we experimentally reassessed secondary structure elements of a 240-nt region and used single-molecule distances, derived from fluorescence resonance energy transfer, between defined locations in these elements as restraints to drive folding of the secondary structure into a 3D model with an estimated resolution below 10 Å. The folded 3D model satisfying the data is consensual with short nuclear-magnetic-resonance-solved regions and reveals previously unpredicted motifs, offering insight into earlier functional assays. It is a 3D representation of this entire region, with implications for RNA dimerization and protein binding during regulatory steps. The structural information of this highly conserved region of the virus has the potential to reveal promising therapeutic targets. PMID:23685210
NASA Astrophysics Data System (ADS)
Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.
2006-09-01
Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.
Cade, B.S.; Terrell, J.W.; Neely, B.C.
2011-01-01
Increasing our understanding of how environmental factors affect fish body condition and improving its utility as a metric of aquatic system health require reliable estimates of spatial variation in condition (weight at length). We used three statistical approaches that varied in how they accounted for heterogeneity in allometric growth to estimate differences in body condition of blue suckers Cycleptus elongatus across 19 large-river locations in the central USA. Quantile regression of an expanded allometric growth model provided the most comprehensive estimates, including variation in exponents within and among locations (range = 2.88–4.24). Blue suckers from more-southerly locations had the largest exponents. Mixed-effects mean regression of a similar expanded allometric growth model allowed exponents to vary among locations (range = 3.03–3.60). Mean relative weights compared across selected intervals of total length (TL = 510–594 and 594–692 mm) in a multiplicative model involved the implicit assumption that allometric exponents within and among locations were similar to the exponent (3.46) for the standard weight equation. Proportionate differences in the quantiles of weight at length for adult blue suckers (TL = 510, 594, 644, and 692 mm) compared with their average across locations ranged from 1.08 to 1.30 for southern locations (Texas, Mississippi) and from 0.84 to 1.00 for northern locations (Montana, North Dakota); proportionate differences for mean weight ranged from 1.13 to 1.17 and from 0.87 to 0.95, respectively, and those for mean relative weight ranged from 1.10 to 1.18 and from 0.86 to 0.98, respectively. Weights for fish at longer lengths varied by 600–700 g within a location and by as much as 2,000 g among southern and northern locations. Estimates for the Wabash River, Indiana (0.96–1.07 times the average; greatest increases for lower weights at shorter TLs), and for the Missouri River from Blair, Nebraska, to Sioux City, Iowa (0.90–1.00 times the average; greatest decreases for lower weights at longer TLs), were examined in detail to explain the additional information provided by quantile estimates.
1981-12-01
preventing the generation of 16 6 negative location estimators. Because of the invariant pro- perty of the EDF statistics, this transformation will...likelihood. If the parameter estimation method developed by Harter and Moore is used, care must be taken to prevent the location estimators from being...vs A 2 Critical Values, Level-.Ol, n-30 128 , 0 6N m m • w - APPENDIX E Computer Prgrams 129 Program to Calculate the Cramer-von Mises Critical Values
CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE*
MIKUCKI, MICHAEL; ZHOU, Y. C.
2017-01-01
This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization. PMID:29056778
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
NASA Astrophysics Data System (ADS)
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-09-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.
Intercalation of paracetamol into the hydrotalcite-like host
NASA Astrophysics Data System (ADS)
Kovanda, František; Maryšková, Zuzana; Kovář, Petr
2011-12-01
Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.
Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering
Choi, Yongki; Olsen, Tivoli J.; Sims, Patrick C.; Moody, Issa S.; Corso, Brad L.; Dang, Mytrang N.; Weiss, Gregory A.; Collins, Philip G.
2013-01-01
Single molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, non-fluorescent single molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems. PMID:23323846
Bhopatkar, Deepak; Feng, Tao; Chen, Feng; Zhang, Genyi; Carignano, Marcelo; Park, Sung Hyun; Zhuang, Haining; Campanella, Osvaldo H; Hamaker, Bruce R
2015-05-06
A previously reported nanoparticle formed through the self-assembly of common food constituents (amylose, protein, and fatty acids) was shown to have the capacity to carry a sparingly soluble small molecule (1-naphthol) in a dispersed system. Potentiometric titration showed that 1-naphthol locates in the lumen of the amylose helix of the nanoparticle. This finding was further supported by calorimetric measurements, showing higher enthalpies of dissociation and reassociation in the presence of 1-naphthol. Visually, the 1-naphthol-loaded nanoparticle appeared to be well-dispersed in aqueous solution. Molecular dynamics simulation showed that the self-assembly was favorable, and at 500 ns, the 1-naphthol molecule resided in the helix of the amylose lumen in proximity to the hydrophobic tail of the fatty acid. Thus, sparingly soluble small molecules, such as some nutraceuticals or drugs, could be incorporated and delivered by this soft nanoparticle carrier.
Kühler, Paul; Weber, Max; Lohmüller, Theobald
2014-06-25
We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.
NASA Astrophysics Data System (ADS)
Avanaki, Ali R. N.; Espig, Kathryn; Knippel, Eddie; Kimpe, Tom R. L.; Xthona, Albert; Maidment, Andrew D. A.
2016-03-01
In this paper, we specify a notion of background tissue complexity (BTC) as perceived by a human observer that is suited for use with model observers. This notion of BTC is a function of image location and lesion shape and size. We propose four unsupervised BTC estimators based on: (i) perceived pre- and post-lesion similarity of images, (ii) lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), (iii) tissue anomaly detection, and (iv) mammogram density measurement. The latter two are existing methods we adapt for location- and lesion-dependent BTC estimation. To validate the BTC estimators, we ask human observers to measure BTC as the visibility threshold amplitude of an inserted lesion at specified locations in a mammogram. Both human-measured and computationally estimated BTC varied with lesion shape (from circular to oval), size (from small circular to larger circular), and location (different points across a mammogram). BTCs measured by different human observers are correlated (ρ=0.67). BTC estimators are highly correlated to each other (0.84
Quantifying fluorescence enhancement for slowly diffusing single molecules in plasmonic near fields
NASA Astrophysics Data System (ADS)
Caldarola, Martín; Pradhan, Biswajit; Orrit, Michel
2018-03-01
Gold nanorods are extensively used for single-molecule fluorescence enhancement as they are easy to synthesize, bio-compatible, and provide high light confinement at their nanometer-sized tips. The current way to estimate fluorescence enhancement relies on binned time traces or on fluorescence correlation spectroscopy. We report on novel ways to extract the enhancement factor in a single-molecule enhancement experiment, avoiding the arbitrary selection of one or a few high-intensity burst(s). These new estimates for the enhancement factor make use of the whole distribution of intensity bursts or of the interphoton delay distribution, which avoids the arbitrary binning of the fluorescence intensity time traces. We present experimental results on the bi-dimensional case, experimentally achieved using a lipid bilayer to support the diffusion of fluorophores. We support our findings with histograms of fluorescence bursts and with an analytical derivation of the interphoton delay distribution of (nearly) immobilized emitters from the fluorescence intensity profile.
Miyawaki, Osato; Omote, Chiaki; Matsuhira, Keiko
2015-12-01
Sol-gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol-gel transition temperature, Tt , was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol , the equilibrium sol-to-gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the sol-to-gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol-gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol-gel transition. The general solution for the free energy for gel-stabilization in various solutions was obtained as a simple function of solute concentration. © 2015 Wiley Periodicals, Inc.
Plotz, Roan D.; Grecian, W. James; Kerley, Graham I.H.; Linklater, Wayne L.
2016-01-01
Comparisons of recent estimations of home range sizes for the critically endangered black rhinoceros in Hluhluwe-iMfolozi Park (HiP), South Africa, with historical estimates led reports of a substantial (54%) increase, attributed to over-stocking and habitat deterioration that has far-reaching implications for rhino conservation. Other reports, however, suggest the increase is more likely an artefact caused by applying various home range estimators to non-standardised datasets. We collected 1939 locations of 25 black rhino over six years (2004–2009) to estimate annual home ranges and evaluate the hypothesis that they have increased in size. A minimum of 30 and 25 locations were required for accurate 95% MCP estimation of home range of adult rhinos, during the dry and wet seasons respectively. Forty and 55 locations were required for adult female and male annual MCP home ranges, respectively, and 30 locations were necessary for estimating 90% bivariate kernel home ranges accurately. Average annual 95% bivariate kernel home ranges were 20.4 ± 1.2 km2, 53 ±1.9% larger than 95% MCP ranges (9.8 km2 ± 0.9). When home range techniques used during the late-1960s in HiP were applied to our dataset, estimates were similar, indicating that ranges have not changed substantially in 50 years. Inaccurate, non-standardised, home range estimates and their comparison have the potential to mislead black rhino population management. We recommend that more care be taken to collect adequate numbers of rhino locations within standardized time periods (i.e., season or year) and that the comparison of home ranges estimated using dissimilar procedures be avoided. Home range studies of black rhino have been data deficient and procedurally inconsistent. Standardisation of methods is required. PMID:27028728
Plotz, Roan D; Grecian, W James; Kerley, Graham I H; Linklater, Wayne L
2016-01-01
Comparisons of recent estimations of home range sizes for the critically endangered black rhinoceros in Hluhluwe-iMfolozi Park (HiP), South Africa, with historical estimates led reports of a substantial (54%) increase, attributed to over-stocking and habitat deterioration that has far-reaching implications for rhino conservation. Other reports, however, suggest the increase is more likely an artefact caused by applying various home range estimators to non-standardised datasets. We collected 1939 locations of 25 black rhino over six years (2004-2009) to estimate annual home ranges and evaluate the hypothesis that they have increased in size. A minimum of 30 and 25 locations were required for accurate 95% MCP estimation of home range of adult rhinos, during the dry and wet seasons respectively. Forty and 55 locations were required for adult female and male annual MCP home ranges, respectively, and 30 locations were necessary for estimating 90% bivariate kernel home ranges accurately. Average annual 95% bivariate kernel home ranges were 20.4 ± 1.2 km(2), 53 ± 1.9% larger than 95% MCP ranges (9.8 km(2) ± 0.9). When home range techniques used during the late-1960s in HiP were applied to our dataset, estimates were similar, indicating that ranges have not changed substantially in 50 years. Inaccurate, non-standardised, home range estimates and their comparison have the potential to mislead black rhino population management. We recommend that more care be taken to collect adequate numbers of rhino locations within standardized time periods (i.e., season or year) and that the comparison of home ranges estimated using dissimilar procedures be avoided. Home range studies of black rhino have been data deficient and procedurally inconsistent. Standardisation of methods is required.
Fast and accurate predictions of covalent bonds in chemical space.
Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole
2016-05-07
We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H2 (+) single bond with 1 electron.
Multiple indicator cokriging with application to optimal sampling for environmental monitoring
NASA Astrophysics Data System (ADS)
Pardo-Igúzquiza, Eulogio; Dowd, Peter A.
2005-02-01
A probabilistic solution to the problem of spatial interpolation of a variable at an unsampled location consists of estimating the local cumulative distribution function (cdf) of the variable at that location from values measured at neighbouring locations. As this distribution is conditional to the data available at neighbouring locations it incorporates the uncertainty of the value of the variable at the unsampled location. Geostatistics provides a non-parametric solution to such problems via the various forms of indicator kriging. In a least squares sense indicator cokriging is theoretically the best estimator but in practice its use has been inhibited by problems such as an increased number of violations of order relations constraints when compared with simpler forms of indicator kriging. In this paper, we describe a methodology and an accompanying computer program for estimating a vector of indicators by simple indicator cokriging, i.e. simultaneous estimation of the cdf for K different thresholds, {F(u,zk),k=1,…,K}, by solving a unique cokriging system for each location at which an estimate is required. This approach produces a variance-covariance matrix of the estimated vector of indicators which is used to fit a model to the estimated local cdf by logistic regression. This model is used to correct any violations of order relations and automatically ensures that all order relations are satisfied, i.e. the estimated cumulative distribution function, F^(u,zk), is such that: F^(u,zk)∈[0,1],∀zk,andF^(u,zk)⩽F^(u,z)forzk
Berkvens, Rafael; Peremans, Herbert; Weyn, Maarten
2016-10-02
Localization systems are increasingly valuable, but their location estimates are only useful when the uncertainty of the estimate is known. This uncertainty is currently calculated as the location error given a ground truth, which is then used as a static measure in sometimes very different environments. In contrast, we propose the use of the conditional entropy of a posterior probability distribution as a complementary measure of uncertainty. This measure has the advantage of being dynamic, i.e., it can be calculated during localization based on individual sensor measurements, does not require a ground truth, and can be applied to discrete localization algorithms. Furthermore, for every consistent location estimation algorithm, both the location error and the conditional entropy measures must be related, i.e., a low entropy should always correspond with a small location error, while a high entropy can correspond with either a small or large location error. We validate this relationship experimentally by calculating both measures of uncertainty in three publicly available datasets using probabilistic Wi-Fi fingerprinting with eight different implementations of the sensor model. We show that the discrepancy between these measures, i.e., many location estimates having a high location error while simultaneously having a low conditional entropy, is largest for the least realistic implementations of the probabilistic sensor model. Based on the results presented in this paper, we conclude that conditional entropy, being dynamic, complementary to location error, and applicable to both continuous and discrete localization, provides an important extra means of characterizing a localization method.
Berkvens, Rafael; Peremans, Herbert; Weyn, Maarten
2016-01-01
Localization systems are increasingly valuable, but their location estimates are only useful when the uncertainty of the estimate is known. This uncertainty is currently calculated as the location error given a ground truth, which is then used as a static measure in sometimes very different environments. In contrast, we propose the use of the conditional entropy of a posterior probability distribution as a complementary measure of uncertainty. This measure has the advantage of being dynamic, i.e., it can be calculated during localization based on individual sensor measurements, does not require a ground truth, and can be applied to discrete localization algorithms. Furthermore, for every consistent location estimation algorithm, both the location error and the conditional entropy measures must be related, i.e., a low entropy should always correspond with a small location error, while a high entropy can correspond with either a small or large location error. We validate this relationship experimentally by calculating both measures of uncertainty in three publicly available datasets using probabilistic Wi-Fi fingerprinting with eight different implementations of the sensor model. We show that the discrepancy between these measures, i.e., many location estimates having a high location error while simultaneously having a low conditional entropy, is largest for the least realistic implementations of the probabilistic sensor model. Based on the results presented in this paper, we conclude that conditional entropy, being dynamic, complementary to location error, and applicable to both continuous and discrete localization, provides an important extra means of characterizing a localization method. PMID:27706099
Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.
Xiao Yang; Jianjiang Feng; Jie Zhou
2014-05-01
Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.
Physics and Application of Nanofluidic Systems
NASA Astrophysics Data System (ADS)
Karpusenka, Alena V.
We report results of the three main groups of experiments: DNA bending, fluctuations and single cell mapping. In our work on the estimation of the herniation onset, we have observed DNA molecules of various lengths confined to the different nanochannels. We have discovered a certain diviation from the commonly used theories and presented a newly qualitative theory based on the observed results. We have also performed numerical analysis of the energy profile at the junction of the nanochannels in a crisscross lattice. Results qualitatively agree with experimental observations. We also performed experimental observation and analysis of the magnitude of length and density fluctuations in DNA that has been stretched to a new equilibrium state in the nanofluidic channels. We found that experimental data agrees with the Rouse model and can be described using a one-dimensional overdamped oscillator chain with nonzero equilibrium spring length. A discussion of how the measurement process would influence the apparent measured dynamic properties was done. In the last section, we first report the profiling of the 5-methyl cytosine distribution within single genomic-sized barcode molecules. To achieve gene-relevant resolution, we linearized the molecule by stretching it in a nanochannel and detected the location of the methyl-CpG binding domain proteins (MBD) conjugated with methylated parts of the barcode. The same technique was used in the chromatin mapping experiments. We report our work on the detection of the trimethylated H3K4 and acetylated H3K9 histone markers on the three different reconstituted chromatin (calf thymus, HeLa, chicken erythrocyte). We demonstrated successful results in quantification of the relative histone modifications at a single molecule scale. Lastly, we report the results of development of the single cell fluidic system, which is able to operate with genetic material after cell lysis is performed on the chip. We also show that cleaning procedure and buffer exchange can be effectively performed on the same chip without extra manipulations to the DNA material, which could result in higher yield and precision of the experimental technique on a single cell level.
[Barret esophagus--molecular biology].
Włodarczyk, Janusz
2008-01-01
Increasing incidence of adenocarcinoma of the esophagus is nowadays observed in western countries. Estimation of the unique molecules may, in the future, lead to early diagnostics of pathological changes in the Barret esophagus and identification of the patient at risk from cancerogenesis. The aim of this study is to explain terminology of Barret esophagus, basis of histopatology, diagnostics and to show molecules which have crucial significance in cancerogenesis.
NASA Astrophysics Data System (ADS)
Dutta, Rishabh; Jónsson, Sigurjón; Wang, Teng; Vasyura-Bathke, Hannes
2018-04-01
Several researchers have studied the source parameters of the 2005 Fukuoka (northwestern Kyushu Island, Japan) earthquake (Mw 6.6) using teleseismic, strong motion and geodetic data. However, in all previous studies, errors of the estimated fault solutions have been neglected, making it impossible to assess the reliability of the reported solutions. We use Bayesian inference to estimate the location, geometry and slip parameters of the fault and their uncertainties using Interferometric Synthetic Aperture Radar and Global Positioning System data. The offshore location of the earthquake makes the fault parameter estimation challenging, with geodetic data coverage mostly to the southeast of the earthquake. To constrain the fault parameters, we use a priori constraints on the magnitude of the earthquake and the location of the fault with respect to the aftershock distribution and find that the estimated fault slip ranges from 1.5 to 2.5 m with decreasing probability. The marginal distributions of the source parameters show that the location of the western end of the fault is poorly constrained by the data whereas that of the eastern end, located closer to the shore, is better resolved. We propagate the uncertainties of the fault model and calculate the variability of Coulomb failure stress changes for the nearby Kego fault, located directly below Fukuoka city, showing that the main shock increased stress on the fault and brought it closer to failure.
Movements and Spatial Use of False Killer Whales in Hawaii: Satellite Tagging Studies in 2009
2011-02-07
with estimated error of between 500 and 1 500 m), as well as LC0 , LCA, LCB, and LCZ locations (with no estimation of accuracy) were only retained...for each individual that passed the Douglas Argos-Filter, by location class (LC) ID # locations after filtering LC3 LC2 LC1 LC0 LCA LCB LCZ
Magnin, Rémi; Rabusseau, Fabien; Salabartan, Frédéric; Mériaux, Sébastien; Aubry, Jean-François; Le Bihan, Denis; Dumont, Erik; Larrat, Benoit
2015-01-01
Focused ultrasound combined with microbubble injection is capable of locally and transiently enhancing the permeability of the blood-brain barrier (BBB). Magnetic resonance imaging (MRI) guidance enables to plan, monitor, and characterize the BBB disruption. Being able to precisely and remotely control the permeabilization location is of great interest to perform reproducible drug delivery protocols. In this study, we developed an MR-guided motorized focused ultrasound (FUS) system allowing the transducer displacement within preclinical MRI scanners, coupled with real-time transfer and reconstruction of MRI images, to help ultrasound guidance. Capabilities of this new device to deliver large molecules to the brain on either single locations or along arbitrary trajectories were characterized in vivo on healthy rats and mice using 1.5 MHz ultrasound sonications combined with microbubble injection. The efficacy of BBB permeabilization was assessed by injecting a gadolinium-based MR contrast agent that does not cross the intact BBB. The compact motorized FUS system developed in this work fits into the 9-cm inner diameter of the gradient insert installed on our 7-T preclinical MRI scanners. MR images acquired after contrast agent injection confirmed that this device can be used to enhance BBB permeability along remotely controlled spatial trajectories of the FUS beam in both rats and mice. The two-axis motor stage enables reaching any region of interest in the rodent brain. The positioning error when targeting the same anatomical location on different animals was estimated to be smaller than 0.5 mm. Finally, this device was demonstrated to be useful for testing BBB opening at various acoustic pressures (0.2, 0.4, 0.7, and 0.9 MPa) in the same animal and during one single ultrasound session. Our system offers the unique possibility to move the transducer within a high magnetic field preclinical MRI scanner, thus enabling the delivery of large molecules to virtually any rodent brain area in a non-invasive manner. It results in time-saving and reproducibility and could be used to either deliver drugs over large parts of the brain or test different acoustic conditions on the same animal during the same session, therefore reducing physiological variability.
NASA Astrophysics Data System (ADS)
Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya
2018-03-01
We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.
Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains
NASA Astrophysics Data System (ADS)
Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.
2017-06-01
Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. [Figure not available: see fulltext.
Laboratory Detection of HSiCN and HSiNC
NASA Astrophysics Data System (ADS)
Sanz, M. Eugenia; McCarthy, Michael C.; Thaddeus, Patrick
2002-09-01
Two new silicon-bearing molecules, the closed-shell asymmetric tops cyanosilylene HSiCN and its isomer HSiNC, have been detected in a laboratory discharge by molecular beam Fourier transform microwave spectroscopy. The rotational spectra of the normal and deuterated isotopic species of both molecules have been analyzed to derive precise spectroscopic constants, which allow the astronomically most interesting transitions up to 120 GHz to be calculated to an accuracy better than 1 km s-1 in equivalent radial velocity. Both molecules are good candidates for astronomical detection, closely related in structure and composition to known astronomical molecules, and they are highly polar, with estimated dipole moments of 3.5 D for HSiCN and 2.5 D for HSiNC.
Detection of Single Molecules Illuminated by a Light-Emitting Diode
Gerhardt, Ilja; Mai, Lijian; Lamas-Linares, Antía; Kurtsiefer, Christian
2011-01-01
Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes. PMID:22346610
Communication: Coordinate-dependent diffusivity from single molecule trajectories
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Makarov, Dmitrii E.
2017-11-01
Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.
NASA Astrophysics Data System (ADS)
Claure, Yuri Navarro; Matsubara, Edson Takashi; Padovani, Carlos; Prati, Ronaldo Cristiano
2018-03-01
Traditional methods for estimating timing parameters in hydrological science require a rigorous study of the relations of flow resistance, slope, flow regime, watershed size, water velocity, and other local variables. These studies are mostly based on empirical observations, where the timing parameter is estimated using empirically derived formulas. The application of these studies to other locations is not always direct. The locations in which equations are used should have comparable characteristics to the locations from which such equations have been derived. To overcome this barrier, in this work, we developed a data-driven approach to estimate timing parameters such as travel time. Our proposal estimates timing parameters using historical data of the location without the need of adapting or using empirical formulas from other locations. The proposal only uses one variable measured at two different locations on the same river (for instance, two river-level measurements, one upstream and the other downstream on the same river). The recorded data from each location generates two time series. Our method aligns these two time series using derivative dynamic time warping (DDTW) and perceptually important points (PIP). Using data from timing parameters, a polynomial function generalizes the data by inducing a polynomial water travel time estimator, called PolyWaTT. To evaluate the potential of our proposal, we applied PolyWaTT to three different watersheds: a floodplain ecosystem located in the part of Brazil known as Pantanal, the world's largest tropical wetland area; and the Missouri River and the Pearl River, in United States of America. We compared our proposal with empirical formulas and a data-driven state-of-the-art method. The experimental results demonstrate that PolyWaTT showed a lower mean absolute error than all other methods tested in this study, and for longer distances the mean absolute error achieved by PolyWaTT is three times smaller than empirical formulas.
Ground state of excitonic molecules by the Green's-function Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M.A.; Vashishta, P.; Kalia, R.K.
1983-12-26
The ground-state energy of excitonic molecules is evaluated as a function of the ratio of electron and hole masses, sigma, with use of the Green's-function Monte Carlo method. For all sigma, the Green's-function Monte Carlo energies are significantly lower than the variational estimates and in favorable agreement with experiments. In excitonic rydbergs, the binding energy of the positronium molecule (sigma = 1) is predicted to be -0.06 and for sigma<<1, the Green's-function Monte Carlo energies agree with the ''exact'' limiting behavior, E = -2.346+0.764sigma.
Tan, Yaw Sing; Spring, David R; Abell, Chris; Verma, Chandra S
2015-07-14
A computational ligand-mapping approach to detect protein surface pockets that interact with hydrophobic moieties is presented. In this method, we incorporated benzene molecules into explicit solvent molecular dynamics simulations of various protein targets. The benzene molecules successfully identified the binding locations of hydrophobic hot-spot residues and all-hydrocarbon cross-links from known peptidic ligands. They also unveiled cryptic binding sites that are occluded by side chains and the protein backbone. Our results demonstrate that ligand-mapping molecular dynamics simulations hold immense promise to guide the rational design of peptidic modulators of protein-protein interactions, including that of stapled peptides, which show promise as an exciting new class of cell-penetrating therapeutic molecules.
Theoretical studies of urea adsorption on single wall boron-nitride nanotubes
NASA Astrophysics Data System (ADS)
Chermahini, Alireza Najafi; Teimouri, Abbas; Farrokhpour, Hossein
2014-11-01
Surface modification of a boron nitride nanotube (BNNT) with urea molecule was investigated in terms of its energetic, geometric, and electronic properties using B3LYP and PW91 density functionals. In this investigation, various armchair (n,n) nanotubes, where n = 5, 6, 7 have been used. Two different interaction modes, including interaction with outer layer and inner layer of tube were studied. The results indicated that the adsorption of single urea molecule in all of its configurations is observed to be exothermic and physical in nature. Interestingly, the adsorption energy for the most stable configuration of urea was observed when the molecule located inside of the nanotube. Besides, the adsorption of urea on BNNTs changes the conductivity of nanotube.
Crystal structure of fac-tri-chlorido-[tris-(pyridin-2-yl-N)amine]-chromium(III).
Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio
2015-01-01
In the neutral complex mol-ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris-(pyridin-2-yl)amine; C15H12N4], the Cr(III) ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa-hedral coordination sphere. The average Cr-N and Cr-Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol-ecule is located on a mirror plane. In the crystal, a combination of C-H⋯N and C-H⋯Cl hydrogen-bonding inter-actions connect the mol-ecules into a three-dimensional network.
Kucheriv, Olesia I; Shylin, Sergii I; Ilina, Tetiana A; Dechert, Sebastian; Gural'skiy, Il'ya A
2015-04-01
In the crystal of the title compound, [Fe(NCS)3(H2O)3]·3C6H8N2, the Fe(III) cation is located on a threefold rotation axis and is coordinated by three N atoms of the thiocyanate anions and three water mol-ecules in a fac arrangement, forming a slightly distorted N3O3 octa-hedron. Stabilization within the crystal structure is provided by O-H⋯N hydrogen bonds; the H atoms from coordinating water mol-ecules act as donors to the N atoms of guest 2,3-di-methyl-pyrazine mol-ecules, leading to a three-dimensional supra-molecular framework.
Chitosugar translocation by an unexpressed monomeric protein channel
NASA Astrophysics Data System (ADS)
Soysa, H. Sasimali M.; Suginta, Wipa; Moonsap, Watcharaporn; Smith, M. F.
2018-05-01
The outer membrane protein channel Ec ChiP , associated with a silent gene in E . coli, is a monomeric chitoporin. In a glucose-deficient environment, E . coli can express the ChiP gene to exploit chitin degradation products. Single-channel small ion current measurements, which reveal the dynamics of single sugar molecules trapped in channel, are used here to study the exotic transport of chitosugars by E . coli. Molecules escape from the channel on multiple timescales. Voltage-dependent trapping rates observed for charged chitosan molecules, as well as model calculations, indicate that the rapid escape processes are those in which the molecule escapes back to the side of the membrane from which it originated. The probability that a sugar molecule is translocated through the membrane is thus estimated from the current data and the dependence of this translocation probability on the length of the chitosugar molecule and the applied voltage analyzed. The described method for obtaining the translocation probability and related molecular translocation current is applicable to other transport channels.
NASA Astrophysics Data System (ADS)
Dabkowska, Aleksandra P.; Foglia, Fabrizia; Lawrence, M. Jayne; Lorenz, Christian D.; McLain, Sylvia E.
2011-12-01
The solution structure of the phosphocholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine (C3-PC) in 30 mol. % dimethylsulfoxide (DMSO)-water solutions has been determined by using neutron diffraction enhanced with isotopic substitution in combination with computer simulation techniques. By investigating the atomic scale hydration structure around the PC head group, a unique description of the displacement of water molecules by DMSO molecules is detailed around various locations of the head group. Specifically, DMSO molecules were found to be the most prevalent around the onium portion of the head group, with the dipoles of the DMSO molecules being aligned where the negatively charged oxygen can interact strongly with the positively charged lipid group. The phosphate group is also partially dehydrated by the presence of the DMSO molecules. However, around this group the bulkier positive end of the DMSO dipole is interacting with negatively charged groups of the lipid head group, the DMSO layer shows no obvious ordering as it cannot form hydrogen bonds with the oxygen atoms in the PO4 group such as water molecules can. Interestingly, DMSO-water contacts have also increased in the presence of the lipid molecule relative to DMSO-water contacts observed in pure DMSO/water solutions at similar concentrations.
Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study
NASA Astrophysics Data System (ADS)
Tang, Bin; Zhang, Long-Fei; Han, Fang-Yuan; Luo, Zong-Chang; Liang, Qin-Qin; Liu, Chen-Yao; Zhu, Li-Ping; Zhang, Jie-Ming
2018-01-01
As a widely used gas insulator, sulfur hexafluoride (SF6) has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV), which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.
NASA Astrophysics Data System (ADS)
Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori
2016-06-01
Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.
Quantitative Aspects of Single Molecule Microscopy
Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally
2015-01-01
Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102
Estimating 3D tilt from local image cues in natural scenes
Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.
2016-01-01
Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then analyzed the relationship between ground-truth tilt and image cue values. Our analysis is free of assumptions about the joint probability distributions and yields the Bayes optimal estimates of tilt, given the cue values. Rich results emerge: (a) typical tilt estimates are only moderately accurate and strongly influenced by the cardinal bias in the prior probability distribution; (b) when cue values are similar, or when slant is greater than 40°, estimates are substantially more accurate; (c) when luminance and texture cues agree, they often veto the disparity cue, and when they disagree, they have little effect; and (d) simplifying assumptions common in the cue combination literature is often justified for estimating tilt in natural scenes. The fact that tilt estimates are typically not very accurate is consistent with subjective impressions from viewing small patches of natural scene. The fact that estimates are substantially more accurate for a subset of image locations is also consistent with subjective impressions and with the hypothesis that perceived surface orientation, at more global scales, is achieved by interpolation or extrapolation from estimates at key locations. PMID:27738702
Bartnik, Magdalena; Arczewska, Marta; Hoser, Anna A; Mroczek, Tomasz; Kamiński, Daniel M; Głowniak, Kazimierz; Gagoś, Mariusz; Woźniak, Krzysztof
2014-01-01
The structure of peucedanin, isolated from Peucedanum tauricum Bieb. (Apiaceae), has been established using single crystal X-ray diffraction. This furanocoumarin isolated from the light petroleum extract of P. tauricum fruits was characterized by high resolution EI-MS, sATR-FTIR and 2D NMR spectroscopic techniques. The EI-MS showed the typical fragmentation pattern of methoxyfuranocoumarins. Extensive 1D (1H and 13C) as well as 2D NMR data enabled complete assignment of the carbon atoms in the peucedanin molecule. The FTIR data confirms intermolecular hydrogen bonding between peucedanin molecules in polar solvents. Peucedanin crystallises in the R-3 space group from the trigonal system with one molecule in the asymmetric part of the unit cell. The crystal lattice of peucedanin consists of the molecules arranged in separate columns. They are related by two fold screw axes and centres of symmetry. Interestingly, peucedanin columns form two channels per unit cell with a diameter of 7.5angstrom going through the crystal lattice in the Z-direction. These channels are filled with disordered water molecules, which are surrounded by hydrophobic methyl groups and are located exactly at the centres of the channels. The peucedanin molecules are stacked in a single column with the opposite orientation of the neighbouring molecules. These results could be interesting in further application of this molecule, for example in biological tests of its activity.
Cooper, Justin T; Peterson, Eric M; Harris, Joel M
2013-10-01
Due to its high specific surface area and chemical stability, porous silica is used as a support structure in numerous applications, including heterogeneous catalysis, biomolecule immobilization, sensors, and liquid chromatography. Reversed-phase liquid chromatography (RPLC), which uses porous silica support particles, has become an indispensable separations tool in quality control, pharmaceutics, and environmental analysis requiring identification of compounds in mixtures. For complex samples, the need for higher resolution separations requires an understanding of the time scale of processes responsible for analyte retention in the stationary phase. In the present work, single-molecule fluorescence imaging is used to observe transport of individual molecules within RPLC porous silica particles. This technique allows direct measurement of intraparticle molecular residence times, intraparticle diffusion rates, and the spatial distribution of molecules within the particle. On the basis of the localization uncertainty and characteristic measured diffusion rates, statistical criteria were developed to resolve the frame-to-frame behavior of molecules into moving and stuck events. The measured diffusion coefficient of moving molecules was used in a Monte Carlo simulation of a random-walk model within the cylindrical geometry of the particle diameter and microscope depth-of-field. The simulated molecular transport is in good agreement with the experimental data, indicating transport of moving molecules in the porous particle is described by a random-walk. Histograms of stuck-molecule event times, locations, and their contributions to intraparticle residence times were also characterized.
Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.
Rideout, Brendan P; Dosso, Stan E; Hannay, David E
2013-09-01
This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.
Lifetimes and f-values of the D 2Σ- ← X 2Π system of OH and OD
NASA Astrophysics Data System (ADS)
Heays, Alan; de Oliveira, Nelson; Gans, Bérenger; Ito, Kenji; Boyé-Péronne, Séverine; Douin, Stéphane; Hickson, Kevin; Nahon, Laurent; Loison, Jean-Christophe
2017-10-01
The OH radical is abundant in the interstellar medium and cometary comae, where it plays a significant role in the photochemical cycle of water. Also, the oxidising potential of the Earth atmosphere is influenced by this molecule. The OH lifetime in the presence of ultraviolet radiation is of prime interest in all these locations. The vacuum-ultraviolet absorption of the D 2Σ- ← X 2Π system contributes to a reduction of this lifetime. It also provides an independent way to observe the OH molecule in the interstellar medium. But a reliable oscillator strength (f-value) is needed. Vacuum-ultraviolet absorption of the D 2Σ- ← X 2Π system of OH and OD was recorded with high spectral resolution in a plasma-discharge radical source and using synchrotron radiation coupled to the unique ultraviolet Fourier-transform spectrometer on the DESIRS beamline of synchrotron SOLEIL. Line oscillator strengths are absolutely calibrated with respect to the well-known A 2Σ+ ← X 2Π system. The new oscillator strength decreases the best-estimate lifetime of OH in an interstellar radiation field and reduces its uncertainty. We also measured line broadening of the excited D 2Σ- v=0 and 1 levels for the first time and find a lifetime for these states which is 5 times shorter than theoretically predicted.This new data will aid in the interpretation of astronomical observations and help improve photochemical models in many contexts.
Interfacial Reaction Studies Using ONIOM
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
2003-01-01
In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Biegalski, S.; Bowyer, Ted W.
2014-01-01
Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from Marchmore » 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.« less
NASA Astrophysics Data System (ADS)
Fessl, Tomas; Ben-Yaish, Shai; Vacha, Frantisek; Adamec, Frantisek; Zalevsky, Zeev
2009-07-01
Imaging of small objects such as single molecules, DNA clusters and single bacterial cells is problematic not only due to the lateral resolution that is obtainable in currently existing microscopy but also, and as much fundamentally limiting, due to the lack of sufficient axial depth of focus to have the full object focused simultaneously. Extension in depth of focus is helpful also for single molecule steady state FRET measurements. In this technique it is crucial to obtain data from many well focused molecules, which are often located in different axial depths. In this paper we present the implementation of an all-optical and a real time technique of extension in the depth of focus that may be incorporated in any high NA microscope system and to be used for the above mentioned applications. We demonstrate experimentally how after the integration of special optical element in high NA 100× objective lens of a single molecule imaging microscope system, the depth of focus is significantly improved while maintaining the same lateral resolution in imaging applications of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells.
Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane
NASA Astrophysics Data System (ADS)
Mohapatra, Monalisa; Mishra, Ashok K.
2012-03-01
Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (<= 1 mM) concentrations of the bile salts. The incorporation and location of fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.
Detection of a new interstellar molecule, H2CN
NASA Technical Reports Server (NTRS)
Ohishi, Masatoshi; Mcgonagle, Douglas; Irvine, William M.; Yamamoto, Satoshi; Saito, Shuji
1994-01-01
We have detected a new interstellar molecule, H2CN (methylene amidogen), in the cold, dark molecular cloud TMC-1. The column density of H2CN is estimated to be approximately 1.5 x 10(exp 11) cm(exp -2) by assuming an excitation temperature of 5 K. This column density corresponds to a fractional abundance relative to H2 of approximately 1.5 x 10(exp -11). This value is more than three orders of magnitude less than the abundance of the related molecule HCN in TMC-1. We also report a tentative detection of H2CN in Sgr B2(N). The formation mechanism of H2CN is discussed. Our detection of the N2CN molecule may suggest the existence of a new series of carbon-chain molecules, CH2C(n)N (N = 0, 1, 2, ...).
Stability of Matter-Antimatter Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Cheuk-Yin; Lee, Teck-Ghee
2011-01-01
We examine the stability of matter-antimatter molecules by reducing the four-body problem into a simpler two-body problem with residual interactions. We find that matter-antimatter molecules with constituents (m{sub 1}{sup +}, m{sub 2}{sup -}, {bar m}{sub 2}{sup +}, {bar m}{sub 1}{sup -}) possess bound states if their constituent mass ratio m{sub 1}/m{sub 2} is greater than about 4. This stability condition suggests that the binding of matter-antimatter molecules is a rather common phenomenon. We evaluate the binding energies and eigenstates of matter-antimatter molecules ({mu}{sup +}e{sup 0})-(e{sup +}{mu}{sup -}), ({pi}{sup +}e{sup -})-(e{sup +}{pi}{sup -}), (K{sup +}e{sup -})-(e{sup +}K{sup -}), (pe{sup -})-(e{sup +}{barmore » p}), (p{mu}{sup -})-({mu}{sup +}{bar p}), and (K{sup +}{mu}{sup -})-({mu}{sup +}K{sup -}), which satisfy the stability condition. We estimate the molecular annihilation lifetimes in their s states.« less
Evaporation and condensation at a liquid surface. I. Argon
NASA Astrophysics Data System (ADS)
Yasuoka, Kenji; Matsumoto, Mitsuhiro; Kataoka, Yosuke
1994-11-01
Molecular dynamics computer simulations were carried out to investigate the dynamics of evaporation and condensation for argon at the temperature of 80 and 100 K. From the decrease of the survival probability of vapor molecules, the ratio of self reflection to collision is estimated to be 12%-15%, only weakly dependent on the temperature. This suggests that argon vapor molecules are in the condition of almost complete capture, and the condensation is considered to be a barrierless process. The total ratio of reflection which is evaluated with the flux correlation of condensation and evaporation is 20% at both temperature. The difference between these two ratios of reflection is ascribed to a phenomenon that vapor molecules colliding with the surface drive out other liquid molecules. This molecule exchange at the surface is as important as the self-reflection, and the conventional picture of condensation as a unimolecular chemical reaction is not appropriate.
Image Location Estimation by Salient Region Matching.
Qian, Xueming; Zhao, Yisi; Han, Junwei
2015-11-01
Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.
2014-05-30
respectively; Argos User’s Manual). LC1 locations (i.e., with estimated error between 500 and 1,500 m), as well as LC0 , LCA, LCB, and LCZ locations (i.e...locations included four LC2 (i.e., with estimated error of m), 10 LC1s (i.e., with estimated error of ə.5 km), and four LC0s (i.e., with undefined...from the 53C are considered in detail below. Argos LCs for the 24 locations associated with 53C sonar levels included four LC2, 11 LC1, 7 LC0 , and 2
Probabilistic location estimation of acoustic emission sources in isotropic plates with one sensor
NASA Astrophysics Data System (ADS)
Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-04-01
This paper presents a probabilistic acoustic emission (AE) source localization algorithm for isotropic plate structures. The proposed algorithm requires only one sensor and uniformly monitors the entire area of such plates without any blind zones. In addition, it takes a probabilistic approach and quantifies localization uncertainties. The algorithm combines a modal acoustic emission (MAE) and a reflection-based technique to obtain information pertaining to the location of AE sources. To estimate confidence contours for the location of sources, uncertainties are quantified and propagated through the two techniques. The approach was validated using standard pencil lead break (PLB) tests on an Aluminum plate. The results demonstrate that the proposed source localization algorithm successfully estimates confidence contours for the location of AE sources.
Estimate of procession and polar motion errors from planetary encounter station location solutions
NASA Technical Reports Server (NTRS)
Pease, G. E.
1978-01-01
Jet Propulsion Laboratory Deep Space Station (DSS) location solutions based on two JPL planetary ephemerides, DE 84 and DE 96, at eight planetary encounters were used to obtain weighted least squares estimates of precession and polar motion errors. The solution for precession error in right ascension yields a value of 0.3 X 10 to the minus 5 power plus or minus 0.8 X 10 to the minus 6 power deg/year. This maps to a right ascension error of 1.3 X 10 to the minus 5 power plus or minus 0.4 X 10 to the minus 5 power deg at the first Voyager 1979 Jupiter encounter if the current JPL DSS location set is used. Solutions for precession and polar motion using station locations based on DE 84 agree well with the solution using station locations referenced to DE 96. The precession solution removes the apparent drift in station longitude and spin axis distance estimates, while the encounter polar motion solutions consistently decrease the scatter in station spin axis distance estimates.
Integrating SAS and GIS software to improve habitat-use estimates from radiotelemetry data
Kenow, K.P.; Wright, R.G.; Samuel, M.D.; Rasmussen, P.W.
2001-01-01
Radiotelemetry has been used commonly to remotely determine habitat use by a variety of wildlife species. However, habitat misclassification can occur because the true location of a radiomarked animal can only be estimated. Analytical methods that provide improved estimates of habitat use from radiotelemetry location data using a subsampling approach have been proposed previously. We developed software, based on these methods, to conduct improved habitat-use analyses. A Statistical Analysis System (SAS)-executable file generates a random subsample of points from the error distribution of an estimated animal location and formats the output into ARC/INFO-compatible coordinate and attribute files. An associated ARC/INFO Arc Macro Language (AML) creates a coverage of the random points, determines the habitat type at each random point from an existing habitat coverage, sums the number of subsample points by habitat type for each location, and outputs tile results in ASCII format. The proportion and precision of habitat types used is calculated from the subsample of points generated for each radiotelemetry location. We illustrate the method and software by analysis of radiotelemetry data for a female wild turkey (Meleagris gallopavo).
Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process
Miao, Yinglong; Baudry, Jerome
2011-01-01
Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site. PMID:21943431
Estimating resource selection with count data
Ryan M. Nielson; Hall Sawyer
2013-01-01
Resource selection functions (RSFs) are typically estimated by comparing covariates at a discrete set of âusedâ locations to those from an âavailableâ set of locations. This RSF approach treats the response as binary and does not account for intensity of use among habitat units where locations were recorded. Advances in global positioning system (GPS) technology allow...
Influence of sectioning location on age estimates from common carp dorsal spines
Watkins, Carson J.; Klein, Zachary B.; Terrazas, Marc M.; Quist, Michael C.
2015-01-01
Dorsal spines have been shown to provide precise age estimates for Common CarpCyprinus carpio and are commonly used by management agencies to gain information on Common Carp populations. However, no previous studies have evaluated variation in the precision of age estimates obtained from different sectioning locations along Common Carp dorsal spines. We evaluated the precision, relative readability, and distribution of age estimates obtained from various sectioning locations along Common Carp dorsal spines. Dorsal spines from 192 Common Carp were sectioned at the base (section 1), immediately distal to the basal section (section 2), and at 25% (section 3), 50% (section 4), and 75% (section 5) of the total length of the dorsal spine. The exact agreement and within-1-year agreement among readers was highest and the coefficient of variation lowest for section 2. In general, age estimates derived from sections 2 and 3 had similar age distributions and displayed the highest concordance in age estimates with section 1. Our results indicate that sections taken at ≤ 25% of the total length of the dorsal spine can be easily interpreted and provide precise estimates of Common Carp age. The greater consistency in age estimates obtained from section 2 indicates that by using a standard sectioning location, fisheries scientists can expect age-based estimates of population metrics to be more comparable and thus more useful for understanding Common Carp population dynamics.
Unified framework to evaluate panmixia and migration direction among multiple sampling locations.
Beerli, Peter; Palczewski, Michal
2010-05-01
For many biological investigations, groups of individuals are genetically sampled from several geographic locations. These sampling locations often do not reflect the genetic population structure. We describe a framework using marginal likelihoods to compare and order structured population models, such as testing whether the sampling locations belong to the same randomly mating population or comparing unidirectional and multidirectional gene flow models. In the context of inferences employing Markov chain Monte Carlo methods, the accuracy of the marginal likelihoods depends heavily on the approximation method used to calculate the marginal likelihood. Two methods, modified thermodynamic integration and a stabilized harmonic mean estimator, are compared. With finite Markov chain Monte Carlo run lengths, the harmonic mean estimator may not be consistent. Thermodynamic integration, in contrast, delivers considerably better estimates of the marginal likelihood. The choice of prior distributions does not influence the order and choice of the better models when the marginal likelihood is estimated using thermodynamic integration, whereas with the harmonic mean estimator the influence of the prior is pronounced and the order of the models changes. The approximation of marginal likelihood using thermodynamic integration in MIGRATE allows the evaluation of complex population genetic models, not only of whether sampling locations belong to a single panmictic population, but also of competing complex structured population models.
Abundance models improve spatial and temporal prioritization of conservation resources.
Johnston, Alison; Fink, Daniel; Reynolds, Mark D; Hochachka, Wesley M; Sullivan, Brian L; Bruns, Nicholas E; Hallstein, Eric; Merrifield, Matt S; Matsumoto, Sandi; Kelling, Steve
2015-10-01
Conservation prioritization requires knowledge about organism distribution and density. This information is often inferred from models that estimate the probability of species occurrence rather than from models that estimate species abundance, because abundance data are harder to obtain and model. However, occurrence and abundance may not display similar patterns and therefore development of robust, scalable, abundance models is critical to ensuring that scarce conservation resources are applied where they can have the greatest benefits. Motivated by a dynamic land conservation program, we develop and assess a general method for modeling relative abundance using citizen science monitoring data. Weekly estimates of relative abundance and occurrence were compared for prioritizing times and locations of conservation actions for migratory waterbird species in California, USA. We found that abundance estimates consistently provided better rankings of observed counts than occurrence estimates. Additionally, the relationship between abundance and occurrence was nonlinear and varied by species and season. Across species, locations prioritized by occurrence models had only 10-58% overlap with locations prioritized by abundance models, highlighting that occurrence models will not typically identify the locations of highest abundance that are vital for conservation of populations.
Langdon, Jonathan H; Elegbe, Etana; McAleavey, Stephen A
2015-01-01
Single Tracking Location (STL) Shear wave Elasticity Imaging (SWEI) is a method for detecting elastic differences between tissues. It has the advantage of intrinsic speckle bias suppression compared to Multiple Tracking Location (MTL) variants of SWEI. However, the assumption of a linear model leads to an overestimation of the shear modulus in viscoelastic media. A new reconstruction technique denoted Single Tracking Location Viscosity Estimation (STL-VE) is introduced to correct for this overestimation. This technique utilizes the same raw data generated in STL-SWEI imaging. Here, the STL-VE technique is developed by way of a Maximum Likelihood Estimation (MLE) for general viscoelastic materials. The method is then implemented for the particular case of the Kelvin-Voigt Model. Using simulation data, the STL-VE technique is demonstrated and the performance of the estimator is characterized. Finally, the STL-VE method is used to estimate the viscoelastic parameters of ex-vivo bovine liver. We find good agreement between the STL-VE results and the simulation parameters as well as between the liver shear wave data and the modeled data fit. PMID:26168170
Kim, Nam Hoon; Hwang, Wooseup; Baek, Kangkyun; Rohman, Md Rumum; Kim, Jeehong; Kim, Hyun Woo; Mun, Jungho; Lee, So Young; Yun, Gyeongwon; Murray, James; Ha, Ji Won; Rho, Junsuk; Moskovits, Martin; Kim, Kimoon
2018-04-04
Single-molecule surface-enhanced Raman spectroscopy (SERS) offers new opportunities for exploring the complex chemical and biological processes that cannot be easily probed using ensemble techniques. However, the ability to place the single molecule of interest reliably within a hot spot, to enable its analysis at the single-molecule level, remains challenging. Here we describe a novel strategy for locating and securing a single target analyte in a SERS hot spot at a plasmonic nanojunction. The "smart" hot spot was generated by employing a thiol-functionalized cucurbit[6]uril (CB[6]) as a molecular spacer linking a silver nanoparticle to a metal substrate. This approach also permits one to study molecules chemically reluctant to enter the hot spot, by conjugating them to a moiety, such as spermine, that has a high affinity for CB[6]. The hot spot can accommodate at most a few, and often only a single, analyte molecule. Bianalyte experiments revealed that one can reproducibly treat the SERS substrate such that 96% of the hot spots contain a single analyte molecule. Furthermore, by utilizing a series of molecules each consisting of spermine bound to perylene bisimide, a bright SERS molecule, with polymethylene linkers of varying lengths, the SERS intensity as a function of distance from the center of the hot spot could be measured. The SERS enhancement was found to decrease as 1 over the square of the distance from the center of the hot spot, and the single-molecule SERS cross sections were found to increase with AgNP diameter.
Natural gas hydrates; vast resource, uncertain future
Collett, T.S.
2001-01-01
Gas hydrates are naturally occurring icelike solids in which water molecules trap gas molecules in a cagelike structure known as a clathrate. Although many gases form hydrates in nature, methane hydrate is by far the most common; methane is the most abundant natural gas. The volume of carbon contained in methane hydrates worldwide is estimated to be twice the amount contained in all fossil fuels on Earth, including coal.
Laser cooling of molecules by zero-velocity selection and single spontaneous emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooi, C. H. Raymond
2010-11-15
A laser-cooling scheme for molecules is presented based on repeated cycle of zero-velocity selection, deceleration, and irreversible accumulation. Although this scheme also employs a single spontaneous emission as in [Raymond Ooi, Marzlin, and Audretsch, Eur. Phys. J. D 22, 259 (2003)], in order to circumvent the difficulty of maintaining closed pumping cycles in molecules, there are two distinct features which make the cooling process of this scheme faster and more practical. First, the zero-velocity selection creates a narrow velocity-width population with zero mean velocity, such that no further deceleration (with many stimulated Raman adiabatic passage (STIRAP) pulses) is required. Second,more » only two STIRAP processes are required to decelerate the remaining hot molecular ensemble to create a finite population around zero velocity for the next cycle. We present a setup to realize the cooling process in one dimension with trapping in the other two dimensions using a Stark barrel. Numerical estimates of the cooling parameters and simulations with density matrix equations using OH molecules show the applicability of the cooling scheme. For a gas at temperature T=1 K, the estimated cooling time is only 2 ms, with phase-space density increased by about 30 times. The possibility of extension to three-dimensional cooling via thermalization is also discussed.« less
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
NASA Astrophysics Data System (ADS)
Ren, He
Molecular architectures and topologies are found contributing to the formation of supramolecular structures of giant molecules. Dr. Cheng's research group developed a diverse of giant molecules via precisely controlled chemistry synthetic routes. These giant molecules can be categorized into several different families, namely giant surfactants, giant shape amphiphiles and giant polyhedron. By analyzing the hierarchical structures of these carefully designed and precisely synthesized giant molecules, the structural factors which affect, or even dominates, in some cases, the formation of supramolecular structures are revealed in these intensive researches. The results will further contribute to the understanding of dependence of supramolecular structures on molecular designs as well as molecular topology, and providing a practical solution to the scaling up of microscopic molecular functionalities to macroscopic material properties. Molecular Nano Particles (MNPs), including fullerene (C60), POSS, Polyoxometalate (POM) and proteins etc., is defined and applied as a specific type of building blocks in the design and synthesis of giant molecules. The persistence in shape and symmetry is considered as one of the major properties of MNPs. This persistence will support the construction of giant molecules for further supramolecular structures' study by introducing specific shapes, or precisely located side groups which will facilitate self-assembling behaviors with pre-programmed secondary interactions. Dictating material physical properties by its chemical composition is an attractive yet currently failed approach in the study of materials. However, the pursuit of determining material properties by microscopic molecular level properties is never seized, and found its solution when the idea of crystal engineering is raised: should each atom in the material is located exactly where it is designed to be and is properly bonded, the property of the material is hence determined. In such "bottom-up" approach, the precise fabrication of 2 nm 100 nm nanostructures, is of great research interest. In this thesis, crystal engineering of giant molecules based on PDI conjugated POSS Nano-Atom (PDI-BPOSS) nano-atoms via self-assembly is performed and studied. Herein, three different giant molecules were synthesized: shape amphiphile, m-phenyl-(PDI-BPOSS)2 (S1) and tetrahedron, R-(PDI-BPOSS)4 (S2) and S-(PDI-BPOSS)4 (S3). Single crystals were grown for S1 and S2, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and transmission electron microscopy (TEM) were performed, and crystal structures of these samples were determined, while hexagonal superlattice without crystal order can be observed for S3 to exhibit crystal-like morphology.
Cui, Di; Zhang, Bin W; Matubayasi, Nobuyuki; Levy, Ronald M
2018-02-13
Classical density functional theory (DFT) can be used to relate the thermodynamic properties of solutions to the indirect solvent mediated part of the solute-solvent potential of mean force (PMF). Standard, but powerful numerical methods can be used to estimate the solute-solvent PMF from which the indirect part can be extracted. In this work we show how knowledge of the direct and indirect parts of the solute-solvent PMF for water at the interface of a protein receptor can be used to gain insights about how to design tighter binding ligands. As we show, the indirect part of the solute-solvent PMF is equal to the sum of the 1-body (energy + entropy) terms in the inhomogeneous solvation theory (IST) expansion of the solvation free energy. To illustrate the effect of displacing interfacial water molecules with particular direct/indirect PMF signatures on the binding of ligands, we carry out simulations of protein binding with several pairs of congeneric ligands. We show that interfacial water locations that contribute favorably or unfavorably at the 1-body level (energy + entropy) to the solvation free energy of the solute can be targeted as part of the ligand design process. Water locations where the indirect PMF is larger in magnitude provide better targets for displacement when adding a functional group to a ligand core.
NASA Astrophysics Data System (ADS)
Yu, H.; Russell, A. G.; Mulholland, J. A.
2017-12-01
In air pollution epidemiologic studies with spatially resolved air pollution data, exposures are often estimated using the home locations of individual subjects. Due primarily to lack of data or logistic difficulties, the spatiotemporal mobility of subjects are mostly neglected, which are expected to result in exposure misclassification errors. In this study, we applied detailed cell phone location data to characterize potential exposure misclassification errors associated with home-based exposure estimation of air pollution. The cell phone data sample consists of 9,886 unique simcard IDs collected on one mid-week day in October, 2013 from Shenzhen, China. The Community Multi-scale Air Quality model was used to simulate hourly ambient concentrations of six chosen pollutants at 3 km spatial resolution, which were then fused with observational data to correct for potential modeling biases and errors. Air pollution exposure for each simcard ID was estimated by matching hourly pollutant concentrations with detailed location data for corresponding IDs. Finally, the results were compared with exposure estimates obtained using the home location method to assess potential exposure misclassification errors. Our results show that the home-based method is likely to have substantial exposure misclassification errors, over-estimating exposures for subjects with higher exposure levels and under-estimating exposures for those with lower exposure levels. This has the potential to lead to a bias-to-the-null in the health effect estimates. Our findings suggest that the use of cell phone data has the potential for improving the characterization of exposure and exposure misclassification in air pollution epidemiology studies.
Manoharan, Prabu; Ghoshal, Nanda
2018-05-01
Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer's disease therapeutics.
DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.
Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi
2017-12-06
We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.
NASA Astrophysics Data System (ADS)
Eremchev, I. Yu.; Naumov, A. V.; Vainer, Yu. G.; Kador, L.
2009-05-01
The influence of impurity chromophore molecules—tetra-tert-butylterrylene (TBT) and dibenzo-anthanthrene (DBATT)—on the vibrational dynamics of the amorphous polymer polyisobutylene (PIB) has been studied via single-molecule spectroscopy. The measurements were performed in the temperature region of 7-30 K, where the interaction of the chromophores with quasilocalized low-frequency vibrational modes (LFMs) determines the observed spectral line broadening. The analysis of the individual temperature dependences of the linewidths for a large number of single probe molecules yielded effective frequency values of those LFMs which are located near the respective chromophores. In this way the distributions of the LFM frequencies were measured for the two systems, and they were found to be similar. Moreover, they are in good agreement with the vibrational density of states as measured in pure PIB by inelastic neutron scattering. This allows us to conclude that, at least in the case of PIB, doping with low concentrations of the nonpolar and neutral molecules TBT and DBATT does not affect the vibrational dynamics of the matrix markedly.
Porter, Joanne L.; Carr, Paul D.; Collyer, Charles A.; Ollis, David L.
2014-01-01
Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P212121 from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.85 Å resolution crystallized in space group C2 with two molecules in the asymmetric unit is reported. When crystallized in space group P212121 DLH has either phosphates or sulfates bound to the protein in crucial locations, one of which is located in the active site, preventing substrate/inhibitor binding. Another is located on the surface of the enzyme coordinated by side chains from two different molecules. Crystallization in space group C2 from a sodium citrate buffer results in new crystallographic protein–protein interfaces. The protein backbone is highly similar, but new crystal contacts cause changes in side-chain orientations and in loop positioning. In regions not involved in crystal contacts, there is little change in backbone or side-chain configuration. The flexibility of surface loops and the adaptability of side chains are important factors enabling DLH to adapt and form different crystal lattices. PMID:25005082
Solute rotational dynamics at the water liquid/vapor interface.
Benjamin, Ilan
2007-11-28
The rotational dynamics of a number of diatomic molecules adsorbed at different locations at the interface between water and its own vapors are studied using classical molecular dynamics computer simulations. Both equilibrium orientational and energy correlations and nonequilibrium orientational and energy relaxation correlations are calculated. By varying the dipole moment of the molecule and its location, and by comparing the results with those in bulk water, the effects of dielectric and mechanical frictions on reorientation dynamics and on rotational energy relaxation can be studied. It is shown that for nonpolar and weekly polar solutes, the equilibrium orientational relaxation is much slower in the bulk than at the interface. As the solute becomes more polar, the rotation slows down and the surface and bulk dynamics become similar. The energy relaxation (both equilibrium and nonequilibrium) has the opposite trend with the solute dipole (larger dipoles relax faster), but here again the bulk and surface results converge as the solute dipole is increased. It is shown that these behaviors correlate with the peak value of the solvent-solute radial distribution function, which demonstrates the importance of the first hydration shell structure in determining the rotational dynamics and dependence of these dynamics on the solute dipole and location.
Bias correction of bounded location errors in presence-only data
Hefley, Trevor J.; Brost, Brian M.; Hooten, Mevin B.
2017-01-01
Location error occurs when the true location is different than the reported location. Because habitat characteristics at the true location may be different than those at the reported location, ignoring location error may lead to unreliable inference concerning species–habitat relationships.We explain how a transformation known in the spatial statistics literature as a change of support (COS) can be used to correct for location errors when the true locations are points with unknown coordinates contained within arbitrary shaped polygons.We illustrate the flexibility of the COS by modelling the resource selection of Whooping Cranes (Grus americana) using citizen contributed records with locations that were reported with error. We also illustrate the COS with a simulation experiment.In our analysis of Whooping Crane resource selection, we found that location error can result in up to a five-fold change in coefficient estimates. Our simulation study shows that location error can result in coefficient estimates that have the wrong sign, but a COS can efficiently correct for the bias.
Long, James M.; Nealis, Ashley
2017-01-01
The aim of the study was to determine whether location and sex affected the age precision estimates between two southern, reservoir populations of paddlefish [Polyodon spathula (Walbaum, 1792)]. From 589 paddlefish collected in Grand Lake and Keystone Lake, Oklahoma in 2011, ages from dentaries were estimated using three independent readers and precision was compared with coefficient of variation between locations and sexes. Ages were more precisely estimated from Grand Lake and from females.
[Radiation therapy and redox imaging].
Matsumoto, Ken-ichiro
2015-01-01
Radiation therapy kills cancer cells in part by flood of free radicals. Radiation ionizes and/or excites water molecules to create highly reactive species, i.e. free radicals and/or reactive oxygen species. Free radical chain reactions oxidize biologically important molecules and thereby disrupt their function. Tissue oxygen and/or redox status, which can influence the course of the free radical chain reaction, can affect the efficacy of radiation therapy. Prior observation of tissue oxygen and/or redox status is helpful for planning a safe and efficient course of radiation therapy. Magnetic resonance-based redox imaging techniques, which can estimate tissue redox status non-invasively, have been developed not only for diagnostic information but also for estimating the efficacy of treatment. Redox imaging is now spotlighted to achieve radiation theranostics.
NASA Astrophysics Data System (ADS)
White, Marguerite L.
This dissertation describes three major research projects with the common goal of characterizing sources and sinks of trace gases of strong relevance to regional air quality and global climate issues. In the first study, volatile organic compound (VOC) measurements collected at a marine and continental site in northern New England were compared and examined for evidence of regional VOC sources. Biogenic VOCs, including isoprene, monoterpenes, and oxygenated VOCs, were significant components of the total reactivity at both locations. However, very different VOC distributions were observed for each site. The impact of local anthropogenic hydrocarbon sources such as liquefied petroleum gas (LPG) leakage was also evident at both sites. During the campaign, a propane flux of 9 (+/-2) x 109 molecules cm-2 s-1 was calculated for the continental site. In the second study, three hydrocarbon sources were investigated for their potential contributions to the summertime atmospheric toluene enhancements observed at a rural location in southern New Hampshire. These sources included: (1) warm season fuel evaporation emissions, (2) local industrial emissions, and (3) local vegetative emissions. The estimated contribution of fuel evaporation emissions (16-30 pptv d-1) could not fully account for observed summertime toluene enhancements (20-50 pptv d-1). Vegetation enclosure measurements suggested biogenic toluene emissions (5 and 12 pptv d-1 for alfalfa and pine trees) made significant contributions to summertime enhancements. Industrial toluene emissions, estimated at 7 pptv d-1, most likely occurred year round rather than seasonally. Finally, controls over carbonyl sulfide (COS) uptake in a temperate loblolly pine forest grown under ambient and elevated CO2 were examined in the third study. Vegetative consumption dominated net ecosystem COS uptake (10 to 40 pmol m-2 s-1) under both CO2 regimes. Environmental controls over vegetation stomatal conductance and photosynthetic capacity were the major factors influencing COS uptake rates. The loblolly pines exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated.
Virshup, Aaron M.; Contreras-García, Julia; Wipf, Peter; Yang, Weitao; Beratan, David N.
2013-01-01
The “small molecule universe” (SMU), the set of all synthetically feasible organic molecules of 500 Daltons molecular weight or less, is estimated to contain over 1060 structures, making exhaustive searches for structures of interest impractical. Here, we describe the construction of a “representative universal library” spanning the SMU that samples the full extent of feasible small molecule chemistries. This library was generated using the newly developed Algorithm for Chemical Space Exploration with Stochastic Search (ACSESS). ACSESS makes two important contributions to chemical space exploration: it allows the systematic search of the unexplored regions of the small molecule universe, and it facilitates the mining of chemical libraries that do not yet exist, providing a near-infinite source of diverse novel compounds. PMID:23548177
Quantum-chemical investigations of spectroscopic properties of a fluorescence probe
NASA Astrophysics Data System (ADS)
Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.
2012-09-01
The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.
Predicting Vessel Trajectories from Ais Data Using R
2017-06-01
future position at the expectation level set by the user, therefore producing a valid methodology for both estimating the future vessel location and... methodology for both estimating the future vessel location and for assessing anomalous vessel behavior. vi THIS PAGE INTENTIONALLY LEFT BLANK vii... methodology , that brings them one step closer to attaining these goals. A key idea in the current literature is that the series of vessel locations
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2015-06-01
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analysed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. Although estimating of the earthquake foci location is relatively simple, a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling and a priori uncertainties. In this paper, we addressed this task when statistics of observational and/or modelling errors are unknown. This common situation requires introduction of a priori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland, we propose an approach based on an analysis of Shanon's entropy calculated for the a posteriori distribution. We show that this meta-characteristic of the a posteriori distribution carries some information on uncertainties of the solution found.
NASA Astrophysics Data System (ADS)
Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan
2012-05-01
Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar tensor calculations to contribute to the identification of the molecule.
Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan
2012-05-01
Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar tensor calculations to contribute to the identification of the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.
Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction
Dvorkin, Anna; Benjamini, Yoav; Golani, Ilan
2008-01-01
Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually. PMID:18463701
NASA Astrophysics Data System (ADS)
Kim, G.; Che, I. Y.
2017-12-01
We evaluated relationship among source parameters of underground nuclear tests in northern Korean Peninsula using regional seismic data. Dense global and regional seismic networks are incorporated to measure locations and origin times precisely. Location analyses show that distance among the locations is tiny on a regional scale. The tiny location-differences validate a linear model assumption. We estimated source spectral ratios by excluding path effects based spectral ratios of the observed seismograms. We estimated empirical relationship among depth of burials and yields based on theoretical source models.
The prevalence of compulsive buying: a meta-analysis.
Maraz, Aniko; Griffiths, Mark D; Demetrovics, Zsolt
2016-03-01
To estimate the pooled prevalence of compulsive buying behaviour (CBB) in different populations and to determine the effect of age, gender, location and screening instrument on the reported heterogeneity in estimates of CBB and whether publication bias could be identified. Three databases were searched (Medline, PsychInfo, Web of Science) using the terms 'compulsive buying', 'pathological buying' and 'compulsive shopping' to estimate the pooled prevalence of CBB in different populations. Forty studies reporting 49 prevalence estimates from 16 countries were located (n = 32,000). To conduct the meta-analysis, data from non-clinical studies regarding mean age and gender proportion, geographical study location and screening instrument used to assess CBB were extracted by multiple independent observers and evaluated using a random-effects model. Four a priori subgroups were analysed using pooled estimation (Cohen's Q) and covariate testing (moderator and meta-regression analysis). The CBB pooled prevalence of adult representative studies was 4.9% (3.4-6.9%, eight estimates, 10,102 participants), although estimates were higher among university students: 8.3% (5.9-11.5%, 19 estimates, 14,947 participants) in adult non-representative samples: 12.3% (7.6-19.1%, 11 estimates, 3929 participants) and in shopping-specific samples: 16.2% (8.8-27.8%, 11 estimates, 4686 participants). Being young and female were associated with increased tendency, but not location (United States versus non-United States). Meta-regression revealed large heterogeneity within subgroups, due mainly to diverse measures and time-frames (current versus life-time) used to assess CBB. A pooled estimate of compulsive buying behaviour in the populations studied is approximately 5%, but there is large variation between samples accounted for largely by use of different time-frames and measures. © 2016 Society for the Study of Addiction.
Searching target sites on DNA by proteins: Role of DNA dynamics under confinement
Mondal, Anupam; Bhattacherjee, Arnab
2015-01-01
DNA-binding proteins (DBPs) rapidly search and specifically bind to their target sites on genomic DNA in order to trigger many cellular regulatory processes. It has been suggested that the facilitation of search dynamics is achieved by combining 3D diffusion with one-dimensional sliding and hopping dynamics of interacting proteins. Although, recent studies have advanced the knowledge of molecular determinants that affect one-dimensional search efficiency, the role of DNA molecule is poorly understood. In this study, by using coarse-grained simulations, we propose that dynamics of DNA molecule and its degree of confinement due to cellular crowding concertedly regulate its groove geometry and modulate the inter-communication with DBPs. Under weak confinement, DNA dynamics promotes many short, rotation-decoupled sliding events interspersed by hopping dynamics. While this results in faster 1D diffusion, associated probability of missing targets by jumping over them increases. In contrast, strong confinement favours rotation-coupled sliding to locate targets but lacks structural flexibility to achieve desired specificity. By testing under physiological crowding, our study provides a plausible mechanism on how DNA molecule may help in maintaining an optimal balance between fast hopping and rotation-coupled sliding dynamics, to locate target sites rapidly and form specific complexes precisely. PMID:26400158
Silva, Dilson; Cortez, Célia Martins; Silva, Camila M C; Missailidis, Sotiris
2013-10-05
Aptamers are short, single stranded oligonucleotide or peptide molecules that bind a specific target molecule and can be used for the delivery of therapeutic agents and/or for imaging and clinical diagnosis. Several works have been developed aiming at the production of aptamers and the study of their applications, but few results have been reported on plasmatic dynamics of such products. Aptamers against the heparanase enzyme have been previously described. In this work, the interactions of two constructs of the most promising anti-heparanase aptamer (molecular weights about 9200Da and 22000Da) to human and bovine serum albumins were studied by fluorescence quenching technique. Stern-Volmer graphs were plotted and quenching constants were estimated. Stern-Volmer plots obtained from experiments carried out at 25°C and 37°C showed that the quenching of fluorescence of HSA and BSA by the low molecular weight aptamer was a collisional phenomenon (estimated Stern-Volmer constant: 3.22 (±0.01)×10(5)M(-1) for HSA at 37°C and 2.47 (±0.01)×10(5)M(-1) for HSA at 25°C), while the high molecular weight aptamer quenched albumins by static process (estimated Stern-Volmer constant: 4.05 (±0.01)×10(5)M(-1) for HSA at 37°C and 6.20 (±0.01)×10(5)M(-1) for HSA at 25°C), interacting with those proteins constituting complexes. Linear Stern-Volmer plot from HSA titrated with the low MW aptamer suggested the existence of a single binding site for the quencher in this albumin. Differently, for aptamer 2, the slightly downward curvature of the Stern-Volmer plot of the titration for that albumin suggested a possible conformational change that led to the exposition of lower affinity binding sites in HSA at 25°C. Similarly, although short aptamerdoes not appear to form a stable complex (collisional interaction), the longer aptamer is found to form a stable complex with HSA. In addition, the behaviour of quenching curves for HSA and BSA and values estimated for ratio R1/R2 from model developed by Silva et al. suggest that the primary binding site in both aptamers is located closer to the tryptophan residue in sub domain IIA. It is likely that both aptamers are competing for the same primary site in albumin. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Alexander, Amy L.
2004-01-01
We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.
Autocorrelation of location estimates and the analysis of radiotracking data
Otis, D.L.; White, Gary C.
1999-01-01
The wildlife literature has been contradictory about the importance of autocorrelation in radiotracking data used for home range estimation and hypothesis tests of habitat selection. By definition, the concept of a home range involves autocorrelated movements, but estimates or hypothesis tests based on sampling designs that predefine a time frame of interest, and that generate representative samples of an animal's movement during this time frame, should not be affected by length of the sampling interval and autocorrelation. Intensive sampling of the individual's home range and habitat use during the time frame of the study leads to improved estimates for the individual, but use of location estimates as the sample unit to compare across animals is pseudoreplication. We therefore recommend against use of habitat selection analysis techniques that use locations instead of individuals as the sample unit. We offer a general outline for sampling designs for radiotracking studies.
Is the Lamb shift chemically significant?
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)
2001-01-01
The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.
Quantitative genetic analysis of cellular adhesion molecules: the Fels Longitudinal Study.
Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Demerath, Ellen W; Sun, Shumei S; Chumlea, Wm C; Towne, Bradford; Siervogel, Roger M
2006-03-01
Circulating concentrations of inflammatory markers predict cardiovascular disease (CVD) risk and are closely associated with obesity. However, little is known concerning genetic influences on serum levels of inflammatory markers. In this study, we estimated the heritability (h2) of soluble cellular adhesion molecule (sCAM) concentrations and examined the correlational architecture between different sCAMs. The study population included 234 men and 270 women aged 18-76 years, belonging to 121 families participating in the Fels Longitudinal Study. Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sESEL-1) and P-selectin (sPSEL-1) were assayed using commercially available kits. A variance components-based maximum likelihood method was used to estimate the h2 of the different serum inflammatory markers while simultaneously adjusting for the effects of known CVD risk factors, such as age and smoking. Additionally, we used bivariate extensions of these methods to estimate genetic and random environmental correlations among sCAMs. Levels of sCAMs were significantly heritable: h2=0.24+/-0.10 for sICAM-1, h2=0.22+/-0.10 for sVCAM-1, h2=0.50+/-0.11 for sESEL-1, and h2=0.46+/-0.10 for sPSEL-1. In addition, a significant genetic correlation (rho(G)=0.63) was found between sICAM-1 and sVCAM-1 indicating some degree of shared genetic control. In the Fels Longitudinal Study, the levels of four sCAMs are significantly influenced by genetic effects, and sICAM-1 shares a common genetic background with sVCAM-1.
Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, J.; Terwilliger, J.D.; Bhattacharya, S.
1990-01-01
Multilocus linkage analysis of 62 family pedigrees with X chromosome-linked retinitis pigmentosa (XLRP) was undertaken to determine the presence of possible multiple disease loci and to reliability estimate their map location. Multilocus homogeneity tests furnish convincing evidence for the presence of two XLRP loci, the likelihood ratio being 6.4 {times} 10{sup 9}:1 in a favor of two versus a single XLRP locus and gave accurate estimates for their map location. In 60-75% of the families, location of an XLRP gene was estimated at 1 centimorgan distal to OTC, and in 25-40% of the families, an XLRP locus was located halfwaymore » between DXS14 (p58-1) and DXZ1 (Xcen), with an estimated recombination fraction of 25% between the two XLRP loci. There is also good evidence for third XLRP locus, midway between DXS28 (C7) and DXS164 (pERT87), supported by a likelihood ratio of 293:1 for three versus two XLRP loci.« less
Barber, D; Rodríguez, R; Salcedo, G
2008-10-01
Assessment of the allergenicity of GMOs involves performing a test with a panel of sera obtained from allergic donors. However, there is no clear indication of how to characterize the above-mentioned panel. The patient selection criteria should take into account the geographical location of patients, the intensity and nature of the environmental allergens in the area and the potential cross-reactivity among allergenic molecules. Sera for serum banks, obtained from patients with demonstrated food allergy, should be subjected to a further characterization by screening with a panel of relevant allergenic molecules. A representative panel of these sera should be used in the allergenicity assessment. Finally, the "in vitro" methodologies should have the adequate specificity and sensitivity, and the integrity of the molecules tested should be guaranteed.
Flambaum, V V; Kozlov, M G
2007-10-12
Sensitivity to temporal variation of the fundamental constants may be strongly enhanced in transitions between narrow close levels of different nature. This enhancement may be realized in a large number of molecules due to cancellation between the ground state fine-structure omega{f} and vibrational interval omega{v} [omega=omega{f}-nomega{v} approximately 0, delta omega/omega=K(2delta alpha/alpha+0.5 delta mu/mu), K>1, mu=m{p}/m{e}]. The intervals between the levels are conveniently located in microwave frequency range and the level widths are very small. Required accuracy of the shift measurements is about 0.01-1 Hz. As examples, we consider molecules Cl(+)(2), CuS, IrC, SiBr, and HfF(+).
Scheibe, Andrew; Shelly, Shaun; Lambert, Andrew; Schneider, Andrea; Basson, Rudolf; Medeiros, Nelson; Padayachee, Kalvanya; Savva, Helen; Hausler, Harry
2017-06-07
Stigma, criminalisation and a lack of data on drug use contribute to the "invisibility" of people who inject drugs (PWID) and make HIV prevention and treatment service delivery challenging. We aimed to confirm locations where PWID congregate in Cape Town, eThekwini and Tshwane (South Africa) and to estimate PWID population sizes within selected electoral wards in these areas to inform South Africa's first multi-site HIV prevention project for PWID. Field workers (including PWID peers) interviewed community informants to identify suspected injecting locations in selected electoral wards in each city and then visited these locations and interviewed PWID. Interviews were used to gather information about the accessibility of sterile injecting equipment, location coordinates and movement patterns. We used the Delphi method to obtain final population size estimates for the mapped wards based on estimates from wisdom of the crowd methods, the literature and programmatic data. Between January and April 2015, we mapped 45 wards. Tshwane teams interviewed 39 PWID in 12 wards, resulting in an estimated number of accessible PWID ranging from 568 to 1431. In eThekwini, teams interviewed 40 PWID in 15 wards with an estimated number of accessible PWID ranging from 184 to 350. The Cape Town team interviewed 61 PWID in 18 wards with an estimated number of accessible PWID ranging between 398 and 503. Sterile needles were only available at one location. Almost all needles were bought from pharmacies. Between 80 and 86% of PWID frequented more than one location per day. PWID who reported movement visited a median of three locations a day. Programmatic mapping led by PWID peers can be used effectively to identify and reach PWID and build relationships where access to HIV prevention commodities for PWID is limited. PWID reported limited access to sterile injecting equipment, highlighting an important HIV prevention need. Programmatic mapping data show that outreach programmes should be flexible and account for the mobile nature of PWID populations. The PWID population size estimates can be used to develop service delivery targets and as baseline measures.
Babinska, A; Clement, C C; Swiatkowska, M; Szymanski, J; Shon, A; Ehrlich, Y H; Kornecki, E; Salifu, M O
2014-07-01
Peptides with enhanced resistance to proteolysis, based on the amino acid sequence of the F11 receptor molecule (F11R, aka JAM-A/Junctional adhesion molecule-A), were designed, prepared, and examined as potential candidates for the development of anti-atherosclerotic and anti-thrombotic therapeutic drugs. A sequence at the N-terminal of F11R together with another sequence located in the first Ig-loop of this protein, were identified to form a steric active-site operating in the F11R-dependent adhesion between cells that express F11R molecules on their external surface. In silico modeling of the complex between two polypeptide chains with the sequences positioned in the active-site was used to generate peptide-candidates designed to inhibit homophilic interactions between surface-located F11R molecules. The two lead F11R peptides were modified with D-Arg and D-Lys at selective sites, for attaining higher stability to proteolysis in vivo. Using molecular docking experiments we tested different conformational states and the putative binding affinity between two selected D-Arg and D-Lys-modified F11R peptides and the proposed binding pocket. The inhibitory effects of the F11R peptide 2HN-(dK)-SVT-(dR)-EDTGTYTC-CONH2 on antibody-induced platelet aggregation and on the adhesion of platelets to cytokine-inflammed endothelial cells are reported in detail, and the results point out the significant potential utilization of F11R peptides for the prevention and treatment of atherosclerotic plaques and associated thrombotic events. © 2014 Wiley Periodicals, Inc.
Chao, Jerry; Ram, Sripad; Ward, E. Sally; Ober, Raimund J.
2014-01-01
The extraction of information from images acquired under low light conditions represents a common task in diverse disciplines. In single molecule microscopy, for example, techniques for superresolution image reconstruction depend on the accurate estimation of the locations of individual particles from generally low light images. In order to estimate a quantity of interest with high accuracy, however, an appropriate model for the image data is needed. To this end, we previously introduced a data model for an image that is acquired using the electron-multiplying charge-coupled device (EMCCD) detector, a technology of choice for low light imaging due to its ability to amplify weak signals significantly above its readout noise floor. Specifically, we proposed the use of a geometrically multiplied branching process to model the EMCCD detector’s stochastic signal amplification. Geometric multiplication, however, can be computationally expensive and challenging to work with analytically. We therefore describe here two approximations for geometric multiplication that can be used instead. The high gain approximation is appropriate when a high level of signal amplification is used, a scenario which corresponds to the typical usage of an EMCCD detector. It is an accurate approximation that is computationally more efficient, and can be used to perform maximum likelihood estimation on EMCCD image data. In contrast, the Gaussian approximation is applicable at all levels of signal amplification, but is only accurate when the initial signal to be amplified is relatively large. As we demonstrate, it can importantly facilitate the analysis of an information-theoretic quantity called the noise coefficient. PMID:25075263
Telemetry location error in a forested habitat
Chu, D.S.; Hoover, B.A.; Fuller, M.R.; Geissler, P.H.; Amlaner, Charles J.
1989-01-01
The error associated with locations estimated by radio-telemetry triangulation can be large and variable in a hardwood forest. We assessed the magnitude and cause of telemetry location errors in a mature hardwood forest by using a 4-element Yagi antenna and compass bearings toward four transmitters, from 21 receiving sites. The distance error from the azimuth intersection to known transmitter locations ranged from 0 to 9251 meters. Ninety-five percent of the estimated locations were within 16 to 1963 meters, and 50% were within 99 to 416 meters of actual locations. Angles with 20o of parallel had larger distance errors than other angles. While angle appeared most important, greater distances and the amount of vegetation between receivers and transmitters also contributed to distance error.
Runway exit designs for capacity improvement demonstrations. Phase 2: Computer model development
NASA Technical Reports Server (NTRS)
Trani, A. A.; Hobeika, A. G.; Kim, B. J.; Nunna, V.; Zhong, C.
1992-01-01
The development is described of a computer simulation/optimization model to: (1) estimate the optimal locations of existing and proposed runway turnoffs; and (2) estimate the geometric design requirements associated with newly developed high speed turnoffs. The model described, named REDIM 2.0, represents a stand alone application to be used by airport planners, designers, and researchers alike to estimate optimal turnoff locations. The main procedures are described in detail which are implemented in the software package and possible applications are illustrated when using 6 major runway scenarios. The main output of the computer program is the estimation of the weighted average runway occupancy time for a user defined aircraft population. Also, the location and geometric characteristics of each turnoff are provided to the user.
A minimum distance estimation approach to the two-sample location-scale problem.
Zhang, Zhiyi; Yu, Qiqing
2002-09-01
As reported by Kalbfleisch and Prentice (1980), the generalized Wilcoxon test fails to detect a difference between the lifetime distributions of the male and female mice died from Thymic Leukemia. This failure is a result of the test's inability to detect a distributional difference when a location shift and a scale change exist simultaneously. In this article, we propose an estimator based on the minimization of an average distance between two independent quantile processes under a location-scale model. Large sample inference on the proposed estimator, with possible right-censorship, is discussed. The mouse leukemia data are used as an example for illustration purpose.
Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor
Geerse, Daphne; Coolen, Bert; Kolijn, Detmar; Roerdink, Melvyn
2017-01-01
The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the measurement volume. Reliable estimates of foot placement locations are required to quantify spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the sensor, side and step length on estimates of foot placement locations based on Kinect’s ankle body points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for five imposed step lengths. Body points’ time series of the lower extremities were recorded with a Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration system. Foot placement locations, step lengths, and stepping accuracies were compared between systems using repeated-measures ANOVAs, agreement statistics and two one-sided t-tests to test equivalence. For the right side at the 2 m distance from the sensor we found significant between-systems differences in foot placement locations and step lengths, and evidence for nonequivalence. This distance by side effect was likely caused by differences in body orientation relative to the Kinect sensor. It can be reduced by using Kinect’s higher-dimensional depth data to estimate foot placement locations directly from the foot’s point cloud and/or by using smaller inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at greater distances from the sensor. PMID:28994731
Microseismic Image-domain Velocity Inversion: Case Study From The Marcellus Shale
NASA Astrophysics Data System (ADS)
Shragge, J.; Witten, B.
2017-12-01
Seismic monitoring at injection wells relies on generating accurate location estimates of detected (micro-)seismicity. Event location estimates assist in optimizing well and stage spacings, assessing potential hazards, and establishing causation of larger events. The largest impediment to generating accurate location estimates is an accurate velocity model. For surface-based monitoring the model should capture 3D velocity variation, yet, rarely is the laterally heterogeneous nature of the velocity field captured. Another complication for surface monitoring is that the data often suffer from low signal-to-noise levels, making velocity updating with established techniques difficult due to uncertainties in the arrival picks. We use surface-monitored field data to demonstrate that a new method requiring no arrival picking can improve microseismic locations by jointly locating events and updating 3D P- and S-wave velocity models through image-domain adjoint-state tomography. This approach creates a complementary set of images for each chosen event through wave-equation propagation and correlating combinations of P- and S-wavefield energy. The method updates the velocity models to optimize the focal consistency of the images through adjoint-state inversions. We demonstrate the functionality of the method using a surface array of 192 three-component geophones over a hydraulic stimulation in the Marcellus Shale. Applying the proposed joint location and velocity-inversion approach significantly improves the estimated locations. To assess event location accuracy, we propose a new measure of inconsistency derived from the complementary images. By this measure the location inconsistency decreases by 75%. The method has implications for improving the reliability of microseismic interpretation with low signal-to-noise data, which may increase hydrocarbon extraction efficiency and improve risk assessment from injection related seismicity.
Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor.
Geerse, Daphne; Coolen, Bert; Kolijn, Detmar; Roerdink, Melvyn
2017-10-10
The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the measurement volume. Reliable estimates of foot placement locations are required to quantify spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the sensor, side and step length on estimates of foot placement locations based on Kinect's ankle body points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for five imposed step lengths. Body points' time series of the lower extremities were recorded with a Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration system. Foot placement locations, step lengths, and stepping accuracies were compared between systems using repeated-measures ANOVAs, agreement statistics and two one-sided t -tests to test equivalence. For the right side at the 2 m distance from the sensor we found significant between-systems differences in foot placement locations and step lengths, and evidence for nonequivalence. This distance by side effect was likely caused by differences in body orientation relative to the Kinect sensor. It can be reduced by using Kinect's higher-dimensional depth data to estimate foot placement locations directly from the foot's point cloud and/or by using smaller inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at greater distances from the sensor.
NASA Astrophysics Data System (ADS)
Amiruddin
2018-03-01
This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of abrasion.
Clement, Matthew; O'Keefe, Joy M; Walters, Brianne
2015-01-01
While numerous methods exist for estimating abundance when detection is imperfect, these methods may not be appropriate due to logistical difficulties or unrealistic assumptions. In particular, if highly mobile taxa are frequently absent from survey locations, methods that estimate a probability of detection conditional on presence will generate biased abundance estimates. Here, we propose a new estimator for estimating abundance of mobile populations using telemetry and counts of unmarked animals. The estimator assumes that the target population conforms to a fission-fusion grouping pattern, in which the population is divided into groups that frequently change in size and composition. If assumptions are met, it is not necessary to locate all groups in the population to estimate abundance. We derive an estimator, perform a simulation study, conduct a power analysis, and apply the method to field data. The simulation study confirmed that our estimator is asymptotically unbiased with low bias, narrow confidence intervals, and good coverage, given a modest survey effort. The power analysis provided initial guidance on survey effort. When applied to small data sets obtained by radio-tracking Indiana bats, abundance estimates were reasonable, although imprecise. The proposed method has the potential to improve abundance estimates for mobile species that have a fission-fusion social structure, such as Indiana bats, because it does not condition detection on presence at survey locations and because it avoids certain restrictive assumptions.
A statistical evaluation of non-ergodic variogram estimators
Curriero, F.C.; Hohn, M.E.; Liebhold, A.M.; Lele, S.R.
2002-01-01
Geostatistics is a set of statistical techniques that is increasingly used to characterize spatial dependence in spatially referenced ecological data. A common feature of geostatistics is predicting values at unsampled locations from nearby samples using the kriging algorithm. Modeling spatial dependence in sampled data is necessary before kriging and is usually accomplished with the variogram and its traditional estimator. Other types of estimators, known as non-ergodic estimators, have been used in ecological applications. Non-ergodic estimators were originally suggested as a method of choice when sampled data are preferentially located and exhibit a skewed frequency distribution. Preferentially located samples can occur, for example, when areas with high values are sampled more intensely than other areas. In earlier studies the visual appearance of variograms from traditional and non-ergodic estimators were compared. Here we evaluate the estimators' relative performance in prediction. We also show algebraically that a non-ergodic version of the variogram is equivalent to the traditional variogram estimator. Simulations, designed to investigate the effects of data skewness and preferential sampling on variogram estimation and kriging, showed the traditional variogram estimator outperforms the non-ergodic estimators under these conditions. We also analyzed data on carabid beetle abundance, which exhibited large-scale spatial variability (trend) and a skewed frequency distribution. Detrending data followed by robust estimation of the residual variogram is demonstrated to be a successful alternative to the non-ergodic approach.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
2004-01-01
The rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction of half-lifes at 50 degrees C. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable; whereas organic substances containing two oxygenated groups in which one group was an alpha- or beta-positioned carbonyl group were the most reactive. Compounds with an alpha- or beta-positioned carbonyl group (aldehyde or ketone) had rates of reaction that were up to 10(24)-times faster than rates of similar molecules lacking the carbonyl group. This survey of organic reactivity, together with estimates of the molecular containment properties of lipid vesicles and liquid spherules, indicates that an origins process in a small domain that used C,H,O-intermediates had to be catalytic and use the most reactive organic molecules to prevent escape of its reaction intermediates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo
2015-12-21
Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53–75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol atmore » a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.« less
Low Copy Numbers of DC-SIGN in Cell Membrane Microdomains: Implications for Structure and Function
Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; de Silva, Aravinda M.; Jacobson, Ken; Thompson, Nancy L.
2014-01-01
Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1μm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3T3 cells contains only 4-8 molecules of DC-SIGN, consistent with our preliminary super-resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (~50nm) pathogen, dengue virus, leading to infection of host cells. PMID:24313910
Hunter, Margaret; Meigs-Friend, Gaia; Ferrante, Jason; Takoukam Kamla, Aristide; Dorazio, Robert; Keith Diagne, Lucy; Luna, Fabia; Lanyon, Janet M.; Reid, James P.
2018-01-01
Environmental DNA (eDNA) detection is a technique used to non-invasively detect cryptic, low density, or logistically difficult-to-study species, such as imperiled manatees. For eDNA measurement, genetic material shed into the environment is concentrated from water samples and analyzed for the presence of target species. Cytochrome bquantitative PCR and droplet digital PCR eDNA assays were developed for the 3 Vulnerable manatee species: African, Amazonian, and both subspecies of the West Indian (Florida and Antillean) manatee. Environmental DNA assays can help to delineate manatee habitat ranges, high use areas, and seasonal population changes. To validate the assay, water was analyzed from Florida’s east coast containing a high-density manatee population and produced 31564 DNA molecules l-1on average and high occurrence (ψ) and detection (p) estimates (ψ = 0.84 [0.40-0.99]; p = 0.99 [0.95-1.00]; limit of detection 3 copies µl-1). Similar occupancy estimates were produced in the Florida Panhandle (ψ = 0.79 [0.54-0.97]) and Cuba (ψ = 0.89 [0.54-1.00]), while occupancy estimates in Cameroon were lower (ψ = 0.49 [0.09-0.95]). The eDNA-derived detection estimates were higher than those generated using aerial survey data on the west coast of Florida and may be effective for population monitoring. Subsequent eDNA studies could be particularly useful in locations where manatees are (1) difficult to identify visually (e.g. the Amazon River and Africa), (2) are present in patchy distributions or are on the verge of extinction (e.g. Jamaica, Haiti), and (3) where repatriation efforts are proposed (e.g. Brazil, Guadeloupe). Extension of these eDNA techniques could be applied to other imperiled marine mammal populations such as African and Asian dugongs.
Estimation of UV index in the clear-sky using OMI PROFOZ and AERONET data
NASA Astrophysics Data System (ADS)
Lee, H.; Kim, J.; Jeong, U.
2016-12-01
Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface-level ultraviolet (UV) radiation is important nowadays. UV index (UVI) is a simple parameter to show the strength of surface UV radiation, therefore UVI has been widely utilized for the purpose of UV monitoring. In this work, we also try to develop our own retrieval algorithm for better estimation of UVI. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UVI estimation. In this study, we estimate UV Index (UVI) at Seoul first in a clear-sky atmosphere, and then validate this estimated UVI comparing to UVI from Brewer spectrophotometer measurements located at Yonsei University in Seoul. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UVI calculation. To consider the ozone and aerosol influence in a real situation, we input ozone and temperature profiles from the Ozone Monitoring Instrument (OMI) Aura vertical profile ozone (PROFOZ) data, and aerosol properties from the AErosol RObotic NETwork (AERONET) measurements at Seoul into the model. Inter-comparison of UVI is performed for the year 2011, 2012 and 2014, and resulted in a high correlation coefficient (R=0.95) under clear-sky condition. But a slight overestimation of Brewer UVI occurred under high AOD conditions in clear-sky. Because our UVI algorithm does not account for surface absorbing aerosols, it is lead to systematic overestimation of surface UV irradiances. Therefore, we also investigate the effect of absorbing aerosol on the amount of UV irradiance in the clear-sky over East Asia.
Discovery of Methanol in a Planetary Birthplace
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
Data from the Atacama Large Millimeter/submillimeter Array (ALMA) has recently revealed the first detection of gas-phase methanol, a derivative of methane, in a protoplanetary disk. This milestone discovery is an important step in understanding the conditions for planet formation that can lead to life-supporting planets like Earth.Planetary ChemistryOne major goal in the study of exoplanets is to find planets that orbit in their host stars habitable zones, a measure that determines whether the planet receives the right amount of sunlight to support liquid water. But theres another crucial element in the formation of a life-supporting planet: chemistry.To understand the chemistry of newly born planets, we need to study protoplanetary disks because its from these that young planets form. The elements and molecules contained in these dusty disks are what initially make up the atmospheres of planets forming within the disks.The Atacama Large Millimeter/submillimeter Array under the southern sky. [ESO/B. Tafreshi]The Hunt for ComplexityThe detection of complex molecules in protoplanetary disks is an important milestone, because complex molecules are necessary to build the correct chemistry to support life. Unfortunately, detecting these molecules is very difficult, requiring observations with both high spatial resolution and high sensitivity. Thus far, though weve observed elements and simple molecules in protoplanetary disks, detections of complex molecules have been elusive with only one success before now.Luckily, we now have an observatory up to the challenge! ALMAs unprecedented spatial resolution and sensitivity has recently allowed a team of scientists led by Catherine Walsh (Leiden University) to observe gas-phase methanol in a protoplanetary disk for the first time. This detection was made in the disk around the young star TW Hya, and it represents one of the largest molecules that has ever been observed in a disk to date.Locating IcesThe model (purple line) and data (dashed line) showing the methanol line detection. [Adapted from Walsh et al. 2016]Since TW Hyas disk has temperatures of less than ~100K (-173C), we would expect most of the disks methanol to be frozen. The gas-phase methanol observed by Walsh and collaborators was likely released from a larger reservoir of frozen methanol residing on dust grains in the disk. The peak of the methanol emission was detectedfroma ring located about 30 AU out from the central star, which suggests that the larger dust grains in the disk located in the inner 50 AU may host the bulk of the disk ice reservoir.Walsh and collaborators important detection opens a window into studying complex organic chemistry during planetary system formation. This stepping stone can help us to better understand the conditions when Earth formed and what we should look for in the search for life-supporting planets.CitationCatherine Walsh et al 2016 ApJ 823 L10. doi:10.3847/2041-8205/823/1/L10
Bakun, W.H.; Hopper, M.G.
2004-01-01
We estimate locations and moment magnitudes M and their uncertainties for the three largest events in the 1811-1812 sequence near New Madrid, Missouri, and for the 1 September 1886 event near Charleston, South Carolina. The intensity magnitude M1, our preferred estimate of M, is 7.6 for the 16 December 1811 event that occurred in the New Madrid seismic zone (NMSZ) on the Bootheel lineament or on the Blytheville seismic zone. M1, is 7.5 for the 23 January 1812 event for a location on the New Madrid north zone of the NMSZ and 7.8 for the 7 February 1812 event that occurred on the Reelfoot blind thrust of the NMSZ. Our preferred locations for these events are located on those NMSZ segments preferred by Johnston and Schweig (1996). Our estimates of M are 0.1-0.4 M units less than those of Johnston (1996b) and 0.3-0.5 M units greater than those of Hough et al. (2000). M1 is 6.9 for the 1 September 1886 event for a location at the Summerville-Middleton Place cluster of recent small earthquakes located about 30 km northwest of Charleston.
Jovtchev, S; Alexandrov, S; Hristova-Avakumova, N; Miteva, S; Traikov, L; Gerasimova, D; Stoeff, S
2016-01-01
Different colloids are used as a part of solutions for fluid resuscitation and organ preservation: hydroxyethyl starches (HES), dextran (Dx), polyethylene glycols (PEG), polyvinyl pyrrolidone (PVP). Some of the problems associated with their application are addressed to alteration in erythrocyte (ERY) rheology. We intended to estimate in vitro and compare the aggregation power (AP) of these molecules related to ERY interactions. Washed human ERY are used during the study. The zeta sedimentation technique is used to quantify the cell aggregation. Zeta sedimentation ratio (ZSR) based indices (AI) are calculated. The hydrodynamic radius (Rh) of the polymer molecules is determined using viscometry. For all polymers tested a linear range in the relationship AI - concentration was found. The slope of the calculated line was interpreted as measure of the molecule's AP. The following ranking was obtained: PEG >PVP >DX >HES. Within the same chemical type of polymer, increasing Rh of the molecules leads to elevated AI. Comparison of the AP of molecules with similar Rh reveals a significant dependence on their chemical nature. Our results show that molecule's AP is significantly dependent on their chemical nature - i.e. not only molecular size does matter.
Biswas, Soma; Leitao, Samuel; Theillaud, Quentin; Erickson, Blake W; Fantner, Georg E
2018-06-20
Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) is a valuable tool in biophysics to investigate the ligand-receptor interactions, cell adhesion and cell mechanics. However, the force spectroscopy data analysis needs to be done carefully to extract the required quantitative parameters correctly. Especially the large number of molecules, commonly involved in complex networks formation; leads to very complicated force spectroscopy curves. One therefore, generally characterizes the total dissipated energy over a whole pulling cycle, as it is difficult to decompose the complex force curves into individual single molecule events. However, calculating the energy dissipation directly from the transformed force spectroscopy curves can lead to a significant over-estimation of the dissipated energy during a pulling experiment. The over-estimation of dissipated energy arises from the finite stiffness of the cantilever used for AFM based SMFS. Although this error can be significant, it is generally not compensated for. This can lead to significant misinterpretation of the energy dissipation (up to the order of 30%). In this paper, we show how in complex SMFS the excess dissipated energy caused by the stiffness of the cantilever can be identified and corrected using a high throughput algorithm. This algorithm is then applied to experimental results from molecular networks and cell-adhesion measurements to quantify the improvement in the estimation of the total energy dissipation.
NASA Astrophysics Data System (ADS)
Antoszczak, Michał; Janczak, Jan; Brzezinski, Bogumił; Huczyński, Adam
2017-02-01
For the first time, the crystalline complex of salinomycin with benzylamine was obtained and its molecular structure was studied using single crystal X-ray diffraction, FT-IR, 1H NMR, 13C NMR, 2D NMR and ESI MS methods. These studies provided evidence that the proton from the carboxylic group of salinomycin (SAL) is transferred to the amine group of benzylamine (BnA) forming the host-guest complex (SAL-BnA). It was shown that the SAL-BnA complex both in solid state and in chloroform solution is stabilized by the intramolecular O-H⋯O hydrogen bonds and also by the intermolecular hydrogen bonding interactions of the carboxylate, ketone and/or hydroxyl groups of SAL with water molecules present in the investigated system. The solvated acetonitrile molecules are additionally located in the voids between the SAL-BnA complex molecules in the crystal structure, while water molecules involved in the dihydrated crystalline SAL-BnA complex partially move into the solvent upon dissolution in chloroform.
A spectroscopist's view of energy states, energy transfers, and chemical reactions.
Moore, C Bradley
2007-01-01
This chapter describes a research career beginning at Berkeley in 1960, shortly after Sputnik and the invention of the laser. Following thesis work on vibrational spectroscopy and the chemical reactivity of small molecules, we studied vibrational energy transfers in my own lab. Collision-induced transfers among vibrations of a single molecule, from one molecule to another, and from vibration to rotation and translation were elucidated. My research group also studied the competition between vibrational relaxation and chemical reaction for potentially reactive collisions with one molecule vibrationally excited. Lasers were used to enrich isotopes by the excitation of a predissociative transition of a selected isotopomer. We also tested the hypotheses of transition-state theory for unimolecular reactions of ketene, formaldehyde, and formyl fluoride by (a) resolving individual molecular eigenstates above a dissociation threshold, (b) locating vibrational levels at the transition state, (c) observing quantum resonances in the barrier region for motion along a reaction coordinate, and (d) studying energy release to fragments.
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-01-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. PMID:27687693
Baptayev, Bakhytzhan; Adilov, Salimgerey
2018-01-01
The whole mol-ecule of the title porphyrin, C 46 H 32 N 6 O 4 ·2C 6 H 5 NO 2 , which crystallized as a nitro-benzene disolvate, is generated by inversion symmetry. The porphyrin macrocycle is almost planar, the maximum deviation from the mean plane of the non-hydrogen atoms is 0.097 (2) Å. The aryl rings at the meso positions are inclined to this mean plane by 74.84 (6)° for the nitro-phenyl rings and 73.37 (7)° for the tolyl rings. In the crystal, the porphyrin mol-ecules are linked by C-H⋯O hydrogen bonds, forming chains along [100]. The solvent mol-ecules are also linked by C-H⋯O hydrogen bonds, forming chains along [100]. Inter-digitation of the p -tolyl groups along the c axis creates rectangular channels in which the solvent mol-ecules are located.
Crystal structure of cis-tetra-aqua-dichlorido-cobalt(II) sulfolane disolvate.
Boudraa, Mhamed; Bouacida, Sofiane; Bouchareb, Hasna; Merazig, Hocine; Chtoun, El Hossain
2015-02-01
In the title compound, [CoCl2(H2O)4]·2C4H8SO2, the Co(II) cation is located on the twofold rotation axis and is coordinated by four water mol-ecules and two adjacent chloride ligands in a slightly distorted octa-hedral coordination environment. The cisoid angles are in the range 83.27 (5)-99.66 (2)°. The three transoid angles deviate significantly from the ideal linear angle. The crystal packing can be described as a linear arrangement of complex units along c formed by bifurcated O-H⋯Cl hydrogen bonds between two water mol-ecules from one complex unit towards one chloride ligand of the neighbouring complex. Two solvent mol-ecules per complex are attached to this infinite chain via O-H⋯O hydrogen bonds in which water mol-ecules act as the hydrogen-bond donor and sulfolane O atoms as the hydrogen-bond acceptor sites.
Ordering and partitioning in vesicle forming block copolymer thin films
NASA Astrophysics Data System (ADS)
Parnell, Andrew; Kamata, Yohei; Jones, Richard
Cell biology routinely uses encapsulation processes to package a payload and transport it to a location where the payload can then be used. Synthetic polymer based liposomes (Polymersomes) are one possible way in which we can artificially contain a molecule of interest that is protected from its surrounding environment. Encapsulation technologies at present rely on forming a lipid vesicle and then extruding it in a solution containing the target molecule to be encapsulated. Only a small fraction is encapsulated in this process. This is because of the complex structural formation pathway in going from individual isolated amphiphilic molecules into vesicle aggregates. My talk will discuss strategies to overcome the formation pathways, by forming a block copolymer film with the target molecule and then solvent ordering prior to the formation of vesicles. By studying block copolymer thin films with neutron reflectivity and ellipsometry we are able to observe partitioning and ordering which is essential for high encapsulation efficiencies. We acknowledge funding from STFC for use of the ISIS spallation neutron source.
NASA Technical Reports Server (NTRS)
Lacy, J. H.; Baas, F.; Allamandola, L. J.; Van De Bult, C. E. P.; Persson, S. E.; Mcgregor, P. J.; Lonsdale, C. J.; Geballe, T. R.
1984-01-01
Spectra obtained at a resolving power of 840, for seven protostellar sources in the region of the 4.67-micron fundamental vibrational band of CO, indicate that the deep absorption feature in W33A near 4.61 microns consists of three features which are seen in other sources, but with varying relative strength. UV-irradiation laboratory experiments with 'dirty ice' temperature cycling allow the identification of two of the features cited with solid CO and CO complexed to other molecules. Cyano group-containing molecules have a lower vapor pressure than CO, and can therefore survive in much warmer environments. The formation and location of the CO- and CN-bearing grain mantles and sources of UV irradiation in cold molecular clouds are discussed. Plausible UV light sources can produce the observed cyano group features, but only under conditions in which local heat sources do not cause evaporation of the CO molecules prior to their photoprocessing.
Bayesian Spatial Design of Optimal Deep Tubewell Locations in Matlab, Bangladesh.
Warren, Joshua L; Perez-Heydrich, Carolina; Yunus, Mohammad
2013-09-01
We introduce a method for statistically identifying the optimal locations of deep tubewells (dtws) to be installed in Matlab, Bangladesh. Dtw installations serve to mitigate exposure to naturally occurring arsenic found at groundwater depths less than 200 meters, a serious environmental health threat for the population of Bangladesh. We introduce an objective function, which incorporates both arsenic level and nearest town population size, to identify optimal locations for dtw placement. Assuming complete knowledge of the arsenic surface, we then demonstrate how minimizing the objective function over a domain favors dtws placed in areas with high arsenic values and close to largely populated regions. Given only a partial realization of the arsenic surface over a domain, we use a Bayesian spatial statistical model to predict the full arsenic surface and estimate the optimal dtw locations. The uncertainty associated with these estimated locations is correctly characterized as well. The new method is applied to a dataset from a village in Matlab and the estimated optimal locations are analyzed along with their respective 95% credible regions.
NASA Astrophysics Data System (ADS)
Karimi, Kurosh; Shirzaditabar, Farzad
2017-08-01
The analytic signal of magnitude of the magnetic field’s components and its first derivatives have been employed for locating magnetic structures, which can be considered as point-dipoles or line of dipoles. Although similar methods have been used for locating such magnetic anomalies, they cannot estimate the positions of anomalies in noisy states with an acceptable accuracy. The methods are also inexact in determining the depth of deep anomalies. In noisy cases and in places other than poles, the maximum points of the magnitude of the magnetic vector components and Az are not located exactly above 3D bodies. Consequently, the horizontal location estimates of bodies are accompanied by errors. Here, the previous methods are altered and generalized to locate deeper models in the presence of noise even at lower magnetic latitudes. In addition, a statistical technique is presented for working in noisy areas and a new method, which is resistant to noise by using a ‘depths mean’ method, is made. Reduction to the pole transformation is also used to find the most possible actual horizontal body location. Deep models are also well estimated. The method is tested on real magnetic data over an urban gas pipeline in the vicinity of Kermanshah province, Iran. The estimated location of the pipeline is accurate in accordance with the result of the half-width method.
Semmens, Darius J.; Diffendorfer, James E.; López-Hoffman, Laura; Shapiro, Carl D.
2011-01-01
Migratory species support ecosystem process and function in multiple areas, establishing ecological linkages between their different habitats. As they travel, migratory species also provide ecosystem services to people in many different locations. Previous research suggests there may be spatial mismatches between locations where humans use services and the ecosystems that produce them. This occurs with migratory species, between the areas that most support the species' population viability – and hence their long-term ability to provide services – and the locations where species provide the most ecosystem services. This paper presents a conceptual framework for estimating how much a particular location supports the provision of ecosystem services in other locations, and for estimating the extent to which local benefits are dependent upon other locations. We also describe a method for estimating the net payment, or subsidy, owed by or to a location that balances benefits received and support provided by locations throughout the migratory range of multiple species. The ability to quantify these spatial subsidies could provide a foundation for the establishment of markets that incentivize cross-jurisdictional cooperative management of migratory species. It could also provide a mechanism for resolving conflicts over the sustainable and equitable allocation of exploited migratory species.
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2017-01-01
Providers of payloads carried aboard the International Space Station must conduct analyses to demonstrate that any planned gaseous venting events generate no more than a certain level of material that may interfere with optical measurements from other experiments or payloads located nearby. This requirement is expressed in terms of a maximum column number density (CND). Depending on the level of rarefaction, such venting may be characterized by effusion for low flow rates, or by a sonic distribution at higher levels. Since the relative locations of other sensitive payloads are often unknown because they may refer to future projects, this requirement becomes a search for the maximum CND along any path.In another application, certain astronomical observations make use of CND to estimate light attenuation from a distant star through gaseous plumes, such as the Fermi Bubbles emanating from the vicinity of the black hole at the center of our Milky Way galaxy, in order to infer the amount of material being expelled via those plumes.This paper presents analytical CND expressions developed for general straight paths based upon a free molecule point source model for steady effusive flow and for a distribution fitted to model flows from a sonic orifice. Among other things, in this Mach number range it is demonstrated that the maximum CND from a distant location occurs along the path parallel to the source plane that intersects the plume axis. For effusive flows this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43.
Secondary relaxation dynamics in rigid glass-forming molecular liquids with related structures.
Li, Xiangqian; Wang, Meng; Liu, Riping; Ngai, Kia L; Tian, Yongjun; Wang, Li-Min; Capaccioli, Simone
2015-09-14
The dielectric relaxation in three glass-forming molecular liquids, 1-methylindole (1MID), 5H-5-Methyl-6,7-dihydrocyclopentapyrazine (MDCP), and Quinaldine (QN) is studied focusing on the secondary relaxation and its relation to the structural α-relaxation. All three glass-formers are rigid and more or less planar molecules with related chemical structures but have dipoles of different strengths at different locations. A strong and fast secondary relaxation is detected in the dielectric spectra of 1MID, while no resolved β-relaxation is observed in MDCP and QN. If the observed secondary relaxation in 1MID is identified with the Johari-Goldstein (JG) β-relaxation, then apparently the relation between the α- and β-relaxation frequencies of 1MID is not in accord with the Coupling Model (CM). The possibility of the violation of the prediction in 1MID as due to either the formation of hydrogen-bond induced clusters or the involvement of intramolecular degree of freedom is ruled out. The violation is explained by the secondary relaxation originating from the in-plane rotation of the dipole located on the plane of the rigid molecule, contributing to dielectric loss at higher frequencies and more intense than the JG β-relaxation generated by the out-of-plane rotation. MDCP has smaller dipole moment located in the plane of the molecule; however, presence of the change of curvature of dielectric loss, ε″(f), at some frequency on the high-frequency flank of the α-relaxation reveals the JG β-relaxation in MDCP and which is in accord with the CM prediction. QN has as large an in-plane dipole moment as 1MID, and the absence of the resolved secondary relaxation is explained by the smaller coupling parameter than the latter in the framework of the CM.
Casino, F G; Lopez, T
2008-01-01
In contrast to the negative results of the primary analysis, secondary analyses of the HEMO study do support the clinical importance of middle molecule removal. This is in agreement with the findings of large observational studies showing an improvement in mortality and morbidity in dialysis patients treated with high-flux hemodialysis or convective techniques as compared to low-flux hemodialysis. For practical assessment of middle molecule removal, we suggest using the Kt/V of beta2-microglobulin (Kt/Vbeta2-m) with a reference (adequate) value of >or=0.66, which was the average value for the high-flux arm in the HEMO study. For patients on low-flux hemodialysis, where Kt/Vbeta2-m cannot reliably be assessed, we suggest using the Kt/V of vitamin B12 (Kt/VB12), with a reference (adequate) value of >or=0.74, adapted from the findings of the Case Mix Adequacy Study (AJKD 1999). To simplify the routine assessment of these indices, two nomograms are introduced: the first allows to estimate Kt/Vbeta2-m from the post- to pre-dialysis beta2-microglobulin concentration ratio, the second allows to estimate the diffusion dialysis clearance of vitamin B12 from the in vitro dialyzer KoAB12 and actual plasma water flow rate. While waiting for specific trials addressing the issue of dialysis adequacy related to middle molecule removal, clinical experience with the middle molecule indices could provide further quantitative tools for dialysis prescription and favor an increase in dialysis time (or frequency) and/or the use of high-flux hemodialysis and convective techniques.
Zhang, Jingqing; Boghossian, Ardemis A; Barone, Paul W; Rwei, Alina; Kim, Jong-Ho; Lin, Dahua; Heller, Daniel A; Hilmer, Andrew J; Nair, Nitish; Reuel, Nigel F; Strano, Michael S
2011-01-26
We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, L-ascorbic acid, and riboflavin, d(AT)(15) imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alcohol enables no response to nitric oxide, but exhibits fluorescent enhancement to other molecules in the tested library. For AT(15)-SWNT, a stepwise fluorescence decrease is observed when the nanotubes are exposed to NO, reporting the dynamics of single-molecule NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the maximum likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estimated rate constants is less than 5% under our experimental conditions, allowing for calibration using a series of NO concentrations. As expected, the adsorption rate is found to be linearly proportional to NO concentration, and the intrinsic single-site NO adsorption rate constant is 0.001 s(-1) μM NO(-1). The ability to detect nitric oxide quantitatively at the single-molecule level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chemical signaling, as well as medical diagnostics for inflammation.
Binding of Sulpiride to Seric Albumins
da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins
2016-01-01
The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031
Axisymmetric Plume Simulations with NASA's DSMC Analysis Code
NASA Technical Reports Server (NTRS)
Stewart, B. D.; Lumpkin, F. E., III
2012-01-01
A comparison of axisymmetric Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) results to analytic and Computational Fluid Dynamics (CFD) solutions in the near continuum regime and to 3D DAC solutions in the rarefied regime for expansion plumes into a vacuum is performed to investigate the validity of the newest DAC axisymmetric implementation. This new implementation, based on the standard DSMC axisymmetric approach where the representative molecules are allowed to move in all three dimensions but are rotated back to the plane of symmetry by the end of the move step, has been fully integrated into the 3D-based DAC code and therefore retains all of DAC s features, such as being able to compute flow over complex geometries and to model chemistry. Axisymmetric DAC results for a spherically symmetric isentropic expansion are in very good agreement with a source flow analytic solution in the continuum regime and show departure from equilibrium downstream of the estimated breakdown location. Axisymmetric density contours also compare favorably against CFD results for the R1E thruster while temperature contours depart from equilibrium very rapidly away from the estimated breakdown surface. Finally, axisymmetric and 3D DAC results are in very good agreement over the entire plume region and, as expected, this new axisymmetric implementation shows a significant reduction in computer resources required to achieve accurate simulations for this problem over the 3D simulations.
Development of new photon-counting detectors for single-molecule fluorescence microscopy.
Michalet, X; Colyer, R A; Scalia, G; Ingargiola, A; Lin, R; Millaud, J E; Weiss, S; Siegmund, Oswald H W; Tremsin, Anton S; Vallerga, John V; Cheng, A; Levi, M; Aharoni, D; Arisaka, K; Villa, F; Guerrieri, F; Panzeri, F; Rech, I; Gulinatti, A; Zappa, F; Ghioni, M; Cova, S
2013-02-05
Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level.
Development of new photon-counting detectors for single-molecule fluorescence microscopy
Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.
2013-01-01
Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185
López-Rosa, Sheila; Molina-Espíritu, Moyocoyani; Esquivel, Rodolfo O; Soriano-Correa, Catalina; Dehesa, Jésus S
2016-12-05
The relative structural location of a selected group of 27 sulfonamide-like molecules in a chemical space defined by three information theory quantities (Shannon entropy, Fisher information, and disequilibrium) is discussed. This group is composed of 15 active bacteriostatic molecules, 11 theoretically designed ones, and para-aminobenzoic acid. This endeavor allows molecules that share common chemical properties through the molecular backbone, but with significant differences in the identity of the chemical substituents, which might result in bacteriostatic activity, to be structurally classified and characterized. This is performed by quantifying the structural changes on the electron density distribution due to different functional groups and number of electrons. The macroscopic molecular features are described by means of the entropy-like notions of spatial electronic delocalization, order, and uniformity. Hence, an information theory three-dimensional space (IT-3D) emerges that allows molecules with common properties to be gathered. This space witnesses the biological activity of the sulfonamides. Some structural aspects and information theory properties can be associated, as a result of the IT-3D chemical space, with the bacteriostatic activity of these molecules. Most interesting is that the active bacteriostatic molecules are more similar to para-aminobenzoic acid than to the theoretically designed analogues. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodriguez-Cruz, Sandra E.; Jockusch, Rebecca A.
2005-01-01
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M2+(H2O)n (M = Mg, Ca, and Sr for n = 5–7, and M = Ba for n = 4–7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (Eo) are determined. These reactions should have a negligible reverse activation barrier; therefore, Eo values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca2+, Sr2+, and Ba2+ are consistent with structures in which all the water molecules are located in the first solvation shell. PMID:16429612
Introduction to Mobile Trajectory Based Services: A New Direction in Mobile Location Based Services
NASA Astrophysics Data System (ADS)
Khokhar, Sarfraz; Nilsson, Arne A.
The mandate of E911 gave birth to the idea of Location Based Services (LBS) capitalizing on the knowledge of the mobile location. The underlying estimated location is a feasible area. There is yet another class of mobile services that could be based on the mobility profiling of a mobile user. The mobility profile of a mobile user is a set of the routine trajectories of his or her travel paths. We called such services as Mobile Trajectory Based Services (MTBS). This paper introduces MTBS and functional architecture of an MTBS system. Suitability of different location estimation technologies for MTBS has been discussed and supported with simulation results.
Julián-Ortiz, Jesus V de; Gozalbes, Rafael; Besalú, Emili
2016-01-01
The search for new drug candidates in databases is of paramount importance in pharmaceutical chemistry. The selection of molecular subsets is greatly optimized and much more promising when potential drug-like molecules are detected a priori. In this work, about one hundred thousand molecules are ranked following a new methodology: a drug/non-drug classifier constructed by a consensual set of classification trees. The classification trees arise from the stochastic generation of training sets, which in turn are used to estimate probability factors of test molecules to be drug-like compounds. Molecules were represented by Topological Quantum Similarity Indices and their Graph Theoretical counterparts. The contribution of the present paper consists of presenting an effective ranking method able to improve the probability of finding drug-like substances by using these types of molecular descriptors.
Ghavanloo, Esmaeal; Izadi, Razie; Nayebi, Ali
2018-02-28
Estimating the Young's modulus of a structure in the nanometer size range is a difficult task. The reliable determination of this parameter is, however, important in both basic and applied research. In this study, by combining molecular dynamics (MD) simulations and continuum shell theory, we designed a new approach to determining the Young's modulus values of different spherical fullerenes. The results indicate that the Young's modulus values of fullerene molecules decrease nonlinearly with increasing molecule size and understandably tend to the Young's modulus of an ideal flat graphene sheet at large molecular radii. To the best of our knowledge, this is first time that a combined atomistic-continuum method which can predict the Young's modulus values of fullerene molecules with high precision has been reported.
A COMPUTER MODELING STUDY OF BINDING PROPERTIES OF CHIRAL NUCLEOPEPTIDE FOR BIOMEDICAL APPLICATIONS.
Pirtskhalava, M; Egoyan, A; Mirtskhulava, M; Roviello, G
2017-12-01
Nucleopeptides often show interesting properties of molecular binding that render them good candidates for development of innovative drugs for anticancer and antiviral therapies. In this work we present results of computer modeling of interactions between the molecules of hexathymine nucleopeptide (T6) and poly rA RNA (A18). The results of geometry optimization calculated using Hyperchem software and our own computer program for molecular docking show that molecules establish stable complexes due to the complementary-nucleobase interaction and the electrostatic interaction between the negative phosphate group of poly rA and the positively-charged residues present in the cationic nucleopeptide structure. Computer modeling makes it possible to find the optimal binding configuration of the molecules of a nucleopeptide and poly rA RNA and to estimate the binding energy between the molecules.
1994-01-01
Unlike the highly polymorphic major histocompatibility complex (MHC) class Ia molecules, which present a wide variety of peptides to T cells, it is generally assumed that the nonpolymorphic MHC class Ib molecules may have evolved to function as highly specialized receptors for the presentation of structurally unique peptides. However, a thorough biochemical analysis of one class Ib molecule, the soluble isoform of Qa-2 antigen (H-2SQ7b), has revealed that it binds a diverse array of structurally similar peptides derived from intracellular proteins in much the same manner as the classical antigen-presenting molecules. Specifically, we find that SQ7b molecules are heterodimers of heavy and light chains complexed with nonameric peptides in a 1:1:1 ratio. These peptides contain a conserved hydrophobic residue at the COOH terminus and a combination of one or more conserved residue(s) at P7 (histidine), P2 (glutamine/leucine), and/or P3 (leucine/asparagine) as anchors for binding SQ7b. 2 of 18 sequenced peptides matched cytosolic proteins (cofilin and L19 ribosomal protein), suggesting an intracellular source of the SQ7b ligands. Minimal estimates of the peptide repertoire revealed that at least 200 different naturally processed self-peptides can bind SQ7b molecules. Since Qa-2 molecules associate with a diverse array of peptides, we suggest that they function as effective presenting molecules of endogenously synthesized proteins like the class Ia molecules. PMID:8294869
Influence of Molecular Oxygen on Ortho-Para Conversion of Water Molecules
NASA Astrophysics Data System (ADS)
Valiev, R. R.; Minaev, B. F.
2017-07-01
The mechanism of influence of molecular oxygen on the probability of ortho-para conversion of water molecules and its relation to water magnetization are considered within the framework of the concept of paramagnetic spin catalysis. Matrix elements of the hyperfine ortho-para interaction via the Fermi contact mechanism are calculated, as well as the Maliken spin densities on water protons in H2O and O2 collisional complexes. The mechanism of penetration of the electron spin density into the water molecule due to partial spin transfer from paramagnetic oxygen is considered. The probability of ortho-para conversion of the water molecules is estimated by the quantum chemistry methods. The results obtained show that effective ortho-para conversion of the water molecules is possible during the existence of water-oxygen dimers. An external magnetic field affects the ortho-para conversion rate given that the wave functions of nuclear spin sublevels of the water protons are mixed in the complex with oxygen.
Guarino, Gaetano; Rastrelli, Federico; Scrimin, Paolo; Mancin, Fabrizio
2012-05-02
Gd(3+) ions, once bound to the monolayer of organic molecules coating the surface of gold nanoparticles, produce a paramagnetic relaxation enhancement (PRE) that broadens and eventually cancels the signals of the nuclear spins located nearby (within 1.6 nm distance). In the case of nanoparticles coated with mixed monolayers, the signals arising from the different coating molecules experience different PRE, depending on their distance from the binding site. As a consequence, observation of the signal broadening patterns provides direct information on the monolayer organization. © 2012 American Chemical Society
Molecular dynamics study of the solvation of calcium carbonate in water.
Bruneval, Fabien; Donadio, Davide; Parrinello, Michele
2007-10-25
We performed molecular dynamics simulations of diluted solutions of calcium carbonate in water. To this end, we combined and tested previous polarizable models. The carbonate anion forms long-living hydrogen bonds with water and shows an amphiphilic character, in which the water molecules are expelled in a region close to its C(3) symmetry axis. The calcium cation forms a strongly bound ion pair with the carbonate. The first hydration shell around the CaCO(3) pair is found to be very similar to the location of the water molecules surrounding CaCO(3) in ikaite, the hydrated mineral.
Natashin, Pavel V; Ding, Wei; Eremeeva, Elena V; Markova, Svetlana V; Lee, John; Vysotski, Eugene S; Liu, Zhi-Jie
2014-03-01
Ca(2+)-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca(2+) inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca(2+) discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca(2+)-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca(2+)-regulated photoproteins in some of its properties, they are believed to share a common mechanism.
Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks
Zhang, Xinran; da Silva, Ivan; Godfrey, Harry G. W.; ...
2017-10-11
During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I 2 adsorption in a series of robust porous metal–organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I 2 uptake of 1.54 g g –1, and its structure remains completely unperturbed upon inclusion/removal of I 2. Direct observation and quantification of the adsorption, binding domains andmore » dynamics of guest I 2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host–I 2 and I 2–I 2 binding interactions at a molecular level. The initial binding site of I 2 in MFM-300(Sc), I 2 I, is located near the bridging hydroxyl group of the [ScO 4(OH) 2] moiety [I 2 I···H–O = 2.263(9) Å] with an occupancy of 0.268. I 2 II is located interstitially between two phenyl rings of neighboring ligand molecules [I 2 II···phenyl ring = 3.378(9) and 4.228(5) Å]. I 2 II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I 2 loading an unprecedented self-aggregation of I 2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I 2 molecules with an exceptional I 2 storage density of 3.08 g cm –3 in MFM-300(Sc).« less
Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal-Organic Frameworks.
Zhang, Xinran; da Silva, Ivan; Godfrey, Harry G W; Callear, Samantha K; Sapchenko, Sergey A; Cheng, Yongqiang; Vitórica-Yrezábal, Inigo; Frogley, Mark D; Cinque, Gianfelice; Tang, Chiu C; Giacobbe, Carlotta; Dejoie, Catherine; Rudić, Svemir; Ramirez-Cuesta, Anibal J; Denecke, Melissa A; Yang, Sihai; Schröder, Martin
2017-11-15
During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I 2 adsorption in a series of robust porous metal-organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I 2 uptake of 1.54 g g -1 , and its structure remains completely unperturbed upon inclusion/removal of I 2 . Direct observation and quantification of the adsorption, binding domains and dynamics of guest I 2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host-I 2 and I 2 -I 2 binding interactions at a molecular level. The initial binding site of I 2 in MFM-300(Sc), I 2 I , is located near the bridging hydroxyl group of the [ScO 4 (OH) 2 ] moiety [I 2 I ···H-O = 2.263(9) Å] with an occupancy of 0.268. I 2 II is located interstitially between two phenyl rings of neighboring ligand molecules [I 2 II ···phenyl ring = 3.378(9) and 4.228(5) Å]. I 2 II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I 2 loading an unprecedented self-aggregation of I 2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I 2 molecules with an exceptional I 2 storage density of 3.08 g cm -3 in MFM-300(Sc).
Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks
2017-01-01
During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I2 adsorption in a series of robust porous metal–organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I2 uptake of 1.54 g g–1, and its structure remains completely unperturbed upon inclusion/removal of I2. Direct observation and quantification of the adsorption, binding domains and dynamics of guest I2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host–I2 and I2–I2 binding interactions at a molecular level. The initial binding site of I2 in MFM-300(Sc), I2I, is located near the bridging hydroxyl group of the [ScO4(OH)2] moiety [I2I···H–O = 2.263(9) Å] with an occupancy of 0.268. I2II is located interstitially between two phenyl rings of neighboring ligand molecules [I2II···phenyl ring = 3.378(9) and 4.228(5) Å]. I2II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I2 loading an unprecedented self-aggregation of I2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I2 molecules with an exceptional I2 storage density of 3.08 g cm–3 in MFM-300(Sc). PMID:29020767
ERIC Educational Resources Information Center
Goodsell, David S.
2010-01-01
Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of a mitochondrion. The image magnifies a portion of the mitochondrion by one million times, showing the location and form of membranes and individual macromolecules,…
USDA-ARS?s Scientific Manuscript database
Tyrosol and hydroxytyrosol are the antioxidant molecules abundantly found in olive oil. Transesterification of tyrosol and hydroxytyrosol with cuphea oil results in medium chain alkyl esters with antioxidant properties. Membrane partitioning, antioxidant capacity, and membrane location of these nove...
Fu, Qiang; Liu, Jie
2005-07-21
A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.
Enhanced Raman scattering of graphene by silver nanoparticles with different densities and locations
NASA Astrophysics Data System (ADS)
Sun, Hai-Bin; Fu, Can; Xia, Yan-Jie; Zhang, Chong-Wu; Du, Jiang-Hui; Yang, Wen-Chao; Guo, Peng-Fei; Xu, Jun-Qi; Wang, Chun-Lei; Jia, Yong-Lei; Liu, Jiang-Feng
2017-02-01
Graphene-metal nanoparticle heterojunctions greatly improve the surface-enhanced Raman scattering (SERS) by strong light-graphene interactions. In this work, to enhance the Raman scattering, Ag nanoparticles (NPs) underneath and on top of the graphene were used. Then, Raman scattering of graphene is significantly enhanced approximately 67-fold, and the enhancement factor of the graphene G peak increases with the Ag NP density at the same location. In addition, an obvious red-shift and broadening of the resonance peak of Ag NPs is presented, which may be correlated to the strength of Raman enhancement, the coupling of the deposited Ag NPs and the graphene. Further, graphene-Ag NP heterojunctions can be used as SERS substrates to obtain the strongest Raman signals of the rhodamine (R6G) molecules and the weakest photoluminescence (PL) background from the Ag NPs. Based on the tunable Raman enhancement, graphene-Ag NPs offer a promising platform for engineering SERS substrates to obtain highly sensitive detection of trace levels of analyte molecules.
Electron microscopic studies of bacteriophage M13 DNA replication. [Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, D.P.; Ganesan, A.T.; Olson, A.C.
Intracellular forms of M13 phage DNA isolated after infection of Escherichia coli with wild-type phage have been studied by electron microscopy and ultracentrifugation. The data indicate the involvement of rolling-circle intermediates in single-stranded DNA synthesis. In addition to single-stranded, circular DNA, we observed covalently closed and nicked replicative-form (RF) DNAs, dimer RF DNAs, concatenated RF DNAs, RF DNAs with single-stranded tails (sigma, rolling circles), and, occasionally, RF DNAs with theta structures. The tails in sigma molecules are always single stranded and are never longer than the DNA from mature phage; the proportion of sigma to other RF molecules does notmore » change significantly with time after infection. The origin of single-stranded DNA synthesis has been mapped by electron microscopy at a unique location on RF DNA by use of partial denaturation mapping and restriction endonuclease digestion. This location is between gene IV and gene II, and synthesis proceeds in a counterclockwise direction on the conventional genetic map.« less
Hong, Liang; Pathak, Medha M; Kim, Iris H; Ta, Dennis; Tombola, Francesco
2013-01-23
Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here, we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically coupled gates. Copyright © 2013 Elsevier Inc. All rights reserved.
Electronic method for autofluorography of macromolecules on two-D matrices
Davidson, Jackson B.; Case, Arthur L.
1983-01-01
A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100-1000 times.
Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders.
Turner, Cortney A; Eren-Koçak, Emine; Inui, Edny G; Watson, Stanley J; Akil, Huda
2016-05-01
The role of the fibroblast growth factor (FGF) system in brain-related disorders has received considerable attention in recent years. To understand the role of this system in neurological and psychiatric disorders, it is important to identify the specific members of the FGF family that are implicated, their location and the various mechanisms they can be modulated. Each disorder appears to impact specific molecular players in unique anatomical locations, and all of these could conceivably become targets for treatment. In the last several years, the issue of how to target this system directly has become an area of increasing interest. To date, the most promising therapeutics are small molecule inhibitors and antibodies that modulate FGF receptor (FGFR) function. Beyond attempting to modify the primary players affected by a given brain disorder, it may prove useful to target molecules, such as membrane-bound or extracellular proteins that interact with FGF ligands or FGFRs to modulate signaling. Published by Elsevier Ltd.
First Identification of Palytoxin-Like Molecules in the Atlantic Coral Species Palythoa canariensis.
Fraga, María; Vilariño, Natalia; Louzao, M Carmen; Molina, Lucía; López, Yanira; Poli, Mark; Botana, Luis M
2017-07-18
Palytoxin (PLTX) is a complex marine toxin produced by Zoanthids (Palyhtoa), dinoflagellates (Ostreopsis), and cyanobacteria (Trichodesmium). Contact with PLTX-like compounds present in aerosols or marine organisms has been associated with adverse effects on humans. The worldwide distribution of producer species and seafood contaminated with PLTX-like molecules illustrates the global threat to human health. The identification of species capable of palytoxin production is critical for human safety. We studied the presence of PLTX analogues in Palythoa canariensis, a coral species collected in the Atlantic Ocean never described as a PLTX-producer before. Two methodologies were used for the detection of these toxins: a microsphere-based immunoassay that offered an estimation of the content of PLTX-like molecules in a Palythoa canariensis extract and an ultrahigh-pressure liquid chromatography coupled to an ion trap with a time-of-flight mass spectrometer (UPLC-IT-TOF-MS) that allowed the characterization of the toxin profile. The results demonstrated the presence of PLTX, hydroxy-PLTX and, at least, two additional compounds with PLTX-like profile in the Palythoa canariensis sample. The PLTX content was estimated in 0.27 mg/g of lyophilized coral using UPLC-IT-TOF-MS. Therefore, this work demonstrates that Palythoa canariensis produces a mixture of PLTX-like molecules. This is of special relevance to safeguard human health considering Palythoa species are commonly used for decoration by aquarium hobbyists.
A Bayesian framework for infrasound location
NASA Astrophysics Data System (ADS)
Modrak, Ryan T.; Arrowsmith, Stephen J.; Anderson, Dale N.
2010-04-01
We develop a framework for location of infrasound events using backazimuth and infrasonic arrival times from multiple arrays. Bayesian infrasonic source location (BISL) developed here estimates event location and associated credibility regions. BISL accounts for unknown source-to-array path or phase by formulating infrasonic group velocity as random. Differences between observed and predicted source-to-array traveltimes are partitioned into two additive Gaussian sources, measurement error and model error, the second of which accounts for the unknown influence of wind and temperature on path. By applying the technique to both synthetic tests and ground-truth events, we highlight the complementary nature of back azimuths and arrival times for estimating well-constrained event locations. BISL is an extension to methods developed earlier by Arrowsmith et al. that provided simple bounds on location using a grid-search technique.
NASA Astrophysics Data System (ADS)
Formetta, Giuseppe; Bell, Victoria; Stewart, Elizabeth
2018-02-01
Regional flood frequency analysis is one of the most commonly applied methods for estimating extreme flood events at ungauged sites or locations with short measurement records. It is based on: (i) the definition of a homogeneous group (pooling-group) of catchments, and on (ii) the use of the pooling-group data to estimate flood quantiles. Although many methods to define a pooling-group (pooling schemes, PS) are based on catchment physiographic similarity measures, in the last decade methods based on flood seasonality similarity have been contemplated. In this paper, two seasonality-based PS are proposed and tested both in terms of the homogeneity of the pooling-groups they generate and in terms of the accuracy in estimating extreme flood events. The method has been applied in 420 catchments in Great Britain (considered as both gauged and ungauged) and compared against the current Flood Estimation Handbook (FEH) PS. Results for gauged sites show that, compared to the current PS, the seasonality-based PS performs better both in terms of homogeneity of the pooling-group and in terms of the accuracy of flood quantile estimates. For ungauged locations, a national-scale hydrological model has been used for the first time to quantify flood seasonality. Results show that in 75% of the tested locations the seasonality-based PS provides an improvement in the accuracy of the flood quantile estimates. The remaining 25% were located in highly urbanized, groundwater-dependent catchments. The promising results support the aspiration that large-scale hydrological models complement traditional methods for estimating design floods.
NASA Astrophysics Data System (ADS)
Siddique, Sami; Jaffray, David
2007-03-01
A central purpose of image-guidance is to assist the interventionalist with feedback of geometric performance in the direction of therapy delivery. Tradeoffs exist between accuracy, precision and the constraints imposed by parameters used in the generation of images. A framework that uses geometric performance as feedback to control these parameters can balance such tradeoffs in order to maintain the requisite localization precision for a given clinical procedure. We refer to this principle as Active Image-Guidance (AIG). This framework requires estimates of the uncertainty in the estimated location of the object of interest. In this study, a simple fiducial marker detected under X-ray fluoroscopy is considered and it is shown that a relation exists between the applied imaging dose and the uncertainty in localization for a given observer. A robust estimator of the location of a fiducial in the thorax during respiration under X-ray fluoroscopy is demonstrated using a particle filter based approach that outputs estimates of the location and the associated spatial uncertainty. This approach gives an rmse of 1.3mm and the uncertainty estimates are found to be correlated with the error in the estimates. Furthermore, the particle filtering approach is employed to output location estimates and the associated uncertainty not only at instances of pulsed exposure but also between exposures. Such a system has applications in image-guided interventions (surgery, radiotherapy, interventional radiology) where there are latencies between the moment of imaging and the act of intervention.
Accuracy of estimating wolf summer territories by daytime locations
Demma, D.J.; Mech, L.D.
2011-01-01
We used locations of 6 wolves (Canis lupus) in Minnesota from Global Positioning System (GPS) collars to compare day-versus-night locations to estimate territory size and location during summer. We employed both minimum convex polygon (MCP) and fixed kernel (FK) methods. We used two methods to partition GPS locations for day-versus-night home-range comparisons: (1) daytime = 0800-2000 Ah; nighttime = 2000-0800 Ah; and (2) sunup versus sundown. Regardless of location-partitioning method, mean area of daytime MCPs did not differ significantly from nighttime MCPs. Similarly, mean area of daytime FKs (95% probability contour) were not significantly different from nightime FKs. FK core use areas (50% probability contour) did not differ between daytime and nighttime nor between sunup and sundown locations. We conclude that in areas similar to our study area day-only locations are adequate for describing the location, extent and core use areas of summer wolf territories by both MCP and FK methods. ?? 2011 American Midland Naturalist.
Accuracy of estimating wolf summer territories by daytime locations
Demma, Dominic J.; Mech, L. David
2011-01-01
We used locations of 6 wolves (Canis lupus) in Minnesota from Global Positioning System (GPS) collars to compare day-versus-night locations to estimate territory size and location during summer. We employed both minimum convex polygon (MCP) and fixed kernel (FK) methods. We used two methods to partition GPS locations for day-versus-night home-range comparisons: (1) daytime = 0800–2000 h; nighttime = 2000–0800 h; and (2) sunup versus sundown. Regardless of location-partitioning method, mean area of daytime MCPs did not differ significantly from nighttime MCPs. Similarly, mean area of daytime FKs (95% probability contour) were not significantly different from nightime FKs. FK core use areas (50% probability contour) did not differ between daytime and nighttime nor between sunup and sundown locations. We conclude that in areas similar to our study area day-only locations are adequate for describing the location, extent and core use areas of summer wolf territories by both MCP and FK methods.
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.
Diffusion and mobility of atomic particles in a liquid
NASA Astrophysics Data System (ADS)
Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.
2017-11-01
The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.
Southard, Rodney E.
2013-01-01
The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical estimates on one of these streams can be calculated at an ungaged location that has a drainage area that is between 40 percent of the drainage area of the farthest upstream streamgage and within 150 percent of the drainage area of the farthest downstream streamgage along the stream of interest. The second method may be used on any stream with a streamgage that has operated for 10 years or longer and for which anthropogenic effects have not changed the low-flow characteristics at the ungaged location since collection of the streamflow data. A ratio of drainage area of the stream at the ungaged location to the drainage area of the stream at the streamgage was computed to estimate the statistic at the ungaged location. The range of applicability is between 40- and 150-percent of the drainage area of the streamgage, and the ungaged location must be located on the same stream as the streamgage. The third method uses regional regression equations to estimate selected low-flow frequency statistics for unregulated streams in Missouri. This report presents regression equations to estimate frequency statistics for the 10-year recurrence interval and for the N-day durations of 1, 2, 3, 7, 10, 30, and 60 days. Basin and climatic characteristics were computed using geographic information system software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses based on existing digital geospatial data and previous studies. Spatial analyses for geographical bias in the predictive accuracy of the regional regression equations defined three low-flow regions with the State representing the three major physiographic provinces in Missouri. Region 1 includes the Central Lowlands, Region 2 includes the Ozark Plateaus, and Region 3 includes the Mississippi Alluvial Plain. A total of 207 streamgages were used in the regression analyses for the regional equations. Of the 207 U.S. Geological Survey streamgages, 77 were located in Region 1, 120 were located in Region 2, and 10 were located in Region 3. Streamgages located outside of Missouri were selected to extend the range of data used for the independent variables in the regression analyses. Streamgages included in the regression analyses had 10 or more years of record and were considered to be affected minimally by anthropogenic activities or trends. Regional regression analyses identified three characteristics as statistically significant for the development of regional equations. For Region 1, drainage area, longest flow path, and streamflow-variability index were statistically significant. The range in the standard error of estimate for Region 1 is 79.6 to 94.2 percent. For Region 2, drainage area and streamflow variability index were statistically significant, and the range in the standard error of estimate is 48.2 to 72.1 percent. For Region 3, drainage area and streamflow-variability index also were statistically significant with a range in the standard error of estimate of 48.1 to 96.2 percent. Limitations on the use of estimating low-flow frequency statistics at ungaged locations are dependent on the method used. The first method outlined for use in Missouri, power curve equations, were developed to estimate the selected statistics for ungaged locations on 28 selected streams with multiple streamgages located on the same stream. A second method uses a drainage-area ratio to compute statistics at an ungaged location using data from a single streamgage on the same stream with 10 or more years of record. Ungaged locations on these streams may use the ratio of the drainage area at an ungaged location to the drainage area at a streamgage location to scale the selected statistic value from the streamgage location to the ungaged location. This method can be used if the drainage area of the ungaged location is within 40 to 150 percent of the streamgage drainage area. The third method is the use of the regional regression equations. The limits for the use of these equations are based on the ranges of the characteristics used as independent variables and that streams must be affected minimally by anthropogenic activities.
Small interstellar molecules and what they tell us
NASA Astrophysics Data System (ADS)
Neufeld, David A.
2018-06-01
Observations at ultraviolet, visible, infrared and radio wavelengths provide a wealth of information about the molecular inventory of the interstellar medium (ISM). Because of the different chemical pathways responsible for their formation and destruction, different molecules probe specific aspects of the interstellar environment. Carefully interpreted with the use of astrochemical models, they provide unique information of general astrophysical importance, yielding estimates of the cosmic ray density, the molecular fraction, the ultraviolet radiation field, and the dissipation of energy within the turbulent ISM. Laboratory experiments and quantum-mechanical calculations are essential both in providing the spectroscopic data needed to identify interstellar molecules and for elucidating the fundamental physical and chemical processes that must be included in astrochemical models.
Photodestruction rates for cometary parent molecules
NASA Astrophysics Data System (ADS)
Crovisier, J.
1994-02-01
New evaluations of the photodestruction rates for several molecules of cometary interest are presented along with a critical comparison with other estimations from 1976 to 1993, and a summary of the need for future laboratory measurements. Photodestruction rates for a heliocentric distance of 1 AU (assuming the quiet Sun reference spectrum of Huebner and Carpenter) are tabulated for molecules from the water group, hydrocarbons, CO group, CHO species, nitrogen compounds, and sulfur compounds. Inspection of the table shows reasonable agreement between new and previously calculated photodestruction rates. Further work is needed on unstable species, photodissociation channel and quantum yields, temperature effects, kinematics and anistropic ejection of the fragments, and the effects of solar radiation field variations.
Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.
1997-01-01
The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.
1988-01-01
Immunization with the autoantigen myelin basic protein (MBP) causes experimental allergic encephalomyelitis (EAE). Initial investigations indicated that encephalitogenic murine determinants of MBP were located only within MBP 1-37 and MBP 89-169. Encephalitogenic T cell epitopes within these fragments have been identified. Each epitope is recognized by T cells in association with separate allelic I-A molecules. A hybrid I-E-restricted T cell clone that recognizes intact mouse (self) MBP has been examined. The epitope recognized by this clone includes MBP residues 35-47. When tested in vivo, p35-47 causes EAE. T cell recognition of p35-47 occurs only in association with I-E molecules. These results provide the first clear example that antigen-specific T cells restricted by I-E class II molecules participate in murine autoimmune disease. Furthermore, it is clear that there are multiple (at least three) discrete encephalitogenic T cell epitopes of this autoantigen, each recognized in association with separate allelic class II molecules. These results may be relevant to human autoimmune diseases whose susceptibility is associated with more than one HLA-D molecule. PMID:2459291
A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide
Morizono, Kouki; Xie, Yiming; Helguera, Gustavo; Daniels, Tracy R.; Lane, Timothy F.; Penichet, Manuel L.; Chen, Irvin S. Y.
2010-01-01
Background Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. Methods We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. Results When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. Conclusions This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin. PMID:19455593
Adsorption properties of argon on Ti doped SBA-15.
Kim, Euikwoun; Lee, Sang-Hwa; Kim, Jaeyong
2014-11-01
Thermodynamic properties of argon on Ti doped Santa barbara amorphous No. 15 (SBA-15) were investigated in the temperature range of 77-89 K to understand the interaction of gas molecules with porous materials. When the total amount of adsorbed molecules is plotted as a function of the equilibrium vapor pressure of the adsorbed Ar, the results exhibit two distinct isotherm steps. The first step appears at the beginning of the isotherm while the second step locates at 0.7 of the normalized pressure. The existence of the second isotherm step which spanned in the normalized pressure from 0.7 to 0.9 is confirmed when the isotherm data were plotted in terms of the 2-dimensional compressibility values. The total amount of adsorbed molecules forming the second isotherm step is 2.5 times greater than the one for the first step. These adsorption behaviors are typical patterns noted from porous materials and far different from the ones observed from non-pore materials. Our observations demonstrate that most of adsorbed molecules reside in the pores and the height of the second isotherm step is strongly associated with filling pores with gas molecules.
Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface
NASA Astrophysics Data System (ADS)
Sun, Haoliang; Liang, Zhaofeng; Shen, Kongchao; Hu, Jinbang; Ji, Gengwu; Li, Zheshen; Li, Haiyang; Zhu, Zhiyuan; Li, Jiong; Gao, Xingyu; Han, Huang; Jiang, Zheng; Song, Fei
2017-07-01
Self-assembly of functional molecules on solid substrate has been recognized as an appealing approach for the fabrication of diverse nanostructures for nanoelectronics. Herein, we investigate the growth of cobalt phthalocyanine (CoPc) on a Bi(111) surface with focus on the interface electronic structures utilizing photoelectron spectroscopy. While charge transfer from bismuth substrate to the molecule results in the emergence of an interface component in the Co 3p core level at lower binding energy, core-levels associated to the molecular ligand (C 1s and N 1s) are less influenced by the adsorption. In addition, density functional theory (DFT) calculations also support the empirical inference that the molecule-substrate interaction mainly involves the out-of-plane empty Co 3d orbital and bismuth states. Finally, valence band spectra demonstrate the molecule-substrate interaction is induced by interface charge transfer, agreeing well with core level measurements. Charge transfer is shown to be mainly from the underlying bismuth substrate to the empty states located at the central Co atom in the CoPc molecules. This report may provide a fundamental basis to the on-surface engineering of interfaces for molecular devices and spintronics.
Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency
NASA Astrophysics Data System (ADS)
Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao
2008-05-01
Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.
Small molecules as tracers in atmospheric secondary organic aerosol
NASA Astrophysics Data System (ADS)
Yu, Ge
Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and increasing aerosol mass. Finally, we built a containerless apparatus to study aqueous processing reactions using an acoustic levitator paired with a mass spectrometer. The levitator is capable of trapping droplets with the size of 80-500 mum in diameter for over eight hours. The apparatus is also capable of drying and wetting the droplet in a controllable manner. We performed am example reaction between glyoxal and ammonium sulfate using this instrument, and showed that it could qualitatively monitor aqueous processing reactions.
NASA Astrophysics Data System (ADS)
Tam, Kai-Chung; Lau, Siu-Kit; Tang, Shiu-Keung
2016-07-01
A microphone array signal processing method for locating a stationary point source over a locally reactive ground and for estimating ground impedance is examined in detail in the present study. A non-linear least square approach using the Levenberg-Marquardt method is proposed to overcome the problem of unknown ground impedance. The multiple signal classification method (MUSIC) is used to give the initial estimation of the source location, while the technique of forward backward spatial smoothing is adopted as a pre-processer of the source localization to minimize the effects of source coherence. The accuracy and robustness of the proposed signal processing method are examined. Results show that source localization in the horizontal direction by MUSIC is satisfactory. However, source coherence reduces drastically the accuracy in estimating the source height. The further application of Levenberg-Marquardt method with the results from MUSIC as the initial inputs improves significantly the accuracy of source height estimation. The present proposed method provides effective and robust estimation of the ground surface impedance.
Efficient Bayesian experimental design for contaminant source identification
NASA Astrophysics Data System (ADS)
Zhang, J.; Zeng, L.
2013-12-01
In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameter identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from indirect concentration measurements in identifying unknown source parameters such as the release time, strength and location. In this approach, the sampling location that gives the maximum relative entropy is selected as the optimal one. Once the sampling location is determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown source parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. Compared with the traditional optimal design, which is based on the Gaussian linear assumption, the method developed in this study can cope with arbitrary nonlinearity. It can be used to assist in groundwater monitor network design and identification of unknown contaminant sources. Contours of the expected information gain. The optimal observing location corresponds to the maximum value. Posterior marginal probability densities of unknown parameters, the thick solid black lines are for the designed location. For comparison, other 7 lines are for randomly chosen locations. The true values are denoted by vertical lines. It is obvious that the unknown parameters are estimated better with the desinged location.
Spatial Distributions of Guest Molecule and Hydration Level in Dendrimer-Based Guest–Host Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chih-Ying; Chen, Hsin-Lung; Do, Changwoo
2016-08-09
Using the electrostatic complex of G4 poly(amidoamine) (PAMAM) dendrimer with an amphiphilic surfactant as a model system, contrast variation small angle neutron scattering (SANS) is implemented to resolve the key structural characteristics of dendrimer-based guest–host system. Quantifications of the radial distributions of the scattering length density and the hydration level within the complex molecule reveal that the surfactant is embedded in the peripheral region of dendrimer and the steric crowding in this region increases the backfolding of the dendritic segments, thereby reducing the hydration level throughout the complex molecule. Here, the insights into the spatial location of the guest moleculesmore » as well as the perturbations of dendrimer conformation and hydration level deduced here are crucial for the delicate design of dendrimer-based guest–host system for biomedical applications.« less
Research on an estimation method of DOA for wireless location based on TD-SCDMA
NASA Astrophysics Data System (ADS)
Zhang, Yi; Luo, Yuan; Cheng, Shi-xin
2004-03-01
To meet the urgent need of personal communication and hign-speed data services,the standardization and products development for International Mobile Telecommunication-2000 (IMT-2000) have become a hot point in wordwide. The wireless location for mobile terminals has been an important research project. Unlike GPS which is located by 24 artificial satellities, it is based on the base-station of wireless cell network, and the research and development of it are correlative with IMT-2000. While the standard for the third generation mobile telecommunication (3G)-TD-SCDMA, which is proposed by China and the intellective property right of which is possessed by Chinese, is adopted by ITU-T at the first time, the research for wireless location based on TD-SCDMA has theoretic meaning, applied value and marketable foreground. First,the basic principle and method for wireless location, i.e. Direction of Angle(DOA), Time of Arrival(TOA) or Time Difference of Arrival(TDOA), hybridized location(TOA/DOA,TDOA/DOA,TDOA/DOA),etc. is introduced in the paper. So the research of DOA is very important in wireless location. Next, Main estimation methods of DOA for wireless location, i.e. ESPRIT, MUSIC, WSF, Min-norm, etc. are researched in the paper. In the end, the performances of DOA estimation for wireless location based on mobile telecommunication network are analyzed by the research of theory and simulation experiment and the contrast algorithms between and Cramer-Rao Bound. Its research results aren't only propitious to the choice of algorithms for wireless location, but also to the realization of new service of wireless location .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, F.J.; Christensen, D.H.
1980-09-01
Probabilistic estimations of earthquake detection and location capabilities for the states of Illinois, Indiana, Kentucky, Ohio and West Virginia are presented in this document. The algorithm used in these epicentrality and minimum-magnitude estimations is a version of the program NETWORTH by Wirth, Blandford, and Husted (DARPA Order No. 2551, 1978) which was modified for local array evaluation at the University of Michigan Seismological Observatory. Estimations of earthquake detection capability for the years 1970 and 1980 are presented in four regional minimum m/sub b/ magnitude contour maps. Regional 90% confidence error ellipsoids are included for m/sub b/ magnitude events from 2.0more » through 5.0 at 0.5 m/sub b/ unit increments. The close agreement between these predicted epicentral 90% confidence estimates and the calculated error ellipses associated with actual earthquakes within the studied region suggest that these error determinations can be used to estimate the reliability of epicenter location. 8 refs., 14 figs., 2 tabs.« less
Detection of Lightning-produced NOx by Air Quality Monitoring Stations in Israel
NASA Astrophysics Data System (ADS)
Yair, Y.; Shalev, S.; Saaroni, H.; Ziv, B.
2011-12-01
Lightning is the largest natural source for the production of nitrogen oxides (LtNOx) in the troposphere. Since NOx are greenhouse gases, it is important to know the global production rate of LtNOx for climate studies (present estimates range from 2 to 8 Tg per year) and to model its vertical distribution (Ott et al., 2010). One of the key factors for such an estimate is the yield of a single lightning flash, namely the number of molecules produced for each Joule of energy deposited along the lightning channel. We used lightning stroke data from the Israel Lightning Location System (ILLS) together with NOx data obtained from the national network of air quality monitoring stations operated by the Israeli Ministry of Environmental Protection. Looking for the fingerprints of LtNOx in the general ambient concentrations, usually most affected by pollution from urban sources, we looked only for CG strokes occurring within a radius of 3 km from the location of an air-quality monitoring station. This lowered the number of relevant cases from 605,413 strokes detected in the 2004/5 through 2009/10 seasons to 1,897 strokes. We applied a threshold of > 60kA reducing the number of events to 35. The results showed that there was no consistent rising trend in the NOx concentrations in the hour following the lightning (the lifetime near the ground is expected to be a few hours; Zhang et al., 2003). However, when considering only those events when the prevailing wind was in the direction from the stroke location toward the sensor (7 cases), a clear increase of few ppb following the stroke was observed in 5 cases [see Fig.]. This increase is well correlated with the wind speed, suggesting an effective transport from the stroke location to the sensor. Weaker winds allow dilution and result in smaller observed increases of LtNOx. Separate analysis of additional 17 cases in which the strokes were located < 500 m from the monitoring station (with any peak current above 7 kA) showed no consistent trend. When excluding the 7 events that occurred during rush hour traffic, we found 6 (of 10) cases with an average increase in NOx concentrations of 16 ppb in the hour following the lightning. These results suggest a contribution of CG lightning strokes to the ground level concentrations of NOx. L. E. Ott, K. E. Pickering, G. L. Stenchikov, D. J. Allen, A. J. DeCaria, B. Ridley, R.F. Lin, S. Lang, and W.K. Tao (2010), Production of lightning NOx and its vertical distribution calculated from three dimensional cloud scale chemical transport model simulations, J. Geophys. Res., 115, D04301, doi:10.1029/2009JD011880
Estimating the theoretical semivariogram from finite numbers of measurements
Zheng, Li; Silliman, Stephen E.
2000-01-01
We investigate from a theoretical basis the impacts of the number, location, and correlation among measurement points on the quality of an estimate of the semivariogram. The unbiased nature of the semivariogram estimator ŷ(r) is first established for a general random process Z(x). The variance of ŷZ(r) is then derived as a function of the sampling parameters (the number of measurements and their locations). In applying this function to the case of estimating the semivariograms of the transmissivity and the hydraulic head field, it is shown that the estimation error depends on the number of the data pairs, the correlation among the data pairs (which, in turn, are determined by the form of the underlying semivariogram γ(r)), the relative locations of the data pairs, and the separation distance at which the semivariogram is to be estimated. Thus design of an optimal sampling program for semivariogram estimation should include consideration of each of these factors. Further, the function derived for the variance of ŷZ(r) is useful in determining the reliability of a semivariogram developed from a previously established sampling design.
Sensor-Data Fusion for Multi-Person Indoor Location Estimation
2017-01-01
We consider the problem of estimating the location of people as they move and work in indoor environments. More specifically, we focus on the scenario where one of the persons of interest is unable or unwilling to carry a smartphone, or any other “wearable” device, which frequently arises in caregiver/cared-for situations. We consider the case of indoor spaces populated with anonymous binary sensors (Passive Infrared motion sensors) and eponymous wearable sensors (smartphones interacting with Estimote beacons), and we propose a solution to the resulting sensor-fusion problem. Using a data set with sensor readings collected from one-person and two-person sessions engaged in a variety of activities of daily living, we investigate the relative merits of relying solely on anonymous sensors, solely on eponymous sensors, or on their combination. We examine how the lack of synchronization across different sensing sources impacts the quality of location estimates, and discuss how it could be mitigated without resorting to device-level mechanisms. Finally, we examine the trade-off between the sensors’ coverage of the monitored space and the quality of the location estimates. PMID:29057812
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Kaleris, Vassilios; Xeygeni, Vagia; Magkou, Foteini
2017-04-01
Assessing the availability of groundwater reserves at a regional level, requires accurate and robust hydraulic head estimation at multiple locations of an aquifer. To that extent, one needs groundwater observation networks that can provide sufficient information to estimate the hydraulic head at unobserved locations. The density of such networks is largely influenced by the spatial distribution of the hydraulic conductivity in the aquifer, and it is usually determined through trial-and-error, by solving the groundwater flow based on a properly selected set of alternative but physically plausible geologic structures. In this work, we use: 1) dimensional analysis, and b) a pulse-based stochastic model for simulation of synthetic aquifer structures, to calculate the distribution of the absolute error in hydraulic head estimation as a function of the standardized distance from the nearest measuring locations. The resulting distributions are proved to encompass all possible small-scale structural dependencies, exhibiting characteristics (bounds, multi-modal features etc.) that can be explained using simple geometric arguments. The obtained results are promising, pointing towards the direction of establishing design criteria based on large-scale geologic maps.
Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs
NASA Astrophysics Data System (ADS)
von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.
2017-12-01
Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.
Sensor-Data Fusion for Multi-Person Indoor Location Estimation.
Mohebbi, Parisa; Stroulia, Eleni; Nikolaidis, Ioanis
2017-10-18
We consider the problem of estimating the location of people as they move and work in indoor environments. More specifically, we focus on the scenario where one of the persons of interest is unable or unwilling to carry a smartphone, or any other "wearable" device, which frequently arises in caregiver/cared-for situations. We consider the case of indoor spaces populated with anonymous binary sensors (Passive Infrared motion sensors) and eponymous wearable sensors (smartphones interacting with Estimote beacons), and we propose a solution to the resulting sensor-fusion problem. Using a data set with sensor readings collected from one-person and two-person sessions engaged in a variety of activities of daily living, we investigate the relative merits of relying solely on anonymous sensors, solely on eponymous sensors, or on their combination. We examine how the lack of synchronization across different sensing sources impacts the quality of location estimates, and discuss how it could be mitigated without resorting to device-level mechanisms. Finally, we examine the trade-off between the sensors' coverage of the monitored space and the quality of the location estimates.
2015-09-30
interpolation was used to estimate fin whale density in between the hydrophone locations , and the result plotted as a density image. This was repeated every 5...singing fin whale density throughout the year for the study location off Portugal. Color indicates whale density, with calibration scale at right; yellow...spots are hydrophone locations ; timeline at top indicates the time of year; circle at lower right is 1000 km 2 , the area used in the unit of whale
Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopich, Irina V.
2015-01-21
Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when themore » FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.« less
Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET
Gopich, Irina V.
2015-01-01
Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated. PMID:25612692
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2012-04-01
A novel emerging technique for the label-free analysis of nanoparticles and biomolecules in liquid fluids using optical micro cavity resonance of whispering-gallery-type modes is being developed.A scheme based on polymer microspheres fixed by adhesive on the evanescence wave coupling element has been used. We demonstrated that the only spectral shift can't be used for identification of biological agents by developed approach. So neural network classifier for biological agents and micro/nano particles classification has been developed. The developed technique is the following. While tuning the laser wavelength images were recorded as avi-file. All sequences were broken into single frames and the location of the resonance was allocated in each frame. The image was filtered for noise reduction and integrated over two coordinates for evaluation of integrated energy of a measured signal. As input data normalized resonance shift of whispering-gallery modes and the relative efficiency of whispering-gallery modes excitation were used. Other parameters such as polarization of excited light, "center of gravity" of a resonance spectra etc. are also tested as input data for probabilistic neural network. After network designing and training we estimated the accuracy of classification. The classification of antibiotics such as penicillin and cephasolin have been performed with the accuracy of not less 97 %. Developed techniques can be used for lab-on-chip sensor based diagnostic tools as for identification of different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells and for dynamics of a delivery of medicines to bodies.
ERIC Educational Resources Information Center
Goodsell, David S.
2009-01-01
Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…
MapSentinel: Can the Knowledge of Space Use Improve Indoor Tracking Further?
Jia, Ruoxi; Jin, Ming; Zou, Han; Yesilata, Yigitcan; Xie, Lihua; Spanos, Costas
2016-01-01
Estimating an occupant’s location is arguably the most fundamental sensing task in smart buildings. The applications for fine-grained, responsive building operations require the location sensing systems to provide location estimates in real time, also known as indoor tracking. Existing indoor tracking systems require occupants to carry specialized devices or install programs on their smartphone to collect inertial sensing data. In this paper, we propose MapSentinel, which performs non-intrusive location sensing based on WiFi access points and ultrasonic sensors. MapSentinel combines the noisy sensor readings with the floormap information to estimate locations. One key observation supporting our work is that occupants exhibit distinctive motion characteristics at different locations on the floormap, e.g., constrained motion along the corridor or in the cubicle zones, and free movement in the open space. While extensive research has been performed on using a floormap as a tool to obtain correct walking trajectories without wall-crossings, there have been few attempts to incorporate the knowledge of space use available from the floormap into the location estimation. This paper argues that the knowledge of space use as an additional information source presents new opportunities for indoor tracking. The fusion of heterogeneous information is theoretically formulated within the Factor Graph framework, and the Context-Augmented Particle Filtering algorithm is developed to efficiently solve real-time walking trajectories. Our evaluation in a large office space shows that the MapSentinel can achieve accuracy improvement of 31.3% compared with the purely WiFi-based tracking system. PMID:27049387
MapSentinel: Can the Knowledge of Space Use Improve Indoor Tracking Further?
Jia, Ruoxi; Jin, Ming; Zou, Han; Yesilata, Yigitcan; Xie, Lihua; Spanos, Costas
2016-04-02
Estimating an occupant's location is arguably the most fundamental sensing task in smart buildings. The applications for fine-grained, responsive building operations require the location sensing systems to provide location estimates in real time, also known as indoor tracking. Existing indoor tracking systems require occupants to carry specialized devices or install programs on their smartphone to collect inertial sensing data. In this paper, we propose MapSentinel, which performs non-intrusive location sensing based on WiFi access points and ultrasonic sensors. MapSentinel combines the noisy sensor readings with the floormap information to estimate locations. One key observation supporting our work is that occupants exhibit distinctive motion characteristics at different locations on the floormap, e.g., constrained motion along the corridor or in the cubicle zones, and free movement in the open space. While extensive research has been performed on using a floormap as a tool to obtain correct walking trajectories without wall-crossings, there have been few attempts to incorporate the knowledge of space use available from the floormap into the location estimation. This paper argues that the knowledge of space use as an additional information source presents new opportunities for indoor tracking. The fusion of heterogeneous information is theoretically formulated within the Factor Graph framework, and the Context-Augmented Particle Filtering algorithm is developed to efficiently solve real-time walking trajectories. Our evaluation in a large office space shows that the MapSentinel can achieve accuracy improvement of 31.3% compared with the purely WiFi-based tracking system.
Anatomy guided automated SPECT renal seed point estimation
NASA Astrophysics Data System (ADS)
Dwivedi, Shekhar; Kumar, Sailendra
2010-04-01
Quantification of SPECT(Single Photon Emission Computed Tomography) images can be more accurate if correct segmentation of region of interest (ROI) is achieved. Segmenting ROI from SPECT images is challenging due to poor image resolution. SPECT is utilized to study the kidney function, though the challenge involved is to accurately locate the kidneys and bladder for analysis. This paper presents an automated method for generating seed point location of both kidneys using anatomical location of kidneys and bladder. The motivation for this work is based on the premise that the anatomical location of the bladder relative to the kidneys will not differ much. A model is generated based on manual segmentation of the bladder and both the kidneys on 10 patient datasets (including sum and max images). Centroid is estimated for manually segmented bladder and kidneys. Relatively easier bladder segmentation is followed by feeding bladder centroid coordinates into the model to generate seed point for kidneys. Percentage error observed in centroid coordinates of organs from ground truth to estimated values from our approach are acceptable. Percentage error of approximately 1%, 6% and 2% is observed in X coordinates and approximately 2%, 5% and 8% is observed in Y coordinates of bladder, left kidney and right kidney respectively. Using a regression model and the location of the bladder, the ROI generation for kidneys is facilitated. The model based seed point estimation will enhance the robustness of kidney ROI estimation for noisy cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillams, Richard J.; McLain, Sylvia E., E-mail: sylvia.mclain@bioch.ox.ac.uk; Lorenz, Christian D., E-mail: chris.lorenz@kcl.ac.uk
2016-06-14
Previous studies have used neutron diffraction to elucidate the hydration of the ceramide and the phosphatidylcholine headgroup in solution. These solution studies provide bond-length resolution information on the system, but are limited to liquid samples. The work presented here investigates how the hydration of ceramide and phosphatidylcholine headgroups in a solution compares with that found in a lipid bilayer. This work shows that the hydration patterns seen in the solution samples provide valuable insight into the preferential location of hydrating water molecules in the bilayer. There are certain subtle differences in the distribution, which result from a combination of themore » lipid conformation and the lipid-lipid interactions within the bilayer environment. The lipid-lipid interactions in the bilayer will be dependent on the composition of the bilayer, whereas the restricted exploration of conformational space is likely to be applicable in all membrane environments. The generalized description of hydration gathered from the neutron diffraction studies thus provides good initial estimation for the hydration pattern, but this can be further refined for specific systems.« less
Maslov, D A; Hollar, L; Haghighat, P; Nawathean, P
1998-06-01
Maxicircle molecules of kDNA in several isolates of Phytomonas were detected by hybridization with the 12S rRNA gene probe from Leishmania tarentolae. The estimated size of maxicircles is isolate-specific and varies from 27 to 36 kb. Fully edited and polyadenylated mRNA for kinetoplast-encoded ribosomal protein S12 (RPS12) was found in the steady-state kinetoplast RNA isolated from Phytomonas serpens strain 1G. Two minicircles (1.45 kb) from this strain were also sequenced. Each minicircle contains two 120 bp conserved regions positioned 180 degrees apart, a region enriched with G and T bases and a variable region. One minicircle encodes a gRNA for the first block of editing of RPSl2 mRNA, and the other encodes a gRNA with unknown function. A gRNA gene for the second block of RPSl2 was found on a minicircle sequenced previously. On each minicircle, a gRNA gene is located in the variable region in a similar position and orientation with respect to the conserved regions.
Evans, H.T.; Gatehouse, B.M.; Leverett, P.
1975-01-01
The crystal structures of the isomorphous salts MI6 [Mo7O24],4H2O (M = NH4 or K) have been refined by three-dimensional X-ray diffraction methods. Unit cell dimensions of these monoclinic compounds, space group P21/C with Z = 4, are, ammonium salt: a = 8.3934 ?? 0.0008, b = 36.1703 ?? 0.0045, c = 10.4715 ?? 0.0011 A??, ?? = 115.958?? ?? 0.008??; and potassium salt: a = 8.15 ?? 0.02, b = 35.68 ?? 0.1, c = 10.30 ?? 0.02 A??, ?? = 115.2?? ?? 02??. By use of multiple Weissenberg patterns, 8197 intensity data (Mo-K?? radiation) for the ammonium compound and 2178 (Cu-K?? radiation) for the potassium compound were estimated visually and used to test and refine Lindqvist's proposed structure in the space group P21/c. Lindqvist's structure was confirmed and the full matrix least-squares isotropic refinement led to R 0.076 (ammonium) 0.120 (potassium), with direct unambiguous location of the cations and water molecules in the potassium compound.
Photodynamic therapy for treatment of solid tumors – potential and technical challenges
Huang, Zheng; Xu, Heping; Meyers, Arlen D.; Musani, Ali I.; Wang, Luowei; Tagg, Randall; Barqawi, Al B.; Chen, Yang K.
2008-01-01
Photodynamic therapy (PDT) involves the administration of photosensitizer followed by local illumination with visible light of specific wavelength(s). In the presence of oxygen molecules, the light illumination of photosensitizer can lead to a series of photochemical reactions and consequently the generation of cytotoxic species. The quantity and location of PDT-induced cytotoxic species determine the nature and consequence of PDT. Much progress has been seen in both basic research and clinical application in recent years. Although the majority of approved PDT clinical protocols have primarily been used for the treatment of superficial lesions of both malignant and non-malignant diseases, interstitial PDT for the ablation of deep-seated solid tumors are now being investigated worldwide. The complexity of the geometry and non-homogeneity of solid tumor pose a great challenge on the implementation of minimally invasive interstitial PDT and the estimation of PDT dosimetry. This review will discuss the recent progress and technical challenges of various forms of interstitial PDT for the treatment of parenchymal and/or stromal tissues of solid tumors. PMID:18642969
Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy
NASA Astrophysics Data System (ADS)
Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit
2017-12-01
Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.
Synaptic and extrasynaptic traces of long-term memory: the ID molecule theory.
Legéndy, Charles R
2016-08-01
It is generally assumed at the time of this writing that memories are stored in the form of synaptic weights. However, it is now also clear that the synapses are not permanent; in fact, synaptic patterns undergo significant change in a matter of hours. This means that to implement the long survival of distant memories (for several decades in humans), the brain must possess a molecular backup mechanism in some form, complete with provisions for the storage and retrieval of information. It is found below that the memory-supporting molecules need not contain a detailed description of mental entities, as had been envisioned in the 'memory molecule papers' from 50 years ago, they only need to contain unique identifiers of various entities, and that this can be achieved using relatively small molecules, using a random code ('ID molecules'). In this paper, the logistics of information flow are followed through the steps of storage and retrieval, and the conclusion reached is that the ID molecules, by carrying a sufficient amount of information (entropy), can effectively control the recreation of complex multineuronal patterns. In illustrations, it is described how ID molecules can be made to revive a selected cell assembly by waking up its synapses and how they cause a selected cell assembly to ignite by sending slow inward currents into its cells. The arrangement involves producing multiple copies of the ID molecules and distributing them at strategic locations at selected sets of synapses, then reaching them through small noncoding RNA molecules. This requires the quick creation of entropy-rich messengers and matching receptors, and it suggests that these are created from each other by small-scale transcription and reverse transcription.
NASA Astrophysics Data System (ADS)
Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik
2018-02-01
We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.
Freitag, L E; Tyack, P L
1993-04-01
A method for localization and tracking of calling marine mammals was tested under realistic field conditions that include noise, multipath, and arbitrarily located sensors. Experiments were performed in two locations using four and six hydrophones with captive Atlantic bottlenose dolphins (Tursiops truncatus). Acoustic signals from the animals were collected in the field using a digital acoustic data acquisition system. The data were then processed off-line to determine relative hydrophone positions and the animal locations. Accurate hydrophone position estimates are achieved by pinging sequentially from each hydrophone to all the others. A two-step least-squares algorithm is then used to determine sensor locations from the calibration data. Animal locations are determined by estimating the time differences of arrival of the dolphin signals at the different sensors. The peak of a matched filter output or the first cycle of the observed waveform is used to determine arrival time of an echolocation click. Cross correlation between hydrophones is used to determine inter-sensor time delays of whistles. Calculation of source location using the time difference of arrival measurements is done using a least-squares solution to minimize error. These preliminary experimental results based on a small set of data show that realistic trajectories for moving animals may be generated from consecutive location estimates.
Bookstrom, Arthur A.; Johnson, Bruce R.; Cookro, Theresa M.; Lund, Karen; Watts, Kenneth C.; King, Harley D.; Kleinkopf, Merlin D.; Pitkin, James A.; Sanchez, J. David; Causey, J. Douglas
1998-01-01
The Payette National Forest (PNF), in west-central Idaho, is geologically diverse and contains a wide variety of mineral resources. Mineral deposit types are grouped into locatable, leasable, and salable categories. The PNF has substantial past production and identified resources of locatable commodities, including gold, silver, copper, zinc, tungsten, antimony, mercury, and opal. Minor lignitic coal is the only leasable mineral resource known to be present in the PNF. Resources of salable commodities in the PNF include sand-and-gravel, basalt for crushed-rock aggregate, and minor gypsum. Locatable mineral resources are geographically divided between eastern and western parts of the PNF. The western PNF lies west of the Riggins-to-Cascade highway (US 95 - Idaho 55), and the eastern PNF is east of that highway. The western and eastern parts of the PNF are geologically distinctive and have different types of locatable mineral deposits, so their locatable mineral resources are described separately. Within the western and eastern parts of the PNF, locatable deposit types generally are described in order of decreasing geologic age. An expert panel delineated tracts considered geologically permissive and (or) favorable for the occurrence of undiscovered mineral deposits of types that are known to be present within or near the PNF. The panel also estimated probabilities for undiscovered deposits, and used numerical simulation, based on tonnage-grade distribution models, to derive estimates of in-situ metals contained. These estimates are summarized in terms of mean and median measures of central tendency. Most grade and tonnage distributions appear to be log-normal, with the median lower than the mean. Inasmuch as the mean is influenced by the largest deposits in the model tonnage-grade distribution, the median provides a lower measure of central tendency and a more conservative estimation of undiscovered resources.
Binnendijk, Erika; Dror, David M; Gerelle, Eric; Koren, Ruth
2013-01-01
Community-Based Health Insurance (CBHI) (a.k.a. micro health insurance) is a contributory health insurance among rural poor in developing countries. As CBHI schemes typically function with no subsidy income, the schemes' expenditures cannot exceed their premium income. A good estimate of Willingness-To-Pay (WTP) among the target population affiliating on a voluntary basis is therefore essential for package design. Previous estimates of WTP reported materially and significantly different WTP levels across locations (even within one state), making it necessity to base estimates on household surveys. This is time-consuming and expensive. This study seeks to identify a coherent anchor for local estimation of WTP without having to rely on household surveys in each CBHI implementation. Using data collected in 2008-2010 among rural poor households in six locations in India (total 7874 households), we found that in all locations WTP expressed as percentage of income decreases with household income. This reminds of Engel's law on food expenditures. We checked several possible anchors: overall income, discretionary income and food expenditures. We compared WTP expressed as percentage of these anchors, by calculating the Coefficient of Variation (for inter-community variation) and Concentration indices (for intra-community variation). The Coefficient of variation was 0.36, 0.43 and 0.50 for WTP as percent of food expenditures, overall income and discretionary income, respectively. In all locations the concentration index for WTP as percentage of food expenditures was the lowest. Thus, food expenditures had the most consistent relationship with WTP within each location and across the six locations. These findings indicate that like food, health insurance is considered a necessity good even by people with very low income and no prior experience with health insurance. We conclude that the level of WTP could be estimated based on each community's food expenditures, and that this information can be obtained everywhere without having to conduct household surveys. Copyright © 2012 Elsevier Ltd. All rights reserved.
Impact force identification for composite helicopter blades using minimal sensing
NASA Astrophysics Data System (ADS)
Budde, Carson N.
In this research a method for online impact identification using minimal sensors is developed for rotor hubs with composite blades. Modal impact data and the corresponding responses are recorded at several locations to develop a frequency response function model for each composite blade on the rotor hub. The frequency response model for each blade is used to develop an impact identification algorithm which can be used to identify the location and magnitude of impacts. Impacts are applied in two experimental setups, including a four-blade spin test rig and a cantilevered full-sized composite blade. The impacts are estimated to have been applied at the correct location 92.3% of the time for static fiberglass blades, 97.4% of the time for static carbon fiber blades and 99.2% of the time for a full sized-static blade. The estimated location is assessed further and determined to have been estimated in the correct chord position 96.1% of the time for static fiberglass, 100% of the time for carbon fiber blades and 99.2% of the time for the full-sized blades. Projectile impacts are also applied statically and during rotation to the carbon fiber blades on the spin test rig at 57 and 83 RPM. The applied impacts can be located to the correct position 63.9%, 41.7% and 33.3% for the 0, 57 and 83 RPM speeds, respectively, while the correct chord location is estimated 100% of the time. The impact identification algorithm also estimates the force of an impact with an average percent difference of 4.64, 2.61 and 1.00 for static fiberglass, full sized, and carbon fiber blades, respectively. Using a load cell and work equations, the force of impact for a projectile fired from a dynamic firing setup is estimated at about 400 N. The average force measured for applied projectile impacts to the carbon fiber blades, rotating at 0, 57 and 83 RPM, is 368.8, 373.7 and 432.4 N, respectively.
A probabilistic framework for single-station location of seismicity on Earth and Mars
NASA Astrophysics Data System (ADS)
Böse, M.; Clinton, J. F.; Ceylan, S.; Euchner, F.; van Driel, M.; Khan, A.; Giardini, D.; Lognonné, P.; Banerdt, W. B.
2017-01-01
Locating the source of seismic energy from a single three-component seismic station is associated with large uncertainties, originating from challenges in identifying seismic phases, as well as inevitable pick and model uncertainties. The challenge is even higher for planets such as Mars, where interior structure is a priori largely unknown. In this study, we address the single-station location problem by developing a probabilistic framework that combines location estimates from multiple algorithms to estimate the probability density function (PDF) for epicentral distance, back azimuth, and origin time. Each algorithm uses independent and complementary information in the seismic signals. Together, the algorithms allow locating seismicity ranging from local to teleseismic quakes. Distances and origin times of large regional and teleseismic events (M > 5.5) are estimated from observed and theoretical body- and multi-orbit surface-wave travel times. The latter are picked from the maxima in the waveform envelopes in various frequency bands. For smaller events at local and regional distances, only first arrival picks of body waves are used, possibly in combination with fundamental Rayleigh R1 waveform maxima where detectable; depth phases, such as pP or PmP, help constrain source depth and improve distance estimates. Back azimuth is determined from the polarization of the Rayleigh- and/or P-wave phases. When seismic signals are good enough for multiple approaches to be used, estimates from the various methods are combined through the product of their PDFs, resulting in an improved event location and reduced uncertainty range estimate compared to the results obtained from each algorithm independently. To verify our approach, we use both earthquake recordings from existing Earth stations and synthetic Martian seismograms. The Mars synthetics are generated with a full-waveform scheme (AxiSEM) using spherically-symmetric seismic velocity, density and attenuation models of Mars that incorporate existing knowledge of Mars internal structure, and include expected ambient and instrumental noise. While our probabilistic framework is developed mainly for application to Mars in the context of the upcoming InSight mission, it is also relevant for locating seismic events on Earth in regions with sparse instrumentation.
A new polymorphic and multicopy MHC gene family related to nonmammalian class I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J.
1994-12-31
The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNAmore » and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.« less
Alborzian Deh Sheikh, Amin; Akatsu, Chizuru; Imamura, Akihiro; Abdu-Allah, Hajjaj H M; Takematsu, Hiromu; Ando, Hiromune; Ishida, Hideharu; Tsubata, Takeshi
2018-01-01
Lectins expressed on the cell surface are often bound and regulated by the membrane molecules containing the glycan ligands on the same cell (cis-ligands). However, molecular nature and function of cis-ligands are generally poorly understood partly because of weak interaction between lectins and glycan ligands. Cis-ligands are most extensively studied in CD22 (also known as Siglec-2), an inhibitory B lymphocyte receptor specifically recognizing α2,6 sialic acids. CD22, CD45 and IgM are suggested to be ligands of CD22. Here we labeled molecules in the proximity of CD22 in situ on B cell surface using biotin-tyramide. Molecules including CD22, CD45 and IgM were labeled in wild-type but not ST6GalI -/- B cells that lack α2,6 sialic acids, indicating that these molecules associate with CD22 by lectin-glycan interaction, and are therefore cis-ligands. In ST6GalI -/- B cells, these cis-ligands are located in a slightly more distance from CD22. Thus, the lectin-glycan interaction recruits cis-ligands already located in the relative proximity of CD22 through non-lectin-glycan interaction to the close proximity. Moreover, cis-ligands are labeled in Cmah -/- B cells that lack Neu5Gc preferred by mouse CD22 as efficiently as in wild-type B cells, indicating that very low affinity lectin-glycan interaction is sufficient for recruiting cis-ligands, and can be detected by proximity labeling. Thus, proximity labeling with tyramide appears to be a useful method to identify cis-ligands and to analyze their interaction with the lectins. Copyright © 2017 Elsevier Inc. All rights reserved.
Roy, Arpita; Dutta, Rupam; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni
2016-05-24
It is well-known that sugars protect membrane structures against fusion and leakage. Here, we have investigated the interaction between different sugars (sucrose, trehalose, and maltose) and phospholipid membrane of 1,2-dimyristoyl-sn-glycero-3-phoshpocholine (DMPC) using dynamic light scattering (DLS), transmission electron microscopy (TEM), and other various spectroscopic techniques. DLS measurement reveals that the addition of sugar molecule results a significant increase of the average diameter of DMPC membrane. We have also noticed that in the presence of different sugars the rotational relaxation and solvation time of coumarin 480 (C480) and coumarin 153 (C153) surrounding DMPC membrane increases, suggesting a marked reduction of the hydration behavior at the surface of phospholipid membrane. In addition, we have also investigated the effect of sugar molecules on the lateral mobility of phospholipids. Interestingly, the relative increase in rotational, solvation and lateral diffusion is more prominent for C480 than that of C153 because of their different location in lipid bilayer. It is because of preferential location of comparatively hydrophilic probe C480 in the interfacial region of the lipid bilayer. Sugars intercalate with the phospholipid headgroup through hydrogen bonding and replace smaller sized water molecules from the membrane surface. Therefore, overall, we have monitored a comparative analysis regarding the interaction of different sugar molecules (sucrose, trehalose, and maltose) with the DMPC membrane through DLS, TEM, solvation dynamics, time-resolved anisotropy, and fluorescence correlation spectroscopy (FCS) measurements to explore the structural and spectroscopic aspect of lipid-sugar interaction.
Farnese, Fernanda S.; Menezes-Silva, Paulo E.; Gusman, Grasielle S.; Oliveira, Juraci A.
2016-01-01
The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary. PMID:27148300
Farnese, Fernanda S; Menezes-Silva, Paulo E; Gusman, Grasielle S; Oliveira, Juraci A
2016-01-01
The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.
Signaling cascades modulate the speed of signal propagation through space.
Govern, Christopher C; Chakraborty, Arup K
2009-01-01
Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade) at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.
Single molecule and single cell epigenomics.
Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D
2015-01-15
Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Single Molecule and Single Cell Epigenomics
Hyun, Byung-Ryool; McElwee, John L.; Soloway, Paul D.
2014-01-01
Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. PMID:25204781
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel (Inventor); Cutler, Andrew D. (Inventor); Danehy, Paul M. (Inventor)
2015-01-01
A system that simultaneously measures the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry-Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is provided.
The real estate factor: quantifying the impact of infarct location on stroke severity.
Menezes, Nina M; Ay, Hakan; Wang Zhu, Ming; Lopez, Chloe J; Singhal, Aneesh B; Karonen, Jari O; Aronen, Hannu J; Liu, Yawu; Nuutinen, Juho; Koroshetz, Walter J; Sorensen, A Gregory
2007-01-01
The severity of the neurological deficit after ischemic stroke is moderately correlated with infarct volume. In the current study, we sought to quantify the impact of location on neurological deficit severity and to delineate this impact from that of volume. We developed atlases consisting of location-weighted values indicating the relative importance in terms of neurological deficit severity for every voxel of the brain. These atlases were applied to 80 first-ever ischemic stroke patients to produce estimates of clinical deficit severity. Each patient had an MRI and National Institutes of Health Stroke Scale (NIHSS) examination just before or soon after hospital discharge. The correlation between the location-based deficit predictions and measured neurological deficit (NIHSS) scores were compared with the correlation obtained using volume alone to predict the neurological deficit. Volume-based estimates of neurological deficit severity were only moderately correlated with measured NIHSS scores (r=0.62). The combination of volume and location resulted in a significantly better correlation with clinical deficit severity (r=0.79, P=0.032). The atlas methodology is a feasible way of integrating infarct size and location to predict stroke severity. It can estimate stroke severity better than volume alone.
Spatio-temporal distribution of energy radiation from low frequency tremor
NASA Astrophysics Data System (ADS)
Maeda, T.; Obara, K.
2007-12-01
Recent fine-scale hypocenter locations of low frequency tremors (LFTs) estimated by cross-correlation technique (Shelly et al. 2006; Maeda et al. 2006) and new finding of very low frequency earthquake (Ito et al. 2007) suggest that these slow events occur at the plate boundary associated with slow slip events (Obara and Hirose, 2006). However, the number of tremor detected by above technique is limited since continuous tremor waveforms are too complicated. Although an envelope correlation method (ECM) (Obara, 2002) enables us to locate epicenters of LFT without arrival time picks, however, ECM fails to locate LFTs precisely especially on the most active stage of tremor activity because of the low-correlation of envelope amplitude. To reveal total energy release of LFT, here we propose a new method for estimating the location of LFTs together with radiated energy from the tremor source by using envelope amplitude. The tremor amplitude observed at NIED Hi-net stations in western Shikoku simply decays in proportion to the reciprocal of the source-receiver distance after the correction of site- amplification factor even though the phases of the tremor are very complicated. So, we model the observed mean square envelope amplitude by time-dependent energy radiation with geometrical spreading factor. In the model, we do not have origin time of the tremor since we assume that the source of the tremor continuously radiates the energy. Travel-time differences between stations estimated by the ECM technique also incorporated in our locating algorithm together with the amplitude information. Three-component 1-hour Hi-net velocity continuous waveforms with a pass-band of 2-10 Hz are used for the inversion after the correction of site amplification factors at each station estimated by coda normalization method (Takahashi et al. 2005) applied to normal earthquakes in the region. The source location and energy are estimated by applying least square inversion to the 1-min window iteratively. As a first application of our method, we estimated the spatio-temporal distribution of energy radiation for 2006 May episodic tremor and slip event occurred in western Shikoku, Japan, region. Tremor location and their radiated energy are estimated for every 1 minute. We counted the number of located LFTs and summed up their total energy at each grid having 0.05-degree spacing at each day to figure out the spatio-temporal distribution of energy release of tremors. The resultant spatial distribution of radiated energy is concentrated at a specific region. Additionally, we see the daily change of released energy, both of location and amount, which corresponds to the migration of tremor activity. The spatio-temporal distribution of energy radiation of tremors is in good agreement with a spatio-temporal slip distribution of slow slip event estimated from Hi-net tiltmeter record (Hirose et al. 2007). This suggests that small continuous tremors occur associated with a rupture process of slow slip.
Theory of liquid crystal orientation under action of light wave field and aligning surfaces
NASA Astrophysics Data System (ADS)
Dadivanyan, A. K.; Chausov, D. N.; Belyaev, V. V.; Barabanova, N. N.; Chausova, O. V.; Kuleshova, Yu D.
2018-03-01
Theoretical models developed in the MRSU group under leadership of Professor Artem Dadivanyan in area of the LC orientation and photo-induced effects are presented. Angular distribution functions of the dye and liquid crystal molecules under action of intensive light beam have been derived. The number of molecules in cluster is estimated. A model of dimers formation in the photoalignment dye is suggested that explains influence of the dye molecular structure on both polar and azimuthal anchoring energy.
Billes, Ferenc; Móricz, Agnes M; Tyihák, Erno; Mikosch, Hans
2006-06-01
The structure of four natural mycotoxins, the aflatoxin B1, B2, G1 and G2 and their demethylated products were optimized with quantum chemical method. The energies and the thermodynamic functions of the molecules were calculated and applied to calculation of the reaction energies of the demethylations. Further results of the calculations are the vibrational force constants, the infrared spectra of the molecules and the assignments of the spectral bands.
Scanning Tunneling Microscopic Characterization of an Engineered Organic Molecule
2011-08-01
attachment and wide-band MCT detector , was used. Figure 3 shows the spectra obtained for SAM of PMNBT (top), which was compared to raw crystal PMNBT...averaged in order to reduce random noise , especially in the high bias region. Figure 4d shows the average second-order STM I-V curves of each molecule...done to avoid the low signal-to- noise ratio regime of the STM (18). Our estimated value of go for dDT is about two orders of magnitude smaller than
Rotational dependence of the predissociation linewidths of the Schumann-Runge bands of O2
NASA Technical Reports Server (NTRS)
Cheung, A. S.-C.; Mok, D. K.-W.; Jamieson, M. J.; Finch, M.; Yoshino, K.; Dalgarno, A.; Parkinson, W. H.
1993-01-01
The rotational coupling constant for the O2 molecule is estimated theoretically, and the predissociation linewidths of the Schumann-Runge bands of vibration levels v = 0-12 are calculated for (O-16)2, (O-16)(O-18), and (O-18)2 molecules in the B 3Sigma-u(-) state. Calculations accounted for both the spin-orbit and rotational couplings with rotational quantum number N up to 20. The theoretical linewidths are compared with experimental widths, showing satisfactory agreement.
Franck-Condon factor formulae for astrophysical and other molecules
NASA Technical Reports Server (NTRS)
Nicholls, R. W.
1981-01-01
Simple closed-form, approximate, analytic expressions for Franck-Condon factors are given. They provide reliable estimates for Franck-Condon factor arrays for molecular band systems for which only vibrational-frequency, equilibrium internuclear separation and reduced mass values are known, as is often the case for astrophysically interesting molecules such as CeO, CoH, CrH, CrO, CuH, GeH, LaO, NiH, SnH, and ZnH for band systems of which Franck-Condon arrays have been calculated.
Detection of kinetic change points in piece-wise linear single molecule motion
NASA Astrophysics Data System (ADS)
Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.
2018-03-01
Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.
Winding single-molecule double-stranded DNA on a nanometer-sized reel
You, Huijuan; Iino, Ryota; Watanabe, Rikiya; Noji, Hiroyuki
2012-01-01
A molecular system of a nanometer-sized reel was developed from F1–ATPase, a rotary motor protein. By combination with magnetic tweezers and optical tweezers, single-molecule double-stranded DNA (dsDNA) was wound around the molecular reel. The bending stiffness of dsDNA was determined from the winding tension (0.9–6.0 pN) and the diameter of the wound loop (21.4–8.5 nm). Our results were in good agreement with the conventional worm-like chain model and a persistence length of 54 ± 9 nm was estimated. This molecular reel system offers a new platform for single-molecule study of micromechanics of sharply bent DNA molecules and is expected to be applicable to the elucidation of the molecular mechanism of DNA-associating proteins on sharply bent DNA strands. PMID:22772992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V
The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of themore » dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)« less