Science.gov

Sample records for molecules coherent control

  1. Coherent control of the formation of cold heteronuclear molecules by photoassociation

    NASA Astrophysics Data System (ADS)

    de Lima, Emanuel F.

    2017-01-01

    We consider the formation of cold diatomic molecules in the electronic ground state by photoassociation of atoms of dissimilar species. A combination of two transition pathways from the free colliding pair of atoms to a bound vibrational level of the electronic molecular ground state is envisioned. The first pathway consists of a pump-dump scheme with two time-delayed laser pulses in the near-infrared frequency domain. The pump pulse drives the transition to a bound vibrational level of an excited electronic state, while the dump pulse transfers the population to a bound vibrational level of the electronic ground state. The second pathway takes advantage of the existing permanent dipole moment and employs a single pulse in the far-infrared domain to drive the transition from the unbound atoms directly to a bound vibrational level in the electronic ground state. We show that this scheme offers the possibility to coherently control the photoassociation yield by manipulating the relative phase and timing of the pulses. The photoassociation mechanism is illustrated for the formation of cold LiCs molecules.

  2. Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; West, R. G.

    2011-10-01

    We study how Forster energy transfer from a semiconductor quantum dot to a metallic nanoparticle can be gated using quantum coherence in quantum dots. We show this allows us to use a laser field to open the flow of the energy transfer for a given period of time (on-state) before it is switched off to about zero. Utilizing such an energy gating process it is shown that quantum-dot-metallic-nanoparticle systems (meta-molecules) can act as functional nanoheaters capable of generating heat pulses with temporal widths determined by their environmental and physical parameters. We discuss the physics behind the energy nanogates using molecular states of such meta-molecules and the resonance fluorescence of the quantum dots.

  3. Atom-molecule coherence in a Bose-Einstein condensate.

    PubMed

    Donley, Elizabeth A; Claussen, Neil R; Thompson, Sarah T; Wieman, Carl E

    2002-05-30

    Recent advances in the precise control of ultracold atomic systems have led to the realisation of Bose Einstein condensates (BECs) and degenerate Fermi gases. An important challenge is to extend this level of control to more complicated molecular systems. One route for producing ultracold molecules is to form them from the atoms in a BEC. For example, a two-photon stimulated Raman transition in a (87)Rb BEC has been used to produce (87)Rb(2) molecules in a single rotational-vibrational state, and ultracold molecules have also been formed through photoassociation of a sodium BEC. Although the coherence properties of such systems have not hitherto been probed, the prospect of creating a superposition of atomic and molecular condensates has initiated much theoretical work. Here we make use of a time-varying magnetic field near a Feshbach resonance to produce coherent coupling between atoms and molecules in a (85)Rb BEC. A mixture of atomic and molecular states is created and probed by sudden changes in the magnetic field, which lead to oscillations in the number of atoms that remain in the condensate. The oscillation frequency, measured over a large range of magnetic fields, is in excellent agreement with the theoretical molecular binding energy, indicating that we have created a quantum superposition of atoms and diatomic molecules two chemically different species.

  4. Quantum chaos meets coherent control.

    PubMed

    Gong, Jiangbin; Brumer, Paul

    2005-01-01

    Coherent control of atomic and molecular processes has been a rapidly developing field. Applications of coherent control to large and complex molecular systems are expected to encounter the effects of chaos in the underlying classical dynamics, i.e., quantum chaos. Hence, recent work has focused on examining control in model chaotic systems. This work is reviewed, with an emphasis on a variety of new quantum phenomena that are of interest to both areas of quantum chaos and coherent control.

  5. Coherent control of plasma dynamics.

    PubMed

    He, Z-H; Hou, B; Lebailly, V; Nees, J A; Krushelnick, K; Thomas, A G R

    2015-05-15

    Coherent control of a system involves steering an interaction to a final coherent state by controlling the phase of an applied field. Plasmas support coherent wave structures that can be generated by intense laser fields. Here, we demonstrate the coherent control of plasma dynamics in a laser wakefield electron acceleration experiment. A genetic algorithm is implemented using a deformable mirror with the electron beam signal as feedback, which allows a heuristic search for the optimal wavefront under laser-plasma conditions that is not known a priori. We are able to improve both the electron beam charge and angular distribution by an order of magnitude. These improvements do not simply correlate with having the 'best' focal spot, as the highest quality vacuum focal spot produces a greatly inferior electron beam, but instead correspond to the particular laser phase front that steers the plasma wave to a final state with optimal accelerating fields.

  6. Coherent controlization using superconducting qubits

    PubMed Central

    Friis, Nicolai; Melnikov, Alexey A.; Kirchmair, Gerhard; Briegel, Hans J.

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect. PMID:26667893

  7. Coherent spectroscopy in the single molecule limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.; Crampton, Kevin; Fast, Alex; Alfonso García, Alba; Apkarian, Vartkess A.

    2016-10-01

    Surface enhanced Raman scattering (SERS) is a popular technique for detecting and analyzing molecules at very low concentrations. The sensitivity of SERS is high enough to detect single molecules. It has proven difficult, however, to perform similar measurements in the so-called nonlinear optical regime, a regime in which the molecule is responding to multiple light pulses. Nonetheless, recent experiments indicate that after careful optimization, it is possible to generate signals derived from nonlinear analogs of SERS. Such measurements make it possible to view molecular vibrations in real time, which amounts to the femto- to pico-second range. In this contribution, we discuss in detail under which conditions detectable surface-enhanced coherent Raman signals can be expected, provide experimental evidence of coherent Raman scattering of single molecules, and highlight the unique information that can be attained from such measurements.

  8. Nonlinear coherent spectroscopy in the single molecule limit (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.

    2015-10-01

    Detecting coherent anti-Stokes Raman scattering (CARS) signals from signal molecules is a longstanding experimental challenge. Driving the vibrational CARS response with surface plasmon fields has proven notoriously difficult due to strong background contributions, unfavorable heat dissipation and the phase dispersion of the plasmon modes in the ensemble. In this work we overcome previous experimental limitations and demonstrate time-resolved, vibrational CARS from molecules in the low copy number limit, down to the single molecule level. Our measurements, which are performed under ambient and non-electronic resonance conditions, establish that the coherent response from vibrational modes of individual molecules can be studied experimentally, opening up a new realm of molecular spectroscopic investigations.

  9. Mode Selective Excitation Using Coherent Control Spectroscopy

    SciTech Connect

    Singh, Ajay K.; Konradi, Jakow; Materny, Arnulf; Sarkar, Sisir K.

    2008-11-14

    Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. However, femtosecond laser pulses are spectrally broad and therefore coherently excite several molecular modes. While the temporal resolution is high, usually no mode-selective excitation is possible. This paper demonstrates the feasibility of selectively exciting specific molecular vibrations in solution phase with shaped fs laser excitation using a feedback-controlled optimization technique guided by an evolutionary algorithm. This approach is also used to obtain molecule-specific CARS spectra from a mixture of different substances. The optimized phase structures of the fs pulses are characterized to get insight into the control process. Possible applications of the spectrum control are discussed.

  10. Spin coherence in a Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu

    2016-01-01

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn3O(O2CEt)3(mpko)3]+ (abbreviated Mn3) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn3 was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn3 SMMs. The temperature dependence of spin decoherence time (T2) revealed that the dipolar decoherence is the dominant source of decoherence in Mn3 and T2 can be extended up to 267 ns by quenching the dipolar decoherence.

  11. Quantum Zeno control of coherent dissociation

    SciTech Connect

    Khripkov, C.; Vardi, A.

    2011-08-15

    We study the effect of dephasing on the coherent dissociation dynamics of an atom-molecule Bose-Einstein condensate. We show that when phase-noise intensity is strong with respect to the inverse correlation time of the stimulated process, dissociation is suppressed via a Bose enhanced quantum Zeno effect. This is complementary to the quantum Zeno control of phase-diffusion in a bimodal condensate by symmetric noise [Phys. Rev. Lett. 100, 220403 (2008)] in that the controlled process here is phase formation and the required decoherence mechanism for its suppression is purely phase noise.

  12. Atom-Molecule Coherence in a One-Dimensional System

    NASA Astrophysics Data System (ADS)

    Citro, R.; Orignac, E.

    2005-09-01

    We study a model of one-dimensional fermionic atoms with a narrow Feshbach resonance that allows them to bind in pairs to form bosonic molecules. We show that at low energy, a coherence develops between the molecule and fermion Luttinger liquids. At the same time, a gap opens in the spin excitation spectrum. The coherence implies that the order parameters for the molecular Bose-Einstein condensation and the atomic BCS pairing become identical. Moreover, both bosonic and fermionic charge density wave correlations decay exponentially, in contrast with a usual Luttinger liquid. We exhibit a Luther-Emery point where the systems can be described in terms of noninteracting pseudofermions. At this point we discuss the threshold behavior of density-density response functions.

  13. Coherent Control of Quantum Matter

    SciTech Connect

    Cavalleri, Andrea

    2011-10-05

    This talk addresses some recent work aimed at controlling the low-lying electrodynamics of quantum solids using strong field transients. The excitation of selected vibrational resonances to manipulate the many-body physics of one dimensional Mott Hubbard Insulators and to perturb competing orders in High-Tc superconductors is also covered. Finally, the speaker shows how the electrodynamics of layered superconductors can be driven through the orderparameter phase gradient, demonstrating ultrafast transistor action in a layered superconductor. Advances in the use of coherent optics, from tabletop sources to THz and x-ray free-electron lasers are also discussed.

  14. Coherent Dynamics Following Strong Field Ionization of Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Lozovoy, Vadim; Jackson, James; Levine, Benjamin; Dantus, Marcos

    2015-03-01

    Molecules, as opposed to atoms, present confounding possibilities of nuclear and electronic motion upon strong field ionization. The dynamics and fragmentation patterns in response to the laser field are structure sensitive; therefore, a molecule cannot simply be treated as a ``bag of atoms'' during field induced ionization. We consider here to what extent molecules retain their molecular identity and properties under strong laser fields. Using time-of-flight mass spectrometry in conjunction with pump-probe techniques we study the dynamical behavior of these molecules, monitoring ion yield modulation caused by intramolecular motions post ionization. The delay scans show that among positional isomers the variations in relative energies, amounting to only a few hundred meVs, influence the dynamical behavior of the molecules despite their having experienced such high fields (V/Å). Ab initio calculations were performed to predict dynamics along with single and multiphoton resonances in the neutral and ionic states. We propose that single electron ionization occurs within an optical cycle with the electron carrying away essentially all of the energy, leaving behind little internal energy in the cation. Evidence for this observation comes from coherent vibrational motion governed by the potential energy surface of the ground state of the cation. Subsequent fragmentation of the cation takes place as a result of further photon absorption modulated by one- and two-photon resonances, which provide sufficient energy to overcome the dissociation energy.

  15. Quantum coherence in Mn-based single molecule magnets

    NASA Astrophysics Data System (ADS)

    Abeywardana, C.; Cho, F. H.; Mowson, A.; Christou, G.; Takahashi, S.

    2015-03-01

    As spin systems in solids, single-molecule magnets (SMMs) form a unique class of materials that have a high-spin, and their spin state and interaction can be easily tuned by changing peripheral organic ligands and solvate molecules. In addition, it has been shown that an individual or a small ensemble of SMMs can be transferred to surface with retention of their magnetic behavior. SMM is therefore a promising system for fundamental quantum science and for applications to dense and efficient quantum memory, computing, and molecular spintronics devices. In spite of diverse interests on quantum properties in SMMs, decoherence properties that ultimately limit such behaviors have not been understood yet. Until now, coherent manipulation of spin states in SMMs has been experimentally demonstrated only in a few SMMs. In this presentation, we investigate quantum coherence in Mn-based SMMs using a high-frequency pulsed EPR technique, which has a significant advantage to quench the spin decoherence due to electron spins.

  16. Experimental Demonstration of Coherent Control in Quantum Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Milner, V.

    2017-01-01

    We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.

  17. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    SciTech Connect

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu; Mukamel, Shaul; Harbola, Upendra

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  18. Design of tailored microwave pulses to create rotational coherent states for an asymmetric-top molecule

    NASA Astrophysics Data System (ADS)

    Ortigoso, Juan

    1998-06-01

    Tailored microwave pulses, to guide asymmetric-top molecules from selected rotational states belonging to the vibronic ground state to generalized angular-momentum coherent states, are designed by using optimal control theory. Characteristics that the molecules have to fulfill in order to achieve the goal with feasible pulses are discussed. Properties of the pulses are discussed as well. The further dephasing among the components of the wave packet which, for the simplest coherent state, is a form of dynamical tunneling, can be locked by exploiting the changes that energy levels and eigenfunctions undergo in the presence of an external static electric field with appropriate intensity. For the special case with M=0, periodic fields are more flexible in avoiding dephasing. This is shown by examining properties of quasienergies and dressed states resulting from the diagonalization of a truncated Floquet matrix.

  19. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  20. Coherent phase control of the photodissociation of HOD

    SciTech Connect

    Allendorf, S.W.; Conaway, W.E.; Krause, J.L.

    1993-07-19

    A goal of chemical reaction dynamics is to control the course of reactions. We are examining the photodissocation of HOD, which is attractive for coherent control studies. A fixed frequency laser at 600 nm and its third harmonic at 200 nm is used to simultaneously and coherently photodissociate the rovibrationally excited parent molecules. Preliminary experiments focussed on confirming individual steps of the complex experiment; results are given of three-photon dissociation of H{sub 2}O, which gives confidence for the HOD three-photon dissociation.

  1. Quantum-Coherence-Assisted Tunable On- and Off-Resonance Tunneling through a Quantum-Dot-Molecule Dielectric Film

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi; Zeng, Rui Xi

    2017-02-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates.

  2. Control of Population Flow in Coherently Driven Quantum Ladders

    SciTech Connect

    Garcia-Fernandez, Ruth; Bergmann, Klaas; Ekers, Aigars; Yatsenko, Leonid P.; Vitanov, Nikolay V.

    2005-07-22

    A technique for adiabatic control of the population flow through a preselected decaying excited level in a three-level quantum ladder is presented. The population flow through the intermediate or upper level is controlled efficiently and robustly by varying the pulse delay between a pair of partly overlapping coherent laser pulses. The technique is analyzed theoretically and demonstrated in an experiment with Na{sub 2} molecules.

  3. Theory of coherent control with quantum light

    NASA Astrophysics Data System (ADS)

    Schlawin, Frank; Buchleitner, Andreas

    2017-01-01

    We develop a coherent control theory for multimode quantum light. It allows us to examine a fundamental problem in quantum optics: what is the optimal pulse form to drive a two-photon-transition? In formulating the question as a coherent control problem, we show that—and quantify how much—the strong frequency quantum correlations of entangled photons enhance the transition compared to shaped classical pulses. In ensembles of collectively driven two-level systems, such enhancement requires nonvanishing interactions.

  4. Cooling Mechanical Oscillators by Coherent Control

    NASA Astrophysics Data System (ADS)

    Frimmer, Martin; Gieseler, Jan; Novotny, Lukas

    2016-10-01

    In optomechanics, electromagnetic fields are harnessed to control a single mode of a mechanically compliant system, while other mechanical degrees of freedom remain unaffected due to the modes' mutual orthogonality and high quality factor. Extension of the optical control beyond the directly addressed mode would require a controlled coupling between mechanical modes. Here, we introduce an optically controlled coupling between two oscillation modes of an optically levitated nanoparticle. We sympathetically cool one oscillation mode by coupling it coherently to the second mode, which is feedback cooled. Furthermore, we demonstrate coherent energy transfer between mechanical modes and discuss its application for ground-state cooling.

  5. Diffractive Imaging of Coherent Nuclear Motion in Isolated Molecules

    SciTech Connect

    Yang, Jie; Guehr, Markus; Shen, Xiaozhe; Li, Renkai; Vecchione, Theodore; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Hartmann, Nick; Hast, Carsten; Hegazy, Kareem; Jobe, Keith; Makasyuk, Igor; Robinson, Joseph; Robinson, Matthew S.; Vetter, Sharon; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-10-03

    Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 Å and temporal resolution of 230 fs full width at half maximum. The method is not only sensitive to the position but also the shape of the nuclear wave packet.

  6. Diffractive imaging of coherent nuclear motion in isolated molecules

    DOE PAGES

    Yang, Jie; Guehr, Markus; Shen, Xiaozhe; ...

    2016-10-03

    Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 Å and temporal resolution of 230 fs full width at half maximum. Lastly, the method is not only sensitive to the position but also the shape of the nuclear wave packet.

  7. Towards coherent control of energetic material initiation

    SciTech Connect

    Greenfield, Margo T; Mcgrane, Shawn D; Scharff, R Jason; Moore, David S

    2009-01-01

    Direct optical initiation (DOI) of energetic materials using coherent control of localized energy deposition requires depositing energy into the material to produce a critical size hot spot, which allows propagation of the reaction and thereby initiation, The hot spot characteristics needed for growth to initiation can be studied using quantum controlled initiation (QCI). Achieving direct quantum controlled initiation (QCI) in condensed phase systems requires optimally shaped ultrafast laser pulses to coherently guide the energy flow along the desired paths. As a test of our quantum control capabilities we have successfully demonstrated our ability to control the reaction pathway of the chemical system stilbene. An acousto-optical modulator based pulse shaper was used at 266 nm, in a shaped pump/supercontinuum probe technique, to enhance and suppress th relative yields of the cis- to trans-stilbene isomerization. The quantum control techniques tested in the stilbene experiments are currently being used to investigate QCI of the explosive hexanitroazobenzene (HNAB).

  8. Coherent control over the photodissociation of CH3I

    NASA Astrophysics Data System (ADS)

    Kleiman, Valeria D.; Zhu, Langchi; Allen, Jeanette; Gordon, Robert J.

    1995-12-01

    Coherent phase control of the photodissociation of CH3I has been achieved by quantum mechanical interference between competing paths. The control was accomplished by exciting the parent molecules with three UV photons of frequency ω1 and one VUV photon of frequency ω3=3ω1. Varying the phase difference between the two laser beams resulted in a modulation of the I+ and CH+3 signals, without affecting the parent ion signal. We propose a mechanism in which control occurs over the photodissociation step to produce CH3+I*, followed by ionization of the neutral fragments by additional UV photons.

  9. Coherent control in simple quantum systems

    NASA Technical Reports Server (NTRS)

    Prants, Sergey V.

    1995-01-01

    Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.

  10. Coherent Control in the Presence of Intrinsic Decoherence: Proton Transfer in Large Molecular Systems

    NASA Astrophysics Data System (ADS)

    Batista, Victor S.; Brumer, Paul

    2002-09-01

    An efficient semiclassical approach is developed and used to calculate the coherent-control map and time dependent decoherence measure for the excited-state proton transfer dynamics associated with the keto-enolic tautomerization reaction of 2-(2'-hydroxyphenyl)-oxazole. The method extends the usual bichromatic coherent-control scenario to simulate control at finite times after photoexcitation of the system. Extensive coherent control is demonstrated in a large molecule despite the ultrafast decoherence phenomena, providing results of broad theoretical and experimental interest.

  11. Coherent atomic soliton molecules for matter-wave switching

    SciTech Connect

    Yin, Chenyun; Berloff, Natalia G.; Perez-Garcia, Victor M.; Novoa, David; Carpentier, Alicia V.; Michinel, Humberto

    2011-05-15

    We discuss the dynamics of interacting dark-bright two-dimensional vector solitons in multicomponent immiscible bulk Bose-Einstein condensates. We describe matter-wave molecules without a scalar counterpart that can be seen as bound states of vector objects. We also analyze the possibility of using these structures as building blocks for the design of matter-wave switchers.

  12. Generation of stochastic electromagnetic beams with complete controllable coherence.

    PubMed

    Chen, Xudong; Chang, Chengcheng; Chen, Ziyang; Lin, Zhili; Pu, Jixiong

    2016-09-19

    We generate a stochastic electromagnetic beam (SEB) with complete controllable coherence, that is, the coherence degree can be controlled independently along two mutually perpendicular directions. We control the coherence of the SEB by adjusting the phase modulation magnitude applied onto two crossed phase only spatial light modulators. We measure the beam's coherence properties using Young's interference experiment, as well as the beam propagation factor. It is shown that the experimental results are consistent with our theoretical predictions.

  13. Shaped and Feedback-Controlled Excitation of Single Molecules in the Weak-Field Limit

    PubMed Central

    2015-01-01

    Coherent control uses tailored femtosecond pulse shapes to influence quantum pathways and drive a light-induced process toward a specific outcome. There has been a long-standing debate whether the absorption properties or the probability for population to remain in an excited state of a molecule can be influenced by the pulse shape, even if only a single photon is absorbed. Most such experiments are performed on many molecules simultaneously, so that ensemble averaging reduces the access to quantum effects. Here, we demonstrate systematic coherent control experiments on the fluorescence intensity of a single molecule in the weak-field limit. We demonstrate that a delay scan of interfering pulses reproduces the excitation spectrum of the molecule upon Fourier transformation, but that the spectral phase of a pulse sequence does not affect the transition probability. We generalize this result to arbitrary pulse shapes by performing the first closed-loop coherent control experiments on a single molecule. PMID:26706166

  14. Decoherence Control by Tracking a Hamiltonian Reference Molecule

    SciTech Connect

    Katz, Gil; Ratner, Mark A.; Kosloff, Ronnie

    2007-05-18

    A molecular system in contact with a bath undergoes strong decoherence processes. We examine a control scheme to minimize dissipation, while maximally retaining coherent evolution, by relating the evolution of the molecule to that of an identical freely propagating system. We seek a driving field that maximizes the projection of the open molecular system onto the freely propagated one. The evolution in time of a molecular system consisting of two nonadiabatically coupled electronic states interacting with a bath is followed. The driving control field that overcomes the decoherence is calculated. A proposition to implement the scheme in the laboratory using feedback control is suggested.

  15. Coherent Radiative Control of Chemical Reactions

    DTIC Science & Technology

    1992-01-01

    effective were determined and successful control was displayed using a model of Stilbene isomerization. F. Control over Chemically Distinct Products...than, the stilbene molecule for which Si(t>to) = Ia(to)Il14ru-(I’ f = 1, II11 (3) there is a vast array of data available art for which...mechanical o calculation of ground and first excited electronic potential surfaces _o for trans- and cis- stilbene . To minimize computational cost we 0

  16. Feshbach-Resonance-Enhanced Coherent Atom-Molecule Conversion with Ultranarrow Photoassociation Resonance

    NASA Astrophysics Data System (ADS)

    Taie, Shintaro; Watanabe, Shunsuke; Ichinose, Tomohiro; Takahashi, Yoshiro

    2016-01-01

    We reveal the existence of high-density Feshbach resonances in the collision between the ground and metastable states of 171Yb and coherently produce the associated Feshbach molecules by photoassociation. The extremely small transition rate is overcome by the enhanced Franck-Condon factor of the weakly bound Feshbach molecule, allowing us to observe Rabi oscillations with long decay time between an atom pair and a molecule in an optical lattice. We also perform the precision measurement of the binding energies, which characterizes the observed resonances. The ultranarrow photoassociation will be a basis for practical implementation of optical Feshbach resonances.

  17. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Hatef, A.; Fortin-Deschenes, Simon; Meunier, Michel

    2013-05-01

    Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.

  18. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.

    PubMed

    Sadeghi, S M; Hatef, A; Fortin-Deschenes, Simon; Meunier, Michel

    2013-05-24

    Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.

  19. Orienting molecules via an ir and uv pulse pair: Implications for coherent Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexei V.; Lehmann, Kevin K.; Scully, Marlan O.; Herschbach, Dudley

    2009-05-01

    Spatial orientation of molecules is a pervasive issue in chemical physics and, by breaking inversion symmetry, has major consequences in nonlinear optics. In this paper, we propose and analyze an approach to molecular orientation. This extracts from an ensemble of aligned diatomic molecules (equally AB and BA , relative to the E vector) a subensemble that is oriented (mostly AB or BA ). Subjecting an aligned molecule to a tailored infrared (ir) laser pulse creates a pair of coherent wave packets that correlate vibrational phase with the AB or BA orientation. Subsequent, suitably phased ultraviolet (uv) or visible pulses dissociate one of these vibrational wave packets, thereby “weeding out” either AB or BA but leaving intact the other orientation. Molecular orientation has significant implications for coherent Raman spectroscopy. In the absence of orientation, coherence between vibrational levels is generated by a pair of laser pulses off which a probe pulse is scattered to produce a signal. Orientation allows direct one-photon ir excitation to achieve (in principle) maximal Raman coherence.

  20. Long-lived Electronic Coherence of Rydberg States in the Strong-Field Ionization of a Polyatomic Molecule

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Levine, Benjamin; Lozovoy, Vadim; Dantus, Marcos

    2015-05-01

    Here, we report on quantum coherent control of a large (>20 atoms) polyatomic molecule. In particular, we explore the time resolved dynamics of dicyclopentadiene when excited by a pair of phase-locked intense 800nm femtosecond pulses by monitoring changes in ion yield of the parent and fragments. Long-lived oscillations are observed for ~ 500 fs in the parent ion yield indicating the presence of long lived-electronic states. We take advantage of the long-lived electronic coherence to control the yield of different fragment ions. The presence of Rydberg states is further supported by ab initio calculations at the EOM-CCSD/6-31 +G** level of theory which identified five low-lying electronic states of neutral DCPD in the regions between 6.4 and 7.0 eV in vertical excitation energy. States of both pure Rydberg and mixed π --> π */Rydberg character are observed in this low energy region and are known to originate from ethylene. The multiphoton excitation of two or more Rydberg states, separated by the photon energy is the key to the observed long-lived electronic coherence in DCPD with a quantum beat at the difference frequency. Rydberg states are expected to have very similar potential energy surfaces and the Rydberg electron is relatively uncoupled to the nuclear dynamics, therefore supporting long electronic coherence time.

  1. Model of the photoexcitation processes of a two-level molecule coherently coupled to an optical antenna.

    PubMed

    Nakatani, Masatoshi; Nobuhiro, Atsushi; Yokoshi, Nobuhiko; Ishihara, Hajime

    2013-06-07

    We theoretically investigate photoexcitation processes of a two-level molecular system coherently coupled with an antenna system having a significant dissipation. The auxiliary antenna enables the whole system to exhibit anomalous optical effects by controlling the coupling with the molecule. For example, in the weak excitation regime, the quantum interference yields a distinctive energy transparency through the antenna, which drastically reduces the energy dissipation. On the other hand, in the strong excitation regime, a population inversion of the two-level molecule appears due to the nonlinear effect. Both phenomena can be explained by regarding the antenna and molecule as one quantum-mechanically coupled system. Such an approach drives further research to exploit the full potential of the coupled systems.

  2. Fundamental Principles of Coherent-Feedback Quantum Control

    DTIC Science & Technology

    2014-12-08

    AFRL-OSR-VA-TR-2015-0009 FUNDAMENTAL PRINCIPLES OF COHERENT- FEEDBACK QUANTUM CONTROL Hideo Mabuchi LELAND STANFORD JUNIOR UNIV CA Final Report 12/08...foundations and potential applications of coherent- feedback quantum control. We have focused on potential applications in quantum-enhanced metrology and...picture of how coherent feedback can provide a kind of circuit/network theory for quantum engineering, enabling rigorous analysis and numerical simulation

  3. Application of coherent Rayleigh-Brillouin scattering for in situ nanoparticle and large molecule detection

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Gimelshein, S. F.

    2013-04-01

    Feasibility of using coherent Rayleigh-Brillouin scattering for nanoparticle and large molecule diagnostics is assessed analytically and numerically through the solution of the Boltzmann equation. It has been shown that for particles of about 1 nm in diameter dispersed in a buffer gas, concentrations as small as 0.005% may be detected. The approach is expected to provide information on particle concentration with high spatial and temporal resolution.

  4. Remarkably enhanced adhesion of coherently aligned catechol-terminated molecules on ultraclean ultraflat gold nanoplates.

    PubMed

    Lee, Miyeon; Park, Changjun; Lee, Hyoban; Kim, Hongki; Kim, Sang Youl; In, Insik; Kim, Bongsoo

    2016-11-25

    We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

  5. Remarkably enhanced adhesion of coherently aligned catechol-terminated molecules on ultraclean ultraflat gold nanoplates

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Park, Changjun; Lee, Hyoban; Kim, Hongki; Kim, Sang Youl; In, Insik; Kim, Bongsoo

    2016-11-01

    We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

  6. Coherent control of plasmons in nanoparticles with nonlocal response

    NASA Astrophysics Data System (ADS)

    McArthur, D.; Hourahine, B.; Papoff, F.

    2017-01-01

    We discuss a scheme for the coherent control of light and plasmons in nanoparticles that have nonlocal dielectric permittivity and contain nonlinear impurities or color centers. We consider particles which have a response to light that is strongly influenced by plasmons over a broad range of frequencies. Our coherent control method enables the reduction of absorption and/or suppression of scattering.

  7. Controlling coherent state superpositions with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Vlastakis, Brian Michael

    Quantum computation requires a large yet controllable Hilbert space. While many implementations use discrete quantum variables such as the energy states of a two-level system to encode quantum information, continuous variables could allow access to a larger computational space while minimizing the amount of re- quired hardware. With a toolset of conditional qubit-photon logic, we encode quantum information into the amplitude and phase of coherent state superpositions in a resonator, also known as Schrddinger cat states. We achieve this using a superconducting transmon qubit with a strong off-resonant coupling to a waveguide cavity. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearites and therefore allows for simultaneous control of over one hundred photons. Furthermore, we combine this experiment with fast, high-fidelity qubit state readout to perform composite qubit-cavity state tomography and detect entanglement between a physical qubit and a cat-state encoded qubit. These results have promising applications for redundant encoding in a cavity state and ultimately quantum error correction with superconducting circuits.

  8. Control over group velocity in a three-level closed Λ system via spontaneously generated coherence and dynamically induced coherence

    NASA Astrophysics Data System (ADS)

    Dutta, Sulagna; Dastidar, Krishna Rai

    2007-11-01

    The light propagation of a probe field in a three-level Λ system with incoherent pumping has been studied when both dynamically induced coherence (DIC) and spontaneously generated coherence (SGC) play a significant role. We have investigated the group velocity of probe field and hence the group index of a three-level Λ system with incoherent pumping when both DIC and SGC play a significant role. We have shown that by varying the probe field Rabi frequency one can control the interference between these two coherences which leads to different nonlinear response (amplification without inversion, electromagnetically induced transparency and electromagnetically induced absorption) leading to different (positive and negative) dispersion. Hence control over switching of group velocity from subluminal to superluminal and vice versa can be achieved. We have also shown that when the contributions from both the coherences are comparable, the dependence of group velocity of probe field in a three-level Λ system with incoherent pumping on phase difference between probe and coherent fields is different from that obtained under the weak probe field condition. Going beyond the weak probe field approximation we have derived analytical expressions for group velocity and hence the group index in the steady state limit (keeping all orders of system parameters) to generalize the analysis, and these expressions can be used for any set of system parameters without any restriction. The numerical values obtained by solving the density matrix equations agree well with these exact analytical values at a large time limit. We have proposed a scheme for experimental realization of EIT and hence subluminal light propagation in molecules by invoking spontaneously generated coherence.

  9. How organic molecules can control electronic devices.

    PubMed

    Vilan, Ayelet; Cahen, David

    2002-01-01

    This article examines a somewhat counter-intuitive approach to molecular-based electronic devices. Control over the electronic energy levels at the surfaces of conventional semiconductors and metals is achieved by assembling on the solid surfaces, poorly organized, partial monolayers (MLs) of molecules instead of the more commonly used ideal ones. Once those surfaces become interfaces, these layers exert electrostatic rather than electrodynamic control over the resulting devices, based on both electrical monopole and dipole effects of the molecules. Thus electronic transport devices, incorporating molecules, can be constructed without current flow through the molecules. This is illustrated for a gallium arsenide (GaAs) sensor as well as for gold-silicon (Au-Si) and Au-GaAs diodes. Incorporating molecules into solid interfaces becomes possible, using a 'soft' electrical contacting procedure, so as not to damage the molecules. Because there are only a few molecular restrictions, this approach opens up possibilities for the use of more complex (including biologically active) molecules as it circumvents requirements for ideal MLs and for molecules that can tolerate actual electron transport through them.

  10. Ultrafast X-Ray Coherent Control

    SciTech Connect

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.

  11. Coherent optical propagation and ultrahigh resolution mass sensor based on photonic molecules optomechanics

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Jun; Chen, Chang-Zhao; Li, Yang; Fang, Xian-Wen; Tang, Xu-Dong

    2017-01-01

    We theoretically demonstrate the coherent optical propagation properties based on a photonic molecules optomechanics. With choosing a suitable detuning of the pump field from optomechanical cavity resonance, both the slow- and fast-light effect of the probe field appear in the system. The coupling strength of the two cavities play a key role, which affords a quantum channel and influences the width of the transparency window. Based on the photonic molecules optomechanical system, a high resolution mass sensor is also proposed. The mass of external nanoparticles deposited onto the cavity can be measured straightforward via tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. Compared with the single-cavity optomechanics mass sensors, the mass resolution is improved significantly due to the cavity-cavity coupling. The photonic molecules optomechanics provide a new platform for on-chip applications in quantum information processing and ultrahigh resolution sensor devices.

  12. Dynamics and control of coherent structure in turbulent jets

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1992-01-01

    Current understanding of coherent structure dynamics in incompressible turbulent jets as explained by the nonlinear stability theory is reviewed, focusing on nonswirling turbulent jets. Topics addressed include hydrodynamic stability theory and coherent structures; dynamics of energy transfers among different scales of motion; nonlinear development of amplitude; development of single-frequency coherent mode; fundamental-subharmonic interaction and vortex pairing; and reversal of Reynolds stresses. Attention is also given to the effect of initial phase-difference angle between fundamental and subharmonic, conditions for resonance interaction, modulation of spreading rate by controlling coherent structure, turbulence enhancement or suppression due to excitation, 3D effects, jet noise, and swirling jets.

  13. Spin coherence in a Mn{sub 3} single-molecule magnet

    SciTech Connect

    Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu

    2016-01-25

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.

  14. Controlling polar molecules in optical lattices

    SciTech Connect

    Kotochigova, S.; Tiesinga, E.

    2006-04-15

    We theoretically investigate the interaction of polar molecules with optical lattices and microwave fields. We demonstrate the existence of frequency windows in the optical domain where the complex internal structure of the molecule does not influence the trapping potential of the lattice. In such frequency windows the Franck-Condon factors are so small that near-resonant interaction of vibrational levels of the molecule with the lattice fields have a negligible contribution to the polarizability, and light-induced decoherences are kept to a minimum. In addition, we show that microwave fields can induce a tunable dipole-dipole interaction between ground-state rotationally symmetric (J=0) molecules. A combination of a carefully chosen lattice frequency and microwave-controlled interaction between molecules will enable trapping of polar molecules in a lattice and possibly realize molecular quantum logic gates. Our results are based on ab initio relativistic electronic structure calculations of the polar KRb and RbCs molecules combined with calculations of their rovibrational motion.

  15. Molecule-surface interactions probed by optimized surface-enhanced coherent Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Sinyukov, Alexander; Hua, Xia; Zhang, Guowan; Yang, Wenlong; Wang, Kai; Jha, Pankaj; Welch, George; Sokolov, Alexei; Scully, Marlan

    2012-06-01

    Nanoscale molecular sensing is carried out using a time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy with optimized laser pulse configurations. This novel technique combines the advantages of an improved spectral resolution, suppressed non-resonant background and near-field surface enhancement of the Raman signal. We detect two species of pyridine in a vicinity of aggregated gold nanoparticles and measure their vibrational dephasing times which reveal the effects of surface environment and molecule-surface interactions on the ultrafast molecular dynamics. This technique may be applied to a variety of artificial and biological systems and complex molecular mixtures and has a potential for nanophotonic sensing applications.

  16. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    SciTech Connect

    Marcos Dantus

    2008-09-23

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10^16 W/cm^2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  17. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules

    NASA Astrophysics Data System (ADS)

    Dutoi, Anthony D.; Leone, Stephen R.

    2017-01-01

    Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core-valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.

  18. Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers

    NASA Astrophysics Data System (ADS)

    Wang, G.; Marie, X.; Liu, B. L.; Amand, T.; Robert, C.; Cadiz, F.; Renucci, P.; Urbaszek, B.

    2016-10-01

    The direct gap interband transitions in transition metal dichalcogenide monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the K+ or K- valley in momentum space are induced. Linearly polarized laser excitation prepares a coherent superposition of valley states. Here, we demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. We show rotation of this coherent superposition of valley states by angles as large as 30° in applied fields up to 9 T. This exciton valley coherence control on the ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom.

  19. Coherent control of quantum systems as a resource theory

    NASA Astrophysics Data System (ADS)

    Matera, J. M.; Egloff, D.; Killoran, N.; Plenio, M. B.

    2016-08-01

    Control at the interface between the classical and the quantum world is fundamental in quantum physics. In particular, how classical control is enhanced by coherence effects is an important question both from a theoretical as well as from a technological point of view. In this work, we establish a resource theory describing this setting and explore relations to the theory of coherence, entanglement and information processing. Specifically, for the coherent control of quantum systems, the relevant resources of entanglement and coherence are found to be equivalent and closely related to a measure of discord. The results are then applied to the DQC1 protocol and the precision of the final measurement is expressed in terms of the available resources.

  20. Strong Field Coherent Control of Atomic Population Transfer

    NASA Astrophysics Data System (ADS)

    Clow, Stephen; Holscher, Uvo; Trallero, Carlos; Weinacht, Thomas

    2008-05-01

    There is significant interest in controlling atomic and molecular dynamics using shaped ultrafast laser pulses, an important aspect of which is selectively populating a particular target state with high efficiency. In order to achieve this beyond the limits of single photon excitation, one has to consider multiple interfering pathways and dynamic Stark shifts (DSS), which make resonance conditions time-dependent and substantially modify the phase advance of the bare states during the atom/molecule-field interaction. In this work, we demonstrate strong field atomic population transfer in a three level system via three-photon absorption from a single shaped ultrafast laser pulse. The optimal pulse shape for efficient population transfer is discovered using closed-loop learning control and interpreted via pulse shape parameter scans and numerical integration of the Schr"odinger equation. We show a population inversion can be achieved and measured using a combination of spontaneous and stimulated emission. Our results illustrate the importance of dynamic Stark shifts in coherent multi-photon excitation and give rise to the possibility of lasing in the deep ultraviolet.

  1. Stimulus control topography coherence theory: Foundations and extensions

    PubMed Central

    McIlvane, William J.; Dube, William V.

    2003-01-01

    Stimulus control topography refers to qualitative differences among members of a functional stimulus class. Stimulus control topography coherence refers to the degree of concordance between the stimulus properties specified as relevant by the individual arranging a reinforcement contingency (behavior analyst, experimenter, teacher, etc.) and the stimulus properties that come to control the behavior of the organism (experimental subject, student, etc.) that experiences those contingencies. This paper summarizes the rationale for analyses of discrimination learning outcomes in terms of stimulus control topography coherence and briefly reviews some of the foundational studies that led to this perspective. We also suggest directions for future research, including pursuit of conceptual and methodological challenges to a complete stimulus control topography coherence analysis of processes involved in discriminated and generalized operants. ImagesFigure 3Figure 5 PMID:22478402

  2. Coherent control with qudit photon states

    NASA Astrophysics Data System (ADS)

    Rodrigues, I.; Cosme, O.; Pádua, S.

    2010-06-01

    In this paper the two-photon absorption by a molecule is studied when photons are prepared in a high-dimension entangled state. The light field is prepared in a spatial two-photon qudit state and its interaction with a molecule shows new interference effects observed in the calculated absorption cross-section. Oscillations in the absorption cross-section demonstrate its dependence on the path phases of the two-qudit state. The two-photon absorption cross-section is dependent on the dimension of the two-qudit photonic state.

  3. Controlling quantum transport through a single molecule.

    PubMed

    Cardamone, David M; Stafford, Charles A; Mazumdar, Sumit

    2006-11-01

    We investigate multiterminal quantum transport through single monocyclic aromatic annulene molecules, and their derivatives, using the nonequilibrium Green function approach within the self-consistent Hartree-Fock approximation. We propose a new device concept, the quantum interference effect transistor, that exploits perfect destructive interference stemming from molecular symmetry and controls current flow by introducing decoherence and/or elastic scattering that break the symmetry. This approach overcomes the fundamental problems of power dissipation and environmental sensitivity that beset nanoscale device proposals.

  4. Coherent electron emission beyond Young-type interference from diatomic molecules

    NASA Astrophysics Data System (ADS)

    Agueny, H.; Makhoute, A.; Dubois, A.; Hansen, J. P.

    2016-01-01

    It has been known for more than 15 years that the differential cross section of electrons emitted from diatomic molecules during interaction with energetic charged particles oscillates as a function of electron momentum. The origin of the phenomenon is two-center interference, which naturally relates it back to the Young double-slit experiment. In addition to a characteristic frequency which can be described by lowest-order perturbation theories, the observation and origin of higher-order harmonics of the basic oscillation frequency has been much discussed. Here, we show that high harmonics of the fundamental Young-type oscillation frequency observed in electron spectra in fast ion-molecule collisions can be clearly exposed in numerical solutions of the time-dependent Schrödinger equation within a one-dimensional model. Momentum distribution of the ejected electron is analyzed and shows that the phenomenon emerges when the charged particle beam collides with diatomic molecules with substantial large internuclear distance. Frequency spectra from nonperturbative calculations for electron emission from Rb2+ and Cs2+ exhibit a pronounced high-order oscillation in contrast to similar close-coupling calculations performed on H2 targets. The electron emission from these heavy molecules contains second- and third-order harmonics which are fully reproduced in an analytic model based on the Born series. Extending to triatomic molecular targets displays an increased range of harmonics. This suggests that electron emission spectra from new experiments on heavy diatomic and linear polyatomic molecular targets may provide a unique insight into competing coherent emission mechanisms and their relative strength.

  5. Theory of perturbative pulse train based coherent control

    NASA Astrophysics Data System (ADS)

    Grinev, Timur; Brumer, Paul

    2014-03-01

    A theoretical description of coherent control of excited state dynamics using pulse trains in the perturbative regime, as carried out in recent experiments, is presented. Analytical expressions relating the excited state populations to the pulse train control parameters are derived. Numerical examples are provided for models of pyrazine and β-carotene, and the significant role of overlapping resonances is exposed.

  6. Coherent control of optical polarization effects in metamaterials

    PubMed Central

    Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  7. Coherent control using kinetic energy and the geometric phase of a conical intersection

    NASA Astrophysics Data System (ADS)

    Liekhus-Schmaltz, Chelsea; McCracken, Gregory A.; Kaldun, Andreas; Cryan, James P.; Bucksbaum, Philip H.

    2016-10-01

    Conical intersections (CIs) between molecular potential energy surfaces with non-vanishing non-adiabatic couplings generally occur in any molecule consisting of at least three atoms. They play a fundamental role in describing the molecular dynamics beyond the Born-Oppenheimer approximation and have been used to understand a large variety of effects, from photofragmentation and isomerization to more exotic applications such as exciton fission in semiconductors. However, few studies have used the features of a CI as a tool for coherent control. Here we demonstrate two modes of control around a conical intersection. The first uses a continuous light field to control the population on the two intersecting electronic states in the vicinity of a CI. The second uses a pulsed light field to control wavepackets that are subjected to the geometric phase shift in transit around a CI. This second technique is likely to be useful for studying the role of nuclear dynamics in electronic coherence phenomena.

  8. Control of coherent backscattering by breaking optical reciprocity

    NASA Astrophysics Data System (ADS)

    Bromberg, Y.; Redding, B.; Popoff, S. M.; Cao, H.

    2016-02-01

    Reciprocity is a universal principle that has a profound impact on many areas of physics. A fundamental phenomenon in condensed-matter physics, optical physics, and acoustics, arising from reciprocity, is the constructive interference of quantum or classical waves which propagate along time-reversed paths in disordered media, leading to, for example, weak localization and metal-insulator transition. Previous studies have shown that such coherent effects are suppressed when reciprocity is broken. Here we experimentally show that by tuning a nonreciprocal phase we can coherently control complex coherent phenomena, rather than simply suppress them. In particular, we manipulate coherent backscattering of light, also known as weak localization. By utilizing a magneto-optical effect, we control the interference between time-reversed paths inside a multimode fiber with strong mode mixing, observe the optical analog of weak antilocalization, and realize a continuous transition from weak localization to weak antilocalization. Our results may open new possibilities for coherent control of waves in complex systems.

  9. Partially dark optical molecule via phase control

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Xu, Xun-Wei; Li, Yong

    2017-01-01

    We study the tunable photonic distribution in an optical molecule consisting of two linearly coupled single-mode cavities. With the intercavity coupling and two driving fields, the energy levels of the optical-molecule system form a closed cyclic energy-level diagram, and the phase difference between the driving fields serves as a sensitive controller on the dynamics of the system. Due to the quantum interference effect, we can realize a partially dark optical molecule, where the steady-state mean photon number in one of the cavities achieves zero even under the external driving. And the dark cavity can be changed from one of the cavities to the other by only adjusting the phase difference. We also show that our proposal is robust to the noise at zero temperature. Furthermore, we show that when one of the cavities couples with an atomic ensemble, it will be dark under the same condition as that in the case without atoms, but the condition for the other cavity to be dark is modified.

  10. Ultrafast Coherent Control and Characterization of Surface Reactions using FELs

    SciTech Connect

    Ogasawara, Hirohito; Nordlund, Dennis a Nilsson, Anders; /SLAC, SSRL

    2005-09-30

    The microscopic understanding of reactions at surfaces requires an in-depth knowledge of the dynamics of elementary processes on an ultrafast timescale. This can be accomplished using an ultrafast excitation to initiate a chemical reaction and then probe the progression of the reaction with an ultrashort x-ray pulse from the FEL. There is a great potential to use atom-specific spectroscopy involving core levels to probe the chemical nature, structure and bonding of species on surfaces. The ultrashort electron pulse obtained in the linear accelerator to feed the X-ray FEL can also be used for generation of coherent synchrotron radiation in the low energy THz regime to be used as a pump. This radiation has an energy close to the thermal excitations of low-energy vibrational modes of molecules on surfaces and phonons in substrates. The coherent THz radiation will be an electric field pulse with a certain direction that can collectively manipulate atoms or molecules on surfaces. In this respect a chemical reaction can be initiated by collective atomic motion along a specific reaction coordinate. If the coherent THz radiation is generated from the same source as the X-ray FEL radiation, full-time synchronization for pump-probe experiments will be possible. The combination of THz and X-ray spectroscopy could be a unique opportunity for FEL facilities to conduct ultrafast chemistry studies at surfaces.

  11. Understanding and controlling laser-matter interactions: From solvated dye molecules to polyatomic molecules in gas phase

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha

    The goal of my research is to obtain a better understanding of the various processes that occur during and following laser-matter interactions from both the physical and chemical point of view. In particular I focused my research on understanding two very important aspects of laser-matter interaction; 1) Intense laser-matter interactions for polyatomic molecules in the gas phase in order to determine to what extent processes like excitation, ionization and fragmentation can be controlled by modifying the phase and amplitude of the laser field according to the timescales for electronic, vibrational and rotational energy transfer. 2) Developing pulse shaping based single beam methods aimed at studying solvated molecules in order to elucidate processes like inhomogeneous broadening, solvatochromic shift and to determine the electronic coherence lifetimes of solvated molecules. The effect of the chirped femtosecond pulses on fluorescence and stimulated emission from solvated dye molecules was studied and it was observed that the overall effect depends quadratically on pulse energy, even where excitation probabilities range from 0.02 to 5%, in the so-called "linear excitation regime". The shape of the chirp dependence is found to be independent of the energy of the pulse. It was found that the chirp dependence reveals dynamics related to solvent rearrangement following excitation and also depends on electronic relaxation of the chromophore. Furthermore, the chirped pulses were found to be extremely sensitive to solvent environment and that the complementary phases having the opposite sign provide information about the electronic coherence lifetimes. Similar to chirped pulses, the effects of a phase step on the excitation spectrum and the corresponding changes to the stimulated emission spectrum were also studied and it was found that the coherent feature on the spectrum is sensitive to the dephasing time of the system. Therefore a single phase scanning method can

  12. Subfemtosecond directional control of chemical processes in molecules

    NASA Astrophysics Data System (ADS)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  13. Injectable controlled release depots for large molecules

    PubMed Central

    Schwendeman, Steven P.; Shah, Ronak B.; Bailey, Brittany A.; Schwendeman, Anna S.

    2014-01-01

    Biodegradable, injectable depot formulations for long-term controlled drug release have improved therapy for a number of drug molecules and led to over a dozen highly successful pharmaceutical products. Until now, success has been limited to several small molecules and peptides, although remarkable improvements have been accomplished in some of these cases. For example, twice-a-year depot injections with leuprolide are available compared to the once-a-day injection of the solution dosage form. Injectable depots are typically prepared by encapsulation of the drug in poly(lactic-co-glycolic acid) (PLGA), a polymer that is used in children every day as a resorbable suture material, and therefore, highly biocompatible. PLGAs remain today as one of the few “real world” biodegradable synthetic biomaterials used in US FDA-approved parenteral long-acting-release (LAR) products. Despite their success, there remain critical barriers to the more widespread use of PLGA LAR products, particularly for delivery of more peptides and other large molecular drugs, namely proteins. In this review, we describe key concepts in the development of injectable PLGA controlled-release depots for peptides and proteins, and then use this information to identify key issues impeding greater widespread use of PLGA depots for this class of drugs. Finally, we examine important approaches, particularly those developed in our research laboratory, toward overcoming these barriers to advance commercial LAR development. PMID:24929039

  14. Injectable controlled release depots for large molecules.

    PubMed

    Schwendeman, Steven P; Shah, Ronak B; Bailey, Brittany A; Schwendeman, Anna S

    2014-09-28

    Biodegradable, injectable depot formulations for long-term controlled drug release have improved therapy for a number of drug molecules and led to over a dozen highly successful pharmaceutical products. Until now, success has been limited to several small molecules and peptides, although remarkable improvements have been accomplished in some of these cases. For example, twice-a-year depot injections with leuprolide are available compared to the once-a-day injection of the solution dosage form. Injectable depots are typically prepared by encapsulation of the drug in poly(lactic-co-glycolic acid) (PLGA), a polymer that is used in children every day as a resorbable suture material, and therefore, highly biocompatible. PLGAs remain today as one of the few "real world" biodegradable synthetic biomaterials used in US FDA-approved parenteral long-acting-release (LAR) products. Despite their success, there remain critical barriers to the more widespread use of PLGA LARproducts, particularly for delivery of more peptides and other large molecular drugs, namely proteins. In this review, we describe key concepts in the development of injectable PLGA controlled-release depots for peptides and proteins, and then use this information to identify key issues impeding greater widespread use of PLGA depots for this class of drugs. Finally, we examine important approaches, particularly those developed in our research laboratory, toward overcoming these barriers to advance commercial LAR development.

  15. Coherent-control of linear signals: Frequency-domain analysis

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2013-10-01

    The dependence of various types of linear signals on the phase profile of broadband optical pulses is examined using fundamental time translation invariance symmetry of multipoint correlation functions. The frequency-domain wave-mixing analysis presented here unifies several arguments made earlier with respect to the conditions whereby coherent control schemes may be used.

  16. Coherent control of meta-device (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tseng, Ming Lun; Fang, Xu; Chu, Cheng Hung; Wu, Hui Jun; Huang, Yao-Wei; Tsai, Wei-Yi; Chen, Mu-Ku; Wang, Hsiang-Chu; Chen, Ching-Fu; Zheludev, Nikolay I.; Tsai, Din Ping

    2016-09-01

    Selective excitation of specific multipolar resonances in matter can be of great utility in understanding the internal make-up of the underlying material and, as a result, in developing novel nanophotonic devices. Many efforts have been addressed on this topic. For example, the emission spectra related to the different multipolar transitions of trivalent europium can be modulated by changing the thickness of the dielectric spacer between the gold mirror and the fluorescent layer. In this talk, we reported the results about active control of the multipolar resonance in metadevices using the coherent control technique. In the coherent control spectroscopy system, the optical standing wave constructed from two counterpart propagation coherent beams is utilized as the excitation. By controlling the time delay between two ultrafast pulses to decide the location of metadivce as the electromagnetic field node or antinode node of standing wave, the absorption related to the specific multipolar resonance can be controlled. Using this technique, with the 30-nm-thick metadevice, the broadband controlling light with light without nonlinearity can be realized. The switching contrast ratios can be as high as 3:1 with a modulation bandwidth in excess of 2 THz. The active control of the high order and complex optical resonance related to the magnetic dipole, electric quadrupole, and toroidal dipole in the metamaterial is reported as well. This research can be applied in the all ultrafast all-optical data processing and the active control of the resonances of metadevice with high order multipolar resonance.

  17. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation

  18. Coherent phase control of the product branching ratio in the photodissociation of dimethylsulfide

    SciTech Connect

    Nagai, Hidekazu; Ohmura, Hideki; Ito, Fumiyuki; Nakanaga, Taisuke; Tachiya, Masanori

    2006-01-21

    Coherent phase control of the photodissociation reaction of the dimethylsulfide has been achieved by means of quantum-mechanical interference between one- and three-photon transitions. Dimethylsulfide was irradiated by fundamental and frequency-tripled outputs of a visible laser (600.5-602.5 nm), simultaneously to yield CH{sub 3}S{sup +} and CH{sub 3}SCH{sub 2}{sup +} fragment ions. The branching ratio of the two product channels could be modulated with variation of the phase difference between the light fields. This accounted for the difference between the molecular phases of the two product channels. The phase lag was observed to have a maximum value of 8 deg. at 601.5 nm. This is the first result of a selective bond breaking in a polyatomic molecule by the coherent phase control.

  19. Photodissociation of ultracold diatomic strontium molecules with quantum state control

    NASA Astrophysics Data System (ADS)

    McDonald, M.; McGuyer, B. H.; Apfelbeck, F.; Lee, C.-H.; Majewska, I.; Moszynski, R.; Zelevinsky, T.

    2016-07-01

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  20. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    PubMed

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  1. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  2. Two beam coherent control in semiconductors

    NASA Astrophysics Data System (ADS)

    Král, P.; Sipe, J. E.

    1998-03-01

    Recently, DC current has been generated in superlatices and bulk semiconductors [1] by a simultaneous excitations with two laser beams, giving one-photon and two-photon transitions with frequencies 2ω, ω. In these experiments directionality of the current can be controlled by the relative phase of the two fields. We develop a methodology, based on nonequilibrium Green functions, describing this phenomenon in the presence of many-particle scattering. In the mean-field level of this approach, simultaneous action of the two fields can be reduced to an effective field with a tunable relative excitation strength for different wave vectors of the Brillouine zone. We derive transport equations for a `quasi'-linear, nonlinear and pulse-like excitations in this effective field. In the weak scattering limit, they agree with the Boltzmann equation with generation rates obtained from the Fermi's Golden Rule [2]. We apply the steady-state `quasi'-linear equations to a model 1D quantum wire in the presence of LA phonons, which serves as a reference system for future calculations in realistic 3D systems. Numerical results for the induced dc current are presented in many details. [1] E. Dupont et al., Phys. Rev. Lett. 74, 3596 (1995); A. Haché et al., Phys. Rev. Lett. 78, 306 (1997). [2] R. Atanasov et al., Phys. Rev. Lett. 76, 1703 (1996).

  3. Coherent control of plasmonic nanoantennas using optical eigenmodes

    PubMed Central

    Kosmeier, Sebastian; De Luca, Anna Chiara; Zolotovskaya, Svetlana; Di Falco, Andrea; Dholakia, Kishan; Mazilu, Michael

    2013-01-01

    The last decade has seen subwavelength focusing of the electromagnetic field in the proximity of nanoplasmonic structures with various designs. However, a shared issue is the spatial confinement of the field, which is mostly inflexible and limited to fixed locations determined by the geometry of the nanostructures, which hampers many applications. Here, we coherently address numerically and experimentally single and multiple plasmonic nanostructures chosen from a given array, resorting to the principle of optical eigenmodes. By decomposing the light field into optical eigenmodes, specifically tailored to the nanostructure, we create a subwavelength, selective and dynamic control of the incident light. The coherent control of plasmonic nanoantennas using this approach shows an almost zero crosstalk. This approach is applicable even in the presence of large transmission aberrations, such as present in holographic diffusers and multimode fibres. The method presents a paradigm shift for the addressing of plasmonic nanostructures by light. PMID:23657743

  4. Enhancing coherent transport in a photonic network using controllable decoherence

    PubMed Central

    Biggerstaff, Devon N.; Heilmann, René; Zecevik, Aidan A.; Gräfe, Markus; Broome, Matthew A.; Fedrizzi, Alessandro; Nolte, Stefan; Szameit, Alexander; White, Andrew G.; Kassal, Ivan

    2016-01-01

    Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of coherent transport can be enhanced through dynamic interaction between the system and a noisy environment. We report an experimental simulation of environment-assisted coherent transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable-strength decoherence is simulated by broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence. PMID:27080915

  5. Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime.

    PubMed

    Prokhorenko, Valentyn I; Halpin, Alexei; Johnson, Philip J M; Miller, R J Dwayne; Brown, Leonid S

    2011-02-28

    Coherent control protocols provide a direct experimental determination of the relative importance of quantum interference or phase relationships of coupled states along a selected pathway. These effects are most readily observed in the high intensity regime where the field amplitude is sufficient to overcome decoherence effects. The coherent response of retinal photoisomerization in bacteriorhodopsin to the phase of the photoexcitation pulses was examined at fluences of 10(15) - 2.5 × 10(16) photons per square centimeter, comparable to or higher than the saturation excitation level of the S(0) - S(1) retinal electronic transition. At moderate excitation levels of ∼6 × 10(15) photons/cm(2) (<100 GW/cm(2)), chirping the excitation pulses increases the all-trans to 13-cis isomerization yield by up to 16% relative to transform limited pulses. The reported results extend previous weak-field studies [Prokhorenko et al., Science 313, 1257 (2006)] and further illustrate that quantum coherence effects persist along the reaction coordinate in strong fields even for systems as complex as biological molecules. However, for higher excitation levels of ∼200 GW/cm(2), there is a dramatic change in photophysics that leads to multiphoton generated photoproducts unrelated to the target isomerization reaction channel and drastically changes the observed isomerization kinetics that appears, in particular, as a red shift of the transient spectra. These results explain the apparent contradictions of the work by Florean et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 10896 (2009)] in the high intensity regime. We are able to show that the difference in observations and interpretation is due to artifacts associated with additional multiphoton-induced photoproducts. At the proper monitoring wavelengths, coherent control in the high intensity regime is clearly observable. The present work highlights the importance of conducting coherent control experiments in the low intensity regime

  6. Controlled Tethering Molecules via Crystal Surface Engineering

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.; Zheng, Joseph X.; Chen, William Y.

    2004-03-01

    So far, almost all experiments in tethering chain molecules onto substrates are via "grafting to" or "grafting from" polymerizations in addition to physical absorption. Issues concerning the uniformity of the tethered chain density and the molecular weight distribution of the chains tethered by polymerization always undermine the properties experimentally observed. We proposed a novel design to precisely control the tethering density of polystyrene (PS) brushes on a poly(ethylene oxide) (PEO) or a poly(L-lactic acid) (PLLA) lamellar crystal basal surface using PEO-b-PS or PLLA-b-PS diblock copolymers. As the crystallization temperature (Tc) increased in either a PEO-b-PS/mixed solution (chrolobenzene/octane) or a PLLA-b-PS/amyl acetate solution, the PEO or PLLA lamellar thickness (d) increased, and correspondingly, the number of folds per PEO or PLLA block was reduced. The reduced tethered density (Σ*) of the PS brushes thus increased. At an onset where the PS brushes are overcrowded within the solution, a drastic slope change in the relationship between (d)-1 and Tc occurs in both cases at a Σ* between 3 - 4. This illustrates that the weak to intermediate interaction changes of the PS brushes with their neighbors may be universally represented.

  7. Controlling Electron Dynamics of Oriented Molecules Using Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Miyabe, S.; Lucchese, R.; Rescigno, T.; Midorikawa, K.; McCurdy, C. W.

    2016-05-01

    Attosecond pulses offer routes to study and potentially manipulate ultrafast electron dynamics of atoms and molecules on their intrinsic time scale, and therefore attracted attention from various disciplines. In this report we show that for a molecule, oriented in space and excited by an attosecond pulse, the amount of electronic coherence left in the ion depends not only on the orientation of the electric field polarization vector in the molecular-frame, but also on the angular distribution in molecular-frame of electrons ejected in different ionization channels. In our numerical simulation we use one-photon single ionization amplitudes calculated using the complex-Kohn variational method, and we express the amount of coherence in the ion in terms of the (N+1)-electron reduced density matrix of the full N-electron system of the ion plus ionized electron.

  8. Coherent control of long-range photoinduced electron transfer by stimulated X-ray Raman processes

    PubMed Central

    Dorfman, Konstantin E.; Zhang, Yu; Mukamel, Shaul

    2016-01-01

    We show that X-ray pulses resonant with selected core transitions can manipulate electron transfer (ET) in molecules with ultrafast and atomic selectivity. We present possible protocols for coherently controlling ET dynamics in donor–bridge–acceptor (DBA) systems by stimulated X-ray resonant Raman processes involving various transitions between the D, B, and A sites. Simulations presented for a Ru(II)–Co(III) model complex demonstrate how the shapes, phases and amplitudes of the X-ray pulses can be optimized to create charge on demand at selected atoms, by opening up otherwise blocked ET pathways. PMID:27559082

  9. Coherent control of ultracold collisions with chirped light: Direction matters

    SciTech Connect

    Wright, M. J.; Pechkis, J. A.; Carini, J. L.; Gould, P. L.; Kallush, S.; Kosloff, R.

    2007-05-15

    We demonstrate the ability to coherently control ultracold atomic Rb collisions using frequency-chirped light on the nanosecond time scale. For certain center frequencies of the chirp, the rate of inelastic trap-loss collisions induced by negatively chirped light is dramatically suppressed compared to the case of a positive chirp. We attribute this to a fundamental asymmetry in the system: an excited wave packet moves inward on the attractive molecular potential. For a positive chirp, the resonance condition moves outward in time, while for a negative chirp, it moves inward, in the same direction as the excited wave packet; this allows multiple interactions between the wave packet and the light, enabling the wave packet to be returned coherently to the ground state. Classical and quantum calculations support this interpretation.

  10. Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.

    2012-11-01

    We study quantum coherence effects in single nanoparticle systems consisting of a semiconductor quantum dot and a metallic nanoparticle in the presence of the ultra-short dephasing times of the quantum dots. The results suggest that coherent exciton-plasmon coupling can sustain the collective molecular resonances (plasmonic meta-resonances) of these systems at about room temperature. We investigate quantum optical properties of the quantum dots under this condition, demonstrating formation of ultranarrow gain and absorption spectral lines. These results are discussed in terms of plasmonic normalization of coherent population oscillation and the collective states of the nanoparticle systems.

  11. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb.

    PubMed

    Stowe, Matthew C; Cruz, Flavio C; Marian, Adela; Ye, Jun

    2006-04-21

    We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

  12. High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb

    SciTech Connect

    Stowe, Matthew C.; Cruz, Flavio C.; Marian, Adela; Ye Jun

    2006-04-21

    We demonstrate high resolution coherent control of cold atomic rubidium utilizing spectral phase manipulation of a femtosecond optical frequency comb. Transient coherent accumulation is directly manifested by the enhancement of signal amplitude and spectral resolution via the pulse number. The combination of frequency comb technology and spectral phase manipulation enables coherent control techniques to enter a new regime with natural linewidth resolution.

  13. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    SciTech Connect

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular

  14. Prospect of detection and recognition of single biological molecules using ultrafast coherent dynamics in quantum dot-metallic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.

    2015-08-01

    Conventional plasmonic sensors are based on the intrinsic resonances of metallic nanoparticles. In such sensors wavelength shift of such resonances are used to detect biological molecules. Recently we introduced ultra-sensitive timedomain nanosensors based on the way variations in the environmental conditions influence coherent dynamics of hybrid systems consisting of metallic nanoparticles and quantum dots. Such dynamics are generated via interaction of these systems with a laser field, generating quantum coherence and coherent exciton-plasmon coupling. These sensors are based on impact of variations of the refractive index of the environment on such dynamics, generating time-dependent changes in the emission of the QDs. In this paper we study the impact of material properties of the metallic nanoparticles on this process and demonstrate the key role played by the design of the quantum dots. We show that Ag nanoparticles, even in a simple spherical shape, may allow these sensors to operate at room temperature, owing to the special properties of quantum dot-metallic nanoparticle systems that may allow coherent effects utilized in such sensors happen in the presence of the ultrafast polarization dephasing of quantum dots.

  15. Shaping femtosecond coherent anti-Stokes Raman spectra using optimal control theory.

    PubMed

    Pezeshki, Soroosh; Schreiber, Michael; Kleinekathöfer, Ulrich

    2008-04-21

    Optimal control theory is used to tailor laser pulses which enhance a femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) spectrum in a certain frequency range. For this aim the optimal control theory has to be applied to a target state distributed in time. Explicit control mechanisms are given for shaping either the Stokes or the probe pulse in the four-wave mixing process. A simple molecule for which highly accurate potential energy surfaces are available, namely molecular iodine, is used to test the procedure. This approach of controlling vibrational motion and delivering higher intensities to certain frequency ranges might also be important for the improvement of CARS microscopy.

  16. Small molecule control of bacterial biofilms

    PubMed Central

    Worthington, Roberta J.; Richards, Justin J.

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infections of cystic fibrosis, colitis, urethritis, conjunctivitis, otitis, endocarditis and periodontitis. Additionally, biofilm infections of indwelling medical devices are of particular concern, as once the device is colonized infection is virtually impossible to eradicate. Given the prominence of biofilms in infectious diseases, there has been an increased effort toward the development of small molecules that will modulate bacterial biofilm development and maintenance. In this review, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms. The review discuses the numerous approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. These approaches are grouped into: 1) the identification and development of small molecules that target one of the bacterial signaling pathways involved in biofilm regulation, 2) chemical library screening for compounds with anti-biofilm activity, and 3) the identification of natural products that possess anti-biofilm activity, and the chemical manipulation of these natural products to obtain analogues with increased activity. PMID:22733439

  17. Direct frequency comb spectroscopy and high-resolution coherent control

    NASA Astrophysics Data System (ADS)

    Stowe, Matthew C.

    We present the first experiments demonstrating absolute frequency measurements of one- and two-photon transitions using direct frequency comb spectroscopy (DFCS). In particular we phase stabilized the inter-pulse period and optical phases of the pulses emitted from a mode-locked Ti:Sapphire laser, creating a broad-bandwidth optical frequency comb. By referencing the optical comb directly to the cesium microwave frequency standard, we were able to measure absolute transition frequencies over greater than a 50 nm bandwidth, utilizing the phase coherence between wavelengths spanning from 741 nm to 795 nm. As an initial demonstration of DFCS we studied transitions from the 5S to 5P, 5D, and 7S states in Rb. To reduce Doppler broadening the atoms were laser cooled in a magneto-optical trap. We present an overview of several systematic error sources that perturb the natural transition frequencies, magnitudes, and linewidths. These include radiation pressure from the probe beam, AC-Stark shifts, Zeeman shifts, power-broadening, and incoherent optical pumping. After careful study and suppression of these systematic error sources, we measured transition linewidths as narrow as 1.1 MHz FWHM and 10 kHz linecenter uncertainties. Our measurements of the 5S to 7S two-photon transition frequency demonstrated the ability to determine the comb mode order numbers when the initial transition frequency is not known to better than the comb mode frequency spacing. By modifying the spectral phase of the pulses we demonstrated high-resolution coherent control. Our first coherent control experiment utilized a grating based pulse stretcher/compressor to apply a large chirp to the pulses. We measured the two-photon transition rate as a function of linear frequency chirp. The results illustrate the differences between similar classic coherent experiments done with a single femtosecond pulse and ours conducted with multiple pulses. Furthermore, we show that it is possible to reduce the two

  18. Coherent 2D Spectroscopy and Control of Molecular Complexes

    NASA Astrophysics Data System (ADS)

    Brixner, Tobias

    2007-03-01

    Coherent two-dimensional femtosecond spectroscopy is used to investigate electronic couplings within molecular complexes. Third-order optical response functions are measured in a non-collinear three-pulse photon echo geometry with heterodyne signal detection. In combination with suitable simulations this allows recovering the delocalization of excited-state wavefunctions, their coupling, and the corresponding energy transport pathways, with nanometer spatial and femtosecond temporal resolution. Examples of multichromophoric systems are the FMO and the LH3 light-harvesting complexes from green sulfur bacteria and purple bacteria, respectively, for which energy transfer processes have been determined. Additional challenges arise if one is interested in the spectroscopy of photochemical rather than photophysical processes in molecular complexes: The product yields attained by a single femtosecond laser pulse are often very small, and hence time-dependent signals are hard to measure with good signal-to-noise ratio. In the context of coherent control, this implies that bond-breaking photochemistry in liquids is still difficult despite the many successes of optimal control in gas-phase photodissociation. In a novel accumulative scheme, macroscopic amounts of stable photoproducts are generated in an optimal fashion and with high product detection sensitivity. In connection with time-resolved spectroscopy, the accumulative scheme furthermore provides kinetic information on the pathways of low-efficiency chemical reaction channels. This was applied to investigate the photoconversion of green fluorescent protein.

  19. Automated alignment method for coherence-controlled holographic microscope

    NASA Astrophysics Data System (ADS)

    Dostal, Zbynek; Slaby, Tomas; Kvasnica, Lukas; Lostak, Martin; Krizova, Aneta; Chmelik, Radim

    2015-11-01

    A coherence-controlled holographic microscope (CCHM) was developed particularly for quantitative phase imaging and measurement of live cell dynamics, which is the proper subject of digital holographic microscopy (DHM). CCHM in low-coherence mode extends DHM in the study of living cells. However, this advantage is compensated by sensitivity of the system to easily become misaligned, which is a serious hindrance to wanted performance. Therefore, it became clear that introduction of a self-correcting system is inevitable. Accordingly, we had to devise a theory of a suitable control and design an automated alignment system for CCHM. The modulus of the reconstructed holographic signal was identified as a significant variable for guiding the alignment procedures. From this, we derived the original basic realignment three-dimensional algorithm, which encompasses a unique set of procedures for automated alignment that contains processes for initial and advanced alignment as well as long-term maintenance of microscope tuning. All of these procedures were applied to a functioning microscope and the tested processes were successfully validated. Finally, in such a way, CCHM is enabled to substantially contribute to study of biology, particularly of cancer cells in vitro.

  20. Coherent control through near-resonant Raman transitions

    SciTech Connect

    Dai Xingcan; Lerch, Eliza-Beth W.; Leone, Stephen R.

    2006-02-15

    The phase of an electronic wave function is shown to play an important role in coherent control experiments. By using a pulse shaping system with a femtosecond laser, we explore the phase relationships among resonant and off-resonant Raman transitions in Li{sub 2} by measuring the phases of the resulting wave packets, or quantum beats. Specific pixels in a liquid-crystal spatial light modulator are used to isolate the resonant and off-resonant portions of the Raman transitions in Li{sub 2}. The off-resonant Raman transitions have an approximately 90 degree sign phase shift with respect to the resonant Raman transition, and there is an approximately 180 degree sign phase shift between the blue-detuned and the red-detuned off-resonant Raman transitions. Calculations using second-order time-dependent perturbation theory for the electronic transitions agree with the experimental results for the laser pulse intensities used here. Interferences between the off-resonant Raman transitions as a function of detuning are used to demonstrate coherent control of the Raman quantum wave packet.

  1. Physics of lateral triple quantum-dot molecules with controlled electron numbers.

    PubMed

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-11-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.

  2. Interplay of polarization geometry and rotational dynamics in high-order harmonic generation from coherently rotating linear molecules.

    PubMed

    Faisal, F H M; Abdurrouf, A

    2008-03-28

    Recent reports on intense-field pump-probe experiments for high-order harmonic generation (HHG) from coherently rotating linear molecules have revealed remarkable characteristic effects of the simultaneous variation of the polarization geometry and the time delay on the high-order harmonic signals. We analyze the effects and give a unified theoretical account of the experimental observations. Furthermore, characteristic behavior at critical polarization angles are found that can help to identify the molecular orbital symmetry in connection with the problem of molecular imaging from the HHG data.

  3. Ultrafast laser based coherent control methods for explosives detection

    SciTech Connect

    Moore, David Steven

    2010-12-06

    The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity to explosives signatures while dramatically improving specificity, particularly against matrix materials and background interferences. These goals are being addressed by operating in an optimal non-linear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe subpulses. Recent results will be presented.

  4. Quantum phase gate and controlled entanglement with polar molecules

    SciTech Connect

    Charron, Eric; Keller, Arne; Atabek, Osman; Milman, Perola

    2007-03-15

    We propose an alternative scenario for the generation of entanglement between rotational quantum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the efficiency of the process, and discuss possible experimental implementations with cold molecules trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures are presented, and their suitability for these two physical situations is analyzed.

  5. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures

    DTIC Science & Technology

    2015-05-01

    ABSTRACT The main objective of this research is to study coherent quantum effects, such as Rabi oscillations in optical spectra of wide- band-gap...materials, and to determine the feasibility of fast optical control of quantum states in gallium nitride and zinc oxide heterostructures. Because of...necessary work toward coherent optical control of quantum states at higher temperatures, with ultimately room-temperature coherent control. We also

  6. Coherent Structures and Chaos Control in High-Power Microwave Devices

    DTIC Science & Technology

    2006-06-29

    06/29/2006 Final 1 April 2003- 30 March 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Coherent Structures and Chaos Control in High-Power Microwave...Final Report Coherent Structures and Chaos Control in High-Power Microwave Devices AFOSR Grant No. F49620-03-1-0230 Submitted to: Dr. Arje Nachman...for HPM Device Applications 22 6. References 23 2 Final Report Coherent Structures and Chaos Control in High-Power Microwave Devices AFOSR Grant No

  7. Measurement of a weak transition moment using Coherent Control

    NASA Astrophysics Data System (ADS)

    Antypas, Dionysios

    We have developed a two-pathway Coherent Control technique for measurements of weak optical transition moments. We demonstrate this technique through a measurement of the transition moment of the highly-forbidden magnetic dipole transition between the 6s2S 1/21/2 and 7s2S 1/21/2 states in atomic Cesium. The experimental principle is based on a two-pathway excitation, using two phase-coherent laser fields, a fundamental field at 1079 nm and its second harmonic at 539.5 nm. The IR field induces a strong two-photon transition, while the 539.5 nm field drives a pair of weak one-photon transitions: a Stark-induced transition of controllable strength as well as the magnetic dipole transition. Observations of the interference between these transitions for different Stark-induced transition amplitudes, allow a measurement of the ratio of the magnetic dipole to the Stark-induced moment. The interference between the transitions is controlled by modulation of the phase-delay between the two optical fields. Our determination of the magnetic dipole moment is at the 0.4% level and in good agreement with previous measurements, and serves as a benchmark for our technique and apparatus. We anticipate that with further improvement of the apparatus detection sensitivity, the demonstrated scheme can be used for measurements of the very weak Parity Violation transition moment on the Cesium 6s2 S1/2→7s2 S1/2 transition.

  8. Coherent optical control of polarization with a critical metasurface

    NASA Astrophysics Data System (ADS)

    Kang, Ming; Chong, Y. D.

    2015-10-01

    We present a mechanism by which a metamaterial surface, or metasurface, can act as an ideal phase-controlled rotatable linear polarizer. Using coupled-mode theory and the idea of coherent perfect absorption into auxiliary polarization channels, we show how the losses and near-field couplings on the metasurface can be balanced so that, with equal-power linearly polarized beams incident on each side, varying the relative phase rotates the polarization angles of the output beams while maintaining zero ellipticity. The system can be described by a non-Hermitian effective Hamiltonian which is parity-time (P T ) symmetric, although there is no actual gain present; perfect polarization conversion occurs at the eigenfrequencies of this Hamiltonian, and the polarization rotating behavior occurs at the critical point of its P T -breaking transition.

  9. Toward quantum processing in molecules: a THz-bandwidth coherent memory for light.

    PubMed

    Bustard, Philip J; Lausten, Rune; England, Duncan G; Sussman, Benjamin J

    2013-08-23

    The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pulses for durations up to ~1 ns, enabling ~10(4) operational time bins. The results demonstrate the promise of molecules for constructing compact ultrafast quantum photonic technologies.

  10. Controlling the magnetism of adsorbed metal-organic molecules.

    PubMed

    Kuch, Wolfgang; Bernien, Matthias

    2017-01-18

    Gaining control on the size or the direction of the magnetic moment of adsorbed metal-organic molecules constitutes an important step towards the realization of a surface-mounted molecular spin electronics. Such control can be gained by taking advantage of interactions of the molecule's magnetic moment with the environment. The paramagnetic moments of adsorbed metal-organic molecules, for example, can be controlled by the interaction with magnetically ordered substrates. Metalloporphyrins and -phthalocyanines display a quasi-planar geometry, allowing the central metal ion to interact with substrate electronic states. This can lead to magnetic coupling with a ferromagnetic or even antiferromagnetic substrate. The molecule-substrate coupling can be mediated and controlled by insertion layers such as oxygen atoms, graphene, or nonmagnetic metal layers. Control on the magnetic properties of adsorbed metalloporphyrins or -phthalocyanines can also be gained by on-surface chemical modification of the molecules. The magnetic moment or the magnetic coupling to ferromagnetic substrates can be changed by adsorption and thermal desorption of small molecules that interact with the fourfold-coordinated metal center via the remaining axial coordination site. Spin-crossover molecules, which possess a metastable spin state that can be switched by external stimuli such as temperature or light, are another promising class of candidates for control of magnetic properties. However, the immobilization of such molecules on a solid surface often results in a quench of the spin transition due to the interaction with the substrate. We present examples of Fe(II) spin-crossover complexes in direct contact with a solid surface that undergo a reversible spin-crossover transition as a function of temperature, by illumination with visible light, or can be switched by the tip of a scanning tunneling microscope.

  11. Closed loop coherent control of electronic transitions in gallium arsenide.

    PubMed

    Singha, Sima; Hu, Zhan; Gordon, Robert J

    2011-06-16

    A genetic algorithm was used to control the photoluminesce-nce (PL) from GaAs(100). A spatial light modulator (SLM) used feedback from the emission to optimize the spectral phase profile of an ultrashort laser pulse. Most of the experiments were performed using a sine phase function to optimize the integrated PL spectrum over a specified wavelength range, with the amplitude and period of the phase function treated as genetic parameters. An order of magnitude increase in signal was achieved after only one generation, and an optimized waveform, consisting of three equally spaced pulses approximately 0.8 ps apart, was obtained after 15 generations. The effects of fluence, polarization, relative phase of the subpulses, and spectral range of the optimized PL were investigated. In addition, preliminary experiments were performed using the phases of individual pixels of the SLM as genetic variables. The PL spectrum is identified with recombination of electron-hole pairs in the L-valley of the Brillouin zone. Control is achieved by coherent manipulation of plasma electrons. It is proposed that hot electrons excite lattice phonons, which in turn scatter carriers into the L-valley.

  12. Coherent control of a classical nanomechanical two-level system

    NASA Astrophysics Data System (ADS)

    Faust, T.; Rieger, J.; Seitner, M. J.; Kotthaus, J. P.; Weig, E. M.

    2013-08-01

    The Bloch sphere is a generic picture describing the coherent dynamics of coupled classical or quantum-mechanical two-level systems under the control of electromagnetic fields. It is commonly applied to systems such as spin ensembles, atoms, quantum dots and superconducting circuits. The underlying Bloch equations describe the state evolution of the two-level system and allow the characterization of both energy and phase relaxation processes. Here we realize a classical nanomechanical two-level system driven by radiofrequency signals. It is based on the two orthogonal fundamental flexural modes of a high-quality-factor nanostring resonator that are strongly coupled by dielectric gradient fields. Full Bloch sphere control is demonstrated by means of Rabi, Ramsey and Hahn echo experiments. Furthermore, we determine the energy relaxation time T1and phase relaxation times T2 and T2*, and find them all to be equal. Thus decoherence is dominated by energy relaxation, implying that not only T1 but also T2 can be increased by engineering larger mechanical quality factors.

  13. Mechanical control of spin states in single molecules

    NASA Astrophysics Data System (ADS)

    Parks, J. J.; Champagne, A. R.; Costi, T. A.; Pasupathy, A. N.; Shum, W. W.; Neuscamman, E.; Chan, G. K.-L.; Abruña, H. D.; Ralph, D. C.

    2010-03-01

    We study individual Co(tpy-SH)2 complexes by connecting them within mechanically controllable break-junction devices that allow us to controllably stretch the molecule while measuring its electrical conductance. At low temperature, this molecule produces the Kondo effect, observed as a peak in the conductance at zero bias. We find that as a function of stretching the Kondo peak splits in two, in distinct contrast to behavior observed in spin-1/2 molecules. The temperature dependence of the Kondo signal for the unstretched molecule is in agreement with the scaling prediction for an underscreened S = 1 Kondo effect. The splitting of the Kondo resonance by mechanical stretching can be explained by a spin-orbit-induced lifting of the degeneracy of the S = 1 triplet upon distortion from octahedral symmetry of the Co ion. We observe evidence of the resultant spin anisotropy in the magnetic-field dependence of the Kondo peaks.

  14. Controlling the magnetism of adsorbed metal-organic molecules

    NASA Astrophysics Data System (ADS)

    Kuch, Wolfgang; Bernien, Matthias

    2017-01-01

    Gaining control on the size or the direction of the magnetic moment of adsorbed metal-organic molecules constitutes an important step towards the realization of a surface-mounted molecular spin electronics. Such control can be gained by taking advantage of interactions of the molecule’s magnetic moment with the environment. The paramagnetic moments of adsorbed metal-organic molecules, for example, can be controlled by the interaction with magnetically ordered substrates. Metalloporphyrins and -phthalocyanines display a quasi-planar geometry, allowing the central metal ion to interact with substrate electronic states. This can lead to magnetic coupling with a ferromagnetic or even antiferromagnetic substrate. The molecule-substrate coupling can be mediated and controlled by insertion layers such as oxygen atoms, graphene, or nonmagnetic metal layers. Control on the magnetic properties of adsorbed metalloporphyrins or -phthalocyanines can also be gained by on-surface chemical modification of the molecules. The magnetic moment or the magnetic coupling to ferromagnetic substrates can be changed by adsorption and thermal desorption of small molecules that interact with the fourfold-coordinated metal center via the remaining axial coordination site. Spin-crossover molecules, which possess a metastable spin state that can be switched by external stimuli such as temperature or light, are another promising class of candidates for control of magnetic properties. However, the immobilization of such molecules on a solid surface often results in a quench of the spin transition due to the interaction with the substrate. We present examples of Fe(II) spin-crossover complexes in direct contact with a solid surface that undergo a reversible spin-crossover transition as a function of temperature, by illumination with visible light, or can be switched by the tip of a scanning tunneling microscope.

  15. Controlling the orbital sequence in individual Cu-phthalocyanine molecules.

    PubMed

    Uhlmann, C; Swart, I; Repp, J

    2013-02-13

    We report on the controlled change of the energetic ordering of molecular orbitals. Negatively charged copper(II)phthalocyanine on NaCl/Cu(100) undergoes a Jahn-Teller distortion that lifts the degeneracy of two frontier orbitals. The energetic order of the levels can be controlled by Au and Ag atoms in the vicinity of the molecule. As only one of the states is occupied, the control of the energetic order is accompanied by bistable changes of the charge distribution inside the molecule, rendering it a bistable switch.

  16. Flexible coherent control of plasmonic spin-Hall effect

    PubMed Central

    Xiao, Shiyi; Zhong, Fan; Liu, Hui; Zhu, Shining; Li, Jensen

    2015-01-01

    The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the inability to generate more complicated and independent surface plasmon profiles for two incident spins, which work coherently together for more flexible and tunable functionalities. Here by matching the geometric phases of the nano-slots on silver to specific superimpositions of the inward and outward surface plasmon profiles for the two spins, arbitrary spin-dependent orbitals can be generated in a slot-free region. Furthermore, motion pictures with a series of picture frames can be assembled and played by varying the linear polarization angle of incident light. This spin-enabled control of orbitals is potentially useful for tip-free near-field scanning microscopy, holographic data storage, tunable plasmonic tweezers, and integrated optical components. PMID:26415636

  17. Flexible coherent control of plasmonic spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Xiao, Shiyi; Zhong, Fan; Liu, Hui; Zhu, Shining; Li, Jensen

    2015-09-01

    The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the inability to generate more complicated and independent surface plasmon profiles for two incident spins, which work coherently together for more flexible and tunable functionalities. Here by matching the geometric phases of the nano-slots on silver to specific superimpositions of the inward and outward surface plasmon profiles for the two spins, arbitrary spin-dependent orbitals can be generated in a slot-free region. Furthermore, motion pictures with a series of picture frames can be assembled and played by varying the linear polarization angle of incident light. This spin-enabled control of orbitals is potentially useful for tip-free near-field scanning microscopy, holographic data storage, tunable plasmonic tweezers, and integrated optical components.

  18. Dissipation and coherent control in nano-optomechanical systems

    NASA Astrophysics Data System (ADS)

    Fong, King Yan

    system. Lastly, a hybrid opto-electro-mechanical system combining an optomechanical resonator with microwave piezoelectric actuation is developed. This integration of optomechanics with microwaves provides an extra degree of freedom for coherent control of the system. Enabled by this strong piezoelectric actuation, nonlinear operation of optomechanical system which manifests as multi-phonon scattering is demonstrated. Our demonstration shows that the strong coherent microwave drive can be a useful tool for studying the nonlinear dynamics of optomechanical systems driven in large amplitude. Examining the noise characteristic in this regime will be an interesting topic for further study.

  19. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  20. Time-delayed quantum coherent Pyragas feedback control of photon squeezing in a degenerate parametric oscillator

    NASA Astrophysics Data System (ADS)

    Kraft, Manuel; Hein, Sven M.; Lehnert, Judith; Schöll, Eckehard; Hughes, Stephen; Knorr, Andreas

    2016-08-01

    Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time delay and feedback strength.

  1. Method and apparatus for single-stepping coherence events in a multiprocessor system under software control

    DOEpatents

    Blumrich, Matthias A.; Salapura, Valentina

    2010-11-02

    An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.

  2. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.

    PubMed

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2015-12-01

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution.

  3. EDITORIAL: Quantum control theory for coherence and information dynamics Quantum control theory for coherence and information dynamics

    NASA Astrophysics Data System (ADS)

    Viola, Lorenza; Tannor, David

    2011-08-01

    Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance

  4. Control of coherence transfer via tunneling in quadruple and multiple quantum dots

    NASA Astrophysics Data System (ADS)

    Tian, Si-Cong; Xing, En-Bo; Wan, Ren-Gang; Wang, Chun-Liang; Wang, Li-Jie; Shu, Shi-Li; Tong, Cun-Zhu; Wang, Li-Jun

    2016-12-01

    Transfer and manipulation of coherence among the ground state and indirect exciton states via tunneling in quadruple and multiple quantum dots is analyzed. By applying suitable amplitudes and sequences of the pump and tunneling pulses, a complete transfer of coherence or an arbitrary distribution of coherence of multiple states can be realized. The method, which is an adiabatic passage process, is different from previous works on quantum dot molecules in the way that the population can transfer from the ground state to the indirect exciton states without populating the direct exciton state, and thus no spontaneous emission occurs. This investigation can provide further insight to help the experimental development of coherence transfer in semiconductor structures, and may have potential applications in quantum information processing.

  5. Coherent control of a strongly driven silicon vacancy optical transition in diamond

    PubMed Central

    Zhou, Yu; Rasmita, Abdullah; Li, Ke; Xiong, Qihua; Aharonovich, Igor; Gao, Wei-bo

    2017-01-01

    The ability to prepare, optically read out and coherently control single quantum states is a key requirement for quantum information processing. Optically active solid-state emitters have emerged as promising candidates with their prospects for on-chip integration as quantum nodes and sources of coherent photons connecting these nodes. Under a strongly driving resonant laser field, such quantum emitters can exhibit quantum behaviour such as Autler–Townes splitting and the Mollow triplet spectrum. Here we demonstrate coherent control of a strongly driven optical transition in silicon vacancy centre in diamond. Rapid optical detection of photons enabled the observation of time-resolved coherent Rabi oscillations and the Mollow triplet spectrum. Detection with a probing transition further confirmed Autler–Townes splitting generated by a strong laser field. The coherence time of the emitted photons is comparable to its lifetime and robust under a very strong driving field, which is promising for the generation of indistinguishable photons. PMID:28218237

  6. Coherent control of a strongly driven silicon vacancy optical transition in diamond

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Rasmita, Abdullah; Li, Ke; Xiong, Qihua; Aharonovich, Igor; Gao, Wei-Bo

    2017-02-01

    The ability to prepare, optically read out and coherently control single quantum states is a key requirement for quantum information processing. Optically active solid-state emitters have emerged as promising candidates with their prospects for on-chip integration as quantum nodes and sources of coherent photons connecting these nodes. Under a strongly driving resonant laser field, such quantum emitters can exhibit quantum behaviour such as Autler-Townes splitting and the Mollow triplet spectrum. Here we demonstrate coherent control of a strongly driven optical transition in silicon vacancy centre in diamond. Rapid optical detection of photons enabled the observation of time-resolved coherent Rabi oscillations and the Mollow triplet spectrum. Detection with a probing transition further confirmed Autler-Townes splitting generated by a strong laser field. The coherence time of the emitted photons is comparable to its lifetime and robust under a very strong driving field, which is promising for the generation of indistinguishable photons.

  7. Nanoscale Assemblies of Small Molecules Control the Fate of Cells.

    PubMed

    Shi, Junfeng; Xu, Bing

    2015-10-01

    Being driven by non-covalent interactions, the formation of functional assemblies (or aggregates) of small molecules at nanoscale is a more common process in water than one would think. While most efforts on self-assembly in cellular environment concentrate on the assemblies of proteins (e.g., microtubules or amyloid fibers), nanoscale assemblies of small molecules are emerging functional entities that exhibit important biological function in cellular environments. This review describes the increasing efforts on the exploration of nanoscale assemblies of small molecules that largely originate from the serendipitous observations in research fields other than nanoscience and technology. Specifically, we describe that nanoscale assemblies of small molecules exhibit unique biological functions in extracellular and intracellular environment, thus inducing various cellular responses, like causing cell death or promoting cell proliferation. We first survey certain common feature of nanoscale molecular assemblies, then discuss several specific examples, such as, nanoscale assemblies of small peptides accumulated in the cells for selectively inhibiting cancer cells via promiscuous interactions with proteins, and nanoscale assemblies of a glycoconjugate for promoting the proliferation of stem cells or for suppressing immune responses. Subsequently, we emphasize the spatiotemporal control of nanoscale assemblies for controlling the cell fate, particularly illustrate a paradigm-shifting approach-enzyme-instructed self-assembly (EISA), that is, the integration of enzymatic reaction and self-assembly-for generating nanoscale assemblies from innocuous monomers for selectively inhibiting cancer cells. Moreover, we introduce a convenient assay for proteomic study of the proteins that interact with nanoscale assemblies of small molecules in cellular environment. Furthermore, we introduce the use of ligand-receptor interaction to catalyze the formation of nanoscale assemblies. By

  8. Attosecond-recollision-controlled selective fragmentation of polyatomic molecules.

    PubMed

    Xie, Xinhua; Doblhoff-Dier, Katharina; Roither, Stefan; Schöffler, Markus S; Kartashov, Daniil; Xu, Huailiang; Rathje, Tim; Paulus, Gerhard G; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus

    2012-12-14

    Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work demonstrates an efficient and selective way of predetermining fragmentation and isomerization reactions in polyatomic molecules on subfemtosecond time scales.

  9. Perspective: Ultracold molecules and the dawn of cold controlled chemistry

    NASA Astrophysics Data System (ADS)

    Balakrishnan, N.

    2016-10-01

    Ultracold molecules offer unprecedented opportunities for the controlled interrogation of molecular events, including chemical reactivity in the ultimate quantum regime. The proliferation of methods to create, cool, and confine them has allowed the investigation of a diverse array of molecular systems and chemical reactions at temperatures where only a single partial wave contributes. Here we present a brief account of recent progress on the experimental and theoretical fronts on cold and ultracold molecules and the opportunities and challenges they provide for a fundamental understanding of bimolecular chemical reaction dynamics.

  10. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    PubMed Central

    Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.

    2015-01-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  11. Coherent phase control of internal conversion in pyrazine

    NASA Astrophysics Data System (ADS)

    Gordon, Robert J.; Hu, Zhan; Seideman, Tamar; Singha, Sima; Sukharev, Maxim; Zhao, Youbo

    2015-04-01

    Shaped ultrafast laser pulses were used to study and control the ionization dynamics of electronically excited pyrazine in a pump and probe experiment. For pump pulses created without feedback from the product signal, the ion growth curve (the parent ion signal as a function of pump/probe delay) was described quantitatively by the classical rate equations for internal conversion of the S2 and S1 states. Very different, non-classical behavior was observed when a genetic algorithm (GA) employing phase-only modulation was used to minimize the ion signal at some pre-determined target time, T. Two qualitatively different control mechanisms were identified for early (T < 1.5 ps) and late (T > 1.5 ps) target times. In the former case, the ion signal was largely suppressed for t < T, while for t ≫ T, the ion signal produced by the GA-optimized pulse and a transform limited (TL) pulse coalesced. In contrast, for T > 1.5 ps, the ion growth curve followed the classical rate equations for t < T, while for t ≫ T, the quantum yield for the GA-optimized pulse was much smaller than for a TL pulse. We interpret the first type of behavior as an indication that the wave packet produced by the pump laser is localized in a region of the S2 potential energy surface where the vertical ionization energy exceeds the probe photon energy, whereas the second type of behavior may be described by a reduced absorption cross section for S0 → S2 followed by incoherent decay of the excited molecules. Amplitude modulation observed in the spectrum of the shaped pulse may have contributed to the control mechanism, although this possibility is mitigated by the very small focal volume of the probe laser.

  12. Comprehension through explanation as the interaction of the brain’s coherence and cognitive control networks

    PubMed Central

    Moss, Jarrod; Schunn, Christian D.

    2015-01-01

    Discourse comprehension processes attempt to produce an elaborate and well-connected representation in the reader’s mind. A common network of regions including the angular gyrus, posterior cingulate, and dorsal frontal cortex appears to be involved in constructing coherent representations in a variety of tasks including social cognition tasks, narrative comprehension, and expository text comprehension. Reading strategies that require the construction of explicit inferences are used in the present research to examine how this coherence network interacts with other brain regions. A psychophysiological interaction analysis was used to examine regions showing changed functional connectivity with this coherence network when participants were engaged in either a non-inferencing reading strategy, paraphrasing, or a strategy requiring coherence-building inferences, self-explanation. Results of the analysis show that the coherence network increases in functional connectivity with a cognitive control network that may be specialized for the manipulation of semantic representations and the construction of new relations among these representations. PMID:26557066

  13. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  14. Communication: Conditions for one-photon coherent phase control in isolated and open quantum systems

    SciTech Connect

    Spanner, Michael; Arango, Carlos A.; Brumer, Paul

    2010-10-21

    Coherent control of observables using the phase properties of weak light that induces one-photon transitions is considered. Measurable properties are shown to be categorizable as either class A, where control is not possible, or class B, where control is possible. Using formal arguments, we show that phase control in open systems can be environmentally assisted.

  15. Coherent control of Floquet-mode dressed plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Frank, Regine

    2012-05-01

    We study the coherent properties of plasmon polaritons optically excited on periodic nanostructures. The gold grains are coupled to a single-mode photonic waveguide which exhibits a dramatically reduced transmission originating from the derived quantum interference. With a nonequilibrium description of Floquet-dressed polaritons we demonstrate the switching of light transmission through the waveguide due to sheer existence of intraband transitions in gold from right above the Fermi level driven by the external laser light.

  16. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-03-15

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.

  17. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  18. Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit

    NASA Astrophysics Data System (ADS)

    Feng, Guanru; Wallman, Joel J.; Buonacorsi, Brandon; Cho, Franklin H.; Park, Daniel K.; Xin, Tao; Lu, Dawei; Baugh, Jonathan; Laflamme, Raymond

    2016-12-01

    To exploit a given physical system for quantum information processing, it is critical to understand the different types of noise affecting quantum control. Distinguishing coherent and incoherent errors is extremely useful as they can be reduced in different ways. Coherent errors are generally easier to reduce at the hardware level, e.g., by improving calibration, whereas some sources of incoherent errors, e.g., T2* processes, can be reduced by engineering robust pulses. In this work, we illustrate how purity benchmarking and randomized benchmarking can be used together to distinguish between coherent and incoherent errors and to quantify the reduction in both of them due to using optimal control pulses and accounting for the transfer function in an electron spin resonance system. We also prove that purity benchmarking provides bounds on the optimal fidelity and diamond norm that can be achieved by correcting the coherent errors through improving calibration.

  19. Coherent phonon optics in a chip with an electrically controlled active device

    PubMed Central

    Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  20. Coherent phonon control via electron-lattice interaction in ferromagnetic Co/Pt multilayers

    PubMed Central

    Kim, Chul Hoon; Shim, Je-Ho; Lee, Kyung Min; Jeong, Jong-Ryul; Kim, Dong-Hyun; Kim, Dong Eon

    2016-01-01

    The manipulation of coherent phonons in condensed systems has attracted fundamental interest, particularly for its applications to future devices. We demonstrate that a coherent phonon in Co/Pt nano-multilayer can be quantitatively controlled via electron-lattice coupling, specifically by changing the multilayer repeat number. To that end, systematic measurement of the time-resolved reflectivity and magneto-optical Kerr effect in Co/Pt multilayers was performed. The coherent phonon frequency was observed to be shifted with the change of the multilayer repeat number. This shift could be clearly explained based on the two-temperature model. Detailed analysis indicated that the lattice heat capacity and electron-lattice coupling strength are linearly dependent on the repeat number of the periodic multilayer structures. Accessing the control of coherent phonons using nanostructures opens a new avenue for advanced phonon-engineering applications. PMID:26928846

  1. Realistic and verifiable coherent control of excitonic states in a light-harvesting complex

    NASA Astrophysics Data System (ADS)

    Hoyer, Stephan; Caruso, Filippo; Montangero, Simone; Sarovar, Mohan; Calarco, Tommaso; Plenio, Martin B.; Whaley, K. Birgitta

    2014-04-01

    We explore the feasibility of the coherent control of excitonic dynamics in light-harvesting complexes, analyzing the limits imposed by the open nature of these quantum systems. We establish feasible targets for phase and phase/amplitude control of the electronically excited state populations in the Fenna-Mathews-Olson (FMO) complex and analyze the robustness of this control with respect to orientational and energetic disorder, as well as the decoherence arising from coupling to the protein environment. We further present two possible routes to verification of the control target, with simulations for the FMO complex showing that steering of the excited state is experimentally verifiable either by extending excitonic coherence or by producing novel states in a pump-probe setup. Our results provide a first step toward coherent control of these complex biological quantum systems in an ultrafast spectroscopy setup.

  2. Optimal bang-bang control for SU(1,1) coherent states

    SciTech Connect

    Wu Jianwu; Li Chunwen; Zhang Jing; Tarn, T.-J.

    2007-11-15

    In this paper, the problem of achieving an arbitrary SU(1,1) coherent state is considered via switching the control field back and forth between admissible values with minimal number of switching times. When the controlled system Hamiltonian is hyperbolical or parabolical, the results show that the minimal switching number is one or two, which lies on whether the argument of the involved control is adjustable or not, and is independent of the target SU(1,1) coherent state. While for the elliptical case, the results indicate that the minimal number of switches needed depends on the target SU(1,1) coherent state and is provided as a function of it. In this case, one switch can also be saved if the argument of the involved control is adjustable. The theory developed here can also be extended to solve the optimal bang-bang control problem for a general SU(1,1) time evolution.

  3. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    PubMed Central

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-01-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053

  4. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-11-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.

  5. Central Coherence in Typically Developing Preschoolers: Does It Cohere and Does It Relate to Mindreading and Executive Control?

    ERIC Educational Resources Information Center

    Pellicano, Elizabeth; Maybery, Murray; Durkin, Kevin

    2005-01-01

    Background: Frith and Happe (1994) describe central coherence (CC) as the normal tendency to integrate individual elements into a coherent whole, a cognitive style which varies in the general population. Individuals with autism are at the extreme (weak) end of the continuum of coherence. There has been debate over whether CC is independent from…

  6. Phase control of light transmission and reflection based biexciton coherence in a defect dielectric medium.

    PubMed

    Asadpour, Seyyed Hossein; Soleimani, H Rahimpour

    2014-10-01

    Phase control of two weak probe lights' transmission and reflection based biexciton coherence in a defect dielectric medium doped by four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15 nm Al0.3Ga0.7As barriers is theoretically investigated. The biexciton coherence in this scheme is set up by two continuous wave control fields that couple to a resonance of biexcitons. It is shown that the transmission and reflection properties versus relative phase between applied fields can be controlled by the intensity of control fields and exciton spin relaxation between exciton states. Our studies show that many-particle interactions due to Coulomb correlations in semiconductors can be harnessed by quantum coherence in an interacting many-particle system.

  7. How to control the coherent oscillations in Landau-Zener-Stueckelberg dynamics of three-level system

    NASA Astrophysics Data System (ADS)

    Qin, Xiao-Ke

    2016-02-01

    Coherent pulse is used to control and measure the quantum state of three-level system in double quantum dots. We analyze the coherent oscillations in Landau-Zener-Stueckelberg (LZS) dynamics by the adiabatic-impulse model, which simplifies the applied pulse as an optical interference device. Under the designed “hat-shape” pulse, the sweeping speed through each avoid crossing can be tuned independently. The coherent oscillations in LZS dynamics of three-level system are optimized by the control pulse. Moreover, we can filter out the coherent oscillations with the unexpected frequency and only keep the coherent oscillations with the frequency we are interested in.

  8. Coherent control of a linear microwave cavity via single flux quantum pulses

    NASA Astrophysics Data System (ADS)

    Zhu, Shaojiang; Ribeill, Guilhem; Thorbeck, Ted; Leonard, Edward; Vavilov, Maxim; Plourde, Britton; McDermott, Robert

    Classical Josephson digital logic based on single flux quantum (SFQ) pulses offers a path to robust, low-latency control of a large-scale quantum processor. Here we describe the coherent control of a linear superconducting cavity by direct excitation via SFQ pulses. Resonant trains of SFQ pulses are capacitively coupled to a thin-film coplanar waveguide cavity. We examine the resulting cavity states as a function of subharmonic drive and temperature. In addition, we describe first steps toward the coherent control of a superconducting qubit with SFQ pulses.

  9. Multimonth controlled small molecule release from biodegradable thin films

    PubMed Central

    Hsu, Bryan B.; Park, Myoung-Hwan; Hagerman, Samantha R.; Hammond, Paula T.

    2014-01-01

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate high therapeutic levels in specific regions of the body while significantly reducing the toxicity to vital organs typically caused by systemic administration and decreasing the need for medical intervention because of its long-lasting release. Also important is the ability to achieve high drug loadings in thin film coatings to allow incorporation of significant drug amounts on implant surfaces. Here we report a sustained release formulation for small molecules based on a soluble charged polymer–drug conjugate that is immobilized into nanoscale, conformal, layer-by-layer assembled films applicable to a variety of substrate surfaces. We measured a highly predictable sustained drug release from a polymer thin film coating of 0.5–2.7 μm that continued for more than 14 mo with physiologically relevant drug concentrations, providing an important drug delivery advance. We demonstrated this effect with a potent small molecule nonsteroidal anti-inflammatory drug, diclofenac, because this drug can be used to address chronic pain, osteoarthritis, and a range of other critical medical issues. PMID:25092310

  10. Stabilization of ultracold molecules using optimal control theory

    SciTech Connect

    Koch, Christiane P.; Palao, Jose P.; Kosloff, Ronnie; Masnou-Seeuws, Francoise

    2004-07-01

    In recent experiments on ultracold matter, molecules have been produced from ultracold atoms by photoassociation, Feshbach resonances, and three-body recombination. The created molecules are translationally cold, but vibrationally highly excited. This will eventually lead them to be lost from the trap due to collisions. We propose shaped laser pulses to transfer these highly excited molecules to their ground vibrational level. Optimal control theory is employed to find the light field that will carry out this task with minimum intensity. We present results for the sodium dimer. The final target can be reached to within 99% provided the initial guess field is physically motivated. We find that the optimal fields contain the transition frequencies required by a good Franck-Condon pumping scheme. The analysis identifies the ranges of intensity and pulse duration which are able to achieve this task before any other competing processes take place. Such a scheme could produce stable ultracold molecular samples or even stable molecular Bose-Einstein condensates.

  11. Quantum optimal control theory applied to transitions in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Lysebo, Marius; Veseth, Leif

    2014-12-01

    Quantum optimal control theory is applied to control electric dipole transitions in a real multilevel system. The specific system studied in the present work is comprised of a multitude of hyperfine levels in the electronic ground state of the OH molecule. Spectroscopic constants are used to obtain accurate energy eigenstates and electric dipole matrix elements. The goal is to calculate the optimal time-dependent electric field that yields a maximum of the transition probability for a specified initial and final state. A further important objective was to study the detailed quantum processes that take place during such a prescribed transition in a multilevel system. Two specific transitions are studied in detail. The computed optimal electric fields as well as the paths taken through the multitude of levels reveal quite interesting quantum phenomena.

  12. Controllable dissociations of PH3 molecules on Si(001)

    NASA Astrophysics Data System (ADS)

    Liu, Qin; Lei, Yanhua; Shao, Xiji; Ming, Fangfei; Xu, Hu; Wang, Kedong; Xiao, Xudong

    2016-04-01

    We demonstrate for the first time to our knowledge that controllable dissociation of PH3 adsorption products PH x (x = 2, 1) can be realized by STM (scanning tunneling microscope) manipulation techniques at room temperature. Five dissociative products and their geometric structures are identified via combining STM experiments and first-principle calculations and simulations. In total we realize nine kinds of controllable dissociations by applying a voltage pulse among the PH3-related structures on Si(001). The dissociation rates of the five most common reactions are measured by the I-t spectrum method as a function of voltage. The suddenly increased dissociation rate at 3.3 V indicates a transition from multivibrational excitation to single-step excitation induced by inelastic tunneling electrons. Our studies prove that selectively breaking the chemical bonds of a single molecule on semiconductor surface by STM manipulation technique is feasible.

  13. Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers.

    PubMed

    Taylor, R J E; Childs, D T D; Ivanov, P; Stevens, B J; Babazadeh, N; Crombie, A J; Ternent, G; Thoms, S; Zhou, H; Hogg, R A

    2015-08-20

    We demonstrate a semiconductor PCSEL array that uniquely combines an in-plane waveguide structure with nano-scale patterned PCSEL elements. This novel geometry allows two-dimensional electronically controllable coherent coupling of remote vertically emitting lasers. Mutual coherence of the PCSEL elements is verified through the demonstration of a two-dimensional Young's Slits experiment. In addition to allowing the all-electronic control of the interference pattern, this type of device offers new routes to power and brightness scaling in semiconductor lasers, and opportunities for all-electronic beam steering.

  14. Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Taylor, R. J. E.; Childs, D. T. D.; Ivanov, P.; Stevens, B. J.; Babazadeh, N.; Crombie, A. J.; Ternent, G.; Thoms, S.; Zhou, H.; Hogg, R. A.

    2015-08-01

    We demonstrate a semiconductor PCSEL array that uniquely combines an in-plane waveguide structure with nano-scale patterned PCSEL elements. This novel geometry allows two-dimensional electronically controllable coherent coupling of remote vertically emitting lasers. Mutual coherence of the PCSEL elements is verified through the demonstration of a two-dimensional Young’s Slits experiment. In addition to allowing the all-electronic control of the interference pattern, this type of device offers new routes to power and brightness scaling in semiconductor lasers, and opportunities for all-electronic beam steering.

  15. Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers

    PubMed Central

    Taylor, R. J. E.; Childs, D. T. D.; Ivanov, P.; Stevens, B. J.; Babazadeh, N.; Crombie, A. J.; Ternent, G.; Thoms, S.; Zhou, H.; Hogg, R. A.

    2015-01-01

    We demonstrate a semiconductor PCSEL array that uniquely combines an in-plane waveguide structure with nano-scale patterned PCSEL elements. This novel geometry allows two-dimensional electronically controllable coherent coupling of remote vertically emitting lasers. Mutual coherence of the PCSEL elements is verified through the demonstration of a two-dimensional Young’s Slits experiment. In addition to allowing the all-electronic control of the interference pattern, this type of device offers new routes to power and brightness scaling in semiconductor lasers, and opportunities for all-electronic beam steering. PMID:26289621

  16. Coherent Control of Biomolecules and Imaging Using Nanodoublers

    NASA Astrophysics Data System (ADS)

    Bonacina, L.; Wolf, Jean-Pierre

    In the quest for the next generation of imaging bio-markers, successful probes have to prove to be non toxic, bright, stable against long term excitation, and able to generate a sharp contrast against background fluorescence. In all these respects, Harmonic Nanoparticles (HNPs, "nanodoublers") are receiving an increasing attention as they also open a series of alternative detection possibilities simply not accessible with the present generation of fluorescent dyes and quantum dots. In the first part of the chapter, we report on this novel labelling method with unprecedented wavelength flexibility, enabled by the non-resonant nature of the second harmonic process. The possibility of employing infrared excitation and the consequent deeper tissue penetration is especially promising for their in vivo applications [1]. The phase-coherent optical response of HNPs can also be exploited to fully characterize the excitation laser pulse in the focal spot of a high-NA objective with nanometric resolution. This proof-of-principle "nano-FROG" experiment [2] sets the ground for further phase-sensitive self-referenced applications, after the recent demonstration of harmonic holography and heterodyne detection with external references.

  17. Optical control and coherence of electron or hole spins in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Carter, Samuel

    2013-03-01

    The spin of an electron or hole in an InAs quantum dot is an attractive qubit because it combines the advantages of a semiconductor platform with the power of ultrafast optical coherent control techniques. In the last few years, basic quantum operations such as initialization, rotation, and readout have become possible using single spins, but now improvements in spin coherence and demonstrations of multi-qubit systems are needed. In this work, we combine advances in the design and growth of coupled quantum dots with optical coherent control techniques to demonstrate ultrafast manipulation and coherence improvements for one or two interacting electron or hole spins in a coupled pair of InAs dots. For each of these spin systems, we use a sequence of picosecond and nanosecond pulses to initialize, manipulate, and measure the coherent spin dynamics. These dynamics include precession about a magnetic field and also entangling dynamics from the exchange interaction for coupled spins. For a single electron spin, precession dephases after only a few nanoseconds due to the hyperfine interaction with nuclear spins. For hole spins, we measure a dephasing time an order of magnitude longer due to a weaker hyperfine interaction. Coupled electron and hole spins are essential for multi-qubit systems, and they can also be used to decrease sensitivity to the environment. In these systems, we typically measure the coherent dynamics of the singlet-triplet states (ms = 0), which are much less sensitive to the nuclear environment. At present, dephasing is due to fluctuations in the electrical environment. With careful sample design, we can make these systems much less sensitive to electrical fluctuations, giving a powerful combination of long coherence times and ultrafast gates. Finally, we demonstrate that these spin qubits can be incorporated into a photonic crystal cavity and manipulated with optical pulses, a major step toward a quantum interface between photons and these spin

  18. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    PubMed Central

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-01-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms. PMID:27112420

  19. Coherent control of plasma dynamics by feedback-optimized wavefront manipulation

    SciTech Connect

    He, Z.-H.; Hou, B.; Gao, G.; Nees, J. A.; Krushelnick, K.; Thomas, A. G. R.; Lebailly, V.; Clarke, R.

    2015-05-15

    Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leads to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.

  20. Enabling coherent control of trapped ions with economical multi-laser frequency stabilization technology

    NASA Astrophysics Data System (ADS)

    Lybarger, Warren Emanuel, Jr.

    A phase-locked scanning stability transfer cavity (SSTC) for transferring the absolute frequency stability of an iodine referenced He-Ne (master) laser to three otherwise uncalibrated (slave) lasers (at 844, 1033, & 1092 nm) of a trapped-Sr+ quantum information processing (QIP) apparatus is described. When locked, the 422 nm frequency-doubled Doppler-cooling laser exhibits an error of <1 MHz RMS for several hours, and similar stability is achieved with the other slave lasers. When unlocked, each slave laser drifts by a large fraction (or more) of the corresponding transition linewidth in minutes, thus making reliable laser cooling, ion state readout, and execution of QIP algorithms practically infeasible. The SSTC makes coherent control of Sr+ possible by addressing this problem, and the QIP apparatus is now sufficiently stable for single user operation. New single-ion experimental capabilities include ground state cooling, high-fidelity Rabi flopping, Ramsey interferometry, and sympathetic cooling of 88Sr+( 86Sr+) with 86Sr+( 88Sr+). A 2.5 msec coherence time has been achieved with the optical quoit encoded in a |5 2S 1/2> ↔ |4 2D5/2> quadrupole transition, a precision measurement of the isotope shift of the qubit transition in 86Sr+ relative to 88Sr+ is reported, and a single-ion heating rate consistent with results throughout the trapped-ion community is reported. The SSTC is simple to implement, uses no custom optics, and it has a higher scanning rate than previously demonstrated SSTC's. Phase-locked SSTC's are shown to have an advantage over the more common displacement-locked SSTC in the low finesse regime, and they are an attractive alternative to passively stable but complex optical references and diode lasers designed to address the same problem. The SSTC is useful in spectroscopic applications with other ion species, atoms, and molecules, in general. An appendix is dedicated to describing in detail an advanced trapped-ion quantum processor concept

  1. Controlling spins in adsorbed molecules by a chemical switch

    PubMed Central

    Wäckerlin, Christian; Chylarecka, Dorota; Kleibert, Armin; Müller, Kathrin; Iacovita, Cristian; Nolting, Frithjof; Jung, Thomas A.; Ballav, Nirmalya

    2010-01-01

    The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus. This is achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled to nickel thin-film (Ni(001)). On NO addition, the coordination sphere of Co2+ is modified and a NO–CoTPP nitrosyl complex is formed, which corresponds to an off state of the Co spin. Thermal dissociation of NO from the nitrosyl complex restores the on state of the Co spin. The NO-induced reversible off–on switching of surface-adsorbed molecular spins observed here is attributed to a spin trans effect. PMID:20975713

  2. Coherent control of the waveforms of recoilless γ-ray photons.

    PubMed

    Vagizov, Farit; Antonov, Vladimir; Radeonychev, Y V; Shakhmuratov, R N; Kocharovskaya, Olga

    2014-04-03

    The concepts and ideas of coherent, nonlinear and quantum optics have been extended to photon energies in the range of 10-100 kiloelectronvolts, corresponding to soft γ-ray radiation (the term used when the radiation is produced in nuclear transitions) or, equivalently, hard X-ray radiation (the term used when the radiation is produced by electron motion). The recent experimental achievements in this energy range include the demonstration of parametric down-conversion in the Langevin regime, electromagnetically induced transparency in a cavity, the collective Lamb shift, vacuum-assisted generation of atomic coherences and single-photon revival in nuclear absorbing multilayer structures. Also, realization of single-photon coherent storage and stimulated Raman adiabatic passage were recently proposed in this regime. More related work is discussed in a recent review. However, the number of tools for the coherent manipulation of interactions between γ-ray photons and nuclear ensembles remains limited. Here we suggest and implement an efficient method to control the waveforms of γ-ray photons coherently. In particular, we demonstrate the conversion of individual recoilless γ-ray photons into a coherent, ultrashort pulse train and into a double pulse. Our method is based on the resonant interaction of γ-ray photons with an ensemble of nuclei with a resonant transition frequency that is periodically modulated in time. The frequency modulation, which is achieved by a uniform vibration of the resonant absorber, owing to the Doppler effect, renders resonant absorption and dispersion both time dependent, allowing us to shape the waveforms of the incident γ-ray photons. We expect that this technique will lead to advances in the emerging fields of coherent and quantum γ-ray photon optics, providing a basis for the realization of γ-ray-photon/nuclear-ensemble interfaces and quantum interference effects at nuclear γ-ray transitions.

  3. Optimal nonlinear coherent mode transitions in Bose-Einstein condensates utilizing spatiotemporal controls

    NASA Astrophysics Data System (ADS)

    Hocker, David; Yan, Julia; Rabitz, Herschel

    2016-05-01

    Bose-Einstein condensates (BECs) offer the potential to examine quantum behavior at large length and time scales, as well as forming promising candidates for quantum technology applications. Thus, the manipulation of BECs using control fields is a topic of prime interest. We consider BECs in the mean-field model of the Gross-Pitaevskii equation (GPE), which contains linear and nonlinear features, both of which are subject to control. In this work we report successful optimal control simulations of a one-dimensional GPE by modulation of the linear and nonlinear terms to stimulate transitions into excited coherent modes. The linear and nonlinear controls are allowed to freely vary over space and time to seek their optimal forms. The determination of the excited coherent modes targeted for optimization is numerically performed through an adaptive imaginary time propagation method. Numerical simulations are performed for optimal control of mode-to-mode transitions between the ground coherent mode and the excited modes of a BEC trapped in a harmonic well. The results show greater than 99 % success for nearly all trials utilizing reasonable initial guesses for the controls, and analysis of the optimal controls reveals primarily direct transitions between initial and target modes. The success of using solely the nonlinearity term as a control opens up further research toward exploring novel control mechanisms inaccessible to linear Schrödinger-type systems.

  4. Coherent Control of Optical Spin-to-Orbital Angular Momentum Conversion in Metasurface.

    PubMed

    Zhang, Huifang; Kang, Ming; Zhang, Xueqian; Guo, Wengao; Lv, Changgui; Li, Yanfeng; Zhang, Weili; Han, Jiaguang

    2017-02-01

    Efficient control over the conversion of optical angular momentum from spin to orbital form in a metasurface system is achieved. Under coherent symmetric incidence, it can support nearly 100% conversion and unitary output, while it can support 50% conversion with 25% transmittance under one beam incidence.

  5. Generalization of the theory of coherent control of photocurrent generation in semiconductors

    NASA Astrophysics Data System (ADS)

    L. P. Hughes, James; Sipe, J. E.; Shkrebtii, A. I.

    1998-03-01

    The theoretical prediction of the coherent control of photocurrent generation in bulk semiconductors [1] has recently been experimentally confirmed for GaAs [2]. When two monochromatic beams of frequency ω and 2ω are incident on an intrinsic semiconductor, a photocurrent is generated whose direction and magnitude can be controlled by simply adjusting the relative phase between the two pulses. Such a process is very interesting from a technological and scientific point of view. The aims of this presentation are twofold. First, the theoretical approach of [1] is generalized for nondegenerate frequencies, and second, we examine the physics behind the coherent control effect in more detail as a means of gaining more insight into the process. We analyze the origin of the coherent photocurrent in terms of contributing regions in separate parts of the Brillouin zone, fine details of the electronic band structure, the dependence on contributions from various real and virtual bands, and the velocity distribution of electrons and holes for various energies and relative phases. The possibility of observing coherently controlled photocurrent for a wider class of semiconductors will be discussed, and in this regard, we present results for this current in Germanium. [1] R. Atanasov, et. al, Phys. Rev. Lett. 76 1703 (1996). [2] A. Hache, et. al, Phys. Rev. Lett. 78 306 (1997).

  6. A coherence preservation control strategy in cavity QED based on classical quantum feedback.

    PubMed

    Li, Ming; Chen, Wei; Gao, Junli

    2013-01-01

    For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED), the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.

  7. All-fiber phase-control-free coherent-beam combining toward femtosecond-pulse amplification

    NASA Astrophysics Data System (ADS)

    Kambayashi, Yuta; Yoshida, Minoru; Sasaki, Toshiki; Yoshikawa, Masashi

    2017-01-01

    Our present work is to develop an all-fiber coherent-beam-combining system that achieves a high-energy femtosecond-pulse fiber laser beyond pulse energy limits due to the nonlinear effects in fiber amplifiers. Coherent-beam combining (CBC) using optical fibers is technically difficult because the optical phases and the polarizations in the optical fibers fluctuate due to disturbances. We developed an all-fiber passive CBC system that does not need to control optical phases and polarizations that achieved a beam-combining efficiency of 95.9%. The combined output changes of the passive CBC system are the less than 1.0% in full width.

  8. A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback

    PubMed Central

    Chen, Wei; Gao, Junli

    2013-01-01

    For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED), the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation. PMID:23781154

  9. Coherent spin control of a nanocavity-enhanced qubit in diamond

    DOE PAGES

    Li, Luozhou; Lu, Ming; Schroder, Tim; ...

    2015-01-28

    A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less

  10. Coherent spin control of a nanocavity-enhanced qubit in diamond

    SciTech Connect

    Li, Luozhou; Lu, Ming; Schroder, Tim; Chen, Edward H.; Walsh, Michael; Bayn, Igal; Goldstein, Jordan; Gaathon, Ophir; Trusheim, Matthew E.; Mower, Jacob; Cotlet, Mircea; Markham, Matthew L.; Twitchen, Daniel J.; Englund, Dirk

    2015-01-28

    A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interface is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.

  11. Experimental control of transport resonances in a coherent quantum rocking ratchet

    PubMed Central

    Grossert, Christopher; Leder, Martin; Denisov, Sergey; Hänggi, Peter; Weitz, Martin

    2016-01-01

    The ratchet phenomenon is a means to get directed transport without net forces. Originally conceived to rectify stochastic motion and describe operational principles of biological motors, the ratchet effect can be used to achieve controllable coherent quantum transport. This transport is an ingredient of several perspective quantum devices including atomic chips. Here we examine coherent transport of ultra-cold atoms in a rocking quantum ratchet. This is realized by loading a rubidium atomic Bose–Einstein condensate into a periodic optical potential subjected to a biharmonic temporal drive. The achieved long-time coherence allows us to resolve resonance enhancement of the atom transport induced by avoided crossings in the Floquet spectrum of the system. By tuning the strength of the temporal modulations, we observe a bifurcation of a single resonance into a doublet. Our measurements reveal the role of interactions among Floquet eigenstates for quantum ratchet transport. PMID:26852803

  12. Coherent control of quantum fluctuations using cavity electromagnetically induced transparency.

    PubMed

    Souza, J A; Figueroa, E; Chibani, H; Villas-Boas, C J; Rempe, G

    2013-09-13

    We study the all-optical control of the quantum fluctuations of a light beam via a combination of single-atom cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Specifically, the EIT control field is used to tune the CQED transition frequencies in and out of resonance with the probe light. In this way, photon blockade and antiblockade effects are employed to produce sub-Poissonian and super-Poissonian light fields, respectively. The achievable quantum control paves the way towards the realization of a prototype of a novel quantum transistor which amplifies or attenuates the relative intensity noise of a light beam. Its feasibility is demonstrated by calculations using realistic parameters from recent experiments.

  13. Radiationless relaxation in “large” molecules: Experimental evidence for preparation of true molecular eigenstates and Born-Oppenheimer states by a coherent light source

    PubMed Central

    Zewail, A. H.; Orlowski, T. E.; Jones, K. E.

    1977-01-01

    Photon absorption and emission by molecules that undergo radiationless transitions are examined using the single modes of lasers having well-defined coherence properties. Contrary to the usual beliefs, where it is assumed that the molecule is prepared in a Born-Oppenheimer singlet state and then “crosses-over” to other states (vibrationally “hot” singlets and/or triplets), it is shown experimentally that the true eigenstates of the molecule can be prepared, even in “large” molecules, if the laser correlation time is relatively long and the molecular relaxation is made slow. On the other hand, lasers with short (psec) correlation time have yielded effectively the singlet Born-Oppenheimer state, which has a much shorter lifetime than the true eigenstates. Effects of magnetic fields and temperature are also reported. The former changes the amount of mixing amongst the Born-Oppenheimer states. The latter, on the other hand, swings the molecule from being “small” (i.e., sparse vibronic structure with long lifetimes) to being “large” (i.e., dense statistical distribution of levels) since the relaxation between levels is very effective at high temperatures. Finally, the results of this work show that the words fluorescence and phosphorescence in their strict meaning are misleading if the true eigenstates, which may contain both singlet and triplet character, are prepared. Images PMID:16578747

  14. Non-linear optics of coupled quantum dots and atomic systems with coherent control fields

    NASA Astrophysics Data System (ADS)

    Mumba, Mambwe

    Presented herein is an investigation of quantum systems with coherent optical control fields. Three such systems are examined. The first consists of two dipole-dipole coupled quantum dots or dimers which behave as an effective three or four-level system whose susceptibility and hence transmissivity for an optical beam at some frequency may be switched on or off in response to a coherent control field. The second quantum system consists of a model cluster of three coupled dots that is shown to display light intermittency or blinking when irradiated by a coherent field. Results indicate that the observed variation in rate, intensity and duration of blinking times occasioned by the rare but observable rapid blinking at higher rate and intensity (superradiance) can be traced back to the groupings of states in different manifolds that the coupled system is capable of being found in at any given time. It is shown, however, that the experimentally observed blinking can not be entirely accounted for by dipole-dipole coupling alone. The third system investigated consists of Rubidium atoms in a cell placed in a ring cavity. A coherent control field drives the system. A mathematical model of the system is developed which consists of propagating a gaussian beam around the system and examining the output spectrum when a steady state value of the electromagnetic field is attained in the Rubidium cell. Some interesting features occurring in the output spectrum of the field at some cavity detuning are reproduced and match those experimentally observed.

  15. Multi-wave coherent control of a solid-state single emitter

    NASA Astrophysics Data System (ADS)

    Fras, F.; Mermillod, Q.; Nogues, G.; Hoarau, C.; Schneider, C.; Kamp, M.; Höfling, S.; Langbein, W.; Kasprzak, J.

    2016-03-01

    Coherent control of individual two-level systems is at the heart of any quantum information protocol. In solids, two-level systems generated by bound electron-hole excitonic states, trapped in semiconductor quantum dots, display a robust coupling with light, enabling their optical manipulation via avant-garde approaches of nonlinear spectroscopy. Here, we develop a novel toolbox for coherent control of a quantum dot exciton based on the nonlinear wave-mixing responses, which are enhanced by a photonic nanostructure. By employing three, short, resonant laser pulses, we show that we can manipulate, at will, the intrinsic coherence of the quantum dot dipole and therefore engineer the spectro-temporal shape of its coherent emission. Multi-pulse quantum control sequences, which have been successful in NMR spectroscopy and quantum computation, can now be applied to optically active solid-state quantum bits with application in high-order nonlinear spectroscopy, ultrafast quantum optoelectronics and spread spectrum technology at the single emitter level.

  16. Optimal pulse shaping for coherent control by the penalty algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Hai; Dussault, Jean-Pièrre; Bandrauk, André D.

    1994-04-01

    We use penalty methods coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schrödinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.

  17. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis

    NASA Astrophysics Data System (ADS)

    Hla, Saw-Wai; Rieder, Karl-Heinz

    2003-10-01

    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  18. Controlled Orientation of Polyconjugated Guest Molecules in Tunable Host Cavities

    SciTech Connect

    Soegiarto, Airon C.; Comotti, Angiolina; Ward, Michael D.

    2010-12-07

    Linear conjugated guest molecules with high aspect ratios form inclusion compounds with guanidinium organodisulfonate (GDS) host frameworks in which organodisulfonate 'pillars' connect opposing GS sheets to generate lamellar architectures that reflect templating by the guest. Through judicious selection of pillars having adjustable lengths (l{sub S-S}, as measured by the separation between distal sulfur atoms) and guests of various lengths (l{sub g}), the framework architecture can be controlled systematically in a manner that enables regulation of the guest orientation and aggregation in the host framework. Inclusion compounds for which l{sub g}/l{sub S-S} {le} 0.9 exhibit a bilayer architecture with 1-D channels containing guests oriented parallel to the long axis of the pillar. Guests with values of l{sub g} comparable to l{sub S-S}, however, promote the formation of a brick architecture in which the guests and the pillar are arranged in a herringbone motif. Surprisingly, longer guests (l{sub g} = 1.25l{sub S-S}) favor the formation of the bilayer architecture despite their larger volume because the guests are forced to align end-to-end as single-file arrays due to the vertical constraints of the 1-D channels. Bithiophene and biphenyl guests (l{sub g} < l{sub S-S}) are exceptional, promoting bilayer structures in which turnstile rotations of the pillars afford an unusual motif in which the guests are isolated from one another. The ability to synthesize a large family of compounds based on a common supramolecular building block (the GS sheet) permits construction of a structural 'phase diagram' based on two simple molecular parameters, l{sub g} and l{sub S-S}, that can be used to sort the inclusion compounds according to their framework architectures and enable prediction of crystal structures for new host-guest combinations. The effects of these different framework architectures and packing motifs is manifested as bathochromic shifts in the absorption and

  19. Investigating the Use of Coherence Analysis on Mandibular Electromyograms to Investigate Neural Control of Early Oromandibular Behaviours: A Pilot Study

    ERIC Educational Resources Information Center

    Steeve, Roger W.; Price, Christiana M.

    2010-01-01

    An empirical method for investigating differences in neural control of jaw movement across oromandibular behaviours is to compute the coherence function for electromyographic signals obtained from mandibular muscle groups. This procedure has been used with adults but not extended to children. This pilot study investigated if coherence analysis…

  20. Control of cell interaction using quasi-monochromatic light with varying spatiotemporal coherence

    NASA Astrophysics Data System (ADS)

    Budagovsky, A. V.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2017-02-01

    By the example of plants, fungi and bacteria, we consider the possibility of controlling the interaction of cells, being in competitive, antagonistic, or parasitic relations. For this aim we used short-time irradiation (a few seconds or minutes) with the red (633 nm) quasi-monochromatic light having different spatiotemporal coherence. It is shown that the functional activity is mostly increased in the cells whose size does not exceed the coherence length and the correlation radius of the light field. Thus, in the case of cells essentially differing in size, it is possible to increase the activity of smaller cells, avoiding the stimulation of larger ones. For example, the radiation having relatively low coherence (Lcoh, rcor <= 10 μm) facilitates mainly the damage of large-size plant cells by pathogen fungi, while the exposure to light with less statistical regularity (Lcoh = 4 μm, rcor = 5 μm) inhibits the growth of the Fusarium microcera fungus, infected by the bacterium of the Pseudomonas species. The quasi-monochromatic radiation with sufficiently high spatiotemporal coherence stimulated all interacting species (bacteria, fungi, plants). In the considered biocenosis, the equilibrium was shifted towards the favour of organisms having the highest rate of cell division or the ones better using their adaptation potential.

  1. Coherent Control and Manipulation of Three Spin States in a Triple Quantum Dot

    NASA Astrophysics Data System (ADS)

    Sachrajda, Andrew

    2013-03-01

    The triple quantum dot energy level spectrum is far more complex than its double quantum dot counterpart. As a result it is a challenge to cleanly manipulate only the two required qubit states without invoking more complex multi- state coherent evolution. In this talk I will describe experiments and modeling of lateral triple quantum dot devices where by suitable device gate (i.e. energy level spectrum) tuning and pulse characteristics we were able to characterize and manipulate various three spin qubit species. In particular I will describe measurements where the Landau-Zener -Stückelberg approach previously demonstrated in double dots is extended to three- interacting spin states permitting us to demonstrate phenomena such as pairwise exchange control. I will also demonstrate how by tuning the experimental parameters one can controllably switch to coherent oscillations originating from alternative potentially useful qubit states and how to distinguish them. This work was funded by NRC, NSERC and CIFAR.

  2. Coherent control with optical pulses for deterministic spin-photon entanglement

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Webster, L. A.; Duan, L.-M.; Sham, L. J.; Steel, D. G.

    2013-11-01

    We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.030504 95, 030504 (2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field, creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity, the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by radiative decay and electron spin flips.

  3. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces.

    PubMed

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-12

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  4. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces

    NASA Astrophysics Data System (ADS)

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-01

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  5. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    SciTech Connect

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  6. Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles

    PubMed Central

    Papoff, Francesco; McArthur, Duncan; Hourahine, Ben

    2015-01-01

    We propose a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. We derive conditions on the external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. The control introduces narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26155833

  7. The Development of the Undulator Controls Module at the Linac Coherent Light Source

    SciTech Connect

    Alarcon, A.D.; /SLAC

    2009-12-11

    The Linac Coherent Light Source, LCLS, at the SLAC National Accelerator Laboratory, SNAL, is the first hard x-ray Free Electron Laser. The Undulator Controls Module, UCM, controls five cams and two translation stages that regulate the position of each of the 33 permanent undulator magnet segments within 10 microns. The UCM package, hardware and software, was designed and built by the Advanced Photon Source at Argonne. Important lessons were learned throughout the collaborative design, installation, testing, and commissioning periods that could be invaluable to future similar controls projects.

  8. Control of coherent excitation of neon in the extreme ultraviolet regime.

    PubMed

    Plenge, Jürgen; Wirsing, Andreas; Raschpichler, Christopher; Wassermann, Bernhard; Rühl, Eckart

    2011-01-01

    Coherent excitation of a superposition of Rydberg states in neon by the 13th harmonic of an intense 804 nm pulse and the formation of a wave packet is reported. Pump-probe experiments are performed, where the 3d-manifold of the 2p6-->2p5 (2P3/2) 3d [1/2]1- and 2p6-->2p5 (2P3/2) 3d [3/2]1-transitions are excited by an extreme ultraviolet (XUV) radiation pulse, which is centered at 20.05 eV photon energy. The temporal evolution of the excited state population is probed by ionization with a time-delayed 804 nm pulse. Control of coherent transient excitation and wave packet dynamics in the XUV-regime is demonstrated, where the spectral phase of the 13th harmonic is used as a control parameter. Modulation of the phase is achieved by propagation of the XUV-pulse through neon of variable gas density. The experimental results indicate that phase-shaped high-order harmonics can be used to control fundamental coherent excitation processes in the XUV-regime.

  9. Synthesis of technomimetic molecules: towards rotation control in single-molecular machines and motors.

    PubMed

    Rapenne, Gwénaël

    2005-04-07

    Technomimetic molecules are molecules designed to imitate macroscopic objects at the molecular level, also transposing the motions that these objects are able to undergo. This article focuses on technomimetic molecules with rotary motions, including gears, wheelbarrows and motors. Following the bottom-up approach the synthesis of technomimetic molecules grants access to the study of mechanical properties at the molecular level. These molecules are designed to operate as single molecules on surfaces under the control of the tip of a scanning tunneling microscope or atomic force microscope.

  10. Coherent control of the dynamics of a single quantum-dot exciton qubit in a cavity

    NASA Astrophysics Data System (ADS)

    de Freitas, Antonio; Sanz, L.; Villas-Bôas, José M.

    2017-03-01

    In this paper we demonstrate theoretically how to use an external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent losses were taken into account by using Lindblad operators. We have demonstrated how to prepare the initial state in a superposition of the exciton in the ground state and the cavity in a coherent state. The effects of exciton-cavity detuning, the laser-cavity detunings, the pulse area, and losses over the qubit dynamics are analyzed. We also show how to use a continuous laser pumping in resonance with the cavity mode to sustain a coherent state inside the cavity, providing some protection to the qubit against cavity loss.

  11. Coherent control of single spins in silicon carbide at room temperature

    NASA Astrophysics Data System (ADS)

    Widmann, Matthias; Lee, Sang-Yun; Rendler, Torsten; Son, Nguyen Tien; Fedder, Helmut; Paik, Seoyoung; Yang, Li-Ping; Zhao, Nan; Yang, Sen; Booker, Ian; Denisenko, Andrej; Jamali, Mohammad; Momenzadeh, S. Ali; Gerhardt, Ilja; Ohshima, Takeshi; Gali, Adam; Janzén, Erik; Wrachtrup, Jörg

    2015-02-01

    Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

  12. All-optical Fresnel lens in coherent media: controlling image with image.

    PubMed

    Zhao, L; Duan, Wenhui; Yelin, S F

    2011-01-17

    We theoretically explore an all-optical method for generating tunable diffractive Fresnel lenses in coherent media based on electromagnetically induced transparency. In this method, intensity-modulated images in coupling light fields can pattern the coherent media to induce the desired modulo-2π quadratic phase profiles for the lenses to diffract probe light fields. We characterize the focusing and imaging properties of the induced lenses. In particular, we show that the images in coupling fields can flexibly control the images in probe fields by diffraction, where large focal length tunability from 1 m to infinity and high output (∼ 88% diffraction efficiency) can be achieved. Additionally, we also find that the induced Fresnel lenses can be rapidly modulated with megahertz refresh rates using image-bearing square pulse trains in coupling fields. Our proposed lenses may find a wide range of applications for multimode all-optical signal processing in both the classical and quantum regimes.

  13. Control of Four-Level Quantum Coherence via Discrete Spectral Shaping of an Optical Frequency Comb

    SciTech Connect

    Stowe, Matthew C.; Peer, Avi; Ye Jun

    2008-05-23

    We present experiments demonstrating high-resolution and wide-bandwidth coherent control of a four-level atomic system in a diamond configuration. A femtosecond frequency comb is used to excite a specific pair of two-photon transitions in cold {sup 87}Rb. The optical-phase-sensitive response of the closed-loop diamond system is studied by controlling the phase of the comb modes with a pulse shaper. Finally, the pulse shape is optimized resulting in a 256% increase in the two-photon transition rate by forcing constructive interference between the mode pairs detuned from an intermediate resonance.

  14. Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix

    NASA Astrophysics Data System (ADS)

    Mounaix, Mickael; Andreoli, Daria; Defienne, Hugo; Volpe, Giorgio; Katz, Ori; Grésillon, Samuel; Gigan, Sylvain

    2016-06-01

    We report the broadband characterization of the propagation of light through a multiple scattering medium by means of its multispectral transmission matrix. Using a single spatial light modulator, our approach enables the full control of both the spatial and spectral properties of an ultrashort pulse transmitted through the medium. We demonstrate spatiotemporal focusing of the pulse at any arbitrary position and time with any desired spectral shape. Our approach opens new perspectives for fundamental studies of light-matter interaction in disordered media, and has potential applications in sensing, coherent control, and imaging.

  15. All-electrical coherent control of the exciton states in a single quantum dot

    NASA Astrophysics Data System (ADS)

    Boyer de La Giroday, A.; Bennett, A. J.; Pooley, M. A.; Stevenson, R. M.; Sköld, N.; Patel, R. B.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2010-12-01

    We demonstrate high-fidelity reversible transfer of quantum information from the polarization of photons into the spin state of an electron-hole pair in a semiconductor quantum dot. Moreover, spins are electrically manipulated on a subnanosecond time scale, allowing us to coherently control their evolution. By varying the area of the electrical pulse, we demonstrate phase-shift and spin-flip gate operations with near-unity fidelities. Our system constitutes a controllable quantum interface between flying and stationary qubits, an enabling technology for quantum logic in the solid state.

  16. Coherent control of interacting particles using dynamical and Aharonov-Bohm phases.

    PubMed

    Creffield, C E; Platero, G

    2010-08-20

    A powerful method of manipulating the dynamics of quantum coherent particles is to control the phase of their tunneling. We consider a system of two electrons hopping on a quasi-one-dimensional lattice in the presence of a uniform magnetic field and study the effect of adding a time-periodic driving potential. We show that the dynamical phases produced by the driving can combine with the Aharonov-Bohm phases to give precise control of the localization and dynamics of the particles, even in the presence of strong particle interactions.

  17. Single pulse phase-control interferometric coherent anti-StokesRaman scattering spectroscopy (CARS)

    SciTech Connect

    Lim, Sang-Hyun; Caster, Allison G.; Leone, Stephen R.

    2005-09-28

    In coherent anti-Stokes Raman scattering spectroscopy (CARS) experiments, usually the amplitude of the signal is measured and the phase information is lost. With a polarization- and phase-controlled pulse shaping technique, the relative phase between the resonant and non-resonant CARS signals is controlled, and spectral interferometry is performed without an interferometer. Both the real and imaginary parts of the background-free resonant CARS spectrum are measured via spectral interferometry between the resonant and non-resonant signals from the same sample. The resonant signal is amplified significantly by homodyne mixing with the non-resonant signal as a local oscillator, greatly improving the detection limit.

  18. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering

    NASA Astrophysics Data System (ADS)

    Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng

    2016-07-01

    Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.

  19. Electrodynamics analysis on coherent perfect absorber and phase-controlled optical switch.

    PubMed

    Chen, Tianjie; Duan, Shaoguang; Chen, Y C

    2012-05-01

    A coherent perfect absorber is essentially a specially designed Fabry-Perot interferometer, which completely extinguishes the incident coherent light. The one- and two-beam coherent perfect absorbers have been analyzed using classical electrodynamics by considering index matching in layered structures to totally suppress reflections. This approach presents a clear and physically intuitive picture for the principle of operation of a perfect absorber. The results show that the incident beam(s) must have correct phases and amplitudes, and the real and imaginary parts of the refractive indices of the media in the interferometer must satisfy a well-defined relation. Our results are in agreement with those obtained using the S-matrix analysis. However, the results were obtained solely based on the superposition of waves from multiple reflections without invoking the concept of time reversal as does the S-matrix approach. Further analysis shows that the two-beam device can be configured to function as a phase-controlled three-state switch.

  20. Coherent Rayleigh-Brillouin scattering for in situ detection of nanoparticles and large molecules in gas and plasma

    NASA Astrophysics Data System (ADS)

    Gerakis, A.; Shneider, M. N.; Stratton, B. C.; Santra, B.; Car, R.; Raitses, Y.

    2016-09-01

    Laser-based diagnostics methods, such as Spontaneous and Coherent Rayleigh and Rayleigh-Brillouin scattering (SRBS and CRBS), can be used for in-situ detection and characterization of nanoparticle shape and size as well as their concentration in an inert gas atmosphere. We recently developed and tested this advanced diagnostic at PPPL. It was shown that the signal intensity of the CRBS signal depends on the gas-nanoparticle mixture composition, density and the polarizabilities of the mixture components. The measured results agree well with theoretical predictions of Refs. In this work, we report the application of this diagnostic to monitor nucleation and growth of nanoparticles in a carbon arc discharge. In support of these measurements, A time-dependent density functional theory was used to compute the frequency-dependent polarizabilities of various nanostructures in order to predict the corresponding Rayleigh scattering intensities as well as light depolarization. Preliminary results of measurements demonstrate that CRBS is capable to detect nanoparticles in volume. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  1. Quantum multiscattering interferences in collision-induced coherent electron emission from diatomic molecules by swift ion impact

    NASA Astrophysics Data System (ADS)

    Agueny, H.; Hansen, J. P.

    2016-11-01

    In the intramolecular scattering process, the interference between the rescattered electron waves emanating from each atomic center gives rise to additional oscillations superimposed on the Young-type oscillatory structure in the observed electron intensity. Here we explore numerically this behavior for coherent electron emission from the dimer Rb2 + by fast-moving highly charged ions, which is achieved by solving the two-dimensional time-dependent Schrödinger equation. Well-defined modulations with higher frequency are observed in the momentum distribution of the ejected electron, which are well reproduced by additional quantitative calculations based on the third-order Born series. This demonstrates without ambiguity the dynamic interference induced by multiple scattering paths of the electron prior to emission. Furthermore, the dependence of the phenomenon on the emission direction of the electron and the orientation of the molecular axis also is investigated. The phenomenon is not specific to Rb2 + as investigated in the present study, but is broadly applicable to other systems with sufficiently large internuclear distances, thus opening new prospects for the investigation of electron emission process from large systems.

  2. Two-Color Coherent Control of Optical Bistability in Asymmetric Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Li, Jia-Hua; Hao, Xiang-Ying

    We investigate optical bistability in intersubband transitions of an asymmetric semiconductor quantum well structure that has equidistant transitions between three subbands of the system and is placed in a unidirectional cavity. The system is simultaneously coupled by a fundamental field and its second harmonic. The second harmonic field acts as a control field and significantly influences the optical bistability. In addition, the two-color coherent control of optical bistability by the relative phase of the fundamental and the second harmonic fields is shown. The influence of the electronic cooperation parameter on the OB behavior is also discussed. This investigation may be used for optimizing and controlling the optical switching process in the SQW solid-state system, which is much more practical than that in the atomic system because of its flexible design and the controllable interference strength.

  3. Dynamic control of coherent orbital-angular-momentum beams in turbid environments

    NASA Astrophysics Data System (ADS)

    Morgan, K. S.; Miller, J. K.; Cochenour, B. M.; Johnson, E. G.

    2016-05-01

    This work examines the propagation properties of two superimposed coherent orbital angular momentum (OAM) modes for use in underwater systems as an alternative to amplitude modulation. An OAM mode of l=+2 is interfered with OAM mode l=-1 from a λ = 540 nm laser source. These OAM modes are superimposed using a Mach-Zehnder (MZ) interferometer combined with diffractive optical elements. By manipulating the optical path length of one of the MZ legs, the interference of these beams can be temporally controlled. The spatial profile is maintained in a turbid environment up through 4.9 attenuation lengths for both cases.

  4. Coherent control of light-matter interactions in polarization standing waves

    NASA Astrophysics Data System (ADS)

    Fang, Xu; MacDonald, Kevin F.; Plum, Eric; Zheludev, Nikolay I.

    2016-08-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle.

  5. Realization of a time-domain Fresnel lens with coherent control.

    PubMed

    Degert, Jérôme; Wohlleben, Wendel; Chatel, Béatrice; Motzkus, Marcus; Girard, Bertrand

    2002-11-11

    Perturbative chirped pulse excitation leads to oscillations of the excited state amplitude. These coherent transients are governed by interferences between resonant and off-resonant contributions. Control mechanisms in both frequency and time domain are used to modify these dynamics. First, by applying a phase step in the spectrum, we manipulate the phase of the oscillations. By direct analogy with Fresnel zone lenses, we then conceive highly phase-amplitude modulated pulse shapes that slice destructive interferences out of the excitation time structure and enhance the final population.

  6. Coherent control of light-matter interactions in polarization standing waves

    PubMed Central

    Fang, Xu; MacDonald, Kevin F.; Plum, Eric; Zheludev, Nikolay I.

    2016-01-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle. PMID:27514307

  7. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip

    NASA Astrophysics Data System (ADS)

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-01

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  8. Generation and coherent control of pure spin currents via terahertz pulses

    NASA Astrophysics Data System (ADS)

    Schüler, Michael; Berakdar, Jamal

    2014-04-01

    We inspect the time and spin-dependent, inelastic tunneling in engineered semiconductor-based double quantum well driven by time-structured terahertz pulses. An essential ingredient is an embedded spin-active structure with vibrational modes that scatter the pulse driven carriers. Due to the different time scales of the charge and spin dynamics, the spin-dependent electron-vibron coupling may result in pure net spin current (with negligible charge current). Heating the vibrational site may affect the resulting spin current. Furthermore, by controlling the charge dynamics, the spin dynamics and the generated spin current can be manipulated and switched on and off coherently.

  9. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.

    PubMed

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-18

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  10. Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond

    PubMed Central

    Becker, Jonas Nils; Görlitz, Johannes; Arend, Carsten; Markham, Matthew; Becher, Christoph

    2016-01-01

    Complete control of the state of a quantum bit (qubit) is a fundamental requirement for any quantum information processing (QIP) system. In this context, all-optical control techniques offer the advantage of a well-localized and potentially ultrafast manipulation of individual qubits in multi-qubit systems. Recently, the negatively charged silicon vacancy centre (SiV−) in diamond has emerged as a novel promising system for QIP due to its superior spectral properties and advantageous electronic structure, offering an optically accessible Λ-type level system with large orbital splittings. Here, we report on all-optical resonant as well as Raman-based coherent control of a single SiV− using ultrafast pulses as short as 1 ps, significantly faster than the centre's phonon-limited ground state coherence time of about 40 ns. These measurements prove the accessibility of a complete set of single-qubit operations relying solely on optical fields and pave the way for high-speed QIP applications using SiV− centres. PMID:27841265

  11. Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control.

    PubMed

    Palese, Stephen; Cheung, Eric; Goodno, Gregory; Shih, Chun-Ching; Di Teodoro, Fabio; McComb, Timothy; Weber, Mark

    2012-03-26

    Two high pulse contrast (> 95 dB) polarization maintaining all-fiber amplifier chains were coherently combined to generate 0.42 mJ, 1 ns 25 kHz pulses with 79% efficiency despite 38 radians of intra-pulse phase distortion. A recursive intra-pulse phase compensation method was utilized to correct for the large nonlinear chirp providing a path for improved coherent waveform control of nanosecond pulse trains.

  12. Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio

    ERIC Educational Resources Information Center

    Milne, Elizabeth; White, Sarah; Campbell, Ruth; Swettenham, John; Hansen, Peter; Ramus, Franck

    2006-01-01

    Children with autistic spectrum disorder and controls performed tasks of coherent motion and form detection, and motor control. Additionally, the ratio of the 2nd and 4th digits of these children, which is thought to be an indicator of foetal testosterone, was measured. Children in the experimental group were impaired at tasks of motor control,…

  13. Pupil tracking optical coherence tomography for precise control of pupil entry position.

    PubMed

    Carrasco-Zevallos, Oscar; Nankivil, Derek; Keller, Brenton; Viehland, Christian; Lujan, Brandon J; Izatt, Joseph A

    2015-09-01

    To maximize the collection efficiency of back-scattered light, and to minimize aberrations and vignetting, the lateral position of the scan pivot of an optical coherence tomography (OCT) retinal scanner should be imaged to the center of the ocular pupil. Additionally, several retinal structures including Henle's Fiber Layer (HFL) exhibit reflectivities that depend on illumination angle, which can be controlled by varying the pupil entry position of the OCT beam. In this work, we describe an automated method for controlling the lateral pupil entry position in retinal OCT by utilizing pupil tracking in conjunction with a 2D fast steering mirror placed conjugate to the retinal plane. We demonstrate that pupil tracking prevents lateral motion artifacts from impeding desired pupil entry locations, and enables precise pupil entry positioning and therefore control of the illumination angle of incidence at the retinal plane. We use our prototype pupil tracking OCT system to directly visualize the obliquely oriented HFL.

  14. Pupil tracking optical coherence tomography for precise control of pupil entry position

    PubMed Central

    Carrasco-Zevallos, Oscar; Nankivil, Derek; Keller, Brenton; Viehland, Christian; Lujan, Brandon J.; Izatt, Joseph A.

    2015-01-01

    To maximize the collection efficiency of back-scattered light, and to minimize aberrations and vignetting, the lateral position of the scan pivot of an optical coherence tomography (OCT) retinal scanner should be imaged to the center of the ocular pupil. Additionally, several retinal structures including Henle’s Fiber Layer (HFL) exhibit reflectivities that depend on illumination angle, which can be controlled by varying the pupil entry position of the OCT beam. In this work, we describe an automated method for controlling the lateral pupil entry position in retinal OCT by utilizing pupil tracking in conjunction with a 2D fast steering mirror placed conjugate to the retinal plane. We demonstrate that pupil tracking prevents lateral motion artifacts from impeding desired pupil entry locations, and enables precise pupil entry positioning and therefore control of the illumination angle of incidence at the retinal plane. We use our prototype pupil tracking OCT system to directly visualize the obliquely oriented HFL. PMID:26417510

  15. An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Zhu, Zihang; Zhao, Shanghong; Li, Yongjun; Han, Lei; Zhao, Jing

    2014-03-01

    A simple approach for high loss intersatellite microwave photonic link with intensity modulation and coherent balanced detection is proposed. In the transmitter, the double sideband-suppressed carrier (DSB-SC) modulated optical signal and optical carrier (OC) are combined by employing a polarization combiner to chose and control the signals polarization directions, while in the receiver, they are selected respectively by using a polarization splitter for they have orthogonal polarization directions. The separated DSB-SC signal and OC put into balanced detectors and the coherent detection is realized without a local oscillator (LO). At the output, the fundamental signal is augmented and the third-order distortion is suppressed for the DSB-SC modulation, the second-order distortion is removed for the balanced detection and the noise is reduced for the polarization direction control. The signal to noise and distortion ratio (SNDR) can be optimized by adjusting the power of OC and modulation index. The simulation results show that, a SNDR higher than 30 dB can be obtained for the proposed method, which is in agreement with the theoretical analysis.

  16. Tobacco control, global health policy and development: towards policy coherence in global governance.

    PubMed

    Collin, Jeff

    2012-03-01

    The WHO Framework Convention on Tobacco Control (FCTC) demonstrates the international political will invested in combating the tobacco pandemic and a newfound prominence for tobacco control within the global health agenda. However, major difficulties exist in managing conflicts with foreign and trade policy priorities, and significant obstacles confront efforts to create synergies with development policy and avoid tensions with other health priorities. This paper uses the concept of policy coherence to explore congruence and inconsistencies in objectives, policy, and practice between tobacco control and trade, development and global health priorities. Following the inability of the FCTC negotiations to satisfactorily address the relationship between trade and health, several disputes highlight the challenges posed to tobacco control policies by multilateral and bilateral agreements. While the work of the World Bank has demonstrated the potential contribution of tobacco control to development, the absence of non-communicable diseases from the Millennium Development Goals has limited scope to offer developing countries support for FCTC implementation. Even within international health, tobacco control priorities may be hard to reconcile with other agendas. The paper concludes by discussing the extent to which tobacco control has been pursued via a model of governance very deliberately different from those used in other health issues, in what can be termed 'tobacco exceptionalism'. The analysis developed here suggests that non-communicable disease (NCD) policies, global health, development and tobacco control would have much to gain from re-examining this presumption of difference.

  17. Tobacco control, global health policy and development: towards policy coherence in global governance

    PubMed Central

    Collin, Jeff

    2015-01-01

    The WHO Framework Convention on Tobacco Control (FCTC) demonstrates the international political will invested in combating the tobacco pandemic and a newfound prominence for tobacco control within the global health agenda. However, major difficulties exist in managing conflicts with foreign and trade policy priorities, and significant obstacles confront efforts to create synergies with development policy and avoid tensions with other health priorities. This paper uses the concept of policy coherence to explore congruence and inconsistencies in objectives, policy, and practice between tobacco control and trade, development and global health priorities. Following the inability of the FCTC negotiations to satisfactorily address the relationship between trade and health, several disputes highlight the challenges posed to tobacco control policies by multilateral and bilateral agreements. While the work of the World Bank has demonstrated the potential contribution of tobacco control to development, the absence of non-communicable diseases from the Millennium Development Goals has limited scope to offer developing countries support for FCTC implementation. Even within international health, tobacco control priorities may be hard to reconcile with other agendas. The paper concludes by discussing the extent to which tobacco control has been pursued via a model of governance very deliberately different from those used in other health issues, in what can be termed ‘tobacco exceptionalism’. The analysis developed here suggests that non-communicable disease (NCD) policies, global health, development and tobacco control would have much to gain from re-examining this presumption of difference. PMID:22345267

  18. Assembly and Commissioning of a Liquid Argon Detector and Development of a Slow Control System for the COHERENT Experiment

    NASA Astrophysics Data System (ADS)

    Kaemingk, Michael; Cooper, Robert; Coherent Collaboration

    2016-09-01

    COHERENT is a collaboration whose goal is to measure coherent elastic neutrino-nucleus scattering (CEvNS). COHERENT plans to deploy a suite of detectors to measure the expected number-of-neutrons squared dependence of CEvNS at the Spallation Neutron Source at Oak Ridge National Laboratory. One of these detectors is a liquid argon detector which can measure these low energy nuclear recoil interactions. Ensuring optimal functionality requires the development of a slow control system to monitor and control various aspects, such as the temperature and pressure, of these detectors. Electronics manufactured by Beckhoff, Digilent, and Arduino among others are being used to create these slow control systems. This poster will generally discuss the assembly and commissioning of this CENNS-10 liquid argon detector at Indiana University and will feature work on the slow control systems.

  19. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  20. Dataset on coherent control of fields and induced currents in nonlinear multiphoton processes in a nanosphere

    PubMed Central

    McArthur, Duncan; Hourahine, Ben; Papoff, Francesco

    2015-01-01

    We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26601699

  1. Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses

    SciTech Connect

    Shapiro, Evgeny A.; Drane, Thomas M.; Milner, Valery

    2011-11-15

    We study the prospects of controlling transmission of broadband and bichromatic laser pulses through turbid samples. The ability to focus transmitted broadband light is limited via both the scattering properties of the medium and the technical characteristics of the experimental setup. There are two time scales given by pulse stretching in the near- and far-field regions which define the maximum bandwidth of a pulse amenable to focusing. In the geometric-optics regime of wave propagation in the medium, a single setup can be optimal for focusing light at frequencies {omega} and n{omega} simultaneously, providing the basis for the 1+n coherent quantum control. Beyond the regime of geometric optics, we discuss a simple solution for the shaping, which provides the figure of merit for one's ability to simultaneously focus several transmission modes.

  2. Coherent control of magnetization precession in electrically detected time domain ferromagnetic resonance

    SciTech Connect

    Wid, O.; Wahler, M.; Homonnay, N.; Richter, T.; Schmidt, G.

    2015-11-15

    We demonstrate coherent control of time domain ferromagnetic resonance by all electrical excitation and detection. Using two ultrashort magnetic field steps with variable time delay we control the induction decay in yttrium iron garnet (YIG). By setting suitable delay times between the two steps the precession of the magnetization can either be enhanced or completely stopped. The method allows for a determination of the precession frequency within a few precession periods and with an accuracy much higher than can be achieved using fast fourier transformation. Moreover it holds the promise to massively increase precession amplitudes in pulsed inductive microwave magnetometry (PIMM) using low amplitude finite pulse trains. Our experiments are supported by micromagnetic simulations which nicely confirm the experimental results.

  3. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    PubMed

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  4. Nonparalytic botulinum molecules for the control of pain

    PubMed Central

    Mangione, Antonina S.; Obara, Ilona; Maiarú, Maria; Geranton, Sandrine M.; Tassorelli, Cristina; Ferrari, Enrico; Leese, Charlotte; Davletov, Bazbek; Hunt, Stephen P.

    2016-01-01

    Abstract Local injections of botulinum toxins have been reported to be useful not only for the treatment of peripheral neuropathic pain and migraine but also to cause long-lasting muscle paralysis, a potentially serious side effect. Recently, a botulinum A-based molecule (“BiTox”) has been synthesized that retains neuronal silencing capacity without triggering muscle paralysis. In this study, we examined whether BiTox delivered peripherally was able to reduce or prevent the increased nociceptive sensitivity found in animal models of inflammatory, surgical, and neuropathic pain. Plasma extravasation and edema were also measured as well as keratinocyte proliferation. No motor deficits were seen and acute thermal and mechanical nociceptive thresholds were unimpaired by BiTox injections. We found reduced plasma extravasation and inflammatory edema as well as lower levels of keratinocyte proliferation in cutaneous tissue after local BiTox injection. However, we found no evidence that BiTox was transported to the dorsal root ganglia or dorsal horn and no deficits in formalin-elicited behaviors or capsaicin or formalin-induced c-Fos expression within the dorsal horn. In contrast, Bitox treatment strongly reduced A-nociceptor-mediated secondary mechanical hyperalgesia associated with either complete Freund’s adjuvant (CFA)-induced joint inflammation or capsaicin injection and the hypersensitivity associated with spared nerve injury. These results imply that although local release of neuromodulators from C-fibers was inhibited by BiTox injection, C-nociceptive signaling function was not impaired. Taken together with recent clinical data the results suggest that BiTox should be considered for treatment of pain conditions in which A-nociceptors are thought to play a significant role. PMID:26761389

  5. Nonparalytic botulinum molecules for the control of pain.

    PubMed

    Mangione, Antonina S; Obara, Ilona; Maiarú, Maria; Geranton, Sandrine M; Tassorelli, Cristina; Ferrari, Enrico; Leese, Charlotte; Davletov, Bazbek; Hunt, Stephen P

    2016-05-01

    Local injections of botulinum toxins have been reported to be useful not only for the treatment of peripheral neuropathic pain and migraine but also to cause long-lasting muscle paralysis, a potentially serious side effect. Recently, a botulinum A-based molecule ("BiTox") has been synthesized that retains neuronal silencing capacity without triggering muscle paralysis. In this study, we examined whether BiTox delivered peripherally was able to reduce or prevent the increased nociceptive sensitivity found in animal models of inflammatory, surgical, and neuropathic pain. Plasma extravasation and edema were also measured as well as keratinocyte proliferation. No motor deficits were seen and acute thermal and mechanical nociceptive thresholds were unimpaired by BiTox injections. We found reduced plasma extravasation and inflammatory edema as well as lower levels of keratinocyte proliferation in cutaneous tissue after local BiTox injection. However, we found no evidence that BiTox was transported to the dorsal root ganglia or dorsal horn and no deficits in formalin-elicited behaviors or capsaicin or formalin-induced c-Fos expression within the dorsal horn. In contrast, Bitox treatment strongly reduced A-nociceptor-mediated secondary mechanical hyperalgesia associated with either complete Freund's adjuvant (CFA)-induced joint inflammation or capsaicin injection and the hypersensitivity associated with spared nerve injury. These results imply that although local release of neuromodulators from C-fibers was inhibited by BiTox injection, C-nociceptive signaling function was not impaired. Taken together with recent clinical data the results suggest that BiTox should be considered for treatment of pain conditions in which A-nociceptors are thought to play a significant role.

  6. Mars Organic Molecule Analyzer (MOMA) as an Example for Contamination Control for Life Detection Instrumentation

    NASA Astrophysics Data System (ADS)

    Steininger, H.; Goesmann, F.; Raulin, F.; Brinckerhoff, W. B.; Mahaffy, P. R.; Szopa, C.

    2016-10-01

    The contamination control approach for life detection instrument is presented on the example of the Mars Organic Molecule Analyzer. A combined pyrolysis gas chromatograph mass spectrometer and laser desorption mass spectrometer.

  7. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  8. Phase control in an open Λ-type system with spontaneously generated coherence

    NASA Astrophysics Data System (ADS)

    Cui, Ni; Fan, Xi-Jun; Li, Ai-Yun; Liu, Cheng-Pu; Gong, Shang-Qing; Xu, Zhi-Zhan

    2007-03-01

    This paper investigates the control role of the relative phase between the probe and driving fields on the gain, dispersion and populations in an open Λ system with spontaneously generated coherence (SGC). It shows that by adjusting the value of the relative phase, a change from lasing with inversion to lasing without inversion can be realized; the values and frequency spectrum regions of the inversionless gain and dispersion can be obviously varied; high refractive index with zero absorption and electromagnetically induced transparency can be achieved. It is also found that when the driving field is resonant, the shapes of the dispersion and the gain curves versus the probe detuning are very similar if the relative phase of the dispersion lags π/2 than that of the gain, however for the off-resonant driving field the similarity will disappear; the gain, dispersion and populations are periodical functions of the relative phase, the modulation period is always 2π the contribution of SGC to the inversionless gain and dispersion is much larger than that of the dynamically induced coherence.

  9. Coherence-controlled holographic microscopy for live-cell quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Slabý, TomáÅ.¡; Křížová, Aneta; Lošt'ák, Martin; Čolláková, Jana; Jůzová, Veronika; Veselý, Pavel; Chmelík, Radim

    2015-03-01

    In this paper we present coherence-controlled holographic microscopy (CCHM) and various examples of observations of living cells including combination of CCHM with fluorescence microscopy. CCHM is a novel technique of quantitative phase imaging (QPI). It is based on grating off-axis interferometer, which is fully adapted for the use of incoherent illumination. This enables high-quality QPI free from speckles and parasitic interferences and lateral resolution of classical widefield microscopes. Label-free nature of QPI makes CCHM a useful tool for long-term observations of living cells. Moreover, coherence-gating effect induced by the use of incoherent illumination enables QPI of cells even in scattering media. Combination of CCHM with common imaging techniques brings the possibility to exploit advantages of QPI while simultaneously identifying the observed structures or processes by well-established imaging methods. We used CCHM for investigation of general parameters of cell life cycles and for research of cells reactions to different treatment. Cells were also visualized in 3D collagen gel with the use of CCHM. It was found that both the cell activity and movement of the collagen fibers can be registered. The method of CCHM in combination with fluorescence microscopy was used in order to obtain complementary information about cell morphology and identify typical morphological changes associated with different types of cell death. This combination of CCHM with common imaging technique has a potential to provide new knowledge about various processes and simultaneously their confirmation by comparison with known imaging method.

  10. Control of coherent information via on-chip photonic–phononic emitter–receivers

    PubMed Central

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  11. Control of coherent information via on-chip photonic–phononic emitter–receivers

    SciTech Connect

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  12. Control of coherent information via on-chip photonic–phononic emitter–receivers

    DOE PAGES

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less

  13. Coherent control of optical bistability and multistability in a triple semiconductor quantum well nanostructure

    NASA Astrophysics Data System (ADS)

    Raheli, A.; Afshari, H.; Hamedi, H. R.

    2015-10-01

    This paper deals with optical bistability (OB) and optical multistability (OM) behaviors for a triple semiconductor quantum well (SQW) structure driven coherently with two control fields, confined in a unidirectional ring cavity. The effect of different system parameters on OB and OM is explored. It is found that the threshold of onset of the OB can be controlled by manipulating the Rabi frequency of control fields. In this case, OB can be converted to OM. Then we investigate the effect of probe and control field detunings on OB behaviors. We found that the frequency detuning of probe field affects only the upper-lower branches of the OB curves but has no specific impact on OB threshold. By manipulating the first control field detuning, neither the OB threshold intensity nor upper-lower branches change. Finally, it is found that increasing the second control field detuning can reduce merely the OB threshold intensity, while no change happens in upper-lower OB branches. The results may be applicable in real experiments for realizing an all-optical switching or coding element in a solid-state platform.

  14. Coherent control of wavepacket launch and evolution in molecular cations in strong-field regime

    NASA Astrophysics Data System (ADS)

    Romanov(1, 3), Dmitri; Moore Tibbetts(2, 3), Katharine; Tarazkar(2, 3), Maryam; Bohinsky(2, 3), Timothy; Matsika(2, 3), Spiridoula; Levis(2, 3), Robert

    2016-05-01

    The time-resolved dissociative ionization dynamics for a family of acetophenone radical cations has been studied in pump-probe experiments. Modifications of the relative fragment yield have been measured as a function of the pump laser wavelength from 790 nm to 1500 nm. In the case of tunnel ionization (1150 - 1500 nm pump), the time-resolved transients of the parent and fragment ions probed with a weak 790 nm pulse reveal an order-of-magnitude enhancement of the peak-to-peak amplitude oscillations, ~ 100 fs longer coherence time, and an order-of-magnitude increase in the ratio of parent to fragment ions, as compared to the case of multiphoton ionization (790 nm pump). The results are quantitatively explained with a model of wavepacket evolution on the ground (D0) and excited (D1 and D2) ionic potential energy surfaces, with the probe-induced and conical-intersection-related transitions between the surfaces. The theory predicts the periods of fragment-ratio oscillations, thus confirming the ability to prepare and manipulate multiple wavepackets in the vicinity of a conical intersection for polyatomic molecules on the time scale of picoseconds.

  15. Precision Control of Ultracold Molecules in Optical Lattices

    DTIC Science & Technology

    2011-07-20

    control and precision. For example, a Stark-cancellation, or magic frequency , technique has enabled state-of-the-art neutral atom clocks. This approach...NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT Standard Form 298...precision frequency measurements with the goal to find evidence for a possible time variation of the electron-proton mass ratio. The proposal also included

  16. Phase control of Goos-Hänchen shift via biexciton coherence in a multiple quantum well

    NASA Astrophysics Data System (ADS)

    Asadpour, Seyyed Hossein; Nasehi, Rajab; Soleimani, H. Rahimpour; Mahmoudi, M.

    2015-09-01

    The behavior of the Goos-Hänchen (GH) shifts of the reflected and transmitted probe and signal pulses through a cavity containing four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3Ga0.7As barriers is theoretically discussed. The biexciton coherence set up by two coupling fields can induce the destructive interference to control the absorption and gain properties of probe field under appropriate conditions. It is realized that for the specific values of the intensities and the relative phase of applied fields, the simultaneous negative or positive GH shift in the transmitted and reflected light beam can be obtained via amplification in a probe light. It is found that by adjusting the controllable parameters, the GH shifts can be switched between the large positive and negative values in the medium. Moreover, the effect of exciton spin relaxation on the GH shift has also been discussed. We find that the exciton spin relaxation can manipulate the behavior of GH shift in the reflected and transmitted probe beam through the cavity. We show that by controlling the incident angles of probe beam and under certain conditions, the GH shifts in the reflected and transmitted probe beams can become either negative or positive corresponding to the superluminal or subluminal light propagation. Our proposed model may supply a new prospect in technological applications for the light amplification in optical sensors working on quantum coherence impacts in solid-state systems.

  17. Coherence-controlled holographic microscopy principle embodiment into Q-PHASE microscope: story of a successful technology transfer

    NASA Astrophysics Data System (ADS)

    Lostak, M.; Chmelik, R.

    2016-03-01

    Curiously, the coherence-controlled holographic microscopy (CCHM) was brought into the world owing to the endeavor of Chmelik's team at Brno University of Technology (BUT) to avoid scanning in confocal microscopy. As coherence gating seemed to be the way, the Leith & Upatnieks proposal of incoherent holography had been considered attractive. Their method made interference system free from strict dependence on both spatial and temporal coherence. Off axis holographic system proposed on such basis has been proved capable of coherence based depth discrimination in single wide-field shot in reflected-light arrangement. Consequently, extremely low-coherence holographic imaging had been found highly contributive also to the image quality depriving it from coherence artefacts and improving its transversal resolution. This is why CCHM promised high precision of quantitative phase imaging (QPI) in transmitted light set up that was realized for cell biology. However the cost of necessarily complicated optical design and need of very precise mechanics forced the team of prof Chmelik at BUT to search for a company capable of mastering the instrument. It was TESCAN ORSAY the highly successful scanning electron microscopes producer that finally took charge of the commercial design. Long-term collaboration of the company with BUT made possible both the CCHM technology successful transfer up to Q-PHASE microscope production as well as the company Light microscopy division reinforcement. This contribution merges views of CCHM technology author and the TESCAN development team.

  18. Pulse-shaping algorithm of a coherent matter-wave-controlling reaction dynamics

    SciTech Connect

    Joergensen, Solvejg; Kosloff, Ronnie

    2004-07-01

    A pulse-shaping algorithm for a matter wave with the purpose of controlling a binary reaction has been designed. The scheme is illustrated for an Eley-Rideal reaction where an impinging matter-wave atom recombines with an adsorbed atom on a metal surface. The wave function of the impinging atom is shaped such that the desorbing molecule leaves the surface in a specific vibrational state.

  19. Controlling the development of coherent structures in high speed jets and the resultant near field

    NASA Astrophysics Data System (ADS)

    Speth, Rachelle

    This work uses Large-Eddy Simulations to examine the effect of actuator parameters and jet exit properties on the evolution of coherent structures and their impact on the near-acoustic field without and with control. For the controlled cases, Localized Arc Filament Plasma Actuators (LAFPAs) are considered, and modeled with a simple heating approach that successfully reproduces the main observations and trends of experiments. A parametric study is first conducted, using the flapping mode (m = +/-1), to investigate the sensitivity of the results to various actuator parameters including: actuator model temperature, actuator duty cycle, and excitation frequency. It is shown by considering a Mach 1.3 jet at Reynolds number of 1 x 106 that the response of the jet is relatively insensitive to actuator model temperature within the limits of the experimentally measured temperature values. Furthermore, duty cycles in the range of 20%--90% were observed to be effective in reproducing the characteristic coherent structures of the flapping mode. Next, jet flow parameters were explored to determine the control authority under different operating conditions. To begin, the effect of the laminar nozzle exit boundary layer thickness was examined by varying its value from essentially uniform flow to 25% of the diameter. In the absence of control, the distance between the nozzle lip and the initial appearance of breakdown is proportional to the boundary-layer thickness, which is consistent with theory and previous results obtained by other researchers at Mach 0.9. The second flow parameter studied was the effect of Reynolds number on a Mach 1.3 jet controlled by the flapping mode at an excitation Strouhal number of 0.3. The higher Reynolds number (Re=1,100,000) jet exhibited reduced control authority compared to the Re=100,000 jet. Like the effect of increasing the nozzle exit boundary layer thickness, increasing the Reynolds number cause a reduction in spreading on the flapping plane

  20. A theory of diffusion controlled reactions in polyatomic molecule system

    NASA Astrophysics Data System (ADS)

    Kasahara, Kento; Sato, Hirofumi

    2016-11-01

    The conventional Smoluchowski equation has been extensively utilized to investigate diffusion controlled reactions. However, application of the equation is limited to spherical-particle system. In the present study, a new Smoluchowski equation for polyatomic molecular system is derived based on Zwanzig-Mori projection operator method and reference interaction site model (RISM) theory. The theory is applied to monoatomic molecular liquid, and the obtained time-dependent rate constant is virtually identical with that from conventional Smoluchowski equation. For diatomic molecular liquid, time-dependent distribution function and rate constant are obtained, showing a good agreement with those from molecular dynamics simulation.

  1. Generation of large coherent states by bang–bang control of a trapped-ion oscillator

    PubMed Central

    Alonso, J.; Leupold, F. M.; Solèr, Z. U.; Fadel, M.; Marinelli, M.; Keitch, B. C.; Negnevitsky, V.; Home, J. P.

    2016-01-01

    Fast control of quantum systems is essential to make use of quantum properties before they degrade by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems towards the boundary between quantum and classical physics. ‘Bang–bang' control attains the ultimate speed limit by making large changes to control fields much faster than the system can respond, but is often challenging to implement experimentally. Here we demonstrate bang–bang control of a trapped-ion oscillator using nanosecond switching of the trapping potentials. We perform controlled displacements with which we realize coherent states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the potential for a significant increase in operational clock speed for trapped-ion quantum information processing. PMID:27046513

  2. Effect of polarization controlling on coherent beam combining of two-fiber laser arrays of interferometric configuration.

    PubMed

    Cao, Jianqiu; Lu, Qisheng; Chen, Sheng-Ping; Hou, Jing; Xu, Xiaojun

    2009-01-15

    The effect of polarization controlling on coherent beam combining of two-fiber laser arrays of interferometric configuration is researched. Three kinds of arrays, built on the basis of Michelson and Mach-Zehnder interferometers, are investigated experimentally. It is found that polarization controlling is not necessary for coherent beam combining of the Michelson interferometric array but necessary for that of Mach-Zehnder interferometric arrays. These results reveal the important role of polarization in the self-organization process of interferometric laser arrays.

  3. 12-Channel Peltier array temperature control unit for single molecule enzymology studies using capillary electrophoresis.

    PubMed

    Craig, Douglas B; Reinfelds, Gundars; Henderson, Anna

    2014-08-01

    Capillary electrophoresis has been used to demonstrate that individual molecules of a given enzyme support different catalytic rates. In order to determine how rate varies with temperature, and determine activation energies for individual β-galactosidase molecules, a 12-channel Peltier array temperature control device was constructed where the temperature of each cell was separately controlled. This array was used to control the temperature of the central 30 cm of a 50 cm long capillary, producing a temperature gradient along its length. Continuous flow single β-galactosidase molecule assays were performed allowing measurement of the catalytic rates at different temperatures. Arrhenius plots were produced and the distribution of activation energies for individual β-galactosidase molecules was found to be 56 ± 10 kJ/mol with a range of 34-72 kJ/mol.

  4. Cavity-Assisted Measurement and Coherent Control of Collective Atomic Spin Oscillators

    NASA Astrophysics Data System (ADS)

    Kohler, Jonathan; Spethmann, Nicolas; Schreppler, Sydney; Stamper-Kurn, Dan M.

    2017-02-01

    We demonstrate continuous measurement and coherent control of the collective spin of an atomic ensemble undergoing Larmor precession in a high-finesse optical cavity. The coupling of the precessing spin to the cavity field yields phenomena similar to those observed in cavity optomechanics, including cavity amplification, damping, and optical spring shifts. These effects arise from autonomous optical feedback onto the atomic spin dynamics, conditioned by the cavity spectrum. We use this feedback to stabilize the spin in either its high- or low-energy state, where, in equilibrium with measurement backaction heating, it achieves a steady-state temperature, indicated by an asymmetry between the Stokes and the anti-Stokes scattering rates. For sufficiently large Larmor frequency, such feedback stabilizes the spin ensemble in a nearly pure quantum state, in spite of continuous measurement by the cavity field.

  5. Coherent phase-matched VUV generation by field-controlled bound states

    NASA Astrophysics Data System (ADS)

    Chini, Michael; Wang, Xiaowei; Cheng, Yan; Wang, He; Wu, Yi; Cunningham, Eric; Li, Peng-Cheng; Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.; Chang, Zenghu

    2014-06-01

    The generation of high-order harmonics and attosecond pulses at ultrahigh repetition rates (>1 MHz) promises to revolutionize ultrafast spectroscopy. Such vacuum ultraviolet (VUV) and soft X-ray sources could potentially be driven directly by plasmonic enhancement of laser pulses from a femtosecond oscillator, but recent experiments suggest that the VUV signal is actually dominated by incoherent atomic line emission. Here, we demonstrate a new regime of phase-matched below-threshold harmonic generation, for which the generation and phase matching is enabled only near resonance structures of the atomic target. The coherent VUV line emission exhibits low divergence and quadratic growth with increasing target density up to nearly 1,000 torr mm and can be controlled by the sub-cycle field of a few-cycle driving laser with an intensity of only ~1 × 1013 W cm-2, which is achievable directly from few-cycle femtosecond oscillators with nanojoule energy.

  6. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    SciTech Connect

    Klabunde, Kenneth J.

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity

  7. Ultrafast optical coherent control of individual electron and hole spins in a semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    de Greve, Kristiaan

    2012-02-01

    We report on the complete optical coherent control of individual electron and hole spin qubits in InAs quantum dots. With a magnetic field in Voigt geometry, broadband, detuned optical pulses couple the spin-split ground states, resulting in Rabi flopping. In combination with the Larmor precession around the external magnetic field, this allows an arbitrary single-qubit operation to be realized in less than 20 picoseconds [1,2]. Slow fluctuations in the spin's environment lead to shot-to-shot variations in the Larmor precession frequency. In a time-ensemble measurement, these would prevent a measurement of the true decoherence of the qubit, and instead give rise to ensemble dephasing. This effect was overcome by implementing a spin echo measurement scheme for both electron and hole spins, where an optical π-pulse refocuses the spin coherence and filters out the slow variations in Larmor precession frequency. We measured coherence times up to 3 microseconds [2,3]. Finally, our optical pulse manipulation scheme allows us to probe the hyperfine interaction between the single spin and the nuclei in the quantum dot. Interesting non-Markovian dynamics could be observed in the free-induction decay of a single electron spin, whereas the complete absence of such effects illustrates the reduction of the hyperfine interaction for hole spin qubits. We measured and modeled these effects, and explain the non-Markovian electron spin dynamics as involving a feedback effect resulting from both the strong Overhauser shift of the electron spin and spin dependent nuclear relaxation [2,4]. [4pt] [1] D. Press, T. D. Ladd, B. Zhang and Y. Yamamoto, Nature 456, 218 (2008)[0pt] [2] K. De Greve, P. McMahon, D. Press et al., Nat. Phys. 7, 872 (2011)[0pt] [3] D. Press, K. De Greve, P. McMahon et al., Nat. Phot. 4, 367 (2010)[0pt] [4] T. D. Ladd, D. Press, K. De Greve et al., Phys. Rev. Lett. 105, 107401 (2010)

  8. Coherent structures in plasma-actuator controlled supersonic jets: Axisymmetric and mixed azimuthal modes

    NASA Astrophysics Data System (ADS)

    Gaitonde, D. V.; Samimy, M.

    2011-09-01

    High-fidelity simulations are employed to study the effect of eight localized arc filament plasma actuators placed around the periphery of a Mach 1.3 converging-diverging nozzle exit. Emphasis is placed on understanding the coherent structures generated by axisymmetric (m = 0), flapping or first mixed (m = ±1) and second mixed (m = ±2) modes, which are excited at the jet column-mode frequency corresponding to a Strouhal number based on jet diameter of 0.3. Baseline (no control) and constant excitation (actuators on continuously) cases are also simulated. Comparisons with experimental results indicate that the computational model reproduces the main features induced by the actuators. Furthermore, the mean flow exhibits many similarities with the theoretical predictions of Cohen and Wygnanski [J. Fluid Mech. 176, 221 (1987)]. Overall, the results indicate a complex coherent structure generation, evolution, and disintegration process. For m = ±1, the phase-averaged flow reveals successive distorted elliptic vortex rings with axes in the flapping plane but alternating on either side of the jet axis. This generates a chain of structures each of which interacts with its predecessor on one side of the major plane and its successor on the other. Through self and mutual induction, the leading segment of each loop is pinched and passes through the previous ring before rapidly breaking up. The m = ±2 mode yields elliptic structures with major axes of successive rings being aligned with the two symmetry planes, which are orthogonal to each other. The minor axis side is pulled downstream faster than the rest of the structure because of the higher velocity near the jet centerline and self-induced effects, yielding a horse-shoe shape when viewed in profile. The m = 0 mode exhibits axisymmetric roll-up events, with vortex ribs in the braid regions connecting successive large coherent structures. The constant excitation (with largest energy input) and baseline cases are similar

  9. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes.

    PubMed

    Takenobu, Taishi; Takano, Takumi; Shiraishi, Masashi; Murakami, Yousuke; Ata, Masafumi; Kataura, Hiromichi; Achiba, Yohji; Iwasa, Yoshihiro

    2003-10-01

    Single-walled carbon nanotubes (SWNTs) have strong potential for molecular electronics, owing to their unique structural and electronic properties. However, various outstanding issues still need to be resolved before SWNT-based devices can be made. In particular, large-scale, air-stable and controlled doping is highly desirable. Here we present a method for integrating organic molecules into SWNTs that promises to push the performance limit of these materials for molecular electronics. Reaction of SWNTs with molecules having large electron affinity and small ionization energy achieved p- and n-type doping, respectively. Optical characterization revealed that charge transfer between SWNTs and molecules starts at certain critical energies. X-ray diffraction experiments revealed that molecules are predominantly encapsulated inside SWNTs, resulting in an improved stability in air. The simplicity of the synthetic process offers a viable route for the large-scale production of SWNTs with controlled doping states.

  10. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    PubMed

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-03-03

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  11. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules.

    PubMed

    Ladasky, John J; Boyle, Sarah; Seth, Malini; Li, Hewang; Pentcheva, Tsvetelina; Abe, Fumiyoshi; Steinberg, Steven J; Edidin, Michael

    2006-11-01

    The assembly of class I MHC molecules and their export from the endoplasmic reticulum (ER) is governed by chaperones and accessory proteins. We present evidence that the putative cargo receptor protein Bap31 participates in the transport and the quality control of human class I molecules. Transfection of the human adenocarcinoma cell line HeLa with yellow fluorescent protein-Bap31 chimeras increased surface levels of class I in a dose-dependent manner, by as much as 3.7-fold. The increase in surface class I resulted from an increase in the rate of export of newly synthesized class I molecules to the cell surface and from an increase in the stability of the exported molecules. We propose that Bap31 performs quality control on class I molecules in two distinct phases: first, by exporting peptide-loaded class I molecules to the ER/Golgi intermediate compartment, and second, by retrieving class I molecules that have lost peptides in the acidic post-ER environment. This function of Bap31 is conditional or redundant, because we find that Bap31 deficiency does not reduce surface class I levels. Overexpression of the Bap31 homolog, Bap29, decreases surface class levels in HeLa, indicating that it does not substitute for Bap31.

  12. Multilayer films with nanocontainers: redox-controlled reversible encapsulation of guest molecules.

    PubMed

    Zhang, Jiawei; Liu, Yiliu; Yuan, Bin; Wang, Zhiqiang; Schönhoff, Monika; Zhang, Xi

    2012-11-19

    Stable multilayer films with cucurbit[8]uril have been fabricated on the basis of the alternating layer-by-layer assembly of a novel side-chain pseudopolyrotaxane and a photoreactive polyanion. The as-prepared multilayer films exhibit good properties as surface-imprinted multilayers, because cucurbit[8]uril molecules that are locked inside the multilayers can act as nanocontainers with specific binding to certain guest molecules, and the loading and release of the guest is redox-controllable and reversible.

  13. Geometries for the coherent control of four-wave mixing in graphene multilayers

    PubMed Central

    Rao, Shraddha M.; Lyons, Ashley; Roger, Thomas; Clerici, Matteo; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    Deeply sub-wavelength two-dimensional films may exhibit extraordinarily strong nonlinear effects. Here we show that 2D films exhibit the remarkable property of a phase-controllable nonlinearity, i.e., the amplitude of the nonlinear polarisation wave in the medium can be controlled via the pump beam phase and determines whether a probe beam will “feel” or not the nonlinearity. This is in stark contrast to bulk nonlinearities where propagation in the medium averages out any such phase dependence. We perform a series of experiments in multilayer graphene that highlight some of the consequences of the optical nonlinearity phase-dependence, such as the coherent control of nonlinearly diffracted beams, single-pump-beam induced phase-conjugation and the demonstration of a nonlinear mirror characterised by negative reflection. The observed phase sensitivity is not specific to graphene but rather is solely a result of the dimensionality and is therefore expected in all 2D materials. PMID:26486075

  14. The use and manipulation of insect reproductive molecules for controlling insect populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use and manipulation of insect reproductive molecules, and the genes that encode them, provides a variety of methods to control insect fertility and thus a means of population control for insect pests. Towards this end, we first studied the yolk polypeptide gene from the caribfly, Anastrepha su...

  15. Altered corticomuscular coherence elicited by paced isotonic contractions in individuals with cerebral palsy: a case-control study.

    PubMed

    Riquelme, Inmaculada; Cifre, Ignacio; Muñoz, Miguel A; Montoya, Pedro

    2014-12-01

    The purpose of the study was to analyze corticomuscular coherence during planning and execution of simple hand movements in individuals with cerebral palsy (CP) and healthy controls (HC). Fourteen individuals with CP and 15 HC performed voluntary paced movements (opening and closing the fist) in response to a warning signal. Simultaneous scalp EEG and surface EMG of extensor carpi radialis brevis were recorded during 15 isotonic contractions. Time-frequency corticomuscular coherence (EMG-C3/C4) before and during muscular contraction, as well as EMG intensity, onset latency and duration were analyzed. Although EMG intensity was similar in both groups, individuals with CP exhibited longer onset latency and increased duration of the muscular contraction than HC. CP also showed higher corticomuscular coherence in beta EEG band during both planning and execution of muscular contraction, as well as lower corticomuscular coherence in gamma EEG band at the beginning of the contraction as compared with HC. In conclusion, our results suggest that individuals with CP are characterized by an altered functional coupling between primary motor cortex and effector muscles during planning and execution of isotonic contractions. In addition, the usefulness of corticomuscular coherence as a research tool for exploring deficits in motor central processing in persons with early brain damage is discussed.

  16. Coherence, the Rebel Angel.

    ERIC Educational Resources Information Center

    Buchmann, Margret; Floden, Robert E.

    1992-01-01

    Among concepts that seem to be the guardian angels of school reform, coherence is a rebel angel, advancing human learning, but escaping control. Coherence must not be confused with consistency. It allows for change and imagination but remains true to concepts and experiences that construct coherence without fabricating consistency. (SLD)

  17. Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices

    PubMed Central

    Mehta, Rajvi; Nankivil, Derek; Zielinski, David J.; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T.; Kopper, Regis; Izatt, Joseph A.; Kuo, Anthony N.

    2017-01-01

    Purpose Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. Methods A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client–server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Results Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Conclusions Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. Translational Relevance The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT. PMID:28138415

  18. Coherent Control of Population Transfer via Linear Chirp in Liquid Solution: The Role of Motional Narrowing.

    PubMed

    McRobbie, Porscha L; Geva, Eitan

    2016-05-19

    The conditions under which linear chirp can be used to control population transfer between the electronic states of a chromophore dissolved in liquid solution are investigated. To this end, we model the chromophore as a two-state system with shifted electronic potential energy surfaces and a fluctuating electronic transition frequency. The fluctuations are described as an exponentially correlated Gaussian stochastic process, which can be characterized by the average fluctuation amplitude, σ, and correlation time, τc. The time-dependent Schrödinger equation is solved numerically for an ensemble of stochastic histories, at different values of σ and τc, and under a wide range of pulse intensities and linear chirp coefficients. In the limit τc → ∞, we find that control diminishes rapidly as soon as σ exceeds the bandwidth of the pulse. However, we also find that control can be regained by reducing τc. We attribute this trend to motional narrowing, whereby decreasing τc narrows down the effective bandwidth of the solvent-induced fluctuations. The results suggest that the choice of methanol as a solvent in the actual experimental demonstration of chirp control by Cerullo et al. [ Chem. Phys. Lett. 1996 , 262 , 362 - 368 ] may have contributed to its success, due to the particularly short τc (∼20 fs) that the rapid librations of this hydrogen bonded liquid give rise to. The results also give rise to the rather surprising prediction that coherent control in liquid solution can be strongly dependent on the choice of solvent and be improved upon by choosing solvents that correspond to lower values of στc.

  19. Spatially, Temporally, and Quantitatively Controlled Delivery of Broad Range of Molecules into Selected Cells through Plasmonic Nanotubes.

    PubMed

    Messina, Gabriele C; Dipalo, Michele; La Rocca, Rosanna; Zilio, Pierfrancesco; Caprettini, Valeria; Proietti Zaccaria, Remo; Toma, Andrea; Tantussi, Francesco; Berdondini, Luca; De Angelis, Francesco

    2015-11-25

    A Universal plasmonic/microfluidic platform for spatial and temporal controlled intracellular delivery is described. The system can inject/transfect the desired amount of molecules with an efficacy close to 100%. Moreover, it is highly scalable from single cells to large ensembles without administering the molecules to an extracellular bath. The latter enables quantitative control over the amount of injected molecules.

  20. Coherent control of charge exchange in strong-field dissociation of LiF

    NASA Astrophysics Data System (ADS)

    Armstrong, Greg; Esry, Brett

    2016-05-01

    The alkali-metal-halides family of molecules are useful prototypes in the study of laser-assisted charge exchange. Typically these molecules possess a field-free crossing between the ionic and covalent diabatic Born-Oppenheimer potential curves, leading to Li+ + F- and Li + F in LiF. These channels are energetically well-separated from higher-lying potentials, and may be easily distinguished experimentally. Moreover, charge exchange involves non-adiabatic transitions between the ionic and covalent channels, thereby allowing the investigation of physics beyond the Born-Oppenheimer approximation. The focus of this work is to control the preference between ionic and covalent dissociative products. We solve the time-dependent Schrödinger equation for the nuclear motion in full dimensionality, and investigate a pump-probe scheme for charge-exchange control. The degree of control is investigated by calculating the kinetic-energy release spectrum as a function of pump-probe delay for the ionic and covalent fragments. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  1. Wigner spectrum and coherent feedback control of continuous-mode single-photon Fock states

    NASA Astrophysics Data System (ADS)

    Dong, Zhiyuan; Cui, Lei; Zhang, Guofeng; Fu, Hongchen

    2016-10-01

    Single photons are very useful resources in quantum information science. In real applications it is often required that the photons have a well-defined spectral (or equivalently temporal) modal structure. For example, a rising exponential pulse is able to fully excite a two-level atom while a Gaussian pulse cannot. This motivates the study of continuous-mode single-photon Fock states. Such states are characterized by a spectral (or temporal) pulse shape. In this paper we investigate the statistical property of continuous-mode single-photon Fock states. Instead of the commonly used normal ordering (Wick order), the tool we proposed is the Wigner spectrum. The Wigner spectrum has two advantages: (1) it allows to study continuous-mode single-photon Fock states in the time domain and frequency domain simultaneously; (2) because it can deal with the Dirac delta function directly, it has the potential to provide more information than the normal ordering where the Dirac delta function is always discarded. We also show how various control methods in particular coherent feedback control can be used to manipulate the pulse shapes of continuous-mode single-photon Fock states.

  2. Creation and control of entanglement by time-delayed quantum-coherent feedback

    NASA Astrophysics Data System (ADS)

    Hein, Sven M.; Carmele, Alexander; Knorr, Andreas

    2016-03-01

    Quantum information science relies on the feature of distant quantum entities (mostly "qubits") to form non-local states. A main challenge consists of generating such non-local entangled states between qubits. We exploit the fact that for coupled qubits, the eigenstates of the coupled system are usually highly entangled, and of different excitation energies. This allows to address the different entangled eigenstates by frequency-dependent control schemes. In our proposal, we present such a control mechanism, and demonstrate how it can be used to create entanglement from a fully separable initial state. The mechanism of our choice is time-delayed quantum-coherent feedback. If a qubit occupation decays via the emission of a photon, one can store this photon for a delay time τ and couple the radiation back into the qubit afterwards. Through the choice of τ, one can set the phase of the feedback, which will then lead to either an increased or decreased qubit decay. Since this phase depends on sin(ωτ), this effect strongly depends on the qubit frequency ω. In particular, it can be used to separate different entangled states in a quantum network by enhancing the decay of all entangled eigenstates except one. We discuss this protocol on the example of two coupled qubits, and analyze in detail its effectiveness depending on the feedback delay time τ.

  3. Coherent control of population transfer between vibrational states in an optical lattice via two-path quantum interference.

    PubMed

    Zhuang, Chao; Paul, Christopher R; Liu, Xiaoxian; Maneshi, Samansa; Cruz, Luciano S; Steinberg, Aephraim M

    2013-12-06

    We demonstrate coherent control of population transfer between vibrational states in an optical lattice by using interference between a one-phonon transition at 2ω and a two-phonon transition at ω. The ω and 2ω transitions are driven by phase- and amplitude-modulation of the lattice laser beams, respectively. By varying the relative phase of these two pathways, we control the branching ratio between transitions to the first excited state and those to the higher states. Our best result shows a branching ratio of 17±2, which is the highest among coherent control experiments using analogous schemes. Such quantum control techniques may find broad application in suppressing leakage errors in a variety of quantum information architectures.

  4. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  5. [From endoplasmic reticulum to Golgi apparatus: a secretory pathway controlled by signal molecules].

    PubMed

    Wang, Jiasheng; Luo, Jianhong; Zhang, Xiaomin

    2013-07-01

    Protein transport from endoplasmic reticulum (ER) to Golgi apparatus has long been known to be a central process for protein quality control and sorting. Recent studies have revealed that a large number of signal molecules are involved in regulation of membrane trafficking through ER, ER-Golgi intermediate compartment and Golgi apparatus. These molecules can significantly change the transport rate of proteins by regulating vesicle budding and fusion. Protein transport from ER to Golgi apparatus is not only controlled by signal pathways triggered from outside the cell, it is also regulated by feedback signals from the transport pathway.

  6. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    PubMed Central

    Pandolfi, Laura; Minardi, Silvia; Taraballi, Francesca; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2016-01-01

    Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid) for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications. PMID:26977286

  7. Ultrafast Quantum Control and Quantum Processing in the Vibronic States of Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Sussman, Benjamin; Bustard, Philip; England, Duncan; Lausten, Rune

    2014-05-01

    The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics, including applications in secure communications, quantum processing, and enhanced measurement. Efforts to build these devices utilize nonclassical states in numerous quantum systems, including cavity quantum electrodynamics, trap ions, nuclear spins, etc. as the basis for many prototypes. Here we investigate vibronic states in both molecules and bulk solids as distinct alternatives. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules and the optical phonons of diamond. Both classical and nonclassical photon states are used. These THz-bandwidth memories can be used to store femtosecond pulses for many operational time bins before the states decohere, making them viable for local photonic processing. We investigate decoherence and major sources of competing noise. While sustaining quantum coherence is critical for most quantum processing, rapid dephasing can also be used as a resource in these systems for rapid quantum random number generation, suitable for high-performance cryptography. NSERC

  8. Precision control of charge coherence in parallel double dot systems through spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Tu, Matisse Wei-Yuan; Wang, Nien-En; Zhang, Wei-Min

    2013-08-01

    In terms of the exact quantum master equation solution for open electronic systems, the coherent dynamics of two charge states described by two parallel quantum dots with one fully polarized electron on either dot is investigated in the presence of spin-orbit interaction. We demonstrate that the double dot system can stay in a dynamically decoherence free space. The coherence between two double dot charge states can be precisely manipulated through a spin-orbit coupling. The effects of the temperature, the finite bandwidth of lead, and the energy deviations during the coherence manipulation are also explored.

  9. Coherent structures in swirling flows and their role in acoustic combustion control

    NASA Astrophysics Data System (ADS)

    Paschereit, Christian Oliver; Gutmark, Ephraim; Weisenstein, Wolfgang

    1999-09-01

    Interaction between flow instabilities and acoustic resonant modes and their effect on heat release were investigated and controlled in an experimental low-emission swirl stabilized combustor. Acoustic boundary conditions of the combustor were modified to excite combustion instability at various axisymmetric and helical unstable modes in a fully premixed combustion. The combustion unstable modes were related to flow instabilities in the recirculating wakelike region on the combustor axis and the separating shear layer at the sudden expansion (dump plane). Flow field measurements were performed in a water tunnel using a simulated combustor configuration. The water tunnel tests demonstrated the existence of several modes of flow instabilities in a highly swirling flow, modes which were shown to affect the combustion process. Mean and turbulent characteristics of the internal and external swirling shear layers were measured and unstable flow modes were identified. Instability modes during combustion were visualized by phase locked images of OH chemiluminescence. The axisymmetric mode showed large variation of the heat release during one cycle, while the helical modes showed variations in the radial location of maximal heat release. Closed loop active control system was employed to suppress the thermoacoustic pressure oscillations and to reduce NOx emissions. Microphone and OH emission detection sensors monitored the combustion process and provided input to the control system. An acoustic source modulated the airflow and thus affected the mixing process and the combustion. Effective suppression of the pressure oscillations and the concomitant reduction of NOx emissions were associated with a reduced coherence of the flow structures which excited the thermoacoustic instability.

  10. Controlling Spatial Distributions of Molecules in Multicomponent Organic Crystals, with Quantitative Mapping by Confocal Raman Microspectrometry

    PubMed Central

    2013-01-01

    We report four experimental strategies for controlling the three-dimensional arrangement of molecules in multicomponent organic crystals, exploiting confocal Raman microspectrometry to quantify the three-dimensional spatial distributions. Specifically, we focus on controlling the distribution of two types of guest molecule in solid organic inclusion compounds to produce composite core–shell crystals, crystals with a homogeneous distribution of the components, crystals with continuous compositional variation from the core to the surface, and crystals with alternating shells of the components. In this context, confocal Raman microspectrometry is particularly advantageous over optical microscopy as it is nondestructive, offers micrometric spatial resolution, and relies only on the component molecules having different vibrational properties. PMID:24004273

  11. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    PubMed Central

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; Wustmann, B.; Koesterke, I.; Schwarz, M.; Freitag, M.; Arnold, A.; Teichert, J.; Justus, M.; Seidel, W.; Ilgner, C.; Awari, N.; Nicoletti, D.; Kaiser, S.; Laplace, Y.; Rajasekaran, S.; Zhang, L.; Winnerl, S.; Schneider, H.; Schay, G.; Lorincz, I.; Rauscher, A. A.; Radu, I.; Mährlein, S.; Kim, T. H.; Lee, J. S.; Kampfrath, T.; Wall, S.; Heberle, J.; Malnasi-Csizmadia, A.; Steiger, A.; Müller, A. S.; Helm, M.; Schramm, U.; Cowan, T.; Michel, P.; Cavalleri, A.; Fisher, A. S.; Stojanovic, N.; Gensch, M.

    2016-01-01

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution. PMID:26924651

  12. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter.

    PubMed

    Green, B; Kovalev, S; Asgekar, V; Geloni, G; Lehnert, U; Golz, T; Kuntzsch, M; Bauer, C; Hauser, J; Voigtlaender, J; Wustmann, B; Koesterke, I; Schwarz, M; Freitag, M; Arnold, A; Teichert, J; Justus, M; Seidel, W; Ilgner, C; Awari, N; Nicoletti, D; Kaiser, S; Laplace, Y; Rajasekaran, S; Zhang, L; Winnerl, S; Schneider, H; Schay, G; Lorincz, I; Rauscher, A A; Radu, I; Mährlein, S; Kim, T H; Lee, J S; Kampfrath, T; Wall, S; Heberle, J; Malnasi-Csizmadia, A; Steiger, A; Müller, A S; Helm, M; Schramm, U; Cowan, T; Michel, P; Cavalleri, A; Fisher, A S; Stojanovic, N; Gensch, M

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.

  13. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    DOE PAGES

    Green, B.; Kovalev, S.; Asgekar, V.; ...

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields andmore » the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.« less

  14. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    SciTech Connect

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; Wustmann, B.; Koesterke, I.; Schwarz, M.; Freitag, M.; Arnold, A.; Teichert, J.; Justus, M.; Seidel, W.; Ilgner, C.; Awari, N.; Nicoletti, D.; Kaiser, S.; Laplace, Y.; Rajasekaran, S.; Zhang, L.; Winnerl, S.; Schneider, H.; Schay, G.; Lorincz, I.; Rauscher, A. A.; Radu, I.; Mährlein, S.; Kim, T. H.; Lee, J. S.; Kampfrath, T.; Wall, S.; Heberle, J.; Malnasi-Csizmadia, A.; Steiger, A.; Müller, A. S.; Helm, M.; Schramm, U.; Cowan, T.; Michel, P.; Cavalleri, A.; Fisher, A. S.; Stojanovic, N.; Gensch, M.

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.

  15. Coherent Optical Control of Quantum Dots: Spin Qubits and Flying Qubits

    NASA Astrophysics Data System (ADS)

    Burgers, Alex

    2015-03-01

    Coherent control of solid-state qubits lies at the heart of most quantum information architectures. In quantum dots (QDs), optical fields are an attractive medium for qubit manipulation and readout. The entanglement between a QD spin qubit and an emitted photonic qubit allows for the transport of quantum information between distant quantum memories via decoherence resistant photon channels. I will present recent experimental work showing the entanglement between a single electron spin confined to an InAs QD and its spontaneously emitted photon. This entanglement is significant for the further development of quantum information technologies using QDs and forms the foundation of on-chip technologies using photonic crystal pathways. In addition, I will discuss on-going work on teleportation of information from a single photon generated in a spontaneous parametric down conversion (SPDC) process to a QD spin through intermediate interference between the SPDC photon and the dot's emitted photon. The ability to integrate two quantum information platforms is not only exciting in its own right, but this technique could allow for an entanglement swapping bridge between other matter-qubit (ions, NV centers, etc.) based quantum memories. This work is funded by NSF, ARO, AFOSR, ONR and DARPA.

  16. Doping-controlled Coherent Electron-Phonon Coupling in Vanadium Dioxide

    SciTech Connect

    Appavoo, Kannatassen; Wang, Bin; Nag, Joyeeta; Sfeir, Matthew Y.; Pantelides, Sokrates T.; Haglund, Richard F.

    2015-05-10

    Broadband femtosecond transient spectroscopy and density functional calculations reveal that substitutional tungsten doping of a VO2 film changes the coherent phonon response compared to the undoped film due to altered electronic and structural dynamics.

  17. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources

    PubMed Central

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-01-01

    Young’s double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources. PMID:27021589

  18. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    PubMed

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  19. Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin; Glaser, Steffen J.; Brockett, Roger

    2002-03-01

    Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experiments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for coherence-transfer experiments in three-spin systems and implementation of indirect swap and Λ2(U) gates in the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, explicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of coherence, and implementation of indirect swap gates, in a three-spin network are derived (Theorems 1 and 2). It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with considerable time savings (e.g., 42.3% for constructing indirect swap gates).

  20. Precisely Controlled 2D Free-Floating Nanosheets of Amphiphilic Molecules through Frame-Guided Assembly.

    PubMed

    Zhou, Chao; Zhang, Yiyang; Dong, Yuanchen; Wu, Fen; Wang, Dianming; Xin, Ling; Liu, Dongsheng

    2016-11-01

    2D assembly of amphiphilic molecules in aqueous solution is a challenging and intriguing topic as it is normally thermodynamically unfavorable. However, through frame-guided assembly strategy and using DNA origami as the frame, monodispersed and shape-defined nanosheets are prepared. As leading hydrophobic groups (LHGs) are anchored on the frames, amphiphilic molecules in aqueous solution are guided to assemble in the hydrophobic region. By adjusting the distribution of the LHGs, the size and shape of the assemblies can be controlled precisely.

  1. Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks

    PubMed Central

    2016-01-01

    Herein we introduce a unique synthetic methodology to prepare a library of giant molecules with multiple, precisely arranged nano building blocks, and illustrate the influence of minute structural differences on their self-assembly behaviors. The T8 polyhedral oligomeric silsesquioxane (POSS) nanoparticles are orthogonally functionalized and sequentially attached onto the end of a hydrophobic polymer chain in either linear or branched configuration. The heterogeneity of primary chemical structure in terms of composition, surface functionality, sequence, and topology can be precisely controlled and is reflected in the self-assembled supramolecular structures of these giant molecules in the condensed state. This strategy offers promising opportunities to manipulate the hierarchical heterogeneities of giant molecules via precise and modular assemblies of various nano building blocks. PMID:27163025

  2. Dynamic acousto-optic control of a strongly coupled photonic molecule

    PubMed Central

    Kapfinger, Stephan; Reichert, Thorsten; Lichtmannecker, Stefan; Müller, Kai; Finley, Jonathan J.; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J.

    2015-01-01

    Strongly confined photonic modes can couple to quantum emitters and mechanical excitations. To harness the full potential in quantum photonic circuits, interactions between different constituents have to be precisely and dynamically controlled. Here, a prototypical coupled element, a photonic molecule defined in a photonic crystal membrane, is controlled by a radio frequency surface acoustic wave. The sound wave is tailored to deliberately switch on and off the bond of the photonic molecule on sub-nanosecond timescales. In time-resolved experiments, the acousto-optically controllable coupling is directly observed as clear anticrossings between the two nanophotonic modes. The coupling strength is determined directly from the experimental data. Both the time dependence of the tuning and the inter-cavity coupling strength are found to be in excellent agreement with numerical calculations. The demonstrated mechanical technique can be directly applied for dynamic quantum gate operations in state-of-the-art-coupled nanophotonic, quantum cavity electrodynamic and optomechanical systems. PMID:26436203

  3. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature.

    PubMed

    Konishi, Tatsuya; Kiguchi, Manabu; Takase, Mai; Nagasawa, Fumika; Nabika, Hideki; Ikeda, Katsuyoshi; Uosaki, Kohei; Ueno, Kosei; Misawa, Hiroaki; Murakoshi, Kei

    2013-01-23

    The in situ observation of geometrical and electronic structural dynamics of a single molecule junction is critically important in order to further progress in molecular electronics. Observations of single molecular junctions are difficult, however, because of sensitivity limits. Here, we report surface-enhanced Raman scattering (SERS) of a single 4,4'-bipyridine molecule under conditions of in situ current flow in a nanogap, by using nano-fabricated, mechanically controllable break junction (MCBJ) electrodes. When adsorbed at room temperature on metal nanoelectrodes in solution to form a single molecule junction, statistical analysis showed that nontotally symmetric b(1) and b(2) modes of 4,4'-bipyridine were strongly enhanced relative to observations of the same modes in solid or aqueous solutions. Significant changes in SERS intensity, energy (wavenumber), and selectivity of Raman vibrational bands that are coincident with current fluctuations provide information on distinct states of electronic and geometrical structure of the single molecule junction, even under large thermal fluctuations occurring at room temperature. We observed the dynamics of 4,4'-bipyridine motion between vertical and tilting configurations in the Au nanogap via b(1) and b(2) mode switching. A slight increase in the tilting angle of the molecule was also observed by noting the increase in the energies of Raman modes and the decrease in conductance of the molecular junction.

  4. Shear-induced intracellular loading of cells with molecules by controlled microfluidics

    PubMed Central

    Hallow, Daniel M.; Seeger, Richard A.; Kamaev, Pavel P.; Prado, Gustavo R.; LaPlaca, Michelle C.; Prausnitz, Mark R.

    2010-01-01

    This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50 – 300 μm diameter drilled through Mylar® sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150 - 2000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. PMID:17879304

  5. Near-infrared resonance-mediated chirp control of a coherently generated broadband deep-ultraviolet spectrum

    SciTech Connect

    Rybak, Leonid; Chuntonov, Lev; Gandman, Andrey; Shakour, Naser; Amitay, Zohar

    2011-09-15

    We investigate the use of shaped near-infrared (NIR) femtosecond pulses to control the generation of coherent broadband deep-ultraviolet (DUV) radiation in an atomic resonance-mediated (2+1) three-photon excitation to a broad far-from-resonance continuum. Previously, we have shown control over the total emitted DUV yield. Here, we experimentally demonstrate phase control over the spectral characteristics (central frequency and bandwidth) of the emitted broadband DUV radiation. It is achieved by tuning the linear chirp applied to the exciting NIR femtosecond pulse. The study is conducted with Na vapor.

  6. Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system

    PubMed Central

    Andrea Rozzi, Carlo; Maria Falke, Sarah; Spallanzani, Nicola; Rubio, Angel; Molinari, Elisa; Brida, Daniele; Maiuri, Margherita; Cerullo, Giulio; Schramm, Heiko; Christoffers, Jens; Lienau, Christoph

    2013-01-01

    The efficient conversion of light into electricity or chemical fuels is a fundamental challenge. In artificial photosynthetic and photovoltaic devices, this conversion is generally thought to happen on ultrafast, femto-to-picosecond timescales and to involve an incoherent electron transfer process. In some biological systems, however, there is growing evidence that the coherent motion of electronic wavepackets is an essential primary step, raising questions about the role of quantum coherence in artificial devices. Here we investigate the primary charge-transfer process in a supramolecular triad, a prototypical artificial reaction centre. Combining high time-resolution femtosecond spectroscopy and time-dependent density functional theory, we provide compelling evidence that the driving mechanism of the photoinduced current generation cycle is a correlated wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds. We highlight the fundamental role of the interface between chromophore and charge acceptor in triggering the coherent wavelike electron-hole splitting. PMID:23511467

  7. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    PubMed

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  8. Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase

    NASA Astrophysics Data System (ADS)

    Chung, Chao-Yu; Hsu, Julie; Mukamel, Shaul; Potma, Eric O.

    2013-03-01

    We study the role of geometry-dependent phase shifts of the optical electric field in stimulated coherent spectroscopy, a special class of heterodyne optical spectroscopy techniques. We generalize the theoretical description of stimulated spectroscopy to include spatial phase effects, and study the measured material response for several representative excitation and detection configurations. Using stimulated Raman scattering microscopy as an example, we show that different components of the material response are measured by varying the position of the object in focus. We discuss the implications of the position-dependent phase in stimulated coherent microscopy and point out a detection configuration in which its effects are minimized.

  9. Coherent control and detection of spin qubits in semiconductor with magnetic field engineering

    NASA Astrophysics Data System (ADS)

    Tokura, Yasuhiro

    2012-02-01

    Electrical control and detection of the spin qubits in semiconductor quantum dots (QDs) are among the major rapidly progressing fields for possible implementation of scalable quantum information processing. Coherent control of one-[1-3] and two-[4,5] spin qubits by electrical means had been demonstrated with various approaches. We have used an engineered magnetic field structure realized with proximal micro-magnets to transduce the spin and charge degrees of freedom and to selectively address one of the two spins [3]. We have demonstrated an all-electrical two-qubit gate consisting of single-spin rotations and interdot spin exchange in double QDs. A partially entangled output state is obtained by the application of the two-qubit gate to an initial, uncorrelated state. Our calculations taking into account of the nuclear spin fluctuation show the degree of entanglement. Non-uniform magnetic field also enables spin selective photon-assisted tunneling in double QDs, which then constitutes non-demolition spin read-out system in combination with a near-by charge detector [6]. [4pt] In collaboration with R. Brunner, Inst. of Phys., Montanuniversitaet Leoben, 8700, Austria, M. Pioro-Ladrière, D'ep. de Phys., Universit'e de Sherbrooke, Sherbrooke, Qu'ebec, J1K-2R1, Canada, T. Kubo, Y. -S. Shin, T. Obata, and S. Tarucha, ICORP-JST and Dep. of Appl. Phys., Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.[4pt] [1] F. H. Koppens, et al., Nature 442, 766 (2006).[0pt] [2] K. C. Nowack, et al., Science 318, 1430 (2007).[0pt] [3] M. Pioro-Ladrière, et al., Nature Physics 4, 776 (2008).[0pt] [4] J. R. Petta, et al., Science 309, 2180 (2005).[0pt] [5] R. Brunner, et al., Phys. Rev. Lett. 107, 146801 (2011).[0pt] [6] Y. -S. Shin, et al., Phys. Rev. Lett. 104, 046802 (2010).

  10. Real-time control of the energy landscape by force directs the folding of RNA molecules

    PubMed Central

    Li, Pan T. X.; Bustamante, Carlos; Tinoco, Ignacio

    2007-01-01

    The rugged folding-energy landscapes of RNAs often display many competing minima. How do RNAs discriminate among competing conformations in their search for the native state? By using optical tweezers, we show that the folding-energy landscape can be manipulated to control the fate of an RNA: individual RNA molecules can be induced into either native or misfolding pathways by modulating the relaxation rate of applied force and even be redirected during the folding process to switch from misfolding to native folding pathways. Controlling folding pathways at the single-molecule level provides a way to survey the manifold of folding trajectories and intermediates, a capability that previously was available only to theoretical studies. PMID:17438300

  11. Coherent control of ultracold {sup 85}Rb trap-loss collisions with nonlinearly frequency-chirped light

    SciTech Connect

    Pechkis, J. A.; Carini, J. L.; Rogers, C. E. III; Gould, P. L.; Kallush, S.; Kosloff, R.

    2011-06-15

    We present results on coherent control of ultracold trap-loss collisions using 40-ns pulses of nonlinearly frequency-chirped light. The chirps, either positive or negative, sweep {approx}1 GHz in 100 ns and are centered at various detunings below the D{sub 2} line of {sup 85}Rb. At each center detuning, we compare the collisional rate constant {beta} for chirps that are linear in time, concave-down, and concave-up. For positive chirps, we find that {beta} generally depends very little on the shape of the chirp. For negative chirps, however, we find that {beta} can be enhanced by up to 50(20)% for the case of the concave-down shape. This occurs at detunings where the evolution of the wave packet is expected to be coherent. An enhancement at these detunings is also seen in quantum-mechanical simulations of the collisional process.

  12. Decrease of Prefrontal-Posterior EEG Coherence: Loose Control during Social-Emotional Stimulation

    ERIC Educational Resources Information Center

    Reiser, Eva M.; Schulter, Gunter; Weiss, Elisabeth M.; Fink, Andreas; Rominger, Christian; Papousek, Ilona

    2012-01-01

    In two experiments we aimed to investigate if individual differences in state-dependent decreases or increases of EEG coherence between prefrontal and posterior cortical regions may be indicative of a mechanism modulating the impact social-emotional information has on an individual. Two independent samples were exposed to an emotional stimulation…

  13. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: Theory versus experiment

    SciTech Connect

    Semenov, Vladimir; Feoktistov, Alexey; Vadivasova, Tatyana; Schöll, Eckehard Zakharova, Anna

    2015-03-15

    Using the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown that for appropriate choices of time delay, either suppression or enhancement of coherence resonance can be achieved. Analytical calculations are combined with numerical simulations and experiments on an electronic circuit.

  14. Controlled Assembly of Biocompatible Metallic Nanoaggregates Using a Small Molecule Crosslinker

    PubMed Central

    Van Haute, Desiree; Longmate, Julia M.; Berlin, Jacob M.

    2015-01-01

    By introducing a capping step and controlling reaction parameters, the assembly of metallic nanoparticle aggregates can be achieved using a small molecule crosslinker. Aggregates can be assembled from particles of varied size and composition and the size of the aggregates can be systematically adjusted. Following cell uptake of 60 nm aggregates, the aggregates are stable and non-toxic to macrophage cells up to 55mM Au. PMID:26208123

  15. Site-controlled quantum dots coupled to a photonic crystal molecule

    SciTech Connect

    Rigal, B.; Jarlov, C.; Gallo, P.; Dwir, B.; Rudra, A.; Calic, M.; Kapon, E.

    2015-10-05

    Two site-controlled quantum dots (QDs) were integrated in a photonic crystal molecule (PCM) formed by L3 nanocavities. A statistical analysis of the coupled cavity modes demonstrated the formation of bonding and anti-bonding delocalized PCM states. Excitonic transitions belonging to each QD were identified by scanning micro-photoluminescence spectroscopy. Co-polarization of the QDs photoluminescence with the coupled cavity modes provides evidence for the simultaneous coupling of two spatially separated QDs to the same PCM mode.

  16. Yoctowells as a simple model system for the encapsulation and controlled release of bioactive molecules

    PubMed Central

    Bhosale, Sheshanath V.; Bhosale, Sidhanath V.

    2013-01-01

    The development of nanosized drug delivery systems to transport drugs to target cells, are promising tools to improve the drug therapeutic index. Transport systems should have a simple design to control the release of loaded drug to the target areas, thereby increasing concentration and prolonging retention. Herein, we demonstrate the use of yoctoliter wells (1 yL = 10−24 L) as simple model systems for the encapsulation and release of biologically active molecules, by manipulating pH. The drug molecule employed here is doxorubicin, which diffuses into the bottom of yoctowells from a bulk solution at pH 7. Capping of the yoctowells is achieved by addition of an anionic-porphyrin by electrostatic interaction. Furthermore, controlled release of the Doxorubcin and capping agent from the yoctowells is achieved by pH control. The effectiveness of the sustain release of the bioactive molecule from yoctowells, provides potential for development of a new generation of drug-delivery system for practical application. PMID:23760359

  17. Coherent Electronic Wave Packet Motion in C60 Controlled by the Waveform and Polarization of Few-Cycle Laser Fields

    NASA Astrophysics Data System (ADS)

    Li, H.; Mignolet, B.; Wachter, G.; Skruszewicz, S.; Zherebtsov, S.; Süßmann, F.; Kessel, A.; Trushin, S. A.; Kling, Nora G.; Kübel, M.; Ahn, B.; Kim, D.; Ben-Itzhak, I.; Cocke, C. L.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K.-H.; Lemell, C.; Burgdörfer, J.; Levine, R. D.; Remacle, F.; Kling, M. F.

    2015-03-01

    Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C60 fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.

  18. A high-speed, high-efficiency phase controller for coherent beam combining based on SPGD algorithm

    SciTech Connect

    Huang, Zh M; Liu, C L; Li, J F; Zhang, D Y

    2014-04-28

    A phase controller for coherent beam combining (CBC) of fibre lasers has been designed and manufactured based on a stochastic parallel gradient descent (SPGD) algorithm and a field programmable gate array (FPGA). The theoretical analysis shows that the iteration rate is higher than 1.9 MHz, and the average compensation bandwidth of CBC for 5 or 20 channels is 50 kHz or 12.5 kHz, respectively. The tests show that the phase controller ensures reliable phase locking of lasers: When the phases of five lasers are locked by the improved control strategy with a variable gain, the energy encircled in the target is increased by 23 times than that in the single output, the phase control accuracy is better than λ/20, and the combining efficiency is 92%. (control of laser radiation parameters)

  19. Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules

    PubMed Central

    Xie, Zhi Qiang; Bai, Jaeil; Zhou, Yun Shen; Gao, Yi; Park, Jongbok; Guillemet, Thomas; Jiang, Lan; Zeng, Xiao Cheng; Lu, Yong Feng

    2014-01-01

    Crystallographic orientations determine the optical, electrical, mechanical, and thermal properties of crystals. Control of crystallographic orientations has been studied by changing the growth parameters, including temperature, pressure, proportion of precursors, and surface conditions. However, molecular dynamic mechanisms underlying these controls remain largely unknown. Here we achieved control of crystallographic orientations in diamond growth through a joint experimental and theoretical study of laser resonant vibrational excitation of precursor molecules (ethylene). Resonant vibrational excitation of the ethylene molecules using a wavelength-tunable CO2 laser steers the chemical reactions and promotes proportion of intermediate oxide species, which results in preferential growth of {100}-oriented diamond films and diamond single crystals in open air. Quantum molecular dynamic simulations and calculations of chemisorption energies of radicals detected from our mass-spectroscopy experiment provide an in-depth understanding of molecular reaction mechanisms in the steering of chemical reactions and control of crystallographic orientations. This finding opens up a new avenue for controlled chemical vapor deposition of crystals through resonant vibrational excitations to steer surface chemistry. PMID:24694918

  20. Wavelet transform coherence based investigation of existence of relationship between the cardiovascular and postural control systems during orthostatic challenge.

    PubMed

    Garg, Amanmeet; Blaber, Andrew P

    2012-01-01

    Previous studies have established the effects of orthostatic challenge on the cardiovascular and postural control systems, but the interdependent behavior of the systems under such condition is unclear. In the present study we examined the simultaneous changes in posture muscle electromyography (EMG) and systolic blood pressure (SBP) during quiet standing in healthy young individuals. Photoplethysmography based SBP, surface EMG, electrocardiogram (Lead II ECG) and posturography data were acquired during the experiment. Wavelet transform coherence (WTC) analysis was applied to identify the zones of interdependent behavior of the systems. The WTC thresholds were identified for the specific data under investigation. The coherence was analyzed in three frequency bands namely, LF (0.05 - 0.1 Hz), VLF (0.01-0.05 Hz) and ULF (0.005 - 0.01 Hz). WTC estimates for the EMG - SBP comparison showed greater than threshold values in all three frequency bands (LF: 0.31 ± 0.02; VLF: 0.41 ± 0.01; ULF: 0.45 ± 0.01). In conclusion this study showed the existence of relationship between the posture muscle EMG and blood pressure during natural orthostatic stress, by validation based on wavelet transform coherence. Further validation is required to objectively characterize this relationship between the two systems during orthostatic stress.

  1. A Bidirectional System for the Dynamic Small Molecule Control of Intracellular Fusion Proteins

    PubMed Central

    Kuzin, Alexander P.; Lew, Scott; Seetharaman, Jayaraman; Acton, Thomas B.; Kornhaber, Gregory J.; Xiao, Rong; Montelione, Gaetano Thomas; Tong, Liang; Crews, Craig M.

    2014-01-01

    Small molecule control of intracellular protein levels allows temporal and dose-dependent regulation of protein function. Recently, we developed a method to degrade proteins fused to a mutant dehalogenase (HaloTag2) using small molecule hydrophobic tags (HyTs). Here, we introduce a complementary method to stabilize the same HaloTag2 fusion proteins, resulting in a unified system allowing bidirectional control of cellular protein levels in a temporal and dose-dependent manner. From a small molecule screen, we identified N-(3,5-dichloro-2-ethoxybenzyl)-2H-tetrazol-5-amine as a nanomolar HALoTag2 Stabilizer (HALTS1) that reduces the Hsp70:HaloTag2 interaction, thereby preventing HaloTag2 ubiquitination. Finally, we demonstrate the utility of the HyT/HALTS system in probing the physiological role of therapeutic targets by modulating HaloTag2-fused oncogenic H-Ras, which resulted in either the cessation (HyT) or acceleration (HALTS) of cellular transformation. In sum, we present a general platform to study protein function, whereby any protein of interest fused to HaloTag2 can be either degraded 10-fold or stabilized 5-fold using two corresponding compounds. PMID:23978068

  2. A bidirectional system for the dynamic small molecule control of intracellular fusion proteins.

    PubMed

    Neklesa, Taavi K; Noblin, Devin J; Kuzin, Alexander; Lew, Scott; Seetharaman, Jayaraman; Acton, Thomas B; Kornhaber, Gregory; Xiao, Rong; Montelione, Gaetano T; Tong, Liang; Crews, Craig M

    2013-10-18

    Small molecule control of intracellular protein levels allows temporal and dose-dependent regulation of protein function. Recently, we developed a method to degrade proteins fused to a mutant dehalogenase (HaloTag2) using small molecule hydrophobic tags (HyTs). Here, we introduce a complementary method to stabilize the same HaloTag2 fusion proteins, resulting in a unified system allowing bidirectional control of cellular protein levels in a temporal and dose-dependent manner. From a small molecule screen, we identified N-(3,5-dichloro-2-ethoxybenzyl)-2H-tetrazol-5-amine as a nanomolar HALoTag2 Stabilizer (HALTS1) that reduces the Hsp70:HaloTag2 interaction, thereby preventing HaloTag2 ubiquitination. Finally, we demonstrate the utility of the HyT/HALTS system in probing the physiological role of therapeutic targets by modulating HaloTag2-fused oncogenic H-Ras, which resulted in either the cessation (HyT) or acceleration (HALTS) of cellular transformation. In sum, we present a general platform to study protein function, whereby any protein of interest fused to HaloTag2 can be either degraded 10-fold or stabilized 5-fold using two corresponding compounds.

  3. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    USGS Publications Warehouse

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on

  4. Metal–Organic Frameworks as Platforms for the Controlled Nanostructuring of Single-Molecule Magnets

    SciTech Connect

    Aulakh, Darpandeep; Pyser, Joshua B.; Zhang, Xuan; Yakovenko, Andrey A.; Dunbar, Kim R.; Wriedt, Mario

    2015-07-29

    The prototypical SMM molecule [Mn12O12(O2CCH3)16(OH2)4] was incorporated under mild conditions into a highly porous metal-organic framework (MOF) matrix as a proof of principle for controlled nanostructuring of SMMs. Four independent experiments revealed that the SMM clusters were successfully loaded in the MOF pores, namely synchrotron-based powder diffraction, physisorption analysis, and in-depth magnetic and thermal analyses. The results provide incontrovertible evidence that the magnetic composite, SMM@MOF, combines key SMM properties with the functional properties of MOFs. Most importantly, the incorporated SMMs exhibit a significant enhanced thermal stability with SMM loading advantageously occurring at the periphery of the bulk MOF crystals with only a single SMM molecule isolated in the transverse direction of the pores.

  5. Electrostatic control over temperature-dependent tunnelling across a single-molecule junction

    PubMed Central

    Garrigues, Alvar R.; Wang, Lejia; del Barco, Enrique; Nijhuis, Christian A.

    2016-01-01

    Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunnelling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads. PMID:27211787

  6. Adaptive Control Model Reveals Systematic Feedback and Key Molecules in Metabolic Pathway Regulation

    PubMed Central

    Moffitt, Richard A.; Merrill, Alfred H.; Wang, May D.

    2011-01-01

    Abstract Robust behavior in metabolic pathways resembles stabilized performance in systems under autonomous control. This suggests we can apply control theory to study existing regulation in these cellular networks. Here, we use model-reference adaptive control (MRAC) to investigate the dynamics of de novo sphingolipid synthesis regulation in a combined theoretical and experimental case study. The effects of serine palmitoyltransferase over-expression on this pathway are studied in vitro using human embryonic kidney cells. We report two key results from comparing numerical simulations with observed data. First, MRAC simulations of pathway dynamics are comparable to simulations from a standard model using mass action kinetics. The root-sum-square (RSS) between data and simulations in both cases differ by less than 5%. Second, MRAC simulations suggest systematic pathway regulation in terms of adaptive feedback from individual molecules. In response to increased metabolite levels available for de novo sphingolipid synthesis, feedback from molecules along the main artery of the pathway is regulated more frequently and with greater amplitude than from other molecules along the branches. These biological insights are consistent with current knowledge while being new that they may guide future research in sphingolipid biology. In summary, we report a novel approach to study regulation in cellular networks by applying control theory in the context of robust metabolic pathways. We do this to uncover potential insight into the dynamics of regulation and the reverse engineering of cellular networks for systems biology. This new modeling approach and the implementation routines designed for this case study may be extended to other systems. Supplementary Material is available at www.liebertonline.com/cmb. PMID:21314456

  7. Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence

    PubMed Central

    Kerr, Robert R.; Grayden, David B.; Thomas, Doreen A.; Gilson, Matthieu; Burkitt, Anthony N.

    2014-01-01

    The brain is able to flexibly select behaviors that adapt to both its environment and its present goals. This cognitive control is understood to occur within the hierarchy of the cortex and relies strongly on the prefrontal and premotor cortices, which sit at the top of this hierarchy. Pyramidal neurons, the principal neurons in the cortex, have been observed to exhibit much stronger responses when they receive inputs at their soma/basal dendrites that are coincident with inputs at their apical dendrites. This corresponds to inputs from both lower-order regions (feedforward) and higher-order regions (feedback), respectively. In addition to this, coherence between oscillations, such as gamma oscillations, in different neuronal groups has been proposed to modulate and route communication in the brain. In this paper, we develop a simple, but novel, neural mass model in which cortical units (or ensembles) exhibit gamma oscillations when they receive coherent oscillatory inputs from both feedforward and feedback connections. By forming these units into circuits that can perform logic operations, we identify the different ways in which operations can be initiated and manipulated by top-down feedback. We demonstrate that more sophisticated and flexible top-down control is possible when the gain of units is modulated by not only top-down feedback but by coherence between the activities of the oscillating units. With these types of units, it is possible to not only add units to, or remove units from, a higher-level unit's logic operation using top-down feedback, but also to modify the type of role that a unit plays in the operation. Finally, we explore how different network properties affect top-down control and processing in large networks. Based on this, we make predictions about the likely connectivities between certain brain regions that have been experimentally observed to be involved in goal-directed behavior and top-down attention. PMID:25152715

  8. Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence.

    PubMed

    Kerr, Robert R; Grayden, David B; Thomas, Doreen A; Gilson, Matthieu; Burkitt, Anthony N

    2014-01-01

    The brain is able to flexibly select behaviors that adapt to both its environment and its present goals. This cognitive control is understood to occur within the hierarchy of the cortex and relies strongly on the prefrontal and premotor cortices, which sit at the top of this hierarchy. Pyramidal neurons, the principal neurons in the cortex, have been observed to exhibit much stronger responses when they receive inputs at their soma/basal dendrites that are coincident with inputs at their apical dendrites. This corresponds to inputs from both lower-order regions (feedforward) and higher-order regions (feedback), respectively. In addition to this, coherence between oscillations, such as gamma oscillations, in different neuronal groups has been proposed to modulate and route communication in the brain. In this paper, we develop a simple, but novel, neural mass model in which cortical units (or ensembles) exhibit gamma oscillations when they receive coherent oscillatory inputs from both feedforward and feedback connections. By forming these units into circuits that can perform logic operations, we identify the different ways in which operations can be initiated and manipulated by top-down feedback. We demonstrate that more sophisticated and flexible top-down control is possible when the gain of units is modulated by not only top-down feedback but by coherence between the activities of the oscillating units. With these types of units, it is possible to not only add units to, or remove units from, a higher-level unit's logic operation using top-down feedback, but also to modify the type of role that a unit plays in the operation. Finally, we explore how different network properties affect top-down control and processing in large networks. Based on this, we make predictions about the likely connectivities between certain brain regions that have been experimentally observed to be involved in goal-directed behavior and top-down attention.

  9. Control of coherence among the spins of a single electron and the three nearest neighbor {sup 13}C nuclei of a nitrogen-vacancy center in diamond

    SciTech Connect

    Shimo-Oka, T.; Miwa, S.; Suzuki, Y.; Mizuochi, N.; Kato, H.; Yamasaki, S.; Jelezko, F.

    2015-04-13

    Individual nuclear spins in diamond can be optically detected through hyperfine couplings with the electron spin of a single nitrogen-vacancy (NV) center; such nuclear spins have outstandingly long coherence times. Among the hyperfine couplings in the NV center, the nearest neighbor {sup 13}C nuclear spins have the largest coupling strength. Nearest neighbor {sup 13}C nuclear spins have the potential to perform fastest gate operations, providing highest fidelity in quantum computing. Herein, we report on the control of coherences in the NV center where all three nearest neighbor carbons are of the {sup 13}C isotope. Coherence among the three and four qubits are generated and analyzed at room temperature.

  10. Optical emission of a plasma from low-density targets irradiated with coherence-controllable laser radiation

    NASA Astrophysics Data System (ADS)

    Fronya, A. A.; Borisenko, N. G.; Puzyrev, V. N.; Sahakyan, A. T.; Starodub, A. N.; Yakushev, O. F.

    2017-03-01

    The results of experiments on the interaction of nanosecond laser radiation with low-density volume-structured targets of different density and thickness are reported. The targets were irradiated by laser radiation with controllable coherence. The primary objective was to investigate the effect of target parameters on the characteristics of radiation scattered by the plasma. The spectral characteristics of the radiation scattered by the plasma in the backward direction and in the direction of laser beam propagation were obtained. Also the radiation scattering patterns were recorded.

  11. Selective control over fragmentation reactions in polyatomic molecules using impulsive laser alignment.

    PubMed

    Xie, Xinhua; Doblhoff-Dier, Katharina; Xu, Huailiang; Roither, Stefan; Schöffler, Markus S; Kartashov, Daniil; Erattupuzha, Sonia; Rathje, Tim; Paulus, Gerhard G; Yamanouchi, Kaoru; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus

    2014-04-25

    We investigate the possibility of using molecular alignment for controlling the relative probability of individual reaction pathways in polyatomic molecules initiated by electronic processes on the few-femtosecond time scale. Using acetylene as an example, it is shown that aligning the molecular axis with respect to the polarization direction of the ionizing laser pulse does not only allow us to enhance or suppress the overall fragmentation yield of a certain fragmentation channel but, more importantly, to determine the relative probability of individual reaction pathways starting from the same parent molecular ion. We show that the achieved control over dissociation or isomerization pathways along specific nuclear degrees of freedom is based on a controlled population of associated excited dissociative electronic states in the molecular ion due to relatively enhanced ionization contributions from inner valence orbitals.

  12. Morphology-Controlled High-Efficiency Small Molecule Organic Solar Cells without Additive Solvent Treatment

    PubMed Central

    Kim, Il Ku; Jo, Jun Hyung; Yun, Jung-Ho

    2016-01-01

    This paper focuses on nano-morphology-controlled small-molecule organic solar cells without solvent treatment for high power-conversion efficiencies (PCEs). The maximum high PCE reaches up to 7.22% with a bulk-heterojunction (BHJ) thickness of 320 nm. This high efficiency was obtained by eliminating solvent additives such as 1,8-diiodooctane (DIO) to find an alternative way to control the domain sizes in the BHJ layer. Furthermore, the generalized transfer matrix method (GTMM) analysis has been applied to confirm the effects of applying a different thickness of BHJs for organic solar cells from 100 to 320 nm, respectively. Finally, the study showed an alternative way to achieve high PCE organic solar cells without additive solvent treatments to control the morphology of the bulk-heterojunction.

  13. Fabrication and Control of Two-Dimensional Crystalline Arrays of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Nagayama, Kuniaki; Takeda, Shigeki; Endo, Shigeru; Yoshimura, Hideyuki

    1995-07-01

    Fabrication methods to produce two-dimensional (2D) crystalline arrays of protein particles are reported. The key innovation in this fabrication is the spreading wetting process which uses the deformable substrate surface such as mercury surface (mercury method) or the air-water interface (subphase method), where protein solution spread to yield a thin liquid film. The thin film of protein solution leaves a monolayer state of protein molecules, for example 2D crystalline films, after the condensation of solute protein molecules by solvent removal by evaporation. The significance of the film fabrication lies in its active natures to harness the directional transport of particles driven by spreading or convective flow of the solution. Wild type and mutant ferritins were employed to spread their solution on substrates and align them to 2D arrays. The control of crystal forms, say hexagonal or tetragonal, has been pursued by changing the interprotein interaction through mutagenic replacements of amino acids at specific sites on the protein surface. With recombinant ferritins, conversion of crystal forms from hexagonal to oblique is observed by eliminating strong interaction of salt bridge kind between adjacent molecules in the crystal.

  14. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL

    PubMed Central

    Doerner, Julia F.; Febvay, Sebastien; Clapham, David E.

    2013-01-01

    Bacterial mechanosensitive channels are some of the largest pores in nature. In particular, MscL, with a pore diameter > 25 Å, allows passage of large organic ions and small proteins. Functional MscL reconstitution into lipids has been proposed for applications in vesicular-based drug release. Here we show that these channels can be functionally expressed in mammalian cells to afford rapid controlled uptake of membrane impermeable molecules. We first demonstrate that MscL gating in response to increased membrane tension is preserved in mammalian cell membranes. Molecular delivery is controlled by adopting an established method of MscL charge-induced activation. We then determine pore size limitations using fluorescently labeled model cargoes. Finally, we activate MscL to introduce the cell-impermeable bi-cyclic peptide phalloidin, a specific marker for actin filaments, into cells. We propose that MscL will be a useful tool for gated and controlled delivery of bioactive molecules into cells. PMID:22871809

  15. Imaging and control of interfering wave packets in a dissociating molecule.

    PubMed

    Skovsen, Esben; Machholm, Mette; Ejdrup, Tine; Thøgersen, Jan; Stapelfeldt, Henrik

    2002-09-23

    Using two identical 110 femtosecond (fs) optical pulses separated by 310 fs, we launch two dissociative wave packets in I2. We measure the square of the wave function as a function of both the internuclear separation, /Psi(R)/(2), and of the internuclear velocity, /Psi(v(R))/(2), by ionizing the dissociating molecule with an intense 20 fs probe pulse. Strong interference is observed in both /Psi(R)/(2) and in /Psi(v(R))/(2). The interference, and therefore the shape of the wave function, is controlled through the phase difference between the two dissociation pulses in good agreement with calculations.

  16. Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation

    NASA Astrophysics Data System (ADS)

    Malinovskaya, Svetlana A.; Liu, Gengyuan

    2016-11-01

    A method for creation of ultracold molecules by stepwise adiabatic passage from the Feshbach state to the fundamentally ground state using an optical frequency comb is presented within a semiclassical multilevel model. The sine modulation of the spectral phase of the comb leads to the creation of a quasi-dark dressed state. An insignificant population of the excited state manifold in this dark state provides an efficient way of mitigating decoherence in the system. In contrast, the cosine modulation does not lead to the quasi-dark state formation. The results demonstrate the importance of the parity of the spectral chirp in quantum control.

  17. The controllable assembly of nanorods, nanowires and microwires of a perylenediimide molecule with photoswitching property

    NASA Astrophysics Data System (ADS)

    Ma, Ying; An, Boxing; Wang, Meng; Shi, Fangxiao; Wang, Qing; Gu, Yaxin; Niu, Wanyang; Fan, Zhaorong; Shang, Yanli; Wang, Dan; Zhao, Cong

    2015-07-01

    By using an electron donor-acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH2Cl2. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices.

  18. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  19. Voluntary control of corticomuscular coherence through neurofeedback: a proof-of-principle study in healthy subjects.

    PubMed

    von Carlowitz-Ghori, K; Bayraktaroglu, Z; Waterstraat, G; Curio, G; Nikulin, V V

    2015-04-02

    Corticomuscular coherence (CMC) relates to synchronization between activity in the motor cortex and the muscle activity. The strength of CMC can be affected by motor behavior. In a proof-of-principle study, we examined whether independent of motor output parameters, healthy subjects are able to voluntarily modulate CMC in a neurofeedback paradigm. Subjects received visual online feedback of their instantaneous CMC strength, which was calculated between an optimized spatial projection of multichannel electroencephalography (EEG) and electromyography (EMG) in an individually defined target frequency range. The neurofeedback training consisted of either increasing or decreasing CMC strength using a self-chosen mental strategy while performing a simple motor task. Evaluation of instantaneous coherence showed that CMC strength was significantly larger when subjects had to increase than when to decrease CMC; this difference between the two task conditions did not depend on motor performance. The exclusion of confounding factors such as motor performance, attention and task complexity in study design provides evidence that subjects were able to voluntarily modify CMC independent of motor output parameters. Additional analysis further strengthened the assumption that the subjects' response was specifically shaped by the neurofeedback. In perspective, we suggest that CMC-based neurofeedback could provide a therapeutic approach in clinical conditions, such as motor stroke, where CMC is altered.

  20. Laser-controlled vibrational heating and cooling of oriented H+2 molecules

    NASA Astrophysics Data System (ADS)

    Niederhausen, Thomas; Thumm, Uwe; Martín, Fernando

    2012-05-01

    We investigate the control of the vibrational dynamics in the hydrogen molecular ion H+2 using strong femto-second infrared control-laser pulses. For our three-dimensional calculations, we use infrared laser pulses of 800 nm wavelength, 6 fs pulse duration and a peak intensity between 1012 and 1015 W cm-2. For laser electric fields aligned along the molecular axis, we numerically solve the full vibronic Schrödinger equation and compare our results with a model calculation that only includes the nuclear motion on the two lowest coupled adiabatic Born-Oppenheimer potential curves. The initial vibrational wave packet is launched with the ionization of the parent H2 molecule in the pump pulse. Precise timing between pump- and control-laser pulses allows for the direct manipulation of the final bound vibrational-state composition and dissociation dynamics of the ion. We show that significant enhancement of the occupation of particular stationary vibrational-state contributions can be achieved for laser intensities below the onset of strong ionization (≈1014 W cm-2). In addition, we find that this vibrational selectivity strongly depends on the delay time but not on the intensity of the control pulse. The relative stationary vibrational-state contributions and the shape of the vibrating wave packet depend sensitively on the control-pulse delay time, and the overall amplitude of the final vibrational wave packet depends on the intensity of the control pulse.

  1. A quantum gas of polar molecules

    NASA Astrophysics Data System (ADS)

    Ni, Kang-Kuen

    Ultracold polar molecular gases promise new directions and exciting applications in precision measurements, ultracold chemistry, electric-field controlled collisions, dipolar quantum gases, and quantum information sciences. This thesis presents experimental realization of a near quantum degenerate gas of polar molecules, where the phase-space density of the gas achieved is more than 10 orders of magnitude higher than previous results. The near quantum degenerate gas of polar molecules is created using two coherent steps. First, atoms in an ultracold gas mixture are converted into extremely weakly bound molecules near a Fano-Feshbach resonance. Second, the weakly bound molecules are transferred to the ro-vibronic ground state using a coherent two-photon Raman technique. The fact that these ground-state molecules are polar is confirmed with a spectroscopic measurement of the permanent electric dipole moment. Finally, manipulation of the molecular hyperfine state is demonstrated; this allows molecules to be populated in a single quantum state, in particular, the lowest energy state. With an ultracold gas of molecules, full control of molecular internal state, and electric field as a new handle, ultracold molecular collisions, including ultracold chemical reactions and dipolar collisions, are studied.

  2. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    SciTech Connect

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; Lu, Zhengliang; Chen, Banglin; Dai, Sheng; Yue, Yanfeng; Rabone, Jeremy A.; Liu, Hongjun; Wang, Jihang; Fang, Youxing

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn3(btca)2(OH)2]·(guest)n (H2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N2, CO2/Ar, and CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.

  3. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGES

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn3(btca)2(OH)2]·(guest)n (H2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N2, CO2/Ar, andmore » CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  4. The controllable assembly of nanorods, nanowires and microwires of a perylenediimide molecule with photoswitching property

    SciTech Connect

    Ma, Ying; An, Boxing; Wang, Meng; Shi, Fangxiao; Wang, Qing; Gu, Yaxin; Niu, Wanyang; Fan, Zhaorong; Shang, Yanli; Wang, Dan; Zhao, Cong

    2015-07-15

    By using an electron donor–acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH{sub 2}Cl{sub 2}. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices. - Graphical abstract: The two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were observed by controlling the white light on and off with different light intensities. - Highlights: • An electron donor–acceptor molecule (PDI-Fc) was synthesized. • Well-defined nanorods, nanowires and microwires of PDI-Fc were formed. • The two-ended devices based on individual microwire were fabricated. • Highly reproducible and sensitive photo response characteristics were observed.

  5. Controlled interference of association paths in the conversion of ultracold atoms into molecules

    NASA Astrophysics Data System (ADS)

    Plata, J.

    2015-12-01

    We present a proposal for controlling the conversion of ultracold atoms into molecules by fixing the phase difference between two oscillating magnetic fields. The scheme is based on the use of a magnetic Feshbach resonance with a field modulation that incorporates terms oscillating with frequencies corresponding to the main resonance and one of the subharmonics. The interference between the two association processes activated by the oscillating terms is controlled via the phase difference. As a result, significant increase or decrease of the effective interaction strength can be achieved. The realization of the proposal is feasible under standard technical conditions. In particular, the method is found to be robust against the effect of the sources of decoherence present in the practical setup. The applicability of the approach to deal with quadratic terms in the field modulation is discussed.

  6. Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface

    PubMed Central

    Kawai, Shigeki; Haapasilta, Ville; Lindner, Benjamin D.; Tahara, Kazukuni; Spijker, Peter; Buitendijk, Jeroen A.; Pawlak, Rémy; Meier, Tobias; Tobe, Yoshito; Foster, Adam S.; Meyer, Ernst

    2016-01-01

    On-surface chemical reactions hold the potential for manufacturing nanoscale structures directly onto surfaces by linking carbon atoms in a single-step reaction. To fabricate more complex and functionalized structures, the control of the on-surface chemical reactions must be developed significantly. Here, we present a thermally controlled sequential three-step chemical transformation of a hydrocarbon molecule on a Cu(111) surface. With a combination of high-resolution atomic force microscopy and first-principles computations, we investigate the transformation process in step-by-step detail from the initial structure to the final product via two intermediate states. The results demonstrate that surfaces can be used as catalysing templates to obtain compounds, which cannot easily be synthesized by solution chemistry. PMID:27619070

  7. Controlling Protein Conformations to Explore Unprecedented Material Properties by Single-Molecule Surgery

    DTIC Science & Technology

    2012-08-17

    Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen , CO, Jan. 4-10, 2009. H. P. Lu, “Single...Donor-Acceptor: Cy3-Cy5) pair labeled HPPK molecule tethered between a glass cover-slip surface and a handle (biotin group plus streptavidin), and a...5, 2008. H. P. Lu, “Probing Single-Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen

  8. Peptide-independent stabilization of MHC class I molecules breaches cellular quality control.

    PubMed

    Hein, Zeynep; Uchtenhagen, Hannes; Abualrous, Esam Tolba; Saini, Sunil Kumar; Janßen, Linda; Van Hateren, Andy; Wiek, Constanze; Hanenberg, Helmut; Momburg, Frank; Achour, Adnane; Elliott, Tim; Springer, Sebastian; Boulanger, Denise

    2014-07-01

    The intracellular trafficking of major histocompatibility complex class I (MHC-I) proteins is directed by three quality control mechanisms that test for their structural integrity, which is correlated to the binding of high-affinity antigenic peptide ligands. To investigate which molecular features of MHC-I these quality control mechanisms detect, we have followed the hypothesis that suboptimally loaded MHC-I molecules are characterized by their conformational mobility in the F-pocket region of the peptide-binding site. We have created a novel variant of an MHC-I protein, K(b)-Y84C, in which two α-helices in this region are linked by a disulfide bond that mimics the conformational and dynamic effects of bound high-affinity peptide. K(b)-Y84C shows a remarkable increase in the binding affinity to its light chain, beta-2 microglobulin (β2m), and bypasses all three cellular quality control steps. Our data demonstrate (1) that coupling between peptide and β2m binding to the MHC-I heavy chain is mediated by conformational dynamics; (2) that the folded conformation of MHC-I, supported by β2m, plays a decisive role in passing the ER-to-cell-surface transport quality controls; and (3) that β2m association is also tested by the cell surface quality control that leads to MHC-I endocytosis.

  9. Optical system design and experimental evaluation of a coherent Doppler wind Lidar system for the predictive control of wind turbine

    NASA Astrophysics Data System (ADS)

    Shinohara, Leilei; Tauscher, Julian Asche; Beuth, Thorsten; Heussner, Nico; Fox, Maik; Babu, Harsha Umesh; Stork, Wilhelm

    2014-09-01

    The control of wind turbine blade pitch systems by Lidar assisted wind speed prediction has been proposed to increase the electric power generation and reduce the mechanical fatigue load on wind turbines. However, the sticking point of such Lidar systems is the price. Hence, our objective is to develop a more cost efficient Lidar system to support the pitch control of horizontal axis wind turbines and therefore to reduce the material requirement, lower the operation and maintenance costs and decrease the cost of wind energy in the long term. Compared to the state of the art Lidar systems, a laser with a shorter coherence length and a corresponding fiber delay line is introduced for reducing the costs. In this paper we present the experimental evaluation of different sending and receiving optics designs for such a system from a free space laboratory setup.

  10. Coherent control of injection currents in high-quality films of Bi{sub 2}Se{sub 3}

    SciTech Connect

    Bas, D. A.; Vargas-Velez, K.; Babakiray, S.; Johnson, T. A.; Borisov, P.; Stanescu, T. D.; Lederman, D.; Bristow, A. D.

    2015-01-26

    Films of the topological insulator Bi{sub 2}Se{sub 3} are grown by molecular beam epitaxy with in-situ reflection high-energy electron diffraction. The films are shown to be high-quality by X-ray reflectivity and diffraction and atomic-force microscopy. Quantum interference control of photocurrents is observed by excitation with harmonically related pulses and detected by terahertz radiation. The injection current obeys the expected excitation irradiance dependence, showing linear dependence on the fundamental pulse irradiance and square-root irradiance dependence of the frequency-doubled optical pulses. The injection current also follows a sinusoidal relative-phase dependence between the two excitation pulses. These results confirm the third-order nonlinear optical origins of the coherently controlled injection current. Experiments are compared to a tight-binding band structure to illustrate the possible optical transitions that occur in creating the injection current.

  11. Coherent control of the electron quantum paths for the generation of single ultrashort atto second laser pulse

    SciTech Connect

    Liu, I-Lin; Li, Peng-Cheng; Chu, Shih-I

    2011-09-15

    We report a mechanism and a realizable approach for the coherent control of the generation of an isolated and ultrashort atto second (as) laser pulse from atoms by optimizing the two-color laser fields with a proper time delay. Optimizing the laser pulse shape allows the control of the electron quantum paths and enables high-harmonic generation from the long- and short-trajectory electrons to be enhanced and split near the cutoff region. In addition, it delays the long-trajectory electron emission time and allows the production of extremely short atto second pulses in a relatively narrow time duration. As a case study, we show that an isolated 30 as pulse with a bandwidth of 127 eV can be generated directly from the contribution of long-trajectory electrons alone.

  12. Probability density function formalism for optical coherence tomography signal analysis: a controlled phantom study.

    PubMed

    Weatherbee, Andrew; Sugita, Mitsuro; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex

    2016-06-15

    The distribution of backscattered intensities as described by the probability density function (PDF) of tissue-scattered light contains information that may be useful for tissue assessment and diagnosis, including characterization of its pathology. In this Letter, we examine the PDF description of the light scattering statistics in a well characterized tissue-like particulate medium using optical coherence tomography (OCT). It is shown that for low scatterer density, the governing statistics depart considerably from a Gaussian description and follow the K distribution for both OCT amplitude and intensity. The PDF formalism is shown to be independent of the scatterer flow conditions; this is expected from theory, and suggests robustness and motion independence of the OCT amplitude (and OCT intensity) PDF metrics in the context of potential biomedical applications.

  13. Observation and coherent control of interface-induced electronic resonances in a field-effect transistor.

    PubMed

    Tenorio-Pearl, J O; Herbschleb, E D; Fleming, S; Creatore, C; Oda, S; Milne, W I; Chin, A W

    2017-02-01

    Electronic defect states at material interfaces provide highly deleterious sources of noise in solid-state nanostructures, and even a single trapped charge can qualitatively alter the properties of short one-dimensional nanowire field-effect transistors (FET) and quantum bit (qubit) devices. Understanding the dynamics of trapped charge is thus essential for future nanotechnologies, but their direct detection and manipulation is rather challenging. Here, a transistor-based set-up is used to create and probe individual electronic defect states that can be coherently driven with microwave (MW) pulses. Strikingly, we resolve a large number of very high quality (Q ∼ 1 × 10(5)) resonances in the transistor current as a function of MW frequency and demonstrate both long decoherence times (∼1 μs-40 μs) and coherent control of the defect-induced dynamics. Efficiently characterizing over 800 individually addressable resonances across two separate defect-hosting materials, we propose that their properties are consistent with weakly driven two-level systems.

  14. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy

    PubMed Central

    Vogelsang, Jan; Cordes, Thorben; Forthmann, Carsten; Steinhauer, Christian; Tinnefeld, Philip

    2009-01-01

    Fluorescent molecular switches have widespread potential for use as sensors, material applications in electro-optical data storages and displays, and superresolution fluorescence microscopy. We demonstrate that adjustment of fluorophore properties and environmental conditions allows the use of ordinary fluorescent dyes as efficient single-molecule switches that report sensitively on their local redox condition. Adding or removing reductant or oxidant, switches the fluorescence of oxazine dyes between stable fluorescent and nonfluorescent states. At low oxygen concentrations, the off-state that we ascribe to a radical anion is thermally stable with a lifetime in the minutes range. The molecular switches show a remarkable reliability with intriguing fatigue resistance at the single-molecule level: Depending on the switching rate, between 400 and 3,000 switching cycles are observed before irreversible photodestruction occurs. A detailed picture of the underlying photoinduced and redox reactions is elaborated. In the presence of both reductant and oxidant, continuous switching is manifested by “blinking” with independently controllable on- and off-state lifetimes in both deoxygenated and oxygenated environments. This “continuous switching mode” is advantageously used for imaging actin filament and actin filament bundles in fixed cells with subdiffraction-limited resolution. PMID:19433792

  15. Scalable coherent interface

    SciTech Connect

    Alnaes, K.; Kristiansen, E.H. ); Gustavson, D.B. ); James, D.V. )

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs.

  16. Enhancement of VUV and EUV generation by field-controlled resonance structures of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2016-05-01

    Below- and near-threshold harmonic generation provides a potential approach to achieve a high conversion efficiency of vacuum-ultraviolet and extreme-ultraviolet sources for the advancement of spectroscopy. Here we perform an all-electron time-dependent density functional theory (TDDFT) study for the nonperturbative treatment of below- and near-threshold harmonic generation of CO and N2 diatomic molecules subject to short near-infrared laser pulses and aligned parallel to the laser field polarization. We find that with the use of different driving laser pulse shapes we can control and enhance harmonic generation through the excited state resonance structures. Our analysis reveals several novel features where the HHG signal is enhanced, boosting the conversion efficiency on the microscopic level. Depending on the pulse shape, the enhancement can reach 5 to 7 orders of magnitude as compared to the reference sine-squared laser pulse of the same duration. This work was partially supported by DOE.

  17. Enhancement of VUV and EUV generation by field-controlled resonance structures of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2016-06-01

    Below- and near-threshold harmonic generation provides a potential approach to achieve a high conversion efficiency of vacuum-ultraviolet and extreme-ultraviolet sources for the advancement of spectroscopy. Here, we perform a time-dependent density functional theory study for the nonperturbative treatment of below- and near-threshold harmonic generation of CO and N2 diatomic molecules subject to short near-infrared laser pulses and aligned parallel to the laser field polarization. We find that with the use of different driving laser pulse shapes, we can control and enhance harmonic generation through the excited-state resonance structures. Depending on the pulse shape, the enhancement can reach five to seven orders of magnitude as compared to the reference sine-squared laser pulse of the same duration. The results for different driving laser intensities are also presented and discussed in detail.

  18. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    NASA Astrophysics Data System (ADS)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J.

    2016-07-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10-4 G0 (1 G0 = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  19. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.

    PubMed

    Purchase, R L; de Groot, H J M

    2015-06-06

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m(-2) d(-1) for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum-classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We

  20. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

    PubMed Central

    Purchase, R. L.; de Groot, H. J. M.

    2015-01-01

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m−2 d−1 for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum–classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics

  1. Coherence, Complexity and Creativity

    NASA Astrophysics Data System (ADS)

    Arecchi, Fortunato Tito

    We review the ideas and experiments that established the onset of laser coherence beyond a suitable threshold. That threshold is the first of a chain of bifurcations in a non linear dynamics, leading eventually to deterministic chaos in lasers. In particular, the so called HC behavior has striking analogies with the electrical activity of neurons. Based on these considerations, we develop a dynamical model of neuron synchronization leading to coherent global perceptions. Synchronization implies a transitory control of neuron chaos. Depending on the time duration of this control, a cognitive agent has different amounts of awareness. Combining this with a stream of external inputs, one can point at an optimal use of internal resources, that is called cognitive creativity. While coherence is associated with long range correlations, complexity arises whenever an array of coupled dynamical systems displays multiple paths of coherence. What is the relation among the three concepts in the title? While coherence is associated with long range correlations, complexity arises whenever an array of coupled dynamical systems displays multiple paths of coherence. Creativity corresponds to a free selection of a coherence path within a complex nest. As sketched above, it seems dynamically related to chaos control.

  2. Coherent control time-dependent methods for determining eigenvalues of Hermitian matrices with applications to electronic structure computations

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Raghunathan; Nest, Mathias; Pollak, Eli

    2012-05-01

    Three different methods that are based on the coherent control of a time evolved wavefunction are used to determine the eigenvalues of Hermitian matrices. These methods are of special interest for determining eigenvalues of very large matrices and they replace the standard matrix diagonalization by a minimization problem of a few optimal time or phase variables. Upon inversion, the optimal time or phase variables directly provide the energies of higher eigenstates spanned by the initial wavefunction, without having to compute the wavefunctions themselves. The methods are applied to determine the electronic energies of the He and C atoms as well as a model harmonic oscillator system. All three methods scale as N 2 for a matrix whose dimension is N and they use as input only the overlap of the time evolved initial wavefunction with itself.

  3. Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.

    2010-01-01

    The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.

  4. Coherent control of the route of an ultrafast magnetic phase transition via low-amplitude spin precession.

    PubMed

    de Jong, J A; Razdolski, I; Kalashnikova, A M; Pisarev, R V; Balbashov, A M; Kirilyuk, A; Rasing, Th; Kimel, A V

    2012-04-13

    Time-resolved magneto-optical imaging of laser-excited rare-earth orthoferrite (SmPr)FeO3 demonstrates that a single 60 fs circularly polarized laser pulse is capable of creating a magnetic domain on a picosecond time scale with a magnetization direction determined by the helicity of light. Depending on the light intensity and sample temperature, pulses of the same helicity can create domains with opposite magnetizations. We argue that this phenomenon relies on a twofold effect of light which (i) instantaneously excites coherent low-amplitude spin precession and (ii) triggers a spin reorientation phase transition. The former dynamically breaks the equivalence between two otherwise degenerate states with opposite magnetizations in the high-temperature phase and thus controls the route of the phase transition.

  5. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  6. The Trapped-Ion Qubit:. Coherent Control in Infinite-Dimensional Quantum Systems

    NASA Astrophysics Data System (ADS)

    Rangan, C.

    Theories of quantum control have, until recently, made the assumption that the Hilbert space of a quantum system can be truncated to finite dimensions. Such truncations, which can be achieved for most quantum systems via bandwidth restrictions, have enabled the development of a rich variety of quantum control and optimal control schemes. Recent studies in quantum information processing have addressed the control of infinite-dimensional quantum systems such as the quantum states of a trapped-ion. Controllability in an infinite-dimensional quantum system is hard to prove with conventional methods, and infinite-dimensional systems provide unique challenges in designing control fields. In this paper, we will discuss the control of a popular system for quantum computing the trapped-ion qubit. This system, modeled by a spin-half particle coupled to a quantized harmonic oscillator, is an example for a surprisingly rich variety of control problems. We will show how this infinite-dimensional quantum system can be examined via the lens of the Finite Controllability Theorem, two-color STIRAP, the generalized Heisenberg system, etc. These results are important from the viewpoint of developing more efficient quantum control protocols, particularly in quantum computing systems. This work shows how one can expand the scope of quantum control research to beyond that of finite-dimensional quantum systems.

  7. Using the binding site to control the magnetic and spintronic properties of a single magnetic molecule in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Warner, Ben; El Hallak, Fadi; Prueser, Henning; Gill, Tobias G.; Sharp, John; Fisher, Andrew J.; Persson, Mats; Hirjibehedin, Cyrus F.

    2015-03-01

    Many proposals outline the use of single magnetic molecules in new applications in information technology and spintronics, with the intention of creating new devices based on phenomena that only manifest at the atomic scale. To create these devices it will be necessary to engineer the required properties, whether through controlling the molecule's chemical makeup or its interaction with the external surroundings. The latter may involve using interactions with the supporting substrate surface, which have been shown to not only modify the molecule properties but also create effects such as chirality. Here we utilize the surface interaction to modify the properties of FePc on copper nitride, a thin insulator, above bulk Cu(001). Using scanning tunneling microscopy we show that the interaction with the surface is defined by the binding site of the central Fe atom in the molecule. By performing elastic and inelastic tunneling spectroscopy and comparing the results to DFT modeling, we explore how coupling to the surface can be used to control the molecular orbitals and the accessibility of the spin excitations. This demonstrates the importance of controlling molecule-substrate coupling down to the atomic scale for the development of single molecule devices.

  8. Methodologies for Controlled Conjugated Polymer Synthesis and Characterization of Small Molecule Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Bakus, Ronald C., II

    Conjugated polymers can broadly be described as materials which have a structure composed of repeating monomeric units that show extended electronic communication along the backbone. The extended pi-conjugated nature of these materials gives them a set of unique electronic and optical properties, and has lead to their application in a multitude of various technologies. Of specific interest is the application of these materials in various organic electronics applications, such as solution processed plastic solar cells, light emitting diodes, and field effect transistors. Herein is described the synthesis of a class of well-defined, highly active organometallic initiators for use in controlled polymer synthesis. The polymers prepared using the nickel based initiators in Grignard metathesis polymerization posses the following characteristics: rapid generation of high molecular weight polymers, low polydispersity, linear relation between monomer conversion and molecular weight growth, and the selective transfer of an initiating moiety from the organometallic initiator to one polymer chain end. This initiator was then used to prepare a new class of biosensor materials wherein the polymer had a well defined biosensing end group. Additionally, a series of small molecule donors have been developed that have shown promise in a wide variety of organic electronic applications. These materials can broadly be described as having a D'ADAD' type structure where D, D', and A correspond to electron rich and electron deficient aromatic heterocycles, respectively. By tuning the identity of these groups and the side-chains attached to them, one can subtly influence the optical, electronic, and physical properties of the materials. These materials were investigated via single crystal x-ray diffraction studies to gain insight into how changes to the molecule structure such as heteroatom regioisomerism and isoelectronic substitutions effected the molecular structure. These changes in

  9. Rap1-GTP-interacting Adaptor Molecule (RIAM) Protein Controls Invasion and Growth of Melanoma Cells*

    PubMed Central

    Hernández-Varas, Pablo; Coló, Georgina P.; Bartolomé, Ruben A.; Paterson, Andrew; Medraño-Fernández, Iria; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Sánchez-Mateos, Paloma; Lafuente, Esther M.; Boussiotis, Vassiliki A.; Strömblad, Staffan; Teixidó, Joaquin

    2011-01-01

    The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells. PMID:21454517

  10. Quantum control of ultracold atoms and molecules via linearly chirped laser pulses and optical frequency combs

    NASA Astrophysics Data System (ADS)

    Collins, Thomas A.

    This work investigates the potential of performing high yield quantum control operations on atomic and molecular systems using frequency modulated laser fields. The effectiveness of a single laser pulse in creating desired superposition states within the valence shell of Rubidium and the utilization of a single pulse train in order to perform internal state cooling of diatomic hetero-nuclear molecules, in this case KRb, are investigated. These methods are an alternative to the current protocol in the field of quantum control which typically calls for the employment of two laser fields, be they single pulses or pulse trains. Manipulation of the state of the valence electron within Rubidium was studied for two different models of the hyperfine levels of the 5s and 5p orbitals: a three level Λ system and the more realistic four level system accounting for all allowed optical transitions. Numerical analysis of the population dynamics that occur within the system during the time of interaction with the pulse was carried out for various values of the field parameters as well as for two different forms of the pulse envelope. Population inversion within the hyperfine levels of the 5s orbital of Rubidium is demonstrated for a single linearly polarized, linearly down chirped, laser pulse of nanosecond duration and beam intensity on the order of kWcm2 . Superpositions of equally populated hyperfine states, a phenomenon which is crucial in the development of qubits, were also observed for certain values of the field parameters. The results of this analysis are applicable to 85Rb and 87Rb and both the D1 and D2 transitions and are valid for the two models used. For the case of internal state cooling, the power spectrum of a standard pulse train was compared to that of a pulse with sinusoidal phase modulation revealing that the envelope of the frequency comb associated with such a pulse train is controllable via the phase modulation. Thus through frequency modulation the

  11. Replication of individual DNA molecules under electronic control using a protein nanopore

    NASA Astrophysics Data System (ADS)

    Olasagasti, Felix; Lieberman, Kate R.; Benner, Seico; Cherf, Gerald M.; Dahl, Joseph M.; Deamer, David W.; Akeson, Mark

    2010-11-01

    Nanopores can be used to analyse DNA by monitoring ion currents as individual strands are captured and driven through the pore in single file by an applied voltage. Here, we show that serial replication of individual DNA templates can be achieved by DNA polymerases held at the α-haemolysin nanopore orifice. Replication is blocked in the bulk phase, and is initiated only after the DNA is captured by the nanopore. We used this method, in concert with active voltage control, to observe DNA replication catalysed by bacteriophage T7 DNA polymerase (T7DNAP) and by the Klenow fragment of DNA polymerase I (KF). T7DNAP advanced on a DNA template against an 80-mV load applied across the nanopore, and single nucleotide additions were measured on the millisecond timescale for hundreds of individual DNA molecules in series. Replication by KF was not observed when this enzyme was held on top of the nanopore orifice at an applied potential of 80 mV. Sequential nucleotide additions by KF were observed upon applying controlled voltage reversals.

  12. Interactions of light with matter: Applications to single molecule spectroscopy and quantum control

    NASA Astrophysics Data System (ADS)

    Brown, Frank Leon Halet

    Two different applications of the interaction between light and matter are discussed. First, we consider the single molecule spectra (SMS) of chromophores embedded in low temperature glasses. We demonstrate that it is possible to rationalize recent experimental results within the framework of the standard tunneling model (STM) for glassy dynamics as proposed by Anderson, Halperin and Varma and Phillips. Our analysis enables insight to be gained as to what features of the model are most important in describing experiment. Implicit in our treatment is the assumption that the two level systems, central to the STM, do not interact. The validity of this assumption is critically examined by extending the model to allow for such interactions. This complication of the theoretical model, beyond the lowest order implications of the STM, is found to influence individual spectra, but not the averaged quantities which are typically reported in the experimental literature. Our second application is a brief foray into the field of quantum control. Within the limit of weak applied fields and quadratic potentials for the control target, we describe a general method capable of determining the best possible field for affecting a desired configuration of the nuclear positions in the target. Several simple models are discussed within this framework to prove the validity of the formulation and its ease of implementation. Possibilities for extension to more complicated applications will be discussed. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307, Ph. 617-253-5668; Fax 617-253- 1690.)

  13. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    NASA Astrophysics Data System (ADS)

    Koestner, Stefan

    2009-09-01

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  14. Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field

    NASA Astrophysics Data System (ADS)

    Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François

    2016-01-01

    Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.

  15. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    PubMed

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  16. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion

    NASA Astrophysics Data System (ADS)

    Collakova, Jana; Krizova, Aneta; Kollarova, Vera; Dostal, Zbynek; Slaba, Michala; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Coherence-controlled holographic microscopy (CCHM) in low-coherence mode possesses a pronounced coherence gate effect. This offers an option to investigate the details of cellular events leading to cell death caused by cytopathic turbid emulsions. CCHM capacity was first assessed in model situations that showed clear images obtained with low coherence of illumination but not with high coherence of illumination. Then, the form of death of human cancer cells induced by treatment with biologically active phospholipids (BAPs) preparation was investigated. The observed overall retraction of cell colony was apparently caused by the release of cell-to-substratum contacts. This was followed by the accumulation of granules decorating the nuclear membrane. Then, the occurrence of nuclear membrane indentations signaled the start of damage to the integrity of the cell nucleus. In the final stage, cells shrunk and disintegrated. This indicated that BAPs cause cell death by necrosis and not apoptosis. An intriguing option of checking the fate of cancer cells caused by the anticipated cooperative effect after adding another tested substance sodium dichloroacetate to turbid emulsion is discussed on grounds of pilot experiments. Such observations should reveal the impact and mechanism of action of the interacting drugs on cell behavior and fate that would otherwise remain hidden in turbid milieu.

  17. A Small-molecule-controlled System for Efficient Pseudotyping of Prototype Foamy Virus Vectors

    PubMed Central

    Ho, Yu-Ping; Schnabel, Viktor; Swiersy, Anka; Stirnnagel, Kristin; Lindemann, Dirk

    2012-01-01

    Foamy virus (FV) vector systems have recently demonstrated their power as efficient gene transfer tools for different target tissues. Unfortunately, FVs cannot be naturally pseudotyped by heterologous viral glycoproteins due to an unusual particle morphogenesis involving a FV Env-dependent particle release process. Therefore, current FV vector systems are constrained to the broad host cell range provided by the cognate viral glycoprotein. We evaluated different approaches for pseudotyping of FV vectors, in which the specific FV Gag–Env interaction, essential for particle egress, is substituted by a small-molecule controlled heterodimerization (HD) system. In one system developed, one HD-domain (HDD) is fused to a membrane-targeting domain (MTD), such as the human immunodeficiency virus (HIV) Gag matrix (MA) subunit, with a second fused to the FV capsid protein. Coexpression of both components with different heterologous viral glycoproteins allowed an efficient, dimerizer-dependent pseudotyping of FV capsids. With this system FV vesicular stomatitis virus glycoprotein (VSV-G) pseudotype titers greater than 1 × 106 IU/ml were obtained, at levels comparable to authentic FV vector particles. As a proof-of-principle we demonstrate that Pac2 cells, naturally resistant to FV vectors, become permissive to FV VSV-G pseudotypes. Similar to other retroviral vectors, this FV pseudotyping system now enables adaptation of cell-specific targeting approaches for FVs. PMID:22472951

  18. Role of solvent environments in single molecule conductance used insulator-modified mechanically controlled break junctions

    NASA Astrophysics Data System (ADS)

    Muthusubramanian, Nandini; Maity, Chandan; Galan Garcia, Elena; Eelkema, Rienk; Grozema, Ferdinand; van der Zant, Herre; Kavli Institute of Nanoscience Collaboration; Department of Chemical Engineering Collaboration

    We present a method for studying the effects of polar solvents on charge transport through organic/biological single molecules by developing solvent-compatible mechanically controlled break junctions of gold coated with a thin layer of aluminium oxide using plasma enhanced atomic layer deposition (ALD). The optimal oxide thickness was experimentally determined to be 15 nm deposited at ALD operating temperature of 300°C which yielded atomically sharp electrodes and reproducible single-barrier tunnelling behaviour across a wide conductance range between 1 G0 and 10-7 G0. The insulator protected MCBJ devices were found to be effective in various solvents such as deionized water, phosphate buffered saline, methanol, acetonitrile and dichlorobenzene. The yield of molecular junctions using such insulated electrodes was tested by developing a chemical protocol for synthesizing an amphipathic form of oligo-phenylene ethynylene (OPE3-PEO) with thioacetate anchoring groups. This work has further applications in studying effects of solvation, dipole orientation and other thermodynamic interactions on charge transport. Eu Marie Curie Initial Training Network (ITN). MOLECULAR-SCALE ELECTRONICS: ``MOLESCO'' Project Number 606728.

  19. Heme binding site in apomyoglobin may be effectively targeted with small molecules to control aggregation.

    PubMed

    Azami-Movahed, Mehrnaz; Shariatizi, Sajad; Sabbaghian, Marjan; Ghasemi, Atiyeh; Ebrahim-Habibi, Azadeh; Nemat-Gorgani, Mohsen

    2013-02-01

    A number of ligands with affinities for the heme binding site of apomyoglobin were tested to control amorphous and fibrillar aggregation in the protein. Several techniques, including fluorescence, dynamic light scattering, transmission electron microscopy, dot blot analysis combined with viability studies were employed for structural characterization and cytotoxicity assessment of the intermediate and final protein structures formed during the aggregation process. Of the small molecules investigated, chrysin and Nile red with high structural similarities to heme were chosen for further studies. Only fibril formation was found to be prevented by Nile red, while chrysin, with a greater structural flexibility, was able to prevent both types of aggregate formation. The two ligands were found to influence aggregation at different stages of intermediate structure formation, an ability determined by their degrees of similarities with heme. Based on structural characterization and toxicity studies, it is concluded that ligands similar in structure to heme may be effective in influencing various stages of aggregate formation and toxicity potencies of the protein structures. Since metalloproteins constitute more than thirty percent of all known proteins, it is concluded that the present strategy may be of general significance.

  20. Nonlinear dynamics in coupled fuzzy control systems I. Coherence and chaos-frustration in triangle configuration

    NASA Astrophysics Data System (ADS)

    Takatsuka, Kazuo

    Nonlinear dynamics and chaos are studied in a system for which a complete set of equations of motion such as equations of Newton, Navier-Stokes and Van der Pol, is not available. As a very general system as such, we consider coupled classical spins (pendulums), each of which is under control by a fuzzy system that is designed to align the spin to an unstable fixed point. The fuzzy system provides a deterministic procedure to control an object without use of a differential equation. The positions and velocities of the spins are monitored periodically and each fuzzy control gives a momentum to its associated spin in the reverse directions. If the monitoring is made with an interval short enough, the spin-spin interactions are overwhelmed by the fuzzy control and the system converges to a state as designed. However, a long-interval monitoring induces dynamics of “too-late response”, and thereby results in chaos. A great variety of dynamics are generated under very delicate balance between the fuzzy control and the spin-spin interaction, in which two independent mechanisms of creating negative and positive “Liapunov exponents” interact with each other.

  1. Surface single-molecule dynamics controlled by entropy at low temperatures

    NASA Astrophysics Data System (ADS)

    Gehrig, J. C.; Penedo, M.; Parschau, M.; Schwenk, J.; Marioni, M. A.; Hudson, E. W.; Hug, H. J.

    2017-02-01

    Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures.

  2. Surface single-molecule dynamics controlled by entropy at low temperatures

    PubMed Central

    Gehrig, J. C.; Penedo, M.; Parschau, M.; Schwenk, J.; Marioni, M. A.; Hudson, E. W.; Hug, H. J.

    2017-01-01

    Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures. PMID:28181501

  3. Surface single-molecule dynamics controlled by entropy at low temperatures.

    PubMed

    Gehrig, J C; Penedo, M; Parschau, M; Schwenk, J; Marioni, M A; Hudson, E W; Hug, H J

    2017-02-09

    Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures.

  4. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule.

    PubMed

    Lee, Sang Gon; Jeong, Jae Han; Lee, Kyung Min; Jeong, Kyu Ho; Yang, Huisuk; Kim, Miroo; Jung, Hyungil; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    Nanostructured lipid carriers (NLCs) were employed to formulate a lipophilic drug into hydrophilic polymeric microneedles (MNs). Hyaluronic acid (HA) was selected as a hydrophilic and bioerodible polymer to fabricate MNs, and nile red (NR) was used as a model lipophilic molecule. NR-loaded NLCs were consolidated into the HA-based MNs to prepare NLC-loaded MNs (NLC-MNs). A dispersion of NLCs was prepared by high-pressure homogenization after dissolving NR in Labrafil and mixing with melted Compritol, resulting in 268 nm NLCs with a polydispersity index of 0.273. The NLC dispersion showed a controlled release of NR over 24 hours, following Hixson-Crowell's cube root law. After mixing the NLC dispersion with the HA solution, the drawing lithography method was used to fabricate NLC-MNs. The length, base diameter, and tip diameter of the NLC-MNs were approximately 350, 380, and 30 μm, respectively. Fluorescence microscopic imaging of the NLC-MNs helped confirm that the NR-loaded NLCs were distributed evenly throughout the MNs. In a skin permeation study performed using a Franz diffusion cell with minipig dorsal skin, approximately 70% of NR was localized in the skin after 24-hour application of NLC-MNs. Confocal laser scanning microscopy (z-series) of the skin at different depths showed strong fluorescence intensity in the epidermal layer, which appeared to spread out radially with the passage of time. This study indicated that incorporation of drug-loaded NLCs into MNs could represent a promising strategy for controlled dermal delivery of lipophilic drugs.

  5. Coherent molecular transistor: Control through variation of the gate wave function

    SciTech Connect

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  6. Generating Molecular Rovibrational Coherence by Two-Photon Femtosecond Photoassociation of Thermally Hot Atoms

    SciTech Connect

    Rybak, Leonid; Levin, Liat; Amitay, Zohar; Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michal; Moszynski, Robert; Koch, Christiane P.

    2011-12-30

    The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.

  7. Single-Molecule Diodes with High On/Off Ratios Through Environmental Control

    NASA Astrophysics Data System (ADS)

    Capozzi, Brian; Xia, Jianlong; Dell, Emma; Adak, Olgun; Liu, Zhen-Fei; Neaton, Jeffrey; Campos, Luis; Venkataraman, Latha

    2015-03-01

    Single-Molecule diodes were first proposed with an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Progress in molecular electronics has led to the realization of several single-molecule diodes; these have relied on asymmetric molecular backbones, asymmetric molecule-electrode linkers, or asymmetric electrode materials. Despite these advances, molecular diodes have had limited potential for functional applications due to several pitfalls, including low rectification ratios (``on''/``off'' current ratios <10). Here, we introduce a powerful approach for inducing rectification in conventionally symmetric single-molecule junctions, taking advantage of environmental factors about the junction. By utilizing an asymmetric environment instead of an asymmetric molecule, we reproducibly achieve high rectification ratios at low operating voltages for molecular junctions based on a family of symmetric small-gap molecules. This technique serves as an unconventional approach for developing functional molecular-scale devices and probing their charge transport characteristics. Furthermore, this technique should be applicable to other nanoscale devices, providing a general route for tuning device properties.

  8. Controlling of Goos-Hänchen shift via biexciton coherence in a quantum dot

    NASA Astrophysics Data System (ADS)

    Asadpour, S. H.; Nasehi, R.; Mahmoudi, M.; Soleimani, H. R.

    2015-04-01

    Controlling of the Goos-Hänchen (GH) shifts of the reflected and transmitted probe pulses through a cavity containing four-level GaAs/AlGaAs quantum dot with 15 periods of 17.5 nm GaAs wells and 25-nm Al0.3Ga0.7As barriers is investigated. Under appropriate conditions, the probe absorption can be converted to the probe gain, therefore, the controlling of negative and positive GH shift in the both reflected and transmitted probe beams can be occurred simultaneously. Our obtained results show that the group index of the probe beams could be negative or positive in both reflected and transmitted pulses. Therefore, simultaneous subluminal or superluminal light propagation in reflected and transmitted pulses can be achieved.

  9. Tunable Composite Metamaterials with Imbedded Coherently Controllable Atomic or Molecular Materials

    DTIC Science & Technology

    2010-10-07

    important issue related to the practical design and manufacture of controllable metamaterials. This pertains to the inherent distribution in sizes... new transmission band that develops below ωp, for the D1 and D2 lines in the presence (solid) and in the absence (dotted) of an appropriate...understanding of composite metamaterials at optical and near-infra-red frequencies by involving suitable atomic / molecular media in the construction the

  10. Incorporating real time velocity map image reconstruction into closed-loop coherent control

    NASA Astrophysics Data System (ADS)

    Rallis, C. E.; Burwitz, T. G.; Andrews, P. R.; Zohrabi, M.; Averin, R.; De, S.; Bergues, B.; Jochim, Bethany; Voznyuk, A. V.; Gregerson, Neal; Gaire, B.; Znakovskaya, I.; McKenna, J.; Carnes, K. D.; Kling, M. F.; Ben-Itzhak, I.; Wells, E.

    2014-11-01

    We report techniques developed to utilize three-dimensional momentum information as feedback in adaptive femtosecond control of molecular dynamics. Velocity map imaging is used to obtain the three-dimensional momentum map of the dissociating ions following interaction with a shaped intense ultrafast laser pulse. In order to recover robust feedback information, however, the two-dimensional momentum projection from the detector must be inverted to reconstruct the full three-dimensional momentum of the photofragments. These methods are typically slow or require manual inputs and are therefore accomplished offline after the images have been obtained. Using an algorithm based upon an "onion-peeling" (also known as "back projection") method, we are able to invert 1040 × 1054 pixel images in under 1 s. This rapid inversion allows the full photofragment momentum to be used as feedback in a closed-loop adaptive control scheme, in which a genetic algorithm tailors an ultrafast laser pulse to optimize a specific outcome. Examples of three-dimensional velocity map image based control applied to strong-field dissociation of CO and O2 are presented.

  11. Calibration of liquid crystal ultrafast pulse shaper with common-path spectral interferometry and application to coherent control with a covariance matrix adaptation evolutionary strategy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Schlup, Philip; Lunacek, Monte; Whitley, Darrell; Bartels, Randy A.

    2008-03-01

    An ultrafast pulse shaper for coherent control applications is described, complete with a simple, reliable calibration technique and an advanced learning control algorithm. The calibration technique makes use of a common-path interferometer, producing less noisy measurements than a conventional Mach-Zehnder interferometer. A covariance matrix adaptation evolutionary strategy (ES) is demonstrated to perform better than a traditional ES for high-dimensional search landscapes.

  12. Interference-induced transparency and coherent control of quantum systems by frequency-chirped pulses

    NASA Astrophysics Data System (ADS)

    Nazarkin, A.; Netz, R.; Sauerbrey, R.

    2003-04-01

    A selective excitation technique based on light interference is proposed to control quantum systems by frequency-chirped laser fields. Interference of two identical, delayed and phase-shifted pulses is used to modulate the laser spectrum and project it onto the time domain. By adjusting the delay and phase shift, selected transitions can be brought into the “holes” of the spectrum and thus remain nonexcited. The possibility to selectively manipulate or even “shut down” resonant transitions, making the medium transparent to the field, is shown for the Rb atom.

  13. Coherent control of a V-type three-level system in a single quantum dot.

    PubMed

    Wang, Q Q; Muller, A; Cheng, M T; Zhou, H J; Bianucci, P; Shih, C K

    2005-10-28

    In a semiconductor quantum dot, the IIx and IIy transitions to the polarization eigenstates, |x> and |y>, naturally form a three-level V-type system. Using low-temperature polarized photoluminescence spectroscopy, we have investigated the exciton dynamics arising under strong laser excitation. We also explicitly solved the density matrix equations for comparison with the experimental data. The polarization of the exciting field controls the coupling between the otherwise orthogonal states. In particular, when the system is initialized into \\Y>, a polarization-tailored pulse can swap the population into |x>, and vice versa, effectively operating on the exciton spin.

  14. Coherent Control of Electron-Phonon Quantum Kinetics: Exploringthe Weak and the Strong Coupling Regimes

    SciTech Connect

    Wegener, Martin; Chemla, Daniel S.

    1998-09-16

    We present an investigation of the very early stage of the dynamics of optically excited semiconductors in the Quantum Kinetics regime. We demonstrate that the wave-like nature of electronic elementary excitations can be observed during their interaction and, furthermore, that this interaction can be quantum mechanically controlled by use of phase locked laser pulses. We present a simple model that accounts well for the experimental results for the small and large coupling constants case, and also provides an intuitive understanding of the underlying physics.

  15. Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression

    DOEpatents

    Douglas, David R [Newport News, VA; Tennant, Christopher D [Williamsburg, VA

    2012-07-10

    A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

  16. Coherent control of molecular rotational state populations by periodic phase-step modulation

    SciTech Connect

    Zhang Shian; Wu Meizhen; Lu Chenhui; Jia Tianqing; Sun Zhenrong

    2011-10-15

    We theoretically demonstrate that the molecular rotational state populations through an impulsive nonresonant Raman process can be manipulated by shaping the femtosecond laser pulse with a periodic phase-step modulation. We show that, by precisely controlling these parameters characterizing the periodic phase-step modulation, both the odd and even rotational state populations can be completely suppressed or reconstructed as that induced by the transform-limited laser pulse, and the relative excitation between the odd and even rotational state populations can also be obtained. Furthermore, we show that the field-free molecular alignment can be manipulated due to the modulation of the odd and even rotational state populations.

  17. Coherent control of H2+ ionization with intense XUV+IR fields

    NASA Astrophysics Data System (ADS)

    Madsen, C. B.; Esry, B. D.

    2011-05-01

    We recently developed a method to calculate how the electron and nuclei of the H2+share the energy absorbed from an intense laser pulse. While neither the electron energy spectrum nor the nuclear energy spectrum showed much structure separately, their joint energy spectrum revealed considerable structure. It showed multiphoton absorption with the energy shared between the nuclei and the electron. A number of questions followed our initial results: Can the joint energy distribution be used to map the vibrational wave function? To what extent can we control the asymptotic energies of the ionization products? The model behind above Coulomb threshold explosion [PRL 97, 013003 (2006)] seems to give a consistent explanation for the calculated energy distributions. We present joint energy distributions of the ionization resulting from an IR+XUV pump-probe laser scheme. In this way, we may investigate the controllability of the asymptotic energies of the ionization fragments and explore the possibility of using the joint energy distribution to map the vibrational wave function. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  18. Controlled Encapsulation of Functional Organic Molecules within Metal-Organic Frameworks: In Situ Crystalline Structure Transformation.

    PubMed

    Guan, Jinju; Hu, Yu; Wang, Yu; Li, Hongfeng; Xu, Zhiling; Zhang, Tao; Wu, Peng; Zhang, Suoying; Xiao, Gengwu; Ji, Wenlan; Li, Linjie; Zhang, Meixuan; Fan, Yun; Li, Lin; Zheng, Bing; Zhang, Weina; Huang, Wei; Huo, Fengwei

    2017-01-23

    Functional organic molecules/metal-organic frameworks composites can be obtained by in situ crystalline structure transformation from ZIF-L to ZIF-8-L under double solvent conditions. Interestingly, the as-prepared molecules/ZIF-8-L composites with the leaf-like morphology exhibit good fluorescence properties and size selectivity in fluorescent quenchers due to the molecular sieving effect of the well-defined microporous ZIF-8-L.

  19. Designing Freeform Lenses for Intensity and Phase Control of Coherent Light with Help from Geometry and Mass Transport

    NASA Astrophysics Data System (ADS)

    Oliker, Vladimir

    2011-09-01

    We study here the problem of determining a system of two refractive interfaces transforming a plane wavefront of a given shape and radiation intensity into a coherent output plane wavefront with prescribed output position, shape and intensity. Such interfaces can be refracting surfaces of two different lenses or of one lens. In geometrical optics approximation, the analytic formulation of this problem in both cases requires construction of maps with controlled Jacobian. Though this Jacobian can be expressed as a second order partial differential equation of Monge-Ampère type for a scalar function defining one of the refracting surfaces, its analysis is not straightforward. In this paper we use a geometric approach for reformulating the problem in certain associated measures and defining weak solutions. Existence and uniqueness of weak solutions in Lipschitz classes for both cases are established by variational methods. Our results show, in particular, that two types of interfaces exist in each case for the same data: one of these types always consists of two interfaces, one of which is concave or convex and the second convex or concave, while the interfaces of the second type may be neither convex nor concave. The availability of a design with convex/concave lenses is particularly important for fabrication. The truly geometric nature of this problem permits its statement and investigation in {mathbb {R}^{N+1}, N ≥q 1}.

  20. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  1. Coherent control of the Goos-Hänchen shift via Fano interference

    NASA Astrophysics Data System (ADS)

    Liu, Shaopeng; Yang, Wen-Xing; Zhu, Zhonghu

    2016-04-01

    A scheme of enhanced Goos-Hänchen (GH) shifts in reflected and transmitted light beams is exploited in a cavity, where an asymmetric double AlGaAs/GaAs quantum well structure with resonant tunneling to a common continuum is employed as the intracavity medium. With the help of Fano-type interference induced by resonant tunneling, the generated GH shifts that contain a negative lateral shift in reflected light beam and a positive lateral shift in transmitted light beam are found to be significantly enhanced. More interestingly, these GH shifts in reflected and transmitted light beams are modulated by means of a control beam and external bias voltage, in which maximum negative shift of 1.86 mm and positive shift of 0.37 mm are achievable.

  2. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    DOEpatents

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  3. Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules.

    PubMed

    Jakobs, Sebastian; Narayan, Awadhesh; Stadtmüller, Benjamin; Droghetti, Andrea; Rungger, Ivan; Hor, Yew S; Klyatskaya, Svetlana; Jungkenn, Dominik; Stöckl, Johannes; Laux, Martin; Monti, Oliver L A; Aeschlimann, Martin; Cava, Robert J; Ruben, Mario; Mathias, Stefan; Sanvito, Stefano; Cinchetti, Mirko

    2015-09-09

    We present a rational design approach to customize the spin texture of surface states of a topological insulator. This approach relies on the extreme multifunctionality of organic molecules that are used to functionalize the surface of the prototypical topological insulator (TI) Bi2Se3. For the rational design we use theoretical calculations to guide the choice and chemical synthesis of appropriate molecules that customize the spin texture of Bi2Se3. The theoretical predictions are then verified in angular-resolved photoemission experiments. We show that, by tuning the strength of molecule-TI interaction, the surface of the TI can be passivated, the Dirac point can energetically be shifted at will, and Rashba-split quantum-well interface states can be created. These tailored interface properties-passivation, spin-texture tuning, and creation of hybrid interface states-lay a solid foundation for interface-assisted molecular spintronics in spin-textured materials.

  4. "Stirred, Not Shaken": Vibrational Coherence Can Speed Up Electronic Absorption.

    PubMed

    Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R

    2015-08-27

    We have recently proposed a laser control scheme for ultrafast absorption in multilevel systems by parallel transfer (J. Phys. Chem. Lett. 2015, 6, 1724). In this work we develop an analytical model that better takes into account the main features of electronic absorption in molecules. We show that the initial vibrational coherence in the ground electronic state can be used to greatly enhance the rate and yield of absorption when ultrashort pulses are used, provided that the phases of the coherences are taken into account. On the contrary, the initial coherence plays no role in the opposite limit, when a single long pulse drives the optical transition. The theory is tested by numerical simulations in the first absorption band of Na2.

  5. Quantum interference and control of the optical response in quantum dot molecules

    SciTech Connect

    Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M.

    2013-11-25

    We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.

  6. Light-induced director-controlled microassembly of dye molecules from a liquid crystal matrix

    NASA Astrophysics Data System (ADS)

    Voloschenko, D.; Lavrentovich, O. D.

    1999-11-01

    We report on a light-induced phenomenon in dye-doped liquid crystals (LCs) with the distinctive features of molecular transport and assembly at micron scales. Under single-beam laser irradiation, the dye molecules phase separate from the LC host and assemble onto the cell substrate. Although the intensity of incident light is uniform within the irradiated area, the density of the adsorbed dye is modulated in accord with the director modulation of the LC. The dye molecules form a surface imprint that portrays orientational distortions of the LC host.

  7. Holographic microscopy in low coherence

    NASA Astrophysics Data System (ADS)

    Chmelík, Radim; Petráček, Jiří; Slabá, Michala; Kollárová, Věra; Slabý, Tomáš; Čolláková, Jana; Komrska, Jiří; Dostál, Zbyněk.; Veselý, Pavel

    2016-03-01

    Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.

  8. Recoil Redsfhit with Coherence

    NASA Astrophysics Data System (ADS)

    Gallo, C. F.

    2009-05-01

    ``Recoil Redshift'' is due to the elastic interaction of photons/light with any individual electron, proton, ion, atom or molecule. This generalized Compton effect describes an individual photon-particle interaction where Energy, Linear Momentum and Angular Momentum are conserved, with NO change in the internal energy of the particle. Per Compton, the lost photon energy is zero in the forward photon propagation direction, and the energy loss increases with scattering angle. This is an INDIVIDUAL INcoherent process. To describe collective coherent effects, add/include Huygens forward reconstruction from multiple photon/particle redshifted scatterings. A coherent redshift will occur if the scattered photons' energies are WITHIN the initial linewidth. This yields an asymmetrically broadened redshifted line in the forward coherent direction with clear imaging properties. This is a coherent redshifted version of Rayleigh scattering which assumes identical non-redshifted photons. BUT the Compton Conservation energy-loss process must occur. The search for this small Recoil redshift is a good research project for ultra- precise ``frequency combs'' in gases (atomic and molecular), plasmas and combinations.

  9. Controlled gelation kinetics of cucurbit[7]uril-adamantane cross-linked supramolecular hydrogels with competing guest molecules

    PubMed Central

    Chen, Hao; Hou, Shengzhen; Ma, Haili; Li, Xu; Tan, Yebang

    2016-01-01

    Gelation kinetics of hydrogels is closely linked to many applications such as the development of injectable and printable hydrogels. However, the control of gelation kinetics without compromising the structure and other properties of the hydrogels, remains a challenge. Here, we demonstrate a method to control the gelation kinetics of cucurbit[7]uril-adamantane (CB[7]-AD) cross-linked supramolecular hydrogels by using competing guest molecules. The association between CB[7] and AD moieties on the polymer backbone was impeded by pre-occupying the CB[7] cavity with competing guest molecules. By using various guest molecules and concentrations, the gelation of the hydrogels could be varied from seconds to hours. The strong interaction of CB[7]-AD pair endue the hydrogels good mechanical properties and stability. Moreover, the binding of functionalized guest molecules of CB[7] moieties offers a facile approach for tailoring of the hydrogels’ scaffold. Combined with hydrogel injection and printing technology, this method offers an approach for the development of hydrogels with advanced temporal and spatial complexity. PMID:26846437

  10. Controlled gelation kinetics of cucurbit[7]uril-adamantane cross-linked supramolecular hydrogels with competing guest molecules

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Hou, Shengzhen; Ma, Haili; Li, Xu; Tan, Yebang

    2016-02-01

    Gelation kinetics of hydrogels is closely linked to many applications such as the development of injectable and printable hydrogels. However, the control of gelation kinetics without compromising the structure and other properties of the hydrogels, remains a challenge. Here, we demonstrate a method to control the gelation kinetics of cucurbit[7]uril-adamantane (CB[7]-AD) cross-linked supramolecular hydrogels by using competing guest molecules. The association between CB[7] and AD moieties on the polymer backbone was impeded by pre-occupying the CB[7] cavity with competing guest molecules. By using various guest molecules and concentrations, the gelation of the hydrogels could be varied from seconds to hours. The strong interaction of CB[7]-AD pair endue the hydrogels good mechanical properties and stability. Moreover, the binding of functionalized guest molecules of CB[7] moieties offers a facile approach for tailoring of the hydrogels’ scaffold. Combined with hydrogel injection and printing technology, this method offers an approach for the development of hydrogels with advanced temporal and spatial complexity.

  11. Controlled gelation kinetics of cucurbit[7]uril-adamantane cross-linked supramolecular hydrogels with competing guest molecules.

    PubMed

    Chen, Hao; Hou, Shengzhen; Ma, Haili; Li, Xu; Tan, Yebang

    2016-02-05

    Gelation kinetics of hydrogels is closely linked to many applications such as the development of injectable and printable hydrogels. However, the control of gelation kinetics without compromising the structure and other properties of the hydrogels, remains a challenge. Here, we demonstrate a method to control the gelation kinetics of cucurbit[7]uril-adamantane (CB[7]-AD) cross-linked supramolecular hydrogels by using competing guest molecules. The association between CB[7] and AD moieties on the polymer backbone was impeded by pre-occupying the CB[7] cavity with competing guest molecules. By using various guest molecules and concentrations, the gelation of the hydrogels could be varied from seconds to hours. The strong interaction of CB[7]-AD pair endue the hydrogels good mechanical properties and stability. Moreover, the binding of functionalized guest molecules of CB[7] moieties offers a facile approach for tailoring of the hydrogels' scaffold. Combined with hydrogel injection and printing technology, this method offers an approach for the development of hydrogels with advanced temporal and spatial complexity.

  12. Partially coherent surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Norrman, Andreas; Ponomarenko, Sergey A.; Friberg, Ari T.

    2016-12-01

    We formulate a framework to tailor the electromagnetic coherence of polychromatic surface plasmon polaritons (SPPs) at a metal-air interface by controlling the correlations of the excitation light. The formalism covers stationary and nonstationary SPP fields of arbitrary spectra. We show that narrowband SPPs are virtually propagation invariant and strictly polarized, whereas the coherence properties of broadband SPPs can be widely tuned to specific applications. The connection between the coherence state of the light source and the ensuing SPP field establishes a novel paradigm in statistical plasmonics with far-reaching implications for plasmon coherence engineering.

  13. 120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator.

    PubMed

    Wang, Yixin; Kasai, Keisuke; Omiya, Tatsunori; Nakazawa, Masataka

    2013-11-18

    We report a polarization-multiplexed, 10 Gsymbol/s 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator (OVCO). The OVCO enables us to realize a low phase noise optical phase-locked loop (OPLL) due to its wideband operation independent of the frequency modulation (FM) bandwidth of an LD. As a result, 120 Gbit/s, 64 QAM data were successfully transmitted over 150 km with a power penalty as low as 1 dB.

  14. A Mechanofluorochromic Push-Pull Small Molecule with Aggregation-Controlled Linear and Nonlinear Optical Properties.

    PubMed

    Jiang, Yue; Gindre, Denis; Allain, Magali; Liu, Ping; Cabanetos, Clément; Roncali, Jean

    2015-08-05

    A small push-pull molecule involving a diphenylamine substituted by an oligo-oxyethylene chain is described. The compound exhibits aggregation-induced emission with solvent-dependent emission wavelength. Spin-cast deep-red amorphous films rapidly self-reorganize into colorless crystalline films which exhibit mechanofluorochromism and aggregation-induced second-harmonic generation.

  15. Ii Chain Controls the Transport of Major Histocompatibility Complex Class II Molecules to and from Lysosomes

    PubMed Central

    Brachet, Valérie; Raposo, Graça; Amigorena, Sebastian; Mellman, Ira

    1997-01-01

    Major histocompatibility complex class II molecules are synthesized as a nonameric complex consisting of three αβ dimers associated with a trimer of invariant (Ii) chains. After exiting the TGN, a targeting signal in the Ii chain cytoplasmic domain directs the complex to endosomes where Ii chain is proteolytically processed and removed, allowing class II molecules to bind antigenic peptides before reaching the cell surface. Ii chain dissociation and peptide binding are thought to occur in one or more postendosomal sites related either to endosomes (designated CIIV) or to lysosomes (designated MIIC). We now find that in addition to initially targeting αβ dimers to endosomes, Ii chain regulates the subsequent transport of class II molecules. Under normal conditions, murine A20 B cells transport all of their newly synthesized class II I-Ab αβ dimers to the plasma membrane with little if any reaching lysosomal compartments. Inhibition of Ii processing by the cysteine/serine protease inhibitor leupeptin, however, blocked transport to the cell surface and caused a dramatic but selective accumulation of I-Ab class II molecules in lysosomes. In leupeptin, I-Ab dimers formed stable complexes with a 10-kD NH2-terminal Ii chain fragment (Ii-p10), normally a transient intermediate in Ii chain processing. Upon removal of leupeptin, Ii-p10 was degraded and released, I-Ab dimers bound antigenic peptides, and the peptide-loaded dimers were transported slowly from lysosomes to the plasma membrane. Our results suggest that alterations in the rate or efficiency of Ii chain processing can alter the postendosomal sorting of class II molecules, resulting in the increased accumulation of αβ dimers in lysosome-like MIIC. Thus, simple differences in Ii chain processing may account for the highly variable amounts of class II found in lysosomal compartments of different cell types or at different developmental stages. PMID:9105036

  16. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Coherent phase control of excitation of atoms by bichromatic laser radiation in an electric field

    NASA Astrophysics Data System (ADS)

    Astapenko, Valerii A.

    2005-06-01

    A new method for coherent phase control of excitation of atoms in a discrete spectrum under the action of bichromatic laser radiation with the frequency ratio 1:2 is analysed. An important feature of this control method is the presence of a electrostatic field, which removes the parity selection rule for one of the control channels. It is shown that for the phase difference between the monochromatic radiation components, corresponding to the destructive interference between channels, there exists the electrostatic field strength at which the excited atomic transition is 'bleached'. It is proposed to use luminescence at the adjacent atomic transition for detecting the phase dependence of optical excitation.

  17. Application of Controlled Shear Stresses on the Erythrocyte Membrane as a New Approach to Promote Molecule Encapsulation.

    PubMed

    Casagrande, Giustina; Arienti, Flavio; Mazzocchi, Arabella; Taverna, Francesca; Ravagnani, Fernando; Costantino, MariaLaura

    2016-10-01

    Human red blood cells (RBCs) have a remarkable capacity to undergo reversible membrane swelling. Resealed erythrocytes have been proposed as carriers and bioreactors to be used in the treatment of various diseases. This work is aimed at developing a setup allowing the encapsulation of test molecules into erythrocytes by inducing reversible pore formation on the RBC membrane through the application of controlled mechanical shear stresses. The designed setup consists of two reservoirs connected by a glass capillary. Each reservoir is connected to a compressor; during the tests, the reservoirs were in turn pressurized to promote erythrocyte flow through the capillary. The setup was filled with a suspension of erythrocytes, phosphate buffer, and FITC-dextran. Dextran was chosen as the diffusive molecule to check membrane pore dimensions. Samples of the suspension were withdrawn at scheduled times while the setup was operating. Flow cytometry and stereo-optical microscopy analyses were used to evaluate the erythrocyte dextran uptake. The setup was shown to be safe, well controlled, and adjustable. The outcomes of the experimental tests showed significant dextran uptake by RBCs up to 8%. Microscopy observations highlighted the formation of echinocytes in the analyzed samples. Erythrocytes from different donors showed different reactions to mechanical stresses. The experimental outcomes proved the possibility to encapsulate test molecules into erythrocytes by applying controlled mechanical shear stresses on the RBC membrane, encouraging further studies.

  18. Hand Controlled Manipulation of Single Molecules via a Scanning Probe Microscope with a 3D Virtual Reality Interface.

    PubMed

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2016-10-02

    Considering organic molecules as the functional building blocks of future nanoscale technology, the question of how to arrange and assemble such building blocks in a bottom-up approach is still open. The scanning probe microscope (SPM) could be a tool of choice; however, SPM-based manipulation was until recently limited to two dimensions (2D). Binding the SPM tip to a molecule at a well-defined position opens an opportunity of controlled manipulation in 3D space. Unfortunately, 3D manipulation is largely incompatible with the typical 2D-paradigm of viewing and generating SPM data on a computer. For intuitive and efficient manipulation we therefore couple a low-temperature non-contact atomic force/scanning tunneling microscope (LT NC-AFM/STM) to a motion capture system and fully immersive virtual reality goggles. This setup permits "hand controlled manipulation" (HCM), in which the SPM tip is moved according to the motion of the experimenter's hand, while the tip trajectories as well as the response of the SPM junction are visualized in 3D. HCM paves the way to the development of complex manipulation protocols, potentially leading to a better fundamental understanding of nanoscale interactions acting between molecules on surfaces. Here we describe the setup and the steps needed to achieve successful hand-controlled molecular manipulation within the virtual reality environment.

  19. A method for controlling the synthesis of stable twisted two-dimensional conjugated molecules

    PubMed Central

    Li, Yongjun; Jia, Zhiyu; Xiao, Shengqiang; Liu, Huibiao; Li, Yuliang

    2016-01-01

    Thermodynamic stabilization (π-electron delocalization through effective conjugation) and kinetic stabilization (blocking the most-reactive sites) are important considerations when designing stable polycyclic aromatic hydrocarbons displaying tunable optoelectronic properties. Here, we demonstrate an efficient method for preparing a series of stable two-dimensional (2D) twisted dibenzoterrylene-acenes. We investigated their electronic structures and geometries in the ground state through various experiments assisted by calculations using density functional theory. We find that the length of the acene has a clear effect on the photophysical, electrochemical, and magnetic properties. These molecules exhibit tunable ground-state structures, in which a stable open-shell quintet tetraradical can be transferred to triplet diradicals. Such compounds are promising candidates for use in nonlinear optics, field effect transistors and organic spintronics; furthermore, they may enable broader applications of 2D small organic molecules in high-performance electronic and optical devices. PMID:27181692

  20. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics

    PubMed Central

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J.; Lu, H. Peter

    2015-01-01

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  1. Control of islet intercellular adhesion molecule-1 expression by interferon-alpha and hypoxia.

    PubMed

    Chakrabarti, D; Huang, X; Beck, J; Henrich, J; McFarland, N; James, R F; Stewart, T A

    1996-10-01

    The ability of interferon-alpha (IFN-alpha) to induce the adhesion molecules that characterize the islets of patients with type I diabetes has been investigated. We have found that all tested recombinant IFN-as will induce major histocompatibility complex (MHC) class I on arterial endothelial cells. Some but not all IFN-as will induce intercellular adhesion molecule-1 (ICAM-1). However, there is only a transient and modest increase in VCAM on arterial endothelial cells. IFN-alpha has very little effect on endothelial MHC class II expression but will induce these proteins on monocytes. Thus, there is a close concordance between the biological actions of IFN-alpha and the appearance of those adhesion molecules induced in the islets of patients with type I diabetes. IFN-alpha is also produced in normal human islets during short-term cultures, probably as a result of the ischemia present at the center of the islet. This induction of IFN-alpha by hypoxia may explain the previously reported spontaneous induction of ICAM-1 in human islets and may also be a contributing factor to the failure of islet grafts.

  2. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    PubMed Central

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  3. Mapping and controlling ultrafast dynamics of highly excited H2 molecules by VUV-IR pump-probe schemes

    NASA Astrophysics Data System (ADS)

    Sturm, F. P.; Tong, X. M.; Palacios, A.; Wright, T. W.; Zalyubovskaya, I.; Ray, D.; Shivaram, N.; Martín, F.; Belkacem, A.; Ranitovic, P.; Weber, Th.

    2017-01-01

    We used ultrashort femtosecond vacuum ultraviolet (VUV) and infrared (IR) pulses in a pump-probe scheme to map the dynamics and nonequilibrium dissociation channels of excited neutral H2 molecules. A nuclear wave packet is created in the B Σ+1u state of the neutral H2 molecule by absorption of the ninth harmonic of the driving infrared laser field. Due to the large stretching amplitude of the molecule excited in the B Σ+1u electronic state, the effective H2+ ionization potential changes significantly as the nuclear wave packet vibrates in the bound, highly electronically and vibrationally excited B potential-energy curve. We probed such dynamics by ionizing the excited neutral molecule using time-delayed VUV-or-IR radiation. We identified the nonequilibrium dissociation channels by utilizing three-dimensional momentum imaging of the ion fragments. We found that different dissociation channels can be controlled, to some extent, by changing the IR laser intensity and by choosing the wavelength of the probe laser light. Furthermore, we concluded that even in a benchmark molecular system such as H2*, the interpretation of the nonequilibrium multiphoton and multicolor ionization processes is still a challenging task, requiring intricate theoretical analysis.

  4. Coherence, Pseudo-Coherence, and Non-Coherence.

    ERIC Educational Resources Information Center

    Enkvist, Nils Erik

    Analysis of the factors that make a text coherent or non-coherent suggests that total coherence requires cohesion not only on the textual surface but on the semantic level as well. Syntactic evidence of non-coherence includes lack of formal agreement blocking a potential cross-reference, anaphoric and cataphoric references that do not follow their…

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Control of laser machining of polycrystalline diamond plates by the method of low-coherence optical interferometry

    NASA Astrophysics Data System (ADS)

    Kononenko, Vitalii V.; Konov, Vitalii I.; Pimenov, S. M.; Volkov, P. V.; Goryunov, A. V.; Ivanov, V. V.; Novikov, M. A.; Markelov, V. A.; Tertyshnik, A. D.; Ustavshchikov, S. S.

    2005-07-01

    The possibility of applying low-coherence fibre optics interferometry for local contactless measurement of the optical thickness of polycrystalline diamond plates during high-power laser-pulse processing of their rough surface is demonstrated. A unique automated experimental system is developed to control the thickness of samples during ablation of their surface by a scanning 248-nm KrF excimer laser beam. It is shown that this technique is suitable for on-line control of laser polishing and for preparing plane-parallel plates.

  6. Coherent motions and time scales that control heat and mass transfer at wind-swept water surfaces

    NASA Astrophysics Data System (ADS)

    Turney, D. E.

    2016-12-01

    Forecast of the heat and chemical budgets of lakes, rivers, and oceans requires improved predictive understanding of air-water interfacial transfer coefficients. Here we present laboratory observations of the coherent motions that occupy the air-water interface at wind speeds (U10) 1.1-8.9 m/s. Spatiotemporal near-surface velocity data and interfacial renewal data are made available by a novel flow tracer method. The relative activity, velocity scales, and time scales of the various coherent interfacial motions are measured, namely for Langmuir circulations, streamwise streaks, nonbreaking wind waves, parasitic capillary waves, nonturbulent breaking wind waves, and turbulence-generating breaking wind waves. Breaking waves exhibit a sudden jump in streamwise interfacial velocity wherein the velocity jumps up to exceed the wave celerity and destroys nearby parasitic capillary waves. Four distinct hydrodynamic regimes are found to exist between U10 = 0 and 8.9 m/s, each with a unique population balance of the various coherent motions. The velocity scales, time scales, and population balance of the different coherent motions are input to a first-principles gas transfer model to explain the waterside transfer coefficient (kw) as well as experimental patterns of temperature and gas concentration. The model mixes concepts from surface renewal and divergence theories and requires surface divergence strength (β), the Lagrangian residence time inside the upwelling zone (tLu), and the total lifetime of new interface before it is downwelled (tLT). The model's output agrees with time-averaged measurements kw, patterns of temperature in infrared photographs, and spatial patterns of gas concentration and kw from direct numerical simulations. Several nondimensional parameters, e.g. βtLu and τstLT where τs is the interfacial shear rate, determine the effectiveness of a particular type of coherent motion for affecting kw.

  7. Mechanistic pathway for controlled extraction of guest molecule bound to herring sperm DNA using α-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Jaffer, S. Syed; Ghosh, Prasun; Purkayastha, Pradipta

    2011-05-01

    trans-2-[4-(Dimethylamino)styryl]benzothiazole (DMASBT) is known to have dual emitting states where the locally excited (LE) state is responsible for fluorescence in less polar environment and in polar milieu fluorescence is from the twisted intramolecular charge transfer (TICT) state. This compound also undergoes minor groove binding to herring sperm DNA (hsDNA) evidenced by the absorption spectra before and after the binding process and an effect on DMASBT fluorescence by an anionic quencher. The binding occurs efficiently in a 1:1 manner, i.e. one guest molecule binds to one site on the hsDNA. Instead of following the DNA twist, the aromatic part seems to project outward. Thus, the bound molecule can be successfully extracted out from the DNA in a controlled way by the hydrophobic cavity of α-cyclodextrin (α-CD). The extraction starts even with a low concentration of α-CD and increases as the concentration is increased. Absorption, steady-state and time resolved fluorescence spectroscopic methods have been employed to explore the mechanistic pathway of binding of DMASBT to hsDNA. The mechanistic approach toward controlled extraction of the guest molecules from hsDNA by α-CD is reported and is expected to serve a significant purpose in treatment of drug overdose.

  8. Controlling magnetic Feshbach resonances in polar open-shell molecules with nonresonant light.

    PubMed

    Tomza, Michał; González-Férez, Rosario; Koch, Christiane P; Moszynski, Robert

    2014-03-21

    Magnetically tunable Feshbach resonances for polar paramagnetic ground-state diatomics are too narrow to allow for magnetoassociation starting from trapped, ultracold atoms. We show that nonresonant light can be used to engineer the Feshbach resonances in their position and width. For nonresonant field intensities of the order of 10(9) W/cm(2), we find the width to be increased by 3 orders of magnitude, reaching a few Gauss. This opens the way for producing ultracold molecules with sizable electric and magnetic dipole moments and thus for many-body quantum simulations with such particles.

  9. Transport and quality control of MHC class I molecules in the early secretory pathway.

    PubMed

    Springer, Sebastian

    2015-06-01

    Folding and peptide binding of major histocompatibility complex (MHC) class I molecules have been thoroughly researched, but the mechanistic connection between these biochemical events and the progress of class I through the early secretory pathway is much less well understood. This review focuses on the question how the partially assembled forms of class I (which lack high-affinity peptide and/or the light chain beta-2 microglobulin) are retained inside the cell. Such investigations offer researchers exciting chances to understand the connections between class I structure, conformational dynamics, peptide binding kinetics and thermodynamics, intracellular transport, and antigen presentation.

  10. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin.

    PubMed

    van Stegen, Bernd; Dagar, Sushma; Gottmann, Kurt

    2017-01-20

    At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4-64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis.

  11. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin

    PubMed Central

    van Stegen, Bernd; Dagar, Sushma; Gottmann, Kurt

    2017-01-01

    At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4–64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis. PMID:28106089

  12. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    SciTech Connect

    Rudenko, Gabby

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  13. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  14. Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly

    PubMed Central

    Karchin, Joshua M.; Ha, Jeung-Hoi; Namitz, Kevin E.; Cosgrove, Michael S.; Loh, Stewart N.

    2017-01-01

    Domain swapping is the process by which identical proteins exchange reciprocal segments to generate dimers. Here we introduce induced domain swapping (INDOS) as a mechanism for regulating protein function. INDOS employs a modular design consisting of the fusion of two proteins: a recognition protein that binds a triggering molecule, and a target protein that undergoes a domain swap in response to binding of the triggering ligand. The recognition protein (FK506 binding protein) is inserted into functionally-inactivated point mutants of two target proteins (staphylococcal nuclease and ribose binding protein). Binding of FK506 to the FKBP domain causes the target domain to first unfold, then refold via domain swap. The inactivating mutations become ‘swapped out’ in the dimer, increasing nuclease and ribose binding activities by 100-fold and 15-fold, respectively, restoring them to near wild-type values. INDOS is intended to convert an arbitrary protein into a functional switch, and is the first example of rational design in which a small molecule is used to trigger protein domain swapping and subsequent activation of biological function. PMID:28287617

  15. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

    PubMed Central

    Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-01-01

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications. PMID:27917885

  16. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-12-01

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.

  17. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum.

    PubMed

    Seghilani, Mohamed S; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-12-05

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here "orbital birefringence", based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create "orbital gain dichroism" allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.

  18. Coherently controlled emissions |4P3/2,1/2> ↔ |4S1/2> from a femtosecond Λ-type excitation scheme in potassium atom

    NASA Astrophysics Data System (ADS)

    Pentaris, D.; Damianos, D.; Papademetriou, G.; Lyras, A.; Steponkevičius, K.; Vaičaitis, V.; Efthimiopoulos, T.

    2016-07-01

    The combined excitation of high density potassium (K) vapour by 100 fs pump-coupling pulses is experimentally studied. The intense pump pulse excites the two-photon ? transition and internally generated emissions are initiated along the atomic paths: ? (path-1) and, ? (path-2). The temporally delayed coupling pulse coherently drives the ? transitions, in a Λ-type excitation scheme. The competing axial and conical emission components of the well-resolved ? transitions (D2 and D1 lines of K) are substantially enhanced and controlled, for appropriate detunings and pump-coupling temporal delays. The coherence relaxation time (CRT) of the two-photon excited ? state is determined by exploiting the temporal delay in the pulse sequence. The effect of the pulse delay and the fs pulse bandwidth on the system dynamics is discussed as well as the role of dephasing collisions between K and buffer gas atoms. The proposed scheme can be employed in radiative multi-level systems, for the direct estimation of coherence relaxation rates of various states.

  19. Low-coherence in-depth microscopy for biological tissue imaging: design of a real-time control system

    NASA Astrophysics Data System (ADS)

    Blanchot, Loic; Lebec, Martial; Beaurepaire, Emmanuel; Gleyzes, Philippe; Boccara, Albert C.; Saint-Jalmes, Herve

    1998-01-01

    We describe the design of a versatile electronic system performing a lock-in detection in parallel on every pixel of a 2D CCD camera. The system is based on a multiplexed lock- in detection method that requires accurate synchronization of the camera, the excitation signal and the processing computer. This device has been incorporated in an imaging setup based on the optical coherence tomography principle, enabling to acquire a full 2D head-on image without scanning. The imaging experiment is implemented on a modified commercial microscope. Lateral resolution is on the order of 2 micrometers , and the coherence length of the light source defines an axial resolution of approximately 8 micrometers . Images of onion cells a few hundred microns deep into the sample are obtained with 100 dB sensitivity.

  20. Low-coherence in-depth microscopy for biological tissue imaging: design of a real-time control system

    NASA Astrophysics Data System (ADS)

    Blanchot, Loic; Lebec, Martial; Beaurepaire, Emmanuel; Gleyzes, Philippe; Boccara, A. Claude; Saint-Jalmes, Herve

    1997-12-01

    We describe the design of a versatile electronic system performing a lock-in detection in parallel on every pixel of a 2D CCD camera. The system is based on a multiplexed lock- in detection method that requires accurate synchronization of the camera, the excitation signal and the processing computer. This device has been incorporated in an imaging setup based on the optical coherence tomography principle, enabling to acquire a full 2D head-on image without scanning. The imaging experiment is implemented on a modified commercial microscope. Lateral resolution is on the order of 2 micrometers , and the coherence length of the light source defines an axial resolution of approximately 8 micrometers . Images of onion cells a few hundred microns deep into the sample are obtained with 100 dB sensitivity.

  1. Small-molecule pheromones that control dauer development in Caenorhabditis elegans.

    PubMed

    Butcher, Rebecca A; Fujita, Masaki; Schroeder, Frank C; Clardy, Jon

    2007-07-01

    In response to high population density or low food supply, the nematode Caenorhabditis elegans enters an alternative larval stage, known as the dauer, that can withstand adverse conditions for prolonged periods. C. elegans senses its population density through a small-molecule signal, traditionally called the dauer pheromone, that it secretes into its surroundings. Here we show that the dauer pheromone consists of several structurally related ascarosides-derivatives of the dideoxysugar ascarylose-and that two of these ascarosides (1 and 2) are roughly two orders of magnitude more potent at inducing dauer formation than a previously reported dauer pheromone component (3) and constitute a physiologically relevant signal. The identification of dauer pheromone components 1 and 2 will facilitate the identification of target receptors and downstream signaling proteins.

  2. Ultracold Polar Molecules: New Phases of Matter for Quantum Information and Quantum Control

    DTIC Science & Technology

    2013-06-01

    Devil’s staircase” where Mott solids appear at rational fillings of the lattice.   Studied 1D  fermionic  and bosonic gases with repulsive power‐law...superfluid transition in single‐component  fermionic  gas in a trap with dipole  moments polarized in perpendicular layers, finding that many‐body effects...Zoller, Bilayer superfluidity of fermionic polar molecules: Many‐Body effects, Phys. Rev. A 83, 043602 (2011).  2012 Phase   1) N. Henkel, F. Cinti, P

  3. The HOMO Nodal Arrangement in Polychromophoric Molecules and Assemblies Controls the Interchromophoric Electronic Coupling.

    PubMed

    Talipov, Marat R; Navale, Tushar S; Rathore, Rajendra

    2015-11-23

    Triptycenes spontaneously assemble into two-dimensional networks in which long-range charge transport is facilitated by the extensive electronic coupling through the triptycene framework (intramolecularly) and by cofacial π-stacking (intermolecularly). While designing and synthesizing next-generation triptycenes containing polyaromatic chromophores, the electronic coupling amongst the chromophores was observed to be highly dependent on the nature and position of the substituents. Herein, we demonstrate using hexaalkoxytriptycenes that the electronic coupling amongst the chromophores is switched on and off by a simple repositioning of the substituents, which alters the nodal arrangement of the HOMOs of the individual chromophores. A visual inspection of the HOMOs can thus provide a ready evaluation of the electronic coupling in polychromophoric molecules/assemblies, and will serve as an important tool for the rational design of modern charge-transport materials.

  4. Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography

    PubMed Central

    Lamouche, Guy; Kennedy, Brendan F.; Kennedy, Kelsey M.; Bisaillon, Charles-Etienne; Curatolo, Andrea; Campbell, Gord; Pazos, Valérie; Sampson, David D.

    2012-01-01

    We review the development of phantoms for optical coherence tomography (OCT) designed to replicate the optical, mechanical and structural properties of a range of tissues. Such phantoms are a key requirement for the continued development of OCT techniques and applications. We focus on phantoms based on silicone, fibrin and poly(vinyl alcohol) cryogels (PVA-C), as we believe these materials hold the most promise for durable and accurate replication of tissue properties. PMID:22741083

  5. Inductive equation of motion approach for a semiconductor QD-QED: coherence induced control of photon statistics

    SciTech Connect

    Kabuss, Julia; Carmele, A.; Richter, M.; Chow, Weng W.; Knorr, A.

    2011-01-10

    This paper presents an inductive method for the microscopic description of quantum dot (QD) QED. Our description reproduces known effects up to an arbitrary accuracy, and is extendable to typical semiconductor effects, like many electron- and phonon-interactions. As an application, this method is used to theoretically examine quantum coherence phenomena and their impact on photon statistics for a Λ-type semiconductor QD strongly coupled to a single mode cavity and simultaneously excited with an external laser.

  6. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.

    PubMed

    Su, Jiaye; Guo, Hongxia

    2011-01-25

    The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

  7. Mesoporous Silica-Based Supports for the Controlled and Targeted Release of Bioactive Molecules in the Gastrointestinal Tract.

    PubMed

    Pérez-Esteve, Édgar; Ruiz-Rico, María; Martínez-Máñez, Ramón; Barat, José Manuel

    2015-11-01

    Mesoporous silica particles (MSPs) have attracted increasing interest as supports in the design of controlled delivery materials. Besides their excellent properties as loading supports (that is, large surface area and pore volume), the modification of their external surface with molecular/supramolecular ensembles allows the design of gated MSPs. Delivery systems based on gated MSPs show "zero delivery" until an adequate stimulus is present and triggers gate opening and the cargo is released. Encapsulation of bioactive molecules in gated MSPs may improve biological stability, facilitate component handling, mask unpleasant sensorial properties, and modulate the bioaccessibility of target molecules along the gastrointestinal tract. These properties make gated MSPs excellent candidates for encapsulating bioactive molecules and their subsequent utilization in the formulation of functional foods. This text highlights the most significant endogenous triggering stimuli that might be applied to design these site-specific delivery systems, as well as the strategies to develop them. Given the novelty of using MSPs in the food sector, the benefits and current potential limitations of employing MSPs in human food have been identified and discussed.

  8. DNA-Mediated Patterning of Single Quantum Dot Nanoarrays: A Reusable Platform for Single-Molecule Control

    PubMed Central

    Huang, Da; Freeley, Mark; Palma, Matteo

    2017-01-01

    We present a facile strategy of general applicability for the assembly of individual nanoscale moieties in array configurations with single-molecule control. Combining the programming ability of DNA as a scaffolding material with a one-step lithographic process, we demonstrate the patterning of single quantum dots (QDs) at predefined locations on silicon and transparent glass surfaces: as proof of concept, clusters of either one, two, or three QDs were assembled in highly uniform arrays with a 60 nm interdot spacing within each cluster. Notably, the platform developed is reusable after a simple cleaning process and can be designed to exhibit different geometrical arrangements. PMID:28349982

  9. DNA-Mediated Patterning of Single Quantum Dot Nanoarrays: A Reusable Platform for Single-Molecule Control.

    PubMed

    Huang, Da; Freeley, Mark; Palma, Matteo

    2017-03-28

    We present a facile strategy of general applicability for the assembly of individual nanoscale moieties in array configurations with single-molecule control. Combining the programming ability of DNA as a scaffolding material with a one-step lithographic process, we demonstrate the patterning of single quantum dots (QDs) at predefined locations on silicon and transparent glass surfaces: as proof of concept, clusters of either one, two, or three QDs were assembled in highly uniform arrays with a 60 nm interdot spacing within each cluster. Notably, the platform developed is reusable after a simple cleaning process and can be designed to exhibit different geometrical arrangements.

  10. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    SciTech Connect

    Tian, Si-Cong Tong, Cun-Zhu Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang; Wan, Ren-Gang

    2015-06-15

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process.

  11. Stomatal density is controlled by a mesophyll-derived signaling molecule.

    PubMed

    Kondo, Tatsuhiko; Kajita, Ryoko; Miyazaki, Aya; Hokoyama, Mayumi; Nakamura-Miura, Touko; Mizuno, Satoko; Masuda, Yuichi; Irie, Kazuhiro; Tanaka, Yuki; Takada, Shinobu; Kakimoto, Tatsuo; Sakagami, Youji

    2010-01-01

    Stomata are composed of a pair of guard cells and a pore between them, and their density and positions are regulated by developmental and environmental signals. In a screen in which we overexpressed many genes coding for putative secretory proteins one by one in Arabidopsis, we identified a gene named STOMAGEN, which increases stomatal density when overexpressed. The STOMAGEN gene encodes a small peptide with a putative secretory signal sequence at its N-terminus and is expressed preferentially in mesophyll cells. This peptide belongs to the EPIDERMAL PATTERNING FACTOR (EPF) family of the cysteine-rich peptides superfamily. The mature form was a 45-amino-acid peptide (stomagen) with three intramolecular disulfide bonds. Stomagen treatment at very low concentrations, as low as 10 nM, increased the stomatal density of wild-type Arabidopsis plants. We propose that stomagen is a mesophyll-to-epidermis signaling molecule that positively regulates stomatal density. We also suggest that stomagen increases stomatal density by competing with negative regulators EPF1 and EPF2 for the receptor-like protein TOO MANY MOUTHS.

  12. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  13. Seleno groups control the energy-level alignment between conjugated organic molecules and metals

    SciTech Connect

    Niederhausen, Jens; Heimel, Georg; Wilke, Andreas; Rabe, Jürgen P.; Duhm, Steffen; Bürker, Christoph; Schreiber, Frank; Xin, Qian; Vollmer, Antje; Kera, Satoshi; Ueno, Nobuo; Koch, Norbert

    2014-01-07

    The charge injection from metallic electrodes into hole transporting layers of organic devices often suffers from deviations from vacuum-level alignment at the interface. Even for weakly interacting cases, Pauli repulsion causes an interface dipole between the metal and conjugated organic molecules (COMs) (so called “push-back” or “cushion” effect), which leads notoriously to an increase of the hole injection barrier. On the other hand, for chalcogenol self assembled monolayers (SAMs) on metal surfaces, chemisorption via the formation of chalcogen-metal bonds is commonly observed. In these cases, the energy-level alignment is governed by chalcogen-derived interface states in the vicinity of the metal Fermi-level. In this work, we present X-ray and ultraviolet photoelectron spectroscopy data that demonstrate that the interfacial energy-level alignment mechanism found for chalcogenol SAMs also applies to seleno-functionalized COMs. This can be exploited to mitigate the push-back effect at metal contacts, notably also when COMs with low ionization energies are employed, permitting exceedingly low hole injection barriers, as shown here for the interfaces of tetraseleno-tetracene with Au(111), Ag(111), and Cu(111)

  14. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP.

  15. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

    PubMed

    Weiss, Emily A

    2013-11-19

    In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this

  16. Coherent control of multiphoton dynamics and high-order-harmonic generation driven by two frequency-comb fields with a relative envelope delay

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Jiang, Chen-Wei; Li, Fu-li

    2016-07-01

    We present a theoretical investigation of the coherent control of multiphoton dynamics and a high-order-harmonic generation (HHG) process driven by two frequency-comb fields, via the interference of multiphoton transition paths by tuning the relative envelope delay between fields. The many-mode Floquet theorem is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and frequency-comb laser fields. The case of two frequency-comb fields with the same repetition frequency and the carrier frequencies of fundamental and second harmonics, respectively, is considered. Due to the coupling of the second harmonic controlling the frequency-comb laser field, multiphoton transitions involving both fundamental- and second-harmonic photons occur. Different multiphoton transition paths can be superpositioned when the matching condition for carrier-envelope-phase shifts is satisfied, offering the possibility of coherent control of HHG power spectra via the interference of paths by tuning the relative envelope delay between fields. The calculated HHG power spectra present both sub-cycle oscillation and multi-cycle modulation behavior when the relative envelope delay is varied. It is also found that, under the condition of multiphoton resonance, the HHG power spectra can be further enhanced by about 10 times via the interference of multiphoton transition paths by tuning the relative envelope delay.

  17. Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti

    PubMed Central

    Lucantoni, Leonardo; Magaraggia, Michela; Lupidi, Giulio; Ouedraogo, Robert Kossivi; Coppellotti, Olimpia; Esposito, Fulvio; Fabris, Clara; Jori, Giulio; Habluetzel, Annette

    2011-01-01

    Background Control of the mosquito vector population is the most effective strategy currently available for the prevention of dengue fever and the containment of outbreaks. Photo-activated oxidants may represent promising tools for developing effective, safe and ecofriendly novel larvicides. The purpose of this study was to evaluate the potential of the synthetic meso-substituted porphyrin meso-tri(N-methylpyridyl), meso-mono(N-tetradecylpyridyl)porphine (C14) as a photoactivatable larvicide against the dengue vector Aedes (Stegomyia) aegypti. Methodology The photophysical and photochemical properties of the C14 molecule were assessed spectrophotometrically. Photomediated larvicidal efficacy, route of intake and site of action were determined on Ae. aegypti larvae by laboratory bioassays and fluorescence microscopy. Using powdered food pellet for laboratory rodents (a common larval food used in the laboratory) as a carrier for C14, loading-release dynamics, larvicidal efficacy and residual activity of the C14-carrier complex were investigated. Main Findings The C14 molecule was found to exert a potent photosensitizing activity on Ae. aegypti larvae. At irradiation intervals of 12 h and 1 h, at a light intensity of 4.0 mW/cm2, which is 50–100 times lower than that of natural sunlight, LC50 values of 0.1 µM (0.15 mg/l) and 0.5 µM (0.77 mg/l) were obtained, respectively. The molecule was active after ingestion by the larvae and caused irreversible, lethal damage to the midgut and caecal epithelia. The amphiphilic nature of C14 allowed a formulate to be produced that not only was as active against the larvae as C14 in solution, but also possessed a residual activity of at least two weeks, in laboratory conditions. Conclusions The meso-substituted synthetic porphyrin C14, thanks to its photo-sensitizing properties represents an attractive candidate for the development of novel photolarvicides for dengue vector control. PMID:22206031

  18. Synthetic strategies for controlling inter- and intramolecular interactions: Applications in single-molecule fluorescence imaging, bioluminescence imaging, and palladium catalysis

    NASA Astrophysics Data System (ADS)

    Conley, Nicholas R.

    The field of synthetic organic chemistry has reached such maturity that, with sufficient effort and resources, the synthesis of virtually any small molecule which exhibits reasonable stability at room temperature can be realized. While representing a monumental achievement for the field, the ability to exert precise control over molecular structure is just a means to an end, and it is frequently the responsibility of the synthetic chemist to determine which molecules should actually be synthesized. For better or worse, there exists no competitive free market in academia for new molecules, and as a result, the decision of which compounds should be synthesized is seldom driven by the forces of supply and demand; rather, it is guided by the synthetic chemist's interest in an anticipated structure-function relationship or in the properties of a previously unstudied class of molecules. As a consequence, there exists a pervasive need for chemists with synthetic expertise in fields (e.g., molecular imaging) and subdisciplines of chemistry (e.g., physical chemistry) in which the identification of promising synthetic targets dramatically outpaces the synthetic output in that field or subdiscipline, and ample opportunities are available for synthetic chemists who choose to pursue such cross-disciplinary research. This thesis describes synthetic efforts that leverage these opportunities to realize applications in biological imaging and in palladium catalysis. In Part I, the synthesis and characterization of three novel luminophores and their imaging applications are discussed. The first is a molecular beacon that utilizes a fluorophorefluorophore pair which exhibits H-dimer quenching in the closed conformation. This probe offers several advantages over conventional fluorophore-quencher molecular beacons in the detection of oligonucleotides, both in bulk and at the single-molecule level. Secondly, a fluorescent, Cy3-Cy5 covalent heterodimer is reported, which on account of the

  19. Operational Approach to Generalized Coherent States

    NASA Technical Reports Server (NTRS)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    Generalized coherent states for general potentials, constructed through a controlling mechanism, can also be obtained applying on a reference state suitable operators. An explicit example is supplied.

  20. Photo-controllable electro-optics of aerosil/7CB nanocomposite nematic doped with azo-bonded molecules

    NASA Astrophysics Data System (ADS)

    Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.; Krishna Prasad, S.

    2016-02-01

    We demonstrate that the electro-optics of nanostructured nematic liquid crystal (LC) doped with a small amount of photoactive LC molecules can be efficiently controlled by light. In particular, the inclusion of 3 wt.% azobenzene LC 4-(4'-ethoxyphenylazo)phenyl hexanoate (EPH) into a gel nanocomposite material produced from nematic LC heptylcyanobiphenyl (7CB) and 3 wt.% hydrophilic silica nanoparticles of size ca. 7 nm (Aerosil 300) allows both the static (the transmittance versus the voltage) and the dynamic (amplitude-frequency electrooptic modulation) characteristics of thin films (25 μm) of such a complex LC system in an alternating-current electric field to be enhanced by UV light at a wavelength of 375 nm. This photo-effect that is reversed with white light is based on the photo-isomerization of the doped azobenzene molecules. The efficient photo control makes the considered EPH-doped Aerosil/7CB photo-responsive nematic nanocomposites attractive for specific electro-optic applications.

  1. Optimal control of ultrafast laser driven many-electron dynamics in a polyatomic molecule: N-methyl-6-quinolone

    NASA Astrophysics Data System (ADS)

    Klamroth, Tillmann

    2006-04-01

    We report time-dependent configuration interaction singles calculations for the ultrafast laser driven many-electron dynamics in a polyatomic molecule, N-methyl-6-quinolone. We employ optimal control theory to achieve a nearly state-selective excitation from the S0 to the S1 state, on a time scale of a few (≈6) femtoseconds. The optimal control scheme is shown to correct for effects opposing a state-selective transition, such as multiphoton transitions and other, nonlinear phenomena, which are induced by the ultrashort and intense laser fields. In contrast, simple two-level π pulses are not effective in state-selective excitations when very short pulses are used. Also, the dependence of multiphoton and nonlinear effects on the number of states included in the dynamical simulations is investigated.

  2. Molecular dynamics simulations of the mechanisms controlling the propagation of bcc/fcc semi-coherent interfaces in iron

    NASA Astrophysics Data System (ADS)

    Ou, X.; Sietsma, J.; Santofimia, M. J.

    2016-06-01

    Molecular dynamics simulations have been used to study the effects of different orientation relationships between fcc and bcc phases on the bcc/fcc interfacial propagation in pure iron systems at 300 K. Three semi-coherent bcc/fcc interfaces have been investigated. In all the cases, results show that growth of the bcc phase starts in the areas of low potential energy and progresses into the areas of high potential energy at the original bcc/fcc interfaces. The phase transformation in areas of low potential energy is of a martensitic nature while that in the high potential energy areas involves occasional diffusional jumps of atoms.

  3. Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent Switching.

    PubMed

    Zhu, Chaoyuan; Jasper, Ahren W; Truhlar, Donald G

    2005-07-01

    algorithms are analyzed and compared to one another:  natural switching (NS), self-consistent switching (SCS), coherent switching (CS), and globally coherent switching (GCS). The CS formulations are examples of a non-Markovian method, in which the system retains some memory of its history, whereas the GCS, SCS, and NS schemes are Markovian (time local). These methods are tested against accurate quantum mechanical results using 17 multidimensional atom-diatom test cases. The test cases include avoided crossings, conical interactions, and systems with noncrossing diabatic potential energy surfaces. The CS switching algorithm, in which the state populations are controlled by a coherent stochastic algorithm for each complete passage through a strong interaction region, but successive strong-interaction regions are not mutually coherent, is shown to be the most accurate of the switching algorithms tested for the LDM and PDDM methods as well as for the previous decay of mixing methods, which are reformulated here as Liouville-von Neumann equations with nonlinear decay of mixing (NLDM). We also demonstrate that one variant of the PDDM method with CS performs almost equally well in the adiabatic and diabatic representations, which is a difficult objective for semiclassical methods. Thus decay of mixing methods provides powerful mixed quantum-classical methods for modeling non-Born-Oppenheimer polyatomic dynamics including photochemistry, charge-transfer, and other electronically nonadiabatic processes.

  4. Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy.

    PubMed

    Knappenberger, Kenneth L; Lerch, Eliza-Beth W; Wen, Patrick; Leone, Stephen R

    2007-09-28

    A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.

  5. Quantum coherent control of blue, green and red emissions from codoped lanthanide ions of Er3+/Tm3+/Yb3+ by two shaped infrared ultrashort laser beams

    NASA Astrophysics Data System (ADS)

    Cheng, Wenjing; Zhang, Shian; Jia, Tianqing; Ma, Jing; Sun, Zhenrong

    2014-01-01

    The enhancement and tunable color emissions from codoped lanthanide ions of Er3+/Tm3+/Yb3+ have been studied extensively in recent decades. In this paper, we present a new scheme for quantum coherent control of two-photon absorption (TPA) and color emission in codoped lanthanide ions of Er3+/Tm3+/Yb3+ by properly phase shaping two infrared ultrashort laser beams at central frequencies of 10 650 cm-1 and 7650 cm-1, respectively. Compared with the results irradiated by transform-limited pulses, the TPA probabilities of the blue, green and red emissions are independently controlled in the ranges 0-13.3, 0-14.5 and 0-1.0, respectively. The effects of the energy states of lanthanide ions and the laser spectral bandwidths on the coherent features are also discussed. The TPA probabilities for the blue and green emissions increase with the laser spectral bandwidths and decrease with the energy bandwidths of the final level states. As the intermediate energy level shifts in the range 10 100-10 500 cm-1, the TPA probabilities for the blue and green emissions change in the ranges 7-15 and 8-17, respectively.

  6. Vibrationally coherent crossing and coupling of electronic states during internal conversion in β-carotene.

    PubMed

    Liebel, M; Schnedermann, C; Kukura, P

    2014-05-16

    Coupling of nuclear and electronic degrees of freedom mediates energy flow in molecules after optical excitation. The associated coherent dynamics in polyatomic systems, however, remain experimentally unexplored. Here, we combined transient absorption spectroscopy with electronic population control to reveal nuclear wave packet dynamics during the S2 → S1 internal conversion in β-carotene. We show that passage through a conical intersection is vibrationally coherent and thereby provides direct feedback on the role of different vibrational coordinates in the breakdown of the Born-Oppenheimer approximation.

  7. Vibrationally Coherent Crossing and Coupling of Electronic States during Internal Conversion in β-Carotene

    NASA Astrophysics Data System (ADS)

    Liebel, M.; Schnedermann, C.; Kukura, P.

    2014-05-01

    Coupling of nuclear and electronic degrees of freedom mediates energy flow in molecules after optical excitation. The associated coherent dynamics in polyatomic systems, however, remain experimentally unexplored. Here, we combined transient absorption spectroscopy with electronic population control to reveal nuclear wave packet dynamics during the S2→S1 internal conversion in β-carotene. We show that passage through a conical intersection is vibrationally coherent and thereby provides direct feedback on the role of different vibrational coordinates in the breakdown of the Born-Oppenheimer approximation.

  8. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection

    PubMed Central

    Gong, Ai-Yu; Hu, Guoku; Zhou, Rui; Liu, Jun; Feng, Yaoyu; Soukup, Garrett A.; Chen, Xian-Ming

    2011-01-01

    Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrheal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia, a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3′-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3′-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection. PMID:21236259

  9. State selectivity and eigenstate control in molecules using multiple CW lasers

    NASA Astrophysics Data System (ADS)

    Kirova, Teodora V.

    A novel method for designing target states with desirable properties by using a strong laser field has been developed. In a molecular system with two closely spaced levels application of a strong laser is shown to lead to a controllable mixture of states. A "control equation" governing the relation between the Rabi frequency and the detuning of the coupling field has been derived on the basis of the dressed-states approach. A more intuitive way of achieving mixing in the perturbed eigenstates has been investigated by using the Autler-Townes (AT) effect in the case of weak initial mixing. A condition for resonant enhancing of the mixing has been obtained. The theoretical analysis is based on the dressed states approach as well as the density matrix formalism. While the dressed states approach explains the creation of the target states under the action of the strong coupling field, the density matrix formalism accounts also for such physical phenomena as spontaneous decay of the molecular levels and describes the molecular absorption and level populations. Thus, it can be used to demonstrate the creation of the target states via the absorption behavior of the system in the presence of the strong field. The target state creation and the Autler-Townes splitting have been applied to realistic systems (molecular lithium) for the case of singlet-triplet initial mixing. The control equations as well as the condition for the AT effect have been modified to reflect the magnetic quantum number (MJ) degeneracy in all the molecular levels. The design of target states and states mixed via AT splitting with a pre-selected magnetic quantum number has been demonstrated by calculating the absorption spectra of the weak field. The possibility for direct measurement of spin-orbit interaction has been shown even in the presence of level degeneracy. The prospect of target states creation and molecular magnetic sublevel selectivity has been discussed in case of inhomogeneously broadened

  10. Attosecond control of dissociative ionization of O{sub 2} molecules

    SciTech Connect

    Siu, W.; Kelkensberg, F.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Dowek, D.; Lucchini, M.; Calegari, F.; De Giovannini, U.; Rubio, A.; Lucchese, R. R.; Kono, H.; Lepine, F.

    2011-12-15

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  11. Dynamic Covalent Functionalization as a route to Controlling Self Assembly of Organic Molecules

    NASA Astrophysics Data System (ADS)

    Pentzer, Emily

    Efforts to optimize the optoelectronic properties of conjugated organic materials are ongoing across many fields of science and engineering. For example, in bulk heterojunction polymer solar cells, researchers seek to optimize absorption of the solar spectrum by the active materials, form interpenetrating domains of p-type and n-type materials to facilitate exciton dissociation, and improve interactions between electrode, charge blocking layers, and active layers to ensure rapid charge transport. One advantage of organic polymers compared to inorganic materials (e.g., silicon), is the low cost and ability process the materials in solution. Moreover, assembly of conjugated organic materials in solution or in the solid state (i.e., films) can be used to optimize both a material's optoelectronic properties and its interface with surfaces and other materials, addressing many of the concerns listed above. Unfortunately, such solution processability requires appendage of insulating alkyl chains to the conjugated frameworks, which don solubility, but are also insulating and thus can hurt device performance. This presentation will report recent results from the Pentzer Lab from Case Western Reserve University on using functional alkyl chains that serve to control self-assembly, control interfaces with other materials, or can be removed by an external stimulus as a route to optimizing the materials for solar cell applications.

  12. Ajoene, a Sulfur-Rich Molecule from Garlic, Inhibits Genes Controlled by Quorum Sensing

    PubMed Central

    Jakobsen, Tim Holm; van Gennip, Maria; Phipps, Richard Kerry; Shanmugham, Meenakshi Sundaram; Christensen, Louise Dahl; Alhede, Morten; Skindersoe, Mette Eline; Rasmussen, Thomas Bovbjerg; Friedrich, Karlheinz; Uthe, Friedrich; Jensen, Peter Østrup; Moser, Claus; Nielsen, Kristian Fog; Eberl, Leo; Larsen, Thomas Ostenfeld; Tanner, David; Høiby, Niels; Bjarnsholt, Thomas

    2012-01-01

    In relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria like Pseudomonas aeruginosa to synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P. aeruginosa QS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensive in vitro and in vivo studies, the effect of synthetic ajoene toward P. aeruginosa was elucidated. DNA microarray studies of ajoene-treated P. aeruginosa cultures revealed a concentration-dependent attenuation of a few but central QS-controlled virulence factors, including rhamnolipid. Furthermore, ajoene treatment of in vitro biofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a mouse model of pulmonary infection, a significant clearing of infecting P. aeruginosa was detected in ajoene-treated mice compared to a nontreated control group. This study adds to the list of examples demonstrating the potential of QS-interfering compounds in the treatment of bacterial infections. PMID:22314537

  13. Theory of ultrafast nonresonant multiphoton transitions in polyatomic molecules: Basics and application to optimal control theory

    SciTech Connect

    May, Volkhard; Ambrosek, David; Oppel, Markus; Gonzalez, Leticia

    2007-10-14

    A systematic approach is presented to describe nonresonant multiphoton transitions, i.e., transitions between two electronic states without the presence of additional intermediate states resonant with the single-photon energy. The method is well suited to describe femtosecond spectroscopic experiments and, in particular, attempts to achieve laser pulse control of molecular dynamics. The obtained effective time-dependent Schroedinger equation includes effective couplings to the radiation field which combine powers of the field strength and effective transition dipole operators between the initial and final states. To arrive at time-local equations our derivation combines the well-known rotating wave approximation with the approximation of slowly varying amplitudes. Under these terms, the optimal control formalism can be readily extended to also account for nonresonant multiphoton events. Exemplary, nonresonant two- and three-photon processes, similar to those occurring in the recent femtosecond pulse-shaping experiments on CpMn(CO){sub 3}, are treated using related ab initio potential energy surfaces.

  14. DNA Physical Mapping via the Controlled Translocation of Single Molecules through a 5-10nm Silicon Nitride Nanopore

    NASA Astrophysics Data System (ADS)

    Stein, Derek; Reisner, Walter; Jiang, Zhijun; Hagerty, Nick; Wood, Charles; Chan, Jason

    2009-03-01

    The ability to map the binding position of sequence-specific markers, including transcription-factors, protein-nucleic acids (PNAs) or deactivated restriction enzymes, along a single DNA molecule in a nanofluidic device would be of key importance for the life-sciences. Such markers could give an indication of the active genes at particular stage in a cell's transcriptional cycle, pinpoint the location of mutations or even provide a DNA barcode that could aid in genomics applications. We have developed a setup consisting of a 5-10 nm nanopore in a 20nm thick silicon nitride film coupled to an optical tweezer setup. The translocation of DNA across the nanopore can be detected via blockades in the electrical current through the pore. By anchoring one end of the translocating DNA to an optically trapped microsphere, we hope to stretch out the molecule in the nanopore and control the translocation speed, enabling us to slowly scan across the genome and detect changes in the baseline current due to the presence of bound markers.

  15. Control of the dipole layer of polar organic molecules adsorbed on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Su, Kai-Jun; Wang, Chin-Yung; Pi, Tun-Wen; Metz, Sebastian; Papadopoulos, Theodoros A.; Chiang, T.-C.; Ishii, Hisao; Tang, S.-J.

    2017-02-01

    Organic molecules with a permanent electric dipole moment have been widely used as a template for further growth of molecular layers in device structures. Key properties of the resulting organic films such as energy level alignment (ELA), work function, and injection/collection barrier are linked to the magnitude and direction of the dipole moment at the interface. Using angle-resolved photoemission spectroscopy (ARPES), we have systematically investigated the coverage-dependent work function and spectral line shapes of occupied molecular energy states (MESs) of chloroaluminium-phthalocyanine (ClAlPc) grown on Ag(111). We demonstrate that the dipole orientation of the first ClAlPc layer can be controlled by adjusting the deposition rate and postannealing conditions, and we find that the ELA at the interface differs by ˜0.4 eV between the Cl up and down configurations of the adsorbed ClAlPc molecules. These observations are rationalized by density functional theory (DFT) calculations based on a realistic model of the ClAlPc/Ag(111) interface, which reveal that the different orientations of the ClAlPc dipole layer lead to different charge-transfer channels between the adsorbed ClAlPc and Ag(111) substrate. Our findings provide a useful framework toward method development for ELA tuning.

  16. Strength-controllable graphene oxide amphiprotic aerogels as highly efficient carrier for anionic and cationic azo molecules

    NASA Astrophysics Data System (ADS)

    Xiong, Jiaqing; Jiao, Chenlu; Xu, Sijun; Tao, Jin; Zhang, Desuo; Lin, Hong; Chen, Yuyue

    2015-06-01

    Ice-bath self-assembly was employed to fabricate the GO/AP-MCC/CS aerogel based on natural materials. The components are amphiprotic microcrystalline cellulose (AP-MCC), chitosan (CS), and graphene oxide (GO), which act as the main framework, auxiliary framework and adhesive, respectively. The results of characterization determines the components form the GO/AP-MCC/CS aerogel according to chemical interactions. The mechanical properties depend largely on the mass ratio of AP-MCC/CS, which can be regulated by controlling the contents of AP-MCC and CS. The resultant GO/AP-MCC/CS aerogel was observed possessing three-dimensional (3D) interpenetrating porous networks with wrinkled structure on the inner wall, which provide a good encapsulation capacity for the guest molecules. As expected, owing to the amphiprotic properties and large specific surface area, GO/AP-MCC/CS aerogel exhibits high-efficiency load capacity for both anionic (CR) and cationic azo molecules (MB), which can reach up to about 132.2 mg/g for CR and 123.2 mg/g for MB, respectively.

  17. Inter-dot tunneling control of optical bistability in triple quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Reza Hamedi, Hamid

    2014-09-01

    The behavior of optical bistability (OB) and optical multistability (OM) in a triple coupled quantum dot (QD) system is theoretically explored. It is found that the tunneling coupling between electronic levels has major effect on controlling the threshold and the hysteresis cycle shape of the optical bistability. The impact of incoherent pump field on the OB and OM behavior of such medium is then discussed. We realize that the threshold intensity reduces remarkably through increasing the rate of incoherent pumping. It is also demonstrated that the switch between OB and OM can be obtained just through proper adjusting the frequency detuning of probe field. It should be pointed that in this QD system we used tunneling instead of coupling lasers. These presented results may be applicable in real experiments for realizing an all-optical bistate switching or coding element in a solid-state platform.

  18. Controllable thin film crystal growth of a novel squaraine molecule in organic solar cells

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Spencer, Susan; Bougher, Cortney; Brown, Jesse; Kelley, Kyle; Heaphy, Patrick; Murcia, Victor; Gallivan, Cameron; Monfette, Amber; Andersen, John; Cody, Jeremy; Coffey, Tonya; Collison, Christopher

    2014-03-01

    We will discuss the formation, structures, and properties of squarine and squarine-PCBM blend thin-films using Atomic Force Microscopy, electrical characterization, UV-VIS-NIR, and Thin-film Xray Diffraction. Film properties are inferred from spectroscopic measurements and are correlated with crystallinity as determined by TFXRD and AFM. A comprehensive explanation of DiPSQ(OH)2 structures is provided and related to measured efficiencies up to 4.3. By controlling the blend ratio and other fabrication conditions, crystalline regions of higher mobility can be developed so as to make significant gains in power conversion efficiency, necessary to achieve long term goals for commercially viable NIR-active OPV devices. AppState Office of Student Research; Synthesis by Cody group. BRC thanks ORAU Junior Faculty Enhancement Award. SDS, CPG and AM thank DOE Award number DE-FG36-08GO88110. CJC and JAC thank NSF award number CBET-1236372.

  19. Blood Clotting-Inspired Control of Single-Chain Molecules in Flows

    NASA Astrophysics Data System (ADS)

    Sing, Charles; Alexander-Katz, Alfredo

    2011-03-01

    Recent experimental evidence has demonstrated a clear link between mechanical stimuli and the activation of von Willebrand Factor (vWF), a protein that plays a critical role in the blood clotting cascade. This protein exhibits counter-intuitive conformational and adsorption responses that suggest novel ways of controlling the single-chain dynamics of polymer chains. Specifically, we are using simulation and theoretical approaches to elucidate the fundamental physics that govern globule-stretch transitions in collapsed polymers due to the effect of fluid flows. We begin to extend this general approach to the case of globule adsorption-desorption transitions in the presence of fluid flows, and demonstrate how kinetic considerations must be taken into account to describe the basic features of these transitions. We expect that these results will both allow the development of novel techniques for single-chain targeting and assembly and offer insight into the physiological behavior of vWF.

  20. Crowded Star Mesogens: Guest-Controlled Stability of Mesophases from Unconventional Liquid-Crystal Molecules.

    PubMed

    Lehmann, Matthias; Maier, Philipp; Grüne, Matthias; Hügel, Markus

    2017-01-23

    The molecular design of crowded hexasubstituted star mesogens based on a benzene core and alternating substitution with oligo(phenylenevinylene) arms and aryl units generates free space between the conjugated arm scaffolds. Various arylcarboxy building blocks, decorated with alkoxy chains, have been incorporated in the void by mixing, hydrogen bonding or covalent bonds to the aryl groups. The mesogens assemble in columnar stacks ranging from soft crystals to rectangular and hexagonal columnar liquid crystals, revealed by polarized optical microscopy, differential scanning calorimetry, X-ray scattering and modelling. The stability of the mesophases is crucially influenced by the binding mode of the arylcarboxy guest building blocks. The origin of the variation in clearing temperature is unravelled by modelling, cohesive energy density considerations and solid-state NMR spectroscopy. The control over the transition temperature is important for the formation of aligned thin films and thus for potential applications.

  1. Control of Transmembrane Protein Diffusion within the Postsynaptic Density Assessed by Simultaneous Single-Molecule Tracking and Localization Microscopy

    PubMed Central

    Li, Tuo P.; Blanpied, Thomas A.

    2016-01-01

    Postsynaptic transmembrane proteins are critical elements of synapses, mediating trans-cellular contact, sensitivity to neurotransmitters and other signaling molecules, and flux of Ca and other ions. Positioning and mobility of each member of this large class of proteins is critical to their individual function at the synapse. One critical example is that the position of glutamate receptors within the postsynaptic density (PSD) strongly modulates their function by aligning or misaligning them with sites of presynaptic vesicle fusion. In addition, the regulated ability of receptors to move in or out of the synapse is critical for activity-dependent plasticity. However, factors that control receptor mobility within the boundaries of the synapse are not well understood. Notably, PSD scaffold molecules accumulate in domains much smaller than the synapse. Within these nanodomains, the density of proteins is considerably higher than that of the synapse as a whole, so high that steric hindrance is expected to reduce receptor mobility substantially. However, while numerical modeling has demonstrated several features of how the varying protein density across the face of a single PSD may modulate receptor motion, there is little experimental information about the extent of this influence. To address this critical aspect of synaptic organizational dynamics, we performed single-molecule tracking of transmembrane proteins using universal point accumulation-for-imaging-in-nanoscale-topography (uPAINT) over PSDs whose internal structure was simultaneously resolved using photoactivated localization microscopy (PALM). The results provide important experimental confirmation that PSD scaffold protein density strongly influences the mobility of transmembrane proteins. A protein with a cytosolic domain that does not bind PSD-95 was still slowed in regions of high PSD-95 density, suggesting that crowding by scaffold molecules and perhaps other proteins is sufficient to stabilize

  2. Enantiomer-Specific State Transfer of Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Eibenberger, Sandra; Doyle, John; Patterson, David

    2017-03-01

    State-selective enantiomeric excess is realized using microwave-driven coherent population transfer. The method selectively promotes either R or S molecules to a higher rotational state by phase-controlled microwave pulses that drive electric-dipole allowed rotational transitions. We demonstrate the enantiomer-specific state transfer method using enantiopure samples of 1,2-propanediol. This method of state-specific enantiomeric enrichment can be applied to a large class of asymmetric, chiral molecules that can be vaporized and cooled to the point where rotationally resolved spectroscopy is possible, including molecules that rapidly racemize. The rapid chiral switching demonstrated here allows for new approaches in high-precision spectroscopic searches for parity violation in chiral molecules.

  3. Revealing Hidden Coherence in Partially Coherent Light.

    PubMed

    Svozilík, Jiří; Vallés, Adam; Peřina, Jan; Torres, Juan P

    2015-11-27

    Coherence and correlations represent two related properties of a compound system. The system can be, for instance, the polarization of a photon, which forms part of a polarization-entangled two-photon state, or the spatial shape of a coherent beam, where each spatial mode bears different polarizations. Whereas a local unitary transformation of the system does not affect its coherence, global unitary transformations modifying both the system and its surroundings can enhance its coherence, transforming mutual correlations into coherence. The question naturally arises of what is the best measure that quantifies the correlations that can be turned into coherence, and how much coherence can be extracted. We answer both questions, and illustrate its application for some typical simple systems, with the aim at illuminating the general concept of enhancing coherence by modifying correlations.

  4. Revealing Hidden Coherence in Partially Coherent Light

    NASA Astrophysics Data System (ADS)

    Svozilík, Jiří; Vallés, Adam; Peřina, Jan; Torres, Juan P.

    2015-11-01

    Coherence and correlations represent two related properties of a compound system. The system can be, for instance, the polarization of a photon, which forms part of a polarization-entangled two-photon state, or the spatial shape of a coherent beam, where each spatial mode bears different polarizations. Whereas a local unitary transformation of the system does not affect its coherence, global unitary transformations modifying both the system and its surroundings can enhance its coherence, transforming mutual correlations into coherence. The question naturally arises of what is the best measure that quantifies the correlations that can be turned into coherence, and how much coherence can be extracted. We answer both questions, and illustrate its application for some typical simple systems, with the aim at illuminating the general concept of enhancing coherence by modifying correlations.

  5. Re-Defining Photovoltaic Efficiency Through Molecule Scale Control. Final Report

    SciTech Connect

    Yardley, James T.

    2015-04-30

    can be used practically in a solar cell system. In addition much work will be required to envision and demonstrate effective device structures that can utilize this concept. However these discoveries do provide the basis for an entirely new set of opportunities for more efficient solar energy generation moving beyond the Shockley-Queisser limit. A second part of the EFRC research program has been to investigate the material and device properties of an entirely new set of materials based on two-dimensional sheets (“ultra-thin”) with thicknesses of only one atom, or a single molecule or just a few atoms. These materials can exhibit conducting, insulating, and semiconducting character and thus they can form the basis for entirely new types of electrical devices. Recent fundamental investigations of these materials, at Columbia and elsewhere, demonstrate clearly that the flow of electrical charges in these systems is fundamentally different from the nature of electrical current flow in conventional materials. This fact presents many possibilities for new photovoltaic device concepts. The EFRC research team has achieved world leadership in the creation and understanding of these materials and in developing the fabrication techniques necessary to create useful devices from them. We have developed the basic fabrication methodology to build structures of these materials into complex device structures, layer by layer. Our EFRC research team has pioneered the synthesis and understanding for graphene, perhaps the simplest of these materials. Graphene can function as a highly transparent conducting material, capable of funneling an electrical charge over reasonable distances without significant energy loss. The EFRC program has also pioneered the development of ultra-thin sheets that function in a way analogous to semiconductor materials as well as sheets that act as electrical insulators. These developments therefore enable the construction of solar cells based on totally

  6. The performance of coherent receiver controlled by the phase lock loop in dual rate free-space laser communication

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoping; Sun, Jianfeng; Hou, Peipei; Lu, Wei; Xu, Qian; Liu, Liren

    2015-09-01

    The technique of differential phase shift keying(DPSK) modulation is applied into demodulating phase information in the coherent optical receiver. The dual rate free-space receiving structure on the base of Mach-Zehnder delay interferometer with the lens is used suitably for differential delay which is equal to the one bit corresponding to a certain data rate. Delay distance at the interference receiver is varied with transmission rata from satellite to ground. Differential information is obtained by the subtraction of the two successive wave-front phases when made to interfere. The phase demodulation is extremely sensitive to phase fluctuation. Because of the incident light through atmospheric turbulence, the wave-front of optical signal became jittered in the temporal and spatial domain rapidly. In the paper, the dual rate free-space laser communication receiver for phase lock to stable signal light phase is proposed, increasing the homodyne efficiency and decreasing the bit error rate.

  7. DFT-based Modeling of Field-Dependent Control and Response of Nanomagnetic Molecules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2012-02-01

    Regardless of whether one is interested in characterizing, utilizing or controlling molecular-scale systems [1], one requisite to their understanding, design, and improvement is the ability to realistically model their response to electromagnetic fields. Since such responses are often collective their description requires an understanding of the interplay between bonding, spin, spin-orbit, vibrations, and electromagnetic fields. Inclusion of spin and magnetism influences the behaviors significantly. I provide an overview of a density-functional-based method (NRLMOL) for determining resonant tunneling of magnetization and Berry's phase oscillations in molecular magnets (primarily Mn12-Acetate and derivatives) [2] and spin-electric effects in frustrated spin systems [Na12Cu3(AsW9O33)2.3H20] [3]. The complexities related to spin- and magnetically dependent transport are compared to those of a nonmagnetic case [4]. Direct comparisons to experiments will be made. Challenges and recent progress associated with incorporating these effects into a realistic description of the frequency and amplitude dependent field driven response of many-electron/spin nanosystems will be discussed.[4pt] [1] MRP and SN Khanna, PRB 60 9566 (1999).[0pt] [2] AV Postnikov, J. Kortus & MRP, PSSB 243 2533 (2006).[0pt] [3] MF Islam, JF Nossa, CM Canali, & MRP, PRB 82 15546 (2010).[0pt] [4] N.A. Zimbovskaya, MRP, AS Blum, BR Ratna and R. Allen, JCP 130 094702 (2009).

  8. Controllable Molecule Transport and Release by a Restorable Surface-tethered DNA nanodevice

    PubMed Central

    Wang, Zhaoyin; Xu, Yuanyuan; Wang, Haiyan; Liu, Fengzhen; Ren, Zhenning; Wang, Zhaoxia

    2016-01-01

    In this paper, we report a novel surface-tethered DNA nanodevice that may present three states and undergo conformational changes under the operation of pH. Besides, convenient regulation on the electrode surface renders the construction and operation of this DNA nanodevice restorable. To make full use of this DNA nanodevice, ferrocene (Fc) has been further employed for the fabrication of the molecular device. On one hand, the state switches of the DNA nanodevice can be characterized conveniently and reliably by the obtained electrochemical signals from Fc. On the other hand, β-cyclodextrin-ferrocene (β-CD-Fc) host-guest system can be introduced by Fc, which functionalizes this molecular device. Based on different electrochemical behaviors of β-CD under different states, this DNA nanodevice can actualize directional loading, transporting and unloading of β-CD in nanoscale. Therefore, this DNA nanodevice bares promising applications in controllable molecular transport and release, which are of great value to molecular device design. PMID:27384943

  9. Materials for sustained and controlled release of nutrients and molecules to support plant growth.

    PubMed

    Davidson, Drew; Gu, Frank X

    2012-02-01

    Controlled release fertilizers (CRFs) are a branch of materials that are designed to improve the soil release kinetics of chemical fertilizers to address problems stemming losses from runoff or other factors. Current CRFs are used but only in a limited market due to relatively high costs and doubts about their abilities to result in higher yields and increased profitability for agricultural businesses. New technologies are emerging that promise to improve the efficacy of CRFs to add additional functionality and reduce cost to make CRFs a more viable alternative to traditional chemical fertilizer treatment. CRFs that offer ways of reducing air and water pollution from fertilizer treatments, improving the ability of plants to access required nutrients, improving water retention to increase drought resistance, and reducing the amount of fertilizer needed to provide maximum crop yields are under development. A wide variety of different strategies are being considered to tackle this problem, and each approach offers different advantages and drawbacks. Agricultural industries will soon be forced to move toward more efficient and sustainable practices to respond to increasing fertilizer cost and desire for sustainable growing practices. CRFs have the potential to solve many problems in agriculture and help enable this shift while maintaining profitability.

  10. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control.

    PubMed

    Rodrigo, Peter John; Pedersen, Christian

    2010-03-01

    Optimization of signal-to-noise ratio is an important aspect in the design of optical heterodyne detection systems such as a coherent Doppler lidar (CDL). In a CDL, optimal performance is achieved when the noise in the detector signal is dominated by local oscillator shot-noise. Most modern CDL systems are built using rugged and cost-efficient fiber optic components. Unfortunately, leakage signals such as residual reflections inherent within fiber components (e.g. circulator) can introduce phase-induced intensity noise (PIIN) to the Doppler spectrum in a CDL. Such excess noise may be a few orders of magnitude above the shot-noise level within the relevant CDL frequency bandwidth--corrupting the measurement of typically weak backscattered signals. In this study, observation of PIIN in a fiber-based CDL with a master-oscillator power-amplifier tapered semiconductor laser source is reported. Furthermore, we experimentally demonstrate what we believe is a newly proposed method using a simple polarization scheme to reduce PIIN by more than an order of magnitude.

  11. Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent x-ray diffraction microscopy.

    PubMed

    Takayama, Yuki; Nakasako, Masayoshi

    2012-05-01

    Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, we report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.

  12. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.

    PubMed

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  13. Label-free solution-based kinetic study of aptamer-small molecule interactions by kinetic capillary electrophoresis with UV detection revealing how kinetics control equilibrium.

    PubMed

    Bao, Jiayin; Krylova, Svetlana M; Reinstein, Oren; Johnson, Philip E; Krylov, Sergey N

    2011-11-15

    Here we demonstrate a label-free solution-based approach for studying the kinetics of biopolymer-small molecule interactions. The approach utilizes kinetic capillary electrophoresis (KCE) separation and UV light absorption detection of the unlabeled small molecule. In this proof-of-concept work, we applied KCE-UV to study kinetics of interaction between a small molecule and a DNA aptamer. From the kinetic analysis of a series of aptamers, we found that dissociation rather than binding controls the stability of the complex. Because of its label-free features and generic nature, KCE-UV promises to become a practical tool for challenging kinetic studies of biopolymer-small molecule interactions.

  14. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  15. Targeting at the Nanoscale: A Novel S-Layer Fusion Protein Enabling Controlled Immobilization of Biotinylated Molecules

    PubMed Central

    Varga, Melinda

    2016-01-01

    With the aim of constructing an S-layer fusion protein that combines both excellent self-assembly and specific ligand i.e., biotin binding ability, streptavidin (aa 16-133) was fused to the S-layer protein of Sporosarcina ureae ATCC 13881 (SslA) devoid of its N-terminal 341 and C-terminal 172 amino acids. The genetically engineered chimeric protein could be successfully produced in E. coli, isolated, and purified via Ni affinity chromatography. In vitro recrystallisation experiments performed with the purified chimeric protein in solution and on a silicon wafer have demonstrated that fusion of the streptavidin domain does not interfere with the self-assembling properties of the S-layer part. The chimeric protein self-assembled into multilayers. More importantly, the streptavidin domain retained its full biotin-binding ability, a fact evidenced by experiments in which biotinylated quantum dots were coupled to the fusion protein monomers and adsorbed onto the in vitro recrystallised fusion protein template. In this way, this S-layer fusion protein can serve as a functional template for the controlled immobilization of biotinylated and biologically active molecules. PMID:28335327

  16. Coherence comes full circle. Interview by Joerg Heber.

    PubMed

    Materlik, Gerhard

    2010-05-01

    Coherent synchrotron radiation has revolutionized the study of molecules and materials. Talking to Nature Materials, Gerhard Materlik, CEO of the Diamond Light Source, discusses the many uses of synchrotron sources and free electron lasers.

  17. CONTROL OF LASER RADIATION PARAMETERS: Cross modulation method of transformation of the spatial coherence of pulsed laser radiation in a nonlinear medium

    NASA Astrophysics Data System (ADS)

    Kitsak, M. A.; Kitsak, A. I.

    2008-04-01

    The cross modulation method of transformation of the spatial coherence of low-power pulsed laser radiation in a nonlinear medium is proposed. The method is realised experimentally in a multimode optical fibre. The estimates of the degree of spatial coherence of radiation subjected to the phase cross modulation demonstrated the high efficiency of this radiation decorrelation mechanism.

  18. Coherence spectroscopy in dissipative media: a Liouville space pathway approach.

    PubMed

    Ramakrishna, S; Seideman, Tamar

    2005-02-22

    We address the possibility of using coherent control tools to extract useful information about the interaction of a system with a dissipative environment. To that end we extend previous work, which developed a coherence spectroscopy based on two-pathway excitation phase control, from the isolated molecule limit to dense media. Specifically, we explore the properties of the channel phase, an observable of energy-domain two-pathway excitation experiments that was shown in the isolated molecule limit to carry information about the phase properties of the material system. Our analysis is based on the combination of steady state and time-dependent analytical perturbative approaches within the density matrix formalism, complemented by nonperturbative numerical simulations. We find that the channel phase carries significantly richer information in the presence of decoherence mechanisms than in their absence. In particular, rescattering events in the structured continuum introduce new features in the channel phase spectrum, whose structure conveys information about both the molecular continuum and the system bath interaction.

  19. Coherent one-photon phase control in closed and open quantum systems: a general master equation approach.

    PubMed

    Pachón, Leonardo A; Yu, Li; Brumer, Paul

    2013-01-01

    The underlying mechanisms for one photon phase control are revealed through a master equation approach. Specifically, two mechanisms are identified, one operating on the laser time scale and the other on the time scale of the system-bath interaction. The effects of the secular and non-secular Markovian approximations are carefully examined.

  20. Changes in Frontal EEG Coherence across Infancy Predict Cognitive Abilities at Age 3: The Mediating Role of Attentional Control

    ERIC Educational Resources Information Center

    Whedon, Margaret; Perry, Nicole B.; Calkins, Susan D.; Bell, Martha Ann

    2016-01-01

    Theoretical perspectives of cognitive development have maintained that functional integration of the prefrontal cortex across infancy underlies the emergence of attentional control and higher cognitive abilities in early childhood. To investigate these proposed relations, we tested whether functional integration of prefrontal regions across the…

  1. Enhanced coherent control of carrier and spin density in a zinc-blende semiconductor by cascaded second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Stevens, Martin J.; Bhat, R. D. R.; Pan, X. Y.; van Driel, H. M.; Sipe, J. E.; Smirl, Arthur L.

    2005-05-01

    Phase- and polarization-dependent optical processes involving pulses with frequencies ω and 2ω can be used to independently control electron and spin density in zinc-blende semiconductors such as GaAs. One such process is quantum interference control (QUIC) where interference between transition amplitudes associated with one- and two-photon absorption alters the carrier/spin generation rate. A second process, which has been acknowledged but not utilized, is cascaded second-harmonic (CASH) generation in which phase-dependent upconversion/downconversion between the two pulses modulates the 2ω pulse intensity and/or polarization and hence modulates the carrier or spin generation rate by single-photon absorption at 2ω. Here we report the use of (110)-oriented GaAs /AlGaAs quantum wells with a 500-nmAlGaAs buffer layer to enhance CASH and to allow independent control of spin and carrier densities. Experiments conducted with 100-fs pulses at 775 and 1550nm or at 715 and 1430nm, with different polarization states and with different sample orientations, show how QUIC and CASH processes vary with excitation frequency and demonstrate the dominant role played by CASH. We point the way to achieving nearly 100% control through CASH.

  2. Long-lived coherence in carotenoids

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Cannon, E.; Van Dao, L.; Hannaford, P.; Quiney, H. M.; Nugent, K. A.

    2010-08-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the langS2|S0rang superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  3. Photosynthetic light harvesting: excitons and coherence

    PubMed Central

    Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D.

    2014-01-01

    Photosynthesis begins with light harvesting, where specialized pigment–protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques. PMID:24352671

  4. Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna.

    PubMed

    Zhao, Chenglong; Liu, Yongmin; Yang, Jing; Zhang, Jiasen

    2014-08-07

    We designed a heterogeneous optical slot antenna (OSA) that is capable of detecting single molecules in solutions at high concentrations, where most biological processes occur. A heterogeneous OSA consists of a rectangular nanoslot fabricated on heterogeneous metallic films formed by sequential deposition of gold and aluminum on a glass substrate. The rectangular nanoslot gives rise to large field and fluorescence enhancement for single molecules. The near-field intensity inside a heterogeneous OSA is 170 times larger than that inside an aluminum zero-mode waveguide (ZMW), and the fluorescence emission rate of a molecule inside the heterogeneous OSA is about 70 times higher than that of the molecule in free space. Our proposed heterogeneous optical antenna enables excellent balance between performance and cost. The design takes into account the practical experimental conditions so that the parameters chosen in the simulation are well within the reach of current nano-fabrication technologies. Our results can be used as a direct guidance for designing high-performance, low-cost plasmonic nanodevices for the study of bio-molecule and enzyme dynamics at the single-molecule level.

  5. Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing.

    PubMed

    Kim, Yong-Hoon; Yoo, Byungwook; Anthony, John E; Park, Sung Kyu

    2012-01-24

    Ink-jet printed small-molecule organic single-crystal transistors are realized by using selective surface energy modification, precise control of volume density of ink droplets on spatially patterned areas, and a co-solvent system to control solvent evaporation properties. The single-crystal formation in bottom-contact-structured transistors via direct printing is expected to permit high-density array fabrication in large-area electronics.

  6. Coherent Control of the Goos—Hänchen Shifts in a Four-Level N Type Atomic Medium

    NASA Astrophysics Data System (ADS)

    Parisa, Maboodi; Soheila, Hemmatzadeh; Seyyed, Hossein Asadpour; H. Rahimpour, Soleimani

    2014-12-01

    The behavior of the Goos—Hänchen (GH) shifts of the reflected and transmitted probe light beams is theoretically investigated. In a fixed geometrical configuration, the effect of quantum interference induced by spontaneous emission on the phase control of the GH shifts is analyzed in this paper. It is found that in a four-level N-type atomic system as an intracavity medium, the GH shifts of the reflected and transmitted probe light beam are completely phase dependent.

  7. Coherent fiber supercontinuum for biophotonics

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2013-01-01

    Biophotonics and nonlinear fiber optics have traditionally been two independent fields. Since the discovery of fiber-based supercontinuum generation in 1999, biophotonics applications employing incoherent light have experienced a large impact from nonlinear fiber optics, primarily because of the access to a wide range of wavelengths and a uniform spatial profile afforded by fiber supercontinuum. However, biophotonics applications employing coherent light have not benefited from the most well-known techniques of supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, and inadequate portability. Fortunately, a few key techniques involving nonlinear fiber optics and femtosecond laser development have emerged to overcome these critical limitations. Despite their relative independence, these techniques are the focus of this review, because they can be integrated into a low-cost portable biophotonics source platform. This platform can be shared across many different areas of research in biophotonics, enabling new applications such as point-of-care coherent optical biomedical imaging. PMID:24358056

  8. Nonlocal advantage of quantum coherence

    NASA Astrophysics Data System (ADS)

    Mondal, Debasis; Pramanik, Tanumoy; Pati, Arun Kumar

    2017-01-01

    A bipartite state is said to be steerable if and only if it does not have a single-system description, i.e., the bipartite state cannot be explained by a local hidden state model. Several steering inequalities have been derived using different local uncertainty relations to verify the ability to control the state of one subsystem by the other party. Here, we derive complementarity relations between coherences measured on mutually unbiased bases using various coherence measures such as the l1-norm, relative entropy, and skew information. Using these relations, we derive conditions under which a nonlocal advantage of quantum coherence can be achieved and the state is steerable. We show that not all steerable states can achieve such an advantage.

  9. Coherent fiber supercontinuum for biophotonics.

    PubMed

    Tu, Haohua; Boppart, Stephen A

    2013-09-01

    Biophotonics and nonlinear fiber optics have traditionally been two independent fields. Since the discovery of fiber-based supercontinuum generation in 1999, biophotonics applications employing incoherent light have experienced a large impact from nonlinear fiber optics, primarily because of the access to a wide range of wavelengths and a uniform spatial profile afforded by fiber supercontinuum. However, biophotonics applications employing coherent light have not benefited from the most well-known techniques of supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, and inadequate portability. Fortunately, a few key techniques involving nonlinear fiber optics and femtosecond laser development have emerged to overcome these critical limitations. Despite their relative independence, these techniques are the focus of this review, because they can be integrated into a low-cost portable biophotonics source platform. This platform can be shared across many different areas of research in biophotonics, enabling new applications such as point-of-care coherent optical biomedical imaging.

  10. Coherence versus interferometric resolution

    SciTech Connect

    Luis, Alfredo

    2010-06-15

    We examine the relation between second-order coherence and resolution in the interferometric detection of phase shifts. While for classical thermal light resolution and second-order coherence are synonymous, we show that for quantum light beams reaching optimum precision second-order coherence and resolution become antithetical.

  11. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  12. The Effect of Vitamin D Administration on Intracellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Levels in Hemodialysis Patients: A Placebo-controlled, Double-blinded Clinical Trial

    PubMed Central

    Naeini, Afsoon Emami; Moeinzadeh, Firouzeh; Vahdat, Sahar; Ahmadi, Akbar; Hedayati, Zahra Parin; Shahzeidi, Safoora

    2017-01-01

    Objective: Vitamin D deficiency is quite common among end-stage renal disease (ESRD) patients, and Vitamin D administration could reduce morbidity and mortality in these patients through different mechanisms. Cardiovascular diseases are the most common cause of mortality in these patients that are caused by vascular injuries. Intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) are vascular inflammation indicators. The goal of this study is to find the effect of Vitamin D administration on ICAM-1 and VCAM-1 serum levels in ESRD patients on hemodialysis. Methods: The current study is a double-blind, randomized, placebo-controlled clinical trial on 64 patients in two groups of control and treatment. Serum levels of Vitamin D, ICAM-1, and VCAM-1 were measured before and after the study. Treatment group was treated with Vitamin D pearls while control group underwent treatment with placebo pearls. Average serum levels of Vitamin D, ICAM, and VCAM were measured in both groups before and after the study and were analyzed by ANOVA, paired t-test, and Chi-square test using SPSS software. Findings: Sixty-four ESRD patients were recruited for this study consisting of 32 male and 32 female subjects within the ages of 18 and 76 years. The change in serum level of Vitamin D was significant in treatment group (P = 0.001) but not in control group (P > 0.05). Serum levels of ICAM and VCAM also changed significantly in treatment group (P = 0.001) but not in control group (P > 0.05) Conclusion: Based on the findings of this study, it could be said that Vitamin D administration in ESRD patients may increase serum level of Vitamin D up to four times. It also reduces serum levels of ICAM and VCAM which might improve the vascular condition of these patients.

  13. Neural Correlates of Bridging Inferences and Coherence Processing

    ERIC Educational Resources Information Center

    Kim, Sung-il; Yoon, Misun; Kim, Wonsik; Lee, Sunyoung; Kang, Eunjoo

    2012-01-01

    We explored the neural correlates of bridging inferences and coherence processing during story comprehension using Positron Emission Tomography (PET). Ten healthy right-handed volunteers were visually presented three types of stories (Strong Coherence, Weak Coherence, and Control) consisted of three sentences. The causal connectedness among…

  14. Coherent control of optical absorption and the energy transfer pathway of an infrared quantum dot hybridized with a VO2 nanoparticle

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Zamani, Naser; Johnston, William

    2017-04-01

    We systematically investigate the optical response of a semiconductor quantum dot (QD) hybridized with a vanadium dioxide nanoparticle (VO2NP) in the infrared (IR) region. The VO2NP features a semiconductor to metal phase change characteristic below and above a critical temperature that leads to an abrupt change in the particle’s optical properties. This feature means that the QD-VO2NP hybrid system can support the coherent coupling of exciton-polaritons and exciton-plasmon polaritons in the semiconductor and metal phases of the VO2NP, respectively. In our calculations, the VO2NP phase transition is modelled with a filling fraction (f), representing the fraction of the VO2NP in the metallic phase. The phase transition is driven by the hybrid system’s interaction with a continuous wave (CW) IR laser field. In this paper, we show how control over the filling fraction results in the enhancement or suppression of the QD’s linear absorption. These variations in the QD absorption is due to dramatic changes in the effective local field experienced by the QD and the non-radiative energy transfer from the QD to the VO2NP. The presented results have the potential to be applied to the design of thermal sensors at the nanoscale.

  15. Coherent control of optical absorption and the energy transfer pathway of an infrared quantum dot hybridized with a VO2 nanoparticle.

    PubMed

    Hatef, Ali; Zamani, Naser; Johnston, William

    2017-04-20

    We systematically investigate the optical response of a semiconductor quantum dot (QD) hybridized with a vanadium dioxide nanoparticle (VO2NP) in the infrared (IR) region. The VO2NP features a semiconductor to metal phase change characteristic below and above a critical temperature that leads to an abrupt change in the particle's optical properties. This feature means that the QD-VO2NP hybrid system can support the coherent coupling of exciton-polaritons and exciton-plasmon polaritons in the semiconductor and metal phases of the VO2NP, respectively. In our calculations, the VO2NP phase transition is modelled with a filling fraction (f), representing the fraction of the VO2NP in the metallic phase. The phase transition is driven by the hybrid system's interaction with a continuous wave (CW) IR laser field. In this paper, we show how control over the filling fraction results in the enhancement or suppression of the QD's linear absorption. These variations in the QD absorption is due to dramatic changes in the effective local field experienced by the QD and the non-radiative energy transfer from the QD to the VO2NP. The presented results have the potential to be applied to the design of thermal sensors at the nanoscale.

  16. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    PubMed

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  17. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    PubMed

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-09

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  18. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus

    2015-05-01

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  19. Resonant optical spectroscopy and coherent control of C r4 + spin ensembles in SiC and GaN

    NASA Astrophysics Data System (ADS)

    Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Son, N. T.; Janzén, Erik; Awschalom, David D.

    2017-01-01

    Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (C r4 + ) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.

  20. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization.

    PubMed

    Liu, Tao; Bao, Chunyan; Wang, Haiyan; Lin, Yao; Jia, Huijuan; Zhu, Linyong

    2013-11-11

    Light-regulated ion channel-transport across lipid bilayers was realized using structurally simple azobenzene-based amphiphilic small molecules. UV or visible irradiation triggers molecular photoisomerization, which induces structural and membrane affinity changes in self-assembled channels, thus resulting in light-regulated ion transmembrane transport.