Sample records for molecule pulling experiments

  1. Force feedback effects on single molecule hopping and pulling experiments

    NASA Astrophysics Data System (ADS)

    Rico-Pasto, M.; Pastor, I.; Ritort, F.

    2018-03-01

    Single-molecule experiments with optical tweezers have become an important tool to study the properties and mechanisms of biological systems, such as cells and nucleic acids. In particular, force unzipping experiments have been used to extract the thermodynamics and kinetics of folding and unfolding reactions. In hopping experiments, a molecule executes transitions between the unfolded and folded states at a preset value of the force [constant force mode (CFM) under force feedback] or trap position [passive mode (PM) without feedback] and the force-dependent kinetic rates extracted from the lifetime of each state (CFM) and the rupture force distributions (PM) using the Bell-Evans model. However, hopping experiments in the CFM are known to overestimate molecular distances and folding free energies for fast transitions compared to the response time of the feedback. In contrast, kinetic rate measurements from pulling experiments have been mostly done in the PM while the CFM is seldom implemented in pulling protocols. Here, we carry out hopping and pulling experiments in a short DNA hairpin in the PM and CFM at three different temperatures (6 °C, 25 °C, and 45 °C) exhibiting largely varying kinetic rates. As expected, we find that equilibrium hopping experiments in the CFM and PM perform well at 6 °C (where kinetics are slow), whereas the CFM overestimates molecular parameters at 45 °C (where kinetics are fast). In contrast, nonequilibrium pulling experiments perform well in both modes at all temperatures. This demonstrates that the same kind of feedback algorithm in the CFM leads to more reliable determination of the folding reaction parameters in irreversible pulling experiments.

  2. Force feedback effects on single molecule hopping and pulling experiments.

    PubMed

    Rico-Pasto, M; Pastor, I; Ritort, F

    2018-03-28

    Single-molecule experiments with optical tweezers have become an important tool to study the properties and mechanisms of biological systems, such as cells and nucleic acids. In particular, force unzipping experiments have been used to extract the thermodynamics and kinetics of folding and unfolding reactions. In hopping experiments, a molecule executes transitions between the unfolded and folded states at a preset value of the force [constant force mode (CFM) under force feedback] or trap position [passive mode (PM) without feedback] and the force-dependent kinetic rates extracted from the lifetime of each state (CFM) and the rupture force distributions (PM) using the Bell-Evans model. However, hopping experiments in the CFM are known to overestimate molecular distances and folding free energies for fast transitions compared to the response time of the feedback. In contrast, kinetic rate measurements from pulling experiments have been mostly done in the PM while the CFM is seldom implemented in pulling protocols. Here, we carry out hopping and pulling experiments in a short DNA hairpin in the PM and CFM at three different temperatures (6 °C, 25 °C, and 45 °C) exhibiting largely varying kinetic rates. As expected, we find that equilibrium hopping experiments in the CFM and PM perform well at 6 °C (where kinetics are slow), whereas the CFM overestimates molecular parameters at 45 °C (where kinetics are fast). In contrast, nonequilibrium pulling experiments perform well in both modes at all temperatures. This demonstrates that the same kind of feedback algorithm in the CFM leads to more reliable determination of the folding reaction parameters in irreversible pulling experiments.

  3. Kinetics of molecular transitions with dynamic disorder in single-molecule pulling experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Li, Ping; Zhao, Nanrong; Hou, Zhonghuai

    2013-05-01

    Macromolecular transitions are subject to large fluctuations of rate constant, termed as dynamic disorder. The individual or intrinsic transition rates and activation free energies can be extracted from single-molecule pulling experiments. Here we present a theoretical framework based on a generalized Langevin equation with fractional Gaussian noise and power-law memory kernel to study the kinetics of macromolecular transitions to address the effects of dynamic disorder on barrier-crossing kinetics under external pulling force. By using the Kramers' rate theory, we have calculated the fluctuating rate constant of molecular transition, as well as the experimentally accessible quantities such as the force-dependent mean lifetime, the rupture force distribution, and the speed-dependent mean rupture force. Particular attention is paid to the discrepancies between the kinetics with and without dynamic disorder. We demonstrate that these discrepancies show strong and nontrivial dependence on the external force or the pulling speed, as well as the barrier height of the potential of mean force. Our results suggest that dynamic disorder is an important factor that should be taken into account properly in accurate interpretations of single-molecule pulling experiments.

  4. Pulling monatomic gold wires with single molecules: an Ab initio simulation.

    PubMed

    Krüger, Daniel; Fuchs, Harald; Rousseau, Roger; Marx, Dominik; Parrinello, Michele

    2002-10-28

    Car-Parrinello molecular dynamics simulations demonstrate that pulling a single thiolate molecule anchored on a stepped gold surface does not preferentially break the sulfur-gold chemical bond. Instead, it is found that this process leads to the formation of a monoatomic gold nanowire, followed by breaking a gold-gold bond with a rupture force of about 1.2 nN. The simulations also indicate that previous single-molecule thiolate-gold and gold-gold rupture experiments both probe the same phenomenon, namely, the breaking of a gold-gold bond within a gold nanowire.

  5. Free energy profiles from single-molecule pulling experiments.

    PubMed

    Hummer, Gerhard; Szabo, Attila

    2010-12-14

    Nonequilibrium pulling experiments provide detailed information about the thermodynamic and kinetic properties of molecules. We show that unperturbed free energy profiles as a function of molecular extension can be obtained rigorously from such experiments without using work-weighted position histograms. An inverse Weierstrass transform is used to relate the system free energy obtained from the Jarzynski equality directly to the underlying molecular free energy surface. An accurate approximation for the free energy surface is obtained by using the method of steepest descent to evaluate the inverse transform. The formalism is applied to simulated data obtained from a kinetic model of RNA folding, in which the dynamics consists of jumping between linker-dominated folded and unfolded free energy surfaces.

  6. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    PubMed

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  7. Quantitative modeling of forces in electromagnetic tweezers

    NASA Astrophysics Data System (ADS)

    Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M.; Vezenov, Dmitri V.

    2010-11-01

    This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.

  8. Sequence-dependent folding landscapes of adenine riboswitch aptamers.

    PubMed

    Lin, Jong-Chin; Hyeon, Changbong; Thirumalai, D

    2014-04-14

    Expression of a large fraction of genes in bacteria is controlled by riboswitches, which are found in the untranslated region of mRNA. Structurally riboswitches have a conserved aptamer domain to which a metabolite binds, resulting in a conformational change in the downstream expression platform. Prediction of the functions of riboswitches requires a quantitative description of the folding landscape so that the barriers and time scales for the conformational change in the switching region in the aptamer can be estimated. Using a combination of all atom molecular dynamics (MD) and coarse-grained model simulations we studied the response of adenine (A) binding add and pbuE A-riboswitches to mechanical force. The two riboswitches contain a structurally similar three-way junction formed by three paired helices, P1, P2, and P3, but carry out different functions. Using pulling simulations, with structures generated in MD simulations, we show that after P1 rips the dominant unfolding pathway in the add A-riboswitch is the rupture of P2 followed by unraveling of P3. In the pbuE A-riboswitch, after P1 unfolds P3 ruptures ahead of P2. The order of unfolding of the helices, which is in accord with single molecule pulling experiments, is determined by the relative stabilities of the individual helices. Our results show that the stability of isolated helices determines the order of assembly and response to force in these non-coding regions. We use the simulated free energy profile for the pbuE A-riboswitch to estimate the time scale for allosteric switching, which shows that this riboswitch is under kinetic control lending additional support to the conclusion based on single molecule pulling experiments. A consequence of the stability hypothesis is that a single point mutation (U28C) in the P2 helix of the add A-riboswitch, which increases the stability of P2, would make the folding landscapes of the two riboswitches similar. This prediction can be tested in single molecule pulling experiments.

  9. Mapping mechanical force propagation through biomolecular complexes

    DOE PAGES

    Schoeler, Constantin; Bernardi, Rafael C.; Malinowska, Klara H.; ...

    2015-08-11

    In this paper, we employ single-molecule force spectroscopy with an atomic force microscope (AFM) and steered molecular dynamics (SMD) simulations to reveal force propagation pathways through a mechanically ultrastable multidomain cellulosome protein complex. We demonstrate a new combination of network-based correlation analysis supported by AFM directional pulling experiments, which allowed us to visualize stiff paths through the protein complex along which force is transmitted. Finally, the results implicate specific force-propagation routes nonparallel to the pulling axis that are advantageous for achieving high dissociation forces.

  10. On artifacts in single-molecule force spectroscopy

    PubMed Central

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2015-01-01

    In typical force spectroscopy experiments, a small biomolecule is attached to a soft polymer linker that is pulled with a relatively large bead or cantilever. At constant force, the total extension stochastically changes between two (or more) values, indicating that the biomolecule undergoes transitions between two (or several) conformational states. In this paper, we consider the influence of the dynamics of the linker and mesoscopic pulling device on the force-dependent rate of the conformational transition extracted from the time dependence of the total extension, and the distribution of rupture forces in force-clamp and force-ramp experiments, respectively. For these different experiments, we derive analytic expressions for the observables that account for the mechanical response and dynamics of the pulling device and linker. Possible artifacts arise when the characteristic times of the pulling device and linker become comparable to, or slower than, the lifetimes of the metastable conformational states, and when the highly anharmonic regime of stretched linkers is probed at high forces. We also revisit the problem of relating force-clamp and force-ramp experiments, and identify a linker and loading rate-dependent correction to the rates extracted from the latter. The theory provides a framework for both the design and the quantitative analysis of force spectroscopy experiments by highlighting, and correcting for, factors that complicate their interpretation. PMID:26540730

  11. Directly measuring single-molecule heterogeneity using force spectroscopy

    PubMed Central

    Hinczewski, Michael; Thirumalai, D.

    2016-01-01

    One of the most intriguing results of single-molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Although we now have proof of functional heterogeneity in a handful of systems—enzymes, motors, adhesion complexes—identifying and measuring it remains a formidable challenge. Here, we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single-molecule techniques: atomic force microscopy or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This results in a single parameter, quantifying the degree of heterogeneity, and also leads to bounds on the equilibration and conformational interconversion timescales. Surveying 10 published datasets, we find heterogeneity in 5 of them, all with interconversion rates slower than 10 s−1. Moreover, we identify two systems where additional data at realizable pulling velocities is likely to find a theoretically predicted, but so far unobserved crossover regime between heterogeneous and nonheterogeneous behavior. The significance of this regime is that it will allow far more precise estimates of the slow conformational switching times, one of the least understood aspects of functional heterogeneity. PMID:27317744

  12. Single-molecule pull-down (SiMPull) for new-age biochemistry: methodology and biochemical applications of single-molecule pull-down (SiMPull) for probing biomolecular interactions in crude cell extracts.

    PubMed

    Aggarwal, Vasudha; Ha, Taekjip

    2014-11-01

    Macromolecular interactions play a central role in many biological processes. Protein-protein interactions have mostly been studied by co-immunoprecipitation, which cannot provide quantitative information on all possible molecular connections present in the complex. We will review a new approach that allows cellular proteins and biomolecular complexes to be studied in real-time at the single-molecule level. This technique is called single-molecule pull-down (SiMPull), because it integrates principles of conventional immunoprecipitation with the powerful single-molecule fluorescence microscopy. SiMPull is used to count how many of each protein is present in the physiological complexes found in cytosol and membranes. Concurrently, it serves as a single-molecule biochemical tool to perform functional studies on the pulled-down proteins. In this review, we will focus on the detailed methodology of SiMPull, its salient features and a wide range of biological applications in comparison with other biosensing tools. © 2014 WILEY Periodicals, Inc.

  13. Interaction of cationic surfactants with DNA: a single-molecule study

    PubMed Central

    Husale, Sudhir; Grange, Wilfried; Karle, Marc; Bürgi, Stephan; Hegner, Martin

    2008-01-01

    The interaction of cationic surfactants with single dsDNA molecules has been studied using force-measuring optical tweezers. For hydrophobic chains of length 12 and greater, pulling experiments show characteristic features (e.g. hysteresis between the pulling and relaxation curves, force-plateau along the force curves), typical of a condensed phase (compaction of a long DNA into a micron-sized particle). Depending on the length of the hydrophobic chain of the surfactant, we observe different mechanical behaviours of the complex (DNA-surfactants), which provide evidence for different binding modes. Taken together, our measurements suggest that short-chain surfactants, which do not induce any condensation, could lie down on the DNA surface and directly interact with the DNA grooves through hydrophobic–hydrophobic interactions. In contrast, long-chain surfactants could have their aliphatic tails pointing away from the DNA surface, which could promote inter-molecular interactions between hydrophobic chains and subsequently favour DNA condensation. PMID:18203749

  14. Decoding the mechanical fingerprints of biomolecules.

    PubMed

    Dudko, Olga K

    2016-01-01

    The capacity of biological macromolecules to act as exceedingly sophisticated and highly efficient cellular machines - switches, assembly factors, pumps, or motors - is realized through their conformational transitions, that is, their folding into distinct shapes and selective binding to other molecules. Conformational transitions can be induced, monitored, and manipulated by pulling individual macromolecules apart with an applied force. Pulling experiments reveal, for a given biomolecule, the relationship between applied force and molecular extension. Distinct signatures in the force-extension relationship identify a given biomolecule and thus serve as the molecule's 'mechanical fingerprints'. But, how can these fingerprints be decoded to uncover the energy barriers crossed by the molecule in the course of its conformational transition, as well as the associated timescales? This review summarizes a powerful class of approaches to interpreting single-molecule force spectroscopy measurements - namely, analytically tractable approaches. On the fundamental side, analytical theories have the power to reveal the unifying principles underneath the bewildering diversity of biomolecules and their behaviors. On the practical side, analytical expressions that result from these theories are particularly well suited for a direct fit to experimental data, yielding the important parameters that govern biological processes at the molecular level.

  15. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption-Desorption Transition.

    PubMed

    Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G

    2018-05-23

    The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.

  16. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition

    PubMed Central

    2018-01-01

    The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430

  17. Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene.

    PubMed

    Oh, Seung-Won; Baek, Jong-Min; Yoon, Tae-Hoon

    2016-11-14

    We propose a sunlight-switchable light shutter using liquid crystal/polymer composite doped with push-pull azobenzene. The proposed light shutter is switchable between the translucent and transparent states by application of an electric field or by UV irradiation. Switching by UV irradiation is based on the change of the liquid crystal (LC) clearing point by the photo-isomerization effect of push-pull azobenzene. Under sunlight, the light shutter can be switched from the translucent to the transparent state by the nematic-isotropic phase transition of the LC domains triggered by trans-cis photo-isomerization of the push-pull azobenzene molecules. When the amount of sunlight is low because of cloud cover or when there is no sunlight at sunset, the light shutter rapidly relaxes from its transparent state back to its initial translucent state by the isotropic-nematic phase transition induced by cis-trans back-isomerization of the push-pull azobenzene molecules.

  18. Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation.

    PubMed

    Ojala, Heikki; Ziedaite, Gabija; Wallin, Anders E; Bamford, Dennis H; Hæggström, Edward

    2014-03-01

    The simplified artificial environments in which highly complex biological systems are studied do not represent the crowded, dense, salty, and dynamic environment inside the living cell. Consequently, it is important to investigate the effect of crowding agents on DNA. We used a dual-trap optical tweezers instrument to perform force spectroscopy experiments at pull speeds ranging from 0.3 to 270 μm/s on single dsDNA molecules in the presence of poly(ethylene glycol) (PEG) and monovalent salt. PEG of sizes 1,500 and 4,000 Da condensed DNA, and force-extension data contained a force plateau at approximately 1 pN. The level of the force plateau increased with increasing pull speed. During slow pulling the dissipated work increased linearly with pull speed. The calculated friction coefficient did not depend on amount of DNA incorporated in the condensate, indicating internal friction is independent of the condensate size. PEG300 had no effect on the dsDNA force-extension curve. The force plateau implies that condensation induced by crowding agents resembles condensation induced by multivalent cations.

  19. Modular Electron Donor Group Tuning Of Frontier Energy Levels In Diarylaminofluorenone Push-Pull Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homnick, Paul J.; Lahti, P. M.

    2012-01-01

    Push–pull organic molecules composed of electron donor diarylamines at the 2- and 2,7-positions of fluorenone exhibit intramolecular charge-transfer behaviour in static absorption and emission spectra. Electrochemical and spectral data combined in a modular electronic analysis model show how the donor HOMO and acceptor LUMO act as major determinants of the frontier molecular orbital energy levels.

  20. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    PubMed

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  1. Single-molecule analysis of DNA uncoiling by a type II topoisomerase

    NASA Astrophysics Data System (ADS)

    Strick, Terence R.; Croquette, Vincent; Bensimon, David

    2000-04-01

    Type II DNA topoisomerases are ubiquitous ATP-dependent enzymes capable of transporting a DNA through a transient double-strand break in a second DNA segment. This enables them to untangle DNA and relax the interwound supercoils (plectonemes) that arise in twisted DNA. In vivo, they are responsible for untangling replicated chromosomes and their absence at mitosis or meiosis ultimately causes cell death. Here we describe a micromanipulation experiment in which we follow in real time a single Drosophila melanogaster topoisomerase II acting on a linear DNA molecule which is mechanically stretched and supercoiled. By monitoring the DNA's extension in the presence of ATP, we directly observe the relaxation of two supercoils during a single catalytic turnover. By controlling the force pulling on the molecule, we determine the variation of the reaction rate with the applied stress. Finally, in the absence of ATP, we observe the clamping of a DNA crossover by a single topoisomerase on at least two different timescales (configurations). These results show that single molecule experiments are a powerful new tool for the study of topoisomerases.

  2. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.

  3. Reducing uncertainties in energy dissipation measurements in atomic force spectroscopy of molecular networks and cell-adhesion studies.

    PubMed

    Biswas, Soma; Leitao, Samuel; Theillaud, Quentin; Erickson, Blake W; Fantner, Georg E

    2018-06-20

    Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) is a valuable tool in biophysics to investigate the ligand-receptor interactions, cell adhesion and cell mechanics. However, the force spectroscopy data analysis needs to be done carefully to extract the required quantitative parameters correctly. Especially the large number of molecules, commonly involved in complex networks formation; leads to very complicated force spectroscopy curves. One therefore, generally characterizes the total dissipated energy over a whole pulling cycle, as it is difficult to decompose the complex force curves into individual single molecule events. However, calculating the energy dissipation directly from the transformed force spectroscopy curves can lead to a significant over-estimation of the dissipated energy during a pulling experiment. The over-estimation of dissipated energy arises from the finite stiffness of the cantilever used for AFM based SMFS. Although this error can be significant, it is generally not compensated for. This can lead to significant misinterpretation of the energy dissipation (up to the order of 30%). In this paper, we show how in complex SMFS the excess dissipated energy caused by the stiffness of the cantilever can be identified and corrected using a high throughput algorithm. This algorithm is then applied to experimental results from molecular networks and cell-adhesion measurements to quantify the improvement in the estimation of the total energy dissipation.

  4. BiP clustering facilitates protein folding in the endoplasmic reticulum.

    PubMed

    Griesemer, Marc; Young, Carissa; Robinson, Anne S; Petzold, Linda

    2014-07-01

    The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER): translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of S. cerevisiae (commonly referred to as 'clusters'). Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These insilico investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling.

  5. History, rare, and multiple events of mechanical unfolding of repeat proteins

    NASA Astrophysics Data System (ADS)

    Sumbul, Fidan; Marchesi, Arin; Rico, Felix

    2018-03-01

    Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.

  6. Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis

    NASA Astrophysics Data System (ADS)

    Yen, Chi-Fu; Sivasankar, Sanjeevi

    2018-03-01

    Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.

  7. Triphenylamine-Based Push–Pull Molecule for Photovoltaic Applications: From Synthesis to Ultrafast Device Photophysics

    PubMed Central

    2017-01-01

    Small push–pull molecules attract much attention as prospective donor materials for organic solar cells (OSCs). By chemical engineering, it is possible to combine a number of attractive properties such as broad absorption, efficient charge separation, and vacuum and solution processabilities in a single molecule. Here we report the synthesis and early time photophysics of such a molecule, TPA-2T-DCV-Me, based on the triphenylamine (TPA) donor core and dicyanovinyl (DCV) acceptor end group connected by a thiophene bridge. Using time-resolved photoinduced absorption and photoluminescence, we demonstrate that in blends with [70]PCBM the molecule works both as an electron donor and hole acceptor, thereby allowing for two independent channels of charge generation. The charge-generation process is followed by the recombination of interfacial charge transfer states that takes place on the subnanosecond time scale as revealed by time-resolved photoluminescence and nongeminate recombination as follows from the OSC performance. Our findings demonstrate the potential of TPA-DCV-based molecules as donor materials for both solution-processed and vacuum-deposited OSCs. PMID:28413568

  8. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine

    PubMed Central

    Aubin-Tam, Marie-Eve; Olivares, Adrian O.; Sauer, Robert T.; Baker, Tania A.; Lang, Matthew J.

    2011-01-01

    All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates the denatured polypeptide through a central pore and into ClpP for degradation. Here, we use optical-trapping nanometry to probe the mechanics of enzymatic unfolding and translocation of single molecules of a multidomain substrate. Our experiments demonstrate the capacity of ClpXP and ClpX to perform mechanical work under load, reveal very fast and highly cooperative unfolding of individual substrate domains, suggest a translocation step size of 5–8 amino acids, and support a power-stroke model of denaturation in which successful enzyme-mediated unfolding of stable domains requires coincidence between mechanical pulling by the enzyme and a transient stochastic reduction in protein stability. We anticipate that single-molecule studies of the mechanical properties of other AAA+ proteolytic machines will reveal many shared features with ClpXP. PMID:21496645

  9. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates.

    PubMed

    Augustyniak, Rafal; Kay, Lewis E

    2018-05-22

    Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.

  10. Enhanced Basicity of Push-Pull Nitrogen Bases in the Gas Phase.

    PubMed

    Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles

    2016-11-23

    Nitrogen bases containing one or more pushing amino-group(s) directly linked to a pulling cyano, imino, or phosphoimino group, as well as those in which the pushing and pulling moieties are separated by a conjugated spacer (C═X) n , where X is CH or N, display an exceptionally strong basicity. The n-π conjugation between the pushing and pulling groups in such systems lowers the basicity of the pushing amino-group(s) and increases the basicity of the pulling cyano, imino, or phosphoimino group. In the gas phase, most of the so-called push-pull nitrogen bases exhibit a very high basicity. This paper presents an analysis of the exceptional gas-phase basicity, mostly in terms of experimental data, in relation with structure and conjugation of various subfamilies of push-pull nitrogen bases: nitriles, azoles, azines, amidines, guanidines, vinamidines, biguanides, and phosphazenes. The strong basicity of biomolecules containing a push-pull nitrogen substructure, such as bioamines, amino acids, and peptides containing push-pull side chains, nucleobases, and their nucleosides and nucleotides, is also analyzed. Progress and perspectives of experimental determinations of GBs and PAs of highly basic compounds, termed as "superbases", are presented and benchmarked on the basis of theoretical calculations on existing or hypothetical molecules.

  11. Single DNA molecule detection using nanopipettes and nanoparticles.

    PubMed

    Karhanek, Miloslav; Kemp, Jennifer T; Pourmand, Nader; Davis, Ronald W; Webb, Chris D

    2005-02-01

    Single DNA molecules labeled with nanoparticles can be detected by blockades of ionic current as they are translocated through a nanopipette tip formed by a pulled glass capillary. The nanopipette detection technique can provide not only tools for detection and identification of single DNA and protein molecules but also deeper insight and understanding of stochastic interactions of various biomolecules with their environment.

  12. Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.

    PubMed

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2010-03-02

    Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.

  13. Force determination in lateral magnetic tweezers combined with TIRF microscopy.

    PubMed

    Madariaga-Marcos, J; Hormeño, S; Pastrana, C L; Fisher, G L M; Dillingham, M S; Moreno-Herrero, F

    2018-03-01

    Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.

  14. Electric conductance of a mechanically strained molecular junction from first principles: Crucial role of structural relaxation and conformation sampling

    NASA Astrophysics Data System (ADS)

    Nguyen, Huu Chuong; Szyja, Bartłomiej M.; Doltsinis, Nikos L.

    2014-09-01

    Density functional theory (DFT) based molecular dynamics simulations have been performed of a 1,4-benzenedithiol molecule attached to two gold electrodes. To model the mechanical manipulation in typical break junction and atomic force microscopy experiments, the distance between two electrodes was incrementally increased up to the rupture point. For each pulling distance, the electric conductance was calculated using the DFT nonequilibrium Green's-function approach for a statistically relevant sample of configurations extracted from the simulation. With increasing mechanical strain, the formation of monoatomic gold wires is observed. The conductance decreases by three orders of magnitude as the initial twofold coordination of the thiol sulfur to the gold is reduced to a single S-Au bond at each electrode and the order in the electrodes is destroyed. Independent of the pulling distance, the conductance was found to fluctuate by at least two orders of magnitude depending on the instantaneous junction geometry.

  15. Towards force spectroscopy of single tip-link bonds

    NASA Astrophysics Data System (ADS)

    Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.; Corey, David P.

    2015-12-01

    Inner-ear mechanotransduction relies on tip links, fine protein filaments made of cadherin-23 and protocadherin-15 that convey tension to mechanosensitive channels at the tips of hair-cell stereocilia. The tip-link cadherins are thought to form a heterotetrameric complex, with two cadherin-23 molecules forming the upper part of the filament and two protocadherin-15 molecules forming the lower end. The interaction between cadherin-23 and protocadherin-15 is mediated by their N-terminal tips. Missense mutations that modify the interaction interface impair binding and lead to deafness. Molecular dynamics simulations predict that the tip-link bond is mechanically strong enough to withstand forces in hair cells, but its experimentally determined strength is unknown. We have developed molecular tools to facilitate single-molecule force spectroscopy on the tip link bond. Self-assembling DNA nanoswitches are functionalized with the interacting tips of cadherin-23 and protocadherin-15 using the enzyme sortase under conditions that preserve protein function. These tip link nanoswitches are designed to provide a signature force-extension profile. This molecular signature should allow us to identify single-molecule rupture events in pulling experiments.

  16. Identification of GPCR-Interacting Cytosolic Proteins Using HDL Particles and Mass Spectrometry-Based Proteomic Approach

    PubMed Central

    Chung, Ka Young; Day, Peter W.; Vélez-Ruiz, Gisselle; Sunahara, Roger K.; Kobilka, Brian K.

    2013-01-01

    G protein-coupled receptors (GPCRs) have critical roles in various physiological and pathophysiological processes, and more than 40% of marketed drugs target GPCRs. Although the canonical downstream target of an agonist-activated GPCR is a G protein heterotrimer; there is a growing body of evidence suggesting that other signaling molecules interact, directly or indirectly, with GPCRs. However, due to the low abundance in the intact cell system and poor solubility of GPCRs, identification of these GPCR-interacting molecules remains challenging. Here, we establish a strategy to overcome these difficulties by using high-density lipoprotein (HDL) particles. We used the β2-adrenergic receptor (β2AR), a GPCR involved in regulating cardiovascular physiology, as a model system. We reconstituted purified β2AR in HDL particles, to mimic the plasma membrane environment, and used the reconstituted receptor as bait to pull-down binding partners from rat heart cytosol. A total of 293 proteins were identified in the full agonist-activated β2AR pull-down, 242 proteins in the inverse agonist-activated β2AR pull-down, and 210 proteins were commonly identified in both pull-downs. A small subset of the β2AR-interacting proteins isolated was confirmed by Western blot; three known β2AR-interacting proteins (Gsα, NHERF-2, and Grb2) and 3 newly identified known β2AR-interacting proteins (AMPKα, acetyl-CoA carboxylase, and UBC-13). Profiling of the identified proteins showed a clear bias toward intracellular signal transduction pathways, which is consistent with the role of β2AR as a cell signaling molecule. This study suggests that HDL particle-reconstituted GPCRs can provide an effective platform method for the identification of GPCR binding partners coupled with a mass spectrometry-based proteomic analysis. PMID:23372797

  17. Freely Suspended Nematic Films

    NASA Astrophysics Data System (ADS)

    Iglesias, Wilder; Choi, Jeffrey; Mann, Elizabeth K.; Jakli, Antal

    2011-03-01

    Using one of the most commonly studied synthetic molecule, 4-Cyano-4'-pentylbiphenyl (5CB), we were able to pull freely suspended membranes of different thicknesses into circular frames of up to 20mm diameter. Films pulled this way were distorted using a speaker, while a laser light was shone onto them for studying the far field reflection and learn about resonant frequency modes and subtract valuable information about the viscoelastic terms that hold the membrane stable. This work was supported by NFS, grant 0907055.

  18. Optical trapping, pulling, and Raman spectroscopy of airborne absorbing particles based on negative photophoretic force

    NASA Astrophysics Data System (ADS)

    Chen, Gui-hua; He, Lin; Wu, Mu-ying; Yang, Guang; Li, Y. Q.

    2017-08-01

    Optical pulling is the attraction of objects back to the light source by the use of optically induced "negative forces". The light-induced photophoretic force is generated by the momentum transfer between the heating particles and surrounding gas molecules and can be several orders of magnitude larger than the radiation force and gravitation force. Here, we demonstrate that micron-sized absorbing particles can be optically pulled and manipulated towards the light source over a long distance in air with a collimated Gaussian laser beam based on a negative photophoretic force. A variety of airborne absorbing particles can be pulled by this optical pipeline to the region where they are optically trapped with another focused laser beam and their chemical compositions are characterized with Raman spectroscopy. We found that micron-sized particles are pulled over a meter-scale distance in air with a pulling speed of 1-10 cm/s in the optical pulling pipeline and its speed can be controlled by changing the laser intensity. When an aerosol particle is optically trapped with a focused Gaussian beam, we measured its rotation motion around the laser propagation direction and measured its Raman spectroscopy for chemical identification by molecular fingerprints. The centripetal acceleration of the trapped particle as high as 20 times the gravitational acceleration was observed. Optical pulling over large distances with lasers in combination with Raman spectroscopy opens up potential applications for the collection and identification of atmospheric particles.

  19. The influence of ionic strength on DNA diffusion in gel networks

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Jee, Ah-Young; Kim, Hyeong-Ju; Granick, Steve

    Cations are known to reduce the rigidity of the DNA molecules by screening the negative charge along the sugar phosphate backbone. This was established by optical tweezer pulling experiment of immobilized DNA strands. However, little is known regarding the influence of ions on the motion of DNA molecules as they thread through network meshes. We imaged in real time the Brownian diffusion of fluorescent labeled lambda-DNA in an agarose gel network in the presence of salt with monovalent or multivalent cations. Each movie was analyzed using home-written program to yield a trajectory of center of the mass and the accompanying history of the shape fluctuations. One preliminary finding is that ionic strength has a profound influence on the slope of the trace of mean square displacement (MSD) versus time. The influence of ionic strength on DNA diffusion in gel networks.

  20. From genes to protein mechanics on a chip.

    PubMed

    Otten, Marcus; Ott, Wolfgang; Jobst, Markus A; Milles, Lukas F; Verdorfer, Tobias; Pippig, Diana A; Nash, Michael A; Gaub, Hermann E

    2014-11-01

    Single-molecule force spectroscopy enables mechanical testing of individual proteins, but low experimental throughput limits the ability to screen constructs in parallel. We describe a microfluidic platform for on-chip expression, covalent surface attachment and measurement of single-molecule protein mechanical properties. A dockerin tag on each protein molecule allowed us to perform thousands of pulling cycles using a single cohesin-modified cantilever. The ability to synthesize and mechanically probe protein libraries enables high-throughput mechanical phenotyping.

  1. Transition paths in single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2018-03-01

    In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.

  2. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  3. Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy.

    PubMed

    Baumann, Fabian; Bauer, Magnus S; Milles, Lukas F; Alexandrovich, Alexander; Gaub, Hermann E; Pippig, Diana A

    2016-01-01

    Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.

  4. Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides.

    PubMed

    Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D

    2014-04-18

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.

  5. Targeting the r(CGG) Repeats That Cause FXTAS with Modularly Assembled Small Molecules and Oligonucleotides

    PubMed Central

    2015-01-01

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227

  6. Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy

    NASA Astrophysics Data System (ADS)

    Baumann, Fabian; Bauer, Magnus S.; Milles, Lukas F.; Alexandrovich, Alexander; Gaub, Hermann E.; Pippig, Diana A.

    2016-01-01

    Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.

  7. Exact results in nonequilibrium statistical mechanics: Formalism and applications in chemical kinetics and single-molecule free energy estimation

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.

  8. Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds.

    PubMed

    Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland

    2015-05-07

    We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.

  9. In Planta Single-Molecule Pull-Down Reveals Tetrameric Stoichiometry of HD-ZIPIII:LITTLE ZIPPER Complexes.

    PubMed

    Husbands, Aman Y; Aggarwal, Vasudha; Ha, Taekjip; Timmermans, Marja C P

    2016-08-01

    Deciphering complex biological processes markedly benefits from approaches that directly assess the underlying biomolecular interactions. Most commonly used approaches to monitor protein-protein interactions typically provide nonquantitative readouts that lack statistical power and do not yield information on the heterogeneity or stoichiometry of protein complexes. Single-molecule pull-down (SiMPull) uses single-molecule fluorescence detection to mitigate these disadvantages and can quantitatively interrogate interactions between proteins and other compounds, such as nucleic acids, small molecule ligands, and lipids. Here, we establish SiMPull in plants using the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) and LITTLE ZIPPER (ZPR) interaction as proof-of-principle. Colocalization analysis of fluorophore-tagged HD-ZIPIII and ZPR proteins provides strong statistical evidence of complex formation. In addition, we use SiMPull to directly quantify YFP and mCherry maturation probabilities, showing these differ substantially from values obtained in mammalian systems. Leveraging these probabilities, in conjunction with fluorophore photobleaching assays on over 2000 individual complexes, we determined HD-ZIPIII:ZPR stoichiometry. Intriguingly, these complexes appear as heterotetramers, comprising two HD-ZIPIII and two ZPR molecules, rather than heterodimers as described in the current model. This surprising result raises new questions about the regulation of these key developmental factors and is illustrative of the unique contribution SiMPull is poised to make to in planta protein interaction studies. © 2016 American Society of Plant Biologists. All rights reserved.

  10. Sticking properties of ice grains

    NASA Astrophysics Data System (ADS)

    Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.

    2017-06-01

    We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.

  11. Convergence of Free Energy Profile of Coumarin in Lipid Bilayer.

    PubMed

    Paloncýová, Markéta; Berka, Karel; Otyepka, Michal

    2012-04-10

    Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from "pulling" coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives.

  12. Development of a Photo-Cross-Linkable Diaminoquinazoline Inhibitor for Target Identification in Plasmodium falciparum.

    PubMed

    Lubin, Alexandra S; Rueda-Zubiaurre, Ainoa; Matthews, Holly; Baumann, Hella; Fisher, Fabio R; Morales-Sanfrutos, Julia; Hadavizadeh, Kate S; Nardella, Flore; Tate, Edward W; Baum, Jake; Scherf, Artur; Fuchter, Matthew J

    2018-04-13

    Diaminoquinazolines represent a privileged scaffold for antimalarial discovery, including use as putative Plasmodium histone lysine methyltransferase inhibitors. Despite this, robust evidence for their molecular targets is lacking. Here we report the design and development of a small-molecule photo-cross-linkable probe to investigate the targets of our diaminoquinazoline series. We demonstrate the effectiveness of our designed probe for photoaffinity labeling of Plasmodium lysates and identify similarities between the target profiles of the probe and the representative diaminoquinazoline BIX-01294. Initial pull-down proteomics experiments identified 104 proteins from different classes, many of which are essential, highlighting the suitability of the developed probe as a valuable tool for target identification in Plasmodium falciparum.

  13. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.

    PubMed

    Giannotti, Marina I; Cabeza de Vaca, Israel; Artés, Juan M; Sanz, Fausto; Guallar, Victor; Gorostiza, Pau

    2015-09-10

    The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal-binding site could be facilitated by the physical interaction with certain regions of the redox protein.

  14. Spot Surface Labeling of Magnetic Microbeads and Application in Biological Force Measurements

    NASA Astrophysics Data System (ADS)

    Estes, Ashley; O'Brien, E. Tim; Hill, David; Superfine, Richard

    2006-11-01

    Biological force measurements on single molecules and macromolecular structures often use microbeads for the application of force. These techniques are often complicated by multiple attachments and nonspecific binding. In one set of experiments, we are applying a magnetic force microscope that allows us to pull on magnetic beads attached to ciliated human bronchial epithelial cells. These experiments provide a means to measure the stall force of cilia and understand how cilia propel fluids. However, because we are using beads with diameters of one and 2.8 microns, and the diameter of human airway cilia is approximately 200 nm, we cannot be assured that the bead is bound to a single cilium. To address this, we have developed a sputter coating technique to block the biotin binding capability of the streptavidin labeled bead over its entire surface except for a small spot. These beads may also have applications in other biological experiments such as DNA force experiments in which binding of a single target to an individual bead is critical.

  15. Mechanical load on the low back and shoulders during pushing and pulling of two-wheeled waste containers compared with lifting and carrying of bags and bins.

    PubMed

    Schibye, B; Søgaard, K; Martinsen, D; Klausen, K

    2001-08-01

    Compare the mechanical load on the low back and shoulders during pushing and pulling a two-wheeled container with the load during lifting and carrying the same amount of waste. Only little is known about risk factors and mechanical loads during push/pull operations. A complete 2(3) factor push/pull experiment. A two-wheeled container with 25 or 50 kg was pushed in front of and pulled behind the body by seven waste collectors. Further, the same subjects lifted and carried a paper bag and a dustbin both loaded with 7 and 25 kg. All operations were video recorded and the push/pull force was measured by means of a three-dimensional force transducer. Peak Motus and Watbak software were used for digitising and calculation of torque at L4/L5 and the shoulder joints and compression and shear forces at L4/L5. During pushing and pulling the compression at L4/L5 is from 605 to 1445 N. The extension torque at L4/L5 produced by the push/pull force is counteracted by the forward leaning of the upper body. The shear force is below 202 N in all situations. The torque at the shoulders is between 1 and 38 Nm. In the present experiments the torques at the low back and the shoulders are low during pushing and pulling. No relation exists between the size of the external force and the torque at the low back and the shoulder. Pushing and pulling are common in many workplaces and have often replaced lifting and carrying situations. This has emphasised the need for more knowledge of the internal mechanical load on the body during these activities.

  16. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri

    PubMed Central

    MATSUO, Yosuke; MIYOSHI, Yukihiro; OKADA, Sanae; SATOH, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion. PMID:24936355

  17. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers

    PubMed Central

    Meng, He; Andresen, Kurt; van Noort, John

    2015-01-01

    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043

  18. Delayed pull-in transitions in overdamped MEMS devices

    NASA Astrophysics Data System (ADS)

    Gomez, Michael; Moulton, Derek E.; Vella, Dominic

    2018-01-01

    We consider the dynamics of overdamped MEMS devices undergoing the pull-in instability. Numerous previous experiments and numerical simulations have shown a significant increase in the pull-in time under DC voltages close to the pull-in voltage. Here the transient dynamics slow down as the device passes through a meta-stable or bottleneck phase, but this slowing down is not well understood quantitatively. Using a lumped parallel-plate model, we perform a detailed analysis of the pull-in dynamics in this regime. We show that the bottleneck phenomenon is a type of critical slowing down arising from the pull-in transition. This allows us to show that the pull-in time obeys an inverse square-root scaling law as the transition is approached; moreover we determine an analytical expression for this pull-in time. We then compare our prediction to a wide range of pull-in time data reported in the literature, showing that the observed slowing down is well captured by our scaling law, which appears to be generic for overdamped pull-in under DC loads. This realization provides a useful design rule with which to tune dynamic response in applications, including state-of-the-art accelerometers and pressure sensors that use pull-in time as a sensing mechanism. We also propose a method to estimate the pull-in voltage based only on data of the pull-in times.

  19. Push versus pull gastrostomy in cancer patients: A single center retrospective analysis of complications and technical success rates.

    PubMed

    Currie, B M; Getrajdman, G I; Covey, A M; Alago, W; Erinjeri, J P; Maybody, M; Boas, F E

    2018-04-28

    To compare the technical success and complication rates of push versus pull gastrostomy tubes in cancer patients, and to examine their dependence on operator experience. A retrospective review was performed of 304 cancer patients (170 men, 134 women; mean age 60.3±12.6 [SD], range: 19-102 years) referred for primary gastrostomy tube placement, 88 (29%) of whom had a previously unsuccessful attempt at percutaneous endoscopic gastrostomy (PEG) placement. Analyzed variables included method of insertion (push versus pull), indication for gastrostomy, technical success, operator experience, and procedure-related complications within 30 days of placement. Gastrostomy tubes were placed for feeding in 189 patients and palliative decompression in 115 patients. Technical success was 91%: 78% after endoscopy had previously been unsuccessful and 97% when excluding failures associated with prior endoscopy. In the first 30 days, there were 29 minor complications (17.2%) associated with push gastrostomies, and only 8 minor complications (7.5%) with pull gastrostomies (P<0.05). There was no significant difference in major complications (push gastrostomy 5.3%, pull gastrostomy 5.6%). For decompressive gastrostomy tubes, the pull technique resulted in lower rates of both minor and major complications. There was no difference in complications or technical success rates for more versus less experienced operators. Pull gastrostomy tube placement had a lower rate of complications than push gastrostomy tube placement, especially when the indication was decompression. The technical success rate was high, even after a failed attempt at endoscopic placement. Both the rates of success and complications were independent of operator experience. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  20. Crossing borders to bind proteins--a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set.

    PubMed

    Baltzer, Lars

    2011-06-01

    A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.

  1. A Miniaturized Chemical Proteomic Approach for Target Profiling of Clinical Kinase Inhibitors in Tumor Biopsies

    PubMed Central

    Chamrád, Ivo; Rix, Uwe; Stukalov, Alexey; Gridling, Manuela; Parapatics, Katja; Müller, André C.; Altiok, Soner; Colinge, Jacques; Superti-Furga, Giulio; Haura, Eric B.; Bennett, Keiryn L.

    2014-01-01

    While targeted therapy based on the idea of attenuating the activity of a preselected, therapeutically relevant protein has become one of the major trends in modern cancer therapy, no truly specific targeted drug has been developed and most clinical agents have displayed a degree of polypharmacology. Therefore, the specificity of anticancer therapeutics has emerged as a highly important but severely underestimated issue. Chemical proteomics is a powerful technique combining postgenomic drug-affinity chromatography with high-end mass spectrometry analysis and bioinformatic data processing to assemble a target profile of a desired therapeutic molecule. Due to high demands on the starting material, however, chemical proteomic studies have been mostly limited to cancer cell lines. Herein, we report a down-scaling of the technique to enable the analysis of very low abundance samples, as those obtained from needle biopsies. By a systematic investigation of several important parameters in pull-downs with the multikinase inhibitor bosutinib, the standard experimental protocol was optimized to 100 µg protein input. At this level, more than 30 well-known targets were detected per single pull-down replicate with high reproducibility. Moreover, as presented by the comprehensive target profile obtained from miniaturized pull-downs with another clinical drug, dasatinib, the optimized protocol seems to be extendable to other drugs of interest. Sixty distinct human and murine targets were finally identified for bosutinib and dasatinib in chemical proteomic experiments utilizing core needle biopsy samples from xenotransplants derived from patient tumor tissue. Altogether, the developed methodology proves robust and generic and holds many promises for the field of personalized health care. PMID:23901793

  2. Acceptor number-dependent ultrafast photo-physical properties of push-pull chromophores using time-resolved methods

    NASA Astrophysics Data System (ADS)

    Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang

    2018-04-01

    Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.

  3. Surface expression and CEA binding of hnRNP M4 protein in HT29 colon cancer cells.

    PubMed

    Laguinge, Luciana; Bajenova, Olga; Bowden, Emma; Sayyah, Jacqueline; Thomas, Peter; Juhl, Hartmut

    2005-01-01

    Carcinoembryonic antigen (CEA) has been shown to participate in the progression and metastatic growth of colorectal cancer. However, its biological function remains elusive. Recently, we found that CEA protects colon cancer cells from undergoing apoptosis, suggesting a complex role that includes signal transduction activity. Additionally, it was reported that CEA binds to Kupffer cells and macrophages to a membrane-anchored homolog of heterogeneous nuclear protein M4 (hnRNP M4), which subsequently was named CEA-receptor (CEAR). Cytoplasmatic and membranous expression of CEAR in CEA-positive colon cancer tissues prompted us to analyze the CEA-CEAR interaction in HT29 colon cancer cells. Both, CEA and CEAR were found on the cell surface of HT29 cells, as demonstrated by confocal microscopy. Imaging analysis suggested co-localization and, thus, interaction of both molecules. To confirm this observation, immunoprecipitation experiments and Western blot analysis were performed and indicated binding of CEA and CEAR. Immunoprecipitation of CEA resulted in a pull down of CEAR. The pull down of CEAR correlated with the amount of CEA as demonstrated by ribozyme targeting of CEA. Finally, external treatment of HT29 cells with soluble CEA induced tyrosine phosphorylation of CEAR, suggesting a CEA-dependent role of CEAR in signal transduction. Future experiments will elucidate whether the CEA-CEAR interaction is involved in CEA's antiapoptotic role and mediates the prometastatic properties of CEA in colon cancer cells.

  4. Inclusion at Risk? Push- and Pull-Out Phenomena in Inclusive School Systems: The Italian and Norwegian Experiences

    ERIC Educational Resources Information Center

    Nes, Kari; Demo, Heidrun; Ianes, Dario

    2018-01-01

    The main objective of this article is to explore and compare research data on pull-out and push-out phenomena within inclusive school systems, discussing if and how they represent a risk for inclusion. The terms pull-out and push-out refer to situations in which some groups of students in regular schools learn in settings apart from their peers.…

  5. Contact and Length Dependent Effects in Single-Molecule Electronics

    NASA Astrophysics Data System (ADS)

    Hines, Thomas

    Understanding charge transport in single molecules covalently bonded to electrodes is a fundamental goal in the field of molecular electronics. In the past decade, it has become possible to measure charge transport on the single-molecule level using the STM break junction method. Measurements on the single-molecule level shed light on charge transport phenomena which would otherwise be obfuscated by ensemble measurements of groups of molecules. This thesis will discuss three projects carried out using STM break junction. In the first project, the transition between two different charge transport mechanisms is reported in a set of molecular wires. The shortest wires show highly length dependent and temperature invariant conductance behavior, whereas the longer wires show weakly length dependent and temperature dependent behavior. This trend is consistent with a model whereby conduction occurs by coherent tunneling in the shortest wires and by incoherent hopping in the longer wires. Measurements are supported with calculations and the evolution of the molecular junction during the pulling process is investigated. The second project reports controlling the formation of single-molecule junctions by means of electrochemically reducing two axial-diazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in-situ between the molecule and gold electrodes. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond. Finally, the third project investigates the role that molecular conformation plays in the conductance of oligothiophene single-molecule junctions. Ethyl substituted oligothiophenes were measured and found to exhibit temperature dependent conductance and transition voltage for molecules with between two and six repeat units. While the molecule with only one repeat unit shows temperature invariant behavior. Density functional theory calculations show that at higher temperatures the oligomers with multiple repeat units assume a more planar conformation, which increases the conjugation length and decreases the effective energy barrier of the junction.

  6. Mechanical Insight into Resistance of Betaine to Urea-Induced Protein Denaturation.

    PubMed

    Chen, Jiantao; Gong, Xiangjun; Zeng, Chaoxi; Wang, Yonghua; Zhang, Guangzhao

    2016-12-08

    It is known that urea can induce protein denaturation that can be inhibited by osmolytes. Yet, experimental explorations on this mechanism at the molecular level are still lacking. We have investigated the resistance of betaine to the urea-induced denaturation of lysozyme in aqueous solutions using low-field NMR. Our study demonstrates that urea molecules directly interact with lysozyme, leading to denaturation. However, betaine molecules interacting with urea more strongly than lysozyme can pull the bound urea molecules from lysozyme so that the protein is protected from denaturation. The number of urea molecules bound to a betaine molecule is given under different conditions. Proton NMR spectroscopy ( 1 H-NMR) and Fourier transform infrared spectroscopy reveal that the interaction between betaine and urea is through hydrogen bonding.

  7. Pushing, pulling and manoeuvring an industrial cart: a psychophysiological study.

    PubMed

    Giagloglou, Evanthia; Radenkovic, Milan; Brankovic, Sasa; Antoniou, Panagiotis; Zivanovic-Macuzic, Ivana

    2017-09-18

    One of the most frequent manual occupational tasks involves the pushing and pulling of a cart. Although several studies have associated health risks with pushing and pulling, the effects are not clear since occupational tasks have social, cognitive and physical components. The present work investigates a real case of a pushing and pulling occupational task from a manufacturing company. The study initially characterizes the case in accordance with Standard No. ISO 11228-2:2007 as low risk. An experiment with 14 individuals during three modalities of pushing and pulling was performed in order to further investigate the task with the application of electrophysiology. At the end, a simple questionnaire was given. The results show electrophysiological differences among the three modalities of pushing and pulling, with a major difference between action with no load and fully loaded with a full range of motions on the cart to handle.

  8. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    PubMed

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  9. Containerless glass fiber processing

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Naumann, R. J.

    1986-01-01

    An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.

  10. An Automated Optical Fiber Puller for Use in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    With the slowdown in space station construction, limiting astronaut time for scientific experiments, an effort is being made to automate certain experiments. One such experiment is production of heavy metal fluoride fibers in the microgravity environment. Previous work by this author and others have shown that microgravity inhibits crystallization of ZBLAN glass. Thus an automated experiment has been designed. This experiment will consist of several elements, one which includes the use of an autonomous robot to initiate fiber pulling. The first element will be to melt the preform to eliminate crystals. The preform tip will then be heated to the viscosity necessary for fiber drawing. The robot will initiate the draw and attach the fiber end to the take-up reel. Once fiber pulling has commenced, sensors will be used to detect a fiber break, whereupon the robot can re-initiate the pulling process. The fiber will be coated with a polymer and the polymer cured with ultraviolet light. A laser micrometer will be used to monitor fiber diameter. The experiment is designed so that up to 10 preforms can be pulled into fiber during one flight. The apparatus will be mounted on a free-flying carrier which will be placed into low-earth orbit from the cargo bay of the space shuttle by the shuttle robot arm. The experiment can be started by a signal from the shuttle or from the ground via telescience. The experiment will proceed automatically using specially designed algorithms and will be monitored from the ground. The carrier will be picked up by the shuttle before return to earth.

  11. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    PubMed

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  12. REVIEW ARTICLE: The physics of biological molecular motors

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Thornhill, R. A.

    1998-02-01

    Molecular motors are the fundamental agents of movement in living organisms. A prime example is the actomyosin motor that powers muscle contraction. We illustrate the remarkable physics of this motor using a simplified three-state model, in which a myosin cross-bridge attaches to an actin filament, tilts over and then detaches. This `cross-bridge cycle', driven by ATP hydrolysis, is similar to a thermodynamic cycle, except that the molecular system is stochastic. Random transitions in the cycle therefore produce tension fluctuations, which have recently been observed in single-molecule experiments. Furthermore, since the rate constants for attachment and tilting depend on the elastic energy in the cross-bridge spring, the molecular motor is a highly nonlinear mechanical system. A bias tension `stretch activates' the motor, and it then develops the remarkable property of `negative viscosity', which allows it to perform as a self-sustained mechanical oscillator. However, when a series of attachment sites is available, the motor operates instead as a ratchet, pulling the actin filament rapidly forwards against a light load, whilst a heavy load pulls the filament only very slowly in the opposite direction. Similar ideas may apply to the dynein-tubulin motor that powers cilia and flagella and the kinesin-tubulin motor used in intracellular transport.

  13. Roles of vacuum tunnelling and contact mechanics in single-molecule thermopower

    NASA Astrophysics Data System (ADS)

    Tsutsui, Makusu; Yokota, Kazumichi; Morikawa, Takanori; Taniguchi, Masateru

    2017-03-01

    Molecular junction is a chemically-defined nanostructure whose discrete electronic states are expected to render enhanced thermoelectric figure of merit suitable for energy-harvesting applications. Here, we report on geometrical dependence of thermoelectricity in metal-molecule-metal structures. We performed simultaneous measurements of the electrical conductance and thermovoltage of aromatic molecules having different anchoring groups at room temperature in vacuum. We elucidated the mutual contributions of vacuum tunnelling on thermoelectricity in the short molecular bridges. We also found stretching-induced thermoelectric voltage enhancement in thiol-linked single-molecule bridges along with absence of the pulling effects in diamine counterparts, thereby suggested that the electromechanical effect would be a rather universal phenomenon in Au-S anchored molecular junctions that undergo substantial metal-molecule contact elongation upon stretching. The present results provide a novel concept for molecular design to achieve high thermopower with single-molecule junctions.

  14. Simple methods for the 3' biotinylation of RNA.

    PubMed

    Moritz, Bodo; Wahle, Elmar

    2014-03-01

    Biotinylation of RNA allows its tight coupling to streptavidin and is thus useful for many types of experiments, e.g., pull-downs. Here we describe three simple techniques for biotinylating the 3' ends of RNA molecules generated by chemical or enzymatic synthesis. First, extension with either the Schizosaccharomyces pombe noncanonical poly(A) polymerase Cid1 or Escherichia coli poly(A) polymerase and N6-biotin-ATP is simple, efficient, and generally applicable independently of the 3'-end sequences of the RNA molecule to be labeled. However, depending on the enzyme and the reaction conditions, several or many biotinylated nucleotides are incorporated. Second, conditions are reported under which splint-dependent ligation by T4 DNA ligase can be used to join biotinylated and, presumably, other chemically modified DNA oligonucleotides to RNA 3' ends even if these are heterogeneous as is typical for products of enzymatic synthesis. Third, we describe the use of 29 DNA polymerase for a template-directed fill-in reaction that uses biotin-dUTP and, thanks to the enzyme's proofreading activity, can cope with more extended 3' heterogeneities.

  15. Photoinduced ICT vs. excited rotamer intercoversion in two quadrupolar polyaromatic N-methylpyridinium cations.

    PubMed

    Cesaretti, A; Carlotti, B; Elisei, F; Fortuna, C G; Spalletti, A

    2018-01-24

    The excited state dynamics of two quadrupolar polyaromatic N-methylpyridinium cations have been fully investigated in order to acquire detailed information on their photo-induced behavior. The two molecules are symmetric push-pull compounds having a D-π-A + -π-D motif, with the same electron-acceptor central unit (A = N-methylpyridinium) and two distinctive electron-donor polyaromatic side groups (D), namely naphthyl and pyrenyl substituents. Both molecules undergo charge transfer during the absorption, as revealed by a significant solvatochromism exhibited with solvent polarity, but the fate of their excited state was found to be markedly different. The careful analysis of the data gathered from femtosecond-resolved fluorescence up-conversion and transient absorption experiments, supported by DFT quantum mechanical calculations and temperature-dependent stationary measurements, shows the leading role of intramolecular charge transfer, assisted by symmetry breaking, in the pyrenyl derivative and that of rotamer interconversion in the naphthtyl one. Both excited state processes are controlled by the viscosity rather than polarity of the solvent, and they occur during inertial solvation in low-viscous media and lengthening up to tens of picoseconds in highly viscous solvents.

  16. ZBLAN Fiber Phase B Study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.

    1997-01-01

    A Phase B feasibility study will be performed for the study of the effects of microgravity on the preform processing and fiber pulling of ZBLAN optical glass. Continuing from the positive results achieved in the fiber annealing experiments in 20 second intervals at 0.001 g on the KC-135 and the 5 minute experiments on the SPAR rocket, experiments will continue to work towards design of a fiber sting to initiate fiber pulling operations in space. Anticipated results include less homogeneous nucleation than ground-based annealed fibers. Infrared Fiber Systems and Galileo are the participating industrial investigators.

  17. Mitigating Oscillator Pulling Due To Magnetic Coupling in Monolithic Mixed-Signal Radio-Frequency Integrated Circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobering, Ian David

    2014-01-01

    An analysis of frequency pulling in a varactor-tuned LC VCO under coupling from an on-chip PA is presented. The large-signal behavior of the VCO's inversion-mode MOS varactors is outlined, and the susceptibility of the VCO to frequency pulling from PA aggressor signals with various modulation schemes is discussed. We show that if the aggressor signal is aperiodic, band-limited, or amplitude-modulated, the varactor-tuned LC VCO will experience frequency pulling due to time-modulation of the varactor capacitance. However, if the aggressor signal has constant-envelope phase modulation, VCO pulling can be eliminated, even in the presence of coupling, through careful choice of VCOmore » frequency and divider ratio. Additional mitigation strategies, including new inductor topologies and system-level architectural choices, are also examined.« less

  18. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite

    PubMed Central

    Alizadeh Ashrafi, Sina; Miller, Peter W.; Wandro, Kevin M.; Kim, Dave

    2016-01-01

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal. PMID:28773950

  19. From Genes to Protein Mechanics on a Chip

    PubMed Central

    Milles, Lukas F.; Verdorfer, Tobias; Pippig, Diana A.; Nash, Michael A.; Gaub, Hermann E.

    2014-01-01

    Single-molecule force spectroscopy enables mechanical testing of individual proteins, however low experimental throughput limits the ability to screen constructs in parallel. We describe a microfluidic platform for on-chip protein expression and measurement of single-molecule mechanical properties. We constructed microarrays of proteins covalently attached to a chip surface, and found that a single cohesin-modified cantilever that bound to the terminal dockerin-tag of each protein remained stable over thousands of pulling cycles. The ability to synthesize and mechanically probe protein libraries presents new opportunities for high-throughput mechanical phenotyping. PMID:25194847

  20. Low temperature-pressure batch experiments and field push-pull tests: Assessing potential effects of an unintended CO2 release from CCUS projects on groundwater chemistry

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.

    2012-12-01

    Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality primarily through carbonate dissolution which releases Ca and elements that substitute for Ca in crystal lattices. Silicate weathering releases primarily Si and K at lower rates. Chemical changes with the addition of CO2 may initially mobilize As, Mo, V, Zn, Se and Cd but these elements become immobile in the lowered pH water and sorb onto aquifer minerals. A combined laboratory batch experiment and field push-pull test in fresh water aquifers overlying CCUS projects will best characterize the response of the aquifer to increased pCO2. The long experimental duration of the batch experiments may allow reactions to reach equilibrium however; reaction rates may be artificially high due to increased mineral surface areas. Field based push-pull tests offer a more realistic water rock ratio and test a much larger volume of aquifer material but the test must be shorter in duration because the high pCO2 water is subject to mixing with low pCO2 background water and migration away from the test well with groundwater flow. A comparison of the two methods best characterizes the potential effects on groundwater chemistry

  1. Choices of Destination for Transnational Higher Education: "Pull" Factors in an Asia Pacific Market

    ERIC Educational Resources Information Center

    Ahmad, Syed Zamberi; Buchanan, Frederick Robert

    2016-01-01

    Traditional assumptions favouring native English language countries in transnational higher education (TNHE) overlook experiences of international students in new emerging Asian education hubs. Specifically, there has been limited research relating to international students' choice for studying in Malaysia. Drawing from the "push-pull"…

  2. Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry

    PubMed Central

    Sedlak, Steffen M.; Bauer, Magnus S.; Kluger, Carleen; Schendel, Leonard C.; Milles, Lukas F.; Pippig, Diana A.

    2017-01-01

    The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin’s tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10−6 s-1 range. PMID:29206886

  3. Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry.

    PubMed

    Sedlak, Steffen M; Bauer, Magnus S; Kluger, Carleen; Schendel, Leonard C; Milles, Lukas F; Pippig, Diana A; Gaub, Hermann E

    2017-01-01

    The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10-6 s-1 range.

  4. Understanding Fluid Shifts in the Brain: Choroidal Regulation Involved in the Cerebral Fluid Response to Altered Gravity

    NASA Technical Reports Server (NTRS)

    Gabrion, Jaqueline; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)

    2002-01-01

    Fluid balance and regulation of body fluid production are critical aspects of life and survival on Earth. In space, without gravity exerting its usual downward pulling effect, the fluids of the human body shift in an unnatural, headward direction. After awhile, humans and other mammalian species adapt to the microgravity environment which leads to changes in the regulation and distribution of these body fluids. Previous spaceflight experiments have indicated that production of fluid in the brain and spinal cord, cerebrospinal fluid (CSF), might be reduced in rats exposed to microgravity. In this experiment conducted by Dr. Jacqueline Gabrion (University of Pierre and Marie Curie, France), proteins important for CSF production, and several molecules that regulate water and mineral transport, will be investigated in rats flown on the Shuttle. Dr. Gabrion and her team will determine the amounts of these proteins and molecules present in the brain in order to evaluate whether any changes have taken place during the rats' adaptation to microgravity. The levels of different aquaporins (proteins that act as a channel for water transport in and out of cells) will also be investigated in other areas of the brain and body to better understand the regulatory responses affecting these important water channel proteins. In addition to producing essential and basic information about fluid production in the brain and body, this experiment will reveal fundamental information about the mechanisms involved in cerebral adaptation and fluid balance during spaceflight.

  5. Pull-pull position control of dual motor wire rope transmission.

    PubMed

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  6. A pull out test to compare two riparian species, Phyllanthus sellowianus and Sebastiania schottiana in terms of root anchorage ability

    NASA Astrophysics Data System (ADS)

    Hörbinger, Stephan; Sutili, Fabricio J.; Rauch, Hans Peter

    2013-04-01

    Soil bioengineering has become manifold applied in large parts of Brazil in recent years. The first projects were realized in the region of Rio Grande do Sul within river stabilization works to protect agricultural land of small regional farmers. As result of research work the species Sebastiania schottiana and Phyllanthus sellowianus showed very adequate morpho-physiological properties and seem to be appropriate for the use in soil bioengineering. The aim of the present study was to examine a still unknown but crucial factor, the resistance of the above mentioned species against being pulled out. The pull out resistance is an indicator for the stability of the soil-root matrix and expresses the stabilizing effects of plants on soil. Furthermore it is an applicable index to compare the qualification of the species to be used in soil bioengineering works. Another objective was to investigate plant characteristics, which correlate to the pull out resistance of the investigated species, to be able to draft up efficient plant strategies for future restoration works on eroded river embankments. For the experiment a special apparatus was designed, which enables to implement a pull out process with a constant rate and generate a graph of the plants resistance force versus its displacement. P. sellowianus showed a significant higher resistance against being pulled out than S. schottiana. The analyses of root and shoot properties of P. sellowianus showed more favorable morpho-physiological properties in terms of pull out resistance, a bigger amount of biomass, both above and below ground and also a higher amount of anchorage. The Cross-Sectional-Areas (CSA) of the shoots showed in both species the strongest correlation of the investigated shoot and root properties with the maximum resistance against being pulled out. Thus it can be concluded that the CSA can be used as a value to assess the stabilization effects of the plants. The experiments showed that some root and shoot properties do have a great impact on the pullout strength and that P. sellowianus can be preferred for slope stabilization works as it exhibits outstanding resistance against being pulled out.

  7. 'Contact' in Space Leads to New Lenses

    NASA Technical Reports Server (NTRS)

    2004-01-01

    While gravity has its advantages in keeping us balanced and grounded here on Earth, scientists often find that they are at a disadvantage when trying to conduct research under its powerful, pulling influence. In these instances, the scientists prefer performing their studies in the weightless atmosphere of microgravity, where gravity is greatly reduced and solids, liquids, and gases behave differently. In 1993, Paragon Vision Sciences, Inc., of Mesa, Arizona, participated in a research project with NASA's Langley Research Center to perfect a process for developing contact lenses. The project called for three experiments that would fly onboard the Space Shuttle over the course of three separate missions, from 1993 to 1996. By unleashing contact lens materials to the microgravity settings of space, scientists from NASA and Paragon hoped to better understand how polymers - large molecules that make up plastics - are formed.

  8. Analogue modelling for localization of deformation in the extensional pull-apart basins: comparison with the west part of NAF, Turkey

    NASA Astrophysics Data System (ADS)

    Bulkan, Sibel; Storti, Fabrizio; Cavozzi, Cristian; Vannucchi, Paola

    2017-04-01

    Analogue modelling remains one of the best methods for investigating progressive deformation of pull apart systems in strike slip faults that are poorly known. Analogue model experiments for the North Anatolian Fault (NAF) system around the Sea of Marmara are extremely rare in the geological literature. Our purpose in this work is to monitor the relation between the horizontal propagation and branching of the strike slip fault, and the structural and topographic expression resulting from this process. These experiments may provide insights into the geometric evolution and kinematic of west part of the NAF system. For this purpose, we run several 3D sand box experiments, appropriately scaled. Plexiglass sheets were purposely cut to simulate the geometry of the NAF. Silicone was placed on the top of these to simulate the viscous lower crust, while the brittle upper crust was simulated with pure dry sand. Dextral relative fault motion was imposed as well using different velocities to reproduce different strain rates and pull apart formation at the releasing bend. Our experiments demonstrate the variation of the shear zone shapes and how the master-fault propagates during the deformation, helping to cover the gaps between geodetic and geologic slip information. Lower crustal flow may explain how the deformation is transferred to the upper crust, and stress partitioned among the strike slip faults and pull-apart basin systems. Stress field evolution seems to play an interesting role to help strain localization. We compare the results of these experiments with natural examples around the western part of NAF and with seismic observations.

  9. Electron scattering effects at physisorbed hydrogen molecules on break-junction electrodes and nanowires formation in hydrogen environment

    NASA Astrophysics Data System (ADS)

    van der Maas, M.; Vasnyov, S.; Hendriksen, B. L. M.; Shklyarevskii, O. I.; Speller, S.

    2012-06-01

    Physisorption of hydrogen molecules on the surface of gold and other coinage metals has been studied using distance tunneling spectroscopy. We have observed that the distance dependence of the tunnel current (resistance) displays a strong N-shaped deviation from exponential behavior. Such deviations are difficult to explain within the Tersoff-Hamann approximation. We suggest the scattering of tunneling electrons by H2 molecules as an origin for the observed effect. We have found that this phenomenon is also common for strongly adsorbed organic molecules with a single anchoring group. Pulling Au, Cu and Pt nanowires at 22 K in hydrogen environment shows that the break-junction electrodes are still connected through hydrogen-metal monoatomic chains down to very low conductance values of 10-4-10-6 G0.

  10. Surface Biology of DNA by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hansma, Helen G.

    2001-10-01

    The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.

  11. Quantitative in-situ scanning electron microscope pull-out experiments and molecular dynamics simulations of carbon nanotubes embedded in palladium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, S., E-mail: steffen.hartmann@etit.tu-chemnitz.de; Blaudeck, T.; Hermann, S.

    2014-04-14

    In this paper, we present our results of experimental and numerical pull-out tests on carbon nanotubes (CNTs) embedded in palladium. We prepared simple specimens by employing standard silicon wafers, physical vapor deposition of palladium and deposition of CNTs with a simple drop coating technique. An AFM cantilever with known stiffness connected to a nanomanipulation system was utilized inside a scanning electron microscope (SEM) as a force sensor to determine forces acting on a CNT during the pull-out process. SEM-images of the cantilever attached to a CNT have been evaluated for subsequent displacement steps with greyscale correlation to determine the cantilevermore » deflection. We compare the experimentally obtained pull-out forces with values of numerical investigations by means of molecular dynamics and give interpretations for deviations according to material impurities or defects and their influence on the pull-out data. We find a very good agreement of force data from simulation and experiment, which is 17 nN and in the range of 10–61 nN, respectively. Our findings contribute to the ongoing research of the mechanical characterization of CNT-metal interfaces. This is of significant interest for the design of future mechanical sensors utilizing the intrinsic piezoresistive effect of CNTs or other future devices incorporating CNT-metal interfaces.« less

  12. The Tablecloth Pull Revisited

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2015-01-01

    A very old and well-known magical trick is the so-called tablecloth pull. A table is covered with a tablecloth, on top of which are certain objects. The task is to remove the tablecloth while the objects--which must not be touched--stay on top of the table. This article describes the physics behind the experiment, and presents examples recorded…

  13. Native flexibility of structurally homologous proteins: insights from anisotropic network model.

    PubMed

    Sarkar, Ranja

    2017-01-01

    Single-molecule microscopic experiments can measure the mechanical response of proteins to pulling forces applied externally along different directions (inducing different residue pairs in the proteins by uniaxial tension). This response to external forces away from equilibrium should in principle, correlate with the flexibility or stiffness of proteins in their folded states. Here, a simple topology-based atomistic anisotropic network model (ANM) is shown which captures the protein flexibility as a fundamental property that determines the collective dynamics and hence, the protein conformations in native state. An all-atom ANM is used to define two measures of protein flexibility in the native state. One measure quantifies overall stiffness of the protein and the other one quantifies protein stiffness along a particular direction which is effectively the mechanical resistance of the protein towards external pulling force exerted along that direction. These measures are sensitive to the protein sequence and yields reliable values through computations of normal modes of the protein. ANM at an atomistic level (heavy atoms) explains the experimental (atomic force microscopy) observations viz., different mechanical stability of structurally similar but sequentially distinct proteins which, otherwise were implied to possess similar mechanical properties from analytical/theoretical coarse-grained (backbone only) models. The results are exclusively demonstrated for human fibronectin (FN) protein domains. The topology of interatomic contacts in the folded states of proteins essentially determines the native flexibility. The mechanical differences of topologically similar proteins are captured from a high-resolution (atomic level) ANM at a low computational cost. The relative trend in flexibility of such proteins is reflected in their stability differences that they exhibit while unfolding in atomic force microscopic (AFM) experiments.

  14. Applications of fiber-optics-based nanosensors to drug discovery.

    PubMed

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2009-08-01

    Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).

  15. Low-bias negative differential conductance controlled by electrode separation

    NASA Astrophysics Data System (ADS)

    Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang

    2016-12-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006).

  16. Free energy calculation of single molecular interaction using Jarzynski's identity method: the case of HIV-1 protease inhibitor system

    NASA Astrophysics Data System (ADS)

    Li, De-Chang; Ji, Bao-Hua

    2012-06-01

    Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and experiments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molecular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic complexity of the ligand-receptor system, the energy barrier predicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results suggested that the JI method is more appropriate for reconstructing free energy landscape using the data taken from experiments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distribution in SMD simulations.

  17. Interactions and scattering of quantum vortices in a polariton fluid.

    PubMed

    Dominici, Lorenzo; Carretero-González, Ricardo; Gianfrate, Antonio; Cuevas-Maraver, Jesús; Rodrigues, Augusto S; Frantzeskakis, Dimitri J; Lerario, Giovanni; Ballarini, Dario; De Giorgi, Milena; Gigli, Giuseppe; Kevrekidis, Panayotis G; Sanvitto, Daniele

    2018-04-13

    Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

  18. Capture, Unfolding, and Detection of Individual tRNA Molecules Using a Nanopore Device

    PubMed Central

    Smith, Andrew M.; Abu-Shumays, Robin; Akeson, Mark; Bernick, David L.

    2015-01-01

    Transfer RNAs (tRNA) are the most common RNA molecules in cells and have critical roles as both translators of the genetic code and regulators of protein synthesis. As such, numerous methods have focused on studying tRNA abundance and regulation, with the most widely used methods being RNA-seq and microarrays. Though revolutionary to transcriptomics, these assays are limited by an inability to encode tRNA modifications in the requisite cDNA. These modifications are abundant in tRNA and critical to their function. Here, we describe proof-of-concept experiments where individual tRNA molecules are examined as linear strands using a biological nanopore. This method utilizes an enzymatically ligated synthetic DNA adapter to concentrate tRNA at the lipid bilayer of the nanopore device and efficiently denature individual tRNA molecules, as they are pulled through the α-hemolysin (α-HL) nanopore. Additionally, the DNA adapter provides a loading site for ϕ29 DNA polymerase (ϕ29 DNAP), which acts as a brake on the translocating tRNA. This increases the dwell time of adapted tRNA in the nanopore, allowing us to identify the region of the nanopore signal that is produced by the translocating tRNA itself. Using adapter-modified Escherichia coli tRNAfMet and tRNALys, we show that the nanopore signal during controlled translocation is dependent on the identity of the tRNA. This confirms that adapter-modified tRNA can translocate end-to-end through nanopores and provide the foundation for future work in direct sequencing of individual transfer RNA with a nanopore-based device. PMID:26157798

  19. Structural Studies on Intact Clostridium botulinum Neurotoxins Complexed with Inhibitors Leading to Drug Design

    DTIC Science & Technology

    2008-02-01

    via virtual screening. These compounds include small molecules – transition state analogues and benzimidazoles . We have determined the crystal...project period. It has been established that benzimidazole compounds are good zinc chealators and since botulinum neurotoxin catalytic domains are zinc...endopeptidases we first selected a subset of compounds containing benzimidazole moieties. We pulled out nearly 9000 compound containing both

  20. Why Are So Many Things in the Solar System Round?

    ERIC Educational Resources Information Center

    Heilig, Steven J.

    2010-01-01

    Several years ago a student asked why so many things in the solar system were round. He noted that many objects in the solar system, although not all, are round. The standard answer, which he knew, is that the mutual gravitational attraction of the molecules pulls them into the shape that gets them as close to each other as possible: a sphere.…

  1. Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation.

    PubMed

    Raczyński, Przemysław; Górny, Krzysztof; Dawid, Aleksander; Gburski, Zygmunt

    2014-07-15

    Computer simulations have been performed to study the nanoindentation of phospholipid bilayer by the single-walled armchair carbon nanotube, filled with the nitric oxide molecules. The process has been simulated by means of molecular dynamics (MD) technique at physiological temperature T = 310 K with a constant pulling velocity of the nanotube. The force acting on the nanotube during membrane penetration has been calculated. We show that the indentation by carbon nanotube does not permanently destroy the membrane structure (self-sealing of the membrane occurs). The mobility of nitric oxide molecules during the membrane nanoindentation is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

    PubMed Central

    Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin

    2011-01-01

    The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962

  3. Quantifying the atomic-level mechanics of single long physisorbed molecular chains.

    PubMed

    Kawai, Shigeki; Koch, Matthias; Gnecco, Enrico; Sadeghi, Ali; Pawlak, Rémy; Glatzel, Thilo; Schwarz, Jutta; Goedecker, Stefan; Hecht, Stefan; Baratoff, Alexis; Grill, Leonhard; Meyer, Ernst

    2014-03-18

    Individual in situ polymerized fluorene chains 10-100 nm long linked by C-C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel-Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule-surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices.

  4. Torsional mechanics of DNA are regulated by small-molecule intercalation.

    PubMed

    Celedon, Alfredo; Wirtz, Denis; Sun, Sean

    2010-12-23

    Whether the bend and twist mechanics of DNA molecules are coupled is unclear. Here, we report the direct measurement of the resistive torque of single DNA molecules to study the effect of ethidium bromide (EtBr) intercalation and pulling force on DNA twist mechanics. DNA molecules were overwound and unwound using recently developed magnetic tweezers where the molecular resistive torque was obtained from Brownian angular fluctuations. The effect of EtBr intercalation on the twist stiffness was found to be significantly different from the effect on the bend persistence length. The twist stiffness of DNA was dramatically reduced at low intercalator concentration (<10 nM); however, it did not decrease further when the intercalator concentration was increased by 3 orders of magnitude. We also determined the dependence of EtBr intercalation on the torque applied to DNA. We propose a model for the elasticity of DNA base pairs with intercalated EtBr molecules to explain the abrupt decrease of twist stiffness at low EtBr concentration. These results indicate that the bend and twist stiffnesses of DNA are independent and can be differently affected by small-molecule binding.

  5. Motivation and Perception of Tourists as Push and Pull Factors to Visit National Park

    NASA Astrophysics Data System (ADS)

    Said, Jumrin; Maryono

    2018-02-01

    Push-pull theoretical framework is a popular theory to explain the reason why the tourists decide to visit the destination rather than other place, the kind of experience they want to get and the type of activity they want to do. In this paper, it is explained the motivation as push factors and the perception as pull factors of the tourist in deciding the destination based on previous literature and research using descriptive method. The framework asumed that tourists are motivated to fulfill their needs, including to reduce the psychological imbalance and to gain recognition of social status. National Park is one of destination based on nature or commonly knowns as ecotourism. In choosing the destination, the tourists tend to classify their alternative choice based on several criteria, such as the domination perception of tourist from one destination (pull factor), self motivation (push factor) and the available time and money (situational constraints).

  6. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    NASA Astrophysics Data System (ADS)

    Ojkic, Nikola; Wu, Jian-Qiu; Vavylonis, Dimitrios

    2011-09-01

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  7. Kinematics and kinetics of the bench-press and bench-pull exercises in a strength-trained sporting population.

    PubMed

    Pearson, Simon N; Cronin, John B; Hume, Patria A; Slyfield, David

    2009-09-01

    Understanding how loading affects power production in resistance training is a key step in identifying the most optimal way of training muscular power - an essential trait in most sporting movements. Twelve elite male sailors with extensive strength-training experience participated in a comparison of kinematics and kinetics from the upper body musculature, with upper body push (bench press) and pull (bench pull) movements performed across loads of 10-100% of one repetition maximum (1RM). 1RM strength and force were shown to be greater in the bench press, while velocity and power outputs were greater for the bench pull across the range of loads. While power output was at a similar level for the two movements at a low load (10% 1RM), significantly greater power outputs were observed for the bench pull in comparison to the bench press with increased load. Power output (Pmax) was maximized at higher relative loads for both mean and peak power in the bench pull (78.6 +/- 5.7% and 70.4 +/- 5.4% of 1RM) compared to the bench press (53.3 +/- 1.7% and 49.7 +/- 4.4% of 1RM). Findings can most likely be attributed to differences in muscle architecture, which may have training implications for these muscles.

  8. Human Body Mechanics of Pushing and Pulling: Analyzing the Factors of Task-related Strain on the Musculoskeletal System.

    PubMed

    Argubi-Wollesen, Andreas; Wollesen, Bettina; Leitner, Martin; Mattes, Klaus

    2017-03-01

    The purpose of this review is to name and describe the important factors of musculoskeletal strain originating from pushing and pulling tasks such as cart handling that are commonly found in industrial contexts. A literature database search was performed using the research platform Web of Science. For a study to be included in this review differences in measured or calculated strain had to be investigated with regard to: (1) cart weight/ load; (2) handle position and design; (3) exerted forces; (4) handling task (push and pull); or (5) task experience. Thirteen studies met the inclusion criteria and proved to be of adequate methodological quality by the standards of the Alberta Heritage Foundation for Medical Research. External load or cart weight proved to be the most influential factor of strain. The ideal handle positions ranged from hip to shoulder height and were dependent on the strain factor that was focused on as well as the handling task. Furthermore, task experience and subsequently handling technique were also key to reducing strain. Workplace settings that regularly involve pushing and pulling should be checked for potential improvements with regards to lower weight of the loaded handling device, handle design, and good practice guidelines to further reduce musculoskeletal disease prevalence.

  9. Convergence of Free Energy Profile of Coumarin in Lipid Bilayer

    PubMed Central

    2012-01-01

    Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from “pulling” coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives. PMID:22545027

  10. Utilizing Molecular Dynamics ' Multipotent Methodologies to Measure Microscopic Motions of DNA Molecules: A Magniloquent Manuscript On DNA's Means and Mannerisms

    NASA Astrophysics Data System (ADS)

    Kingsland, Addie

    DNA is an amazing molecule which is the basic template for all genetics. It is the primary molecule for storing biological information, and has many applications in nanotechnology. Double-stranded DNA may contain mismatched base pairs beyond the Watson-Crick pairs guanine-cytosine and adenine-thymine. To date, no one has found a physical property of base pair mismatches which describes the behavior of naturally occurring mismatch repair enzymes. Many materials properties of DNA are also unknown, for instance, when pulling DNA in different configurations, different energy differences are observed with no obvious reason why. DNA mismatches also affect their local environment, for instance changing the quantum yield of nearby azobenzene moieties. We utilize molecular dynamics computer simulations to study the structure and dynamics for both matched and mismatched base pairs, within both biological and materials contexts, and in both equilibrium and biased dynamics. We show that mismatched pairs shift further in the plane normal to the DNA strand and are more likely to exhibit non-canonical structures, including the e-motif. Base pair mismatches alter their local environment, affecting the trans- to cis- photoisomerization quantum yield of azobenzene, as well as increasing the likelihood of observing the e-motif. We also show that by using simulated data, we can give new insights on theoretical models to calculate the energetics of pulling DNA strands apart. These results, all relatively inexpensive on modern computer hardware, can help guide the design of DNA-based nanotechnologies, as well as give new insights into the functioning of mismatch repair systems in cancer prevention.

  11. On the pull-out of fibers with fractal-tree structure and the interference of strength and fracture toughness of composites

    NASA Astrophysics Data System (ADS)

    Fe, Shaoyun; Zhou, Benlian; Lung, Chiwei

    1992-06-01

    An approximate theory of pull-out of fiber with fractal-tree structure from a matrix is developed with the aim of quantifying the effects of the fractal-tree structure of the fiber. In the experimental investigation of the pull-out of the synthetic fiber with fractal-tree structure, it was generally observed that the force and energy of fiber pullout increase with the branching angle. The application of this theory to experiment is successful. The strength and fracture toughness of composites reinforced by this kind of fiber are inferred to be greater than those of composites reinforced by plane fibers.

  12. On the automatic link between affect and tendencies to approach and avoid: Chen and Bargh (1999) revisited

    PubMed Central

    Rotteveel, Mark; Gierholz, Alexander; Koch, Gijs; van Aalst, Cherelle; Pinto, Yair; Matzke, Dora; Steingroever, Helen; Verhagen, Josine; Beek, Titia F.; Selker, Ravi; Sasiadek, Adam; Wagenmakers, Eric-Jan

    2015-01-01

    Within the literature on emotion and behavioral action, studies on approach-avoidance take up a prominent place. Several experimental paradigms feature successful conceptual replications but many original studies have not yet been replicated directly. We present such a direct replication attempt of two seminal experiments originally conducted by Chen and Bargh (1999). In their first experiment, participants affectively evaluated attitude objects by pulling or pushing a lever. Participants who had to pull the lever with positively valenced attitude objects and push the lever with negatively valenced attitude objects (i.e., congruent instruction) did so faster than participants who had to follow the reverse (i.e., incongruent) instruction. In Chen and Bargh's second experiment, the explicit evaluative instructions were absent and participants merely responded to the attitude objects by either always pushing or always pulling the lever. Similar results were obtained as in Experiment 1. Based on these findings, Chen and Bargh concluded that (1) attitude objects are evaluated automatically; and (2) attitude objects automatically trigger a behavioral tendency to approach or avoid. We attempted to replicate both experiments and failed to find the effects reported by Chen and Bargh as indicated by our pre-registered Bayesian data analyses; nevertheless, the evidence in favor of the null hypotheses was only anecdotal, and definitive conclusions await further study. PMID:25883572

  13. The role of transanal endorectal pull-through in the treatment of Hirschsprung's disease - a multicenter experience.

    PubMed

    Höllwarth, M E; Rivosecchi, M; Schleef, J; Deluggi, S; Fasching, G; Ceriati, E; Ciprandi, G; DePeppo, F

    2002-09-01

    The transanal approach (TAA) is a new technique for surgery of Hirschsprung's disease (HD) that was introduced by de la Torre in 1998. The purpose of this multicenter study, including experience from three Austrian and one Italian departments of peadiatric surgery, was to evaluate the role of this approach in HD in 18 children aged 1-72 months. In 14 children the TAA only was performed; in 3 an additional laparoscopy was performed and in 1 conversion to a laparotomy was necessary. One complication (abscess) occurred after laparoscopic-assisted pull-through. The postoperative recovery was rapid, no severe long-term problems were observed. The transanal pull-through technique is generally possible in most classic cases of HD with extension of the disease to the sigmoid colon. If necessary, it can be combined with laparoscopy. Our preliminary results show that the technique is safe, less invasive, and gives excellent cosmetic results, and allows rapid recovery. Long-term results are still pending.

  14. Tug of war in motility assay experiments

    NASA Astrophysics Data System (ADS)

    Hexner, Daniel; Kafri, Yariv

    2009-09-01

    The dynamics of two groups of molecular motors pulling in opposite directions on a rigid filament is studied theoretically. To this end we first consider the behavior of one set of motors pulling in a single direction against an external force using a new mean-field approach. Based on these results we analyze a similar setup with two sets of motors pulling in opposite directions in a tug of war in the presence of an external force. In both cases we find that the interplay of fluid friction and protein friction leads to a complex phase diagram where the force-velocity relations can exhibit regions of bistability and spontaneous symmetry breaking. Finally, motivated by recent work, we turn to the case of motility assay experiments where motors bound to a surface push on a bundle of filaments. We find that, depending on the absence or the presence of bistability in the force-velocity curve at zero force, the bundle exhibits anomalous or biased diffusion on long-time and large-length scales.

  15. Simultaneously 'pushing' and 'pulling' graphene oxide into low-polar solvents through a designed interface.

    PubMed

    Liu, Zhen; Liu, Jingquan; Wang, Yichao; Razal, Joselito M; Francis, Paul S; Biggs, Mark J; Barrow, Colin J; Yang, Wenrong

    2018-08-03

    Dispersing graphene oxide (GO) in low-polar solvents can realize a perfect self-assembly with functional molecules and application in removal of organic impurities that only dissolve in low-polar solvents. The surface chemistry of GO plays an important role in its dispersity in these solvents. The direct transfer of hydrophilic GO into low-polar solvents, however, has remained an experimental challenge. In this study, we design an interface to transfer GO by simultaneously 'pushing and pulling' the nanosheets into low-polar solvents. Our approach is outstanding due to the ability to obtain monolayers of chemically reduced GO (CRGO) with designed surface properties in the organic phase. Using the transferred GO or CRGO dispersions, we have fabricated GO/fullerene nanocomposites and assessed the ability of CRGOs for dye adsorption. We hope our work can provide a universal approach for the phase transfer of other nanomaterials.

  16. Photoaffinity Labeling Studies on a Promoter of Dendritic Spine Formation

    NASA Astrophysics Data System (ADS)

    Sibucao, Kevin Carlo Abril

    The small molecule BTA-EG4 has been shown to be a promoter of dendritic spine formation. The mechanism behind this phenomenon, however, is not well understood. The work in this dissertation is motivated by this gap in knowledge. The first part of this dissertation focuses on photoaffinity labeling studies to identify the cellular targets of BTA-EG4. Chapter 1 provides a summary of Alzheimer's disease, the rational design of BTA-EG 4, and methods to determine targets of small molecules. In Chapter 2, the synthesis of a BTA-EG4-based photoaffinity labeling probe and photodegradation studies are presented. Kinetic studies demonstrate that the probe photolyzes rapidly under UV light. In Chapter 3, photoaffinity labeling studies and subsequent protein identification experiments are reported. Competition experiments with the photoaffinity labeling probe and BTA-EG4 demonstrate that the probe labels a 55-kDa protein specifically. Tandem mass spectrometry revealed that the 55-kDa protein is the actin binding protein fascin 1. The second part of this dissertation focuses on the major protein identified from photoaffinity labeling studies, fascin 1. Chapter 4 provides a brief survey of the structure and function of fascin 1. In Chapter 5, characterizations of the interaction between BTA-EG4 and fascin 1 are reported. Isothermal titration calorimetry confirms the physical binding between fascin 1 and BTA-EG6, a BTA-EG4 analog. Slow speed sedimentation assays reveal that BTA-EG4 does not affect the actin-bundling activity of fascin 1. However, GST pull-down experiments show that BTA-EG4 inhibits the binding of fascin 1 with the GTPase Rab35. In addition, this work demonstrates that BTA-EG4 may be mechanistically distinct from the known fascin inhibitor G2.

  17. Causal assessment of occupational pushing or pulling and low back pain: results of a systematic review.

    PubMed

    Roffey, Darren M; Wai, Eugene K; Bishop, Paul; Kwon, Brian K; Dagenais, Simon

    2010-06-01

    Low back pain (LBP) is a prevalent and expensive musculoskeletal condition that predominantly occurs in working-age individuals of industrialized nations. Although numerous occupational physical activities have been implicated in its etiology, determining the causation of occupational LBP still remains a challenge. To conduct a systematic review evaluating the causal relationship between occupational pushing or pulling and LBP. Systematic review of the literature. Studies reporting an association between occupational pushing or pulling and LBP. Numerical association between exposure to pushing or pulling and the presence of LBP. A systematic review was performed to identify, evaluate, and summarize the literature related to establishing a causal relationship, according to Bradford-Hill criteria for causation for occupational pushing or pulling and LBP. A search was conducted using Medline, EMBASE, CINAHL, Cochrane Library, and OSH-ROM, gray literature, hand-searching occupational health journals, reference lists of included studies, and expert knowledge. Methodological quality was assessed using a modified Newcastle-Ottawa Scale. This search yielded 2,766 citations. Thirteen studies met the inclusion criteria. Eight were high-quality studies and five were low-quality studies. There was conflicting evidence with one high-quality study demonstrating a positive association between occupational pushing or pulling and LBP and five studies showing no relationship. One study reported a nonstatistically significant dose-response trend, four studies discussed temporality of which one indicated a positive finding, two studies discussed the biological plausibility of a causal link between occupational pushing or pulling and LBP, and no evidence was uncovered to assess the experiment criterion. A qualitative summary of existing studies was not able to find any high-quality studies that fully satisfied any of the Bradford-Hill causation criteria for occupational pushing or pulling and LBP. Based on the evidence reviewed, it is unlikely that occupational pushing or pulling is independently causative of LBP in the populations of workers studied. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Insights about transport mechanisms and fracture flow channeling from multi-scale observations of tracer dispersion in shallow fractured crystalline rock.

    PubMed

    Guihéneuf, N; Bour, O; Boisson, A; Le Borgne, T; Becker, M W; Nigon, B; Wajiduddin, M; Ahmed, S; Maréchal, J-C

    2017-11-01

    In fractured media, solute transport is controlled by advection in open and connected fractures and by matrix diffusion that may be enhanced by chemical weathering of the fracture walls. These phenomena may lead to non-Fickian dispersion characterized by early tracer arrival time, late-time tailing on the breakthrough curves and potential scale effect on transport processes. Here we investigate the scale dependency of these processes by analyzing a series of convergent and push-pull tracer experiments with distance of investigation ranging from 4m to 41m in shallow fractured granite. The small and intermediate distances convergent experiments display a non-Fickian tailing, characterized by a -2 power law slope. However, the largest distance experiment does not display a clear power law behavior and indicates possibly two main pathways. The push-pull experiments show breakthrough curve tailing decreases as the volume of investigation increases, with a power law slope ranging from -3 to -2.3 from the smallest to the largest volume. The multipath model developed by Becker and Shapiro (2003) is used here to evaluate the hypothesis of the independence of flow pathways. The multipath model is found to explain the convergent data, when increasing local dispersivity and reducing the number of pathways with distance which suggest a transition from non-Fickian to Fickian transport at fracture scale. However, this model predicts an increase of tailing with push-pull distance, while the experiments show the opposite trend. This inconsistency may suggest the activation of cross channel mass transfer at larger volume of investigation, which leads to non-reversible heterogeneous advection with scale. This transition from independent channels to connected channels when the volume of investigation increases suggest that both convergent and push-pull breakthrough curves can inform the existence of characteristic length scales. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Insights about transport mechanisms and fracture flow channeling from multi-scale observations of tracer dispersion in shallow fractured crystalline rock

    NASA Astrophysics Data System (ADS)

    Guihéneuf, N.; Bour, O.; Boisson, A.; Le Borgne, T.; Becker, M. W.; Nigon, B.; Wajiduddin, M.; Ahmed, S.; Maréchal, J.-C.

    2017-11-01

    In fractured media, solute transport is controlled by advection in open and connected fractures and by matrix diffusion that may be enhanced by chemical weathering of the fracture walls. These phenomena may lead to non-Fickian dispersion characterized by early tracer arrival time, late-time tailing on the breakthrough curves and potential scale effect on transport processes. Here we investigate the scale dependency of these processes by analyzing a series of convergent and push-pull tracer experiments with distance of investigation ranging from 4 m to 41 m in shallow fractured granite. The small and intermediate distances convergent experiments display a non-Fickian tailing, characterized by a -2 power law slope. However, the largest distance experiment does not display a clear power law behavior and indicates possibly two main pathways. The push-pull experiments show breakthrough curve tailing decreases as the volume of investigation increases, with a power law slope ranging from - 3 to - 2.3 from the smallest to the largest volume. The multipath model developed by Becker and Shapiro (2003) is used here to evaluate the hypothesis of the independence of flow pathways. The multipath model is found to explain the convergent data, when increasing local dispersivity and reducing the number of pathways with distance which suggest a transition from non-Fickian to Fickian transport at fracture scale. However, this model predicts an increase of tailing with push-pull distance, while the experiments show the opposite trend. This inconsistency may suggest the activation of cross channel mass transfer at larger volume of investigation, which leads to non-reversible heterogeneous advection with scale. This transition from independent channels to connected channels when the volume of investigation increases suggest that both convergent and push-pull breakthrough curves can inform the existence of characteristic length scales.

  20. Single molecule transistor based nanopore for the detection of nicotine

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  1. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    PubMed

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  2. From pull-down data to protein interaction networks and complexes with biological relevance.

    PubMed

    Zhang, Bing; Park, Byung-Hoon; Karpinets, Tatiana; Samatova, Nagiza F

    2008-04-01

    Recent improvements in high-throughput Mass Spectrometry (MS) technology have expedited genome-wide discovery of protein-protein interactions by providing a capability of detecting protein complexes in a physiological setting. Computational inference of protein interaction networks and protein complexes from MS data are challenging. Advances are required in developing robust and seamlessly integrated procedures for assessment of protein-protein interaction affinities, mathematical representation of protein interaction networks, discovery of protein complexes and evaluation of their biological relevance. A multi-step but easy-to-follow framework for identifying protein complexes from MS pull-down data is introduced. It assesses interaction affinity between two proteins based on similarity of their co-purification patterns derived from MS data. It constructs a protein interaction network by adopting a knowledge-guided threshold selection method. Based on the network, it identifies protein complexes and infers their core components using a graph-theoretical approach. It deploys a statistical evaluation procedure to assess biological relevance of each found complex. On Saccharomyces cerevisiae pull-down data, the framework outperformed other more complicated schemes by at least 10% in F(1)-measure and identified 610 protein complexes with high-functional homogeneity based on the enrichment in Gene Ontology (GO) annotation. Manual examination of the complexes brought forward the hypotheses on cause of false identifications. Namely, co-purification of different protein complexes as mediated by a common non-protein molecule, such as DNA, might be a source of false positives. Protein identification bias in pull-down technology, such as the hydrophilic bias could result in false negatives.

  3. Measuring the mechanical properties of molecular conformers

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  4. Nanopore Force Spectroscopy of Aptamer–Ligand Complexes

    PubMed Central

    Arnaut, Vera; Langecker, Martin; Simmel, Friedrich C.

    2013-01-01

    The stability of aptamer–ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans–cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer–target interactions in this case, the stability of the ligand-free aptamer—containing G-quadruplexes—is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified. PMID:24010663

  5. Tool use and the effect of action on the imagination.

    PubMed

    Schwartz, D L; Holton, D L

    2000-11-01

    Three studies examined the claim that hand movements can facilitate imagery for object rotations but that this facilitation depends on people's model of the situation. In Experiment 1, physically turning a block without vision reduced mental rotation times compared with imagining the same rotation without bodily movement. In Experiment 2, pulling a string from a spool facilitated participants' mental rotation of an object sitting on the spool. In Experiment 3, depending on participants' model of the spool, the exact same pulling movement facilitated or interfered with the exact same imagery transformation. Results of Experiments 2 and 3 indicate that the geometric characteristics of an action do not specify the trajectory of an imagery transformation. Instead, they point to people's ability to model the tools that mediate between motor activity and its environmental consequences and to transfer tool knowledge to a new situation.

  6. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2003-01-01

    Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.

  7. Einstein's Elevator in Class: A Self-Construction by Students for the Study of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Kapotis, Efstratios; Kalkanis, George

    2016-10-01

    According to the principle of equivalence, it is impossible to distinguish between gravity and inertial forces that a noninertial observer experiences in his own frame of reference. For example, let's consider an elevator in space that is being accelerated in one direction. An observer inside it would feel as if there was gravity force pulling him toward the opposite direction. The same holds for a person in a stationary elevator located in Earth's gravitational field. No experiment enables us to distinguish between the accelerating elevator in space and the motionless elevator near Earth's surface. Strictly speaking, when the gravitational field is non-uniform (like Earth's), the equivalence principle holds only for experiments in elevators that are small enough and that take place over a short enough period of time (Fig. 1). However, performing an experiment in an elevator in space is impractical. On the other hand, it is easy to combine both forces on the same observer, i.e., gravity and a fictitious inertial force due to acceleration. Imagine an observer in an elevator that falls freely within Earth's gravitational field. The observer experiences gravity pulling him down while it might be said that the inertial force due to gravity acceleration g pulls him up. Gravity and inertial force cancel each other, (mis)leading the observer to believe there is no gravitational field. This study outlines our implementation of a self-construction idea that we have found useful in teaching introductory physics students (undergraduate, non-majors).

  8. Fiber glass pulling. [in space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1987-01-01

    Experiments were conducted to determine the viability of performing containerless glass fiber pulling in space. The optical transmission properties and glass-forming capabilities of the heavy metal fluorides are reviewed and the acoustic characteristics required for a molten glass levitation system are examined. The design limitations of, and necessary modifications to the acoustic levitation furnace used in the experiments are discussed in detail. Acoustic levitator force measurements were performed and a thermal map of the furnace was generated from thermocouple data. It was determined that the thermal capability of the furnace was inadequate to melt a glass sample in the center. The substitution of a 10 KW carbon monoxide laser for the original furnace heating elements resulted in improved melt heating.

  9. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape

    PubMed Central

    Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L.; Sivasankar, Sanjeevi

    2016-01-01

    Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473

  10. Forced-rupture of cell-adhesion complexes reveals abrupt switch between two brittle states

    NASA Astrophysics Data System (ADS)

    Toan, Ngo Minh; Thirumalai, D.

    2018-03-01

    Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (rf) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln rf (rf is the loading rate) exhibits two distinct linear regimes. The first, at low rf, has a shallow slope, whereas the slope at high rf is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow rf range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low rf or constant force, F, to a low value at high rf or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg2+). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant rf and F) reveal a new mechanism for the two loading regimes observed in the rupture kinetics in CACs.

  11. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    PubMed

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  12. The work of titin protein folding as a major driver in muscle contraction

    PubMed Central

    Eckels, Edward C.; Tapia-Rojo, Rafael; Rivas-Pardo, Jamie Andrés; Fernández, Julio M.

    2018-01-01

    Single molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin Ig domains are capable of folding against a pulling force, generating mechanical work which exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin crossbridges reduces the force on titin causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4–15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil, and occurs at forces which exceed the maximum stalling force of single myosin motors. Thus titin operates like a mechanical battery storing elastic energy efficiently by unfolding Ig domains, and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction. PMID:29433413

  13. Charge transfer interactions and nonlinear optical properties of push pull chromophore benzaldehyde phenylhydrazone: A vibrational approach

    NASA Astrophysics Data System (ADS)

    Ravikumar, C.; Joe, I. Hubert; Jayakumar, V. S.

    2008-07-01

    FT Raman and IR spectra of the crystallized nonlinear optic (NLO) molecule, benzaldehyde phenylhydrazone (BPH) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies of BPH have been investigated with the help of B3LYP density functional theory (DFT) method. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). From the optimized geometry, the decrease in C-N bond length indicates the electron delocalization over the region of the molecule. The vibrational analysis confirm the charge transfer interaction between the phenyl rings through ≻Cdbnd N-N≺ skeleton.

  14. Gravity: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains 12 simple experiments through which students can learn about gravity and its implications. Some of the topics included are weight, weightlessness, artificial gravity, the pull of gravity on different shapes, center of gravity, the universal law of gravity, and balancing. Experiments include: finding the balancing point; weighing…

  15. Symptom accommodation, trichotillomania-by-proxy, and interpersonal functioning in trichotillomania (hair-pulling disorder).

    PubMed

    Falkenstein, Martha J; Haaga, David A F

    2016-02-01

    This study investigated relationship functioning in trichotillomania (TTM) as well as specific interpersonal behaviors that have received little attention in TTM research, including by-proxy pulling, symptom accommodation, and self-disclosure. The objective was to contribute data for future development of components of treatment that focus on interpersonal functioning. Data were collected through survey about relationships and related difficulties among adults who endorsed criteria consistent with DSM-5 criteria for TTM (n=670). Consistent with our hypotheses, TTM symptom severity was correlated negatively with relationship satisfaction and perceived social support, positively with perceived criticism, perceived risk in intimacy, and social interaction anxiety, though these correlations were small (absolute values r=.08 to .17). Approximately one-quarter of survey respondents had not told their closest friend about their trichotillomania, and one-fifth had not told their spouse or long-term romantic partner. TTM-by-proxy urges were reported by 54% of participants, and 37% of participants reported having actually pulled hair from other people, with the most common proxies specified as significant others (51%), parents (13%), friends (8%), siblings (8%), children (7%) and pets (5%). Higher levels of TTM-by-proxy urges were associated with "focused" pulling (d=.37) and perfectionistic thinking (d=.16 to .20), yet current by-proxy urges were not associated with, functional impairment. A small minority of individuals (7%) reported having asked other people to pull hair for them (78% of these requests were granted); there was increased endorsement of "focused" pulling among these individuals. The people who participants asked to pull hairs for them included significant others (66%), mothers (20%), siblings (11%), friends (9%) and one's children (9%). More than one-third of respondents had pulled hair from others, 7% had asked others to pull their hair, and sizable minorities kept TTM secret from their closest friends or even spouse/partners. Clinical levels of social interaction anxiety were endorsed by 51% of the sample. Understanding these interpersonal experiences more fully could improve our understanding of relationship functioning in TTM and guide efforts to individualize treatment for adults with TTM. Published by Elsevier Inc.

  16. A push-pull system to reduce house entry of malaria mosquitoes

    PubMed Central

    2014-01-01

    Background Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull system is presented, that operates by the simultaneous use of repellent and attractive volatile odorants. Method/Results Experiments were carried out in a semi-field set-up: a traditional house which was constructed inside a screenhouse. The release of different repellent compounds, para-menthane-3,8-diol (PMD), catnip oil e.o. and delta-undecalactone, from the four corners of the house resulted in significant reductions of 45% to 81.5% in house entry of host-seeking malaria mosquitoes. The highest reductions in house entry (up to 95.5%), were achieved by simultaneously repelling mosquitoes from the house (push) and removing them from the experimental set-up using attractant-baited traps (pull). Conclusions The outcome of this study suggests that a push-pull system based on attractive and repellent volatiles may successfully be employed to target mosquito vectors of human disease. Reductions in house entry of malaria vectors, of the magnitude that was achieved in these experiments, would likely affect malaria transmission. The repellents used are non-toxic and can be used safely in a human environment. Delta-undecalactone is a novel repellent that showed higher effectiveness than the established repellent PMD. These results encourage further development of the system for practical implementation in the field. PMID:24674451

  17. Single Molecule Spectroscopy of Amino Acids and Peptides by Recognition Tunneling

    PubMed Central

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, JongOne; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-01-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single molecule protein sequencing is a critical step in the search for protein biomarkers. Here we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules and measuring the electron tunneling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic ‘fingerprints’ associated with each binding motif. With this recognition tunneling technique, we are able to identify D, L enantiomers, a methylated amino acid, isobaric isomers, and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore. PMID:24705512

  18. Compressive Force Spectroscopy: From Living Cells to Single Proteins.

    PubMed

    Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark

    2018-03-23

    One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.

  19. Single molecule transistor based nanopore for the detection of nicotine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, S. J., E-mail: ray.sjr@gmail.com

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realisedmore » from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.« less

  20. Reviews

    NASA Astrophysics Data System (ADS)

    2008-05-01

    WE RECOMMEND Why the Sky is Blue This book gives an excellent answer to the age-old question Science Magic Book of experiments finds the fun in physics Function Generator Kit Build your own simple wave generator Dent pullers Instead of using them to pull out dents, get your pupils to pull them apart Rocket Tracker Launch and track rockets with this kit Stephen Hawking, A biograpy This book looks at both the science and the personal life of the famous physicist WORTH A LOOK The Universe and the Atom All-encompassing but uninspiring physics book Sizzling Magnets Another cheap toy proves its usefulness in the physics lab Efergy Energy-saving meter is easy to use but may not save you energy Experiments and Demonstrations in Physics This book is full of interesting experiments but skewed to a particular hardware system WEB WATCH Gary Williams recounts the valuable lessons he learned at the Software 4 Skint Schools workshop

  1. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D

    2017-03-22

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  2. Interplay between Mechanics, Electronics, and Energetics in Atomic-Scale Junctions

    NASA Astrophysics Data System (ADS)

    Aradhya, Sriharsha V.

    The physical properties of materials at the nanoscale are controlled to a large extent by their interfaces. While much knowledge has been acquired about the properties of material in the bulk, there are many new and interesting phenomena at the interfaces that remain to be better understood. This is especially true at the scale of their constituent building blocks - atoms and molecules. Studying materials at this intricate level is a necessity at this point in time because electronic devices are rapidly approaching the limits of what was once thought possible, both in terms of their miniaturization as well as our ability to design their behavior. In this thesis I present our explorations of the interplay between mechanical properties, electronic transport and binding energetics of single atomic contacts and single-molecule junctions. Experimentally, we use a customized conducting atomic force microscope (AFM) that simultaneously measures the current and force across atomic-scale junctions. We use this instrument to study single atomic contacts of gold and silver and single-molecule junctions formed in the gap between two gold metallic point contacts, with molecules with a variety of backbones and chemical linker groups. Combined with density functional theory based simulations and analytical modeling, these experiments provide insight into the correlations between mechanics and electronic structure at the atomic level. In carrying out these experimental studies, we repeatedly form and pull apart nanoscale junctions between a metallized AFM cantilever tip and a metal-coated substrate. The force and conductance of the contact are simultaneously measured as each junction evolves through a series of atomic-scale rearrangements and bond rupture events, frequently resulting in single atomic contacts before rupturing completely. The AFM is particularly optimized to achieve high force resolution with stiff probes that are necessary to create and measure forces across atomic-size junctions that are otherwise difficult to fabricate using conventional lithographic techniques. In addition to the instrumentation, we have developed new algorithmic routines to perform statistical analyses of force data, with varying degrees of reliance on the conductance signatures. The key results presented in this thesis include our measurements with gold metallic contacts, through which we are able to rigorously characterize the stiffness and maximum forces sustained by gold single atomic contacts and many different gold-molecule-gold single-molecule junctions. In our experiments with silver metallic contacts we use statistical correlations in conductance to distinguish between pristine and oxygen-contaminated silver single atomic contacts. This allows us to separately obtain mechanical information for each of these structural motifs. The independently measured force data also provides new insights about atomic-scale junctions that are not possible to obtain through conductance measurements alone. Using a systematically designed set of molecules, we are able to demonstrate that quantum interference is not quenched in single-molecule junctions even at room temperature and ambient conditions. We have also been successful in conducting one of the first quantitative measurements of van der Waals forces at the metal-molecule interface at the single-molecule level. Finally, towards the end of this thesis, we present a general analytical framework to quantitatively reconstruct the binding energy curves of atomic-scale junctions directly from experiments, thereby unifying all of our mechanical measurements. I conclude with a summary of the work presented in this thesis, and an outlook for potential future studies that could be guided by this work.

  3. Seafloor Construction Experiment, SEACON II An Instrumented Tri-Moor for Evaluating Undersea Cable Structure Technology

    DTIC Science & Technology

    1976-12-01

    ik’sigi. of undcruater cattle arrays wt’uld opertioal onsraitsbe the primari goali Arr. consitruction technolog% deseclopmcnt %%A% a %ccont!aro goal...weight of 12,500 pounds. struction mooring anchor was pulled out while load The anchor is composed of a 7-foot by 8-foot by and displacement were...out of the bottom. In contrast, anchor AI pulled out to 27,000 pounds for the construction moor anchor. at a load of 3,500 pounds although a 10,000

  4. Development of advanced methods for continuous Czochralski growth. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wolfson, R. G.; Sibley, C. B.

    1978-01-01

    The three components required to modify the furnace for batch and continuous recharging with granular silicon were designed. The feasibility of extended growth cycles up to 40 hours long was demonstrated by a recharge simulation experiment; a 6 inch diameter crystal was pulled from a 20 kg charge, remelted, and pulled again for a total of four growth cycles, 59-1/8 inch of body length, and approximately 65 kg of calculated mass.

  5. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    PubMed Central

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  6. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-03-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.

  7. Designing for diffusion: how can we increase uptake of cancer communication innovations?

    PubMed

    Dearing, James W; Kreuter, Matthew W

    2010-12-01

    The best innovations in cancer communication do not necessarily achieve uptake by researchers, public health and clinical practitioners, and policy makers. This paper describes design activities that can be applied and combined for the purpose of spreading effective cancer communication innovations. A previously developed Push-Pull-Infrastructure Model is used to organize and highlight the types of activities that can be deployed during the design phase of innovations. Scientific literature about the diffusion of innovations, knowledge utilization, marketing, public health, and our experiences in working to spread effective practices, programs, and policies are used for this purpose. Attempts to broaden the reach, quicken the uptake, and facilitate the use of cancer communication innovations can apply design activities to increase the likelihood of diffusion. Some simple design activities hold considerable promise for improving dissemination and subsequent diffusion. Augmenting current dissemination practices with evidence-based concepts from diffusion science, marketing science, and knowledge utilization hold promise for improving results by eliciting greater market pull. Inventors and change agencies seeking to spread cancer communication innovations can experience more success by explicit consideration of design activities that reflect an expanded version of the Push-Pull-Infrastructure Model. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. The Origin of Monsoon Onset. Part 2; Rotational ITCZ Attractors

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Through various specially designed numerical experiments with an aqua-planet general circulation model and theoretical arguments. Chao showed the existence of multiple quasi-equilibria of the intertropical convergence zone (ITCZ). He also showed that monsoon onset could be interpreted as an abrupt transition between the quasi-equilibria of the ITCZ. He further showed that the origin of these quasi-equilibria is related to two different types of attraction pulling the ITCZ in opposite directions. One type of attraction on the ITCZ is due to earth's rotation, which pulls the ITCZ toward the equator or two equatorial latitudes symmetric with respect to the equator depending on the choice of convection scheme, and the other due to the peak of the sea surface temperature (SST, which is given in the experiments a Gaussian profile in latitude and is uniform in longitude), which pulls the ITCZ toward a latitude just poleward of the SST peak. The strength of the attraction due to the earth's rotation has a highly nonlinear dependence on the latitude and that due to the SST peak has a linear (at least in a relative sense) dependence on the latitude.

  9. Designing for Diffusion: How Can We Increase Uptake of Cancer Communication Innovations?

    PubMed Central

    Dearing, James W.; Kreuter, Matthew W.

    2010-01-01

    Objective The best innovations in cancer communication do not necessarily achieve uptake by researchers, public health and clinical practitioners, and policy makers. This paper describes design activities that can be applied and combined for the purpose of spreading effective cancer communication innovations. Methods A previously developed Push-Pull-Infrastructure Model is used to organize and highlight the types of activities that can be deployed during the design phase of innovations. Scientific literature about the diffusion of innovations, knowledge utilization, marketing, public health, and our experiences in working to spread effective practices, programs, and policies are used for this purpose. Results Attempts to broaden the reach, quicken the uptake, and facilitate the use of cancer communication innovations can apply design activities to increase the likelihood of diffusion. Some simple design activities hold considerable promise for improving dissemination and subsequent diffusion. Conclusion Augmenting current dissemination practices with evidence-based concepts from diffusion science, marketing science, and knowledge utilization hold promise for improving results by eliciting greater market pull. Practice Implications Inventors and change agencies seeking to spread cancer communication innovations can experience more success by explicit consideration of design activities that reflect an expanded version of the Push-Pull-Infrastructure Model. PMID:21067884

  10. Expansion microscopy: development and neuroscience applications.

    PubMed

    Karagiannis, Emmanouil D; Boyden, Edward S

    2018-06-01

    Many neuroscience questions center around understanding how the molecules and wiring in neural circuits mechanistically yield behavioral functions, or go awry in disease states. However, mapping the molecules and wiring of neurons across the large scales of neural circuits has posed a great challenge. We recently developed expansion microscopy (ExM), a process in which we physically magnify biological specimens such as brain circuits. We synthesize throughout preserved brain specimens a dense, even mesh of a swellable polymer such as sodium polyacrylate, anchoring key biomolecules such as proteins and nucleic acids to the polymer. After mechanical homogenization of the specimen-polymer composite, we add water, and the polymer swells, pulling biomolecules apart. Due to the larger separation between molecules, ordinary microscopes can then perform nanoscale resolution imaging. We here review the ExM technology as well as applications to the mapping of synapses, cells, and circuits, including deployment in species such as Drosophila, mouse, non-human primate, and human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Molecular Mechanistic Insights into the Endothelial Receptor Mediated Cytoadherence of Plasmodium falciparum-Infected Erythrocytes

    PubMed Central

    Li, Ang; Lim, Tong Seng; Shi, Hui; Yin, Jing; Tan, Swee Jin; Li, Zhengjun; Low, Boon Chuan; Tan, Kevin Shyong Wei; Lim, Chwee Teck

    2011-01-01

    Cytoadherence or sequestration is essential for the pathogenesis of the most virulent human malaria species, Plasmodium falciparum (P. falciparum). Similar to leukocyte-endothelium interaction in response to inflammation, cytoadherence of P. falciparum infected red blood cells (IRBCs) to endothelium occurs under physiological shear stresses in blood vessels and involves an array of molecule complexes which cooperate to form stable binding. Here, we applied single-molecule force spectroscopy technique to quantify the dynamic force spectra and characterize the intrinsic kinetic parameters for specific ligand-receptor interactions involving two endothelial receptor proteins: thrombospondin (TSP) and CD36. It was shown that CD36 mediated interaction was much more stable than that mediated by TSP at single molecule level, although TSP-IRBC interaction appeared stronger than CD36-IRBC interaction in the high pulling rate regime. This suggests that TSP-mediated interaction may initiate cell adhesion by capturing the fast flowing IRBCs whereas CD36 functions as the ‘holder’ for providing stable binding. PMID:21437286

  12. Transitions of tethered chain molecules under tension.

    PubMed

    Luettmer-Strathmann, Jutta; Binder, Kurt

    2014-09-21

    An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model. Applying our model to pulling experiments on biological molecules we obtain a good description of experimental data in the intermediate force range, where universal features dominate and finite size effects are small. For tethered chains in poor solvent, we observe the predicted two-phase coexistence at transitions from the globule to stretched conformations and also discover direct transitions from crystalline to stretched conformations. A phase portrait for finite chains constructed by evaluating the density of states for a broad range of solvent conditions and tensions shows how increasing tension leads to a disappearance of the globular phase. For chains in good solvents tethered to hard and attractive surfaces we find the predicted scaling with the chain length in the low-force regime and show that our results are well described by an analytical, independent-bond approximation for the bond-fluctuation model for the highest tensions. Finally, for a hard or slightly attractive surface the stretching of a tethered chain is a conformational change that does not correspond to a phase transition. However, when the surface attraction is sufficient to adsorb a chain it will undergo a desorption transition at a critical value of the applied force. Our results for force-induced desorption show the transition to be discontinuous with partially desorbed conformations in the coexistence region.

  13. Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA

    PubMed Central

    2017-01-01

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif–small molecule interactions identified via selection. Named High Throughput Structure–Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif–small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule–RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs. PMID:28386598

  14. Transanal pull-through procedure for Hirschsprung's disease: a 5-year experience.

    PubMed

    Jester, I; Holland-Cunz, S; Loff, S; Hosie, S; Reinshagen, K; Wirth, H; Ali, M; Waag, K-L

    2009-04-01

    Transanal endorectal pull-through (TEPT) has become a widely used approach for the treatment of Hirschsprung's Disease. The technique is safe and, according to previous reports, it has a good clinical outcome. In this study our experience with TEPT in the early postoperative period is evaluated. The clinical course of 34 children (28 boys and 6 girls) who underwent one-stage pull-through operation according to De la Torre for Hirschsprung's disease from January 2003 to December 2007 was reviewed. Their ages ranged from 2 months to 4 years. Complications occurring within the first four weeks after operation were analyzed. Eight of 34 children (24 %) had early complications in the form of dehiscences of the anastomosis. Two children (6 %) had symptomatic anastomotic dehiscences. One child had an almost full retraction of the colon that had to be pulled down and resutured. One child developed a retrorectal abscess three weeks postoperatively due to anastomotic leakage. The dehiscences of 6 children (18 %) were asymptomatic. These dehiscences were detected only with standardized routine examination. The dehiscences healed uneventfully after resuturing. Two other patients (6 %) developed an anastomotic stricture that could be treated with rectal dilatations. Four children (12 %) showed a single episode of postoperative enterocolitis. The rate of early clinical and particularly subclinical complications such as anastomotic dehiscences after TEPT is higher than previously estimated. Patients should be monitored carefully during the early postoperative period. Severe complications can only be avoided with a thorough examination. Early resuturing of dehiscences might be helpful to prevent hazardous sequelae.

  15. Deformation Behavior during Processing in Carbon Fiber Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Kobayashi, Satoshi

    In this study, we manufacture the device for measuring the friction between the prepreg curing process and subjected to pull-out tests with it The prepreg used in this study is a unidirectional carbon/epoxy, produced by TORAY designation of T700SC/2592.When creating specimens 4-ply prepregs are prepared and laminated. The 2-ply prepregs in the middle are shifted 50mm. In order to measure the friction between the prepreg during the cure process, we simulate the environment in the autoclave in the device, and we experiment in pull-out test. Test environment simulating temperature and pressure. The speed of displacement should be calculated by coefficient of thermal expansions (CTE). By calculation, 0.05mm/min gives the order of magnitude of displacement speed. In this study, 3 pull-out speeds are used: 0.01, 0.05 and 0.1mm/min. The specimen was heated by a couple of heaters, and we controlled the heaters with a temperature controller along the curing conditions of the prepreg. We put pressure using 4 bolts. Two strain gages were put on the bolt. We can understand the load applied to the specimen from the strain of the bolt. Pressure was adjusted the tightness of the bolt according to curing conditions. By using such a device, the pull-out test performed by tensile testing machine while adding temperature and pressure. During the 5 hours, we perform experiments while recording the load and stroke. The shear stress determined from the load and the stroke, and evaluated.

  16. Basic in vitro experiment on the adhesive effects of sheet-type hemostatic agents used in combination with a liquid fibrin sealant.

    PubMed

    Ishii, Keiichi; Kawashima, Hideki; Hayama, Takuma; Mayabashira, Sumika; Oka, Shiro; Sugimoto, Toshikado

    2011-11-01

    Various hemostatic agents have been used quite effectively for hemostasis, as well as for providing effective adhesion during laparoscopic partial nephrectomies. In this study, we investigated the adhesiveness to the renal tissue of some sheet-type hemostatic agents used in combination with a liquid fibrin sealant. In Experiment A, component solutions of the fibrin glue (liquid fibrin sealant) were dripped onto a kite string placed annularly on a porcine kidney slice. Then, one of the sheet-type hemostats--namely, the collagen, gelatin, or cellulose hemostat--was placed on the slices, and a string scale was used to measure the force needed to pull the string apart vertically from the kidney slice. Twelve slices were used for each group, and the weight data were analyzed statistically. The tissue adhering to each sheet-type hemostatic agent was fixed in formalin and sliced and then examined by light microscopy after hematoxylin and eosin staining. In Experiment B, the solutions were dripped onto the sheet-type hemostatic agent placed first on the slice, and the force needed for pulling apart the hemostat sheet from the slice was similarly examined. The combination of fibrin glue plus a collagen hemostat was clearly superior in Experiment A, but the hemostat and renal tissue could be pulled apart more easily in Experiment B. These results showed that fibrin glue could not exert its expected adhesive effect unless it is used in combination with another hemostatic agent or is directly applied to renal tissue. It is important to obtain further comparative data among agents and select the appropriate agents, taking into consideration the type of surgery.

  17. The Friction Force Determination of Large-Sized Composite Rods in Pultrusion

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. N.; Krasnovskii, A. N.; Kazakov, I. A.

    2014-08-01

    Nowadays, the simple pull-force models of pultrusion process are not suitable for large sized rods because they are not considered a chemical shrinkage and thermal expansion acting in cured material inside the die. But the pulling force of the resin-impregnated fibers as they travels through the heated die is essential factor in the pultrusion process. In order to minimize the number of trial-and-error experiments a new mathematical approach to determine the frictional force is presented. The governing equations of the model are stated in general terms and various simplifications are implemented in order to obtain solutions without extensive numerical efforts. The influence of different pultrusion parameters on the frictional force value is investigated. The results obtained by the model can establish a foundation by which process control parameters are selected to achieve an appropriate pull-force and can be used for optimization pultrusion process.

  18. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  19. Impacts of Experiential Learning Depth and Breadth on Student Outcomes

    ERIC Educational Resources Information Center

    Coker, Jeffrey Scott; Heiser, Evan; Taylor, Laura; Book, Connie

    2017-01-01

    This 5-year study of graduating seniors at Elon University (n = 2,058) evaluates the impacts of experiential learning depth (amount of time commitment) and breadth (number of different types of experiences) on student outcomes. Data on study abroad, undergraduate research, internships, service, and leadership experiences were pulled from…

  20. Tectonic evolution of the Salton Sea inferred from seismic reflection data

    USGS Publications Warehouse

    Brothers, D.S.; Driscoll, N.W.; Kent, G.M.; Harding, A.J.; Babcock, J.M.; Baskin, R.L.

    2009-01-01

    Oblique extension across strike-slip faults causes subsidence and leads to the formation of pull-apart basins such as the Salton Sea in southern California. The formation of these basins has generally been studied using laboratory experiments or numerical models. Here we combine seismic reflection data and geological observations from the Salton Sea to understand the evolution of this nascent pull-apart basin. Our data reveal the presence of a northeast-trending hinge zone that separates the sea into northern and southern sub-basins. Differential subsidence (10 mm yr 1) in the southern sub-basin suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline, which may control the spatial distribution of young volcanism. Rotated and truncated strata north of the hinge zone suggest that the onset of extension associated with this pull-apart basin began after 0.5 million years ago. We suggest that slip is partitioned spatially and temporally into vertical and horizontal domains in the Salton Sea. In contrast to previous models based on historical seismicity patterns, the rapid subsidence and fault architecture that we document in the southern part of the sea are consistent with experimental models for pull-apart basins. ?? 2009 Macmillan Publishers Limited.

  1. Task Differences and Prosociality; Investigating Pet Dogs' Prosocial Preferences in a Token Choice Paradigm.

    PubMed

    Dale, Rachel; Quervel-Chaumette, Mylène; Huber, Ludwig; Range, Friederike; Marshall-Pescini, Sarah

    2016-01-01

    Prosociality has received increasing interest by non-human animal researchers since the initial discoveries that suggested it is not a uniquely human trait. However, thus far studies, even within the same species, have not garnered conclusive results. A prominent suggestion for this disparity is the effect methodology can have on prosocial responses in animals. We recently found evidence of prosociality in domestic dogs towards familiar conspecifics using a bar-pulling paradigm, in which a subject could pull a rope to deliver food to its partner. Therefore, the current study aimed to assess whether dogs would show a similar response in a different paradigm, based on the token exchange task paradigm frequently used with primates. In this task, dogs had the option to touch a token with their nose that delivered a reward to an adjacent receiver enclosure, which contained a familiar conspecific, a stranger or no dog at all. Crucially, we also included a social facilitation control condition, whereby the partner (stranger/familiar) was present but unable to access the food. We found that the familiarity effect remained consistent across tasks, with dogs of both the bar-pulling and token choice experiments providing more food to familiar partners than in a non-social control and providing less food to stranger partners than this same control. However, in contrast to our previous bar-pulling experiment, we could not exclude social facilitation as an underlying motive in the current task. We propose this difference in results between tasks may be related to increased task complexity in the token choice paradigm, making it harder for dogs to discriminate between the test and social facilitation conditions. Overall our findings suggest that subtle methodological changes can have an impact on prosocial behaviours in dogs and highlights the importance of controlling for social facilitation effects in such experiments.

  2. A mix-and-measure assay for determining the activation status of endogenous Cdc42 in cytokine-stimulated macrophage cell lysates.

    PubMed

    Miskolci, Veronika; Spiering, Désirée; Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cytokine stimulations of leukocytes many times result in transient activation of the p21 Rho family of small GTPases. The role of these molecules during cell migration and chemotaxis is well established. The traditional approach to study the activation dynamics of these proteins involves affinity pull-downs that are often cumbersome and prone to errors. Here, we describe a reagent and a method of simple "mix-and-measure" approach useful for determining the activation status of endogenous Cdc42 GTPase from cell lysates.

  3. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemchinsky, V.; Khrabry, A.

    Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less

  5. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    DOE PAGES

    Wang, Xu; Le, Anh -Thu; Yu, Chao; ...

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, amore » simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.« less

  6. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations

    DOE PAGES

    Nemchinsky, V.; Khrabry, A.

    2018-02-01

    Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less

  7. Photoinduced intramolecular charge transfer in a cross-conjugated push-pull enediyne: implications toward photoreaction.

    PubMed

    Singh, Anuja; Pati, Avik Kumar; Mishra, Ashok Kumar

    2018-05-30

    Push-pull organic fluorophores are important owing to their interesting optoelectronical properties. Here we report the photophysics of a new cross-conjugated push-pull enediynyl dye which belongs to an unexplored class of π-conjugated donor-acceptor systems. Two N,N-dimethylaniline moieties serve as donors and one pyrene ring functions as an acceptor via a common Y-shaped 'enediyne' bridge which facilitates the cross-electronic communication. The dye exhibits dual emission from locally excited (LE) and intramolecular charge transfer (ICT) states. While the LE emission is dominant in non-polar solvents, the ICT emission predominates in polar solvents. Time-resolved fluorescence decay experiments reveal a relatively shorter lifetime component (∼0.5-0.9 ns) belonging to an ICT state and a relatively longer lifetime species (∼1.6-2.8 ns) corresponding to the LE state. The strong ICT behavior of the dye is manifested through the huge red-shift (4166 cm-1) of the emission spectra from non-polar cyclohexane to polar N,N-dimethylformamide. In contrast to many small push-pull organic dyes, the LE and ICT states of the push-pull enediynyl dye follow the same excitation pathway. The dominant red-shifted ICT emission (∼550 nm) intensity of the dye in polar solvent decreases with a concomitant appearance of the blue-shifted LE emission (∼385 nm) upon prolonged exposure to photons. This opens up a new photophysical strategy of achieving high contrast two fluorescence color conversion from yellow to blue.

  8. Urethral pull-through operation for the management of pelvic fracture urethral distraction defects.

    PubMed

    Yin, Lei; Li, Zhenhua; Kong, Chuize; Yu, Xiuyue; Zhu, Yuyan; Zhang, Yuxi; Jiang, Yuanjun

    2011-10-01

    To present our institutional experience in the management of pelvic fracture urethral distraction defects with urethral pull-through operation. Seventy-six patients (average age 34.5 years) with posterior urethral strictures caused by pelvic fracture urethral distraction defects underwent urethral pull-through operation at our department from July 1995 to September 2009. The estimated urethral stricture length was 2.0-3.5 cm (mean 2.5). Of these patients, 31 (41%) had undergone failed urethroplasty or urethrotomy after the initial management, and 5 (7%) had urethrorectal fistula. Urethral pull-through operation was performed 4-7 months (mean 4.9) after initial treatment or failed urethral reconstruction. The clinical outcome was considered a failure when any postoperative intervention was needed. Follow-up was 14-74 months (mean 42.5). The overall success rate was 89% (68/76). All treatment failures occurred within the first 6 months postoperatively. Failed repairs were successfully managed with internal urethrotomy in 1 patient, by urethral dilation in 6, and by another urethroplasty in 1. All patients were urinary-continent postoperatively. Of the potent patients, 2 (5%) became impotent after urethroplasty. There was no chordee, penile shortening, or urethral fistula recurrence. Urethral pull-through operation might be a less demanding and less time-consuming procedure. It does not increase the rate of impotence or incontinence and, with a high success rate, might serve as an alternative method for the management of pelvic fracture urethral distraction defects. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Unraveling protein-protein interactions in clathrin assemblies via atomic force spectroscopy.

    PubMed

    Jin, Albert J; Lafer, Eileen M; Peng, Jennifer Q; Smith, Paul D; Nossal, Ralph

    2013-03-01

    Atomic force microscopy (AFM), single molecule force spectroscopy (SMFS), and single particle force spectroscopy (SPFS) are used to characterize intermolecular interactions and domain structures of clathrin triskelia and clathrin-coated vesicles (CCVs). The latter are involved in receptor-mediated endocytosis (RME) and other trafficking pathways. Here, we subject individual triskelia, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS and AFM-SPFS pulling experiments and apply novel analytics to extract force-extension relations from very large data sets. The spectroscopic fingerprints of these samples differ markedly, providing important new information about the mechanism of CCV uncoating. For individual triskelia, SMFS reveals a series of events associated with heavy chain alpha-helix hairpin unfolding, as well as cooperative unraveling of several hairpin domains. SPFS of clathrin assemblies exposes weaker clathrin-clathrin interactions that are indicative of inter-leg association essential for RME and intracellular trafficking. Clathrin-AP180 coats are energetically easier to unravel than the coats of CCVs, with a non-trivial dependence on force-loading rate. Published by Elsevier Inc.

  10. Bichromatic random laser from a powder of rhodamine-doped sub-micrometer silica particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa-Silva, Renato; Silva, Andrea F.; Brito-Silva, Antonio M.

    2014-01-28

    We studied the random laser (RL) bichromatic emission (BCE) from a powder consisting of silica particles infiltrated with Rhodamine 640 (Rh640) molecules. The BCE is attributed to Rh640 monomers and dimers. Because of the efficient monomer-dimer energy transfer, we observed RL wavelength switching from ≈ 620 nm to ≈650 nm and the control of the emitted wavelength was made by changing only the excitation laser intensity. None of external parameters such as excitation laser spot size or radiation detector position was changed as in previous experiments. Two laser thresholds associated either to monomers or dimers were clearly observed. Moreover, an effect analogmore » to frequency-pulling among two coupled oscillators was identified measuring the RL spectra as a function of the excitation laser intensity. A wavelength shift, Δλ, was measured between the monomer and dimer resonance wavelengths, changing only the excitation laser intensity. The maximum value of Δλ ≈ 16 cm{sup −1} was obtained for laser pulses of 7 ns with 30 μJ.« less

  11. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  12. Blood Clotting Inspired Polymer Physics

    NASA Astrophysics Data System (ADS)

    Sing, Charles Edward

    The blood clotting process is one of the human body's masterpieces in targeted molecular manipulation, as it requires the activation of the clotting cascade at a specific place and a specific time. Recent research in the biological sciences have discovered that one of the protein molecules involved in the initial stages of the clotting response, von Willebrand Factor (vWF), exhibits counterintuitive and technologically useful properties that are driven in part by the physical environment in the bloodstream at the site of a wound. In this thesis, we take inspiration from initial observations of the vWF in experiments, and aim to describe the behaviors observed in this process within the context of polymer physics. By understanding these physical principles, we hope to harness nature's ability to both direct molecules in both spatial and conformational coordinates. This thesis is presented in three complementary sections. After an initial introduction describing the systems of interest, we first describe the behavior of collapsed Lennard-Jones polymers in the presence of an infinite medium. It has been shown that simple bead-spring homopolymer models describe vWF quite well in vitro. We build upon this previous work to first describe the behavior of a collapsed homopolymer in an elongational fluid flow. Through a nucleation-protrusion mechanism, scaling relationships can be developed to provide a clear picture of a first-order globule-stretch transition and its ramifications in dilute-solution rheology. The implications of this behavior and its relation to the current literature provides qualitative explanations for the physiological process of vasoconstriction. In an effort to generalize these observations, we present an entire theory on the behavior of polymer globules under influence of any local fluid flow. Finally, we investigate the internal dynamics of these globules by probing their pulling response in an analogous fashion to force spectroscopy. We elucidate the presence of both a solid-liquid dynamic globule transition and a contour-based description of internal globule friction. It is possible to incrementally add levels of details to these Lennard-Jones polymer models to more accurately represent biological molecules. In the second section of this thesis, we investigate the consequences of incorporating a Bell-model behavior into single homopolymer interactions to describe a "self-associating'' polymer. We first demonstrate how this model is, in equilibrium, essentially the same as a Lennard-Jones polymer, however we demonstrate that the polymer dynamics are indeed both drastically different and tunable. This has ramifications under the presence of dynamic loads, and we investigate single-molecule response to both shear and pulling stimuli. In the former, we find novel and tunable giant non-monotonic stretching responses. In the latter, we use our observations to develop a complete and general theory of pulling these types of molecules that has ramifications in both the study of biological polymers and in the design of soft materials with tunable mechanical response. The final section introduces concepts related to the behavior of collapsed polymers in fluid flows near surfaces. During the blood clotting process, vWF undergoes a counterintuitive adsorption process and here we begin to develop the physical fundamentals required to understand this process. After a brief introduction to the relevant hydrodynamic treatment we use in simulations, we first describe the presence of a hydrodynamic lift force and the formalism we use as we include it in the context of our theory. We reveal the presence of a non-monotonic lift force, and subsequently utilize this theoretical formalism to describe the adsorption and desorption behavior of a collapsed polymer globule near an attractive surface. We investigate the limit of large flows and highly attractive surfaces by providing a description of the conformational and hydrodynamic behavior of a polymer tethered at a surface. We finally discuss the behaviors of a polymer that associates with a surface, and postulate the importance of such processes in vWF function. We finally include an addendum that describes an unrelated project that investigates the possibilities of using superparamagnetic beads as a tool for hydrodynamic propulsion by assembling these beads into "rotors" near a surface to create microwalkers that have interesting applications in self-assembled microfluidic chips. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  13. Learning to perceive haptic distance-to-break in the presence of friction.

    PubMed

    Altenhoff, Bliss M; Pagano, Christopher C; Kil, Irfan; Burg, Timothy C

    2017-02-01

    Two experiments employed attunement and calibration training to investigate whether observers are able to identify material break points in compliant materials through haptic force application. The task required participants to attune to a recently identified haptic invariant, distance-to-break (DTB), rather than haptic stimulation not related to the invariant, including friction. In the first experiment participants probed simulated force-displacement relationships (materials) under 3 levels of friction with the aim of pushing as far as possible into the materials without breaking them. In a second experiment a different set of participants pulled on the materials. Results revealed that participants are sensitive to DTB for both pushing and pulling, even in the presence of varying levels of friction, and this sensitivity can be improved through training. The results suggest that the simultaneous presence of friction may assist participants in perceiving DTB. Potential applications include the development of haptic training programs for minimally invasive (laparoscopic) surgery to reduce accidental tissue damage. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Youfeng; Oh, Yunje; Stauffer, Douglas; Polycarpou, Andreas A.

    2018-04-01

    We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.

  15. Mg2+ -Dependent High Mechanical Anisotropy of Three-Way-Junction pRNA as Revealed by Single-Molecule Force Spectroscopy.

    PubMed

    Sun, Yang; Di, Weishuai; Li, Yiran; Huang, Wenmao; Wang, Xin; Qin, Meng; Wang, Wei; Cao, Yi

    2017-08-01

    Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three-way-junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg 2+ binding. In the absence of Mg 2+ , 3WJ-pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg 2+ , the unfolding forces can differ by more than 4-fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ-pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg 2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ-pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Micropipette as Coulter counter for submicron particles

    NASA Astrophysics Data System (ADS)

    Rudzevich, Yauheni; Ordonez, Tony; Evans, Grant; Chow, Lee

    2011-03-01

    Coulter counter based on micropipette has been around for several decades. Typical commercial Coulter counter has a pore size of 20 μ m, and is designed to detect micron-size blood cells. In recent years, there are a lot of interests in using nanometer pore size Coulter counter to detect single molecule and to sequence DNA. Here we describe a simple nanoparticle counter based on pulled micropipettes with a diameter of 50 -- 500 nm. Borosilicate micropipettes with an initial outer diameter of 1.00 mm and inner diameter of 0.5 mm are used. After pulling, the micropipettes are fire polished and ultrasound cleaned. Chlorinated Ag/AgCl electrodes and 0.1 M of KCl solution are used. The ionic currents are measured using an Axopatch 200B amplifier in the voltage-clamp mode. Several types and sizes of nanoparticles are measured, including plain silica and polystyrene nanospheres. The results will be discussed in terms of pH values of the solution and concentrations of the nanoparticles. Financial support from National Science Foundation (NSF-0901361) is acknowledged.

  17. DNA Micromanipulation Using Novel High-Force, In-Plane Magnetic Tweezer

    NASA Astrophysics Data System (ADS)

    McAndrew, Christopher; Mehl, Patrick; Sarkar, Abhijit

    2010-03-01

    We report the development of a magnetic force transducer that can apply piconewton forces on single DNA molecules in the focus plane allowing continuous high precision tethered-bead tracking. The DNA constructs, proteins, and buffer are introduced into a 200μL closed cell created using two glass slides separated by rigid spacers interspersed within a thin viscoelastic perimeter wall. This closed cell configuration isolates our sample and produces low-noise force-extension measurements. Specially-drawn micropipettes are used for capturing the polystyrene bead, pulling on the magnetic sphere, introducing proteins of interest, and maintaining flow. Various high-precision micromanipulators allow us to move pipettes and stage as required. The polystyrene bead is first grabbed, and held using suction; then the magnetic particle at the other end of the DNA is pulled by a force created by either two small (1mm x 2mm x 4mm) bar magnets or a micro magnet-tipped pipette. Changes in the end-to-end length of the DNA are observable in real time. We will present force extension data obtained using the magnetic tweezer.

  18. Research on the improvement of traditional dial instrument precision based on C8051F020.

    NASA Astrophysics Data System (ADS)

    Sun, Guiling; Liu, Yi; Lu, Li

    2006-11-01

    Two essential parameters to weigh the quality of a reinforcing steel bar are the value of its bending force and the maximum pull it can withstand, in order to measure them with higher precision, it is significant to describe the changing tendency of force with time and displacement by drawing a real-time curve directly during the process examining the quality of a bar when the pull exerted is variable continuously. Using C8051F020 as the core component, this paper improves traditional dial instruments whose precision can only reach the second level. Adopting a high precision pulling/pressing force sensor, an amplifier, a two-order Butterworth low-pass filter and a 12-bit AD converter which is in the C8051F020, the first level of precision can be obtained. A rotary encoder is used to measure the length increment of the bar during the pulling process, based on an algorithm, a force-displacement (or time) curve which is quite important for operators to control the course of experiment can be displayed on the LCD. Meanwhile, real-time experimental data can be stored in local flash, or uploaded to PC by RS-485 and stored in the center database. A real-time clock is also adopted to mark the time of each experiment that is useful to index the data. The measure system we describe here is characterized by simple structure, high precision and stabilization, and convenience operation, can be used in other actual measure systems by only changing the front sensor, so it is of great value of application and popularization.

  19. Pushing and Pulling Sara: A Case Study of the Contrasting Influences of High School and University Experiences on Engineering Agency, Identity, and Participation

    ERIC Educational Resources Information Center

    Godwin, Allison; Potvin, Geoff

    2017-01-01

    This manuscript reports a longitudinal case study of how one woman, Sara, who had previously considered dropping out of high school, authored strong mathematics and science identities and purposefully exhibited agency through her experiences in high school science. These experiences empowered her to choose an engineering major in college; however,…

  20. Evaluation of a peridomestic mosquito trap for integration into an Aedes aegypti (Diptera: Culicidae) push-pull control strategy.

    PubMed

    Salazar, Ferdinand V; Achee, Nicole L; Grieco, John P; Prabaripai, Atchariya; Eisen, Lars; Shah, Pankhil; Chareonviriyaphap, Theeraphap

    2012-06-01

    We determined the feasibility of using the BG-Sentinel™ mosquito trap (BGS) as the pull component in a push-pull strategy to reduce indoor biting by Aedes aegypti. This included evaluating varying numbers of traps (1-4) and mosquito release numbers (10, 25, 50, 100, 150, 200, and 250) on recapture rates under screen house conditions. Based on these variations in trap and mosquito numbers, release intervals were rotated through a completely randomized design with environmental factors (temperature, relative humidity, and light intensity) and monitored throughout each experiment. Data from four sampling time points (05:30, 09:30, 13:30, and 17:30) indicate a recapture range among treatments of 66-98%. Furthermore, 2-3 traps were as effective in recapturing mosquitoes as 4 traps for all mosquito release numbers. Time trends indicate Day 1 (the day the mosquitoes were released) as the "impact period" for recapture with peak numbers of marked mosquitoes collected at 09:30 or 4 h post-release. Information from this study will be used to guide the configuration of the BGS trap component of a push-pull vector control strategy currently in the proof-of-concept stage of development in Thailand and Peru. © 2012 The Society for Vector Ecology.

  1. Actin cable distribution and dynamics arising from cross-linking, motor pulling, and filament turnover

    PubMed Central

    Tang, Haosu; Laporte, Damien; Vavylonis, Dimitrios

    2014-01-01

    The growth of fission yeast relies on the polymerization of actin filaments nucleated by formin For3p, which localizes at tip cortical sites. These actin filaments bundle to form actin cables that span the cell and guide the movement of vesicles toward the cell tips. A big challenge is to develop a quantitative understanding of these cellular actin structures. We used computer simulations to study the spatial and dynamical properties of actin cables. We simulated individual actin filaments as semiflexible polymers in three dimensions composed of beads connected with springs. Polymerization out of For3p cortical sites, bundling by cross-linkers, pulling by type V myosin, and severing by cofilin are simulated as growth, cross-linking, pulling, and turnover of the semiflexible polymers. With the foregoing mechanisms, the model generates actin cable structures and dynamics similar to those observed in live-cell experiments. Our simulations reproduce the particular actin cable structures in myoVΔ cells and predict the effect of increased myosin V pulling. Increasing cross-linking parameters generates thicker actin cables. It also leads to antiparallel and parallel phases with straight or curved cables, consistent with observations of cells overexpressing α-actinin. Finally, the model predicts that clustering of formins at cell tips promotes actin cable formation. PMID:25103242

  2. Thermoplastic pultrusion development and characterization of residual in pultruded composites with modeling and experiments

    NASA Astrophysics Data System (ADS)

    Jamiyanaa, Khongor

    Pultrusion processing is a technique to make highly aligned fiber reinforced polymer composites. Thermoset pultrusion is a mature process and well established, while thermoplastic pultrusion in still in its infancy. Thermoplastic pultrusion has not been well established because thermoplastic resins are difficult to process due to their high viscosity. However, thermoplastic resins offer distinct advantages that make thermoplastic pultrusion worth exploring. The present work centers on developing a method to design and validate a die for a thermoplastic pultrusion system. Analytical models and various software tools were used to design a pultrusion die. Experimental measurements have been made to validate the models. One-dimensional transient heat transfer analysis was used to calculate the time required for pre-impregnated E-Glass/Polypropylene tapes to melt and consolidate into profiled shapes. Creo Element/Pro 1.0 was used to design the die, while ANSYS Work Bench 14.0 was used to conduct heat transfer analysis to understand the temperature profile of the pultrusion apparatus. Additionally Star-CCM+ was used to create a three-dimensional fluid flow model to capture the molten polymer flow inside the pultrusion die. The fluid model was used to understand the temperature of the flow and the force required to pull the material at any given temperature and line speed. A complete pultrusion apparatus including the die, heating unit, cooling unit, and the frame has been designed and manufactured as guided by the models, and pultruded profiles have been successfully produced. The results show that the analytical model and the fluid model show excellent correlation. The predicted and measured pulling forces are in agreement and show that the pull force increases as the pull speed increases. Furthermore, process induced residual stress and its influence on dimensional instability, such as bending or bowing, on pultruded composites was analyzed. The study indicated that unbalanced layup can produce asymmetrical residual stress through the thickness and causes the part to bow. Furthermore, the residual stress through the thickness was mapped with excellent accuracy. A design of experiments around the processing parameters indicated that increase in pull speed or decrease in die temperature increased the residual stress within the part.

  3. Drawbar Pull

    DTIC Science & Technology

    2017-01-26

    Includes procedures for hard surface, soil , and water tests. Discusses vehicle preparation, instrumentation method of computing results, data reduction...and amphibious vehicles. 15. SUBJECT TERMS Bollard pull Soft- soil mobility Drawbar pull Vehicle, amphibious Drawbar horsepower Vehicle...4.3 Drawbar Pull in Soft Soil ................................................. 8 4.4 Amphibious Vehicle Tests (Drawbar Pull in Water and Bollard Pull

  4. Using Social Networks to Enhance Teaching and Learning Experiences in Higher Learning Institutions

    ERIC Educational Resources Information Center

    Balakrishnan, Vimala

    2014-01-01

    The paper first explores the factors that affect the use of social networks to enhance teaching and learning experiences among students and lecturers, using structured questionnaires prepared based on the Push-Pull-Mooring framework. A total of 455 students and lecturers from higher learning institutions in Malaysia participated in this study.…

  5. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.

    PubMed

    Lim, Soo-Chul; Lee, Hyung-Kew; Park, Joonah

    2014-10-18

    Haptic feedback is of critical importance in surgical tasks. However, conventional surgical robots do not provide haptic feedback to surgeons during surgery. Thus, in this study, a combined tactile and kinesthetic feedback system was developed to provide haptic feedback to surgeons during robotic surgery. To assess haptic feasibility, the effects of two types of haptic feedback were examined empirically - kinesthetic and tactile feedback - to measure object-pulling force with a telesurgery robotics system at two desired pulling forces (1 N and 2 N). Participants answered a set of questionnaires after experiments. The experimental results reveal reductions in force error (39.1% and 40.9%) when using haptic feedback during 1 N and 2 N pulling tasks. Moreover, survey analyses show the effectiveness of the haptic feedback during teleoperation. The combined tactile and kinesthetic feedback of the master device in robotic surgery improves the surgeon's ability to control the interaction force applied to the tissue. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Microgravity

    NASA Image and Video Library

    1998-02-05

    Sections of ZBLAN fibers pulled in a conventional 1-g process (left) and in experiments aboard NASA's KC-135 low-gravity aircraft. The rough surface of the 1-g fiber indicates surface defects that would scatter an optical signal and greatly degrade its quality. ZBLAN is part of the family of heavy-metal fluoride glasses (fluorine combined zirconium, barium, lanthanum, aluminum, and sodium). NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. ZBLAN is a heavy-metal fluoride glass that shows exceptional promise for high-throughput communications with infrared lasers. Photo credit: NASA/Marshall Space Flight Center

  7. Ribbon curling

    NASA Astrophysics Data System (ADS)

    Juel, Anne; Prior, Chris; Moussou, Julien; Chakrabarti, Buddhapriya; Jensen, Oliver

    The procedure of curling a ribbon by running it over a sharp blade is commonly used when wrapping presents. Despite its ubiquity, a quantitative explanation of this everyday phenomenon is still lacking. We address this using experiment and theory, examining the dependence of ribbon curvature on blade curvature, the longitudinal load imposed on the ribbon and the speed of pulling. Experiments in which a ribbon is drawn steadily over a blade under a fixed load show that the ribbon curvature is generated over a restricted range of loads, the curvature/load relationship can be non-monotonic, and faster pulling (under a constant imposed load) results in less tightly curled ribbons. We develop a theoretical model that captures these features, building on the concept that the ribbon under the imposed deformation undergoes differential plastic stretching across its thickness, resulting in a permanently curved shape. The model identifies factors that optimize curling and clarifies the physical mechanisms underlying the ribbon's nonlinear response to an apparently simple deformation.

  8. Neutrally buoyant tracers in hydrogeophysics: Field demonstration in fractured rock

    NASA Astrophysics Data System (ADS)

    Shakas, Alexis; Linde, Niklas; Baron, Ludovic; Selker, John; Gerard, Marie-Françoise; Lavenant, Nicolas; Bour, Olivier; Le Borgne, Tanguy

    2017-04-01

    Electrical and electromagnetic methods are extensively used to map electrically conductive tracers within hydrogeologic systems. Often, the tracers used consist of dissolved salt in water, leading to a denser mixture than the ambient formation water. Density effects are often ignored and rarely modeled but can dramatically affect transport behavior and introduce dynamics that are unrepresentative of the response obtained with classical tracers (e.g., uranine). We introduce a neutrally buoyant tracer consisting of a mixture of salt, water, and ethanol and monitor its movement during push-pull experiments in a fractured rock aquifer using ground-penetrating radar. Our results indicate a largely reversible transport process and agree with uranine-based push-pull experiments at the site, which is in contrast to results obtained using dense saline tracers. We argue that a shift toward neutrally buoyant tracers in both porous and fractured media would advance hydrogeophysical research and enhance its utility in hydrogeology.

  9. Dissociation dynamics of simple chlorine containing molecules upon resonant Cl K-σ{sup *} excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohinc, R., E-mail: rok.bohinc@ijs.si; Bučar, K.; Kavčič, M.

    2014-04-28

    A theoretical analysis of dissociation dynamics of chlorine K-σ{sup *} core-excited molecules is performed. The potential energy surfaces of HCl, Cl{sub 2}, CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, and CF{sub 3}Cl are calculated along the normal vibrational modes of the ground electronic state yielding the widths of the corresponding Franck-Condon distributions. An insight into the potential energy surface of 1st σ{sup *} resonances shows that the initial dissociation dynamics of chloro(fluoro)methanes mainly involves the distancing of the carbon and the core-excited chlorine atom and is practically independent of other atoms in themore » molecule, which is in agreement with the recent experimental findings. The carbon atom pulls out the remaining three atoms shortly after piercing the three-atom plane resulting in a high vibrationally excited state of the fragment if the reconnection time is smaller than the lifetime of the L shell.« less

  10. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    PubMed

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  11. A single molecule rectifier with strong push-pull coupling

    NASA Astrophysics Data System (ADS)

    Saraiva-Souza, Aldilene; Macedo de Souza, Fabricio; Aleixo, Vicente F. P.; Girão, Eduardo Costa; Filho, Josué Mendes; Meunier, Vincent; Sumpter, Bobby G.; Souza Filho, Antônio Gomes; Del Nero, Jordan

    2008-11-01

    We theoretically investigate the electronic charge transport in a molecular system composed of a donor group (dinitrobenzene) coupled to an acceptor group (dihydrophenazine) via a polyenic chain (unsaturated carbon bridge). Ab initio calculations based on the Hartree-Fock approximations are performed to investigate the distribution of electron states over the molecule in the presence of an external electric field. For small bridge lengths (n =0-3) we find a homogeneous distribution of the frontier molecular orbitals, while for n >3 a strong localization of the lowest unoccupied molecular orbital is found. The localized orbitals in between the donor and acceptor groups act as conduction channels when an external electric field is applied. We also calculate the rectification behavior of this system by evaluating the charge accumulated in the donor and acceptor groups as a function of the external electric field. Finally, we propose a phenomenological model based on nonequilibrium Green's function to rationalize the ab initio findings.

  12. DNA-binding activity of TNF-{alpha} inducing protein from Helicobacter pylori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzuhara, T.; Suganuma, M.; Oka, K.

    2007-11-03

    Tumor necrosis factor-{alpha} (TNF-{alpha}) inducing protein (Tip{alpha}) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-{alpha} and chemokine genes and activation of nuclear factor-{kappa}B. Since Tip{alpha} enters gastric cancer cells, the Tip{alpha} binding molecules in the cells should be investigated. The direct DNA-binding activity of Tip{alpha} was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tip{alpha} and DNA, revealed that the affinity of Tip{alpha} for (dGdC)10 is 2400 times stronger than that of del-Tip{alpha}, an inactive Tip{alpha}. This suggestsmore » a strong correlation between DNA-binding activity and carcinogenic activity of Tip{alpha}. And the DNA-binding activity of Tip{alpha} was first demonstrated with a molecule secreted from H. pylori.« less

  13. A focus group study of predictors of relapse in electronic gaming machine problem gambling, part 2: factors that 'pull' the gambler away from relapse.

    PubMed

    Oakes, J; Pols, R; Battersby, M; Lawn, S; Pulvirenti, M; Smith, D

    2012-09-01

    This study aimed to develop an empirically based description of relapse in Electronic Gaming Machine (EGM) problem gambling (PG) by describing the processes and factors that 'pull' the problem gambler away from relapse contrasted with the 'push' towards relapse. These conceptualisations describe two opposing, interacting emotional processes occurring within the problem gambler during any relapse episode. Each relapse episode comprises a complex set of psychological and social behaviours where many factors interact sequentially and simultaneously within the problem gambler to produce a series of mental and behaviour events that end (1) with relapse where 'push' overcomes 'pull' or (2) continued abstinence where 'pull' overcomes 'push'. Four focus groups comprising thirty participants who were EGM problem gamblers, gamblers' significant others, therapists and counsellors described their experiences and understanding of relapse. The groups were recorded, recordings were then transcribed and analysed using thematic textual analysis. It was established that vigilance, motivation to commit to change, positive social support, cognitive strategies such as remembering past gambling harms or distraction techniques to avoid thinking about gambling to enable gamblers to manage the urge to gamble and urge extinction were key factors that protected against relapse. Three complementary theories emerged from the analysis. Firstly, a process of reappraisal of personal gambling behaviour pulls the gambler away from relapse. This results in a commitment to change that develops over time and affects but is independent of each episode of relapse. Secondly, relapse may be halted by interacting factors that 'pull' the problem gambler away from the sequence of mental and behavioural events, which follow the triggering of the urge and cognitions to gamble. Thirdly, urge extinction and apparent 'cure' is possible for EGM gambling. This study provides a qualitative, empirical model for understanding protective factors against gambling relapse.

  14. Design of a small molecule against an oncogenic noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  15. First-principles molecular dynamics study of water dissociation on the γ-U(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2015-05-01

    Based on first-principles molecular dynamics simulations at finite temperatures, we systematically study the adsorption and dissociation of water molecules on the γ-U(1 0 0) surface. We predict that water molecules spontaneously dissociate upon approaching the native γ-U(1 0 0) surface. The dissociation results from electronic interactions between surface uranium 6d states and 1b2, 3a1, and 1b1 molecular orbitals of water. With segregated Nb atoms existing on the surface, adsorbing water molecules also dissociate spontaneously because Nb 3d electronic states can also interact with the molecular orbitals similarly. After dissociation, the isolated hydrogen atoms are found to diffuse fast on both the γ-U surface and that with a surface substitutional Nb atom, which is very similar to the ‘Hot-Atom’ dissociation of oxygen molecules on the Al(1 1 1) surface. From a series of consecutive molecular dynamics simulations, we further reveal that on both the γ-U surface and that with a surface substitutional Nb atom, one surface U atom will be pulled out to form the U-O-U structure after dissociative adsorption of 0.44 ML water molecules. This result indicates that oxide nucleus can form at low coverage of water adsorption on the two surfaces.

  16. Layered Learning in Multi-Agent Systems

    DTIC Science & Technology

    1998-12-15

    project almost from the beginning has tirelessly experimented with different robot architectures, always managing to pull things together and create...TEAM MEMBER AGENT ARCHITECTURE I " ! Midfielder, Left : • i ) ( ^ J Goalie , Center Home Coordinates Home Range Max Range Figure

  17. High Tensile Strength of Engineered β-Solenoid Fibrils via Sonication and Pulling.

    PubMed

    Peng, Zeyu; Parker, Amanda S; Peralta, Maria D R; Ravikumar, Krishnakumar M; Cox, Daniel L; Toney, Michael D

    2017-11-07

    We present estimates of ultimate tensile strength (UTS) for two engineered β-solenoid protein mutant fibril structures (spruce budworm and Rhagium inquisitor antifreeze proteins) derived from sonication-based measurements and from force pulling molecular dynamics simulations, both in water. Sonication experiments generate limiting scissioned fibrils with a well-defined length-to-width correlation for the mutant spruce budworm protein and the resultant UTS estimate is 0.66 ± 0.08 GPa. For fibrils formed from engineered R. inquisitor antifreeze protein, depending upon geometry, we estimate UTSs of 3.5 ± 3.2-5.5 ± 5.1 GPa for proteins with interfacial disulfide bonds, and 1.6 ± 1.5-2.5 ± 2.3 GPa for the reduced form. The large error bars for the R. inquisitor structures are intrinsic to the broad distribution of limiting scission lengths. Simulations provide pulling velocity-dependent UTSs increasing from 0.2 to 1 GPa in the available speed range, and 1.5 GPa extrapolated to the speeds expected in the sonication experiments. Simulations yield low-velocity values for the Young's modulus of 6.0 GPa. Without protein optimization, these mechanical parameters are similar to those of spider silk and Kevlar, but in contrast to spider silk, these proteins have a precisely known sequence-structure relationship. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Psychophysical basis for maximum pushing and pulling forces: A review and recommendations.

    PubMed

    Garg, Arun; Waters, Thomas; Kapellusch, Jay; Karwowski, Waldemar

    2014-03-01

    The objective of this paper was to perform a comprehensive review of psychophysically determined maximum acceptable pushing and pulling forces. Factors affecting pushing and pulling forces are identified and discussed. Recent studies show a significant decrease (compared to previous studies) in maximum acceptable forces for males but not for females when pushing and pulling on a treadmill. A comparison of pushing and pulling forces measured using a high inertia cart with those measured on a treadmill shows that the pushing and pulling forces using high inertia cart are higher for males but are about the same for females. It is concluded that the recommendations of Snook and Ciriello (1991) for pushing and pulling forces are still valid and provide reasonable recommendations for ergonomics practitioners. Regression equations as a function of handle height, frequency of exertion and pushing/pulling distance are provided to estimate maximum initial and sustained forces for pushing and pulling acceptable to 75% male and female workers. At present it is not clear whether pushing or pulling should be favored. Similarly, it is not clear what handle heights would be optimal for pushing and pulling. Epidemiological studies are needed to determine relationships between psychophysically determined maximum acceptable pushing and pulling forces and risk of musculoskeletal injuries, in particular to low back and shoulders.

  19. Psychophysical basis for maximum pushing and pulling forces: A review and recommendations

    PubMed Central

    Garg, Arun; Waters, Thomas; Kapellusch, Jay; Karwowski, Waldemar

    2015-01-01

    The objective of this paper was to perform a comprehensive review of psychophysically determined maximum acceptable pushing and pulling forces. Factors affecting pushing and pulling forces are identified and discussed. Recent studies show a significant decrease (compared to previous studies) in maximum acceptable forces for males but not for females when pushing and pulling on a treadmill. A comparison of pushing and pulling forces measured using a high inertia cart with those measured on a treadmill shows that the pushing and pulling forces using high inertia cart are higher for males but are about the same for females. It is concluded that the recommendations of Snook and Ciriello (1991) for pushing and pulling forces are still valid and provide reasonable recommendations for ergonomics practitioners. Regression equations as a function of handle height, frequency of exertion and pushing/pulling distance are provided to estimate maximum initial and sustained forces for pushing and pulling acceptable to 75% male and female workers. At present it is not clear whether pushing or pulling should be favored. Similarly, it is not clear what handle heights would be optimal for pushing and pulling. Epidemiological studies are needed to determine relationships between psychophysically determined maximum acceptable pushing and pulling forces and risk of musculoskeletal injuries, in particular to low back and shoulders. PMID:26664045

  20. On the tree stability risk

    NASA Astrophysics Data System (ADS)

    Giambastiani, Yamuna; Preti, Federico; Errico, Alessandro; Penna, Daniele

    2017-04-01

    There is growing interest in developing models for predicting how root anchorage and tree bracing could influence tree stability. This work presents the results of different experiments aimed at evaluating the mechanical response of plate roots to pulling tests. Pulling tests have been executed with increasing soil water content and soil of different texture. Different types of tree bracing have been examined for evaluating its impact on plant stiffness. Root plate was anchored with different systems for evaluating the change in overturning resistance. The first results indicate that soil water content contributed to modify both the soil cohesion and the stabilizing forces. Wind effect, slope stability and root reinforcement could be better quantified by means of such a results.

  1. A brief description of the biomechanics and physiology of a strongman event: the tire flip.

    PubMed

    Keogh, Justin W L; Payne, Amenda L; Anderson, Brad B; Atkins, Paul J

    2010-05-01

    The purpose of this study was to (a) characterize the temporal aspects of a popular strongman event, the tire flip; (b) gain some insight into the temporal factors that could distinguish the slowest and fastest flips; and (c) obtain preliminary data on the physiological stress of this exercise. Five resistance-trained subjects with experience in performing the tire flip gave informed consent to participate in this study. Each subject performed 2 sets of 6 tire flips with a 232-kg tire with 3 minutes of rest between sets. Temporal variables were obtained from video cameras positioned 10 m from the tire, perpendicular to the intended direction of the tire flip. Using the "stopwatch" function in Silicon Coach, the duration of each tire flip and that of the first pull, second pull, transition, and push phases were recorded. Physiological stress was estimated via heart rate and finger-prick blood lactate response. Independent T-tests revealed that the 2 faster subjects (0.38 +/- 0.17 s) had significantly (p < 0.001) shorter second pull durations than the 3 slower subjects (1.49 +/- 0.92 s). Paired T-tests revealed that the duration of the second pull for each subject's fastest 3 trials (0.55 +/- 0.35 s) were significantly (p = 0.007) less than their 3 slowest trials (1.69 +/- 1.35 s). Relatively high heart rate (179 +/- 8 bpm) and blood lactate (10.4 +/- 1.3 mmol/L(-1)) values were found at the conclusion of the second set. Overall, the results of this study suggest that the duration of the second pull is a key determinant of tire flip performance and that this exercise provides relatively high degrees of physiological stress.

  2. In vivo mechanical study of helical cardiac pacing electrode interacting with canine myocardium

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Ma, Nianke; Fan, Hualin; Niu, Guodong; Yang, Wei

    2007-06-01

    Cardiac pacing is a medical device to help human to overcome arrhythmia and to recover the regular beats of heart. A helical configuration of electrode tip is a new type of cardiac pacing lead distal tip. The helical electrode attaches itself to the desired site of heart by screwing its helical tip into the myocardium. In vivo experiments on anesthetized dogs were carried out to measure the acute interactions between helical electrode and myocardium during screw-in and pull-out processes. These data would be helpful for electrode tip design and electrode/myocardium adherence safety evaluation. They also provide reliability data for clinical site choice of human heart to implant and to fix the pacing lead. A special design of the helical tip using strain gauges is instrumented for the measurement of the screw-in and pull-out forces. We obtained the data of screw-in torques and pull-out forces for five different types of helical electrodes at nine designed sites on ten canine hearts. The results indicate that the screw-in torques increased steplike while the torque time curves presente saw-tooth fashion. The maximum torque has a range of 0.3 1.9 N mm. Obvious differences are observed for different types of helical tips and for different test sites. Large pull-out forces are frequently obtained at epicardium of left ventricle and right ventricle lateral wall, and the forces obtained at right ventricle apex and outflow tract of right ventricle are normally small. The differences in pull-out forces are dictated by the geometrical configuration of helix and regional structures of heart muscle.

  3. Large-Scale CTRW Analysis of Push-Pull Tracer Tests and Other Transport in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Berkowitz, B.

    2014-12-01

    Recently, we developed an alternative CTRW formulation which uses a "latching" upscaling scheme to rigorously map continuous or fine-scale stochastic solute motion onto discrete transitions on an arbitrarily coarse lattice (with spacing potentially on the meter scale or more). This approach enables model simplification, among many other things. Under advection, for example, we see that many relevant anomalous transport problems may be mapped into 1D, with latching to a sequence of successive, uniformly spaced planes. On this formulation (which we term RP-CTRW), the spatial transition vector may generally be made deterministic, with CTRW waiting time distributions encapsulating all the stochastic behavior. We demonstrate the excellent performance of this technique alongside Pareto-distributed waiting times in explaining experiments across a variety of scales using only two degrees of freedom. An interesting new application of the RP-CTRW technique is the analysis of radial (push-pull) tracer tests. Given modern computational power, random walk simulations are a natural fit for the inverse problem of inferring subsurface parameters from push-pull test data, and we propose them as an alternative to the classical type curve approach. In particular, we explore the visibility of heterogeneity through non-Fickian behavior in push-pull tests, and illustrate the ability of a radial RP-CTRW technique to encapsulate this behavior using a sparse parameterization which has predictive value.

  4. Argonaute pull-down and RISC analysis using 2'-O-methylated oligonucleotides affinity matrices.

    PubMed

    Jannot, Guillaume; Vasquez-Rifo, Alejandro; Simard, Martin J

    2011-01-01

    During the last decade, several novel small non-coding RNA pathways have been unveiled, which reach out to many biological processes. Common to all these pathways is the binding of a small RNA molecule to a protein member of the Argonaute family, which forms a minimal core complex called the RNA-induced silencing complex or RISC. The RISC targets mRNAs in a sequence-specific manner, either to induce mRNA cleavage through the intrinsic activity of the Argonaute protein or to abrogate protein synthesis by a mechanism that is still under investigation. We describe here, in details, a method for the affinity chromatography of the let-7 RISC starting from extracts of the nematode Caenorhabditis elegans. Our method exploits the sequence specificity of the RISC and makes use of biotinylated and 2'-O-methylated oligonucleotides to trap and pull-down small RNAs and their associated proteins. Importantly, this technique may easily be adapted to target other small RNAs expressed in different cell types or model organisms. This method provides a useful strategy to identify the proteins associated with the RISC, and hence gain insight in the functions of small RNAs.

  5. Effect of myristoylated N-terminus of Arf1 on the bending rigidity of phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Burrola Gabilondo, Beatriz; Zhou, Hernan; Randazzo, Paul A.; Losert, Wolfgang

    2010-03-01

    The protein Arf1 is part of the COPI vesicle transport process from the Golgi to the ER. It binds to membranes via a myristoylated N-terminus and it has been shown to tubulate Large Unilamellar Vesicles. The effect of the N-terminus of Arf1 on physical properties of membranes has not been studied, with the exception of curvature. We previously found that the myristoylated N-terminus increases the packing of the lipid molecules, but has no effect on the lateral mobility. We tested the hypothesis that myristoylated peptides affect the bending rigidity of phospholipid Giant Unilamellar Vesicles (GUV). We use optical tweezers to pull tethers from GUV and measure the force of pulling the tether, as well as the retraction speed of the tether once it is released. We also used flicker spectroscopy to estimate the values of the mechanical properties of GUV. We will present results of the force and tether retraction measurements, as well as mechanical properties estimates from flicker, for GUV in the presence of varying concentrations of myristoylated and non-myristoylated N-terminus of Arf1, and compare these with measurements for GUV in the absence of peptide.

  6. Nett Warrior C3Conflict Experiment: Measuring the Effect of Battlefield Awareness in Small Units

    DTIC Science & Technology

    2011-01-01

    Top-level categories used to score the protocol of the soldiers’ text-based “chat” communications...17 Table 4. Subcategories for Pulls, Pushes, and Scripts used to score the protocol of the soldier’s chat

  7. 30 CFR 75.828 - Trailing cable pulling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cable pulling. 75.828 Section 75.828... Longwalls § 75.828 Trailing cable pulling. The trailing cable must be de-energized prior to being pulled by... procedures must be followed when pulling the trailing cable with equipment other than the continuous mining...

  8. Athermal brittle-to-ductile transition in amorphous solids.

    PubMed

    Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2011-10-01

    Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.

  9. How does a soap film burst during generation?

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle; Saulnier, Laurie; Restagno, Frederic; Langevin, Dominique

    2011-11-01

    Foams are dispersions of bubbles in a liquid matrix in the presence of stabilizing surfactants. Even if foams are ubiquitous, the ability of a solution to create a certain foam quantity is still not fully understood. As a first step, we choose to work on a simplified system and studied the stability of a soap film during its generation. We have built an experiment, in which we determine simultaneously the velocity of a frame pulled out of a soapy solution and the entire shape of the liquid film. We found that the film is made of two parts: the bottom part is of uniform and stationary thickness, well described by the classical Frankel's law; in the top part, the film drains until a black film appears near the frame upper boundary frame, and then bursts. In this study, we characterize both part of the films and show that the Frankel law breaks down at high capillary number due to surfactants confinement. We also explain why films pulled at high velocity have a shorter lifetime than those pulled at low velocity. L. Saulnier is funded by CNES.

  10. 8-Nitro-cGMP Attenuates the Interaction between SNARE Complex and Complexin through S-Guanylation of SNAP-25.

    PubMed

    Kishimoto, Yusuke; Kunieda, Kohei; Kitamura, Atsushi; Kakihana, Yuki; Akaike, Takaaki; Ihara, Hideshi

    2018-02-21

    8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is the second messenger in nitric oxide/reactive oxygen species redox signaling. This molecule covalently binds to protein thiol groups, called S-guanylation, and exerts various biological functions. Recently, we have identified synaptosomal-associated protein 25 (SNAP-25) as a target of S-guanylation, and demonstrated that S-guanylation of SNAP25 enhanced SNARE complex formation. In this study, we have examined the effects of S-guanylation of SNAP-25 on the interaction between the SNARE complex and complexin (cplx), which binds to the SNARE complex with a high affinity. Pull-down assays and coimmunoprecipitation experiments have revealed that S-guanylation of Cys90 in SNAP-25 attenuates the interaction between the SNARE complex and cplx. In addition, blue native-PAGE followed by Western blot analysis revealed that the amount of cplx detected at a high molecular weight decreased upon 8-nitro-cGMP treatment in SH-SY5Y cells. These results demonstrated for the first time that S-guanylation of SNAP-25 attenuates the interaction between the SNARE complex and cplx.

  11. Atomic force microscopy studies of human rhinovirus topology and molecular forces.

    PubMed

    Kienberger, Ferry; Zhu, Rong; Rankl, Christian; Gruber, Hermann J; Blaas, Dieter; Hinterdorfer, Peter

    2010-01-01

    Dynamic force microscopy (DFM) allows for imaging of the structure and assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying biomolecules is virtually inexistent as the contact time and friction forces are greatly reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2). The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low-pH buffer and snapshots of the extrusion process were obtained. DFM of the single-stranded RNA genome of an HRV showed loops protruding from a condensed RNA core, 20-50 nm in height. The mechanical rigidity of the RNA was determined by single molecule pulling experiments. From fitting RNA stretching curves to the worm-like-chain (WLC) model a persistence length of 1.0+/-0.17 nm was obtained. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Effect of fuel concentration and force on collective transport by a team of dynein motors

    PubMed Central

    Takshak, Anjneya; Roy, Tanushree; Tandaiya, Parag

    2016-01-01

    Abstract Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step‐size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte‐Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte‐Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces. PMID:27727483

  13. Intraoperative Physical Examination for Diagnosis of Interosseous Ligament Rupture-Cadaveric Study.

    PubMed

    Kachooei, Amir Reza; Rivlin, Michael; Wu, Fei; Faghfouri, Aram; Eberlin, Kyle R; Ring, David

    2015-09-01

    To study the intraobserver and interobserver reliability of the diagnosis of interosseous ligament (IOL) rupture in a cadaver model. On 12 fresh frozen cadavers, radial heads were cut using an identical incision and osteotomy. After randomization, the soft tissues of the limbs were divided into 4 groups: both IOL and triangular fibrocartilage (TFCC) intact; IOL disruption but TFCC intact; both IOL and TFCC divided; and IOL intact but TFCC divided. All incisions had identical suturing. After standard instruction and demonstration of radius pull-push and radius lateral pull tests, 10 physician evaluators with different levels of experience examined the cadaver limbs in a standardized way (elbow at 90° with the forearm held in both supination and pronation) and were asked to classify them into one of the 4 groups. Next, the same examiners were asked to re-examine the limbs after randomly changing the order of examination. The interobserver reliability of agreement for the diagnosis of IOL injury (groups 2 and 3) was fair in both rounds of examination and the intraobserver reliability was moderate. The intra- and interobserver reliabilities of agreement for the 4 groups of injuries among the examiners were fair in both rounds of examination. The sensitivity, specificity, accuracy, positive, and negative predictive values were all around 70%. The likelihood of a positive test corresponding with the presence of IOL rupture (positive likelihood ratio) was 2.2. The likelihood of a negative test correctly diagnosing an intact IOL was 0.40. In cadavers, intraoperative tests had fair reliability and 70% accuracy for the diagnosis of IOL rupture using the push-pull and lateral pull maneuvers. The level of experience did not have any effect on the correct diagnosis of intact versus disrupted IOL. Although not common, some failure of surgeries for traumatic elbow fracture-dislocations is because of failure in timely diagnosis of IOL disruption. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. Verbal Feedback in Therapeutic Communities: Pull-ups and Reciprocated Pull-ups as Predictors of Graduation

    PubMed Central

    Warren, Keith; Hiance, Danielle; Doogan, Nathan; De Leon, George; Phillips, Gary

    2012-01-01

    The most important proximal outcomes for residents of therapeutic communities (TCs) are retention and successful completion of the program. At this point there has been no quantitative analysis of the relationship between the exchange of corrective reminders, or pull-ups, between peers in TCs and graduation. This study draws on a database of pull-ups exchanged between 5,464 residents of three Midwestern TCs. Residents who send more pull-ups to peers and who reciprocate pull-ups with a larger percentage of peers are more likely to graduate. Residents who receive more pull-ups from peers and staff and a larger percentage of whose peers reciprocate pull-ups that they send are less likely to graduate. Implications of these findings for program theory and program improvement are discussed. PMID:23068980

  15. Structural transformations, composition anomalies and a dramatic collapse of linear polymer chains in dilute ethanol-water mixtures.

    PubMed

    Banerjee, Saikat; Ghosh, Rikhia; Bagchi, Biman

    2012-03-29

    Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.

  16. Local Hero.

    ERIC Educational Resources Information Center

    Rist, Marilee C.

    1992-01-01

    Shows how a former high school principal (with no doctorate, central office experience, or big-city political savvy) pulled the Cincinnati (Ohio) schools out of a $76 million debt and implemented reforms recommended by the Buenger Commission. The new superintendent slashed central office positions, reorganized 86 schools into 9 minidistricts, and…

  17. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    PubMed

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  18. Ribbon curling via stress relaxation in thin polymer films

    PubMed Central

    Prior, Chris; Moussou, Julien; Chakrabarti, Buddhapriya

    2016-01-01

    The procedure of curling a ribbon by running it over a sharp blade is commonly used when wrapping presents. Despite its ubiquity, a quantitative explanation of this everyday phenomenon is still lacking. We address this using experiment and theory, examining the dependence of ribbon curvature on blade curvature, the longitudinal load imposed on the ribbon, and the speed of pulling. Experiments in which a ribbon is drawn steadily over a blade under a fixed load show that the ribbon curvature is generated over a restricted range of loads, the curvature/load relationship can be nonmonotonic, and faster pulling (under a constant imposed load) results in less tightly curled ribbons. We develop a theoretical model that captures these features, building on the concept that the ribbon under the imposed deformation undergoes differential plastic stretching across its thickness, resulting in a permanently curved shape. The model identifies factors that optimize curling and clarifies the physical mechanisms underlying the ribbon’s nonlinear response to an apparently simple deformation. PMID:26831118

  19. Measurement of Vehicle Air Conditioning Pull-Down Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner systemmore » would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.« less

  20. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete

    PubMed Central

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-01

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948

  1. Free-energy landscape of glycerol permeation through aquaglyceroporin GlpF determined from steered molecular dynamics simulations.

    PubMed

    Chen, L Y

    2010-10-01

    The free-energy landscape of glycerol permeation through the aquaglyceroporin GlpF has been estimated in the literature by the nonequilibrium method of steered molecular dynamics (SMD) simulations and by the equilibrium method of adaptive biasing force (ABF) simulations. However, the ABF results qualitatively disagree with the SMD results that were based on the Jarzynski equality (JE) relating the equilibrium free-energy difference to the nonequilibrium work of the irreversible pulling experiments. In this paper, I present a new SMD study of the glycerol permeation through GlpF to explore the free-energy profile of glycerol along the permeation channel. Instead of the JE in terms of thermodynamic work, I use the fluctuation-dissipation theorem (FDT) of Brownian dynamics (BD), in terms of mechanical work, for extracting the free-energy difference from the nonequilibrium work of irreversible pulling experiments. The results of this new SMD-BD-FDT study are in agreement with the experimental data and with the ABF results. 2010 Elsevier B.V. All rights reserved.

  2. Partner Choice in Raven (Corvus corax) Cooperation.

    PubMed

    Asakawa-Haas, Kenji; Schiestl, Martina; Bugnyar, Thomas; Massen, Jorg J M

    2016-01-01

    Although social animals frequently make decisions about when or with whom to cooperate, little is known about the underlying mechanisms of partner choice. Most previous studies compared different dyads' performances, though did not allow an actual choice among partners. We tested eleven ravens, Corvus corax, in triads, giving them first the choice to cooperate with either a highly familiar or a rather unfamiliar partner and, second, with either a friend or a non-friend using a cooperative string-pulling task. In either test, the ravens had a second choice and could cooperate with the other partner, given that this one had not pulled the string in the meantime. We show that during the experiments, these partner ravens indeed learn to wait and inhibit pulling, respectively. Moreover, the results of these two experiments show that ravens' preferences for a specific cooperation partner are not based on familiarity. In contrast, the ravens did show a preference based on relationship quality, as they did choose to cooperate significantly more with friends than with non-friends and they were also more proficient when cooperating with a friend. In order to further identify the proximate mechanism of this preference, we designed an open-choice experiment for the whole group where all birds were free to cooperate on two separate apparatuses. This set-up allowed us to distinguish between preferences for close proximity and preferences to cooperate. The results revealed that friends preferred staying close to each other, but did not necessarily cooperate with one another, suggesting that tolerance of proximity and not relationship quality as a whole may be the driving force behind partner choice in raven cooperation. Consequently, we stress the importance of experiments that allow such titrations and, suggest that these results have important implications for the interpretations of cooperation studies that did not include open partner choice.

  3. Construct Related Validity for the Baumgartner Modified Pull-Up Test

    ERIC Educational Resources Information Center

    Baumgartner, Ted A.; Gaunt, Sharon j.

    2005-01-01

    Traditionally the pull-up was used as a measure of arm and shoulder girdle strength and endurance. This measure did not discriminate among ability levels because many zero scores occur. Baumgartner (1978) developed a modified pull-up test that was easier than the traditional pull-up test. The Baumgartner Modified Pull-Up (BMPU) has been used as an…

  4. Design of a small molecule against an oncogenic noncoding RNA

    PubMed Central

    Velagapudi, Sai Pradeep; Cameron, Michael D.; Haga, Christopher L.; Rosenberg, Laura H.; Lafitte, Marie; Duckett, Derek R.; Phinney, Donald G.; Disney, Matthew D.

    2016-01-01

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif–small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm. PMID:27170187

  5. Trichotillomania (Hair-Pulling Disorder)

    MedlinePlus

    Trichotillomania (hair-pulling disorder) Overview Trichotillomania (trik-o-til-o-MAY-nee-uh), also called hair-pulling disorder, is a mental disorder that involves recurrent, irresistible urges to pull out hair from your scalp, eyebrows or other areas of ...

  6. Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy.

    PubMed

    Nolan, Michael; Tofail, Syed A M

    2010-05-01

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Optimal information transfer in enzymatic networks: A field theoretic formulation

    NASA Astrophysics Data System (ADS)

    Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.

    2017-07-01

    Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in networks of arbitrary complexity.

  8. Expansion and concatenation of nonmuscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis

    PubMed Central

    Fenix, Aidan M.; Taneja, Nilay; Buttler, Carmen A.; Lewis, John; Van Engelenburg, Schuyler B.; Ohi, Ryoma; Burnette, Dylan T.

    2016-01-01

    Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, nonmuscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks), but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non–mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-Fs/NMIIA-F stacks move together and align. We found that NMIIA-F stack formation was regulated by both motor activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II–based contractile systems are assembled. PMID:26960797

  9. [Design on tester of pull-out force for orthodontic micro implant].

    PubMed

    Su, He; Wu, Pei; Wang, Huiyuan; Chen, Yan; Bao, Xuemei

    2013-09-01

    A special device for measuring the pull-out force of orthodontic micro implant was designed, which has the characteristics of simple construction and easy operation, and can be used to detect the pull-out-force of orthodontic micro implant. The tested data was stored and analyzed by a computer, and as the results, the pull-out-force curve, maximum pull-out force as well as average pull-out force were outputted, which was applied in analyzing or investigating the initial stability and immediate loading property of orthodontic micro implant.

  10. Force-dependent switch in protein unfolding pathways and transition-state movements

    PubMed Central

    Zhuravlev, Pavel I.; Hinczewski, Michael; Chakrabarti, Shaon; Marqusee, Susan; Thirumalai, D.

    2016-01-01

    Although it is known that single-domain proteins fold and unfold by parallel pathways, demonstration of this expectation has been difficult to establish in experiments. Unfolding rate, ku(f), as a function of force f, obtained in single-molecule pulling experiments on src SH3 domain, exhibits upward curvature on a log⁡ku(f) plot. Similar observations were reported for other proteins for the unfolding rate ku([C]). These findings imply unfolding in these single-domain proteins involves a switch in the pathway as f or [C] is increased from a low to a high value. We provide a unified theory demonstrating that if log⁡ku as a function of a perturbation (f or [C]) exhibits upward curvature then the underlying energy landscape must be strongly multidimensional. Using molecular simulations we provide a structural basis for the switch in the pathways and dramatic shifts in the transition-state ensemble (TSE) in src SH3 domain as f is increased. We show that a single-point mutation shifts the upward curvature in log⁡ku(f) to a lower force, thus establishing the malleability of the underlying folding landscape. Our theory, applicable to any perturbation that affects the free energy of the protein linearly, readily explains movement in the TSE in a β-sandwich (I27) protein and single-chain monellin as the denaturant concentration is varied. We predict that in the force range accessible in laser optical tweezer experiments there should be a switch in the unfolding pathways in I27 or its mutants. PMID:26818842

  11. Force-dependent switch in protein unfolding pathways and transition-state movements.

    PubMed

    Zhuravlev, Pavel I; Hinczewski, Michael; Chakrabarti, Shaon; Marqusee, Susan; Thirumalai, D

    2016-02-09

    Although it is known that single-domain proteins fold and unfold by parallel pathways, demonstration of this expectation has been difficult to establish in experiments. Unfolding rate, [Formula: see text], as a function of force f, obtained in single-molecule pulling experiments on src SH3 domain, exhibits upward curvature on a [Formula: see text] plot. Similar observations were reported for other proteins for the unfolding rate [Formula: see text]. These findings imply unfolding in these single-domain proteins involves a switch in the pathway as f or [Formula: see text] is increased from a low to a high value. We provide a unified theory demonstrating that if [Formula: see text] as a function of a perturbation (f or [Formula: see text]) exhibits upward curvature then the underlying energy landscape must be strongly multidimensional. Using molecular simulations we provide a structural basis for the switch in the pathways and dramatic shifts in the transition-state ensemble (TSE) in src SH3 domain as f is increased. We show that a single-point mutation shifts the upward curvature in [Formula: see text] to a lower force, thus establishing the malleability of the underlying folding landscape. Our theory, applicable to any perturbation that affects the free energy of the protein linearly, readily explains movement in the TSE in a β-sandwich (I27) protein and single-chain monellin as the denaturant concentration is varied. We predict that in the force range accessible in laser optical tweezer experiments there should be a switch in the unfolding pathways in I27 or its mutants.

  12. Atomic scale study of nanocontacts

    NASA Astrophysics Data System (ADS)

    Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.

    1998-03-01

    Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.

  13. Pull of Gravity: A Media Review Focusing on the Social and Environmental Effects of Recidivism.

    PubMed

    Mejia, Lidyvez

    2016-01-01

    Recidivism is defined as reincarceration, reconviction and/or being reimprisoned. This article focuses on the issues of recidivism while incorporating Pull of Gravity, a documentary, which highlights the challenges ex-offenders encounter during postrelease. This article explores 3 sociological issues closely related to recidivism: (1) types of populations that are recidivating, (2) communities' ex-offenders are returning home to, and (3) challenges they face in their transition. This article integrates research on issues of reentry and utilizes real-life experiences reflected through this film to give readers a tangible perception on the challenges that are currently faced. It explores possible resolutions while prompting critical thinking for everyone; individuals who are familiar with this topic and those who are foreign.

  14. CO2 Push-Pull Dual (Conjugate) Faults Injection Simulations

    DOE Data Explorer

    Oldenburg, Curtis (ORCID:0000000201326016); Lee, Kyung Jae; Doughty, Christine; Jung, Yoojin; Borgia, Andrea; Pan, Lehua; Zhang, Rui; Daley, Thomas M.; Altundas, Bilgin; Chugunov, Nikita

    2017-07-20

    This submission contains datasets and a final manuscript associated with a project simulating carbon dioxide push-pull into a conjugate fault system modeled after Dixie Valley- sensitivity analysis of significant parameters and uncertainty prediction by data-worth analysis. Datasets include: (1) Forward simulation runs of standard cases (push & pull phases), (2) Local sensitivity analyses (push & pull phases), and (3) Data-worth analysis (push & pull phases).

  15. Phase-dependent organization of postural adjustments associated with arm movements while walking.

    PubMed

    Nashner, L M; Forssberg, H

    1986-06-01

    This study examines the interactions between anteroposterior postural responses and the control of walking in human subjects. In the experimental paradigm, subjects walked upon a treadmill, gripping a rigid handle with one hand. Postural responses at different phases of stepping were elicited by rapid arm pulls or pushes against the handle. During arm movements, EMG's recorded the activity of representative arm, ankle, and thigh segment muscles. Strain gauges in the handle measured the force of the arm movement. A Selspot II system measured kinematics of the stepping movements. The duration of support and swing phases were marked by heel and toe switches in the soles of the subjects' shoes. In the first experiment, subjects were instructed to pull on the handle at their own pace. In these trials all subjects preferred to initiate pulls near heel strikes. Next, when instructed to pull as rapidly as possible in response to tone stimuli, reaction times were similar for all phases of the step cycle. Leg muscle responses associated with arm pulls and pushes, referred to as "postural activations," were directionally specific and preceded arm muscle activity. The temporal order and spatial distribution of postural activations in the muscles of the support leg were similar when arm pull movements occurred while the subject was standing in place and after heel strike while walking. Activations began in the ankle and radiated proximally to the thigh and then the arm. Activations of swing leg muscles were also directionally specific and involved flexion and forward or backward thrust of the limb. When arm movements were initiated during transitions from support by one leg to the other, patterns of postural activations were altered. Alterations usually occurred 10-20 ms before hell strikes and involved changes in the timing and sometimes the spatial structure of postural activations. Postural activation patterns are similar during in-place standing and during the support phase of locomotion. Walking and posture control appear to be separately organized but interrelated activities. Our results also suggest that the stepping generators, not peripheral feedback time locked to heel strikes, modulate postural activation patterns.

  16. [Research on the stability of teaching robots of rotation-traction manipulation].

    PubMed

    Feng, Min-Shan; Zhu, Li-Guo; Wang, Shang-Quan; Yu, Jie; Chen, Ming; Li, Ling-Hui; Wei, Xu

    2017-03-25

    To evaluate the stability of teaching robot of rotation-traction manipulation. Operators were required to get the hang of rotation-traction manipulation and had clinical experience for over 5 years. The examination and data processing of the ten operators in our research were collected by the teaching robot of rotation-traction manipulation. Traction, pulling force, maximum force, pulling time, rotational amplitude and pitch range were recorded and compared for five times(G1, G2, G3, G4 and G5). The qualification rates were analyzed to evaluate the stability of teaching robot of rotation-traction manipulation. Nonconforming items were found in G1 and G2, for instance, pulling force( P =0.074), maximum force( P =0.264) and rotational amplitude ( P =0.531). There was no statistically difference. None nonconforming item was found in G3, G4 and G5. All data were processed by SPSS and One-way ANOVA was used to analysis. Pulling force was found statistically different in G1, compared with G4 and G5( P =0.015, P =0.006). Maximum force was found statistically different in G1, compared with G4 and G5 ( P =0.021, P =0.012). None differences were found in other comparisons ( P >0.05). The teaching robot of rotation-traction manipulation used in our research could provide objective and quantitative indices and was considered to be an effective tool of assessing the rotation-traction manipulation.

  17. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  18. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Kim, Ho Young; Oh, Mi Hyun; Byun, Sanguine; Lim, Sung Hwan; Heo, Yong-Seok; Kang, Nam Joo; Bode, Ann M.; Dong, Zigang; Lee, Hyong Joo

    2010-01-01

    Chronic exposure to solar ultraviolet (UV) light causes skin photoaging. Many studies have shown that naturally occurring phytochemicals have anti-photoaging effects, but their direct target molecule(s) and mechanism(s) remain unclear. We found that myricetin, a major flavonoid in berries and red wine, inhibited wrinkle formation in mouse skin induced by chronic UVB irradiation (0.18 J/cm2, 3 days/wk for 15 wk). Myricetin treatment reduced UVB-induced epidermal thickening of mouse skin and also suppressed UVB-induced matrix metalloproteinase-9 (MMP-9) protein expression and enzyme activity. Myricetin appeared to exert its anti-aging effects by suppressing UVB-induced Raf kinase activity and subsequent attenuation of UVB-induced phosphorylation of MEK and ERK in mouse skin. In vitro and in vivo pull-down assays revealed that myricetin bound with Raf in an ATP-noncompetitive manner. Overall, these results indicate that myricetin exerts potent anti-photoaging activity by regulating MMP-9 expression through the suppression of Raf kinase activity. PMID:20093107

  19. Ab initio and density functional force field studies on the IR spectra and structure of diazonium dicyanomethylide (diazodicyanomethane)

    NASA Astrophysics Data System (ADS)

    Georgieva, Miglena K.

    2004-03-01

    The structure of diazonium dicyanomethylide (diazodicyanomethane) +N 2-C(CN) 2-↔N 2C(CN) 2 has been studied on the basis of ab initio HF, MP2 and DFT BLYP force field calculations, as well as of literature IR spectra and X-ray diffraction structural data. The results have been compared with those obtained for a series of chemical relatives of the title compound, i.e. molecules, push-pull molecules, anions and zwitterions, containing α-dicyano or diazo fragments, and especially substituted ammonium dicyanomethylides and diazomethane +N 2-CH 2-↔N 2CH 2. It has been found on the basis of spectral, bond length, bond order and electric charge analyses that the diazonium (or carbanionic, left) canonical form is much more important for the title zwitterion, than the corresponding one for diazomethane. So, the title compound can be named (and considered as) both diazonium dicyanomethylide and dicyanodiazomethane.

  20. Experimental approaches to identify cellular G-quadruplex structures and functions.

    PubMed

    Di Antonio, Marco; Rodriguez, Raphaël; Balasubramanian, Shankar

    2012-05-01

    Guanine-rich nucleic acids can fold into non-canonical DNA secondary structures called G-quadruplexes. The formation of these structures can interfere with the biology that is crucial to sustain cellular homeostases and metabolism via mechanisms that include transcription, translation, splicing, telomere maintenance and DNA recombination. Thus, due to their implication in several biological processes and possible role promoting genomic instability, G-quadruplex forming sequences have emerged as potential therapeutic targets. There has been a growing interest in the development of synthetic molecules and biomolecules for sensing G-quadruplex structures in cellular DNA. In this review, we summarise and discuss recent methods developed for cellular imaging of G-quadruplexes, and the application of experimental genomic approaches to detect G-quadruplexes throughout genomic DNA. In particular, we will discuss the use of engineered small molecules and natural proteins to enable pull-down, ChIP-Seq, ChIP-chip and fluorescence imaging of G-quadruplex structures in cellular DNA. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Small Molecule Recognition and Tools to Study Modulation of r(CGG)(exp) in Fragile X-Associated Tremor Ataxia Syndrome.

    PubMed

    Yang, Wang-Yong; He, Fang; Strack, Rita L; Oh, Seok Yoon; Frazer, Michelle; Jaffrey, Samie R; Todd, Peter K; Disney, Matthew D

    2016-09-16

    RNA transcripts containing expanded nucleotide repeats cause many incurable diseases via various mechanisms. One such disorder, fragile X-associated tremor ataxia syndrome (FXTAS), is caused by a noncoding r(CGG) repeat expansion (r(CGG)(exp)) that (i) sequesters proteins involved in RNA metabolism in nuclear foci, causing dysregulation of alternative pre-mRNA splicing, and (ii) undergoes repeat associated non-ATG translation (RANT), which produces toxic homopolymeric proteins without using a start codon. Here, we describe the design of two small molecules that inhibit both modes of toxicity and the implementation of various tools to study perturbation of these cellular events. Competitive Chemical Cross Linking and Isolation by Pull Down (C-Chem-CLIP) established that compounds bind r(CGG)(exp) and defined small molecule occupancy of r(CGG)(exp) in cells, the first approach to do so. Using an RNA GFP mimic, r(CGG)(exp)-Spinach2, we observe that our optimal designed compound binds r(CGG)(exp) and affects RNA localization by disrupting preformed RNA foci. These events correlate with an improvement of pre-mRNA splicing defects caused by RNA gain of function. In addition, the compounds reduced levels of toxic homopolymeric proteins formed via RANT. Polysome profiling studies showed that small molecules decreased loading of polysomes onto r(CGG)(exp), explaining decreased translation.

  2. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule?

    PubMed

    Osawa, Masaki; Masuda, Michitaka; Kusano, Ken-ichi; Fujiwara, Keigi

    2002-08-19

    Fluid shear stress (FSS) induces many forms of responses, including phosphorylation of extracellular signal-regulated kinase (ERK) in endothelial cells (ECs). We have earlier reported rapid tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in ECs exposed to FSS. Osmotic changes also induced similar PECAM-1 and ERK phosphorylation with nearly identical kinetics. Because both FSS and osmotic changes should mechanically perturb the cell membrane, they might activate the same mechanosignaling cascade. When PECAM-1 is tyrosine phosphorylated by FSS or osmotic changes, SHP-2 binds to it. Here we show that ERK phosphorylation by FSS or osmotic changes depends on PECAM-1 tyrosine phosphorylation, SHP-2 binding to phospho-PECAM-1, and SHP-2 phosphatase activity. In ECs under flow, detectable amounts of SHP-2 and Gab1 translocated from the cytoplasm to the EC junction. When magnetic beads coated with antibodies against the extracellular domain of PECAM-1 were attached to ECs and tugged by magnetic force for 10 min, PECAM-1 associated with the beads was tyrosine phosphorylated. ERK was also phosphorylated in these cells. Binding of the beads by itself or pulling on the cell surface using poly-l-coated beads did not induce phosphorylation of PECAM-1 and ERK. These results suggest that PECAM-1 is a mechanotransduction molecule.

  3. Foot placement strategy in pushing and pulling.

    PubMed

    Lee, Tzu-Hsien

    2018-01-01

    Pushing and pulling tasks are very common in daily and industrial workplaces. They are one major source of musculoskeletal complaints. This study aimed to examine the foot placement strategy while pushing and pulling. Thirteen young males and ten young females were recruited as participants. A two (pushing and pulling) by four (48 cm, 84 cm, 120 cm, and 156 cm) factorial design was used. Exertion direction and exertion height significantly affected foot placement strategy. Pushing task needed more anteroposterior space than pulling task. The percentages of female/male for trailing foot position ranged from 77% to 90% (pushing) and from 80% to 93% (pulling) across the exertion heights. Practitioners should provide an anteroposterior space approximately to 70% body stature for workers to exert their maximum pulling and pushing strengths.

  4. Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection.

    PubMed

    Chinbe, Hiroyuki; Yoneyama, Takeshi; Watanabe, Tetsuyou; Miyashita, Katsuyoshi; Nakada, Mitsutoshi

    2018-01-01

    Development and evaluation of an effective attachment device for a bilateral brain tumor resection robotic surgery system based on the sensory performance of the human index finger in order to precisely detect gripping- and pulling-force feedback. First, a basic test was conducted to investigate the performance of the human index finger in the gripping- and pulling-force feedback system. Based on the test result, a new finger-attachment device was designed and constructed. Then, discrimination tests were conducted to assess the pulling force and the feedback on the hardness of the gripped material. The results of the basic test show the application of pulling force on the side surface of the finger has an advantage to distinguish the pulling force when the gripping force is applied on the finger-touching surface. Based on this result, a finger-attachment device that applies a gripping force on the finger surface and pulling force on the side surface of the finger was developed. By conducting a discrimination test to assess the hardness of the gripped material, an operator can distinguish whether the gripped material is harder or softer than a normal brain tissue. This will help in confirming whether the gripped material is a tumor. By conducting a discrimination test to assess the pulling force, an operator can distinguish the pulling-force resistance when attempting to pull off the soft material. Pulling-force feedback may help avoid the breaking of blood pipes when they are trapped in the gripper or attached to the gripped tissue. The finger-attachment device that was developed for detecting gripping- and pulling-force feedback may play an important role in the development of future neurosurgery robotic systems for precise and safe resection of brain tumors.

  5. USML-1 Glovebox experiments

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    This report covers the development of and results from three experiments that were flown in the Materials Science Glovebox on USML-1: Marangoni convection in Closed Containers (MCCC), Double Float Zone (DFZ), and Fiber Pulling in Microgravity (FPM). The Glovebox provided a convenient, low cost method for doing simple 'try and see' experiments that could test new concepts or elucidate microgravity phenomena. Since the Glovebox provided essentially one (or possibly two levels of confinement, many of the stringent verification and test requirements on the experiment apparatus could be relaxed and a streamlined test and verification plan for flight qualification could be implemented. Furthermore, the experiments were contained in their own carrying cases whose external configurations could be identified early in the integration sequence for stowage considerations while delivery of the actual experiment apparatus could be postponed until only a few months before flight. This minimized the time fluids must be contained and reduced the possibility of corrosive reactions that could ruin the experiment. In many respects, this exercise was as much about developing a simpler, cheaper way of doing crew-assisted science as it was about the actual scientific accomplishments of the individual experiments. The Marangoni Convection in Closed Containers experiment was designed to study the effects of a void space in a simulated Bridgman crystal growth configuration and to determine if surface tension driven convective flows that may result from thermal gradients along any free surfaces could affect the solidification process. The Fiber Pulling in Microgravity experiment sought to separate the role of gravity drainage from capillarity effects in the break-up of slender cylindrical liquid columns. The Stability of a Double Float Zone experiment explored the feasibility of a quasi-containerless process in which a solidifying material is suspended by two liquid bridges of its own melt.

  6. Kinematic analysis of the snatch lift with elite female weightlifters during the 2010 World Weightlifting Championship.

    PubMed

    Akkuş, Hasan

    2012-04-01

    The objectives of this study were to determine the mechanical work, the power output, and the angular kinematics of the lower limb and the linear kinematics of the barbell during the first and second pulls in the snatch lift event of the 2010 Women's World Weightlifting Championship, an Olympic qualifying competition, and to compare the snatch performances of the women weightlifters to those reported in the literature. The heaviest successful snatch lifts of 7 female weightlifters who won gold medals were analyzed. The snatch lifts were recorded using 2 Super-Video Home System cameras (50 fields·s), and points on the body and the barbell were manually digitized using the Ariel Performance Analysis System. The results revealed that the duration of the first pull was significantly greater than the duration of the transition phase, the second pull, and the turnover under the barbell (p < 0.05). The maximum extension velocities of the lower limb in the second pull were significantly greater than the maximum extension velocities in the first pull. The fastest extensions were observed at the knee joint during the first pull and at the hip joint during the second pull (p < 0.05). The barbell trajectories for the heaviest snatch lifts of these elite female weightlifters were similar to those of men. The maximum vertical velocity of the barbell was greater during the second pull than in the first pull (p < 0.05). The mechanical work performed in the first pull was greater than the second pull, and the power output during the second pull was greater than that of the first pull (p < 0.05). Although the magnitudes of the barbell's linear kinematics, the angular kinematics of the lower limb, and other energy characteristics did not exactly reflect those reported in the literature, the snatch lift patterns of the elite women weightlifters were similar to those of male weightlifters.

  7. Dynamic push-pull characteristics at three hand-reach envelopes: applications for the workplace.

    PubMed

    Calé-Benzoor, Maya; Dickstein, Ruth; Arnon, Michal; Ayalon, Moshe

    2016-01-01

    Pushing and pulling are common tasks in the workplace. Overexertion injuries related to manual pushing and pulling are often observed, and therefore the understanding of work capacity is important for efficient and safe workstation design. The purpose of the present study was to describe workloads obtained during different reach envelopes during a seated push-pull task. Forty-five women performed an isokinetic push-pull sequence at two velocities. Strength, work and agonist/antagonist muscle ratio were calculated for the full range of motion (ROM). We then divided the ROM into three reach envelopes - neutral, medium, and maximum reach. The work capacity for each direction was determined and the reach envelope work data were compared. Push capability was best at medium reach envelope and pulling was best at maximum reach envelope. Push/pull strength ratio was approximately 1. A recommendation was made to avoid strenuous push-pull tasks at neutral reach envelopes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Insights from Teacher Leavers: Push and Pull in Career Development

    ERIC Educational Resources Information Center

    Rinke, Carol R.; Mawhinney, Lynnette

    2017-01-01

    This article examines the career pathways of US teacher leavers, individuals who have voluntarily left classroom teaching prior to retirement. Based on the perspective that teachers construct their own career pathways through an ongoing negotiation among intrinsic and extrinsic factors, this research captures the experiences of 24 teacher leavers…

  9. Romanians Abroad: A Snapshot of Highly Skilled Migration

    ERIC Educational Resources Information Center

    Ferro, Anna

    2004-01-01

    This paper is about the experience of labour migration among skilled Romanians, mainly Information Technology workers and highly qualified researchers. It is based on a questionnaire survey where, among other elements, the researcher investigated the push-pull aspects of qualified migration and the strategies of labour migration. This paper…

  10. Queering Time and Space: Donald Murray as Introvert Whisperer

    ERIC Educational Resources Information Center

    Combs, D. Shane

    2017-01-01

    This article asks, "what in the broad and excessive definitions of composition and rhetoric keeps us from talking about personality and temperament alongside other issues of identity?" Pulling from scientists, queer theorists, and composition scholars, I explore the lived experiences of introverts and highly-sensitive people, which often…

  11. Reflective Learning: Theory and Practice.

    ERIC Educational Resources Information Center

    Sugerman, Deborah A.; Doherty, Kathryn L.; Garvey, Daniel E.; Gass, Michael A.

    An outdoor education leader's job is quite complex--the planning, logistics, preparation, teaching, watching, being aware of safety can be overwhelming. Pulling it all together so that participants can express what they learned from the experience is sometimes overlooked. The reflective process is integral to the success of learning, yet it takes…

  12. Performative Somaesthetics: Principles and Scope

    ERIC Educational Resources Information Center

    Mullis, Eric C.

    2006-01-01

    John Dewey's aesthetic has been invoked in recent discussions because many have realized that it resists the pull toward conceptualism that characterizes a great deal of aesthetic theory. Further, Art as Experience--Dewey's chief work on the philosophy of art--is rich with ideas that call for development. Richard Shusterman's work does just this…

  13. Rhizomatic Explorations in Curriculum

    ERIC Educational Resources Information Center

    Smitka, Julie A. M.

    2012-01-01

    A visual and theatrical exercise anchored in the Grades 11 and 12 Ontario Curriculum for Media Arts and Interdisciplinary Studies was enacted and recorded as individual experiences of each participant. The event was re-mastered in a graphic representation that depicts the forces, pushes and pulls of curriculum and students' needs which educators…

  14. Experimental and numerical studies of tethered DNA dynamics in shear flow

    NASA Astrophysics Data System (ADS)

    Lueth, Christopher A.

    Polymer physics has a rich tradition spanning nearly two centuries. In the 1830s, Henri Braconnot and coworkers were perhaps the first to work on what is today known as polymer science when they derived semi-synthetic materials from naturally occurring cellulose. However, the true nature of polymers, as long chain molecules, had not been proposed until 1910 by Pickles. It was not until the 1950's when polymer models were developed using statistical mechanics. Recently, the field has been revitalized by the ability to study individual polymer molecules for the first time. The development of DNA single molecule fluorescence microscopy coupled with ever increasing computational power has opened the door to molecular level understanding of polymer physics, resolving old disputes and uncovering new interesting phenomena. In this work, we use a combination of theoretical predictions and lambda-phage DNA single molecule fluorescence microscopy to study the behavior of polymers tethered to surfaces. Brownian dynamics simulations of a number of coarse-grained polymer models---dynamic and equilibrium Kratky-Porod chains as well as bead-spring chains---were completed and compared with analytical and experimental results. First, an expression is developed for the entropic exclusion force experienced by a tethered polymer chain. We propose that, for a freely jointed chain, a modification to the free entropic force of kBT/y is needed in the direction normal to the surface. Analogously, we propose that for a wormlike chain, a modification of 2kBT/y is needed, due to the finite curvature of the model. Then, the reliability of discretized bead spring simulations containing this modified entropic force are analyzed using Kratky-Porod simulations and are found to reproduce most statistics, except for those very near the surface, such as end-wall contact. Next, experiments of tethered lambda-phage DNA in shear flow are presented for the first time in the flow-gradient plane. The tethering surface chemistry proved to be arduous work, but with the aide of contact angle and ellipsometry measurements, success was achieved. Extension behavior was shown to agree well with bead spring simulations, but deviations were discovered for weak flows in the extensional fluctuations, mean distance from the wall, and orientation angle. Cyclic dynamics---where the polymer continuously diffuses away from the wall, subsequently undergoes stretch in the flow direction, is then "entropically pulled back" towards the wall, and finally recoils---was observed and quantified through correlation and power spectral densities. Again, quantitative agreement was observed between experiments and bead spring simulations. The onset of cyclic dynamics was found to occur at Wi ≈ 3 and was found to decline with increasing Wi up to ≈ 200. Finally, a reliable procedure was developed utilizing Dip Pen Nanolithography to controllably tether DNA to gold surfaces. Preliminary experiments were performed and successful tethering was achieved, an important first step toward creating DNA scaffolds for molecular wires. However, further research is needed to fully develop the process and successfully double tether DNA molecules between gold electrodes.

  15. The Phenomenology of Hair Pulling Urges in Trichotillomania: A Comparative Approach

    PubMed Central

    Madjar, Shai; Sripada, Chandra S.

    2016-01-01

    Trichotillomania is a disorder characterized by recurrent urges to pull out one's hair, but the experiential characteristics of hair pulling urges are poorly understood. This study used a comparative approach to understand the subjective phenomenology of hair pulling: participants with trichotillomania symptoms were asked about their hair pulling urges as well as their urges to eat unhealthy foods. Participants who reported experiencing problematic unhealthy food urges were identified and asked to compare the phenomenological characteristics of their hair pulling and unhealthy food urges across a variety of dimensions. Results revealed significant differences for only some urge properties measured, and differences that existed were small to moderate in magnitude. Qualitative comparisons of the two urges revealed situational characteristics of hair pulling that could explain these small to moderate differences between the two urges. We conclude that hair pulling urges may be more comparable to ordinary urges such as unhealthy food urges than one might expect, but that hair pulling urges may nevertheless be rated as slightly more severe due to situational characteristics of these urges. This conception may improve clinician and lay understanding of the condition, assist with destigmatization efforts, and facilitate the development of treatment strategies. PMID:26925017

  16. Pulled Motzkin paths

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.

    2010-08-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  17. The Effects of Direction of Exertion, Path, and Load Placement in Nursing Cart Pushing and Pulling Tasks: An Electromyographical Study.

    PubMed

    Kao, Huei Chu; Lin, Chiuhsiang Joe; Lee, Yung Hui; Chen, Su Huang

    2015-01-01

    The purpose of this study was to explore the effects of direction of exertion (DOE) (pushing, pulling), path (walking in a straight line, turning left, walking uphill), and load placement (LP) (the 18 blocks were indicated by X, Y and Z axis; there were 3 levels on the X axis, 2 levels on the Y axis, and 3 levels on the Z axis) on muscle activity and ratings of perceived exertion in nursing cart pushing and pulling tasks. Ten participants who were female students and not experienced nurses were recruited to participate in the experiment. Each participant performed 108 experimental trials in the study, consisting of 2 directions of exertion (push and pull), 3 paths, and 18 load placements (indicated by X, Y and Z axes). A 23kg load was placed into one load placement. The dependent variables were electromyographic (EMG) data of four muscles collected bilaterally as follows: Left (L) and right (R) trapezius (TR), flexor digitorum superficialis (FDS), extensor digitorum (ED), and erector spinae (ES) and subjective ratings of perceived exertion (RPE). Split-split-plot ANOVA was conducted to analyze significant differences between DOE, path, and LP in the EMG and RPE data. Pulling cart tasks produced a significantly higher activation of the muscles (RTR:54.4%, LTR:50.3%, LFDS:57.0%, LED:63.4%, RES:40.7%, LES:36.7%) than pushing cart tasks (RTR:42.4%, LTR:35.1%, LFDS:32.3%, LED:55.1%, RES:33.3%, LES:32.1%). A significantly greater perceived exertion was found in pulling cart tasks than pushing cart tasks. Significantly higher activation of all muscles and perceived exertion were observed for walking uphill than walking in a straight line and turning left. Significantly lower muscle activity of all muscles and subject ratings were observed for the central position on the X axis, the bottom position on the Y axis, and the posterior position on the Z axis. These findings suggest that nursing staff should adopt forward pushing when moving a nursing cart, instead of backward pulling, and that uphill paths should be avoided in the design of work environments. In terms of distribution of the load in a nursing cart, heavier materials should be positioned at bottom of the cabinet, centered on the horizontal plane and close to the handle, to reduce the physical load of the nursing staff.

  18. The Effects of Direction of Exertion, Path, and Load Placement in Nursing Cart Pushing and Pulling Tasks: An Electromyographical Study

    PubMed Central

    Kao, Huei Chu; Lin, Chiuhsiang Joe; Lee, Yung Hui; Chen, Su Huang

    2015-01-01

    The purpose of this study was to explore the effects of direction of exertion (DOE) (pushing, pulling), path (walking in a straight line, turning left, walking uphill), and load placement (LP) (the 18 blocks were indicated by X, Y and Z axis; there were 3 levels on the X axis, 2 levels on the Y axis, and 3 levels on the Z axis) on muscle activity and ratings of perceived exertion in nursing cart pushing and pulling tasks. Ten participants who were female students and not experienced nurses were recruited to participate in the experiment. Each participant performed 108 experimental trials in the study, consisting of 2 directions of exertion (push and pull), 3 paths, and 18 load placements (indicated by X, Y and Z axes). A 23kg load was placed into one load placement. The dependent variables were electromyographic (EMG) data of four muscles collected bilaterally as follows: Left (L) and right (R) trapezius (TR), flexor digitorum superficialis (FDS), extensor digitorum (ED), and erector spinae (ES) and subjective ratings of perceived exertion (RPE). Split-split-plot ANOVA was conducted to analyze significant differences between DOE, path, and LP in the EMG and RPE data. Pulling cart tasks produced a significantly higher activation of the muscles (RTR:54.4%, LTR:50.3%, LFDS:57.0%, LED:63.4%, RES:40.7%, LES:36.7%) than pushing cart tasks (RTR:42.4%, LTR:35.1%, LFDS:32.3%, LED:55.1%, RES:33.3%, LES:32.1%). A significantly greater perceived exertion was found in pulling cart tasks than pushing cart tasks. Significantly higher activation of all muscles and perceived exertion were observed for walking uphill than walking in a straight line and turning left. Significantly lower muscle activity of all muscles and subject ratings were observed for the central position on the X axis, the bottom position on the Y axis, and the posterior position on the Z axis. These findings suggest that nursing staff should adopt forward pushing when moving a nursing cart, instead of backward pulling, and that uphill paths should be avoided in the design of work environments. In terms of distribution of the load in a nursing cart, heavier materials should be positioned at bottom of the cabinet, centered on the horizontal plane and close to the handle, to reduce the physical load of the nursing staff. PMID:26485039

  19. Maximum likelihood estimation of protein kinetic parameters under weak assumptions from unfolding force spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Aioanei, Daniel; Samorì, Bruno; Brucale, Marco

    2009-12-01

    Single molecule force spectroscopy (SMFS) is extensively used to characterize the mechanical unfolding behavior of individual protein domains under applied force by pulling chimeric polyproteins consisting of identical tandem repeats. Constant velocity unfolding SMFS data can be employed to reconstruct the protein unfolding energy landscape and kinetics. The methods applied so far require the specification of a single stretching force increase function, either theoretically derived or experimentally inferred, which must then be assumed to accurately describe the entirety of the experimental data. The very existence of a suitable optimal force model, even in the context of a single experimental data set, is still questioned. Herein, we propose a maximum likelihood (ML) framework for the estimation of protein kinetic parameters which can accommodate all the established theoretical force increase models. Our framework does not presuppose the existence of a single force characteristic function. Rather, it can be used with a heterogeneous set of functions, each describing the protein behavior in the stretching time range leading to one rupture event. We propose a simple way of constructing such a set of functions via piecewise linear approximation of the SMFS force vs time data and we prove the suitability of the approach both with synthetic data and experimentally. Additionally, when the spontaneous unfolding rate is the only unknown parameter, we find a correction factor that eliminates the bias of the ML estimator while also reducing its variance. Finally, we investigate which of several time-constrained experiment designs leads to better estimators.

  20. A centrifuge simulated push-pull manoeuvre with subsequent reduced +Gz tolerance.

    PubMed

    Xu, Yan; Li, Bao-Hui; Zhang, Li-Hui; Jin, Zhao; Wei, Xiao-Yang; Wang, Hong; Wu, San-Yuan; Wang, Hai-Xia; Wang, Quan; Yan, Gui-Ding; Deng, Lue; Geng, Xi-Chen

    2012-07-01

    The push-pull effect (PPE) has been recognized as a deleterious contributor to fatal flight accidents. The purpose of the study was to establish a push-pull manoeuvre (PPM) simulation with a tri-axes centrifuge, studying the effect of this PPM on the +Gz tolerance, and to make this simulation suitable for pilot centrifuge training. The PPM was realized through pre-programmed acceleration profiles consisting of -1 Gz for 5 s followed by a +Gz plateau for 10 s. Relaxed +Gz tolerance recordings were obtained from 20 healthy male fighter aircraft pilots and 6 healthy male volunteers through exposure to pre-programmed profiles with and without previous -1 Gz exposure. A statistically significant decrease in +Gz tolerance was seen in all subjects after -1 Gz for 5 s exposure, 0.87 ± 0.13 G in the volunteer group and 0.95 ± 0.25 G in the pilot group. The ear opacity pulse as a +Gz tolerance endpoint criterion was sometimes found to be unreliable during the PPM experiments. The simulated PPM in this study elicited a PPE, which was obvious from the significant reduction in +Gz tolerance. The PPM profile appears useful to be included in centrifuge training.

  1. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.

    PubMed

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance.

  2. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight

    PubMed Central

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5–6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance. PMID:27463106

  3. Exploring the dynamic behaviors and transport properties of gas molecules in a transmembrane cyclic peptide nanotube.

    PubMed

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2013-12-05

    The dynamic behaviors and transport properties of O2, CO2, and NH3 molecules through a transmembrane cyclic peptide nanotube (CPNT) of 8×cyclo-(WL)4/POPE have been investigated by steered molecular dynamics (SMD) simulations and adaptive biasing force (ABF) samplings. Different external forces are needed for three gas molecules to enter the channel. The periodic change of the pulling force curve for a gas traveling through the channel mainly arises from the regular and periodic arrangement of the composed CP subunits of the CPNT. Radial distribution functions (RDFs) between gas and water disclose the density decrease of channel water, which strongly aggravates the discontinuity of H-bond formation between a gas molecule and the neighboring water. Compared to hardly any H-bond formation between CO2 (or O2) and the framework of the CPNT, NH3 can form abundant H-bonds with the carbonyl/amide groups of the CPNT, leading to a fierce competition to NH3-water H-bonded interactions. In addition to direct H-bonded interactions, all three gases can form water bridges with the tube. The potential profile of mean force coincides with the occurring probability of a gas molecule along the tube axis. The energy barriers at two mouths of the CPNT elucidate the phenomenon that CO2 and O2 are thoroughly confined in the narrow lumen while NH3 can easily go outside the tube. Intermolecular interactions of each gas with channel water and the CPNT framework and the formation of H-bonds and water bridges illuminate the different gas translocation behaviors. The results uncover interesting and comprehensive mechanisms underlying the permeation characteristics of three gas molecules traveling through a transmembrane CPNT.

  4. Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor)

    2016-01-01

    A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.

  5. The surprising dynamics of a chain on a pulley: lift off and snapping

    PubMed Central

    Audoly, Basile

    2016-01-01

    The motion of weights attached to a chain or string moving on a frictionless pulley is a classic problem of introductory physics used to understand the relationship between force and acceleration. Here, we consider the dynamics of the chain when one of the weights is removed and, thus, one end is pulled with constant acceleration. This simple change has dramatic consequences for the ensuing motion: at a finite time, the chain ‘lifts off’ from the pulley, and the free end subsequently accelerates faster than the end that is pulled. Eventually, the chain undergoes a dramatic reversal of curvature reminiscent of the crack or snap, of a whip. We combine experiments, numerical simulations and theoretical arguments to explain key aspects of this dynamical problem. PMID:27436987

  6. The surprising dynamics of a chain on a pulley: lift off and snapping.

    PubMed

    Brun, P-T; Audoly, Basile; Goriely, Alain; Vella, Dominic

    2016-06-01

    The motion of weights attached to a chain or string moving on a frictionless pulley is a classic problem of introductory physics used to understand the relationship between force and acceleration. Here, we consider the dynamics of the chain when one of the weights is removed and, thus, one end is pulled with constant acceleration. This simple change has dramatic consequences for the ensuing motion: at a finite time, the chain 'lifts off' from the pulley, and the free end subsequently accelerates faster than the end that is pulled. Eventually, the chain undergoes a dramatic reversal of curvature reminiscent of the crack or snap, of a whip. We combine experiments, numerical simulations and theoretical arguments to explain key aspects of this dynamical problem.

  7. [Unconventional hemodiafiltration: double-high-flux and push-pull].

    PubMed

    Lentini, Paolo; Pellanda, Valentina; Contestabile, Andrea; Berlingo, Graziella; de Cal, Massimo; Ronco, Claudio; Dell'Aquila, Roberto

    2012-01-01

    Growing evidence demonstrates that morbidity and mortality in patients with end-stage renal disease correlate significantly with retention of larger uremic toxins including β2 microglobulin. Even when hemodialysis is performed, complications such as dialysis-associated amyloidosis are likely to develop. These complications seem to be related to the retention and accumulation of larger uremic substances, only a small amount of which are removed by hemodialysis. On-line hemodiafiltration (OL-HDF) is popular but expensive; double-highflux hemodiafiltration (DHF-HDF) and push-pull hemodiafiltration (PP-HDF), special types of HDF, are very efficient treatments without the need for ultrapure substitution fluid. In DHF-HDF two high-flux dialyzers are connected in series by blood and dialysate lines. In the first dialyzer mixed diffusion convection removes fluid and solutes; in the second dialyzer backfiltration of sterile dialysate occurs, resembling the post-dilution OL-HDF mode. The PP-HDF method alternates rapid convection of body fluids and rapid backfiltration of sterile pyrogen-free dialysate using a high-flux membrane and a double-pump system. These treatments require an elevated blood flow and have the advantage that they use dialysis fluid instead of ultrapure fluid. Several studies have shown an elevated removal rate of middle molecules and reduction of dialysis-related amyloidosis symptoms like back and shoulder pain, restless leg syndrome, and carpal tunnel syndrome.

  8. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    PubMed

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  9. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex

    PubMed Central

    Xie, Ping

    2015-01-01

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by “hungry” codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel. PMID:26473825

  10. Direct electrical control of IgG conformation and functional activity at surfaces

    NASA Astrophysics Data System (ADS)

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-11-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.

  11. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  12. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  13. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  14. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  15. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  16. Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, S.; Hu, N.; Han, X.; Zhou, L.; Ning, H.; Wu, L.; Alamusi, Yamamoto, G.; Chang, C.; Hashida, T.; Atobe, S.; Fukunaga, H.

    2013-04-01

    Systematic atomic simulations based on molecular mechanics were conducted to investigate the pull-out behavior of a capped carbon nanotube (CNT) in CNT-reinforced nanocomposites. Two common cases were studied: the pull-out of a complete CNT from a polymer matrix in a CNT/polymer nanocomposite and the pull-out of the broken outer walls of a CNT from the intact inner walls (i.e., the sword-in-sheath mode) in a CNT/alumina nanocomposite. By analyzing the obtained relationship between the energy increment (i.e., the difference in the potential energy between two consecutive pull-out steps) and the pull-out displacement, a set of simple empirical formulas based on the nanotube diameter was developed to predict the corresponding pull-out force. The predictions from these formulas are quite consistent with the experimental results. Moreover, the much higher pull-out force for a capped CNT than that of the corresponding open-ended CNT implies a significant contribution from the CNT cap to the interfacial properties of the CNT-reinforced nanocomposites. This finding provides a valuable insight for designing nanocomposites with desirable mechanical properties.

  17. Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands.

    PubMed

    Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin

    2017-06-27

    Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages.

  18. Determination of the absolute binding free energies of HIV-1 protease inhibitors using non-equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, Son Tung; Nguyen, Minh Tung; Nguyen, Minh Tho

    2017-05-01

    The absolute binding free energy of an inhibitor to HIV-1 Protease (PR) was determined throughout evaluation of the non-bonded interaction energy difference between the two bound and unbound states of the inhibitor and surrounding molecules by the fast pulling of ligand (FPL) process using non-equilibrium molecular dynamics (NEMD) simulations. The calculated free energy difference terms help clarifying the nature of the binding. Theoretical binding affinities are in good correlation with experimental data, with R = 0.89. The paradigm used is able to rank two inhibitors having the maximum difference of ∼1.5 kcal/mol in absolute binding free energies.

  19. Universal bound on the efficiency of molecular motors

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-12-01

    The thermodynamic uncertainty relation provides an inequality relating any mean current, the associated dispersion and the entropy production rate for arbitrary non-equilibrium steady states. Applying it here to a general model of a molecular motor running against an external force or torque, we show that the thermodynamic efficiency of such motors is universally bounded by an expression involving only experimentally accessible quantities. For motors pulling cargo through a viscous fluid, a universal bound for the corresponding Stokes efficiency follows as a variant. A similar result holds if mechanical force is used to synthesize molecules of high chemical potential. Crucially, no knowledge of the detailed underlying mechano-chemical mechanism is required for applying these bounds.

  20. Design and optimization of broadband tapered optical fibers with a nanofiber waist.

    PubMed

    Stiebeiner, Ariane; Garcia-Fernandez, Ruth; Rauschenbeutel, Arno

    2010-10-25

    The control over the transmission properties of tapered optical fibers (TOFs) is an important requirement for a whole range of applications. Using a carefully designed flame pulling process that allows us to realize preset fiber radius profiles, we fabricate TOFs with a nanofiber waist. We study the spectral transmission properties of these TOFs as a function of the taper profile and the waist length and show how the transmission band of the TOF can be tuned via different fiber profile parameters. Based on these results, we have designed a nanofiber-waist TOF with broadband transmission for surface spectroscopy of organic molecules. Moreover, our method allows us to analyze the loss mechanisms of optical nanofibers.

  1. Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers.

    PubMed

    Huang, Wenmao; Zhu, Zhenshu; Wen, Jing; Wang, Xin; Qin, Meng; Cao, Yi; Ma, Haibo; Wang, Wei

    2017-01-24

    Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼10 9 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.

  2. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.

    PubMed

    Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L

    2016-03-15

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes.

  3. A new model for the initiation, crustal architecture, and extinction of pull-apart basins

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.; Abera, R.

    2015-12-01

    We present a new model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal numerical models of deformation, field observations, and fault theory, and answers many of the outstanding questions related to these rifts. In our model, geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step which results from early geometry of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement and the fault tips may propagate beyond the rift basin. Our model predicts that the sediment source areas may thus migrate over time. This implies that, although pull-apart basins lengthen over time, lengthening is accommodated by extension within the pull-apart basin, rather than formation of new faults outside of the rift zone. In this aspect pull-apart basins behave as narrow rifts: with increasing strike-slip the basins deepen but there is no significant younging outward. We explain why pull-apart basins do not go through previously proposed geometric evolutionary stages, which has not been documented in nature. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because strike-slip systems tend to straighten. The model predicts what the favorable step-dimensions are for the formation of such a fault system, and those for which a pull-apart basin may further develop into a short seafloor-spreading ridge. The model also shows that rift shoulder uplift is enhanced if the strike-slip rate is larger than the fault-propagation rate. Crustal compression then contributes to uplift of the rift flanks.

  4. Long-Term Outcome in Pediatric Trichotillomania

    PubMed Central

    Schumer, Maya C.; Panza, Kaitlyn E.; Mulqueen, Jilian M.; Jakubovski, Ewgeni; Bloch, Michael H.

    2015-01-01

    Objective To examine long-term outcome in children with trichotillomania. Method We conducted follow-up clinical assessments an average of 2.8 ± 0.8 years after baseline evaluation in 30 out of 39 children who previously participated in a randomized, double-blind, placebo-controlled trial of N-acetylcysteine (NAC) for pediatric trichotillomania. Our primary outcome was change in hairpulling severity on the Massachusetts General Hospital-Hairpulling Scale (MGH-HPS) between the end of the acute phase and follow-up evaluation. We also obtained secondary measures examining styles of hairpulling, comorbid anxiety and depressive symptoms, as well as continued treatment utilization. We examined both correlates and predictors of outcome (change in MGH-HPS score) using linear regression. Results None of the participants continued to take NAC at the time of follow-up assessment. No significant changes in hairpulling severity were reported over the follow-up period. Subjects reported significantly increased anxiety and depressive symptoms but improvement in automatic pulling symptoms. Increased hairpulling symptoms during the follow-up period were associated with increased depression and anxiety symptoms and increased focused pulling. Older age and greater focused pulling at baseline assessment were associated with poor long-term prognosis. Conclusions Our findings suggest that few children with trichotillomania experience a significant improvement in trichotillomania symptoms if behavioral treatments are inaccessible or have failed to produce adequate symptom relief. Our findings also confirm results of previous cross-sectional studies that suggest an increased risk of depression and anxiety symptoms with age in pediatric trichotillomania. Increased focused pulling and older age among children with trichotillomania symptoms may be associated with poorer long-term prognosis. PMID:26139231

  5. LONG-TERM OUTCOME IN PEDIATRIC TRICHOTILLOMANIA.

    PubMed

    Schumer, Maya C; Panza, Kaitlyn E; Mulqueen, Jilian M; Jakubovski, Ewgeni; Bloch, Michael H

    2015-10-01

    To examine long-term outcome in children with trichotillomania. We conducted follow-up clinical assessments an average of 2.8 ± 0.8 years after baseline evaluation in 30 of 39 children who previously participated in a randomized, double-blind, placebo-controlled trial of N-acetylcysteine (NAC) for pediatric trichotillomania. Our primary outcome was change in hairpulling severity on the Massachusetts General Hospital Hairpulling Hospital Hairpulling Scale (MGH-HPS) between the end of the acute phase and follow-up evaluation. We also obtained secondary measures examining styles of hairpulling, comorbid anxiety and depressive symptoms, as well as continued treatment utilization. We examined both correlates and predictors of outcome (change in MGH-HPS score) using linear regression. None of the participants continued to take NAC at the time of follow-up assessment. No significant changes in hairpulling severity were reported over the follow-up period. Subjects reported significantly increased anxiety and depressive symptoms but improvement in automatic pulling symptoms. Increased hairpulling symptoms during the follow-up period were associated with increased depression and anxiety symptoms and increased focused pulling. Older age and greater focused pulling at baseline assessment were associated with poor long-term prognosis. Our findings suggest that few children with trichotillomania experience a significant improvement in trichotillomania symptoms if behavioral treatments are inaccessible or have failed to produce adequate symptom relief. Our findings also confirm results of previous cross-sectional studies that suggest an increased risk of depression and anxiety symptoms with age in pediatric trichotillomania. Increased focused pulling and older age among children with trichotillomania symptoms may be associated with poorer long-term prognosis. © 2015 Wiley Periodicals, Inc.

  6. Lessons: Science. Slime!

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    Describes a science activity in which students make a non-Newtonian fluid (slime), which has both solid and liquid properties. After reviewing the shape and volume of solids and volume of liquids, students make the slime using glue, liquid starch, and food coloring. They can experiment by rolling and dropping slime balls and by pulling the slime…

  7. Korean-Chinese Parents' Language Attitudes and Additive Bilingual Education in China

    ERIC Educational Resources Information Center

    Gao, Fang; Park, Jae

    2012-01-01

    China's diversity of minority groups, marked by many languages and cultures, has led to much push and pull experience between homogenising forces and indigenous cultures. This is apparent in its bilingual education programme for ethnic minorities, among which Korean diaspora communities are to be counted. Korean-Chinese people in China have been…

  8. Child Care and the Economy

    ERIC Educational Resources Information Center

    Karolak, Eric

    2009-01-01

    Unemployment has topped 7% nationally and economists predict it will approach 10% by 2010. Child care programs experience a trickle-down effect: when businesses cut back hours or lay people off, parents cut back child care hours or pull children from programs. "We're seeing more and more families lose their child care assistance and have nowhere…

  9. The Rest of the Story: A Qualitative Study of Chinese and Indian Women's Graduate Education Migration

    ERIC Educational Resources Information Center

    Yakaboski, Tamara

    2013-01-01

    Previous migration discourse views educational migration through narrowly defined push-pull forces, which ignores overseas graduate education as a path for maneuvering through restrictive gendered and cultural experiences. The purpose of this exploratory research is to expand migration research and view women's migration decisions as employing…

  10. 75 FR 52263 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...] during its retraction. In case of RAT failure or malfunction, it will not provide electrical power to... [the] aircraft, due to downlock pin not [being] pull[ed] during its retraction. In case of RAT failure... [being] pull[ed] during its retraction. In case of RAT failure or malfunction, it will not provide...

  11. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  12. Self-Induced Backaction Optical Pulling Force

    NASA Astrophysics Data System (ADS)

    Zhu, Tongtong; Cao, Yongyin; Wang, Lin; Nie, Zhongquan; Cao, Tun; Sun, Fangkui; Jiang, Zehui; Nieto-Vesperinas, Manuel; Liu, Yongmin; Qiu, Cheng-Wei; Ding, Weiqiang

    2018-03-01

    We achieve long-range and continuous optical pulling in a periodic photonic crystal background, which supports a unique Bloch mode with the self-collimation effect. Most interestingly, the pulling force reported here is mainly contributed by the intensity gradient force originating from the self-induced backaction of the object to the self-collimation mode. This force is sharply distinguished from the widely held conception of optical tractor beams based on the scattering force. Also, this pulling force is insensitive to the angle of incidence and can pull multiple objects simultaneously.

  13. Analysis of Carbon Nanotube Pull-out from a Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Harik, V. M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Molecular dynamics (MD) simulations of carbon nanotube (NT) pull-out from a polymer matrix are carried out. As the NT pull-out develops in the simulation, variations in the displacement and velocities of the NT are monitored. The existence of a carbon-ring-based period in NT sliding during pull-out is identified. Linear trends in the NT velocity-force relation are observed and used to estimate an effective viscosity coefficient for interfacial sliding at the NT/polymer interface. As a result, the entire process of NT pull-out is characterized by an interfacial friction model that is based on a critical pull-out force, and an analog of Newton's friction law used to describe the NT/polymer interfacial sliding.

  14. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    PubMed

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  15. Hair pull test: Evidence-based update and revision of guidelines.

    PubMed

    McDonald, Katherine A; Shelley, Amanda J; Colantonio, Sophia; Beecker, Jennifer

    2017-03-01

    The hair pull test lacks validation and has unclear pretest guidelines. We sought to quantify normal hair pull test values and elucidate the effect of pretest hair washing and brushing. The impact of hair texture and lifestyle was also examined. Participants (n = 181) completed a questionnaire recording demographics, medications, and hair health/history. A single hair pull test (scalp vertex) was performed. The mean number of hairs removed per pull was 0.44 (SD 0.75). There was no significant difference in the mean number of hairs removed regardless of when participants washed (P = .20) or brushed (P = .25) their hair. Hair pull test values were similar between Caucasian-, Asian-, and Afro-textured hair. There was no significant difference in hair pull values between participants taking medications affecting hair loss and participants not taking these medications (P = .33). Tight hairstyles did not influence hair pull test values. Participant hair washing and brushing could not be controlled during the study, but this information was documented and analyzed. Normal values for the hair pull test should be reduced to 2 hairs or fewer (97.2% of participants). The current 5-day restriction on pretest hair washing can be reduced and brushing be made permissible. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands

    PubMed Central

    Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin

    2017-01-01

    Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages. PMID:28773069

  17. Climate change education in informal settings: Using boundary objects to frame network dissemination

    NASA Astrophysics Data System (ADS)

    Steiner, Mary Ann

    This study of climate change education dissemination takes place in the context of a larger project where institutions in four cities worked together to develop a linked set of informal learning experiences about climate change. Each city developed an organizational network to explore new ways to connect urban audiences with climate change education. The four city-specific networks shared tools, resources, and knowledge with each other. The networks were related in mission and goals, but were structured and functioned differently depending on the city context. This study illustrates how the tools, resources, and knowledge developed in one network were shared with networks in two additional cities. Boundary crossing theory frames the study to describe the role of objects and processes in sharing between networks. Findings suggest that the goals, capacity and composition of networks resulted in a different emphasis in dissemination efforts, in one case to push the approach out to partners for their own work and in the other to pull partners into a more collaborative stance. Learning experiences developed in each city as a result of the dissemination reflected these differences in the city-specific emphasis with the push city diving into messy examples of the approach to make their own examples, and the pull city offering polished experiences to partners in order to build confidence in the climate change messaging. The networks themselves underwent different kinds of growth and change as a result of dissemination. The emphasis on push and use of messy examples resulted in active use of the principles of the approach and the pull emphasis with polished examples resulted in the cultivation of partnerships with the hub and the potential to engage in the educational approach. These findings have implications for boundary object theory as a useful grounding for dissemination designs in the context of networks of informal learning organizations to support a shift in communication approach, particularly when developing interventions for wicked socio-scientific issues such as climate change.

  18. Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Liu, S.; Hu, N.

    2013-04-14

    Systematic atomic simulations based on molecular mechanics were conducted to investigate the pull-out behavior of a capped carbon nanotube (CNT) in CNT-reinforced nanocomposites. Two common cases were studied: the pull-out of a complete CNT from a polymer matrix in a CNT/polymer nanocomposite and the pull-out of the broken outer walls of a CNT from the intact inner walls (i.e., the sword-in-sheath mode) in a CNT/alumina nanocomposite. By analyzing the obtained relationship between the energy increment (i.e., the difference in the potential energy between two consecutive pull-out steps) and the pull-out displacement, a set of simple empirical formulas based on themore » nanotube diameter was developed to predict the corresponding pull-out force. The predictions from these formulas are quite consistent with the experimental results. Moreover, the much higher pull-out force for a capped CNT than that of the corresponding open-ended CNT implies a significant contribution from the CNT cap to the interfacial properties of the CNT-reinforced nanocomposites. This finding provides a valuable insight for designing nanocomposites with desirable mechanical properties.« less

  19. RATE-DEPENDENT PULL-OUT BEARING CAPACITY OF PILES BY SIMILITUDE MODEL TESTS USING SEEPAGE FORCE

    NASA Astrophysics Data System (ADS)

    Kato, Tatsuya; Kokusho, Takaji

    Pull-out test of model piles was conducted by varying the pull-out velocity and skin friction of piles using a seepage force similitude model test apparatus. Due to the seepage consolidation under the pressure of 150kPa, the effective stress distribution in a prototype saturated soil of 17m could be successfully reproduced in the model ground of 28cm thick, in which the pull-out tests were carried out. The pull-out load rose to a peak value at small displacement, and then decreased to a residual value. At the same time, pore pressure in the vicinity of the pile decreased due to suction near the tip and the positive dilatancy near the pile skin. The maximum pull-out load, pile axial load, side friction and the corresponding displacement increased dramatically with increasing pull-out velocity. It was found that these rate-dependent trends become more prominent with increasing skin friction.

  20. Molecular Mechanism of Processive 3' to 5' RNA Translocation in the Active Subunit of the RNA Exosome Complex.

    PubMed

    Vuković, Lela; Chipot, Christophe; Makino, Debora L; Conti, Elena; Schulten, Klaus

    2016-03-30

    Recent experimental studies revealed structural details of 3' to 5' degradation of RNA molecules, performed by the exosome complex. ssRNA is channeled through its multisubunit ring-like core into the active site tunnel of its key exonuclease subunit Rrp44, which acts both as an enzyme and a motor. Even in isolation, Rrp44 can pull and sequentially cleave RNA nucleotides, one at a time, without any external energy input and release a final 3-5 nucleotide long product. Using molecular dynamics simulations, we identify the main factors that control these processes. Our free energy calculations reveal that RNA transfer from solution into the active site of Rrp44 is highly favorable, but dependent on the length of the RNA strand. While RNA strands formed by 5 nucleotides or more correspond to a decreasing free energy along the translocation coordinate toward the cleavage site, a 4-nucleotide RNA experiences a free energy barrier along the same direction, potentially leading to incomplete cleavage of ssRNA and the release of short (3-5) nucleotide products. We provide new insight into how Rrp44 catalyzes a localized enzymatic reaction and performs an action distributed over several RNA nucleotides, leading eventually to the translocation of whole RNA segments into the position suitable for cleavage.

  1. Hair Pulling (Trichotillomania)

    MedlinePlus

    ... for Families - Vietnamese Spanish Facts for Families Guide Hair Pulling (Trichotillomania) No. 96; Reviewed July 2013 It ... for children and adolescents to play with their hair. However, frequent or obsessive hair pulling can lead ...

  2. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae

    DOE PAGES

    Rodriguez, Sarah; Denby, Charles M.; Van Vu, T.; ...

    2016-03-03

    With increasing concern about the environmental impact of a petroleum based economy, focus has shifted towards greener production strategies including metabolic engineering of microbes for the conversion of plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attractive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA. To date, it has been difficult to engineer S. cerevisiae to continuously convert sugars present in biomass-based feedstocks to acetyl-CoA derived products due to intrinsicmore » physiological constraints—in respiring cells, the precursor pyruvate is directed away from the endogenous cytosolic acetyl-CoA biosynthesis pathway towards the mitochondria, and in fermenting cells pyruvate is directed towards the byproduct ethanol. In this study we incorporated an alternative mode of acetyl-CoA biosynthesis mediated by ATP citrate lyase (ACL) that may obviate such constraints. We characterized the activity of several heterologously expressed ACLs in crude cell lysates, and found that ACL from Aspergillus nidulans demonstrated the highest activity. We employed a push/pull strategy to shunt citrate towards ACL by deletion of the mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH1) and engineering higher flux through the upper mevalonate pathway. We demonstrated that combining the two modifications increases accumulation of mevalonate pathway intermediates, and that both modifications are required to substantially increase production. Finally, we incorporated a block strategy by replacing the native ERG12 (mevalonate kinase) promoter with the copper-repressible CTR3 promoter to maximize accumulation of the commercially important molecule mevalonate. In conclusion, by combining the push/pull/block strategies, we significantly improved mevalonate production. We anticipate that this strategy can be used to improve the efficiency with which industrial strains of S. cerevisiae convert feedstocks to acetyl-CoA derived fuels and chemicals.« less

  3. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Sarah; Denby, Charles M.; Van Vu, T.

    With increasing concern about the environmental impact of a petroleum based economy, focus has shifted towards greener production strategies including metabolic engineering of microbes for the conversion of plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attractive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA. To date, it has been difficult to engineer S. cerevisiae to continuously convert sugars present in biomass-based feedstocks to acetyl-CoA derived products due to intrinsicmore » physiological constraints—in respiring cells, the precursor pyruvate is directed away from the endogenous cytosolic acetyl-CoA biosynthesis pathway towards the mitochondria, and in fermenting cells pyruvate is directed towards the byproduct ethanol. In this study we incorporated an alternative mode of acetyl-CoA biosynthesis mediated by ATP citrate lyase (ACL) that may obviate such constraints. We characterized the activity of several heterologously expressed ACLs in crude cell lysates, and found that ACL from Aspergillus nidulans demonstrated the highest activity. We employed a push/pull strategy to shunt citrate towards ACL by deletion of the mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH1) and engineering higher flux through the upper mevalonate pathway. We demonstrated that combining the two modifications increases accumulation of mevalonate pathway intermediates, and that both modifications are required to substantially increase production. Finally, we incorporated a block strategy by replacing the native ERG12 (mevalonate kinase) promoter with the copper-repressible CTR3 promoter to maximize accumulation of the commercially important molecule mevalonate. In conclusion, by combining the push/pull/block strategies, we significantly improved mevalonate production. We anticipate that this strategy can be used to improve the efficiency with which industrial strains of S. cerevisiae convert feedstocks to acetyl-CoA derived fuels and chemicals.« less

  4. Three-photon absorption process in organic dyes enhanced by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Cohanoschi, Ion

    2006-07-01

    Multi-photon absorption processes have received significant attention from the scientific community during the last decade, mainly because of their potential applications in optical limiting, data storage and biomedical fields. Perhaps, one of the most investigated processes studied so far has been two-photon absorption (2PA). These investigations have resulted in successful applications in all the fields mentioned above. However, 2PA present some limitations in the biomedical field when pumping at typical 2PA wavelengths. In order to overcome these limitations, three-photon absorption (3PA) process has been proposed. However, 3PA in organic molecules has a disadvantage, typical values of sigma3' are small (10-81 cm6s 2/photon2), therefore, 3PA excitation requires high irradiances to induce the promotion of electrons from the ground state to the final excited state. To overcome this obstacle, specific molecules that exhibit large 3PA cross-section must be designed. Thus far, there is a lack of systematic studies that correlate 3PA processes with the molecular structure of organic compounds. In order to fill the existent gap in 3PA molecular engineering, in this dissertation we have investigated the structure/property relationship for a new family of fluorene derivatives with very high three-photon absorption cross-sections. We demonstrated that the symmetric intramolecular charge transfer as well as the pi-electron conjugation length enhances the 3PA cross-section of fluorene derivatives. In addition, we showed that the withdrawing electron character of the attractor groups in a pull-pull geometry proved greater 3PA cross-section. After looking for alternative ways to enhance the effective sigma 3' of organic molecules, we investigated the enhancement of two- and three-photon absorption processes by means of Surface Plasmon. We demonstrated an enhancement of the effective two- and three-photon absorption cross-section of an organic compound of 480 and 30 folds, respectively. We proved that the enhancement is a direct consequence of the electric field enhancement at a metal/buffer interface. Next, motivated by the demands for new materials with enhanced nonlinear optical properties, we studied the 3PA of Hematoporphyrin IX and J-aggregate supramolecular systems. As a result, we were able to propose the use of 3PA in photodynamic therapy using Photofrin, the only drug approved by the FDA for PDT.

  5. Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor.

    PubMed

    Zhang, Xianyu; Arcidiacono, Carmelo; Conrad, Albert R; Herbst, Thomas M; Gaessler, Wolfgang; Bertram, Thomas; Ragazzoni, Roberto; Schreiber, Laura; Diolaiti, Emiliano; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan

    2012-03-26

    LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.

  6. A Modeling Approach to Fiber Fracture in Melt Impregnation

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong

    2017-02-01

    The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.

  7. Stretching chimeric DNA: A test for the putative S-form

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Pronk, Sander; Geissler, Phillip L.

    2008-11-01

    Double-stranded DNA "overstretches" at a pulling force of about 65 pN, increasing in length by a factor of 1.7. The nature of the overstretched state is unknown, despite its considerable importance for DNA's biological function and technological application. Overstretching is thought by some to be a force-induced denaturation and by others to consist of a transition to an elongated, hybridized state called S-DNA. Within a statistical mechanical model, we consider the effect upon overstretching of extreme sequence heterogeneity. "Chimeric" sequences possessing halves of markedly different AT composition elongate under fixed external conditions via distinct, spatially segregated transitions. The corresponding force-extension data vary with pulling rate in a manner that depends qualitatively and strikingly upon whether the hybridized S-form is accessible. This observation implies a test for S-DNA that could be performed in experiment.

  8. A Gender-Based Kinematic and Kinetic Analysis of the Snatch Lift In Elite Weightlifters in 69-Kg Category

    PubMed Central

    Harbili, Erbil

    2012-01-01

    The objective of this study was to compare the kinematic and kinetic differences in snatch performances of elite 69-kg men and women weightlifters, the only category common to both genders. The heaviest lifts performed by 9 men and 9 women weightlifters competing in 69-kg weight class in Group A in the 2010 World Weightlifting Championship were analyzed. The snatch lifts were recorded using 2 cameras (PAL). Points on the barbell and body were manually digitized by using Ariel Performance Analysis System. The results showed that maximal extension angle of the ankle and knee during the first pull, the knee angle at the end of the transition phase, and maximal extension angle of the knee in the second pull were significantly greater in men (p < 0.05). The angular velocity of the hip was significantly greater in men during the first pull (p < 0.05). During the second pull, women showed significantly greater maximal angular velocity at the hip and ankle joints (p < 0.05). Moreover, the maximal vertical linear velocity of the barbell was significantly greater in women (p < 0.05). The absolute mechanical work and power output in the first pull and power output in the second pull were significantly greater in men (p < 0.05). However, the relative mechanical work was significantly greater in women during the second pull (p < 0.05). The results revealed that in 69-kg weight class, women were less efficient than men in the first pull, which is strength oriented, whereas they were as efficient as men in the second pull, which is more power oriented. Key points Women weightlifters should do assistant exercises to strengthen their ankle flexor and knee extensor muscles in order to increase their maximal strength in the first pull. Women weightlifters should be able to execute a deeper and faster knee flexion in the transition phase in order to obtain a greater explosive strength during the second pull. PMID:24149133

  9. Scapula kinematics of pull-up techniques: Avoiding impingement risk with training changes.

    PubMed

    Prinold, Joe A I; Bull, Anthony M J

    2016-08-01

    Overhead athletic activities and scapula dyskinesia are linked with shoulder pathology; pull-ups are a common training method for some overhead sports. Different pull-up techniques exist: anecdotally some are easier to perform, and others linked to greater incidences of pathology. This study aims to quantify scapular kinematics and external forces for three pull-up techniques, thus discussing potential injury implications. An observational study was performed with eleven participants (age=26.8±2.4 years) who regularly perform pull-ups. The upward motions of three pull-up techniques were analysed: palms facing anterior, palms facing posterior and wide-grip. A skin-fixed scapula tracking technique with attached retro-reflective markers was used. High intra-participant repeatability was observed: mean coefficients of multiple correlations of 0.87-1.00 in humerothoracic rotations and 0.77-0.90 for scapulothoracic rotations. Standard deviations of hand force was low: <5% body weight. Significantly different patterns of humerothoracic, scapulothoracic and glenohumeral kinematics were observed between the pull-up techniques. The reverse technique has extreme glenohumeral internal-external rotation and large deviation from the scapula plane. The wide technique has a reduced range of pro/retraction in the same HT plane of elevation and 90° of arm abduction with 45° external rotation was observed. All these factors suggest increased sub-acromial impingement risk. The scapula tracking technique showed high repeatability. High arm elevation during pull-ups reduces sub-acromial space and increases pressure, increasing the risk of impingement injury. Wide and reverse pull-ups demonstrate kinematics patterns linked with increased impingement risk. Weight-assisted front pull-ups require further investigation and could be recommended for weaker participants. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Characteristics and phenomenology of hair-pulling: an exploration of subtypes.

    PubMed

    du Toit, P L; van Kradenburg, J; Niehaus, D J; Stein, D J

    2001-01-01

    This study was designed to detail the demographic and phenomenological features of adult chronic hair-pullers. Key possible subtypes were identified a priori. On the basis of the phenomenological data, differences between the following possible subtypes were investigated: hair-pullers with and without DSM-IV trichotillomania (TTM), oral habits, automatic versus focused hair-pulling, positive versus negative affective cues prior to hair-pulling, comorbid self-injurious habits, obsessive-compulsive disorder (OCD), and tics. Forty-seven participants were drawn from an outpatient population of chronic adult hair-pullers. A structured interview that focused on hair-pulling and associated behaviors was administered to participants. Six of the participants (12.8%) were male, and 41 (87.7%) were female. A large number of hair-pullers (63.8%) had comorbid self-injurious habits. A greater proportion of male hair-pullers had comorbid tics when compared with females. Certain subgroups of chronic hair-pullers (e.g., hairpullers with or without automatic/focused hair-pulling, comorbid self-injurious habits, and oral habits) were found to differ on a number of phenomenological and hair-pulling characteristics. However, differences between other possible subgroups (e.g., hair-pullers with or without DSM-IV TTM, comorbid OCD, and negative versus positive affective cues) may reflect greater severity in hair-pulling symptomatology rather than distinct subtypes of chronic hair-pulling. The findings of the present study also indicated that chronic hair-pulling (even in cases where DSM-IV criteria for TTM were not met) has a significant impact on quality of life. The present study provided limited support for the existence of possible subtypes of chronic hair-pulling. Recommendations are made for further investigations into such subtypes. Copyright 2001 by W.B. Saunders Company

  11. Perspective: A Pull in Two Directions--Mothers Torn between Work and Home

    ERIC Educational Resources Information Center

    Murphy, Anne Pleshette

    2004-01-01

    This article was excerpted from the author's "The 7 Stages of Motherhood: Making the Most of Your Life as a Mom," published by Alfred A. Knopf in 2004. The author describes the experiences of several professional women, including herself, returning to work from maternity leave. The article examines the varied and sometimes ambivalent responses…

  12. Pulling No Punches: Young People Talk about Their Experiences at School

    ERIC Educational Resources Information Center

    International Journal on School Disaffection, 2003

    2003-01-01

    The students quoted in this paper attend New Rush Hall Pupil Referral Unit, an alternative high school for disaffected students in Redbridge, east London. Rose is 16 and in her final year of high school. Her previous school records document numerous instances of challenging/violent behaviour, spitting, screaming and shouting. She has been arrested…

  13. Mechanics Model of Plug Welding

    NASA Technical Reports Server (NTRS)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  14. Experience of Presence in Virtual Environments

    DTIC Science & Technology

    2003-09-01

    perceptual position (exocentric, egocentric) neurolinguistic programming (NLP) assessment. Performance measures: Selection of correct spear, accuracy...the future. Accordingly, the Institute for Defense Analyses (IDA) is undertaking an analysis program to determine whether current data are sufficient...Many groups are seeking a better understanding of presence. From its start, IDA’s program has included pulling together the results of these efforts to

  15. Push and Pull Factors Determine Adolescents' Intentions of Participation in Nature Observation: Reconnecting Local Students with Nature in China

    ERIC Educational Resources Information Center

    Zhang, Weizhe; Williams, Sophie J.; Wang, Ximin; Chen, Jin

    2017-01-01

    Nature experiences are essential for fostering pro-environmental behavior. In this study, a wildlife observation toolbox was provided to students to encourage participation in nature observation clubs. A total of 340 adolescents joined the clubs. We identified the determinants of participation intentions with a mixed approach combing…

  16. Witnessing the World: The Power of True Global Service

    ERIC Educational Resources Information Center

    Piccone, Chris

    2013-01-01

    The school where Chris Piccone teaches eighth-grade English maintains a desire to pull its community from its comfort zones to experience first hand the crushing poverty in the Dominican Republic. Although he always thought of himself as a bleeding heart, who was proud that he pushed his students out of their academic comfort zones, he realized…

  17. Are 20th-Century Methods of Teaching Applicable in the 21st Century?

    ERIC Educational Resources Information Center

    Bassendowski, Sandra Leigh; Petrucka, Pammla

    2013-01-01

    The image of students passively absorbing information from an educator who is lecturing from behind a podium does not reflect the current scope and dimension of higher education. There are now tools of technology that can be used to create learning experiences to actively and meaningfully "pull" students into course content. The author…

  18. Take the "C" Train

    ERIC Educational Resources Information Center

    Lawton, Rebecca

    2008-01-01

    In this essay, the author recalls several of her experiences in which she successfully pulled her boats out of river holes by throwing herself to the water as a sea-anchor. She learned this trick from her senior guides at a spring training. Her guides told her, "When you're stuck in a hole, take the "C" train."" "Meaning?" The author asked her…

  19. New York City Social Indicators Survey, 1999: Pulling Ahead, Falling Behind.

    ERIC Educational Resources Information Center

    Meyers, Marcia K.; Teitler, Julien O.

    The New York City Social Indicators Survey examines New York City's social climate, surveying a representative sample of families regarding their perceptions of life in the city and indicators of their quality of life and experiences of hardship. The 1999 survey examined the period between 1997-1999, a time of strong economic performance and…

  20. Pull rod assembly

    DOEpatents

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  1. Children's and women's ability to fire handguns. The Pediatric Practice Research Group.

    PubMed

    Naureckas, S M; Galanter, C; Naureckas, E T; Donovan, M; Christoffel, K K

    1995-12-01

    To evaluate whether strength differences between children and women might keep children from firing handguns and to determine how many young children can fire available handguns. One- and two-index finger trigger-pull strength was tested using a standard protocol. Data on trigger-pull settings of 64 commercially available handguns were obtained. Convenience sample of well children and their mothers at four Chicago (Ill)-area pediatric practices for health supervision visits, and of siblings of emergency department patients, during an 8-week period. None. One- and two-index finger trigger-pull strength of mothers and children. Twenty-five percent of 3- to 4-year-olds, 70% of 5- to 6-year-olds, and 90% of 7- to 8-year-olds have a two-finger trigger-pull strength of at least 10 lb, the fifth percentile one-finger trigger-pull strength of adult women. Forty (62.5%) of 64 handguns require trigger-pull strength of less than 5 lb; 19 (30%) of 64 require 5 to 10 lb. Significant overlap exists in the trigger-pull strength of young children and women, limiting the potential use of increased trigger-pull settings to discourage firearm discharge by children. Young children are strong enough to fire many handguns now in circulation.

  2. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jinda; Hart, Adam G.; Li, Yong-qing, E-mail: liy@ecu.edu

    2015-04-27

    We demonstrate optical pulling of single light-absorbing particles and smut spores in air over a meter-scale distance using a single collimated laser beam based on negative photophoretic force. The micron-sized particles are pulled towards the light source at a constant speed of 1–10 cm/s in the optical pulling pipeline while undergoing transverse rotation at 0.2–10 kHz. The pulled particles can be manipulated and precisely positioned on the entrance window with an accuracy of ∼20 μm, and their chemical compositions can be characterized with micro-Raman spectroscopy.

  3. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2005-01-01

    The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.

  4. Salt Marsh sediment 15N/13C "Push-Pull" assays reveal coupled sulfur, nitrogen, and carbon cycling

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Tucker, J.; Thomas, F.; Sievert, S. M.; Cardon, Z. G.; Giblin, A. E.

    2016-12-01

    Salt marshes are extraordinarily productive ecosystems found in estuaries worldwide, hosting intensive sulfur, nitrogen, and carbon cycling. Although it has been hypothesized that in this environment sulfur oxidation may be important for energy flow, there is little direct data. At the heart of these hypothesized interactions are sulfur oxidizing microbes. Sulfur oxidizers can catalyze sulfide (re-)oxidation with nitrate as the electron acceptor under anaerobic conditions, producing ammonium (via DNRA) or dinitrogen gas (via denitrification). The form of sulfur present in marsh systems influences whether autotrophic or heterotrophic processes transform nitrate either to dinitrogen gas or ammonium through DNRA. To examine the fate of nitrate and interactions with sulfur, we conducted a series of "push-pull" experiments in marsh sediment at the Plum Island Ecosystems Long-Term Ecological Research site in Massachusetts. Porewater was extracted anoxically and amended with isotopically labeled nitrate (15N) and bicarbonate (13C). Porewater was pumped back into the sediment and then withdrawn at intervals of several hours. Dissolved inorganic nitrogen, sulfur, and carbon were measured as well as isotopes of nitrogen gas and ammonium. These push-pull experiments were conducted at several times during the growing season, to coincide with salt marsh grass initial growth (May), maximum growth (July), flowering (August), and senescence (October). Porewater sulfides were very low to non-detectable in May (time of initial plant growth) and increased to a maximum of 3 mM in October (time of plant senescence). Combined rates of denitrification and DNRA also varied seasonally: rates were higher in May (0.16 - 17.5 nmoles N/cm3/hr) and much lower in October (0 - 0.03 nmoles N/cm3/hr). Interestingly, DNRA rates were always higher than denitrification rates, often by an order of magnitude or more.

  5. Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect

    PubMed Central

    Zhu, Xingfu; Ingraham, Thomas; Søvik, Eirik

    2016-01-01

    Social insects make elaborate use of simple mechanisms to achieve seemingly complex behavior and may thus provide a unique resource to discover the basic cognitive elements required for culture, i.e., group-specific behaviors that spread from “innovators” to others in the group via social learning. We first explored whether bumblebees can learn a nonnatural object manipulation task by using string pulling to access a reward that was presented out of reach. Only a small minority “innovated” and solved the task spontaneously, but most bees were able to learn to pull a string when trained in a stepwise manner. In addition, naïve bees learnt the task by observing a trained demonstrator from a distance. Learning the behavior relied on a combination of simple associative mechanisms and trial-and-error learning and did not require “insight”: naïve bees failed a “coiled-string experiment,” in which they did not receive instant visual feedback of the target moving closer when tugging on the string. In cultural diffusion experiments, the skill spread rapidly from a single knowledgeable individual to the majority of a colony’s foragers. We observed that there were several sequential sets (“generations”) of learners, so that previously naïve observers could first acquire the technique by interacting with skilled individuals and, subsequently, themselves become demonstrators for the next “generation” of learners, so that the longevity of the skill in the population could outlast the lives of informed foragers. This suggests that, so long as animals have a basic toolkit of associative and motor learning processes, the key ingredients for the cultural spread of unusual skills are already in place and do not require sophisticated cognition. PMID:27701411

  6. Force-induced desorption of 3-star polymers: a self-avoiding walk model

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2018-05-01

    We consider a simple cubic lattice self-avoiding walk model of 3-star polymers adsorbed at a surface and then desorbed by pulling with an externally applied force. We determine rigorously the free energy of the model in terms of properties of a self-avoiding walk, and show that the phase diagram includes four phases, namely a ballistic phase where the extension normal to the surface is linear in the length, an adsorbed phase and a mixed phase, in addition to the free phase where the model is neither adsorbed nor ballistic. In the adsorbed phase all three branches or arms of the star are adsorbed at the surface. In the ballistic phase two arms of the star are pulled into a ballistic phase, while the remaining arm is in a free phase. In the mixed phase two arms in the star are adsorbed while the third arm is ballistic. The phase boundaries separating the ballistic and mixed phases, and the adsorbed and mixed phases, are both first order phase transitions. The presence of the mixed phase is interesting because it does not occur for pulled, adsorbed self-avoiding walks. In an atomic force microscopy experiment it would appear as an additional phase transition as a function of force.

  7. Design of push-pull system to control diesel particular matter inside a dead-end entry.

    PubMed

    Zheng, Yi; Thiruvengadam, Magesh; Lan, Hai; Tien, Jerry C

    Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel-powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push-pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push-pull systems considered include: long push and short pull tubing; short push and long pull tubing, long push and curved pull tubing, and short push and curved pull tubing. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup local ventilation, select DPM control strategies and for DPM annual training for underground miners.

  8. Test and Analysis of Composite Hat Stringer Pull-off Test Specimens

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Rousseau, Carl Q.

    1996-01-01

    Hat stringer pull-off tests were performed to evaluate the delamination failure mechanisms in the flange region for a rod-reinforced hat stringer section. A special test fixture was used to pull the hat off the stringer while reacting the pull-off load through roller supports at both stringer flanges. Microscopic examinations of the failed specimens revealed that failure occurred at the ply termination in the flange area where the flange of the stiffener is built up by adding 45/-45 tape plies on the top surface. Test results indicated that the as-manufactured microstructure in the flange region has a strong influence on the delamination initiation and the associated pull-off loads. Finite element models were created for each specimen with a detailed mesh based on micrographs of the critical location. A fracture mechanics approach and a mixed mode delamination criterion were used to predict the onset of delamination and the pull-off load. By modeling the critical local details of each specimen from micrographs, the model was able to accurately predict the hat stringer pull-off loads and replicate the variability in the test results.

  9. Lightweight Seat Lever Operation Characteristics

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar

    1999-01-01

    In 1999, a Shuttle crew member was unable to operate the backrest lever for the lightweight seat in microgravity. It is essential that crew members can adjust this backrest lever, which is titled forward during launch and then moved backward upon reaching orbit. This adjustment is needed to cushion the crew members during an inadvertent crash landing situation. JSCs Anthropometry and Biomechanics Facility (ABF) performed an evaluation of the seat controls and provided recommendations on whether the seat lever positions and operations should be modified. The original Shuttle seats were replaced with new lightweight seats whose controls were moved, with one control at the front and the other at the back. The ABF designed a 12-person experiment to investigate the amount of pull force exerted by suited subjects, when controls were placed in the front and back of the lightweight seat. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results showed that, in general, the subjects were able to pull on the lever at the back position with only about half the amount of force that they were able to exert on the lever at the front position. In addition, the results also showed that subjects wearing the pressurized suit were unable to reach the seat lever when it was located at the back. The pull forces on the front lever diminished about 50% when subjects wore pressurized suits. Based on these results from this study, it was recommended that the levers should not be located in the back position. Further investigation is needed to determine whether the levers at the front of the seat could be modified or adjusted to increase the leverage for crew members wearing pressurized launch/escape suits.

  10. A Decade of Experience With the Primary Pull-Through for Hirschsprung Disease in the Newborn Period

    PubMed Central

    Teitelbaum, Daniel H.; Cilley, Robert E.; Sherman, Neil J.; Bliss, David; Uitvlugt, Neal D.; Renaud, Elizabeth J.; Kirstioglu, Irfan; Bengston, Tamara; Coran, Arnold G.

    2000-01-01

    Objective To determine whether use of a primary pull-through would result in equivalent perioperative and long-term complications compared with the two-stage approach. Summary Background Data During the past decade, the authors have advanced the use of a primary pull-through for Hirschsprung disease in the newborn, and preliminary results have suggested excellent outcomes. Methods From May 1989 through September 1999, 78 infants underwent a primary endorectal pull-through (ERPT) procedure at four pediatric surgical sites. Data were collected from medical records and a parental telephone interview (if the child was older than 3 years) to assess stooling patterns. A similar group of patients treated in a two-stage fashion served as a historical control. Results Mean age at the time of ERPT was 17.8 days of life. Comparing primary ERPT with a two-stage approach showed a trend toward a higher incidence of enterocolitis in the primary ERPT group compared with those with a two-stage approach (42.0% vs. 22.0%). Other complications were either lower in the primary ERPT group or similar, including rate of soiling and development of a bowel obstruction. Median number of stools per day was two at a mean follow-up of 4.1 ± 2.5 years, with 83% having three or fewer stools per day. Conclusions Performance of a primary ERPT for Hirschsprung disease in the newborn is an excellent option. Results were comparable to those of the two-stage procedure. The greater incidence of enterocolitis appears to be due to a lower threshold in diagnosing enterocolitis in more recent years. PMID:10973387

  11. Plasma Polymer Coatings to Prevent Pipeline Corrosion and Reduce Friction.

    DTIC Science & Technology

    1986-05-21

    w fairnt lime rainbiNw Salt (1) failed R. 6% ; Pull (3) 10 or- 90%/ film left): Y1 c rc.. (4) CluSO4, very small silIver- crys, a. COLIC . e r-ust Cu...Pull C 0% 10 500 440 S film left, Pull E 60% film S left, both Pulls cream film 4 90 120 S peels off St 1 Repeat run 864214; film flaky G rainbow

  12. Solution-processable red-emission organic materials containing triphenylamine and benzothiodiazole units: synthesis and applications in organic light-emitting diodes.

    PubMed

    Yang, Yi; Zhou, Yi; He, Qingguo; He, Chang; Yang, Chunhe; Bai, Fenglian; Li, Yongfang

    2009-06-04

    Three solution-processable red-emissive organic materials with a hole-transporting unit triphenylamine (TPA) as the core part and a D-pi-A bipolar structure as the branch part, TPA-BT (single-branched molecule), b-TPA-BT (bibranched molecule), and t-TPA-BT (tribranched molecule), were synthesized by the Heck coupling reaction. Herein, for the D-pi-A push-pull structure, we use TPA as the electron donor, benzothiodiazole (BT) as the electron acceptor, and the vinylene bond as the pi-bridge connecting the TPA and BT units. The compounds exhibit good solubility in common organic solvents, benefited from the three-dimensional spatial configuration of TPA units and the branch structure of the molecules. TPA-BT, b-TPA-BT, and t-TPA-BT show excellent photoluminescent properties with maximum emission peaks at ca. 630 nm. High-performance red-emission organic light-emitting diodes (OLEDs) were fabricated with the active layer spin coated from a solution of these compounds. The OLED based on TPA-BT displayed a low turn-on voltage of 2.0 V, a maximum luminance of 12192 cd/m2, and a maximum current efficiency of 1.66 cd/A, which is among the highest values for the solution-processed red-emission OLEDs. In addition, high-performance white-light-emitting diodes (WLEDs) with maximum luminance around 4400 cd/m2 and maximum current efficiencies above 4.5 cd/A were realized by separately doping the three TPA-BT-containing molecules as red emitter and poly(6,6'-bi-(9,9'-dihexylfluorene)- co-(9,9'-dihexylfluorene-3-thiophene-5'-yl)) as green emitter into blue poly(9,9-dioctylfluorene-2,7-diyl) host material with suitable weight ratios.

  13. Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit.

    PubMed

    Costales, Matthew G; Haga, Christopher L; Velagapudi, Sai Pradeep; Childs-Disney, Jessica L; Phinney, Donald G; Disney, Matthew D

    2017-03-08

    A hypoxic state is critical to the metastatic and invasive characteristics of cancer. Numerous pathways play critical roles in cancer maintenance, many of which include noncoding RNAs such as microRNA (miR)-210 that regulates hypoxia inducible factors (HIFs). Herein, we describe the identification of a small molecule named Targapremir-210 that binds to the Dicer site of the miR-210 hairpin precursor. This interaction inhibits production of the mature miRNA, derepresses glycerol-3-phosphate dehydrogenase 1-like enzyme (GPD1L), a hypoxia-associated protein negatively regulated by miR-210, decreases HIF-1α, and triggers apoptosis of triple negative breast cancer cells only under hypoxic conditions. Further, Targapremir-210 inhibits tumorigenesis in a mouse xenograft model of hypoxic triple negative breast cancer. Many factors govern molecular recognition of biological targets by small molecules. For protein, chemoproteomics and activity-based protein profiling are invaluable tools to study small molecule target engagement and selectivity in cells. Such approaches are lacking for RNA, leaving a void in the understanding of its druggability. We applied Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP) to study the cellular selectivity and the on- and off-targets of Targapremir-210. Targapremir-210 selectively recognizes the miR-210 precursor and can differentially recognize RNAs in cells that have the same target motif but have different expression levels, revealing this important feature for selectively drugging RNAs for the first time. These studies show that small molecules can be rapidly designed to selectively target RNAs and affect cellular responses to environmental conditions, resulting in favorable benefits against cancer. Further, they help define rules for identifying druggable targets in the transcriptome.

  14. Self-consistent treatment of electrostatics in molecular DNA braiding through external forces.

    PubMed

    Lee, Dominic J

    2014-06-01

    In this paper we consider a physical system in which two DNA molecules braid about each other. The distance between the two molecular ends, on either side of the braid, is held at a distance much larger than supercoiling radius of the braid. The system is subjected to an external pulling force, and a moment that induces the braiding. In a model, developed for understanding such a system, we assume that each molecule can be divided into a braided and unbraided section. We also suppose that the DNA is nicked so that there is no constraint of the individual linking numbers of the molecules. Included in the model are steric and electrostatic interactions, thermal fluctuations of the braided and unbraided sections of the molecule, as well as the constraint on the braid linking (catenation) number. We compare two approximations used in estimating the free energy of the braided section. One is where the amplitude of undulations of one molecule with respect to the other is determined only by steric interactions. The other is a self-consistent determination of the mean-squared amplitude of these undulations. In this second approximation electrostatics should play an important role in determining this quantity, as suggested by physical arguments. We see that if the electrostatic interaction is sufficiently large there are indeed notable differences between the two approximations. We go on to test the self-consistent approximation-included in the full model-against experimental data for such a system, and we find good agreement. However, there seems to be a slight left-right-handed braid asymmetry in some of the experimental results. We discuss what might be the origin of this small asymmetry.

  15. Identifying single bases in a DNA oligomer with electron tunnelling.

    PubMed

    Huang, Shuo; He, Jin; Chang, Shuai; Zhang, Peiming; Liang, Feng; Li, Shengqin; Tuchband, Michael; Fuhrmann, Alexander; Ros, Robert; Lindsay, Stuart

    2010-12-01

    It has been proposed that single molecules of DNA could be sequenced by measuring the physical properties of the bases as they pass through a nanopore. Theoretical calculations suggest that electron tunnelling can identify bases in single-stranded DNA without enzymatic processing, and it was recently experimentally shown that tunnelling can sense individual nucleotides and nucleosides. Here, we report that tunnelling electrodes functionalized with recognition reagents can identify a single base flanked by other bases in short DNA oligomers. The residence time of a single base in a recognition junction is on the order of a second, but pulling the DNA through the junction with a force of tens of piconewtons would yield reading speeds of tens of bases per second.

  16. Discovery of a Siderophore Export System Essential for Virulence of Mycobacterium tuberculosis

    PubMed Central

    Wells, Ryan M.; Jones, Christopher M.; Xi, Zhaoyong; Speer, Alexander; Danilchanka, Olga; Doornbos, Kathryn S.; Sun, Peibei; Wu, Fangming; Tian, Changlin; Niederweis, Michael

    2013-01-01

    Iron is an essential nutrient for most bacterial pathogens, but is restricted by the host immune system. Mycobacterium tuberculosis (Mtb) utilizes two classes of small molecules, mycobactins and carboxymycobactins, to capture iron from the human host. Here, we show that an Mtb mutant lacking the mmpS4 and mmpS5 genes did not grow under low iron conditions. A cytoplasmic iron reporter indicated that the double mutant experienced iron starvation even under high-iron conditions. Loss of mmpS4 and mmpS5 did not change uptake of carboxymycobactin by Mtb. Thin layer chromatography showed that the ΔmmpS4/S5 mutant was strongly impaired in biosynthesis and secretion of siderophores. Pull-down experiments with purified proteins demonstrated that MmpS4 binds to a periplasmic loop of the associated transporter protein MmpL4. This interaction was corroborated by genetic experiments. While MmpS5 interacted only with MmpL5, MmpS4 interacted with both MmpL4 and MmpL5. These results identified MmpS4/MmpL4 and MmpS5/MmpL5 as siderophore export systems in Mtb and revealed that the MmpL proteins transport small molecules other than lipids. MmpS4 and MmpS5 resemble periplasmic adapter proteins of tripartite efflux pumps of Gram-negative bacteria, however, they are not only required for export but also for efficient siderophore synthesis. Membrane association of MbtG suggests a link between siderophore synthesis and transport. The structure of the soluble domain of MmpS4 (residues 52–140) was solved by NMR and indicates that mycobacterial MmpS proteins constitute a novel class of transport accessory proteins. The bacterial burden of the mmpS4/S5 deletion mutant in mouse lungs was lower by 10,000-fold and none of the infected mice died within 180 days compared to wild-type Mtb. This is the strongest attenuation observed so far for Mtb mutants lacking genes involved in iron utilization. In conclusion, this study identified the first components of novel siderophore export systems which are essential for virulence of Mtb. PMID:23431276

  17. Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints.

    PubMed

    Kipp, Kristof; Redden, Josh; Sabick, Michelle B; Harris, Chad

    2012-07-01

    The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass-normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.

  18. Are single-well "push-pull" tests suitable tracer methods for aquifer characterization?

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    Recently, investigations were conducted for geological and hydrogeological characterisation of the sedimentary coastal basin of Horonobe (Hokkaido, Japan). Coastal areas are typical geological settings in Japan, which are less tectonically active than the mountain ranges. In Asia, and especially in Japan, these areas are often densely populated. Therefore, it is important to investigate the behaviour of solutes in such unconsolidated aquifers. In such settings sometimes only single boreholes or groundwater monitoring wells are available for aquifer testing for various reasons, e.g. depths of more than 100 m below ground level and slow groundwater velocities due to density driven flow. A standard tracer test with several involved groundwater monitoring wells is generally very difficult or even not possible at these depths. One of the most important questions in our project was how we can obtain information about chemical and hydraulic properties in such aquifers. Is it possible to characterize solute transport behaviour parameters with only one available groundwater monitoring well or borehole? A so-called "push-pull" test may be one suitable method for aquifer testing with only one available access point. In a push-pull test a known amount of several solutes including a conservative tracer is injected into the aquifer ("push") and afterwards extracted ("pull"). The measured breakthrough curve during the pumping back phase can then be analysed. This method has already been used previously with various aims, also in the recent project (e.g. Hebig et al. 2011, Zeilfelder et al. 2012). However, different test setups produced different tracer breakthrough curves. As no systematic evaluation of this aquifer tracer test method was done so far, nothing is known about its repeatability. Does the injection and extraction rate influence the shape of the breakthrough curve? Which role plays the often applied "chaser", which is used to push the test solution out from the borehole and gravel pack? How does density difference between the original groundwater and the test solution influence the tracer breakthrough curves? To solve these questions, seven push-pull tests were performed under controlled boundary conditions in the same well DD-2 (100 m depth). Only single parameters, as e.g. flow rate or salinization of the test solution, were varied during the experiments. By conducting these different test setups, conclusions could be drawn about the application of the push-pull method under different settings. References: Hebig, K.H., Ito, N., Scheytt, T.J. & Marui, A. (2011). Hydraulic and hydrochemical characterization of deep coastal sedimentary basins by single-well Push-Pull tests. GSA Annual Meeting, 9-12 October 2011, Minneapolis, USA. Zeilfelder, S., Ito, N., Marui, A., Hebig, K. & Scheytt, T. (2012). Push-Pull-Test und Tracer-Test in ei-nem tiefen Grundwasserleiter in Kameoka, Japan. Kurzfassung in: Liedl, R., Burghardt, D., Simon, E., Reimann, T. & Kaufmann-Knoke (Hg.). Grundwasserschutz und Grundwassernutzung. Tagung der Fachsektion Hydrogeologie in der DGG (FH-DGG). 16. - 20. Mai 2012, Dresden. Kurfassungen der Vorträge und Poster. Schriftenreihe der DGG, Heft 78, S. 192.

  19. Product diffusion through on-demand information-seeking behaviour.

    PubMed

    Riedl, Christoph; Bjelland, Johannes; Canright, Geoffrey; Iqbal, Asif; Engø-Monsen, Kenth; Qureshi, Taimur; Sundsøy, Pål Roe; Lazer, David

    2018-02-01

    Most models of product adoption predict S-shaped adoption curves. Here we report results from two country-scale experiments in which we find linear adoption curves. We show evidence that the observed linear pattern is the result of active information-seeking behaviour: individuals actively pulling information from several central sources facilitated by modern Internet searches. Thus, a constant baseline rate of interest sustains product diffusion, resulting in a linear diffusion process instead of the S-shaped curve of adoption predicted by many diffusion models. The main experiment seeded 70 000 (48 000 in Experiment 2) unique voucher codes for the same product with randomly sampled nodes in a social network of approximately 43 million individuals with about 567 million ties. We find that the experiment reached over 800 000 individuals with 80% of adopters adopting the same product-a winner-take-all dynamic consistent with search engine driven rankings that would not have emerged had the products spread only through a network of social contacts. We provide evidence for (and characterization of) this diffusion process driven by active information-seeking behaviour through analyses investigating (a) patterns of geographical spreading; (b) the branching process; and (c) diffusion heterogeneity. Using data on adopters' geolocation we show that social spreading is highly localized, while on-demand diffusion is geographically independent. We also show that cascades started by individuals who actively pull information from central sources are more effective at spreading the product among their peers. © 2018 The Authors.

  20. Product diffusion through on-demand information-seeking behaviour

    PubMed Central

    Bjelland, Johannes; Canright, Geoffrey; Iqbal, Asif; Qureshi, Taimur; Sundsøy, Pål Roe

    2018-01-01

    Most models of product adoption predict S-shaped adoption curves. Here we report results from two country-scale experiments in which we find linear adoption curves. We show evidence that the observed linear pattern is the result of active information-seeking behaviour: individuals actively pulling information from several central sources facilitated by modern Internet searches. Thus, a constant baseline rate of interest sustains product diffusion, resulting in a linear diffusion process instead of the S-shaped curve of adoption predicted by many diffusion models. The main experiment seeded 70 000 (48 000 in Experiment 2) unique voucher codes for the same product with randomly sampled nodes in a social network of approximately 43 million individuals with about 567 million ties. We find that the experiment reached over 800 000 individuals with 80% of adopters adopting the same product—a winner-take-all dynamic consistent with search engine driven rankings that would not have emerged had the products spread only through a network of social contacts. We provide evidence for (and characterization of) this diffusion process driven by active information-seeking behaviour through analyses investigating (a) patterns of geographical spreading; (b) the branching process; and (c) diffusion heterogeneity. Using data on adopters' geolocation we show that social spreading is highly localized, while on-demand diffusion is geographically independent. We also show that cascades started by individuals who actively pull information from central sources are more effective at spreading the product among their peers. PMID:29467257

  1. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    PubMed

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force.

  2. Peeling a polymer from a surface or from a line

    NASA Astrophysics Data System (ADS)

    Di Marzio, Edmund A.; Guttman, C. M.

    1991-07-01

    We calculate the force on a long linear polymer molecule whose one end is zippered down onto a surface or onto a line and whose other end is at a perpendicular distance R from the surface or line. Random coil statistics are used for the unattached portion of the chain. The method is extended to the case when the bonds within the zippered portion are breaking and reforming. We also consider the case where the attached portion is in the form of loops and trains. Although the energy equations of state for these various systems are different from each other, the force equation of state is always given by f=((6)1/2/l)(kTΔg)1/2, where l is the bond length between monomers and Δg is the free energy change in pulling one monomer off of the surface. The force is independent of R except for small R. Applications are discussed briefly. They include (1) self-healing systems of gels and rubbers where the cross links may be hydrogen bonds; (2) adhesion; (3) the degree of crystallinity in crystal-amorphous lamellar systems; (4) the packing of DNA into the head of a bacteriophage virus and pulling apart of double stranded DNA; (5) an insight into the theory of rubber elasticity; (6) understanding the critical force for flow in thixotropic systems.

  3. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    PubMed

    Sheena, Aswathy; Mohan, Suma S; Haridas, Nidhina Pachakkil A; Anilkumar, Gopalakrishnapillai

    2011-01-01

    GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD) was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  4. Fast Electromechanical Switches Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma-enhanced chemical vapor deposition. In the device regions, the SiO2 layer was patterned to thin it to the 20-nm trench depth. The trenches were then patterned by electron- beam lithography and formed by reactive- ion etching of the pattern through the 20-nm-thick SiO2 to the Nb layer.

  5. Small-scale field evaluation of push-pull system against early- and outdoor-biting malaria mosquitoes in an area of high pyrethroid resistance in Tanzania

    PubMed Central

    Mmbando, Arnold S.; Ngowo, Halfan S.; Kilalangongono, Masoud; Abbas, Said; Matowo, Nancy S.; Moore, Sarah J.; Okumu, Fredros O.

    2017-01-01

    Background: Despite high coverage of indoor interventions like insecticide-treated nets, mosquito-borne infections persist, partly because of outdoor-biting, early-biting and insecticide-resistant vectors. Push-pull systems, where mosquitoes are repelled from humans and attracted to nearby lethal targets, may constitute effective complementary interventions. Methods: A partially randomized cross-over design was used to test efficacy of push-pull in four experimental huts and four local houses, in an area with high pyrethroid resistance in Tanzania. The push-pull system consisted of 1.1% or 2.2% w/v transfluthrin repellent dispensers and an outdoor lure-and-kill device (odour-baited mosquito landing box). Matching controls were set up without push-pull. Adult male volunteers collected mosquitoes attempting to bite them outdoors, but collections were also done indoors using exit traps in experimental huts and by volunteers in the local houses. The collections were done hourly (1830hrs-0730hrs) and mosquito catches compared between push-pull and controls. An. gambiae s.l. and An. funestus s.l. were assessed by PCR to identify sibling species, and ELISA to detect Plasmodium falciparum and blood meal sources. Results: Push-pull in experimental huts reduced outdoor-biting for An. arabiensis and Mansonia species by 30% and 41.5% respectively. However, the reductions were marginal and insignificant for An. funestus (12.2%; p>0.05) and Culex (5%; p>0.05). Highest protection against all species occurred before 2200hrs. There was no significant difference in number of mosquitoes inside exit traps in huts with or without push-pull. In local households, push-pull significantly reduced indoor and outdoor-biting of An. arabiensis by 48% and 25% respectively, but had no effect on other species. Conclusion: This push-pull system offered modest protection against outdoor-biting An. arabiensis, without increasing indoor mosquito densities. Additional experimentation is required to assess how transfluthrin-based products affect mosquito blood-feeding and mortality in push-pull contexts. This approach, if optimised, could potentially complement existing malaria interventions even in areas with high pyrethroid resistance. PMID:29568808

  6. Tubular lipid membranes pulled from vesicles: Dependence of system equilibrium on lipid bilayer curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golushko, I. Yu., E-mail: vaniagolushko@yandex.ru; Rochal, S. B.

    2016-01-15

    Conditions of joint equilibrium and stability are derived for a spherical lipid vesicle and a tubular lipid membrane (TLM) pulled from this vesicle. The obtained equations establish relationships between the geometric and physical characteristics of the system and the external parameters, which have been found to be controllable in recent experiments. In particular, the proposed theory shows that, in addition to the pressure difference between internal and external regions of the system, the variable spontaneous average curvature of the lipid bilayer (forming the TLM) also influences the stability of the lipid tube. The conditions for stability of the cylindrical phasemore » of TLMs after switching off the external force that initially formed the TLM from a vesicle are discussed. The loss of system stability under the action of a small axial force compressing the TLM is considered.« less

  7. A Push-pull Protocol to Reduce Colonization of Bird Nest Boxes by Honey Bees.

    PubMed

    Efstathion, Caroline A; Kern, William H

    2016-09-04

    Introduction of the invasive Africanized honey bee (AHB) into the Neotropics is a serious problem for many cavity nesting birds, specifically parrots. These bees select cavities that are suitable nest sites for birds, resulting in competition. The difficulty of removing bees and their defensive behavior makes a prevention protocol necessary. Here, we describe a push-pull integrated pest management protocol to deter bees from inhabiting bird boxes by applying a bird safe insecticide, permethrin, to repel bees from nest boxes, while simultaneously attracting them to pheromone-baited swarm traps. Shown here is an example experiment using Barn Owl nest boxes. This protocol successfully reduced colonization of Barn Owl nest boxes by Africanized honey bees. This protocol is flexible, allowing adjustments to accommodate a wide range of bird species and habitats. This protocol could benefit conservation efforts where AHB are located.

  8. Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact

    PubMed Central

    Srivastava, Abhishek; Hui, Chung-Yuen

    2013-01-01

    In part I of this work, we presented a theory for adhesionless contact of a pressurized neo-Hookean plane-strain membrane to a rigid substrate. Here, we extend our theory to include adhesion using a fracture mechanics approach. This theory is used to study contact hysteresis commonly observed in experiments. Detailed analysis is carried out to highlight the differences between frictionless and no-slip contact. Membrane detachment is found to be strongly dependent on adhesion: for low adhesion, the membrane ‘pinches-off’, whereas for large adhesions, it detaches unstably at finite contact (‘pull-off’). Expressions are derived for the critical adhesion needed for pinch-off to pull-off transition. Above a threshold adhesion, the membrane exhibits bistability, two stable states at zero applied pressure. The condition for bistability for both frictionless and no-slip boundary conditions is obtained explicitly. PMID:24353472

  9. Nanomechanics of Protein Unfolding outside Protease Nanopores

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Zhou, Ruhong

    Protein folding and unfolding have been the subject of active research for decades. Most of previous studies in protein unfolding were focused on temperature, chemical and/or force (such as in AFM) induced denaturations. Recent studies on the functional roles of proteasomes (such as ClpXP) revealed a novel unfolding process in cell, during which a target protein is mechanically unfolded and pulled into a confined, pore-like geometry for degradation. While the proteasome nanomachine has been extensively studied, the mechanism for unfolding proteins with the proteasome pore is still poorly understood. Here, we investigate the mechanical unfolding process of ubiquitin with (or really outside) an idealized proteasome pore, and compare such process with that in the AFM pulling experiment. Unexpectedly, the required force by a proteosome can be much smaller than that by the AFM. Simulation results also unveiled different nanomechanics, tearing fracture vs. shearing friction, in these two distinct types of mechanical unfoldings.

  10. Analysis of Pull-In Instability of Geometrically Nonlinear Microbeam Using Radial Basis Artificial Neural Network Based on Couple Stress Theory

    PubMed Central

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602

  11. Apparatus and method for in Situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1999-09-28

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  12. Apparatus for in situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1998-06-16

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  13. Push-Pull Locomotion for Vehicle Extrication

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Johnson, Kyle A.; Plant, Mark; Moreland, Scott J.; Skonieczny, Krzysztof

    2014-01-01

    For applications in which unmanned vehicles must traverse unfamiliar terrain, there often exists the risk of vehicle entrapment. Typically, this risk can be reduced by using feedback from on-board sensors that assess the terrain. This work addressed the situations where a vehicle has already become immobilized or the desired route cannot be traversed using conventional rolling. Specifically, the focus was on using push-pull locomotion in high sinkage granular material. Push-pull locomotion is an alternative mode of travel that generates thrust through articulated motion, using vehicle components as anchors to push or pull against. It has been revealed through previous research that push-pull locomotion has the capacity for generating higher net traction forces than rolling, and a unique optical flow technique indicated that this is the result of a more efficient soil shearing method. It has now been found that pushpull locomotion results in less sinkage, lower travel reduction, and better power efficiency in high sinkage material as compared to rolling. Even when starting from an "entrapped" condition, push-pull locomotion was able to extricate the test vehicle. It is the authors' recommendation that push-pull locomotion be considered as a reliable back-up mode of travel for applications where terrain entrapment is a possibility.

  14. Pulling Down the Clouds: The O'odham Intellectual Tradition during the "Time of Famine"

    ERIC Educational Resources Information Center

    Martinez, David

    2010-01-01

    Members of the Pima, or Akimel O'odham, community, despite their experiment with a pre-1934 constitutional government, not to mention their conversion to Christianity and sending their children to school, have not generated writers and activists as did their tribal peers in other parts of the United States such as Oklahoma, the Upper Plains, and…

  15. Einstein's Elevator in Class: A Self-Construction by Students for the Study of the Equival

    ERIC Educational Resources Information Center

    Kapotis, Efstratios; Kalkanis, George

    2016-01-01

    According to the principle of equivalence, it is impossible to distinguish between gravity and inertial forces that a noninertial observer experiences in his own frame of reference. For example, let's consider an elevator in space that is being accelerated in one direction. An observer inside it would feel as if there was gravity force pulling him…

  16. Production of continuous glass fiber using lunar simulant

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Curreri, Peter A.

    1991-01-01

    The processing parameters and mechanical properties of glass fibers pulled from simulated lunar basalt are tested. The simulant was prepared using a plasma technique. The composition is representative of a low titanium mare basalt (Apollo sample 10084). Lunar gravity experiments are to be performed utilizing parabolic aircraft free-fall maneuvers which yield 30 seconds of 1/6-g per maneuver.

  17. Changes and Challenges in the Flow of International Human Capital: China's Experience

    ERIC Educational Resources Information Center

    Pan, Su-Yan

    2010-01-01

    This article tracks the changes in the directions of the international flow of Chinese human capital between the 1870s and 2000s. Although many studies on international academic flow adopt the pull-and-push approach, this article argues that the direction of human capital flow is not determined solely by an individual's choice when faced with a…

  18. Pushed, pulled, or blocked? The elderly and the labor market in post-Soviet Russia.

    PubMed

    Gerber, Theodore P; Radl, Jonas

    2014-05-01

    Russia provides an interesting context for studying the labor market experiences of the elderly because of its experience with market transition, its looming growth in the elderly dependency ratio, and its unusual pension policies that do not penalize pensioners for working. We use data from twenty surveys of the Russian population conducted from February 1991 to November 2007 to analyze the labor market participation and earnings of elderly Russians following market transition. Economic desperation, exacerbated by low pension levels, pushed some elderly to seek employment for income on the labor market. Elderly Russians with more education had more opportunities to work, and education differentials increased as market reforms progressed. The correlates of earnings operate similarly for retirement- and pre-retirement age Russians, with several exceptions: unobserved factors favoring employment are negatively associated with earnings for the elderly, occupation mediates most of the effects of education, and patterns of change over time differ somewhat. Elderly Russians are not disproportionately blocked from employment following market reforms. Following the initial transition shock, their labor market activity increased. Overall, both push and pull factors shape the employment and earnings of the elderly, affecting different segments of them. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Remora fish suction pad attachment is enhanced by spinule friction.

    PubMed

    Beckert, Michael; Flammang, Brooke E; Nadler, Jason H

    2015-11-01

    The remora fishes are capable of adhering to a wide variety of natural and artificial marine substrates using a dorsal suction pad. The pad is made of serial parallel pectinated lamellae, which are homologous to the dorsal fin elements of other fishes. Small tooth-like projections of mineralized tissue from the dorsal pad lamella, known as spinules, are thought to increase the remora's resistance to slippage and thereby enhance friction to maintain attachment to a moving host. In this work, the geometry of the spinules and host topology as determined by micro-computed tomography and confocal microscope data, respectively, are combined in a friction model to estimate the spinule contribution to shear resistance. Model results are validated with natural and artificially created spinules and compared with previous remora pull-off experiments. It was found that spinule geometry plays an essential role in friction enhancement, especially at short spatial wavelengths in the host surface, and that spinule tip geometry is not correlated with lamellar position. Furthermore, comparisons with pull-off experiments suggest that spinules are primarily responsible for friction enhancement on rough host topologies such as shark skin. © 2015. Published by The Company of Biologists Ltd.

  20. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    PubMed

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  1. Raman spectrum method for characterization of pull-in voltages of graphene capacitive shunt switches

    NASA Astrophysics Data System (ADS)

    Li, Peng; You, Zheng; Cui, Tianhong

    2012-12-01

    An approach using Raman spectrum method is reported to measure pull-in voltages of graphene capacitive shunt switches. When the bias excesses the pull-in voltage, the Raman spectrum's intensity largely decreases. Two factors that contribute to the intensity reduction are investigated. Moreover, by monitoring the frequency shift of G peak and 2D band, we are able to detect the pull-in voltage and measure the strain change in graphene beams during switching.

  2. Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.

    PubMed

    El Ouaaid, Z; Shirazi-Adl, A; Plamondon, A

    2018-03-21

    To reduce lifting and associated low back injuries, manual material handling operations often involve pulling-pushing of carts at different weights, orientations, and heights. The loads on spine and risk of injury however need to be investigated. The aim of this study was to evaluate muscle forces, spinal loads and trunk stability in pull-push tasks in sagittal-symmetric, static upright standing posture. Three hand-held load magnitudes (80, 120 and 160 N) at four elevations (0, 20, 40 and 60 cm to the L5-S1) and 24 force directions covering all pull/push orientations were considered. For this purpose, a musculoskeletal finite element model with kinematics measured earlier were used. Results demonstrated that peak spinal forces occur under inclined pull (lift) at upper elevations but inclined push at the lowermost one. Minimal spinal loads, on the other hand, occurred at and around vertical pull directions. Overall, spinal forces closely followed variations in the net external moment of pull-push forces at the L5-S1. Local lumbar muscles were most active in pulls while global extensor muscles in lifts. The trunk stability margin decreased with load elevation except at and around horizontal push; it peaked under pulls and reached minimum at vertical lifts. It also increased with antagonist activity in muscles and intra-abdominal pressure. Results provide insight into the marked effects of variation in the load orientation and elevation on muscle forces, spinal loads and trunk stability and hence offer help in rehabilitation, performance enhancement training and design of safer workplaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quantification of the tug-back by measuring the pulling force and micro computed tomographic evaluation.

    PubMed

    Jeon, Su-Jin; Moon, Young-Mi; Seo, Min-Seock

    2017-11-01

    The aims of this study were to quantify tug-back by measuring the pulling force and investigate the correlation of clinical tug-back pulling force with in vitro gutta-percha (GP) cone adaptation score using micro-computed tomography (µCT). Twenty-eight roots from human single-rooted teeth were divided into 2 groups. In the ProTaper Next (PTN) group, root canals were prepared with PTN, and in the ProFile (PF) group, root canals were prepared using PF ( n = 14). The degree of tug-back was scored after selecting taper-matched GP cones. A novel method using a spring balance was designed to quantify the tug-back by measuring the pulling force. The correlation between tug-back scores, pulling force, and percentage of the gutta-percha occupied area (pGPOA) within apical 3 mm was investigated using µCT. The data were analyzed using Pearson's correlation analysis, one-way analysis of variance (ANOVA) and Tukey's test. Specimens with a strong tug-back had a mean pulling force of 1.24 N (range, 0.15-1.70 N). This study showed a positive correlation between tug-back score, pulling force, and pGPOA. However, there was no significant difference in these factors between the PTN and PF groups. Regardless of the groups, pGPOA and pulling force were significantly higher in the specimens with a higher tug-back score ( p < 0.05). The degree of subjective tug-back was a definitive determinant for master cone adaptation in the root canal. The use of the tug-back scoring system and pulling force allows the interpretation of subjective tug-back in a more objective and quantitative manner.

  4. Submucosal nerve diameter of greater than 40 μm is not a valid diagnostic index of transition zone pull-through.

    PubMed

    Kapur, Raj P

    2016-10-01

    Submucosal nerve hypertrophy is a feature of the transition zone in Hirschsprung disease and has been used as a primary diagnostic feature of transition zone pull-through for patients with persistent obstructive symptoms after their initial surgery. Most published criteria for identification of hypertrophy rely on a nerve diameter of greater than 40μm, based primarily on data from a relatively small number of infants with Hirschsprung disease and controls. The validity of these objective measures has not been validated in appropriate controls for post-pull-through patients. The primary pull-through specimens and post pull-through biopsies +/- redo pull-through resections from a series of 9 patients with Hirschsprung disease were reviewed to assess the prevalence of submucosal nerves >40μm in diameter and 400× microscopic fields containing two or more such nerves. Similar data from multiple colonic locations were collected from a series of 40 non-Hirschsprung autopsy and surgical controls. The overwhelming majority of Hirschsprung patients harbored submucosal nerves >40μm in their post-pull-through specimens independent of other features of transition zone pathology, and despite normal innervation at the proximal margins of their initial resections. Measurement of submucosal nerve diameters in autopsy and surgical non-Hirschsprung control samples indicated that nerves >40μm are normal in the distal rectum after 1year of age and are found in more proximal colon at older ages. These results suggest that diagnostic criteria currently used to recognize submucosal nerve hypertrophy in the neorectum after a pull-through for Hirschsprung disease are not justified and should not be regarded as definitive evidence for transition zone pull-through. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability

    NASA Astrophysics Data System (ADS)

    Tahani, Masoud; Askari, Amir R.

    2014-09-01

    In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.

  6. Is trichotillomania a stereotypic movement disorder? An analysis of body-focused repetitive behaviors in people with hair-pulling.

    PubMed

    Stein, Dan J; Flessner, Christopher A; Franklin, Martin; Keuthen, Nancy J; Lochner, Christine; Woods, Douglas W

    2008-01-01

    Stereotypic movement disorder (SMD) is characterized by nonfunctional repetitive movements, is typically diagnosed in people with intellectual disability, and by definition excludes people with trichotillomania (TTM). Nevertheless, hair-pulling may be one of a number of body-focused repetitive behaviors (BFRBs) that are seen in the general population. Comorbidity of symptoms might support the idea that they are indicative of an underlying stereotypic disorder, and we therefore explored their frequency in people with hair-pulling. Participants were recruited with the help of the Trichotillomania Learning Center, the largest advocacy group for people with hair-pulling. Participants completed a self-report survey on the Internet, which included questions about the presence of both hair-pulling and other BFRBs. Measures included the Massachusetts General Hospital Hairpulling Scale (MGH-HS), the Milwaukee Inventory for Subtypes of Trichotillomania-Adult Version (MIST-A), the Depression and Anxiety Stress Scale (DASS), and the Sheehan Disability Scale (SDS). The majority of participants with hair-pulling (70%) report the presence of other BFRBs, most commonly skin-picking and nail-biting. There were particularly strong associations between the total number of BFRBs and increased scores on ratings of focused hair-pulling, depression, anxiety, stress, and functional impairment. Similar results were found in participants who met more rigorous criteria for trichotillomania. This study is limited by its self-report nature, and by the lack of detailed information on the phenomenology of comorbid BFRBs. While further nosological research is needed, the high rates of these behaviors in people with hair-pulling, and their association with increased disability, is consistent with previous clinical observations, and supports the argument that trichotillomania can usefully be conceptualized as a stereotypic disorder. Speculatively, this argument may be especially valid in trichotillomania patients with more focused hair-pulling symptoms.

  7. Ultrasonic Evaluation of the Pull-Off Adhesion between Added Repair Layer and a Concrete Substrate

    NASA Astrophysics Data System (ADS)

    Czarnecki, Slawomir

    2017-10-01

    This paper concerns the evaluation of the pull-off adhesion between a concrete added repair layer with variable thickness and a concrete substrate, based on parameters assessed using ultrasonic pulse velocity (UPV) method. In construction practice, the experimental determination of pull-off adhesion f b, between added repair layer and a concrete substrate is necessary to assess the quality of repair. This is usually carried out with the use of pull-off method which results in local damage of the added concrete layer in all the testing areas. Bearing this in mind, it is important to describe the method without these disadvantages. The prediction of the pull-off adhesion of the two-layer concrete elements with variable thickness of each layer might be provided by means of UPV method with two-sided access to the investigated element. For this purpose, two-layered cylindrical specimens were obtained by drilling the borehole from a large size specially prepared concrete element. Those two-layer elements were made out of concrete substrate layer and Polymer Cement Concrete (PCC) mortar as an added repair layer. The values of pull-off adhesion f b of the elements were determined before obtaining the samples by using the semi-destructive pull-off method. The ultrasonic wave velocity was determined in samples with variable thickness of each layer and was then compared to theoretical ultrasonic wave velocity predicted for those specimens. The regression curve for the dependence of velocity and pull-off adhesion, determined by the pulloff method, was made. It has been proved that together with an increase of ratio of investigated ultrasonic wave velocity divided by theoretical ultrasonic wave velocity, the pull-off adhesion value f b between added repair layer with variable thickness and a substrate layer also increases.

  8. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    NASA Astrophysics Data System (ADS)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  9. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752

  10. Microstructure and crystallography of Al2O3-Y3Al5O12-ZrO2 ternary eutectic oxide grown by the micropulling down technique

    NASA Astrophysics Data System (ADS)

    Benamara, Omar; Cherif, Maya; Duffar, Thierry; Lebbou, Kheirreddine

    2015-11-01

    The directional solidification of Al2O3-YAG-ZrO2 eutectic ceramic by a micro-pulling down (μ-PD) technique is investigated. The effect of the pulling rate (0.1-1 mm min-1) on the crystallography and the microstructure is discussed. This ternary eutectic system has a Chinese script microstructure and the eutectic spacing λ depends on the pulling rate υ following the law: λ = 6.5υ-1/2 where λ is in μm and υ in μm/s as derived from the Jackson-Hunt model. With the lower pulling rates, all phases are oriented with the <100> direction parallel to the growth direction; however other orientations appear at the higher pulling rates. The Cr3+ ions R-lines emission in the sapphire phase in the ternary eutectic composite is measured to estimate the stress in the alumina phase which is also shown to depend on the pulling rate.

  11. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates.

    PubMed

    Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide

    2008-02-15

    We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.

  12. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.

  13. Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface.

    PubMed

    Dalgicdir, Cahit; Sayar, Mehmet

    2015-12-10

    Historically, the protein folding problem has mainly been associated with understanding the relationship between amino acid sequence and structure. However, it is known that both the conformation of individual molecules and their aggregation strongly depend on the environmental conditions. Here, we study the aggregation behavior of the model peptide LKα14 (with amino acid sequence LKKLLKLLKKLLKL) in bulk water and at the air/water interface. We start by a quantitative analysis of the conformational space of a single LKα14 in bulk water. Next, in order to analyze the aggregation tendency of LKα14, by using the umbrella sampling technique we calculate the potential of mean force for pulling a single peptide from an n-molecule aggregate. In agreement with the experimental results, our calculations yield the optimal aggregate size as four. This equilibrium state is achieved by two opposing forces: Coulomb repulsion between the lysine side chains and the reduction of solvent accessible hydrophobic surface area upon aggregation. At the vacuum/water interface, however, even dimers of LKα14 become marginally stable, and any larger aggregate falls apart instantaneously. Our results indicate that even though the interface is highly influential in stabilizing the α-helix conformation for a single molecule, it significantly reduces the attraction between two LKα14 peptides, along with their aggregation tendency.

  14. Dendrimer probes for enhanced photostability and localization in fluorescence imaging.

    PubMed

    Kim, Younghoon; Kim, Sung Hoon; Tanyeri, Melikhan; Katzenellenbogen, John A; Schroeder, Charles M

    2013-04-02

    Recent advances in fluorescence microscopy have enabled high-resolution imaging and tracking of single proteins and biomolecules in cells. To achieve high spatial resolutions in the nanometer range, bright and photostable fluorescent probes are critically required. From this view, there is a strong need for development of advanced fluorescent probes with molecular-scale dimensions for fluorescence imaging. Polymer-based dendrimer nanoconjugates hold strong potential to serve as versatile fluorescent probes due to an intrinsic capacity for tailored spectral properties such as brightness and emission wavelength. In this work, we report a new, to our knowledge, class of molecular probes based on dye-conjugated dendrimers for fluorescence imaging and single-molecule fluorescence microscopy. We engineered fluorescent dendritic nanoprobes (FDNs) to contain multiple organic dyes and reactive groups for target-specific biomolecule labeling. The photophysical properties of dye-conjugated FDNs (Cy5-FDNs and Cy3-FDNs) were characterized using single-molecule fluorescence microscopy, which revealed greatly enhanced photostability, increased probe brightness, and improved localization precision in high-resolution fluorescence imaging compared to single organic dyes. As proof-of-principle demonstration, Cy5-FDNs were used to assay single-molecule nucleic acid hybridization and for immunofluorescence imaging of microtubules in cytoskeletal networks. In addition, Cy5-FDNs were used as reporter probes in a single-molecule protein pull-down assay to characterize antibody binding and target protein capture. In all cases, the photophysical properties of FDNs resulted in enhanced fluorescence imaging via improved brightness and/or photostability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy.

    PubMed

    Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D

    2015-12-18

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.

  16. Microcatheter entrapment retrieval from Onyx embolization in brain arteriovenous malformations: A technical note.

    PubMed

    Vu, Phat D; Grigorian, Arthur A

    2015-10-01

    Many techniques have been use for retrieval of an entrapped microcatheter during Onyx (eV3 Neurovascular) embolization of brain arteriovenous malformations (BAVMs). We report our technique that we term "pull-push-pull" that can be utilized as first management in retrieving the microcatheter. We analyzed a total of 37 patients that underwent BAVM embolization with either Onyx 18 or 34 at our institution. Standard embolization techniques were utilized with the use of Marathon (eV3 Neurovascular) microcatheter. When difficulty in retrieving the microcatheter arose, we used the "pull-push-pull" technique. The technique comprises the eV3 protocol of retraction. In addition, the microcatheter is stretched causing the Onyx cast to stretch in its inner core, creating a more thorough cohesive property amongst the Onyx mixture. Then the microcatheter is pushed back and to its point of embolization origin. Afterwards, retraction of the microcatheter is enabled as it can be easily dislodged from the cast. Multiple attempts can be repeated as needed. We had three patients that had difficulty with removal of microcatheter (8.1%). Utilization of the "pull-push-pull" technique was used on two of those patients. No neurological complication was observed with our technique. We believe the cohesive property of Onyx solution helps in the retrieval of the catheter by our method and technique. We believe the "pull-push-pull" can be utilized and be an additional technique before attempting other catheter retrieval techniques in Onyx BAVM embolization. © The Author(s) 2015.

  17. The Effect of Coconut Oil pulling on Streptococcus mutans Count in Saliva in Comparison with Chlorhexidine Mouthwash.

    PubMed

    Kaushik, Mamta; Reddy, Pallavi; Sharma, Roshni; Udameshi, Pooja; Mehra, Neha; Marwaha, Aditya

    2016-01-01

    Oil pulling is an age-old practice that has gained modern popularity in promoting oral and systemic health. The scientific verification for this practice is insufficient. Thus, this study evaluated the effect of coconut oil pulling on the count of Streptococcus mutans in saliva and to compare its efficacy with that of Chlorhexidine mouthwash: in vivo. The null hypothesis was that coconut oil pulling has no effect on the bacterial count in saliva. A randomized controlled study was planned and 60 subjects were selected. The subjects were divided into three groups, Group A: Oil pulling, Group B: Chlorhexidine, and Group C: Distilled water. Group A subjects rinsed mouth with 10 ml of coconut oil for 10 minutes. Group B subjects rinsed mouth with 5 ml Chlorhexidine mouthwash for 1 minute and Group C with 5 ml distilled water for 1 minute in the morning before brushing. Saliva samples were collected and cultured on 1st day and after 2 weeks from all subjects. Colonies were counted to compare the efficacy of coconut oil and Chlorhexidine with distilled water. Statistically significant reduction in S. mutans count was seen in both the coconut oil pulling and Chlorhexidine group. Oil pulling can be explored as a safe and effective alternative to Chlorhexidine. Edible oil-pulling therapy is natural, safe and has no side effects. Hence, it can be considered as a preventive therapy at home to maintain oral hygiene.

  18. Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS

    NASA Image and Video Library

    2013-04-10

    ISS035-E-017699 (10 April 2013) --- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.

  19. Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS

    NASA Image and Video Library

    2013-04-10

    ISS035-E-017712 (10 April 2013)?-- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement in the U.S. lab Destiny. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.

  20. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection fracture on the tailing behavior: where we inject makes the difference in the tailing. Blue line is a BTC with injection into a slow velocity zone under convergent flow configuration. The late-time tailing observed for the convergent test diminished for push-pull experiment performed in the same zone(red line). Black line is a BTC with injection into a high velocity zone under convergent flow configuration. Insets: illustration of convergent and push-pull tracer tests using a double packer system.

  1. Affective and Sensory Correlates of Hair Pulling in Pediatric Trichotillomania

    ERIC Educational Resources Information Center

    Meunier, Suzanne A.; Tolin, David F.; Franklin, Martin

    2009-01-01

    Hair pulling in pediatric populations has not received adequate empirical study. Investigations of the affective and sensory states contributing to the etiology and maintenance of hair pulling may help to elucidate the classification of trichotillomania (TTM) as an impulse control disorder or obsessive-compulsive spectrum disorder. The current…

  2. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during any performance test...

  3. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parameter. (3) During each performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during...

  4. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parameter. (3) During each performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during...

  5. 13. PULL CURVE RECONSTRUCTION: Photocopy of a September 1907 photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. PULL CURVE RECONSTRUCTION: Photocopy of a September 1907 photograph showing the reconstruction of a pull curve at Sacramento and Larkin Streets following the earthquake and fire. The tracks belong to United Railroads of San Francisco. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  6. Proceedings of the Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting (22nd) Held in Vienna, Virginia on 4-6 Dec 1990

    DTIC Science & Technology

    1991-05-01

    the problem of the frequency drift is still open. In- this context, the cavity pulling has drawn a lot of attention. Today, to our knowledge, 4...term maser frequency drift associated with the cavity pulling is a well known subject due to the high level of -precision obtainable in principle by...microprocessors. The frequency pulling due to microwave AM = =1:transitions (Ramsey pulling ) has been analyzed and shown to be important. Status of

  7. Study the relation between the yarn pulling force and the bursting strength of single jersey knitted fabric

    NASA Astrophysics Data System (ADS)

    El-Tarfawy, S. Y.

    2017-10-01

    There are various methods to evaluate knitted fabric’s properties; the yarn pulling force is a suitable experimental method to investigate the properties of single jersey knitted fabric.In this study, a frame is attached to the electronic tensile strength tester to fix different single jersey knitted fabrics with different dimensional properties. A hook is connected to the upper load cell in the tensile tester to ravel the first upper course then records the values of the yarn pulling force. In addition to that, the effect of the loop length, yarn count, and raw material on yarn pulling force and specific fabric bursting strength are studied. It is concluded that yarn pulling force has a significant relation with specific fabric bursting strength.

  8. Tuning the sapphire EFG process to the growth of Al2O3/YAG/ZrO2:Y eutectic

    NASA Astrophysics Data System (ADS)

    Carroz, L.; Duffar, T.

    2018-05-01

    In this work, a model is proposed, in order to analytically study the working point of the Edge defined Film-fed Growth (EFG) pulling of crystal plates. The model takes into account the heat equilibrium at the interface and the pressure equilibrium across the meniscus. It is validated on an industrial device dedicated to the pulling of sapphire ribbons. Then, the model is applied to pulling ceramic alloy plates, of the ternary eutectic Al2O3/YAG/ZrO2:Y. This allowed understanding the experimental difficulties of pulling this new material and suggested improvements of the control software. From these results, pulling net shaped ceramic alloy plates was successful in the same industrial equipment as used for sapphire.

  9. Influence of imbalance on distortion in optical push-pull frontends

    NASA Astrophysics Data System (ADS)

    Hagensen, Morten

    1995-04-01

    The influence of imbalance on second-order inter-modulation distortion (IMD2) in optical push-pull frontends for Subcarrier Multiplex CATV applications is investigated theoretically and experimentally. The investigation focuses on imbalance introduced in either the photodiode, the push-pull amplifier, or the output balun, and expressions describing the overall IMD2 cancellation efficiency are derived. The developed theory is used to predict the IMD2 cancellation behavior of an optical push-pull fronted. Commercially available PIN photodiodes for CATV purposes and ferrite core transformers are characterised for phase and amplitude balance up to 1 GHz. The overall IMD2 cancellation efficiency of an optical push-pull frontend based on the best of these devices is calculated. The theory is finally verified experimentally with an optical push-pull frontend designed with the characterised photodiode and transformer. The improvement in IMD2 suppression obtained with the push-pull structure relative to a single-ended structure is in average 29 dB across the band from 47-862 MHz. The total IMD2 suppression obtained for the frontend is between 60 dBc and 79 dBc at an average optical input power of 1 mW and with an optical modulation index (OMI) of 35% per carrier in a two-tone setup.

  10. Capuchin monkeys, Cebus apella fail to understand a cooperative task

    PubMed

    Chalmeau; Visalberghi; Gallo

    1997-11-01

    We investigated whether capuchin monkeys cooperate to solve a task and to what extent they take into account the behaviour of another individual when cooperating. Two groups of capuchin monkeys (N=5 and 6) were tested in a task whose solution required simultaneous pulling of two handles which were too far from one another to be pulled by one monkey. Before carrying out the cooperation study, individual monkeys were trained to pull one handle (training phase 1) and to pull two handles simultaneously (training phase 2) for a food reward. Nine subjects were successful in training phase 1, and five in training phase 2. In the cooperation study seven subjects were successful, that is, pulled one handle while a companion pulled the other. Further analyses revealed that capuchins did not increase their pulling actions when a partner was close to or at the other handle, that is, when cooperation might occur. These data suggest that capuchin monkeys acted together at the task and got the reward without understanding the role of the partner and without taking its behaviour into consideration. Social tolerance, as well as their tendency to explore and their manual dexterity, were the major factors accounting for the capuchins' success.Copyright 1997 The Association for the Study of Animal Behaviour1997The Association for the Study of Animal Behaviour

  11. Influence of molecular designs on polaronic and vibrational transitions in a conjugated push-pull copolymer

    NASA Astrophysics Data System (ADS)

    Cobet, Christoph; Gasiorowski, Jacek; Menon, Reghu; Hingerl, Kurt; Schlager, Stefanie; White, Matthew S.; Neugebauer, Helmut; Sariciftci, N. Serdar; Stadler, Philipp

    2016-10-01

    Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices.

  12. An Investigation into the Cognition Behind Spontaneous String Pulling in New Caledonian Crows

    PubMed Central

    Taylor, Alex H.; Medina, Felipe S.; Holzhaider, Jennifer C.; Hearne, Lindsay J.; Hunt, Gavin R.; Gray, Russell D.

    2010-01-01

    The ability of some bird species to pull up meat hung on a string is a famous example of spontaneous animal problem solving. The “insight” hypothesis claims that this complex behaviour is based on cognitive abilities such as mental scenario building and imagination. An operant conditioning account, in contrast, would claim that this spontaneity is due to each action in string pulling being reinforced by the meat moving closer and remaining closer to the bird on the perch. We presented experienced and naïve New Caledonian crows with a novel, visually restricted string-pulling problem that reduced the quality of visual feedback during string pulling. Experienced crows solved this problem with reduced efficiency and increased errors compared to their performance in standard string pulling. Naïve crows either failed or solved the problem by trial and error learning. However, when visual feedback was available via a mirror mounted next to the apparatus, two naïve crows were able to perform at the same level as the experienced group. Our results raise the possibility that spontaneous string pulling in New Caledonian crows may not be based on insight but on operant conditioning mediated by a perceptual-motor feedback cycle. PMID:20179759

  13. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Adhesive behavior of micro/nano-textured surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben

    2015-02-01

    A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.

  15. Synchronization between two coupled direct current glow discharge plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaubey, Neeraj; Mukherjee, S.; Sen, A.

    2015-02-15

    Experimental results on the nonlinear dynamics of two coupled glow discharge plasma sources are presented. A variety of nonlinear phenomena including frequency synchronization and frequency pulling are observed as the coupling strength is varied. Numerical solutions of a model representation of the experiment consisting of two coupled asymmetric Van der Pol type equations are found to be in good agreement with the observed results.

  16. Next-Generation NATO Reference Mobility Model (NG-NRMM)

    DTIC Science & Technology

    2016-05-11

    facilitate comparisons between vehicle design candidates and to assess the mobility of existing vehicles under specific scenarios. Although NRMM has...of different deployed platforms in different areas of operation and routes  Improved flexibility as a design and procurement support tool through...Element Method DEM Digital Elevation Model DIL Driver in the Loop DP Drawbar Pull Force DOE Design of Experiments DTED Digital Terrain Elevation Data

  17. Examining the Motives and the Future Career Intentions of Mainland Chinese Pre-Service Teachers in Hong Kong

    ERIC Educational Resources Information Center

    Cheung, Alan C. K.; Yuen, Timothy W. W.

    2016-01-01

    The purpose of this paper was to examine the motives, the educational experiences, and the plan after graduation of a particular group of mainland Chinese students pursuing teacher education in Hong Kong by using a modified two-way push-and-pull model as our analytical framework. The study employed both quantitative and qualitative methods.…

  18. Measuring the Strength of the Horned Passalus Beetle, Odontotaenius disjunctus: Revisiting an Old Topic with Modern Technology

    PubMed Central

    Davis, Andrew K.; Attarha, Barrett; Piefke, Taylor J.

    2013-01-01

    Over a century ago, a pioneering researcher cleverly devised a means to measure how much weight the horned passalus beetle, Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae), could pull using a series of springs, pulleys, and careful observation. The technology available in modern times now allows for more rigorous data collection on this topic, which could have a number of uses in scientific investigations. In this study, an apparatus was constructed using a dynamometer and a data logger in an effort to ascertain the pulling strength of this species. By allowing beetles to pull for 10 min, each beetle's mean and maximum pulling force (in Newtons) were obtained for analyses, and whether these measures are related was determined. Then, whether factors such as body length, thorax size, horn size, or gender affect either measure of strength was investigated. Basic body measurements, including horn size, of males versus females were compared. The measurements of 38 beetles (20 females, 18 males) showed there was no difference in overall body length between sexes, but females had greater girth (thorax width) than males, which could translate into larger muscle mass. A total of 21 beetles (10 females, 11 males) were tested for pulling strength. The grand mean pulling force was 0.14 N, and the grand mean maximum was 0.78 N. Despite the fact that beetles tended to pull at 20% of their maximum capacity most of the time, and that maximum force was over 5 times larger than the mean force, the 2 measures were highly correlated, suggesting they may be interchangeable for research purposes. Females had twice the pulling strength (both maximum and mean force) as males in this species overall, but when the larger thorax size of females was considered, the effect of gender was not significant. Beetle length was not a significant predictor of pulling force, but horn size was associated with maximum force. The best predictor of both measures of strength appeared to be thorax size. There are a multitude of interesting scientific questions that could be addressed using data on beetle pulling strength, and this project serves as a starting point for such work. PMID:24735074

  19. Single molecule data under scrutiny. Comment on "Extracting physics of life at the molecular level: A review of single-molecule data analyses" by W. Colomb & S.K. Sarkar

    NASA Astrophysics Data System (ADS)

    Wohland, Thorsten

    2015-06-01

    Single Molecule Detection and Spectroscopy have grown from their first beginnings into mainstream, mature research areas that are widely applied in the biological sciences. However, despite the advances in technology and the application of many single molecule techniques even in in vivo settings, the data analysis of single molecule experiments is complicated by noise, systematic errors, and complex underlying processes that are only incompletely understood. Colomb and Sarkar provide in this issue an overview of single molecule experiments and the accompanying problems in data analysis, which have to be overcome for a proper interpretation of the experiments [1].

  20. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    PubMed

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. TWO-LAYER MODEL FOR PULL-OUT BEHAVIOR OF POST-INSTALLED ANCHOR

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad; Tsubaki, Tatsuya

    A new two-layer anchor-infill assembly structure for the post-installed anchor is introduced with the analytical model to simulate its pull-out deformational response. The post-installed anchor is such that used in strengthening techniques for reinforced concrete structures. The properties of the infill material used for post-installed anchor are characterized by nonlinear interfaces. Because of the mechanical properties of the infill layer the existing pull-out model of deformed bars is not applicable in this case. Interfacial de-bonding is examined using energy criterion and strength criterion. The effect of the interface properties such as stiffness and strength on the pull-out behavior of a post-installed anchor is investigated. Using sensitivity analysis, the effect of these parameters on load-displacement curve, shear stress distribution, de-bonded length and damage to the surrounding concrete is clarified. Then, the optimum combination of these parameters is presented. It is confirmed that the elastic modulus of infill should be large to reduce the pull-out displacement and the increase of the shear strength of infill makes the pull-out load larger.

  2. Push-Pull Effects of Three Plant Secondary Metabolites on Oviposition of the Potato Tuber Moth, Phthorimaea operculella

    PubMed Central

    Ma, Y.F.; Xiao, C.

    2013-01-01

    The push-pull effects of three plant secondary metabolites, azadirachtin, eucalyptol, and heptanal, on the oviposition choices of potato tubers by the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) were tested in the laboratory. Azadirachtin at concentrations from 1.5 to 12 mg/L had a significant repellent effect on oviposition. Eucalyptol at concentrations from 3 to 12 mg/L promoted oviposition. Heptanal promoted oviposition at low concentrations from 0.1875 to 3.0 mg/L but repelled it at higher concentrations from 12 to 24 mg/L. The combination of azadirachtin (12 mg/L) with eucalyptol (3.0 mg/L) resulted in a significant pushpull effect of 56.3% on oviposition. The average maximum push-pull effects occurred with the combinations of azadirachtin with heptanal (12 and 0.375 mg/L, respectively; 38.7% push-pull effect), heptanal with eucalyptol (12 and 6 mg/L, respectively; 31.4% push-pull effect), and heptanal (high concentration) with heptanal (low concentration) (12.0 and 0.375 mg/L, respectively; 25% push-pull effect). PMID:24786822

  3. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC.

    PubMed

    Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi

    2011-11-01

    The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Sterically controlled mechanochemistry under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Yang, Fan; Pan, Ding; Lin, Yu; Hohman, J. Nathan; Solis-Ibarra, Diego; Li, Fei Hua; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Galli, Giulia; Mao, Wendy L.; Shen, Zhi-Xun; Melosh, Nicholas A.

    2018-02-01

    Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. However, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistry through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain. We engineer molecules with mechanically heterogeneous components—a compressible (‘soft’) mechanophore and incompressible (‘hard’) ligands. In these ‘molecular anvils’, isotropic stress leads to relative motions of the rigid ligands, anisotropically deforming the compressible mechanophore and activating bonds. Conversely, rigid ligands in steric contact impede relative motion, blocking reactivity. We combine experiments and computations to demonstrate hydrostatic-pressure-driven redox reactions in metal-organic chalcogenides that incorporate molecular elements that have heterogeneous compressibility, in which bending of bond angles or shearing of adjacent chains activates the metal-chalcogen bonds, leading to the formation of the elemental metal. These results reveal an unexplored reaction mechanism and suggest possible strategies for high-specificity mechanosynthesis.

  5. Yo-yo Pull Demonstration

    NASA Astrophysics Data System (ADS)

    Layton, William

    2013-03-01

    A popular demonstration involves placing a yo-yo on a level table and gently pulling the string horizontally when it is wrapped to come out below the center of the yo-yo's axis. Students are then asked to predict which way the yo-yo will move. A similar demonstration is performed with a tricycle by pulling forward on a pedal with the pedal down in its lowest position.2,3 As well as pulling the yo-yo horizontally, often the string is lifted until the angle it makes with the table causes no motion. This occurs when the line extended from the string intersects the point of contact of the yo-yo with the table.4 This paper describes an apparatus that extends these demonstrations to the situation where the force pulling the yo-yo is still horizontal yet is below the level of the table.

  6. Cryogenic insulation strength and bond tester

    NASA Technical Reports Server (NTRS)

    Schuerer, P. H.; Ehl, J. H.; Prasthofer, W. P. (Inventor)

    1985-01-01

    A method and apparatus for testing the tensile strength and bonding strength of sprayed-on foam insulation attached to metal cryogenic fuel tanks is described. A circular cutter is used to cut the insulation down to the surface of the metal tank to form plugs of the insulation for testing in situ on the tank. The apparatus comprises an electromechanical pulling device powered by a belt battery pack. The pulling device comprises a motor driving a mechanical pulling structure comprising a horizontal shaft connected to two bell cracks which are connected to a central member. When the lower end of member is attached to a fitting, which in turn is bonded to a plug, a pulling force is exerted on the plug sufficient to rupture it. The force necessary to rupture the plug or pull it loose is displayed as a digital read-out.

  7. Automatic control of oscillatory penetration apparatus

    DOEpatents

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  8. Growth of platinum fibers using the micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Nihei, Takayuki; Yokota, Yuui; Arakawa, Mototaka; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Chani, Valery; Yoshikawa, Akira

    2017-06-01

    Platinum (Pt) crystalline fibers were grown from the melt by the micro-pulling-down (μ-PD) method using the ZrO2 ceramics crucible. The diameter of the grown Pt fiber was controlled by the ϕ1 mm outlet made at the bottom of the crucible and the Pt fiber of 0.95±0.03 mm in diameter and over 5 m in length was obtained at 10 mm/min pulling-down rate. In addition, the Pt fiber was grown at 1-110 mm/min pulling rates while the liquid-solid interface reached the bottom of the crucible and the crystal growth became unstable at 120 mm/min pulling rate. Few grain boundaries were observed in the scanning electron microscopy image of the Pt fibers and there were some spots with high intensity in the pole figures.

  9. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.

    PubMed

    Gómez-Navarro, C; Moreno-Herrero, F; de Pablo, P J; Colchero, J; Gómez-Herrero, J; Baró, A M

    2002-06-25

    A fundamental requirement for a molecule to be considered a molecular wire (MW) is the ability to transport electrical charge with a reasonably low resistance. We have carried out two experiments that measure first, the charge transfer from an electrode to the molecule, and second, the dielectric response of the MW. The latter experiment requires no contacts to either end of the molecule. From our experiments we conclude that adsorbed individual DNA molecules have a resistivity similar to mica, glass, and silicon oxide substrates. Therefore adsorbed DNA is not a conductor, and it should not be considered as a viable candidate for MW applications. Parallel studies on other nanowires, including single-walled carbon nanotubes, showed conductivity as expected.

  10. Burning in Outer Space: Microgravity

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard; Aldushin, Anatoly

    2000-01-01

    A better understanding of combustion can lead to significant technological advances, such as less polluting, more fuel-efficient vehicles. Unfortunately, gravity can interfere with the study of combustion. Gravity drags down gases that are cooler- and, therefore, denser-than heated gases. This movement mixes the fuel and the oxidizer substance that promotes burning. Because of this mixing, an observer cannot necessarily distinguish what is happening as a result of the natural combustion process and what is caused, by the pull of gravity. To remove this uncertainty, scientists can conduct experiments that simulate the negation of gravity through freefall. This condition is known as a microgravity environment. A micro-gravity experiment may take place in a chamber that is dropped down a hole or from a high-speed drop tower. The experiment also be conducted in an airplane or a rocket during freefall in a parabolic flight path. This method provides less than a minute of microgravity at most. An experiment that requires the prolonged absence of gravity may necessitate the use of an orbiting spacecraft as a venue. However, access to an orbital laboratory is difficult to acquire. High-end computing centers such as the NCCS can provide a practical alternative to operating in microgravity. Scientists can model phenomena such as combustion without gravitys observational interference. The study of microgravity combustion produces important benefits beyond increased observational accuracy. Certain valuable materials that are produced through combustion can be formed with a more uniform crystal structure-and, therefore, improved structural quality-when the pull of gravity is removed. Furthermore, understanding how fires propagate in the absence of gravity can improve fire safety aboard spacecraft.

  11. Individual budgets for people with incontinence: results from a 'shopping' experiment within the British National Health Service.

    PubMed

    Fader, Mandy J; Cottenden, Alan M; Gage, Heather M; Williams, Peter; Getliffe, Katharine; Clarke-O'Neill, Sinead; Jamieson, Katharine M; Green, Nicholas J

    2014-04-01

    Most people with urinary incontinence are given limited choice when provided with absorbent products through the British National Health Service (NHS), even though the available range is large. To investigate users' preferences for four disposable designs (inserts, all-in-ones, belted/T-shaped and pull-ups) and towelling washable/reusable products, day and night. Shopping experiment. Community-dwelling women and men in England with moderate-to-heavy urinary incontinence recruited to a larger trial. Participants tested each design and selected products they would prefer with a range of different budgets. Design preferences (rankings); 'purchasing' decisions from designated budgets. Results  Eighty-five participants (49 men) tested products, 75 completed the shopping experiment. Inserts, most frequently supplied by the NHS, were ranked second to pull-ups by women and lowest by men. When faced with budget constraints, up to 40% of participants opted to 'mix-and-match' designs. Over 15 different combinations of products were selected by participants in the shopping experiment. Most (91%) stated a willingness to 'top-up' assigned budgets from income to secure preferred designs. Participants displayed diverse preferences. Enabling user choice of absorbent product design through individual budgets could improve satisfaction of consumers and efficiency of allocation of limited NHS resources. Recent policy for the NHS seeks to provide consumers with more control in their care. Extension of the concept of individual budgets to continence supplies could be feasible and beneficial for patients and provide better value-for-money within the NHS. Further research is warranted. © 2012 John Wiley & Sons Ltd.

  12. Evolution of organic molecules under Mars-like UV radiation conditions in space and laboratory

    NASA Astrophysics Data System (ADS)

    Rouquette, L.; Stalport, F.; Cottin, H.; Coll, P.; Szopa, C.; Saiagh, K.; Poch, O.; Khalaf, D.; Chaput, D.; Grira, K.; Dequaire, T.

    2017-09-01

    The detection and identification of organic molecules at Mars are of prime importance, as some of these molecules are life precursors and components. While in situ planetary missions are searching for them, it is essential to understand how organic molecules evolve and are preserved at the surface of Mars. Indeed the harsh conditions of the environment of Mars such as ultraviolet (UV) radiation or oxidative processes could explain the low abundance and diversity of organic molecules detected by now [1]. In order to get a better understanding of the evolution of organic matter at the surface of Mars, we exposed organic molecules under a Mars-like UV radiation environment. Similar organic samples were exposed to the Sun radiation, outside the International Space Station (ISS), and under a UV lamp (martian pressure and temperature conditions) in the laboratory. In both experiments, organic molecules tend to photodegrade under Mars-like UV radiation. Minerals, depending on their nature, can protect or accelerate the degradation of organic molecules. For some molecules, new products, possibly photoresistant, seem to be produced. Finally, experimenting in space allow us to get close to in situ conditions and to validate our laboratory experiment while the laboratory experiment is essential to study the evolution of a large amount and diversity of organic molecules.

  13. Extracting Models in Single Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  14. 78 FR 24368 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Model Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... chain and cable control system with a push-pull control system. Since we issued that AD, we have... requires replacing the existing chain and cable control system with a push-pull control system. Both... Model 205A-1 to replace the tail rotor chain and cable control system with a push-pull control system...

  15. 25 CFR 542.8 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the accuracy of the ending balance in the pull tab control by reconciling the pull tabs on hand. (6) A.... (g) Standards for statistical reports. (1) Records shall be maintained, which include win, write (sales), and a win-to-write hold percentage as compared to the theoretical hold percentage derived from...

  16. On the Push-Pull Mobile Learning of Electric Welding

    ERIC Educational Resources Information Center

    Chung, Chih-Chao; Dzan, Wei-Yuan; Cheng, Yuh-Ming; Lou, Shi-Jer

    2017-01-01

    This study aims to explore the learning effects and attitudes of students in the course electric welding practice in a university of science and technology to which the push-pull technology-based mobile learning system is applied. In this study, the push-pull technology is adopted to establish a mobile learning system and develop the Push-pull…

  17. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi = K′ Ls Wm M [1.0−(LOI/100)] where: Pi = glass pull rate at interval “i”, Mg/hr (ton/hr). Ls = line speed, m...

  18. Simplified Habit Reversal Treatment for Chronic Hair Pulling in Three Adolescents: A Clinical Replication with Direct Observation.

    ERIC Educational Resources Information Center

    Rapp, John T.; Miltenberger, Raymond G.; Long, Ethan S.; Elliott, Amy J.; Lumley, Vicki A.

    1998-01-01

    Three developmentally normal adolescents with chronic hair pulling were treated with a simplified habit-reversal procedure consisting of awareness training, competing response training, and parental social support. Treatment resulted in immediate reduction to near-zero levels of hair pulling with one to three booster sessions. Results were…

  19. Developing Potential Energy Curves of Acidic and Basic Amino Acids Using Quantum Computational Techniques

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.

    2017-04-01

    Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).

  20. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    PubMed

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  1. Scalable Directed Assembly of Highly Crystalline 2,7-Dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) Films.

    PubMed

    Chai, Zhimin; Abbasi, Salman A; Busnaina, Ahmed A

    2018-05-30

    Assembly of organic semiconductors with ordered crystal structure has been actively pursued for electronics applications such as organic field-effect transistors (OFETs). Among various film deposition methods, solution-based film growth from small molecule semiconductors is preferable because of its low material and energy consumption, low cost, and scalability. Here, we show scalable and controllable directed assembly of highly crystalline 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) films via a dip-coating process. Self-aligned stripe patterns with tunable thickness and morphology over a centimeter scale are obtained by adjusting two governing parameters: the pulling speed of a substrate and the solution concentration. OFETs are fabricated using the C8-BTBT films assembled at various conditions. A field-effect hole mobility up to 3.99 cm 2 V -1 s -1 is obtained. Owing to the highly scalable crystalline film formation, the dip-coating directed assembly process could be a great candidate for manufacturing next-generation electronics. Meanwhile, the film formation mechanism discussed in this paper could provide a general guideline to prepare other organic semiconducting films from small molecule solutions.

  2. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity.

    PubMed

    Lee, Hui-Ting; Bose, Arindam; Lee, Chun-Ying; Opresko, Patricia L; Myong, Sua

    2017-11-16

    Telomeres are highly susceptible to oxidative DNA damage, which if left unrepaired can lead to dysregulation of telomere length homeostasis. Here we employed single molecule FRET, single molecule pull-down and biochemical analysis to investigate how the most common oxidative DNA lesions, 8-oxoguanine (8oxoG) and thymine glycol (Tg), regulate the structural properties of telomeric DNA and telomerase extension activity. In contrast to 8oxoG which disrupts the telomeric DNA structure, Tg exhibits substantially reduced perturbation of G-quadruplex folding. As a result, 8oxoG induces high accessibility, whereas Tg retains limited accessibility, of telomeric G-quadruplex DNA to complementary single stranded DNA and to telomere binding protein POT1. Surprisingly, the Tg lesion stimulates telomerase loading and activity to a similar degree as an 8oxoG lesion. We demonstrate that this unexpected stimulation arises from Tg-induced conformational alterations and dynamics in telomeric DNA. Despite impacting structure by different mechanisms, both 8oxoG and Tg enhance telomerase binding and extension activity to the same degree, potentially contributing to oncogenesis. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Theory of the deformation of aligned polyethylene.

    PubMed

    Hammad, A; Swinburne, T D; Hasan, H; Del Rosso, S; Iannucci, L; Sutton, A P

    2015-08-08

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel-Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation-dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load.

  4. Biomechanical Comparisons of Pull Out Strengths After Pedicle Screw Augmentation with Hydroxyapatite, Calcium Phosphate, or Polymethylmethacrylate in the Cadaveric Spine.

    PubMed

    Yi, Seong; Rim, Dae-Cheol; Park, Seoung Woo; Murovic, Judith A; Lim, Jesse; Park, Jon

    2015-06-01

    In vertebrae with low bone mineral densities pull out strength is often poor, thus various substances have been used to fill screw holes before screw placement for corrective spine surgery. We performed biomechanical cadaveric studies to compare nonaugmented pedicle screws versus hydroxyapatite, calcium phosphate, or polymethylmethacrylate augmented pedicle screws for screw tightening torques and pull out strengths in spine procedures requiring bone screw insertion. Seven human cadaveric T10-L1 spines with 28 vertebral bodies were examined by x-ray to exclude bony abnormalities. Dual-energy x-ray absorptiometry scans evaluated bone mineral densities. Twenty of 28 vertebrae underwent ipsilateral fluoroscopic placement of 6-mm holes augmented with hydroxyapatite, calcium phosphate, or polymethylmethacrylate, followed by transpedicular screw placements. Controls were pedicle screw placements in the contralateral hemivertebrae without augmentation. All groups were evaluated for axial pull out strength using a biomechanical loading frame. Mean pedicle screw axial pull out strength compared with controls increased by 12.5% in hydroxyapatite augmented hemivertebrae (P = 0.600) and by 14.9% in calcium phosphate augmented hemivertebrae (P = 0.234), but the increase was not significant for either method. Pull out strength of polymethylmethacrylate versus hydroxyapatite augmented pedicle screws was 60.8% higher (P = 0.028). Hydroxyapatite and calcium phosphate augmentation in osteoporotic vertebrae showed a trend toward increased pedicle screw pull out strength versus controls. Pedicle screw pull out force of polymethylmethacrylate in the insertion stage was higher than that of hydroxyapatite. However, hydroxyapatite is likely a better clinical alternative to polymethylmethacrylate, as hydroxyapatite augmentation, unlike polymethylmethacrylate augmentation, stimulates bone growth and can be revised. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Are pushing and pulling work-related risk factors for upper extremity symptoms? A systematic review of observational studies.

    PubMed

    Hoozemans, M J M; Knelange, E B; Frings-Dresen, M H W; Veeger, H E J; Kuijer, P P F M

    2014-11-01

    Systematically review observational studies concerning the question whether workers that perform pushing/pulling activities have an increased risk for upper extremity symptoms as compared to workers that perform no pushing/pulling activities. A search in MEDLINE via PubMed and EMBASE was performed with work-related search terms combined with push/pushing/pull/pulling. Studies had to examine exposure to pushing/pulling in relation to upper extremity symptoms. Two authors performed the literature selection and assessment of the risk of bias in the studies independently. A best evidence synthesis was used to draw conclusions in terms of strong, moderate or conflicting/insufficient evidence. The search resulted in 4764 studies. Seven studies were included, with three of them of low risk of bias, in total including 8279 participants. A positive significant relationship with upper extremity symptoms was observed in all four prospective cohort studies with effect sizes varying between 1.5 and 4.9. Two out of the three remaining studies also reported a positive association with upper extremity symptoms. In addition, significant positive associations with neck/shoulder symptoms were found in two prospective cohort studies with effect sizes of 1.5 and 1.6, and with shoulder symptoms in one of two cross-sectional studies with an effect size of 2.1. There is strong evidence that pushing/pulling is related to upper extremity symptoms, specifically for shoulder symptoms. There is insufficient or conflicting evidence that pushing/pulling is related to (combinations of) upper arm, elbow, forearm, wrist or hand symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Pushing and pulling: an assessment tool for occupational health and safety practitioners.

    PubMed

    Lind, Carl Mikael

    2018-03-01

    A tool has been developed for supporting practitioners when assessing manual pushing and pulling operations based on an initiative by two global companies in the manufacturing industry. The aim of the tool is to support occupational health and safety practitioners in risk assessment and risk management of pushing and pulling operations in the manufacturing and logistics industries. The tool is based on a nine-multiplier equation that includes a wide range of factors affecting an operator's health risk and capacity in pushing and pulling. These multipliers are based on psychophysical, physiological and biomechanical studies in combination with judgments from an expert group consisting of senior researchers and ergonomists. In order to consider usability, more than 50 occupational health and safety practitioners (e.g., ergonomists, managers, safety representatives and production personnel) participated in the development of the tool. An evaluation by 22 ergonomists supports that the push/pull tool is user friendly in general.

  7. Preparation (pulling) of needles for gene delivery by microinjection.

    PubMed

    Dean, David A

    2006-12-01

    INTRODUCTIONThis protocol contains methods for pulling microinjection needles using two different models of pipette pullers. The advantage of pulling needles in the laboratory is that a variety of different needle types can be pulled, depending on the samples and cells being injected. An added advantage is cost; once a pipette puller has been purchased, boxes of glass capillaries are inexpensive compared to premade microinjection needles. The advantages to buying preformed and sterilized needles include increased uniformity of needles from one to another, ease of use, high quality, and not having to invest in a pipette puller. The pipette puller models described in this article are the Flaming/Brown Pipette Puller Model P-97 (Sutter) and the PUL-1 Micropipette Puller (World Precision Instruments). The PUL-1 instrument is the less expensive of the two, but it requires more user input, and it cannot be used to pull Femtotip-like microinjection pipettes.

  8. Self-locking double retention redundant pull pin release

    NASA Technical Reports Server (NTRS)

    Killgrove, Thomas O. (Inventor)

    1987-01-01

    A double-retention redundant pull pin release system is disclosed. The system responds to a single pull during an intentional release operation. A spiral-threaded main pin is seated in a mating bore in a housing, which main pin has a flange fastened thereon at the part of the main pin which is exterior to the housing. Accidental release tends to rotate the main pin. A secondary pin passes through a slightly oversized opening in the flange and is seated in a second bore in the housing. The pins counteract against one another to prevent accidental release. A frictional lock is shared between the main and secondary pins to enhance further locking of the system. The secondary pin, in response to a first pull, is fully retracted from its bore and flange hole. Thereafter the pull causes the main pin to rotate free of the housing to release, for example, a parachute mechanism.

  9. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed

    2013-05-07

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  10. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Syed Asif, Syed Amanula

    2014-07-29

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  11. Pushing and pulling in relation to musculoskeletal disorders: a review of risk factors.

    PubMed

    Hoozemans, M J; van der Beek, A J; Frings-Dresen, M H; van Dijk, F J; van der Woude, L H

    1998-06-01

    The objective was to review the literature on risk factors for musculoskeletal disorders related to pushing and pulling. The risk factors have been described and evaluated from four perspectives: epidemiology, psychophysics, physiology, and biomechanics. Epidemiological studies have shown, based on cross-sectional data, that pushing and pulling is associated with low back pain. Evidence with respect to complaints of other parts of the musculoskeletal system is lacking. Risk factors have been found to influence the maximum (acceptable) push or pull forces as well as the physiological and mechanical strain on the human body. The risk factors have been divided into: (a) work situation, such as distance, frequency, handle height, and cart weight, (b) actual working method and posture/movement/exerted forces, such as foot distance and velocity, and (c) worker's characteristics, such as body weight. Longitudinal epidemiological studies are needed to relate pushing and pulling to musculoskeletal disorders.

  12. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos.

    PubMed

    Rios, G L; Mucci, N C; Kaiser, G G; Alberio, R H

    2010-03-01

    The aim of the present research was to develop a low cost and easy to perform vitrification method for in vitro-produced cattle embryos. Effect of container material was evaluated (plastic straw compared to glass capillary, experiment 1), two volume sample (1 compared to 0.5 microL, experiment 2) and warming solution composition medium (Tissue Culture Medium 199 (TCM-199) compared to phosphate buffered saline (PBS), experiment 3) as modifications of the open pulled straw (OPS) system in order to reduce embryo damage caused by exposure to cold. In all experiments, day 7 and expanded blastocysts of cattle were exposed to the vitrification solution 1 for 3 min and 30s in solution 2. After this, embryos were placed in a droplet and loaded in a narrow end container, and immediately submerged into liquid nitrogen. For warming, vitrified embryos were plunged into warming solution 1 for 3 min, and transferred into warming solution 2 for 1 min. Fresh embryos kept in culture were used as control group. Hatching rates were recorded in all cases at day 13. In experiment 1 there was no significant effect of container material on hatching rates. Postwarming survival rate of vitrified embryos was lower than control (27.5% plastic straws, 18.9% glass capillary and 80.5% control, P<0.05). In experiment 2, there was no significant effect of volume in hatching rates (58.3% 1 microL, 61.3% 0.5 microL and 80.5% control, P<0.05). In experiment 3, the composition of the holding medium of warming solution influenced hatching rates (84.1% TCM-199, 74.8% PBS and 91.1% control P<0.05). These data suggest that neither glass capillaries nor reduced sample volume could improve hatching rates after vitrification-warming with open pulled straw (OPS) procedure, and that PBS can replace TCM-199 in warming solutions, but lesser hatching rates should be expected.

  13. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.

    PubMed

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  14. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    NASA Astrophysics Data System (ADS)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm2, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  15. Protein Aggregation Inhibitors for ALS Therapy

    DTIC Science & Technology

    2013-07-01

    mechanisms of neuronal degeneration remain unknown in ALS, it has been postulated that protein misfolding and aggregation may be an early event that...our best compounds from last year at different doses in the ALS mouse model, and investigating possible mechanisms of action of the compounds...attachment of groups for pull-down mechanism of action experiments. Table 1. SAR studies of substituted pyrazolones. Entry R1 R2 EC50 (M) a

  16. Simulation and Experimental Study on Surface Formation Mechanism in Machining of SiCp/Al Composites

    NASA Astrophysics Data System (ADS)

    Du, Jinguang; Zhang, Haizhen; He, Wenbin; Ma, Jun; Ming, Wuyi; Cao, Yang

    2018-03-01

    To intuitively reveal the surface formation mechanism in machining of SiCp/Al composites, in this paper the removal mode of reinforced particle and aluminum matrix, and their influence on surface formation mechanism were analyzed by single diamond grit cutting simulation and single diamond grit scratch experiment. Simulation and experiment results show that when the depth of cut is small, the scratched surface of the workpiece is relatively smooth; however, there are also irregular pits on the machined surface. When increasing the depth of cut, there are many obvious laminar structures on the scratched surface, and the surface appearance becomes coarser. When the cutting speed is small, the squeezing action of abrasive grit on SiC particles plays a dominant role in the extrusion of SiC particles. When increasing the cutting speed, SiC particles also occur broken or fractured; but the machined surface becomes smooth. When machining SiCp/Al composites, the SiC may happen in such removal ways, such as fracture, debonding, broken, sheared, pulled into and pulled out, etc. By means of reasonably developing micro cutting finite element simulation model of SiCp/Al composites could be used to analyze the surface formation process and particle removal way in different machining conditions.

  17. Vectors for co-expression of an unrestricted number of proteins

    PubMed Central

    Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad

    2007-01-01

    A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810

  18. Retroperitoneal laparoscopic dismembered pyeloplasty with a novel technique of JJ stenting in children.

    PubMed

    Yu, Jianhua; Wu, Zhonghua; Xu, Youming; Li, Zhuo; Wang, Jiansong; Qi, Fan; Chen, Xiang

    2011-09-01

    • To report our experience with retroperitoneal laparoscopic dismembered pyeloplasty for pelvi-ureteric junction (PUJ) obstruction in children. • Between March 2007 and December 2009, 38 children with PUJ obstruction (mean age 8.3 years, range 3-14) underwent retroperitoneal laparoscopic dismembered pyeloplasty. • A ureteric catheter was inserted into the mid-ureter cystoscopically. During pyeloplasty, the proximal end of the ureteric catheter was extracorporeally sutured to the distal end of the JJ stent with silk. • The ureteric catheter was then pulled down and the stent was pulled antegrade into the ureter and bladder. • The approach was retroperitoneal in all patients except one who required open conversion. The overall mean operative time was 162 min (range 145-210 min) and this appeared to decrease with experience. Mean hospital stay was 4 days (range 3-7 days). • Mean follow-up was 20.2 months (range 6-32 months). Satisfactory drainage with decreased hydronephrosis was documented in all patients on ultrasonography and intravenous urography. • Our study shows that retroperitoneal laparoscopic dismembered pyeloplasty is a feasible and effective alternative to open pyeloplasty with a relatively minimal complication rate in children 3 years of age and older, but it should be undertaken by experienced laparoscopic surgeons. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  19. Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix.

    PubMed

    Wijeratne, Sithara S; Martinez, Jerahme R; Grindel, Brian J; Frey, Eric W; Li, Jingqiang; Wang, Liyun; Farach-Carson, Mary C; Kiang, Ching-Hwa

    2016-03-01

    Perlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170±20 nm and a diameter of 2-4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  20. Community perceptions of home environments that lead children & youth to the street in semi-rural Kenya.

    PubMed

    Seidel, Sarah; Muciimi, James; Chang, James; Gitari, Stanley; Keiser, Philip; Goodman, Michael L

    2018-05-28

    Research with street-involved children and youth (SICY) in Sub-Saharan Africa over the past three decades has established a complex web of both micro and macro-level factors that simultaneously "push" and "pull" children and youth to the street. There is still little research with adult family and community members in communities from which SICY originate. Forty men and women from five semi-rural villages in Meru County, Kenya participated in a Rapid Rural Appraisal utilizing a fishbone diagram to explore main and underlying reasons for why children may be or may feel unwelcome in the home and thus migrate to the street. Responses were analyzed in terms of ecological levels, child or parent perspective, and the push/pull framework. Overall, community members identified families and households experiencing stress and lacking the necessary resources to successfully adjust and adapt. Four ecological levels of influence were proposed as main reasons, with parent and caregiver factors mentioned most often, followed by household factors, children's intrapersonal factors, and interpersonal (family) factors. Community and environmental level factors were also proposed as underlying factors. Analysis by gender revealed that both men and women emphasized push factors over pull factors, though men proposed more pull factors (from peers and street life) than women did. Men placed more responsibility on the children than women did, citing children's negative behaviors, dissatisfaction with home, and a desire for independence and work/income. Women, in contrast, emphasized children's feelings of being unloved and the experience of harsh punishment or abuse from caregivers. Findings suggest that interventions to reduce street involvement should support economically, medically, and psychologically vulnerable families and households through comprehensive family strengthening programs that build financial capacity, improve parenting and communication skills, and promote education over child work and labor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Circular stapled pyloroplasty: a fast and effective technique for pyloric disruption during esophagectomy with gastric pull-up.

    PubMed

    Oezcelik, A; DeMeester, S R; Hindoyan, K; Leers, J M; Ayazi, S; Abate, E; Zehetner, J; Hagen, J A; Lipham, J C; DeMeester, T R

    2011-08-01

    The necessity of pyloroplasty after esophagectomy and gastric pull-up is debated. Disadvantages of a standard pyloroplasty include the potential for leak, shortening of the length of the graft, and complexity when done during a minimally invasive procedure. The aim of this study is to report our experience with a novel internal pyloroplasty technique using a circular stapler (CS pyloroplasty), which is applicable for both laparoscopic and open esophagectomy. The records of all patients who underwent an esophagectomy with gastric pull-up and pyloroplasty between 2002 and 2007 were reviewed. The CS pyloroplasty was performed through a lesser curve gastrotomy with a 21-mm CS, while the standard pyloroplasty entailed a longitudinal full thickness incision through the pylorus with mucosal closure in the same direction and a Graham patch. A CS pyloroplasty was performed in 144 and a standard pyloroplasty in 133 patients. The median patient age was 66years, and the median follow-up was 17months, and was similar for both types of pyloroplasty. Routine postoperative videoesophagram was significantly more likely to show a delay in contrast transit through the pylorus after standard pyloroplasty (16% standard vs. 8% CS pyloroplasty, P= 0.03). Significantly more patients had postoperative endoscopy after standard pyloroplasty (40% standard vs. 24% CS pyloroplasty, P= 0.004), but the frequency of pyloric dilatation was similar. There were no leaks with either technique. A circular stapled pyloroplasty is as efficacious as a standard pyloroplasty after esophagectomy with gastric pull-up. Potential advantages include the ease and simplicity of the procedure along with virtually no risk of a leak and no graft shortening. The technique is amenable to both open and minimally invasive procedures. © 2011 Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  2. Work volume and strength training responses to resistive exercise improve with periodic heat extraction from the palm.

    PubMed

    Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig

    2012-09-01

    Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.

  3. Forced reptation revealed by chain pull-out simulations.

    PubMed

    Bulacu, Monica; van der Giessen, Erik

    2009-08-14

    We report computation results obtained from extensive molecular dynamics simulations of tensile disentanglement of connector chains placed at the interface between two polymer bulks. Each polymer chain (either belonging to the bulks or being a connector) is treated as a sequence of beads interconnected by springs, using a coarse-grained representation based on the Kremer-Grest model, extended to account for stiffness along the chain backbone. Forced reptation of the connectors was observed during their disentanglement from the bulk chains. The extracted chains are clearly seen following an imaginary "tube" inside the bulks as they are pulled out. The entropic and energetic responses to the external deformation are investigated by monitoring the connector conformation tensor and the modifications of the internal parameters (bonds, bending, and torsion angles along the connectors). The work needed to separate the two bulks is computed from the tensile force induced during debonding in the connector chains. The value of the work reached at total separation is considered as the debonding energy G. The most important parameters controlling G are the length (n) of the chains placed at the interface and their areal density. Our in silico experiments are performed at relatively low areal density and are disregarded if chain scission occurs during disentanglement. As predicted by the reptation theory, for this pure pull-out regime, the power exponent from the scaling G proportional, variant n(a) is a approximately 2, irrespective of chain stiffness. Small variations are found when the connectors form different number of stitches at the interface, or when their length is randomly distributed in between the two bulks. Our results show that the effects of the number of stitches and of the randomness of the block lengths have to be considered together, especially when comparing with experiments where they cannot be controlled rigorously. These results may be significant for industrial applications, such reinforcement of polymer-polymer adhesion by connector chains, when incorporated as constitutive laws at higher time/length scales in finite element calculations.

  4. Experimental field study of problem-solving using tools in free-ranging capuchins (Sapajus nigritus, formerly Cebus nigritus).

    PubMed

    Garber, P A; Gomes, D F; Bicca-Marques, J C

    2012-04-01

    Some populations of capuchins are reported to use tools to solve foraging problems in the wild. In most cases, this involves the act of pounding and digging. The use of probing tools by wild capuchins is considerably less common. Here we report on the results of an experimental field study conducted in southern Brazil designed to examine the ability of wild black-horned capuchins (Sapajus nigritus) to use a wooden dowel as a lever or a probe to obtain an embedded food reward. A group of eight capuchins was presented with two experimental platforms, each housing a clear Plexiglas box containing two bananas on a shelf and four inserted dowels. Depending on the conditions of the experiment, the capuchins were required either to pull (Condition I) or push (Conditions II and III) the dowels, in order to dislodge the food reward from the shelf so that it could be manually retrieved. In Condition I, four individuals spontaneously solved the foraging problem by pulling the dowels in 25% (72/291) of visits. In Conditions II and III, however, no capuchin successfully pushed the dowels forward to obtain the food reward. During these latter two experimental conditions, the capuchins continued to pull the dowels (41/151 or 27% of visits), even though this behavior did not result in foraging success. The results of these field experiments are consistent with an identical study conducted on wild Cebus capucinus in Costa Rica, and suggest that when using an external object as a probe to solve a foraging problem, individual capuchins were able to rapidly learn an association between the tool and the food reward, but failed to understand exactly how the tool functioned in accomplishing the task. The results also suggest that once a capuchin learned to solve this tool-mediated foraging problem, the individual persisted in using the same solution even in the face of repeated failure (slow rate of learning extinction). © 2011 Wiley Periodicals, Inc.

  5. --No Title--

    Science.gov Websites

    media print { .col-sm-1, .col-sm-2, .col-sm-3, .col-sm-4, .col-sm-5, .col-sm-6, .col-sm-7, .col-sm { width: 41.66666667%; } .col-sm-4 { width: 33.33333333%; } .col-sm-3 { width: 25%; } .col-sm-2 { width : 41.66666667%; } .col-sm-pull-4 { right: 33.33333333%; } .col-sm-pull-3 { right: 25%; } .col-sm-pull-2 { right

  6. Three Levels of Push-Pull Dynamics among Chinese International Students' Decision to Study Abroad in the Canadian Context

    ERIC Educational Resources Information Center

    Chen, Jun Mian

    2017-01-01

    The extant literature on student migration flows generally focus on the traditional push-pull factors of migration at the individual level. Such a tendency excludes the broader levels affecting international student mobility. This paper proposes a hybrid of three levels of push-pull dynamics (micro-individual decision-making, meso-academic…

  7. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  8. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  9. Yo-Yo Pull Demonstration

    ERIC Educational Resources Information Center

    Layton, William

    2013-01-01

    A popular demonstration involves placing a yo-yo on a level table and gently pulling the string horizontally when it is wrapped to come out below the center of the yo-yo's axis. Students are then asked to predict which way the yo-yo will move. A similar demonstration is performed with a tricycle by pulling forward on a pedal with the pedal down in…

  10. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  11. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  12. 25 CFR 542.8 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What are the minimum internal control standards for pull tabs? 542.8 Section 542.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.8 What are the minimum internal control standards for pull tabs? (a) Computer applications. For...

  13. 25 CFR 542.8 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What are the minimum internal control standards for pull tabs? 542.8 Section 542.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.8 What are the minimum internal control standards for pull tabs? (a) Computer applications. For...

  14. 25 CFR 542.8 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false What are the minimum internal control standards for pull tabs? 542.8 Section 542.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.8 What are the minimum internal control standards for pull tabs? (a) Computer applications. For...

  15. Apparent Covariation between Child Habit Disorders: Effects of Successful Treatment for Thumb Sucking on Untargeted Chronic Hair Pulling.

    ERIC Educational Resources Information Center

    Friman, Patrick C.; Hove, Gayleen

    1987-01-01

    The study examined effects of aversive taste treatment of thumb sucking on untreated habitual hair pulling by two young males (ages 2 and 5). Concomitant with successful treatment of thumb sucking, hair pulling was also eliminated. Results suggest an efficient method for changing behaviors that are difficult to treat directly. (Author/JW)

  16. AORN ergonomic tool 7: pushing, pulling, and moving equipment on wheels.

    PubMed

    Waters, Thomas; Lloyd, John D; Hernandez, Edward; Nelson, Audrey

    2011-09-01

    Pushing and pulling equipment in and around the OR can place high shear force demands on perioperative team members' shoulder and back muscles and joints. These high forces may lead to work-related musculoskeletal disorders. AORN Ergonomic Tool 7: Pushing, Pulling, and Moving Equipment on Wheels can help perioperative team members assess the risk of pushing and pulling tasks in the perioperative setting. The tool provides evidence-based suggestions about when assistive devices should be used for these tasks and is based on current ergonomic safety concepts, scientific evidence, and knowledge of effective technology and procedures, including equipment and devices for safe patient handling. Published by Elsevier Inc.

  17. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    PubMed Central

    Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu

    2016-01-01

    Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428

  18. Push-me-pull-you: how microtubules organize the cell interior

    PubMed Central

    2008-01-01

    Dynamic organization of the cell interior, which is crucial for cell function, largely depends on the microtubule cytoskeleton. Microtubules move and position organelles by pushing, pulling, or sliding. Pushing forces can be generated by microtubule polymerization, whereas pulling typically involves microtubule depolymerization or molecular motors, or both. Sliding between a microtubule and another microtubule, an organelle, or the cell cortex is also powered by molecular motors. Although numerous examples of microtubule-based pushing and pulling in living cells have been observed, it is not clear why different cell types and processes employ different mechanisms. This review introduces a classification of microtubule-based positioning strategies and discusses the efficacy of pushing and pulling. The positioning mechanisms based on microtubule pushing are efficient for movements over small distances, and for centering of organelles in symmetric geometries. Mechanisms based on pulling, on the other hand, are typically more elaborate, but are necessary when the distances to be covered by the organelles are large, and when the geometry is asymmetric and complex. Thus, taking into account cell geometry and the length scale of the movements helps to identify general principles of the intracellular layout based on microtubule forces. PMID:18404264

  19. Determinants and magnitudes of manual force strengths and joint moments during two-handed standing maximal horizontal pushing and pulling.

    PubMed

    Chow, Amy Y; Dickerson, Clark R

    2016-04-01

    Pushing and pulling are common occupational exertions that are increasingly associated with musculoskeletal complaints. This study focuses on the sensitivity of shoulder capacity to gender, handle height, exertion type (push or pull) and handle orientation for these tasks. All factors except for handle orientation influenced unilateral and total manual force strength (p < 0.01), with exertion type being the most influential. Interaction effects also existed between handle height and exertion type. Additionally, joint moments at the shoulders and low back were influenced by all factors studied (p < 0.01), with exertion type again being most influential. Knowledge of the relative influence of multiple factors on shoulder capacity can provide guidance regarding these factors when designing or evaluating occupational pushing and pulling tasks for a diverse population. Practitioner Summary: pushing and pulling comprise nearly half of all manual materials handling tasks. Practitioners often assess, design or modify these tasks while incorporating constraints, including manual force direction and handle interface. This study provides guidance to aid design of pushing and pulling tasks in the context of shoulder physical capacity.

  20. Rod pumping and proppant flowback at the Lost Hills Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, I.G.

    1995-12-31

    Proppant flowback from hydraulically fractured wells can lead to sand wear on the pump barrel and plunger and increased pulling costs on rod pumped wells. Two approaches for lengthening run times of the pumps were tried. One approach was to install pumps that will allow production of a sand laden fluid. Pressure actuated plunger (PAP) pumps were field tested and showed an average increase of 81.6% in run time. These split ring wiper pumps clean the barrel of sand prior to the passing of the plunger. The other approach was to keep the sand and from entering the pumps. Whenmore » down hole filters were utilized, run life of the pumps with the filters increases 135%. Well pulling cost savings of $11.91 per well-day and $9.24 per well-day are documented for the PAP pumps and filters, respectively. Application guidelines based on the sand loading rate and gross liquid production of the wells are presented, as well as some operational experiences.« less

  1. A low-g electrostatically actuated resonant switch

    NASA Astrophysics Data System (ADS)

    Ramini, A.; Younis, M. I.; Su, Q. T.

    2013-02-01

    This work investigates a new concept of an electrostatically actuated resonant switch (EARS) for earthquake detection and low-g seismic applications. The resonator is designed to operate close to the instability bands of frequency-response curves, where it is forced to collapse dynamically (pull-in) if operated within these bands. By careful tuning, the resonator can be made to enter the pull-in instability zone upon the detection of the earthquake signal, thereby snapping down as an electric switch. Such a switching action can be functionalized for alarming purposes or can be used to activate a network of sensors for seismic activity recording. The EARS is modeled and its dynamic response is simulated using a nonlinear single-degree-of-freedom model. Experimental investigation is conducted demonstrating the EARS’ capability of being triggered at small levels of acceleration as low as 0.02g. Results for the switching events for several levels of low-g accelerations using both theory and experiments are presented and compared.

  2. Effects of myofascial release leg pull and sagittal plane isometric contract-relax techniques on passive straight-leg raise angle.

    PubMed

    Hanten, W P; Chandler, S D

    1994-09-01

    Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.

  3. Determination of thermodynamics and kinetics of RNA reactions by force

    PubMed Central

    Tinoco, Ignacio; Li, Pan T. X.; Bustamante, Carlos

    2008-01-01

    Single-molecule methods have made it possible to apply force to an individual RNA molecule. Two beads are attached to the RNA; one is on a micropipette, the other is in a laser trap. The force on the RNA and the distance between the beads are measured. Force can change the equilibrium and the rate of any reaction in which the product has a different extension from the reactant. This review describes use of laser tweezers to measure thermodynamics and kinetics of unfolding/refolding RNA. For a reversible reaction the work directly provides the free energy; for irreversible reactions the free energy is obtained from the distribution of work values. The rate constants for the folding and unfolding reactions can be measured by several methods. The effect of pulling rate on the distribution of force-unfolding values leads to rate constants for unfolding. Hopping of the RNA between folded and unfolded states at constant force provides both unfolding and folding rates. Force-jumps and force-drops, similar to the temperature jump method, provide direct measurement of reaction rates over a wide range of forces. The advantages of applying force and using single-molecule methods are discussed. These methods, for example, allow reactions to be studied in non-denaturing solvents at physiological temperatures; they also simplify analysis of kinetic mechanisms because only one intermediate at a time is present. Unfolding of RNA in biological cells by helicases, or ribosomes, has similarities to unfolding by force. PMID:17040613

  4. Why Are So Many Things in the Solar System Round?

    NASA Astrophysics Data System (ADS)

    Heilig, Steven J.

    2010-09-01

    Several years ago a student asked why so many things in the solar system were round. He noted that many objects in the solar system, although not all, are round. The standard answer, which he knew, is that the mutual gravitational attraction of the molecules pulls them into the shape that gets them as close to each other as possible: a sphere. This argument works fine for fluid bodies such as the Sun or Jupiter, but it isn't so simple for a solid object-we have all seen rocks that are not round. There is still a gravitational attraction acting between the rock's molecules, butfor small rocks that force does not overcome the strength of the bonds holding those molecules in their relative positions. Since the strength of the gravitational force grows with the size of the object, a large enough rock will have a strong enough gravitational attraction to force a deformation into a round shape. But how large is that? A simple model gives an answer to this question. There is also renewed interest in this topic as a result of the new definition of a planet approved by the International Astronomical Union, which says in part, ``A `planet' is a celestial body that... has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape.''1 What size object is large enough to satisfy this criterion? Where does Pluto fall regarding this question?

  5. Field Artillery Cannon Weapons Systems and Ammunition Handbook.

    DTIC Science & Technology

    1981-12-01

    velocity 472 meters per second Maximum range 11,000 meters Type breechblock Horizontal sliding wedge Type firing mechanism Continuous pull , M13 Type...interrupted screw Type of firing mechanism Continuous pull , M35 Type of recoil mechanism Hydropneumatic Minimum recoil 24 inches Maximum recoil 36...breechblock Threaded, interrupted screw Type of firing mechanism Continuous pull , M35 Type of recoil mechanism Hydropneurnatic Minimum recoil 50 inches +_2

  6. Tissue Engineering Initiative

    DTIC Science & Technology

    2002-08-01

    evaluate functionality, the FDP/SIS and FDS were independently pulled to determine the degree of distal interphalangeal (DIP) joint motion contributed by...each. In three digits the distal phalanx moved similarly whether pulling on the FDP/SIS or the FDS tendon. This suggests some scarring/adhesions between... pulled to determine the degree of distal interphalangeal (DIP) joint motion contributed by each. In three digits the distal phalanx moved similarly

  7. 25 CFR 543.9 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What are the minimum internal control standards for pull tabs? 543.9 Section 543.9 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.9 What are the minimum internal control standards for pull tabs? (a)...

  8. 25 CFR 543.9 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What are the minimum internal control standards for pull tabs? 543.9 Section 543.9 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.9 What are the minimum internal control standards for pull tabs? (a)...

  9. Fluoroscopy-Guided Pull-Through Gastrostomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitton, M. B., E-mail: pitton@radiologie.klinik.uni-mainz.de; Herber, S.; Dueber, C.

    2008-01-15

    The purpose of this study was to simplify a fluoroscopy guided gastrostomy technique using pull-type tubes which are traditionally introduced with gastroscopic assistance. The stomach was transorally probed with a 5-Fr catheter and a guidewire. A second access was performed percutaneously through the anterior abdominal and gastric wall using an 8-Fr sheath and an 8-Fr guiding catheter. A duplicated guidewire was introduced through the guiding catheter in order to result in a great custom-made loop within the stomach. The transoral guidewire was captured and tightened with this loop and the guiding catheter, and both were subsequently pulled by the transoralmore » guidewire until the tip of the guiding catheter exited the mouth. A thread was fed through the guiding catheter for fixation of the pull-type gastrostomy tube. Finally, the fixed tube was pulled through the esophagus into the stomach and through the abdominal wall until the anterior gastric wall fixed the retention plate of the tube. Thirty-seven patients (28 male, 9 female; age, 65.1 {+-} 14.4 years) with miscellaneous indications for percutaneous gastrostomies were supplied with pull-type gastrostomy catheters in a fluoroscopy technique without endoscopic assistance. Twenty-five of the 37 patients (67.6%) had undergone unsuccessful preceding gastroscopically guided PEG attempts because of tumor stenosis (n = 12) or impossible transillumination of the abdominal wall (n = 13). All procedures were technically successful, without major complications. Particularly, all patients with frustrating gastroscopic attempts were successfully provided with pull-type gastrostomy tubes. Five minor complications occurred: one tube loss during the passage of the hypopoharynx because of a torn thread, one transient small leakage alongside the tube (both successfully treated), and three cases of transient moderate local pain without leakage (symptomatic treatment). We conclude that this fluoroscopy-guided pull-through gastrostomy technique is easy and safe to perform and may be suggested as a standard procedure for radiological gastrostomies. It combines the ease of the radiological approach with the advantages of the pull-type tube devices, particularly the benefits of the typical retention plates.« less

  10. INTERSESSION RELIABILITY OF UPPER EXTREMITY ISOKINETIC PUSH-PULL TESTING.

    PubMed

    Riemann, Bryan L; Davis, Sarah E; Huet, Kevin; Davies, George J

    2016-02-01

    Based on the frequency pushing and pulling patterns are used in functional activities, there is a need to establish an objective method of quantifying the muscle performance characteristics associated with these motions, particularly during the later stages of rehabilitation as criteria for discharge. While isokinetic assessment offers an approach to quantifying muscle performance, little is known about closed kinetic chain (CKC) isokinetic testing of the upper extremity (UE). To determine the intersession reliability of isokinetic upper extremity measurement of pushing and pulling peak force and average power at slow (0.24 m/s), medium (0.43 m/s) and fast (0.61 m/s) velocities in healthy young adults. The secondary purpose was to compare pushing and pulling peak force (PF) and average power (AP) between the upper extremity limbs (dominant, non-dominant) across the three velocities. Twenty-four physically active men and women completed a test-retest (>96 hours) protocol in order to establish isokinetic UE CKC reliability of PF and AP during five maximal push and pull repetitions at three velocities. Both limb and speed orders were randomized between subjects. High test-retest relative reliability using intraclass correlation coefficients (ICC2, 1) were revealed for PF (.91-.97) and AP (.85-.95) across velocities, limbs and directions. PF typical error (% coefficient of variation) ranged from 6.1% to 11.3% while AP ranged from 9.9% to 26.7%. PF decreased significantly (p < .05) as velocity increased whereas AP increased as velocity increased. PF and AP during pushing were significantly greater than pulling at all velocities, however the push-pull differences in PF became less as velocity increased. There were no significant differences identified between the dominant and nondominant limbs. Isokinetically derived UE CKC push-pull PF and AP are reliable measures. The lack of limb differences in healthy normal participants suggests that clinicians can consider bilateral comparisons when interpreting test performance. The increase in pushing PF and AP compared to pulling can be attributed to the muscles involved and the frequency that pushing patterns are used during functional activities. 3.

  11. Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly.

    PubMed

    Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2017-09-01

    The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U(x,z) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ, revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.

  12. Elephants know when they need a helping trunk in a cooperative task

    PubMed Central

    Plotnik, Joshua M.; Lair, Richard; Suphachoksahakun, Wirot; de Waal, Frans B. M.

    2011-01-01

    Elephants are widely assumed to be among the most cognitively advanced animals, even though systematic evidence is lacking. This void in knowledge is mainly due to the danger and difficulty of submitting the largest land animal to behavioral experiments. In an attempt to change this situation, a classical 1930s cooperation paradigm commonly tested on monkeys and apes was modified by using a procedure originally designed for chimpanzees (Pan troglodytes) to measure the reactions of Asian elephants (Elephas maximus). This paradigm explores the cognition underlying coordination toward a shared goal. What do animals know or learn about the benefits of cooperation? Can they learn critical elements of a partner's role in cooperation? Whereas observations in nature suggest such understanding in nonhuman primates, experimental results have been mixed, and little evidence exists with regards to nonprimates. Here, we show that elephants can learn to coordinate with a partner in a task requiring two individuals to simultaneously pull two ends of the same rope to obtain a reward. Not only did the elephants act together, they inhibited the pulling response for up to 45 s if the arrival of a partner was delayed. They also grasped that there was no point to pulling if the partner lacked access to the rope. Such results have been interpreted as demonstrating an understanding of cooperation. Through convergent evolution, elephants may have reached a cooperative skill level on a par with that of chimpanzees. PMID:21383191

  13. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound.

    PubMed

    Skjelvareid, Martin H; Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-09-18

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a "self-focusing" heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface.

  14. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound

    PubMed Central

    Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-01-01

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a “self-focusing” heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface. PMID:28926968

  15. Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2017-09-01

    The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U (x ,z ) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ , revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.

  16. Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation.

    PubMed

    Faure, Alexis; Haberland, Ulrike; Condé, Françoise; El Massioui, Nicole

    2005-03-16

    Acquisition and performance of instrumental actions are assumed to require both action-outcome and stimulus-response (S-R) habit processes. Over the course of extended training, control over instrumental performance shifts from goal-directed action-outcome associations to S-R associations that progressively gain domination over behavior. Lesions of the lateral part of the dorsal striatum disrupt this process, and rats with lesions to the lateral striatum showed selective sensitivity to devaluation of the instrumental outcome (Yin et al., 2004), indicating that this area is necessary for habit formation. The present experiment further explored the basis of this dysfunction by examining the ability of rats subjected to bilateral 6-hydroxydopamine lesions of the nigrostriatal dopaminergic pathway to develop behavioral autonomy with overtraining. Rats were given extended training on two cued instrumental tasks associating a stimulus (a tone or a light) with an instrumental action (lever press or chain pull) and a food reward (pellets or sucrose). Both tasks were run daily in separate sessions. Overtraining was followed by a test of goal sensitivity by satiety-specific devaluation of the reward. In control animals, one action (lever press) was insensitive to reward devaluation, indicating that it became a habit, whereas the second action (chain pull) was still sensitive to goal devaluation. This result provides evidence that the development of habit learning may depend on the characteristics of the response. In dopamine-depleted rats, lever press and chain pull remained sensitive to reward devaluation, evidencing a role of striatal dopamine transmission in habit formation.

  17. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    PubMed

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  18. Tales told by tails: watching DNA driven through a random medium

    NASA Astrophysics Data System (ADS)

    Guan, Juan; Wang, Bo; Bae, Sung Chul; Granick, Steve

    2013-03-01

    DNA ligation is used to label separately the ends and centers of monodisperse DNA 16 μm in contour length, and 2-color fluorescence microscopy is used to follow with nm resolution how chains migrate through agarose networks driven by electric fields, at both whole chain and segment level. We observe that the leading segment is always a physical chain end which stretches and pulls out slack in the still-quiescent remainder of the chain until the other end is taken up. Heads and tails behave strikingly differently: the leading end of migrating chains migrates more smoothly, whereas motion of the trailing end shows intermittent pauses and jerky recoil. None of the mechanisms imagined classically for this situation - chain reptation, hooking or entropic trapping, appears to fully describe these data obtained from single-molecule visualization.

  19. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  20. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  1. Analysis of Effect of Rolling Pull-Outs on Wing and Aileron Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A.; Aiken, William S.

    1946-01-01

    An analysis was made to determine the effect of rolling pull-out maneuvers on the wing and aileron loads of a typical fighter airplane, the P-47B. The results obtained indicate that higher loads are imposed upon wings and ailerons because of the rolling pull-out maneuver, than would be obtained by application of the loading requirements to which the airplane was designed. An increase of 102 lb or 15 percent of wing weight would be required if the wing were designed for rolling pull-out maneuver. It was also determined that the requirements by which the aileron was originally designed were inadequate.

  2. Investigation of the influence of coolant-lubricant modification on selected effects of pull broaching

    NASA Astrophysics Data System (ADS)

    Adamczuk, Krzysztof; Legutko, Stanisław; Laber, Alicja; Serwa, Wojciech

    2017-10-01

    The paper presents the results of testing the wear of the tool (pull broach) and a gear wheel splineway surface roughness after the friction node of pull broach/gear wheel (CuSn12Ni2) had been lubricated with metal machining oil and the same oil modified with chemically active exploitation additive. To designate the influence of modifying metal machining oil by the exploitation additive on the lubricating properties, anti-wear and antiseizure indicators have been appointed. Exploitation tests have proved purposefulness of modifying metal machining oil. Modification of the lubricant has contributed to reduction of the wear of the tools - pull broaches and to reduction of roughness of the splineway surfaces.

  3. Investigation on Bond-Slip Behavior of Z-Pin Interfaces in X-Cor® Sandwich Structures Using Z-Pin Pull-Out Test

    NASA Astrophysics Data System (ADS)

    Shan, Hangying; Xiao, Jun; Chu, Qiyi

    2018-05-01

    The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.

  4. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles

    PubMed Central

    Tanaka, Kozo; Kitamura, Etsushi; Kitamura, Yoko; Tanaka, Tomoyuki U.

    2007-01-01

    In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transport are not yet known. We present two mechanisms involved in microtubule-dependent poleward kinetochore transport in Saccharomyces cerevisiae. First, kinetochores slide along the microtubule lateral surface, which is mainly and probably exclusively driven by Kar3, a kinesin-14 family member that localizes at kinetochores. Second, kinetochores are tethered at the microtubule distal ends and pulled poleward as microtubules shrink (end-on pulling). Kinetochore sliding is often converted to end-on pulling, enabling more processive transport, but the opposite conversion is rare. The establishment of end-on pulling is partly hindered by Kar3, and its progression requires the Dam1 complex. We suggest that the Dam1 complexes, which probably encircle a single microtubule, can convert microtubule depolymerization into the poleward kinetochore-pulling force. Thus, microtubule-dependent poleward kinetochore transport is ensured by at least two distinct mechanisms. PMID:17620411

  5. Pull-down Assay to Characterize Ca2+/Calmodulin Binding to Plant Receptor Kinases.

    PubMed

    Kaufmann, Christine; Sauter, Margret

    2017-01-01

    Plant receptor-like kinases (RLKs) are regulated by posttranscriptional modification and by interaction with regulatory proteins. A common modification of RLKs is (auto)phosphorylation, and a common regulatory protein is the calcium sensor calmodulin (CaM). We have developed protocols to detect the interaction of an RLK with CaM. The interaction with CaM was shown by bimolecular fluorescence complementation (BiFC) (see Chapter 14) and pull-down assay (this chapter). Both methods offer unique advantages. BiFC is useful in showing interaction of soluble as well as of membrane-bound proteins in planta. Pull-down assays are restricted to soluble proteins and provide in vitro data. The pull-down assay provides the advantage that proteins can be modified prior to binding and that experimental conditions such as the concentration of Ca 2+ or other divalent cations can be controlled. This chapter provides a pull-down protocol to study RLK-CaM interaction with optional steps to investigate the impact of RLK phosphorylation or of Ca 2+ .

  6. Increased Ethylene Production during Clinostat Experiments May Cause Leaf Epinasty

    PubMed Central

    Leather, G. R.; Forrence, L. E.; Abeles, F. B.

    1972-01-01

    Ethylene production from tomato (Lycopersicum esculentum L. cv. Rutgers) plants based on a clinostat doubled during the first 2 hours of rotation. Carbon dioxide blocked the appearance of leaf epinasty normally associated with plants rotated on a clinostat. These results support the idea that epinasty of clinostated plants was due to increased ethylene production and not to the cancellation of the gravitational pull on auxin transport in the petiole. Images PMID:16657920

  7. Epidemic Outbreak Surveillance (EOS)

    DTIC Science & Technology

    2006-07-01

    Experiment to Test Integrity of2003 Nasal Wash and Throat Swab Samples Stored at -80°C. September 2005 (Sue WorthyLuke Daum) Seven matched pairs of...Nasal Wash and Throat Swab samples, previously tested in September 2004 for Influenza A, were pulled from the -80°C storage freezer for re-testing...January 2006 a detailed vrocess was completed to inventorv and organize the sample storage freezers for all Nasal wash, Throat swab and PAXgene

  8. Corroded Anchor Structure Stability/Reliability (CAS_Stab-R) Software for Hydraulic Structures

    DTIC Science & Technology

    2017-12-01

    This report describes software that provides a probabilistic estimate of time -to-failure for a corroding anchor strand system. These anchor...stability to the structure. A series of unique pull-test experiments conducted by Ebeling et al. (2016) at the U.S. Army Engineer Research and...Reliability (CAS_Stab-R) produces probabilistic Remaining Anchor Life time estimates for anchor cables based upon the direct corrosion rate for the

  9. Democratization in the Arab World: A Summary of Lessons from Around the Globe

    DTIC Science & Technology

    2013-01-01

    key’s democratization experience together with several southern European cases . Democratization in the Arab World: A Summary of Lessons 3 termed the...examined democratization patterns in each of the following regions and focused in-depth on the cases noted in parentheses: South- ern Europe (Portugal...quickly, while in Turkey progress was more halting. In the Portuguese, Greek, and Spanish cases and, to a lesser extent, later in Turkey, the pull

  10. Control Issues for Microelectromechanical Systems

    DTIC Science & Technology

    2006-04-01

    par- ticular, electrostatic drives suffer from electromechani- cal instabilities such as lateral pull -in, side pull -in, and lateral instability...standard robust feed- back methods can compensate for lateral pull -in and signifi- cantly extend the range of travel of the mechanical shuttle. MEMS...DAAD19-02-1-0366 and NSF GOALI BES 0201773. REFERENCES [1] J. Bryzek, E. Abbott, A. Flannery, D. Cagle, and J. Maitan, “Control issues for MEMS,” in

  11. Pin-Retraction Mechanism On Quick-Release Cover

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1994-01-01

    Quick-release cover includes pin-retraction mechanism releasing cover quickly from lower of two sets of pin connections holding cover. Cover released at top by pulling lever as described in "Lever-Arm Pin Puller" (NPO-18788). Removal of cover begins when technician or robot pulls upper-pin-release lever. Cover swings downward until tabs on lower pins are pulled through slots in their receptacles. Lower pins are then free.

  12. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

    PubMed

    Weston, Eric B; Aurand, Alexander; Dufour, Jonathan S; Knapik, Gregory G; Marras, William S

    2018-06-01

    Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.

  13. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.

    PubMed

    Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng

    2017-05-29

    We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

  14. Scapular Stabilization and Muscle Strength in Manual Wheelchair Users with Spinal Cord Injury and Subacromial Impingement.

    PubMed

    Wilbanks, Susan R; Bickel, C Scott

    2016-01-01

    Background: Manual wheelchair users with spinal cord injury (SCI) are frequently diagnosed with subacromial impingement. Objective: To determine whether the pattern of muscle imbalance and impaired scapular stabilization in able-bodied (AB) adults with impingement is different from that in manual wheelchair users with SCI and impingement. Methods: The following measurements were collected from 22 adults with subacromial impingement (11 SCI, 11 AB): ratio of normalized muscle electrical activity of upper and lower trapezius (UT:LT) during arm abduction; force during abduction, adduction, internal rotation, external rotation, and push and pull; ratios of force for abduction to adduction (AB:ADD), internal to external rotation (IR:ER), and push to pull (PUSH:PULL). Results: Shoulders with impingement had significantly higher UT:LT activation (1.46 ± 0.52) than shoulders without impingement (0.93 ± 0.45) ( P = .006), regardless of wheelchair user status. Significant differences between AB participants and those with SCI were observed for ABD:ADD ( P = .005), PUSH:PULL ( P = .012), and pull strength ( P = .043). Participants with SCI had a significantly greater ABD:ADD (1.37 ± 0.36) than AB participants (1.04 ± 0.22) ( P = .002) and a significantly greater PUSH:PULL (1.53 ± 0.36) than AB participants (1.26 ± 0.18) ( P = .005) because of decreased strength in adduction ( P = .021) and pull ( P = .013). Conclusions: Strategies targeting the posterior shoulder girdle for AB adults are appropriate for manual wheelchair users with SCI and impingement and should focus on scapular retractors and arm adductors with emphasis on scapular depression and posterior tilting.

  15. Pulled elbow in children.

    PubMed

    Yamanaka, Syunsuke; Goldman, Ran D

    2018-06-01

    Question Our practice is seeing children with relatively minor injuries to their elbows, with a history of "swinging" them when their hands are being held to cross the road. Nothing is usually found on a physical examination. I know that this is likely a "pulled elbow." Can we manage this in the clinic setting rather than sending the family to the emergency department? What would be the best course of action in the clinic setting? Answer Pulled elbow, also called nursemaid's elbow , is a radial head subluxation caused by axial traction or a sudden pull of the extended pronated arm, and it is a very common phenomenon. The practice of swinging children while holding their hands should be abandoned. In the case of pulled elbow, the child usually avoids moving the affected arm, holding it close to his or her body, without considerable pain, and no obvious swelling or deformity can be seen. While a fracture should be excluded, pulled elbow can usually be identified based on this presentation. The reduction procedure can easily be done in the office setting, with an 80% success rate and no complications. The hyperpronation maneuver (holding the elbow at 90° and then firmly pronating the wrist) to reduce pulled elbow has been found to be better than a supination-flexion maneuver (holding the elbow at 90° with one hand, supinating and flexing the elbow rapidly with the other) and should be exercised first. When 2 trials of reduction are unsuccessful, the child's arm should be splinted and the family should be sent for further evaluation. Copyright© the College of Family Physicians of Canada.

  16. Effect of coconut oil in plaque related gingivitis - A preliminary report.

    PubMed

    Peedikayil, Faizal C; Sreenivasan, Prathima; Narayanan, Arun

    2015-01-01

    Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis.

  17. Muscle activation levels of the gluteus maximus and medius during standing hip-joint strengthening exercises using elastic-tubing resistance.

    PubMed

    Youdas, James W; Adams, Kady E; Bertucci, John E; Brooks, Koel J; Nelson, Meghan M; Hollman, John H

    2014-02-01

    No published studies have compared muscle activation levels simultaneously for the gluteus maximus and medius muscles of stance and moving limbs during standing hip-joint strengthening while using elastic-tubing resistance. To quantify activation levels bilaterally of the gluteus maximus and medius during resisted lower-extremity standing exercises using elastic tubing for the cross-over, reverse cross-over, front-pull, and back-pull exercise conditions. Repeated measures. Laboratory. 26 active and healthy people, 13 men (25 ± 3 y) and 13 women (24 ± 1 y). Subjects completed 3 consecutive repetitions of lower-extremity exercises in random order. Surface electromyographic (EMG) signals were normalized to peak activity in the maximum voluntary isometric contraction (MVIC) trial and expressed as a percentage. Magnitudes of EMG recruitment were analyzed with a 2 × 4 repeated-measures ANOVA for each muscle (α = .05). For the gluteus maximus an interaction between exercise and limb factor was significant (F3,75 = 21.5; P < .001). The moving-limb gluteus maximus was activated more than the stance limb's during the back-pull exercise (P < .001), and moving-limb gluteus maximus muscle recruitment was greater for the back-pull exercise than for the cross-over, reverse cross-over, and front-pull exercises (P < .001). For the gluteus medius an interaction between exercise and limb factor was significant (F3,75 = 3.7; P < .03). Gluteus medius muscle recruitment (% MVIC) was greater in the stance limb than moving limb when performing the front-pull exercise (P < .001). Moving-limb gluteus medius muscle recruitment was greater for the reverse cross-over exercise than for the cross-over, front-pull, and back-pull exercises (P < .001). From a clinical standpoint there is no therapeutic benefit to selectively activate the gluteus maximus and gluteus medius muscles on the stance limb by resisting sagittal- and frontal-plane hip movements on the moving limb using resistance supplied by elastic tubing.

  18. Combat Fitness a Concept Vital to National Defense

    DTIC Science & Technology

    2010-06-18

    Physical fitness testing has traditionally been focused on a 1.5- to 3-mile run, push-ups, sit-ups, and, in some Services pull -ups, flexibility, and...Performance 6 Shoot Physical Requirements Employ hand grenades Run under load, jump, bound, high/low crawl, climb, push, pull , squat, lunge, roll...jump, bound, high/low crawl, climb, push, pull , squat, lunge, roll, stop, start, change direction and get up/down. Navigate from one point to

  19. 2005 5th Annual CMMI Technology Conference and User Group. Volume 3 - Wednesday

    DTIC Science & Technology

    2005-11-17

    Product-Related Mistakes 28. Requirements gold-plating 29. Feature creep 30. Developer gold-plating 31. Push me, pull me negotiation 32. Research...STATE UNIVERSITY 14 IV&V Layer – Select Criticality Levels for IV&V Techniques using pull -down menus PORTLAND STATE UNIVERSITY 15...of time • Develop a proposal describing how to accomplish the goal and identifying what resources would be required Look for better solutions! • Pull

  20. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers (Part 2)

    DTIC Science & Technology

    2013-07-01

    2 Figure 2. A 2-GHz load-pull simulation of output power (Pcomp-6 x 65 µm PHEMT). ..............2 Figure 3. A 2-GHz load-pull simulation of PAE (6...5. MMIC 1–5 GHz output power and PAE performance simulation (1, 2, 3, and 4 GHz...load-pull simulation of PAE (6 x 50 µm PHEMT). .......................................7 Figure 9. MMIC 10–19 GHz broadband power amplifier linear

Top