Sample records for molecules direct effect

  1. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C60

    NASA Astrophysics Data System (ADS)

    Golunski, M.; Verkhoturov, S. V.; Verkhoturov, D. S.; Schweikert, E. A.; Postawa, Z.

    2017-02-01

    Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C60 projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  2. Coherent Bichromatic Force Deflection of Molecules

    NASA Astrophysics Data System (ADS)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  3. Control of π-Electron Rotations in Chiral Aromatic Molecules Using Intense Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kanno, Manabu; Kono, Hirohiko; Fujimura, Yuichi

    Our recent theoretical studies on laser-induced π-electron rotations in chiral aromatic molecules are reviewed. π electrons of a chiral aromatic molecule can be rotated along its aromatic ring by a nonhelical, linearly polarized laser pulse. An ansa aromatic molecule with a six-membered ring, 2,5-dichloro[n](3,6) pyrazinophane, which belongs to a planar-chiral molecule group, and its simplified molecule 2,5-dichloropyrazine are taken as model molecules. Electron wavepacket simulations in the frozen-molecular-vibration approximation show that the initial direction of π-electron rotation depends on the polarization direction of a linearly polarized laser pulse applied. Consecutive unidirectional rotation can be achieved by applying a sequence of linearly polarized pump and dump pulses to prevent reverse rotation. Optimal control simulations of π-electron rotation show that another controlling factor for unidirectional rotation is the relative optical phase between the different frequency components of an incident pulse in addition to photon polarization direction. Effects of nonadiabatic coupling between π-electron rotation and molecular vibrations are also presented, where the constraints of the frozen approximation are removed. The angular momentum gradually decays mainly owing to nonadiabatic coupling, while the vibrational amplitudes greatly depend on their rotation direction. This suggests that the direction of π-electron rotation on an attosecond timescale can be identified by detecting femtosecond molecular vibrations.

  4. Field-induced inversion of resonant tunneling currents through single molecule junctions and the directional photo-electric effect

    NASA Astrophysics Data System (ADS)

    Kuperman, Maayan; Peskin, Uri

    2017-03-01

    It has been known for several decades that the electric current through tunneling junctions is affected by irradiation. In particular, photon-assisted currents by asymmetric irradiation of the two leads was demonstrated and studied extensively in tunneling junctions of different compositions and for different radiation wavelengths. In this work, this phenomenon is revisited in the context of single molecule junctions. Restricting the theoretical discussion to adiabatic periodic driving of one lead with respect to the other within a non-interacting electron formulation, the main features of specific molecules are encoded in the discrete electronic energy levels. The detailed level structure of the molecule is shown to yield new effects in the presence of asymmetric driving of the leads. In particular, when the field-free tunneling process is dominated by a single electronic level, the electric current can be suppressed to zero or flow against the direction of an applied static bias. In the presence of a second electronic level, a directional photo-electric effect is predicted, where not only the magnitude but also the direction of the steady state electric current through the tunneling junction can be changed by a monotonous increase of the field intensity. These effects are analyzed and explained by outlying the relevant theory, using analytic expressions in the wide-band limit, as well as numerical simulations beyond this limit.

  5. Blinking effect and the use of quantum dots in single molecule spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in singlemore » molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.« less

  6. Discriminating cascading processes in nonlinear optics: A QED analysis based on their molecular and geometric origin

    NASA Astrophysics Data System (ADS)

    Bennett, Kochise; Chernyak, Vladimir Y.; Mukamel, Shaul

    2017-03-01

    The nonlinear optical response of a system of molecules often contains contributions whereby the products of lower-order processes in two separate molecules give signals that appear on top of a genuine direct higher-order process with a single molecule. These many-body contributions are known as cascading and complicate the interpretation of multidimensional stimulated Raman and other nonlinear signals. In a quantum electrodynamic treatment, these cascading processes arise from second-order expansion in the molecular coupling to vacuum modes of the radiation field, i.e., single-photon exchange between molecules, which also gives rise to other collective effects. We predict the relative phase of the direct and cascading nonlinear signals and its dependence on the microscopic dynamics as well as the sample geometry. This phase may be used to identify experimental conditions for distinguishing the direct and cascading signals by their phase. Higher-order cascading processes involving the exchange of several photons between more than two molecules are discussed.

  7. Method and system for measurement of mechanical properties of molecules and cells

    NASA Technical Reports Server (NTRS)

    Fredberg, Jeffrey J. (Inventor); Butler, James P. (Inventor); Ingber, Donald E. (Inventor); Wang, Ning (Inventor)

    1996-01-01

    Mechanical stresses and deformations are applied directly to cell surface receptors or molecules and measured using a system including a magnetic twisting device in combination with ferromagnetic microbeads coated with ligands for integrins or any other surface receptors. The system can be used diagnostically to characterize cells and molecules and to determine the effect of transformation and compounds, including drugs, on the cells and molecules. The system can also be used to induce cells to grow or alter production of molecules by the cells.

  8. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  9. Systems Based Study of the Therapeutic Potential of Small Charged Molecules for the Inhibition of IL-1 Mediated Cartilage Degradation

    PubMed Central

    Kar, Saptarshi; Smith, David W.; Gardiner, Bruce S.; Grodzinsky, Alan J.

    2016-01-01

    Inflammatory cytokines are key drivers of cartilage degradation in post-traumatic osteoarthritis. Cartilage degradation mediated by these inflammatory cytokines has been extensively investigated using in vitro experimental systems. Based on one such study, we have developed a computational model to quantitatively assess the impact of charged small molecules intended to inhibit IL-1 mediated cartilage degradation. We primarily focus on the simplest possible computational model of small molecular interaction with the IL-1 system—direct binding of the small molecule to the active site on the IL-1 molecule itself. We first use the model to explore the uptake and release kinetics of the small molecule inhibitor by cartilage tissue. Our results show that negatively charged small molecules are excluded from the negatively charged cartilage tissue and have uptake kinetics in the order of hours. In contrast, the positively charged small molecules are drawn into the cartilage with uptake and release timescales ranging from hours to days. Using our calibrated computational model, we subsequently explore the effect of small molecule charge and binding constant on the rate of cartilage degradation. The results from this analysis indicate that the small molecules are most effective in inhibiting cartilage degradation if they are either positively charged and/or bind strongly to IL-1α, or both. Furthermore, our results showed that the cartilage structural homeostasis can be restored by the small molecule if administered within six days following initial tissue exposure to IL-1α. We finally extended the scope of the computational model by simulating the competitive inhibition of cartilage degradation by the small molecule. Results from this model show that small molecules are more efficient in inhibiting cartilage degradation by binding directly to IL-1α rather than binding to IL-1α receptors. The results from this study can be used as a template for the design and development of more pharmacologically effective osteoarthritis drugs, and to investigate possible therapeutic options. PMID:27977731

  10. Steric Effects of Solvent Molecules on SN2 Substitution Dynamics.

    PubMed

    Liu, Xu; Xie, Jing; Zhang, Jiaxu; Yang, Li; Hase, William L

    2017-04-20

    Influences of solvent molecules on S N 2 reaction dynamics of microsolvated F - (H 2 O) n with CH 3 I, for n = 0-3, are uncovered by direct chemical dynamics simulations. The direct substitution mechanism, which is important without microsolvation, is quenched dramatically upon increasing hydration. The water molecules tend to force reactive encounters to proceed through the prereaction collision complex leading to indirect reaction. In contrast to F - (H 2 O), reaction with higher hydrated ions shows a strong propensity for ion desolvation in the entrance channel, diminishing steric hindrance for nucleophilic attack. Thus, nucleophilic substitution avoids the potential energy barrier with all of the solvent molecules intact and instead occurs through the less solvated barrier, which is energetically unexpected because the former barrier has a lower energy. The work presented here reveals a trade-off between reaction energetics and steric effects, with the latter found to be crucial in understanding how hydration influences microsolvated S N 2 dynamics.

  11. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  12. Direct photoassociation of halo molecules in ultracold 86 Sr

    NASA Astrophysics Data System (ADS)

    Aman, J. A.; Hill, Joshua; Killian, T. C.

    2017-04-01

    We investigate the creation of 1S0 +1S0 halo molecules in strontium 86 through direct photoassociation in an optical dipole trap. We drive two photon Raman transitions near-resonance with a molecular level of the 1S0 +3P1 interatomic potential as the intermediate state. This provides large Frank-Condon factors and allows us to observe resonances for the creation of halo molecules through higher order Raman processes. The halo molecule is bound by EB 85 kHz at low excitation-laser intensity, but experiments show large AC Stark shifts of the molecular binding energy. These conditions suggest that STIRAP should be very effective for improving molecular conversion efficiency. Further experiments in a 3D lattice will explore molecular lifetimes and collision rates. Travel support provided by Shell Corporation.

  13. SEPARATION OF GASES BY DIFFUSIION

    DOEpatents

    Peierls, R.E.; Simon, F.E.; Arms, H.S.

    1960-12-13

    A method and apparatus are given for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase with the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction within the chamber. By these means a concentration gradient along the chamber is established.

  14. Separation of gases by diffusion

    DOEpatents

    Peieris, R. E.; Simon, F. E.; Arms, H. S.

    1960-12-13

    An apparatus is described for the separation of mixtures of gaseous or vaporous media by diffusion through a permeable membrane. The apparatus consists principally of a housing member having an elongated internal chamber dissected longitudinally by a permeable membrane. Means are provided for producing a pressure difference between opposite sides of the membrane to cause a flow of the media in the chamber therethrough. This pressure difference is alternated between opposite sides of the membrane to produce an oscillating flow through the membrane. Additional means is provided for producing flow parallel to the membrane in opposite directions on the two sides thereof and of the same frequency and in phase wlth the alternating pressure difference. The lighter molecules diffuse through the membrane more readily than the heavier molecules and the parallel flow effects a net transport of the lighter molecules in one direction and the heavier molecules in the opposite direction wlthin the chamber. By these means a concentration gradient along the chamber is established. (auth)

  15. Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice

    PubMed Central

    Tsang, Julia Yuen-Shan; Tanriver, Yakup; Jiang, Shuiping; Xue, Shao-An; Ratnasothy, Kulachelvy; Chen, Daxin; Stauss, Hans J.; Bucy, R. Pat; Lombardi, Giovanna; Lechler, Robert

    2008-01-01

    T cell responses to MHC-mismatched transplants can be mediated via direct recognition of allogeneic MHC molecules on the cells of the transplant or via recognition of allogeneic peptides presented on the surface of recipient APCs in recipient MHC molecules — a process known as indirect recognition. As CD4+CD25+ Tregs play an important role in regulating alloresponses, we investigated whether mouse Tregs specific for allogeneic MHC molecules could be generated in vitro and could promote transplantation tolerance in immunocompetent recipient mice. Tregs able to directly recognize allogeneic MHC class II molecules (dTregs) were obtained by stimulating CD4+CD25+ cells from C57BL/6 mice (H-2b) with allogeneic DCs from BALB/c mice (H-2d). To generate Tregs that indirectly recognized allogeneic MHC class II molecules, dTregs were retrovirally transduced with TCR genes conferring specificity for H-2Kd presented by H-2Ab MHC class II molecules. The dual direct and indirect allospecificity of the TCR-transduced Tregs was confirmed in vitro. In mice, TCR-transduced Tregs, but not dTregs, induced long-term survival of partially MHC-mismatched heart grafts when combined with short-term adjunctive immunosuppression. Further, although dTregs were only slightly less effective than TCR-transduced Tregs at inducing long-term survival of fully MHC-mismatched heart grafts, histologic analysis of long-surviving hearts demonstrated marked superiority of the TCR-transduced Tregs. Thus, Tregs specific for allogeneic MHC class II molecules are effective in promoting transplantation tolerance in mice, which suggests that such cells have clinical potential. PMID:18846251

  16. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules.

    PubMed

    Zhao, Yan; Yuan, Zuyi; Liu, Yan; Xue, Jiahong; Tian, Yuling; Liu, Weimin; Zhang, Weiping; Shen, Yan; Xu, Wei; Liang, Xiao; Chen, Tao

    2010-03-01

    Adhesion molecules have been implicated in the development and progression of atherosclerosis. Cannabinoids have been reported to modulate the migration and adhesion molecules expression of various cell types. Here we examined the effects of WIN55212-2, a cannabinoid receptor 1 (CB1-R)/cannabinoid receptor 2 (CB2-R) agonist on the development of atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice, which are vulnerable because of their high plasma cholesterol and triacylglycerol levels, focusing on the expression of endothelial adhesion molecules. In the aorta of ApoE-/- mice, WIN55212-2 significantly reduced aortic root plaque area. The mechanism for this seemed to be reduced infiltration of macrophages into the atherosclerotic plaque which was also associated with reduced expression of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and P-selectin in the aorta. In vitro studies revealed reduced cell adhesion of a monocytic cell line (U937) to human umbilical vein endothelial cells after incubation with WIN55212-2. The reduction in macrophage adhesion also correlated with significant reductions in the expression of VCAM-1, ICAM-1, and P-selectin, indicating that reduced infiltration of macrophages in atherosclerotic plaques may occur as a result of the direct effect of WIN55212-2 on adhesion molecules in macrophages and endothelial cells. In conclusion, WIN55212-2 seems to have direct anti-atherosclerotic effects in an animal model of atherosclerosis. These effects were at least partly due to effects on the expression of VCAM-1, ICAM-1, and P-selectin, which led to reduced macrophage adhesion and infiltration. Furthermore, the protective effects completely blocked by the highly selective CB2 receptor antagonist AM630 suggest that these beneficial effects of WIN55212-2 may be mediated through the CB2 receptor.

  17. Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yang, Deng-Ke

    2017-01-01

    Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.

  18. Effect of multi-dimensional ultraviolet light exposure on the growth of pentacene film and application to organic field-effect transistors.

    PubMed

    Bae, Jin-Hyuk; Lee, Sin-Doo; Choi, Jong Sun; Park, Jaehoon

    2012-05-01

    We report on the multi-dimensional alignment of pentacene molecules on a poly(methyl methacrylate)-based photosensitive polymer (PMMA-polymer) and its effect on the electrical performance of the pentacene-based field-effect transistor (FET). Pentacene molecules are shown to be preferentially aligned on the linearly polarized ultraviolet (LPUV)-exposed PMMA-polymer layer, which is contrast to an isotropic alignment on the bare PMMA-polymer layer. Multi-dimensional alignment of pentacene molecules in the film could be achieved by adjusting the direction of LPUV exposed to the PMMA-polymer. The control of pentacene molecular alignment is found to be promising for the field-effect mobility enhancement in the pentacene FET.

  19. Symmetry of Carrier-Envelope Phase Difference Effects in Strong-Field, Few-Cycle Ionization of Atoms and Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiny, Christian Per Juul; Madsen, Lars Bojer

    2006-09-01

    In few-cycle pulses, the exact value of the carrier-envelope phase difference (CEPD) has a pronounced influence on the ionization dynamics of atoms and molecules. We show that, for atoms in circularly polarized light, a change in the CEPD is mapped uniquely to an overall rotation of the system, and results for arbitrary CEPD are obtained by rotation of the results from a single calculation with fixed CEPD. For molecules, this is true only for linear molecules aligned parallel with the propagation direction of the field. The effects of CEPD are classified as geometric or nongeometric. The observations are exemplified bymore » strong-field calculations on hydrogen.« less

  20. Quantum theory of atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of X(2)CY (X = H, F, Cl; Y = O, S) molecules.

    PubMed

    Faria, Sergio H D M; da Silva, João Viçozo; Haiduke, Roberto L A; Vidal, Luciano N; Vazquez, Pedro A M; Bruns, Roy E

    2007-08-16

    The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.

  1. Effect of the collective motions of molecules inside a condensed phase on fluctuations in the density of small bodies

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-11-01

    An approach to calculating the effects of fluctuations in density that considers the collective motions of molecules in small condensed phases (e.g., droplets, microcrystals, adsorption at microcrystal faces) is proposed. Statistical sums of the vibrational, rotational, and translational motions of molecules are of a collective character expressed in the dependences of these statistical sums on the local configurations of neighboring molecules. This changes their individual contributions to the free energy and modifies fluctuations in density in the inner homogeneous regions of small bodies. Interactions between nearest neighbors are considered in a quasi-chemical approximation that reflects the effects of short-range direct correlations. Expressions for isotherms relating the densities of mixture components to the chemical potentials in a thermostat are obtained, along with equations for pair distribution functions.

  2. Activation of the stress proteome as a mechanism for small molecule therapeutics.

    PubMed

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D

    2012-10-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.

  3. Activation of the stress proteome as a mechanism for small molecule therapeutics

    PubMed Central

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C.; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X.; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D.

    2012-01-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities. PMID:22752410

  4. Torsional mechanics of DNA are regulated by small-molecule intercalation.

    PubMed

    Celedon, Alfredo; Wirtz, Denis; Sun, Sean

    2010-12-23

    Whether the bend and twist mechanics of DNA molecules are coupled is unclear. Here, we report the direct measurement of the resistive torque of single DNA molecules to study the effect of ethidium bromide (EtBr) intercalation and pulling force on DNA twist mechanics. DNA molecules were overwound and unwound using recently developed magnetic tweezers where the molecular resistive torque was obtained from Brownian angular fluctuations. The effect of EtBr intercalation on the twist stiffness was found to be significantly different from the effect on the bend persistence length. The twist stiffness of DNA was dramatically reduced at low intercalator concentration (<10 nM); however, it did not decrease further when the intercalator concentration was increased by 3 orders of magnitude. We also determined the dependence of EtBr intercalation on the torque applied to DNA. We propose a model for the elasticity of DNA base pairs with intercalated EtBr molecules to explain the abrupt decrease of twist stiffness at low EtBr concentration. These results indicate that the bend and twist stiffnesses of DNA are independent and can be differently affected by small-molecule binding.

  5. A Computational Study of the Rheology and Structure of Surfactant Covered Droplets

    NASA Astrophysics Data System (ADS)

    Maia, Joao; Boromand, Arman; Jamali, Safa

    2015-11-01

    The use of different types of surface-active agents is ubiquitous practice in different industrial applications ranging from cosmetic and food industries to polymeric nano-composite and blends. This allows stable multiphasic systems like foams and emulsions to be produced. Stability and shelf-life of those products are directly determined by the efficiency of the surfactant molecules. Although the effect of molecular configuration of the surface-active molecules on the planar interfaces has been studied both experimentally and computationally, it remains challenging to track the efficiency and effectiveness of different surfactant molecules on curved interfaces. In this study we address this gap by using Dissipative Particle Dynamics, to study the effectiveness and efficiency of different surfactant molecules (linear vs. branched) on a curved interface in equilibrium and far from equilibrium. In particular, we are interested to relate interfacial properties of the surface covered droplets and its dynamics to the molecular configuration of the surface active molecules under equilibrium and far from equilibrium condition.

  6. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification

    PubMed Central

    Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.

    2017-01-01

    The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment. PMID:28516911

  7. Stiffness, working stroke, and force of single-myosin molecules in skeletal muscle: elucidation of these mechanical properties via nonlinear elasticity evaluation.

    PubMed

    Kaya, Motoshi; Higuchi, Hideo

    2013-11-01

    In muscles, the arrays of skeletal myosin molecules interact with actin filaments and continuously generate force at various contraction speeds. Therefore, it is crucial for myosin molecules to generate force collectively and minimize the interference between individual myosin molecules. Knowledge of the elasticity of myosin molecules is crucial for understanding the molecular mechanisms of muscle contractions because elasticity directly affects the working and drag (resistance) force generation when myosin molecules are positively or negatively strained. The working stroke distance is also an important mechanical property necessary for elucidation of the thermodynamic efficiency of muscle contractions at the molecular level. In this review, we focus on these mechanical properties obtained from single-fiber and single-molecule studies and discuss recent findings associated with these mechanical properties. We also discuss the potential molecular mechanisms associated with reduction of the drag effect caused by negatively strained myosin molecules.

  8. Conformation-based signal transfer and processing at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Li, Chao; Wang, Zhongping; Lu, Yan; Liu, Xiaoqing; Wang, Li

    2017-11-01

    Building electronic components made of individual molecules is a promising strategy for the miniaturization and integration of electronic devices. However, the practical realization of molecular devices and circuits for signal transmission and processing at room temperature has proven challenging. Here, we present room-temperature intermolecular signal transfer and processing using SnCl2Pc molecules on a Cu(100) surface. The in-plane orientations of the molecules are effectively coupled via intermolecular interaction and serve as the information carrier. In the coupled molecular arrays, the signal can be transferred from one molecule to another in the in-plane direction along predesigned routes and processed to realize logical operations. These phenomena enable the use of molecules displaying intrinsic bistable states as complex molecular devices and circuits with novel functions.

  9. Quantum transport of the single metallocene molecule

    NASA Astrophysics Data System (ADS)

    Yu, Jing-Xin; Chang, Jing; Wei, Rong-Kai; Liu, Xiu-Ying; Li, Xiao-Dong

    2016-10-01

    The Quantum transport of three single metallocene molecule is investigated by performing theoretical calculations using the non-equilibrium Green's function method combined with density functional theory. We find that the three metallocen molecules structure become stretched along the transport direction, the distance between two Cp rings longer than the other theory and experiment results. The lager conductance is found in nickelocene molecule, the main transmission channel is the electron coupling between molecule and the electrodes is through the Ni dxz and dyz orbitals and the s, dxz, dyz of gold. This is also confirmed by the highest occupied molecular orbital resonance at Fermi level. In addition, negative differential resistance effect is found in the ferrocene, cobaltocene molecules, this is also closely related with the evolution of the transmission spectrum under applied bias.

  10. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2018-01-01

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  11. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2017-12-11

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  12. [Effect of the steroid molecule structure on the direction of its hydroxylation by the fungus Curvularia lunata].

    PubMed

    Andriushina, V A; Iaderets, V V; Stytsenko, T S; Druzhinina, A V; Voĭshvillo, N E

    2013-01-01

    The main and side products of hydroxylation by the C. lunata VKPM F-981 mycelium of fourteen delta(4)-3-ketosteroids of the estrane, androstane, and pregnane series and six of their delta(5)-3beta-hydroxy analogues were identified by H1 PMR spectroscopy and comparison with standard samples. The obtained experimental data are considered in terms of the triangular model of the enzyme-substrate interaction. The dependence of the direction of hydroxylation of steroid molecules and the orientation of hydroxy groups on the structure of the initial substrate was revealed.

  13. Control of microtubule trajectory within an electric field by altering surface charge density

    PubMed Central

    Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji

    2015-01-01

    One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins. PMID:25567007

  14. Control of microtubule trajectory within an electric field by altering surface charge density.

    PubMed

    Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji

    2015-01-08

    One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins.

  15. Single-Molecule Bioelectronics

    PubMed Central

    Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.

    2014-01-01

    Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  16. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong

    2016-01-08

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively boundmore » the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.« less

  17. Non-perturbative calculation of orbital and spin effects in molecules subject to non-uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Tellgren, Erik I.

    2018-05-01

    External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.

  18. Janus Kinase Antagonists and Other Novel Small Molecules for the Treatment of Crohn's Disease.

    PubMed

    Boland, Brigid S; Vermeire, Séverine

    2017-09-01

    There is an ongoing, unmet need for effective therapies for Crohn's disease. Treatments for Crohn's disease continue to evolve from the traditional biologics to novel small molecules, with targeted mechanisms directed toward pathways that are dysregulated in Crohn's disease. There are multiple emerging mechanisms of action, including Janus kinase inhibition, Smad7 inhibition, and sphingosine-1-phosphate receptor modulators, that are administered as oral medications, and small molecules represent the next generation of therapies for Crohn's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ethanol does not inhibit the adhesive activity of Drosophila neuroglian or human L1 in Drosophila S2 tissue culture cells.

    PubMed

    Vallejo, Y; Hortsch, M; Dubreuil, R R

    1997-05-02

    Members of the L1 family of homophilic neural cell adhesion molecules are thought to play an important role in nervous system development and function. It is also suggested that L1 is a direct target of ethanol in fetal alcohol syndrome, since ethanol inhibits the aggregation of cultured cells expressing L1 (Ramanathan, R., Wilkemeyer, M. F., Mittel, B., Perides, G., and Charness, M. E. (1996) J. Cell Biol. 133, 381-390). If ethanol acts directly on the homophilic adhesive function of the L1 molecule, then inhibition of aggregation by ethanol should be observed in any cell type that expresses L1. Here we examined the effect of physiologically relevant concentrations of ethanol on the aggregation of Drosophila S2 cells that expressed either neuroglian (the Drosophila homolog of L1) or human L1. The aggregation of these S2 cells is known to be solely dependent on the homophilic interactions between L1 or neuroglian molecules. Neither cell adhesion molecule was affected when cell aggregation assays were carried out in the presence of >/=38 mM ethanol. The recruitment of membrane skeleton assembly at sites of cell-cell contact (a transmembrane signaling function of human L1) was also unaffected by the presence of ethanol. Thus the previously described inhibition of cell adhesion by ethanol in L1-expressing cells cannot be explained by a simple direct effect on the adhesive activity of L1 family members.

  20. DNA Molecules Adsorbed on Rippled Supported Cationic Lipid Membranes -- A new way to stretch DNAs

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo

    2005-03-01

    We discuss a novel approach to control to shapes of DNA molecules. We elucidate the recent experimental work of M. Hochrein, L. Golubovic and J. Raedler, on the conformational behavior of DNA molecules adsorbed on lipid membranes that are supported on grooved micro-structured surfaces. We explain the striking ability of the edges formed on these supported membranes to adsorb and completely orient (stretch) very long DNA molecules. Here we explain the experimentally observed DNA stretching effect in terms of the surface curvature dependent electrostatic potential seen by the adsorbed DNA molecules. On the curved, rippled membrane, we show that the DNA molecules undergo localization transitions causing them to stretch by binding to the ripple edges of the supported membrane. In the future, this stretching will allow to directly image, by the common fluorescence microscopy, fundamental biological processes of the interactions between DNA and single protein molecules.

  1. An in vivo multiplexed small molecule screening platform

    PubMed Central

    Yang, Dian; Ogasawara, Daisuke; Dix, Melissa M.; Rogers, Zoë N.; Chuang, Chen-Hua; McFarland, Christopher D.; Chiou, Shin-Heng; Brown, J. Mark; Cravatt, Benjamin F.; Bogyo, Matthew; Winslow, Monte M.

    2016-01-01

    Phenotype-based small molecule screening is a powerful method to identify regulators of cellular function. However, such screens are generally performed in vitro using conditions that do not necessarily model complex physiological conditions or disease states. Here, we use molecular cell barcoding to enable direct in vivo phenotypic screening of libraries of small molecules. The multiplexed nature of this approach allows rapid in vivo analysis of hundreds to thousands of compounds. Using this platform, we screened >700 covalent inhibitors directed towards hydrolases for their effect on pancreatic cancer metastatic seeding. We identified multiple hits and confirmed the relevant target of one compound as the lipase ABHD6. Pharmacological and genetic studies confirmed the role of this enzyme as a regulator of metastatic fitness. Our results highlight the applicability of this multiplexed screening platform for investigating complex processes in vivo. PMID:27617390

  2. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.

    PubMed

    Ferreon, Allan Chris M; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A

    2012-10-30

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.

  3. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    PubMed Central

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson’s disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 2∶1 [urea]∶[TMAO] ratio has a net neutral effect on the protein’s dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments. PMID:22826265

  4. Solvent dependence of the activation energy of attachment determined by single molecule observations of surfactant adsorption.

    PubMed

    Honciuc, Andrei; Baptiste, Denver Jn; Campbell, Ian P; Schwartz, Daniel K

    2009-07-07

    Single-molecule total internal reflection fluorescence microscopy was used to obtain real-time images of fluorescently labeled hexadecanoic (palmitic) acid molecules as they adsorbed at the interface between fused silica and three different solvents: hexadecane (HD), tetrahydrofuran (THF), and water. These solvents were chosen to explore the effect of solvent polarity on the activation energy associated with the attachment rate, i.e., the rate at which molecules were transferred to the surface from the near-surface layer. Direct counting of single-molecule events, made under steady-state conditions at extremely low coverage, provided direct, model-independent measurements of this attachment rate, in contrast with conventional ensemble-averaged methods, which are influenced by bulk transport and competing detachment processes. We found that the attachment rate increased with increasing temperature for all solvents. Arrhenius analyses gave activation energies of 5+/-2 kJ/mol for adsorption from HD, 10+/-2 kJ/mol for adsorption from THF, and 19+/-2 kJ/mol for adsorption from water. These energies increased systematically with the solvent polarity and, therefore, with the expected strength of the solvent-substrate interaction. We hypothesize that the adsorption of amphiphilic solute molecules from solution can be regarded as a competitive exchange between solute molecules and surface-bound solvent. In this scenario, adsorption is an activated process, and the activation energy for attachment is associated with the solvent-substrate interaction energy.

  5. Contact and Length Dependent Effects in Single-Molecule Electronics

    NASA Astrophysics Data System (ADS)

    Hines, Thomas

    Understanding charge transport in single molecules covalently bonded to electrodes is a fundamental goal in the field of molecular electronics. In the past decade, it has become possible to measure charge transport on the single-molecule level using the STM break junction method. Measurements on the single-molecule level shed light on charge transport phenomena which would otherwise be obfuscated by ensemble measurements of groups of molecules. This thesis will discuss three projects carried out using STM break junction. In the first project, the transition between two different charge transport mechanisms is reported in a set of molecular wires. The shortest wires show highly length dependent and temperature invariant conductance behavior, whereas the longer wires show weakly length dependent and temperature dependent behavior. This trend is consistent with a model whereby conduction occurs by coherent tunneling in the shortest wires and by incoherent hopping in the longer wires. Measurements are supported with calculations and the evolution of the molecular junction during the pulling process is investigated. The second project reports controlling the formation of single-molecule junctions by means of electrochemically reducing two axial-diazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in-situ between the molecule and gold electrodes. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond. Finally, the third project investigates the role that molecular conformation plays in the conductance of oligothiophene single-molecule junctions. Ethyl substituted oligothiophenes were measured and found to exhibit temperature dependent conductance and transition voltage for molecules with between two and six repeat units. While the molecule with only one repeat unit shows temperature invariant behavior. Density functional theory calculations show that at higher temperatures the oligomers with multiple repeat units assume a more planar conformation, which increases the conjugation length and decreases the effective energy barrier of the junction.

  6. DNA confinement in nanochannels: physics and biological applications

    NASA Astrophysics Data System (ADS)

    Reisner, Walter; Pedersen, Jonas N.; Austin, Robert H.

    2012-10-01

    DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement—including the effect of varying ionic strength—and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.

  7. DNA confinement in nanochannels: physics and biological applications.

    PubMed

    Reisner, Walter; Pedersen, Jonas N; Austin, Robert H

    2012-10-01

    DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement--including the effect of varying ionic strength--and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.

  8. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.

  9. Molecular structure input on the web.

    PubMed

    Ertl, Peter

    2010-02-02

    A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential.The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on technologies like JavaScript and Flash, is discussed.

  10. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    PubMed Central

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  11. Adsorption of squaraine molecules to Au(111) and Ag(001) surfaces

    NASA Astrophysics Data System (ADS)

    Luft, Maike; Groß, Boris; Schulz, Matthias; Lützen, Arne; Schiek, Manuela; Nilius, Niklas

    2018-02-01

    The adsorption of anilino squaraines, an important chromophore for the use in organic solar cells, to Ag(001) and Au(111) has been studied with scanning tunneling microscopy. Self-assembly into square building blocks with eight molecules per unit cell is revealed on the Ag surface, while no ordering effects occur on gold. The squaraine-silver interaction is mediated by the carbonyl and hydroxyl oxygens located in the center of the molecule. The intermolecular coupling, on the other hand, is governed by hydrogen bonds formed between the terminal isobutyl groups and oxygen species of adjacent molecules. The latter gets maximized by rotating the molecules by a few degrees against a perfect square alignment. A similar molecular pattern does not form on Au(111) due to symmetry mismatch. Moreover, the high electronegativity of gold reduces the directing effect of oxygen-metal bonds that trigger the ordering process on silver. As a consequence, only frustrated three-fold symmetric units that do not expand into an ordered molecular network are present on the gold surface.

  12. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    PubMed

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Solvent Effects on the Conductance of 1,4-benzenediamine

    NASA Astrophysics Data System (ADS)

    Fatemi, Valla; Kamenetska, Maria; Neaton, Jeffrey; Venkataraman, Latha

    2010-03-01

    We measured the conductance of 1,4-benzenediamine (BDA) by mechanically forming and breaking Au point contacts with a modified STM in a solution of molecules in ambient conditions, using a variety of solvents. Here, we present reliable experimental results which show that the conductance of BDA can be increased by over 50% when dissolved in aromatic organic solvents solely by varying halogen groups on the solvent molecule. The trends in conductance do not correlate with the solvent dielectric constant, dipole moment, or direct solvent-BDA interactions. First-principles density functional theory calculations of solvent molecule binding to gold surfaces are used to discuss mechanisms behind the conductance shift of the BDA molecule.

  14. Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Kumagai, Takashi

    2015-08-01

    Hydrogen(H)-bond dynamics are involved in many elementary processes in chemistry and biology. Because of its fundamental importance, a variety of experimental and theoretical approaches have been employed to study the dynamics in gas, liquid, solid phases, and their interfaces. This review describes the recent progress of direct observation and control of H-bond dynamics in several model systems on a metal surface by using low-temperature scanning tunneling microscopy (STM). General aspects of H-bond dynamics and the experimental methods are briefly described in chapter 1 and 2. In the subsequent four chapters, I present direct observation of an H-bond exchange reaction within a single water dimer (chapter 3), a symmetric H bond (chapter 4) and H-atom relay reactions (chapter 5) within water-hydroxyl complexes, and an intramolecular H-atom transfer reaction (tautomerization) within a single porphycene molecule (chapter 6). These results provide novel microscopic insights into H-bond dynamics at the single-molecule level, and highlight significant impact on the process from quantum effects, namely tunneling and zero-point vibration, resulting from the small mass of H atom. Additionally, local environmental effect on H-bond dynamics is also examined by using atom/molecule manipulation with the STM.

  15. Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.; Weiss, Lucien E.; Moerner, W. E.

    2014-05-01

    Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x ,y (or x ,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium).

  16. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens.

    PubMed

    Ordonez, Soledad R; Veldhuizen, Edwin J A; van Eijk, Martin; Haagsman, Henk P

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung.

  17. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    PubMed Central

    Ordonez, Soledad R.; Veldhuizen, Edwin J. A.; van Eijk, Martin; Haagsman, Henk P.

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung. PMID:29163395

  18. Distilling two-center-interference information during tunneling of aligned molecules with orthogonally polarized two-color laser fields

    NASA Astrophysics Data System (ADS)

    Gao, F.; Chen, Y. J.; Xin, G. G.; Liu, J.; Fu, L. B.

    2017-12-01

    When electrons tunnel through a barrier formed by the strong laser field and the two-center potential of a diatomic molecule, a double-slit-like interference can occur. However, this interference effect can not be probed directly right now, as it is strongly coupled with other dynamical processes during tunneling. Here, we show numerically and analytically that orthogonally polarized two-color (OTC) laser fields are capable of resolving the interference effect in tunneling, while leaving clear footprints of this effect in photoelectron momentum distributions. Moreover, this effect can be manipulated by changing the relative field strength of OTC fields.

  19. New drugs for methicillin-resistant Staphylococcus aureus: an update.

    PubMed

    Kumar, Krishan; Chopra, Sidharth

    2013-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) remains a leading cause of bacterial infections worldwide, with a dwindling repertoire of effective antimicrobials active against it. This review aims to provide an update on novel anti-MRSA molecules currently under pre-clinical and clinical development, with emphasis on their mechanism of action. This review is limited to molecules that target the pathogen directly and does not detail immunomodulatory anti-infectives.

  20. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts.

    PubMed

    Verkhoturov, Stanislav V; Gołuński, Mikołaj; Verkhoturov, Dmitriy S; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A

    2018-04-14

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C 60 2+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H) - , emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H) - from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ∼30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves tunneling of electrons from the vibrationally excited area around the hole to the molecules. Another proposed mechanism is a direct proton transfer exchange, which is suitable for a bulk target: ions of molecular fragments (i.e., CN - ) generated in the impact area interact with intact molecules from the rim of this area. There is a direct proton exchange process for the system D8Phe molecule + CN - .

  1. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts

    NASA Astrophysics Data System (ADS)

    Verkhoturov, Stanislav V.; Gołuński, Mikołaj; Verkhoturov, Dmitriy S.; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A.

    2018-04-01

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C602+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H)-, emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H)- from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ˜30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves tunneling of electrons from the vibrationally excited area around the hole to the molecules. Another proposed mechanism is a direct proton transfer exchange, which is suitable for a bulk target: ions of molecular fragments (i.e., CN-) generated in the impact area interact with intact molecules from the rim of this area. There is a direct proton exchange process for the system D8Phe molecule + CN-.

  2. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions.

    PubMed

    Zimbovskaya, Natalya A

    2016-07-27

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  3. Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region.

    PubMed

    Fu, Xiaojian; Wu, Hongya; Xi, Xiaoqing; Zhou, Ji

    2014-01-16

    The rotational and vibrational dynamics of molecules in copper sulfate pentahydrate crystal are investigated with terahertz dielectric spectra. It is shown that the relaxation-like dielectric dispersion in the low frequency region is related to the reorientation of water molecules under the driving of terahertz electric field, whereas the resonant dispersion can be ascribed to lattice vibration. It is also found that, due to the hydrogen-bond effect, the vibrational mode at about 1.83 THz along [-111] direction softens with decreasing temperature, that is, the crystal expands in this direction when cooled. On the contrary, the mode hardens in the direction perpendicular to [-111] during the cooling process. This contributes to the further understanding of the molecular structure and bonding features of hydrate crystals.

  4. Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Glownia, J. H.; Misewich, J.; Sorokin, P. P.

    Through the work of photochemists extending over many decades, there now exists a wealth of information on the various reactions that photoexcited gas phase molecules undergo. Most of this information relates to the product molecules that are formed, either as the direct result of a primary photochemical act, such as photodissociation, or through subsequent secondary reactions, involving collisions with other molecules in the gas. Recently, there has been an extensive effort directed at determining the exact energy distributions of the primary products formed in photodissociation. With the use of nanosecond tunable-laser techniques, such as laser-induced fluorescence (LIF) and coherent anti-Stokes Raman spectroscopy (CARS), scientists have successfully determined the nascent electronic, vibrational, and rotational energy distributions of various diatomic fragments such as CN, OH, NO, and O2 that are directly formed in the photodissociation of many kinds of molecules. The ready availability of high-quality, tunable, nanosecond lasers has made determination of the above-mentioned collisionless energy distributions a relatively straightforward process. The determination of product translational energies has long effectively been handled by angularly resolved time-of-flight (TOF) spectroscopy, or by sub-Doppler resolution spectroscopy, including a recently improved version of the latter, velocity-aligned Doppler spectroscopy (Xu et al., 1986).

  5. Double-edged effect of electric field on the mechanical property of water-filled carbon nanotubes with an application to nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hong Wu; Chen, Zhen

    2017-11-08

    Polar water molecules would exhibit extraordinary phenomena under nanoscale confinement. By means of electric field, the water-filled carbon nanotube (CNT) that has been successfully fabricated in laboratory is expected to make distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is found that the longitudinal electric field enhances but the transversal electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The double-edged effect of electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transversal electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply the nonuniform pressure on nanochannels. Based on a pre-strained water-filled CNTs, we design a nanoscale trigger with the evident and rapid height change started through switching the direction of electric field. The reported finding lays a foundation for the electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices. © 2017 IOP Publishing Ltd.

  6. Theoretical study of spin Hall effect in conjugated Organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mahani, M. R.; Delin, A.

    The spin Hall effect (SHE), a direct conversion between electronic and spin currents, is a rapidly growing branch of spintronics. The study of SHE in conjugated polymers has gained momentum recently due to the weak spin-orbit couplings and hyperfine interactions in these materials. Our calculations of SHE based on the recent work, are the result of the misalignment of pi-orbitals in triads consisting of three molecules. In disordered organics, where the electronic conduction is through hopping of the electrons among randomly oriented molecules, instead of identifying a hopping triad to represent the entire system, we numerically solve the master equations for electrical and spin hall conductivities by summing the contributions from all triads in a sufficiently large system. The interference between the direct and indirect hoppings in these triads leads to SHE proportional to the orientation vector of molecule at the first order of spin-orbit coupling. Hence, our results show, the degree of molecular alignment as well as the strength of the spin-orbit coupling can be used to control the SHE in organics.

  7. A molecular propeller effect for chiral separation and analysis

    PubMed Central

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-01-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved. PMID:26216219

  8. The Arrow of Time and the Action of the Mind at the Molecular Level

    NASA Astrophysics Data System (ADS)

    Burns, Jean E.

    2006-10-01

    A new event is defined as an intervention in the time reversible dynamical trajectories of particles in a system. New events are then assumed to be quantum fluctuations in the spatial and momentum coordinates, and mental action is assumed to work by ordering such fluctuations. It is shown that when the cumulative values of such fluctuations in a mean free path of a molecule are magnified by molecular interaction at the end of that path, the momentum of a molecule can be changed from its original direction to any other direction. In this way mental action can produce effects through the ordering of thermal motions. Examples are given which show that the ordering of 104-105 molecules is sufficient to (a) produce detectible PK results and (b) open sufficient ion channels in the brain to initiate a physical action. The relationship of the above model to the arrow of time is discussed.

  9. A molecular propeller effect for chiral separation and analysis

    NASA Astrophysics Data System (ADS)

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-07-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.

  10. Single-Molecule Spectroscopy and Imaging Over the Decades

    PubMed Central

    Moerner, W. E.; Shechtman, Yoav; Wang, Quan

    2016-01-01

    As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990's, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many talented scientists all over the world have extended our knowledge of the nanoscale and microscopic mechanisms previously hidden by ensemble averaging. PMID:26616210

  11. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    PubMed Central

    Yu, Ping; Repp, Jascha; Huber, Rupert

    2017-01-01

    Watching a single molecule move on its intrinsic time scale—one of the central goals of modern nanoscience—calls for measurements that combine ultrafast temporal resolution1–8 with atomic spatial resolution9–30. Steady-state experiments achieve the requisite spatial resolution, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy9–11 or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution27–29. But tracking the dynamics of a single molecule directly in the time domain faces the challenge that single-molecule excitations need to be confined to an ultrashort time window. A first step towards overcoming this challenge has combined scanning tunnelling microscopy with so-called ‘lightwave electronics”1–8, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on time scales faster even than that of a single cycle of light. Here we use such ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state and thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record ~100 fs snapshot images of the structure of the orbital involved, and to reveal through pump-probe measurements coherent molecular vibrations at terahertz frequencies directly in the time domain and with sub-angstrom spatial resolution. We anticipate that the combination of lightwave electronics1–8 and atomic resolution of our approach will open the door to controlling electronic motion inside individual molecules at optical clock rates. PMID:27830788

  12. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials

    PubMed Central

    Cheng, Fei; Yang, Xiaodong; Gao, Jie

    2015-01-01

    Infrared vibrational spectroscopy is an effective technique which enables the direct probe of molecular fingerprints, and such detection can be further enhanced by the emerging engineered plasmonic metamaterials. Here we experimentally demonstrate ultrasensitive detection and characterization of polymer molecules based on an asymmetric infrared plasmonic metamaterial, and quantitatively analyze the molecule detection sensitivity and molecule-structure interactions. A sharp, non-radiative Fano resonance supported by the plasmonic metamaterial exhibits strongly enhanced near-field, and the resonance frequency is tailored to match the vibrational fingerprint of the target molecule. By utilizing the near-field nature of the plasmonic excitation, significantly enhanced absorption signal of molecules in the infrared spectroscopy are obtained, enabling ultrasensitive detection of only minute quantities of organic molecules. The enhancement of molecular absorption up to 105 fold is obtained, and sensitive detection of molecules at zeptomole levels (corresponding to a few tens of molecules within a unit cell) is achieved with high signal-to-noise ratio in our experiment. The demonstrated infrared plasmonic metamaterial sensing platform offers great potential for improving the specificity and sensitivity of label-free, biochemical detection. PMID:26388404

  13. Mechanical response of collagen molecule under hydrostatic compression.

    PubMed

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    NASA Astrophysics Data System (ADS)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  15. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    PubMed

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  16. Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.

    PubMed

    Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A

    2013-12-27

    The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.

  17. Communication: Coordinate-dependent diffusivity from single molecule trajectories

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Makarov, Dmitrii E.

    2017-11-01

    Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.

  18. Salting effects on protein components in aqueous NaCl and urea solutions: toward understanding of urea-induced protein denaturation.

    PubMed

    Li, Weifeng; Zhou, Ruhong; Mu, Yuguang

    2012-02-02

    The mechanism of urea-induced protein denaturation is explored through studying the salting effect of urea on 14 amino acid side chain analogues, and N-methylacetamide (NMA) which mimics the protein backbone. The solvation free energies of the 15 molecules were calculated in pure water, aqueous urea, and NaCl solutions. Our results show that NaCl displays strong capability to salt out all 15 molecules, while urea facilitates the solvation (salting-in) of all the 15 molecules on the other hand. The salting effect is found to be largely enthalpy-driven for both NaCl and urea. Our observations can explain the higher stability of protein's secondary and tertiary structures in typical salt solutions than that in pure water. Meanwhile, urea's capability to better solvate protein backbone and side-chain components can be extrapolated to explain protein's denaturation in aqueous urea solution. Urea salts in molecules through direct binding to solute surface, and the strength is linearly dependent on the number of heavy atoms of solute molecules. The van der Waals interactions are found to be the dominant force, which challenges a hydrogen-bonding-driven mechanism proposed previously.

  19. Direct Antiglobulin Reaction in ABO-Haemolytic Disease of the Newborn

    PubMed Central

    Romano, E. L.; Hughes-Jones, N. C.; Mollison, P. L.

    1973-01-01

    The minimum number of IgG anti-A (or anti-B) molecules detectable on A or B red cells by the antiglobulin reaction was found to be the same—that is, about 150 molecules per red cell—with newborn as with adult cells. Furthermore, the ratio of anti-IgG bound to IgG anti-A (or anti-B) molecules was the same whether the anti-A (or anti-B) molecules were present on newborn or on adult cells and was similar to that found for anti-IgG bound to IgG anti-Rh. In 15 infants (11 group A, 4 group B) with haemolytic disease of the newborn due to ABO-incompatibility the amount of anti-A or anti-B on the red cells ranged from 0·25 to 3·5 μg antibody per ml red cells, corresponding to 90-1,320 antibody molecules per cell; only five infants had more than 0·55 μg antibody per ml of red cells. These amounts are far smaller than those found in most moderate or severe cases of Rh-haemolytic disease. It is concluded that the weak direct antiglobulin reactions observed in ABO-haemolytic disease are due simply to the fact that the number of anti-A (or anti-B) molecules on the infant's red cells is at the lower limit of sensitivity of the test. Since ABO-haemolytic disease can be quite a severe process it seems probable that IgG anti-A and anti-B molecules are more effective than anti-Rh molecules in bringing about red cell destruction. PMID:4540300

  20. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.

    PubMed

    Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae

    2015-09-22

    In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.

  1. Micropatterning stretched and aligned DNA using microfluidics and surface patterning for applications in hybridization-mediated templated assembly of nanostructures

    NASA Astrophysics Data System (ADS)

    Carbeck, Jeffrey; Petit, Cecilia

    2004-03-01

    Current efforts in nanotechnology use one of two basic approaches: top-down fabrication and bottom-up assembly. Top-down strategies use lithography and contact printing to create patterned surfaces and microfluidic channels that, in turn, can corral and organize nanoscale structures. Bottom-up approaches use templates to direct the assembly of atoms, molecules, and nanoparticles through molecular recognition. The goal of this work is to integrate these strategies by first patterning and orienting DNA molecules through top-down tools so that single DNA chains can then serve as templates for the bottom-up construction of hetero-structures composed of proteins and nanoparticles, both metallic and semi-conducting. The first part of this talk focuses on the top-down strategies used to create microscopic patterns of stretched and aligned molecules of DNA. Specifically, it presents a new method in which molecular combing -- a process by which molecules are deposited and stretched onto a surface by the passage of an air-water interface -- is performed in microchannels. This approach demonstrates that the shape and motion of this interface serve as an effective local field directing the chains dynamically as they are stretched onto the surface. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the air-water interface directs the local orientation and curvature of the molecules. This ability to control both the placement and orientation of chains has implication for the use of this technique in genetic analysis and in the bottom up approach to nanofabrication.The second half of this talk presents our bottom-up strategy, which allows placement of nanoparticles along individual DNA chains with a theoretical resolution of less than 1 nm. Specifically, we demonstrate the sequence-specific patterning of nanoparticles via the hybridization of functionalized complementary probes to surface-bound chains of double-stranded DNA. Using this technique, we demonstrate the ability to assemble metals, semiconductors, and a composite of both on a single molecule.

  2. Asymmetric molecular-orbital tomography by manipulating electron trajectories

    NASA Astrophysics Data System (ADS)

    Wang, Bincheng; Zhang, Qingbin; Zhu, Xiaosong; Lan, Pengfei; Rezvani, Seyed Ali; Lu, Peixiang

    2017-11-01

    We present a scheme for tomographic imaging of asymmetric molecular orbital based on high-order harmonic generation with a two-color orthogonally polarized multicycle laser field. With the two-dimensional manipulation of the electron trajectories, the electrons can recollide with the target molecule from two noncollinear directions, and then the dipole moment generated from the single direction can be obtained to reconstructed the asymmetric molecular orbital. The recollision is independent from the molecular structure and the angular dependence of the ionization rate in the external field. For this reason, this scheme can avoid the negative effects arising from the modification of the angle-dependent ionization rate induced by Stark shift and be applied to various molecules.

  3. A simple model for electrical charge in globular macromolecules and linear polyelectrolytes in solution

    NASA Astrophysics Data System (ADS)

    Krishnan, M.

    2017-05-01

    We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or rapid, reliable predictions are desired.

  4. Directional rolling of positively charged nanoparticles along a flexibility gradient on long DNA molecules.

    PubMed

    Park, Suehyun; Joo, Heesun; Kim, Jun Soo

    2018-01-31

    Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.

  5. Monitoring Single-Molecule Protein Dynamics with a Carbon Nanotube Transistor

    NASA Astrophysics Data System (ADS)

    Collins, Philip G.

    2014-03-01

    Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. Single-walled carbon nanotubes press this concept further by not just detecting molecules but also monitoring their dynamics in real time. Recent measurements have demonstrated this premise by monitoring the single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. With all three enzymes, single molecules tethered to nanotube transistors were electronically monitored for 10 or more minutes, allowing us to directly observe a range of activity including rare transitions to chemically inactive and hyperactive conformations. The high bandwidth of the nanotube transistors further allow every individual chemical event to be clearly resolved, providing excellent statistics from tens of thousands of turnovers by a single enzyme. Initial success with three different enzymes indicates the generality and attractiveness of the nanotube devices as a new tool to complement other single-molecule techniques. Research on transduction mechanisms provides the design rules necessary to further generalize this architecture and apply it to other proteins. The purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule sensors from a wide range of enzymes or proteins.

  6. Experimental demonstration of a single-molecule electric motor.

    PubMed

    Tierney, Heather L; Murphy, Colin J; Jewell, April D; Baber, Ashleigh E; Iski, Erin V; Khodaverdian, Harout Y; McGuire, Allister F; Klebanov, Nikolai; Sykes, E Charles H

    2011-09-04

    For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

  7. Effect of Molecular Rotation on Charge Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Garg, O. P.; Lamba, Vijay Kr; Kaushik, D. K.

    2015-12-01

    The study of electron transport properties of molecular systems could be explained on the basis of the Landauer formalism. Unfortunately, due to the complexity of the experimental setup, most of these measurements have no control over the details of the electrode geometry, rotation of molecules, variation in angle of contacts, effect of fano resonances associated with side groups attached to rigid backbones, which results in a spectrum of IV-characteristics. Theoretical models can therefore help to understand and helps to develop new applications such as molecular sensors, etc. Thus we used simulation methods that generate the required structural ensemble, which is then analyzed with Green’s function methods to characterize the electronic transport properties. In present work we had discussed applications of this approach to understand the conductance in molecular system in the direction of controlling electron transport through molecules and studied the effect of rotation of sandwiched molecule.

  8. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence

    PubMed Central

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-01-01

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole–dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge–Kutta method and Pang’s soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are correct and that EMFs or EFs can influence the features of energy transport in living systems and thus have certain biological effects. PMID:27463708

  9. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    PubMed

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-07-25

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are correct and that EMFs or EFs can influence the features of energy transport in living systems and thus have certain biological effects.

  10. A small-molecule modulator interacts directly with deltaPhe508-CFTR to modify its ATPase activity and conformational stability.

    PubMed

    Wellhauser, Leigh; Kim Chiaw, Patrick; Pasyk, Stan; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E

    2009-06-01

    The deletion of Phe-508 (DeltaPhe508) constitutes the most prevalent of a number of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that cause cystic fibrosis (CF). This mutation leads to CFTR misfolding and retention in the endoplasmic reticulum, as well as impaired channel activity. The biosynthetic defect can be partially overcome by small-molecule "correctors"; once at the cell surface, small-molecule "potentiators" enhance the channel activity of DeltaPhe508-CFTR. Certain compounds, such as VRT-532, exhibit both corrector and potentiator functions. In the current studies, we confirmed that the inherent chloride channel activity of DeltaPhe508-CFTR (after biosynthetic rescue) is potentiated in studies of intact cells and membrane vesicles. It is noteworthy that we showed that the ATPase activity of the purified and reconstituted mutant protein is directly modulated by binding of VRT-532 [4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)-phenol] ATP turnover by reconstituted DeltaPhe508-CFTR is decreased by VRT-532 treatment, an effect that may account for the increase in channel open time induced by this compound. To determine whether the modification of DeltaPhe508-CFTR function caused by direct VRT-532 binding is associated with structural changes, we evaluated the effect of VRT-532 binding on the protease susceptibility of the major mutant. We found that binding of VRT-532 to DeltaPhe508-CFTR led to a minor but significant decrease in the trypsin susceptibility of the full-length mutant protein and a fragment encompassing the second half of the protein. These findings suggest that direct binding of this small molecule induces and/or stabilizes a structure that promotes the channel open state and may underlie its efficacy as a corrector of DeltaPhe508-CFTR.

  11. Direct Measurement of the Effect of Cholesterol and 6-Ketocholestanol on the Membrane Dipole Electric Field Using Vibrational Stark Effect Spectroscopy Coupled with Molecular Dynamics Simulations.

    PubMed

    Shrestha, Rebika; Anderson, Cari M; Cardenas, Alfredo E; Elber, Ron; Webb, Lauren J

    2017-04-20

    Biological membranes are heterogeneous structures with complex electrostatic profiles arising from lipids, sterols, membrane proteins, and water molecules. We investigated the effect of cholesterol and its derivative 6-ketocholestanol (6-kc) on membrane electrostatics by directly measuring the dipole electric field (F⃗ d ) within lipid bilayers containing cholesterol or 6-kc at concentrations of 0-40 mol% through the vibrational Stark effect (VSE). We found that adding low concentrations of cholesterol, up to ∼10 mol %, increases F⃗ d , while adding more cholesterol up to 40 mol% lowers F⃗ d . In contrast, we measured a monotonic increase in F⃗ d as 6-kc concentration increased. We propose that this membrane electric field is affected by multiple factors: the polarity of the sterol molecules, the reorientation of the phospholipid dipole due to sterol, and the impact of the sterol on hydrogen bonding with surface water. We used molecular dynamics simulations to examine the distribution of phospholipids, sterol, and helix in bilayers containing these sterols. At low concentrations, we observed clustering of sterols near the vibrational probe whereas at high concentrations, we observed spatial correlation between the positions of the sterol molecules. This work demonstrates how a one-atom difference in a sterol changes the physicochemical and electric field properties of the bilayer.

  12. Inhomogeneous hard homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Quintana, Jacqueline

    A review is given of some features of theories for inhomogeneous fluids of nonspherical molecules that take as input the direct correlation function of the corresponding homogeneous system. Two different methods are described for defining the structure of hard homonuclear molecules close to a hard planar wall. A spherical harmonics expanison (SHE) within the integral equation (IE) method is presented and, for comparison, a version of density functional theory for orientable hard bodies. In both cases the Pynn-Lado model is employed and a comparison is made with Monte Carlo data. The results indicate that for hard molecules the IE approach does not always capture the effects of orientation due to the characteristics of the SHE for the step function. This disadvantage is particularly true in the case of the orientationally averaged density profile.

  13. Unambiguous Signature of the Berry Phase in Intense Laser Dissociation of Diatomic Molecules.

    PubMed

    Bouakline, Foudhil

    2018-05-03

    We report strong evidence of Berry phase effects in intense laser dissociation of D 2 + molecules, manifested as Aharonov-Bohm-like oscillations in the photofragment angular distribution (PAD). Our calculations show that this interference pattern strongly depends on the parity of the diatom initial rotational state, (-1) j . Indeed, the PAD local maxima (minima) observed in one case ( j odd) correspond to local minima (maxima) in the other case ( j even). Using simple topological arguments, we clearly show that such interference conversion is a direct signature of the Berry phase. The sole effect of the latter on the rovibrational wave function is a sign change of the relative phase between two interfering components, which wind in opposite senses around a light-induced conical intersection (LICI). Therefore, encirclement of the LICI leads to constructive ( j odd) or destructive ( j even) self-interference of the initial nuclear wavepacket in the dissociative limit. To corroborate our theoretical findings, we suggest an experiment of strong-field indirect dissociation of D 2 + molecules, comparing the PAD of the ortho and para molecular species in directions nearly perpendicular to the laser polarization axis.

  14. Interstellar hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  15. Hypothesis of Lithocoding: Origin of the Genetic Code as a "Double Jigsaw Puzzle" of Nucleobase-Containing Molecules and Amino Acids Assembled by Sequential Filling of Apatite Mineral Cellules.

    PubMed

    Skoblikow, Nikolai E; Zimin, Andrei A

    2016-05-01

    The hypothesis of direct coding, assuming the direct contact of pairs of coding molecules with amino acid side chains in hollow unit cells (cellules) of a regular crystal-structure mineral is proposed. The coding nucleobase-containing molecules in each cellule (named "lithocodon") partially shield each other; the remaining free space determines the stereochemical character of the filling side chain. Apatite-group minerals are considered as the most preferable for this type of coding (named "lithocoding"). A scheme of the cellule with certain stereometric parameters, providing for the isomeric selection of contacting molecules is proposed. We modelled the filling of cellules with molecules involved in direct coding, with the possibility of coding by their single combination for a group of stereochemically similar amino acids. The regular ordered arrangement of cellules enables the polymerization of amino acids and nucleobase-containing molecules in the same direction (named "lithotranslation") preventing the shift of coding. A table of the presumed "LithoCode" (possible and optimal lithocodon assignments for abiogenically synthesized α-amino acids involved in lithocoding and lithotranslation) is proposed. The magmatic nature of the mineral, abiogenic synthesis of organic molecules and polymerization events are considered within the framework of the proposed "volcanic scenario".

  16. Review of Antibiotic and Non-Antibiotic Properties of Beta-lactam Molecules.

    PubMed

    Ochoa-Aguilar, Abraham; Ventura-Martinez, Rosa; Sotomayor-Sobrino, Marco Antonio; Gómez, Claudia; Morales-Espinoza, María del Rosario

    2016-01-01

    Beta-lactam molecules are a family of drugs commonly used for their antibiotic properties; however, recent research has shown that several members of this group present a large number of other effects such as neuroprotective, antioxidant, analgesic or immunomodulatory capabilities. These properties have been used in both preclinical and clinical studies in different diseases such as hypoxic neuronal damage or acute and chronic pain. The present work briefly reviews the antibiotic effect of these molecules, and will then focus specially on the non-antibiotic effects of three beta-lactam subfamilies: penicillins, cephalosporins and beta lactamase inhibitors, each of which have different molecular structure and pharmacokinetics and therefore have several potential clinical applications. A thorough search of bibliographic databases for peer-reviewed research was performed including only classic experiments or high quality reviews for the antibiotic mechanisms of beta-lactam molecules and only experimental research papers where included when the non-antibiotic properties of these molecules were searched. Only published articles from indexed journals were included. Quality of retrieved papers was assessed using standard tools. The characteristics of screened papers were described and findings of included studies were contextualized to either a mechanistic or a clinical framework. Seventy-eight papers were included in the review; the majority (56) were relative to the non-antibiotic properties of beta-lactam molecules. The non-antibiotic effects reviewed were divided accordingly to the amount of information available for each one. Twelve papers outlined the epileptogenic effects induced by beta-lactam molecules administration; these included both clinical and basic research as well as probable mechanistic explanations. Eighteen papers described a potential neuroprotective effect, mostly in basic in vitro and in vivo experiments. Analgesic properties where identified in twelve papers and basic research was described alongside with both experimental and serendipic clinical findings. Seven papers described a down-regulation effect exerted by beta-lactam molecules administration in different addiction animal models. Finally other effects such as penile erection, dopamine release facilitation and anti-neoplasic effects where described from seven papers. The findings of this review show that beta-lactam molecules may induce several effects, which may be clinically relevant in a lot of different diseases. This paper is, to our knowledge, the first comprehensive review of the non-antibiotic effects shown by beta-lactam molecules and may help increase the interest in this field, which may result in a direct translation of this effects to a clinical context.

  17. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    PubMed Central

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  18. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    PubMed Central

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  19. Structure and orientational ordering in a fluid of elongated quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra

    2013-01-01

    A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.

  20. Seeing the electroporative uptake of cell-membrane impermeable fluorescent molecules and nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Kisoo; Kim, Jeong Ah; Lee, Soon-Geul; Lee, Won Gu

    2012-07-01

    This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities that occurred at cell membranes in both uptake directions toward the electrodes have been sequentially recorded and quantitatively analyzed pixel by pixel. In our experiments, we found that fluorescent molecules, even not labeled to target biomolecules, had their own uptake direction with different intensities. It is also observed that the uptake intensity toward the cell membrane had a maximal value at a certain electric voltage, not at the highest value of voltages applied. The results also imply that the uptake direction of fluorescence-doped nanoparticles can be determined by a net surface charge of uptake materials and sizes in the electroporative environments. In summary, we performed a quantitative screening and direct visualization of uptake directionality for a set of fluorescent molecules and fluorescence-doped nanoparticles using electric-pulsation. Taking a closer look at the uptake direction of exogenous materials will help researchers to understand an unknown uptake phenomenon in which way foreign materials are inclined to move, and furthermore to design functional nanoparticles for electroporative gene delivery.This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities that occurred at cell membranes in both uptake directions toward the electrodes have been sequentially recorded and quantitatively analyzed pixel by pixel. In our experiments, we found that fluorescent molecules, even not labeled to target biomolecules, had their own uptake direction with different intensities. It is also observed that the uptake intensity toward the cell membrane had a maximal value at a certain electric voltage, not at the highest value of voltages applied. The results also imply that the uptake direction of fluorescence-doped nanoparticles can be determined by a net surface charge of uptake materials and sizes in the electroporative environments. In summary, we performed a quantitative screening and direct visualization of uptake directionality for a set of fluorescent molecules and fluorescence-doped nanoparticles using electric-pulsation. Taking a closer look at the uptake direction of exogenous materials will help researchers to understand an unknown uptake phenomenon in which way foreign materials are inclined to move, and furthermore to design functional nanoparticles for electroporative gene delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30578j

  1. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure

    DOE PAGES

    Li, Yang; Ngo, Anh T.; DiLullo, Andrew; ...

    2017-10-16

    An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less

  2. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Ngo, Anh T.; DiLullo, Andrew

    An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less

  3. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  4. A Computational Study of the Rheology and Structure of Surfactant Covered Droplets

    NASA Astrophysics Data System (ADS)

    Maia, Joao; Boromand, Arman

    Using different types of surface-active agents are ubiquitous in different industrial applications ranging from cosmetic and food industries to polymeric nano-composite and blends. This allows to produce stable multiphasic systems like foams and emulsions whose stability and shelf-life are directly determined by the efficiency and the type of the surfactant molecules. Moreover, presence and self-assembly of these species on an interface will display complex dynamics and structural evolution under different processing conditions. Analogous to bulk rheology of complex systems, surfactant covered interfaces will response to an external mechanical forces or deformation differently depends on the molecular configuration and topology of the system constituents. Although the effect of molecular configuration of the surface-active molecules on the planar interfaces has been studied both experimentally and computationally, it remains challenging from both experimental and computational aspects to track efficiency and effectiveness of different surfactant molecules with different molecular geometries on curved interfaces. Using Dissipative Particle Dynamics, we have studies effectiveness and efficiency of different surfactant molecules on a curved interface in equilibrium and far from equilibrium. Interfacial tension is calculated for linear and branched surfactant with different hydrophobic and hydrophilic tail and head groups with different branching densities. Deformation parameter and Taylor plots are obtained for individual surfactant molecules under shear flow.

  5. Mapping the Small Molecule Interactome by Mass Spectrometry.

    PubMed

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  6. Low Temperature Fluorination of Aerosol Suspensions of Hydrocarbons Utilizing Elemental Fluorine.

    DTIC Science & Technology

    1982-09-01

    admitting boron trifluoride into the aerosol direct florination of neopentane. The aerosol direct fluorination of ketones indicates the carbonyl group...fluorination of molecules with primary, secondary and tertiary hydro- gens is also included as is the effect of admitting boron trifluoride into the...significantly different physical and chemical properties than either of their components. For example, both ammonia and boron trifluoride are low

  7. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  8. Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL).

    PubMed

    Melagraki, Georgia; Ntougkos, Evangelos; Rinotas, Vagelis; Papaneophytou, Christos; Leonis, Georgios; Mavromoustakos, Thomas; Kontopidis, George; Douni, Eleni; Afantitis, Antreas; Kollias, George

    2017-04-01

    We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure-based with ligand-based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.

  9. On the strong influence of molecular interactions over large distances

    NASA Astrophysics Data System (ADS)

    Pfennig, Andreas

    2018-03-01

    Molecular-dynamics simulations of liquid water show deterministic chaos, i.e. an intentionally introduced molecular position shift of an individual molecule increases exponentially by a factor of 10 in 0.23 ps. This is a Lyaponov instability. As soon as it reaches molecular scale, the direction of the resulting shift in molecular motions is unpredictable. The influence of any individual distant particle on an observed molecule will be minute, but the effect will quickly increase to molecular scale and beyond due to this exponential growth. Consequently, any individual particle in the universe will affect the behavior of any molecule within at most 33 ps after the interaction reaches it. A larger distance of the faraway particle does not decrease the influence on an observed molecule, but the effect reaches molecular scale only some ps later. Thus in evaluating the interactions, nearby and faraway molecules have to be equally accounted for. The consequences of this quickly reacting network of interactions on universal scale are fundamental. Even in a strictly deterministic view, molecular behavior is principally unpredictable, and thus has to be regarded random. Corresponding statements apply for any particles interacting. This result leads to a fundamental rethinking of the structure of interactions of molecules and particles as well as the behavior of reality.

  10. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  11. Estimation of boiling points using density functional theory with polarized continuum model solvent corrections.

    PubMed

    Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C

    2011-09-01

    An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  12. Methods of DNA methylation detection

    NASA Technical Reports Server (NTRS)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  13. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    NASA Astrophysics Data System (ADS)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  14. Future perspectives in target-specific immunotherapies of myasthenia gravis

    PubMed Central

    Dalakas, Marinos C.

    2015-01-01

    Myasthenia gravis (MG) is an autoimmune disease caused by complement-fixing antibodies against acetylcholine receptors (AChR); antigen-specific CD4+ T cells, regulatory T cells (Tregs) and T helper (Th) 17+ cells are essential in antibody production. Target-specific therapeutic interventions should therefore be directed against antibodies, B cells, complement and molecules associated with T cell signaling. Even though the progress in the immunopathogenesis of the disease probably exceeds any other autoimmune disorder, MG is still treated with traditional drugs or procedures that exert a non-antigen specific immunosuppression or immunomodulation. Novel biological agents currently on the market, directed against the following molecular pathways, are relevant and specific therapeutic targets that can be tested in MG: (a) T cell intracellular signaling molecules, such as anti-CD52, anti-interleukin (IL) 2 receptors, anti- costimulatory molecules, and anti-Janus tyrosine kinases (JAK1, JAK3) that block the intracellular cascade associated with T-cell activation; (b) B cells and their trophic factors, directed against key B-cell molecules; (c) complement C3 or C5, intercepting the destructive effect of complement-fixing antibodies; (d) cytokines and cytokine receptors, such as those targeting IL-6 which promotes antibody production and IL-17, or the p40 subunit of IL-12/1L-23 that affect regulatory T cells; and (e) T and B cell transmigration molecules associated with lymphocyte egress from the lymphoid organs. All drugs against these molecular pathways require testing in controlled trials, although some have already been tried in small case series. Construction of recombinant AChR antibodies that block binding of the pathogenic antibodies, thereby eliminating complement and antibody-depended-cell-mediated cytotoxicity, are additional novel molecular tools that require exploration in experimental MG. PMID:26600875

  15. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection

    NASA Astrophysics Data System (ADS)

    Kitchen, Scott G.; Jones, Nicole R.; Laforge, Stuart; Whitmire, Jason K.; Vu, Bien-Aimee; Galic, Zoran; Brooks, David G.; Brown, Stephen J.; Kitchen, Christina M. R.; Zack, Jerome A.

    2004-06-01

    Costimulation of purified CD8+ T lymphocytes induces de novo expression of CD4, suggesting a previously unrecognized function for this molecule in the immune response. Here, we report that the CD4 molecule plays a direct role in CD8+ T cell function by modulating expression of IFN- and Fas ligand, two important CD8+ T cell effector molecules. CD4 expression also allows infection of CD8 cells by HIV, which results in down-regulation of the CD4 molecule and impairs the induction of IFN-, Fas ligand, and the cytotoxic responses of activated CD8+ T cells. Thus, the CD4 molecule plays a direct role in CD8 T cell function, and infection of these cells by HIV provides an additional reservoir for the virus and also may contribute to the immunodeficiency seen in HIV disease.

  16. Improved Tumor Targeting and Longer Retention Time of NIR Fluorescent Probes Using Bioorthogonal Chemistry.

    PubMed

    Zhang, Xianghan; Wang, Bo; Zhao, Na; Tian, Zuhong; Dai, Yunpeng; Nie, Yongzhan; Tian, Jie; Wang, Zhongliang; Chen, Xiaoyuan

    2017-01-01

    The traditional labeling method for targeted NIR fluorescence probes requires directly covalent-bonded conjugation of targeting domains and fluorophores in vitro . Although this strategy works well, it is not sufficient for detecting or treating cancers in vivo , due to steric hindrance effects that relatively large fluorophore molecules exert on the configurations and physiological functions of specific targeting domains. The copper-free, "click-chemistry"-assisted assembly of small molecules in living systems may enhance tumor accumulation of fluorescence probes by improving the binding affinities of the targeting factors. Here, we employed a vascular homing peptide, GEBP11, as a targeting factor for gastric tumors, and we demonstrate its effectiveness for in vivo imaging via click-chemistry-mediated conjugation with fluorescence molecules in tumor xenograft mouse models. This strategy showed higher binding affinities than those of the traditional conjugation method, and our results showed that the tumor accumulation of click-chemistry-mediated probes are 11-fold higher than that of directly labeled probes. The tracking life was prolonged by 12-fold, and uptake of the probes into the kidney was reduced by 6.5-fold. For lesion tumors of different sizes, click-chemistry-mediated probes can achieve sufficient signal-to-background ratios (3.5-5) for in vivo detection, and with diagnostic sensitivity approximately 3.5 times that of traditional labeling probes. The click-chemistry-assisted detection strategy utilizes the advantages of "small molecule" probes while not perturbing their physiological functions; this enables tumor detection with high sensitivity and specific selectivity.

  17. Direct Observation of Quantum Coherence in Single-Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Schlegel, C.; van Slageren, J.; Manoli, M.; Brechin, E. K.; Dressel, M.

    2008-10-01

    Direct evidence of quantum coherence in a single-molecule magnet in a frozen solution is reported with coherence times as long as T2=630±30ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are embedded. The electron spins are coupled to the proton nuclear spins of both the molecule itself and, interestingly, also to those of the solvent. The clear observation of Rabi oscillations indicates that we can manipulate the spin coherently, an essential prerequisite for performing quantum computations.

  18. Candidates for direct laser cooling of diatomic molecules with the simplest 1Σ -1Σ electronic system

    NASA Astrophysics Data System (ADS)

    Li, Chuanliang; Li, Yachao; Ji, Zhonghua; Qiu, Xuanbing; Lai, Yunzhong; Wei, Jilin; Zhao, Yanting; Deng, Lunhua; Chen, Yangqin; Liu, Jinjun

    2018-06-01

    We propose to utilize the 1Σ-1Σ electronic transition system for direct laser cooling of heteronuclear diatomic molecules. AgH, as well as its deuterium isotopolog AgD, is used as an example to illustrate the cooling schemes. Potential-energy curves and relevant molecular parameters of both AgH and AgD, including the spin-orbit constants and the electronic transition dipole moments, are determined in internally contracted multiconfiguration-reference configuration interaction calculations. The highly diagonal Franck-Condon matrices of the A 1Σ+-X 1Σ+ transitions predicted by the calculations suggest the existence of quasi-closed-cycle transitions, which renders these molecules suitable for direct laser cooling. By solving rate equations numerically, we demonstrated that both AgH and AgD molecules can be cooled from 25 K to 2 mK temperature in approximately 20 ms. Our investigation elucidates and supports the hypothesis that molecules in the simplest 1Σ-1Σ system can serve as favorable candidates for direct laser cooling.

  19. Acute Pharmacologic Degradation of a Stable Antigen Enhances Its Direct Presentation on MHC Class I Molecules

    PubMed Central

    Moser, Sarah C.; Voerman, Jane S. A.; Buckley, Dennis L.; Winter, Georg E.; Schliehe, Christopher

    2018-01-01

    Bifunctional degraders, also referred to as proteolysis-targeting chimeras (PROTACs), are a recently developed class of small molecules. They were designed to specifically target endogenous proteins for ubiquitin/proteasome-dependent degradation and to thereby interfere with pathological mechanisms of diseases, including cancer. In this study, we hypothesized that this process of acute pharmacologic protein degradation might increase the direct MHC class I presentation of degraded targets. By studying this question, we contribute to an ongoing discussion about the origin of peptides feeding the MHC class I presentation pathway. Two scenarios have been postulated: peptides can either be derived from homeostatic turnover of mature proteins and/or from short-lived defective ribosomal products (DRiPs), but currently, it is still unclear to what ratio and efficiency both pathways contribute to the overall MHC class I presentation. We therefore generated the intrinsically stable model antigen GFP-S8L-F12 that was susceptible to acute pharmacologic degradation via the previously described degradation tag (dTAG) system. Using different murine cell lines, we show here that the bifunctional molecule dTAG-7 induced rapid proteasome-dependent degradation of GFP-S8L-F12 and simultaneously increased its direct presentation on MHC class I molecules. Using the same model in a doxycycline-inducible setting, we could further show that stable, mature antigen was the major source of peptides presented, thereby excluding a dominant role of DRiPs in our system. This study is, to our knowledge, the first to investigate targeted pharmacologic protein degradation in the context of antigen presentation and our data point toward future applications by strategically combining therapies using bifunctional degraders with their stimulating effect on direct MHC class I presentation. PMID:29358938

  20. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    NASA Astrophysics Data System (ADS)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  1. Effect of alcaline cations in zeolites on their dielectric properties.

    PubMed

    Legras, Benoît; Polaert, Isabelle; Estel, Lionel; Thomas, Michel

    2012-01-01

    The effect on dielectric properties of alkaline cations Li+, Na+ and K+ incorporated in a zeolite Faujasite structure X or Y, has been investigated. Two major phenomena have been proved to occur: ionic conductivity and rotational polarization of the water molecules adsorbed. The polarizability of the cation which is directly linked to its radius, affects ionic conductivity as well as rotational polarization. Li cations are more strongly Linked to the framework than K+ and Na+ and induce a lower ionic conductivity. K+ is weakly fixed and induces a ionic conductivity even at low solvation level. At low water content, the cation nature and number mainly control the free rotation of the water molecules and affect the relaxation frequency. Close to saturation, the water molecules are mainly linked together by H bonds: the cation nature and number do not really affect the global dielectric properties anymore.

  2. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Lucilha, Adriana Campano; Bonancêa, Carlos Eduardo; Barreto, Wagner José; Takashima, Keiko

    2010-01-01

    The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 °C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 nm. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo dye molecule may be adsorbed onto the ZnO surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies.

  3. Electron-molecule scattering in a strong laser field: Two-center interference effects

    NASA Astrophysics Data System (ADS)

    Dakić, J.; Habibović, D.; Čerkić, A.; Busuladžić, M.; Milošević, D. B.

    2017-10-01

    Laser-assisted scattering of electrons on diatomic molecules is considered using the S -matrix theory within the second Born approximation. The first term of the expansion in powers of the scattering potential corresponds to the direct or single laser-assisted scattering of electrons on molecular targets, while the second term of this expansion corresponds to the laser-assisted rescattering or double scattering. The rescattered electrons may have considerably higher energies in the final state than those that scattered only once. For multicenter polyatomic molecules scattering and rescattering may happen at any center and in any order. All these cases contribute to the scattering amplitude and the interference of different contributions leads to an increase or a decrease of the differential cross section in particular electron energy regions. For diatomic molecules there are two such contributions for single scattering and four contributions for double scattering. Analyzing the spectra of the scattered electrons, we find two interesting effects. For certain molecular orientations, the plateaus in the electron energy spectrum, characteristic of laser-assisted electron-atom scattering, are replaced by a sequence of gradually declining maxima, caused by the two-center interference effects. The second effect is the appearance of symmetric U -shaped structures in the angle-resolved energy spectra, which are described very well by the analytical formulas we provide.

  4. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial clumped-isotope effects. These isotopic signatures, manifest as either directly bound isotope ;clumps; or as features of a molecule's isotopic anatomy, are linked to molecular mechanisms and may eventually provide additional information about biogeochemical cycling on environmentally relevant spatial scales.

  5. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.

    PubMed

    Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo

    2014-01-14

    A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.

  6. Chemotaxis of Molecular Dyes in Polymer Gradients in Solution.

    PubMed

    Guha, Rajarshi; Mohajerani, Farzad; Collins, Matthew; Ghosh, Subhadip; Sen, Ayusman; Velegol, Darrell

    2017-11-08

    Chemotaxis provides a mechanism for directing the transport of molecules along chemical gradients. Here, we show the chemotactic migration of dye molecules in response to the gradients of several different neutral polymers. The magnitude of chemotactic response depends on the structure of the monomer, polymer molecular weight and concentration, and the nature of the solvent. The mechanism involves cross-diffusion up the polymer gradient, driven by favorable dye-polymer interaction. Modeling allows us to quantitatively evaluate the strength of the interaction and the effect of the various parameters that govern chemotaxis.

  7. Ultracold molecule assembly with photonic crystals

    NASA Astrophysics Data System (ADS)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  8. Theory of attosecond delays in molecular photoionization.

    PubMed

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-03-28

    We present a theoretical formalism for the calculation of attosecond delays in molecular photoionization. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith delays, can be obtained from the complex dipole matrix elements provided by molecular quantum scattering theory. These results are used to derive formulae for the delays measured by two-photon attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared pulse. These effective delays are first expressed in the molecular frame where maximal information about the molecular photoionization dynamics is available. The effects of averaging over the emission direction of the electron and the molecular orientation are introduced analytically. We illustrate this general formalism for the case of two polyatomic molecules. N 2 O serves as an example of a polar linear molecule characterized by complex photoionization dynamics resulting from the presence of molecular shape resonances. H 2 O illustrates the case of a non-linear molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our theory establishes the foundation for interpreting measurements of the photoionization dynamics of all molecules by attosecond metrology.

  9. Releasing the brakes while hanging on: Cortactin effects on actin-driven motility.

    PubMed

    Gov, Nir S; Bernheim-Groswasser, Anne

    2012-01-01

    Actin polymerization plays a major role in many cellular processes, including cell motility, vesicle trafficking, and pathogen propulsion. The transformation of the (protrusive) polymerization forces into directed motion requires that the growing filaments are positioned next to the surface. This is achieved by localization of surface actin nucleators (WASP), which then activate Arp2/3 complex to form new actin branches. Yet, the same surface-bound WASP molecule which initiates the nucleation of new actin branches, also inherently prevents the translation of the polymerization forces into motion, essentially because the WASP molecule has to be in contact with the network during the formation of the new branch. In our recent paper we show that cortactin relaxes this internal inhibition by enhancing the release of WASP-VCA molecule from the new branching site after nucleation is initiated. We show that this enhanced release has two major effects; it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.

  10. Chemicals as the Sole Transformers of Cell Fate.

    PubMed

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  11. Grasping the Concepts of Stereochemistry.

    ERIC Educational Resources Information Center

    Barta, Nancy S.; Stille, John R.

    1994-01-01

    Presents an effective means of determining the R or S configuration of chiral molecules using the Cahn Ingold Prelog (CIP) sequence rules to establish substituent priority and use of the ultimate model of chirality, the hands, to aid in the direct correlation and assignment of relative configuration. (ZWH)

  12. New antineoplastic agent based on a dibenzoylmethane derivative: Cytotoxic effect and direct interaction with DNA.

    PubMed

    Nascimento, Fernanda R; Moura, Tiago A; Baeta, Jefferson V P B; Publio, Bruno C; Ferreira, Pollyanna M F; Santos, Anésia A; França, Andressa A P; Rocha, Marcio S; Diaz-Muñoz, Gaspar; Diaz, Marisa A N

    2018-08-01

    Melanoma accounts for only 4% of all skin cancers but is among the most lethal cutaneous neoplasms. Dacarbazine is the drug of choice for the treatment of melanoma in Brazil through the public health system mainly because of its low cost. However, it is an alkylating agent of low specificity and elicits a therapeutic response in only 20% of cases. Other drugs available for the treatment of melanoma are expensive, and tumor cells commonly develop resistance to these drugs. The fight against melanoma demands novel, more specific drugs that are effective in killing drug-resistant tumor cells. Dibenzoylmethane (1,3-diphenylpropane-1,3-dione) derivatives are promising antitumor agents. In this study, we investigated the cytotoxic effect of 1,3-diphenyl-2-benzyl-1,3-propanedione (DPBP) on B16F10 melanoma cells as well as its direct interaction with the DNA molecule using optical tweezers. DPBP showed promising results against tumor cells and had a selectivity index of 41.94. Also, we demonstrated the ability of DPBP to interact directly with the DNA molecule. The fact that DPBP can interact with DNA in vitro allows us to hypothesize that such an interaction may also occur in vivo and, therefore, that DPBP may be an alternative to treat patients with drug-resistant melanomas. These findings can guide the development of new and more effective drugs. Published by Elsevier B.V.

  13. Room temperature stable single molecule rectifiers with graphite electrodes

    NASA Astrophysics Data System (ADS)

    Rungger, Ivan; Kaliginedi, V.; Droghetti, A.; Ozawa, H.; Kuzume, A.; Haga, M.; Broekmann, P.; Rudnev, A. V.

    In this combined theoretical and experimental study we present new molecular electronics device characteristics of unprecedented stability at room temperature by using electrodes based on highly oriented pyrolytic graphite with covalently attached molecules. To this aim, we explore the effect of the anchoring group chemistry on the charge transport properties of graphite/molecule contacts by means of the scanning tunneling microscopy break-junction technique and ab initio simulations. The theoretical approach to evaluate the conductance is based on density functional theory calculations combined with the non-equilibrium Greens function technique, as implemented in the Smeagol electron transport code. We also demonstrate a strong bias dependence and rectification of the single molecule conductance induced by the anchoring chemistry in combination with the very low density of states of graphite around the Fermi energy. We show that the direction of tunneling current rectification can be tuned by anchoring group chemistry.

  14. Computational assignment of redox states to Coulomb blockade diamonds.

    PubMed

    Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V

    2014-09-07

    With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.

  15. Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells.

    PubMed Central

    Bryant, A E; Stevens, D L

    1996-01-01

    Clostridium perfringens phospholipase C (PLC) and perfringolysin O (PFO) differentially induced human umbilical vein endothelial cell expression and synthesis of endothelial cell-leukocyte adherence molecule-1 (ELAM-1), intracellular leukocyte adherence molecule-1 (ICAM-1), and interleukin-8 (IL-8). PLC strongly induced expression of ELAM-1, ICAM-1, and IL-8, while PFO stimulated early ICAM-1 expression but did not promote ELAM-1 expression or IL-8 synthesis. PLC caused human umbilical vein endothelial cells to assume a fibroblastoid morphology, whereas PFO, in high concentrations or after prolonged low-dose toxin exposure, caused cell death. The toxin-induced expression of proadhesive and activational proteins and direct cytopathic effects may contribute to the leukostasis, vascular compromise, and capillary leak characteristics of C. perfringens gas gangrene. PMID:8557365

  16. Fastest Formation Routes of Nanocarbons in Solution Plasma Processes.

    PubMed

    Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2016-11-14

    Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C-H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma-solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C 2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene.

  17. Fastest Formation Routes of Nanocarbons in Solution Plasma Processes

    PubMed Central

    Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2016-01-01

    Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C–H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma–solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene. PMID:27841288

  18. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    PubMed

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  19. Scalable Directed Assembly of Highly Crystalline 2,7-Dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) Films.

    PubMed

    Chai, Zhimin; Abbasi, Salman A; Busnaina, Ahmed A

    2018-05-30

    Assembly of organic semiconductors with ordered crystal structure has been actively pursued for electronics applications such as organic field-effect transistors (OFETs). Among various film deposition methods, solution-based film growth from small molecule semiconductors is preferable because of its low material and energy consumption, low cost, and scalability. Here, we show scalable and controllable directed assembly of highly crystalline 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) films via a dip-coating process. Self-aligned stripe patterns with tunable thickness and morphology over a centimeter scale are obtained by adjusting two governing parameters: the pulling speed of a substrate and the solution concentration. OFETs are fabricated using the C8-BTBT films assembled at various conditions. A field-effect hole mobility up to 3.99 cm 2 V -1 s -1 is obtained. Owing to the highly scalable crystalline film formation, the dip-coating directed assembly process could be a great candidate for manufacturing next-generation electronics. Meanwhile, the film formation mechanism discussed in this paper could provide a general guideline to prepare other organic semiconducting films from small molecule solutions.

  20. Cobra venom factor immunoconjugates: effects of carbohydrate-directed versus amino group-directed conjugation.

    PubMed

    Zara, J; Pomato, N; McCabe, R P; Bredehorst, R; Vogel, C W

    1995-01-01

    Human IgM monoclonal antibody 16-88, derived from patients immunized with autologous colon carcinoma cells, was derivatized with two different cross-linkers, S-(2-thiopyridyl)-L-cysteine hydrazide (TPCH), which is carbohydrate-directed, and N-succinimidyl-3-(2- pyridyldithio)propionate (SPDP), which is amino group-directed. Two antibody functions, antigen binding and complement activation, were assayed upon derivatization with TPCH and SPDP. TPCH allowed for extensive modification (up to 17 TPCH molecules per antibody) without impairment of antigen binding activity, while this function was significantly compromised upon derivatization with SPDP. Antibody molecules derivatized with 16 SPDP residues showed almost complete loss of their antigen binding function. The complement activating ability of antibody 16-88 was significantly decreased after derivatization with TPCH or SPDP. In the case of SPDP derivatization, this decrease of the complement activating ability is predominantly a consequence of the impaired binding function. Upon conjugation of cobra venom factor (CVF), a nontoxic 137-kDa glycoprotein which is capable of activating the alternative pathway of complement, the antigen binding activity of SPDP-derivatized antibody was further compromised, whereas that of TPCH-derivatized antibody remained unaffected even after attachment of three or four CVF molecules per antibody. In both conjugates CVF retained good functional activity. CVF was slightly more active when attached to SPDP-derivatized antibody, suggesting a better accessibility of amino group-coupled CVF for its interaction with other complement proteins. These results indicate that carbohydrate-directed conjugation compromises the antibody function of complement activation, but allows for the generation of immunoconjugates with unimpaired antigen binding capability.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. [Thermostabilization of glutamin(asparagin)ase from Pseudomonas aurantica BKMB-548].

    PubMed

    Kabanova, E A; Lebedeva, Z I; Berezov, T T

    1985-01-01

    In studies on kinetics of thermoinactivation of glutaminase (asparaginase) from Ps. arantiaca BKMB-548 at 50 degrees and pH 7.0 in presence or in absence of L-glutamate the enzyme inactivation was found to obey the first order equation. Both the glutaminase and asparaginase activities decreased at a similar rate. L-Glutamate stabilized the enzyme due to direct interaction with its molecule. Stability of the complex formed was evaluated quantitatively. L-Glutamate reacted apparently with a specific site on the surface of the enzyme molecule; Kdiss was 0.42 +/- 0.03 mM at pH 7.0 and 50 degrees. No cooperative effect was found. L-Aspartate protected the enzyme completely; stabilizing effects of L-cysteine, L-serine and glycine were similar to the effect of L-glutamate (94%, 84%, 83% and 82%, respectively). At the same time, glutarate, succinate, alpha-ketobutyrate, alpha-ketoglutarate, gamma-aminobutyrate and N-benzoyl glutamate did not exhibit the stabilization effect. The data obtained suggest that the high stabilizing effect might exhibit only the substances containing simultaneously free alpha-NH2 and alpha-COOH groups in a molecule, whereas presence of COOH groups at beta--or gamma-carbon atoms was not essential for the stabilizing effect.

  2. In silico toxicity prediction by support vector machine and SMILES representation-based string kernel.

    PubMed

    Cao, D-S; Zhao, J-C; Yang, Y-N; Zhao, C-X; Yan, J; Liu, S; Hu, Q-N; Xu, Q-S; Liang, Y-Z

    2012-01-01

    There is a great need to assess the harmful effects or toxicities of chemicals to which man is exposed. In the present paper, the simplified molecular input line entry specification (SMILES) representation-based string kernel, together with the state-of-the-art support vector machine (SVM) algorithm, were used to classify the toxicity of chemicals from the US Environmental Protection Agency Distributed Structure-Searchable Toxicity (DSSTox) database network. In this method, the molecular structure can be directly encoded by a series of SMILES substrings that represent the presence of some chemical elements and different kinds of chemical bonds (double, triple and stereochemistry) in the molecules. Thus, SMILES string kernel can accurately and directly measure the similarities of molecules by a series of local information hidden in the molecules. Two model validation approaches, five-fold cross-validation and independent validation set, were used for assessing the predictive capability of our developed models. The results obtained indicate that SVM based on the SMILES string kernel can be regarded as a very promising and alternative modelling approach for potential toxicity prediction of chemicals.

  3. Structuration in the Interface of Direct and Reversed Micelles of Sucrose Esters, Studied by Fluorescent Techniques

    PubMed Central

    Sandoval, Catalina; Ortega, Anakenna; Sanchez, Susana A.; Morales, Javier; Gunther, German

    2015-01-01

    Background Reactors found in nature can be described as micro-heterogeneous systems, where media involved in each micro-environment can behave in a markedly different way compared with the properties of the bulk solution. The presence of water molecules in micro-organized assemblies is of paramount importance for many chemical processes, ranging from biology to environmental science. Self-organized molecular assembled systems are frequently used to study dynamics of water molecules because are the simplest models mimicking biological membranes. The hydrogen bonds between sucrose and water molecules are described to be stronger (or more extensive) than the ones between water molecules themselves. In this work, we studied the capability of sucrose moiety, attached to alkyl chains of different length, as a surface blocking agent at the water-interface and we compared its properties with those of polyethylenglycol, a well-known agent used for this purposes. Published studies in this topic mainly refer to the micellization process and the stability of mixed surfactant systems using glycosides. We are interested in the effect induced by the presence of sucrose monoesters at the interface (direct and reverse micelles) and at the palisade (mixtures with Triton X-100). We believe that the different functional group (ester), the position of alkyl chain (6-O) and the huge capability of sucrose to interact with water will dramatically change the water structuration at the interface and at the palisade, generating new possibilities for technological applications of these systems. Results Our time resolved and steady state fluorescence experiments in pure SEs micelles show that sucrose moieties are able to interact with a high number of water molecules promoting water structuration and increased viscosity. These results also indicate that the barrier formed by sucrose moieties on the surface of pure micelles is more effective than the polyoxyethylene palisade of Triton X-100. The fluorescence quenching experiments of SEs at the palisade of Triton X-100 micelles indicate a blocking effect dependent on the number of methylene units present in the hydrophobic tail of the surfactant. A remarkable blocking effect is observed when there is a match in size between the hydrophobic regions forming the apolar core (lauryl SE/ Triton X-100). This blocking effect disappears when a mismatch in size between hydrophobic tails, exists due to the disturbing effect on the micelle core. PMID:25905632

  4. Interaction of a single acetophenone molecule with group III-IV elements mediated by Si(001)

    NASA Astrophysics Data System (ADS)

    Racis, A.; Jurczyszyn, L.; Radny, M. W.

    2018-03-01

    A theoretical study of an influence of the acetophenone molecule adsorbed on the Si(001) on the local chemical reactivity of silicon surface is presented. The obtained results indicate that the interaction of the molecule with silicon substrate breaks the intra-dimer π bonds in four surface silicon dimers interacting directly with adsorbed molecule. This leads to the formation of two pairs of unpaired dangling bonds at two opposite sides of the molecule. It is demonstrated that these dangling bonds increase considerably the local chemical reactivity of the silicon substrate in the vicinity of the adsorbed molecule. Consequently, it is shown that such molecule bonded with Si(001) can stabilize the position of In and Pb adatoms diffusing on silicon substrate at two sides and initiate the one-dimensional aggregation of the metallic adatoms on the Si(001) substrate anchored at both sides of the adsorbed molecule. This type of aggregation leads to the growth of chain-like atomic structures in opposite directions, pinned to adsorbed molecule and oriented perpendicular to the rows of surface silicon dimers.

  5. Polymer physics experiments with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Smith, Douglas E.

    1999-11-01

    Bacteriophage DNA molecules were taken as a model flexible polymer chain for the experimental study of polymer dynamics at the single molecule level. Video fluorescence microscopy was used to directly observe the conformational dynamics of fluorescently labeled molecules, optical tweezers were used to manipulate individual molecules, and micro-fabricated flow cells were used to apply controlled hydrodynamic strain to molecules. These techniques constitute a powerful new experimental approach in the study of basic polymer physics questions. I have used these techniques to study the diffusion and relaxation of isolated and entangled polymer molecules and the hydrodynamic deformation of polymers in elongational and shear flows. These studies revealed a rich, and previously unobserved, ``molecular individualism'' in the dynamical behavior of single molecules. Individual measurements on ensembles of identical molecules allowed the average conformation to be determined as well as the underlying probability distributions for molecular conformation. Scaling laws, that predict the dependence of properties on chain length and concentration, were also tested. The basic assumptions of the reptation model were directly confirmed by visualizing the dynamics of entangled chains.

  6. Demonstrations of Some Optical Properties of Liquid Crystals.

    ERIC Educational Resources Information Center

    Nicastro, Anthony J.

    1983-01-01

    Discusses several properties of liquid crystal displays. Includes instructions for demonstrating liquid crystalline phase, ordering of the long axes of molecules along one direction, and electro-optic effects. The latter is accomplished with the use of an overhead projector following preparation of a sandwich cell. (JN)

  7. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization.

    PubMed

    Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K

    2015-05-28

    Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.

  8. The Origin and Coupling Mechanism of the Magnetoelectric Effect in TM Cl 2 -4SC(NH 2 ) 2 ( TM = Ni and Co)

    DOE PAGES

    Mun, Eundeok; Wilcox, Jason; Manson, Jamie L.; ...

    2014-01-01

    Most research on multiferroics and magnetoelectric effects to date has focused on inorganic oxides. Molecule-based materials are a relatively new field in which to search for magnetoelectric multiferroics and to explore new coupling mechanisms between electric and magnetic order. We present magnetoelectric behavior in NiCl 2 -4SC(NH 2 ) 2 (DTN) and CoCl 2 -4SC(NH 2 ) 2 (DTC). These compounds form tetragonal structures where the transition metal ion (Ni or Co) is surrounded by four electrically polar thiourea molecules [SC(NH 2 ) 2 ]. By tracking the magnetic and electric properties of these compounds as a function of magneticmore » field, we gain insights into the coupling mechanism by observing that, in DTN, the electric polarization tracks the magnetic ordering, whereas in DTC it does not. For DTN, all electrically polar thiourea molecules tilt in the same direction along the c -axis, breaking spatial-inversion symmetry, whereas, for DTC, two thiourea molecules tilt up and two tilt down with respect to c -axis, perfectly canceling the net electrical polarization. Thus, the magnetoelectric coupling mechanism in DTN is likely a magnetostrictive adjustment of the thiourea molecule orientation in response to magnetic order.« less

  9. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.

    2012-12-01

    We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.

  10. Direct detection of free radicals and reactive oxygen species in thylakoids.

    PubMed

    Hideg, Eva; Kálai, Tamás; Hideg, Kálmán

    2011-01-01

    In plants, reactive oxygen species (ROS), also known as active oxygen species (AOS), are associated with normal, physiologic processes as well as with responses to adverse conditions. ROS are connected to stress in many ways: as primary elicitors, as products and propagators of oxidative damage, or as signal molecules initiating defense or adaptation. The photosynthetic electron transport is a major site of oxidative stress by visible or ultraviolet light, high or low temperature, pollutants or herbicides. ROS production can be presumed from detecting oxidatively damaged lipids, proteins, or pigments as well as from the alleviating effects of added antioxidants. On the contrary, measuring ROS by special sensor molecules provides more direct information. This chapter focuses on the application of spin trapping electron paramagnetic resonance (EPR) spectroscopy for detecting ROS: singlet oxygen and oxygen free radicals in thylakoid membrane preparations.

  11. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    PubMed

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  12. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine and paracrine cell communication and signal transduction.

  13. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tingting; Zhao, Ling; Liu, Mengyu

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increasedmore » glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in vitro. • Hydrogen molecules have direct effect on the modulation of AChE activity in vitro.« less

  14. The Flat and Direct Way to R and S Configurations.

    ERIC Educational Resources Information Center

    Brun, Y.; Leblanc, P.

    1983-01-01

    Discusses a simple, effective way of teaching S and R configurations for chiral molecules containing asymmetric centers. The method involves converting wedge/spatial representations to Fischer projections and prioritizing groups according to the Cahn-Ingold-Prelog sequence rules. Two examples illustrating the method are included. (JN)

  15. Using metatranscriptomics to determine effects of dietary supplementation with bovine milk oligosaccharides in healthy adults

    USDA-ARS?s Scientific Manuscript database

    The study of human milk has revealed the presence of complex human milk oligosaccharide (HMO) molecules, believed to help encourage formation and development of the infant’s gut microbiome. HMOs function as prebiotics for beneficial bacteria, block attachment to pathogens, and interact directly with...

  16. In situ temperature monitoring in single-molecule FRET experiments

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Berndt, Frederic; Ollmann, Simon; Krainer, Georg; Schlierf, Michael

    2018-03-01

    Thermodynamic properties of single molecules including enthalpic and entropic contributions are often determined from experiments by a direct control and precise measurement of the local temperature. However, common temperature monitoring techniques using, for example, ultrafine temperature probes can lead to uncertainties as the probe cannot be placed in the vicinity of the molecule of interest. Here, we devised an approach to measure the local temperature in freely diffusing confocal single-molecule Förster Resonance Energy Transfer (smFRET) experiments in situ by directly adding the temperature-sensitive fluorescent dye Rhodamine B, whose fluorescence lifetime serves as a probe of the local temperature in the confocal volume. We demonstrate that the temperature and FRET efficiencies of static and dynamic molecules can be extracted within one measurement simultaneously, without the need of a reference chamber. We anticipate this technique to be particularly useful in the physicochemical analyses of temperature-dependent biomolecular processes from single-molecule measurements.

  17. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound

    PubMed Central

    Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.

    2016-01-01

    Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts. PMID:26989578

  18. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    PubMed

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  19. Direct single-molecule dynamic detection of chemical reactions.

    PubMed

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  20. Direct single-molecule dynamic detection of chemical reactions

    PubMed Central

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N.; Zhang, Deqing; Guo, Xuefeng

    2018-01-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry. PMID:29487914

  1. Visualizing biological reaction intermediates with DNA curtains

    NASA Astrophysics Data System (ADS)

    Zhao, Yiling; Jiang, Yanzhou; Qi, Zhi

    2017-04-01

    Single-molecule approaches have tremendous potential analyzing dynamic biological reaction with heterogeneity that cannot be effectively accessed via traditional ensemble-level biochemical approaches. The approach of deoxyribonucleic acid (DNA) curtains developed by Dr Eric Greene and his research team at Columbia University is a high-throughput single-molecule technique that utilizes fluorescent imaging to visualize protein-DNA interactions directly and allows the acquisition of statistically relevant information from hundreds or even thousands of individual reactions. This review aims to summarize the past, present, and future of DNA curtains, with an emphasis on its applications to solve important biological questions.

  2. Probing the Role of Active Site Water in the Sesquiterpene Cyclization Reaction Catalyzed by Aristolochene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Al-Lami, Naeemah; Faraldos, Juan A; Allemann, Rudolf K; Cane, David E; Christianson, David W

    2016-05-24

    Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates.

  3. Adhesion molecules and receptors

    USDA-ARS?s Scientific Manuscript database

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  4. Analyte concentration at the tip of a nanopipette.

    PubMed

    Calander, Nils

    2009-10-15

    Concentration of molecules within the tips of nanopipettes when applying a DC voltage is herein investigated using finite-element simulations. The ion concentrations and fluxes due to diffusion, electro-migration, and electro-osmotic flow, and the electric potential are determined by the simultaneous solution of the Nernst-Planck, Poisson, and Navier-Stokes equations within the water solution containing sodium and chloride ions and negatively charged molecules. The electric potential within the pipette glass wall is at the same time determined by the Poisson equation together with appropriate boundary conditions and accounts for a field effect through the wall. Fixed negative surface charge on both the internal and external glass surfaces of the nanopipette is included together with the field effect through the glass wall to account for the electric double layer and the electro-osmosis. The inclusion of the field effect through the pipette wall is new compared to previous modeling of similar structures and is shown to be crucial for the behavior at the tip. It is demonstrated that the concentration of molecules is a consequence of ionic charge accumulation at the tip screening the electric field, thereby slowing down the electrophoretic motion of the molecules, which is further slowed down or stopped by the oppositely directed electro-osmosis. It is also shown that the trapping is very sensitive to the properties of the molecule, that is, its electrophoretic mobility and diffusion coefficient, the properties of the pipette, the ionic strength of the solution, and the applied electric field.

  5. Kai Xin San aqueous extract improves Aβ1-40-induced cognitive deficits on adaptive behavior learning by enhancing memory-related molecules expression in the hippocampus.

    PubMed

    Lu, Cong; Shi, Zhe; Sun, Xiuping; Pan, Ruile; Chen, Shanguang; Li, Yinghui; Qu, Lina; Sun, Lihua; Dang, Haixia; Bu, Lanlan; Chen, Lingling; Liu, Xinmin

    2017-04-06

    Kai Xin San (KXS), a traditional formula of Chinese medicine, has been used to treat dementia. The present study aimed to investigate its ameliorating effects on Aβ 1-40 -induced cognitive impairment in rats using a series of novel reward-directed instrumental learning tasks, and to determine its possible mechanism of action. Rats were pretreated with KXS aqueous extract (0.72 and 1.44g/kg, p.o.) for 10 days, and were trained to gain reward reinforcement by lever pressing at the meantime. Thereafter, rats received a bilateral microinjection of Aβ 1-40 in CA1 regions of the hippocampus. Cognitive performance was evaluated with the goal directed (higher response ratio) and habit (visual signal discrimination and extinction) learning tasks, as well as on the levels of memory-related biochemical parameters and molecules. Our findings first demonstrated that KXS can improve Aβ 1-40 -induced amnesia in RDIL via enhancing the comprehension of action-outcome association and the utilization of cue information to guide behavior. Then, its ameliorating effects should be attributed to the modulation of memory-related molecules in the hippocampus. In conclusion, KXS has the potential to prevent and/or delay the deterioration of cognitive impairment in AD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy

    PubMed Central

    Kawai, Shigeki; Nishiuchi, Tomohiko; Kodama, Takuya; Spijker, Peter; Pawlak, Rémy; Meier, Tobias; Tracey, John; Kubo, Takashi; Meyer, Ernst; Foster, Adam S.

    2017-01-01

    The hydrogen atom—the smallest and most abundant atom—is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H–C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity. PMID:28508080

  7. Model colloid system for interfacial sorption kinetics

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven

    2014-11-01

    Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.

  8. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.

    PubMed

    Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D

    2016-05-01

    Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    NASA Astrophysics Data System (ADS)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of polyatomic molecules, including high harmonic generation (HHG). We discuss an experimental method, Channel-Resolved Above Threshold Ionization (CRATI), which directly unveils the electronic channels participating in the attosecond molecular strong field ionization response [10]. This work was supported by the National Research Council of Canada and the Natural Sciences & Engineering Research Council.

  10. Structure of the floating water bridge and water in an electric field

    PubMed Central

    Skinner, Lawrie B.; Benmore, Chris J.; Shyam, Badri; Weber, J. K. R.; Parise, John B.

    2012-01-01

    The floating water bridge phenomenon is a freestanding rope-shaped connection of pure liquid water, formed under the influence of a high potential difference (approximately 15 kV). Several recent spectroscopic, optical, and neutron scattering studies have suggested that the origin of the bridge is associated with the formation of anisotropic chains of water molecules in the liquid. In this work, high energy X-ray diffraction experiments have been performed on a series of floating water bridges as a function of applied voltage, bridge length, and position within the bridge. The two-dimensional X-ray scattering data showed no direction-dependence, indicating that the bulk water molecules do not exhibit any significant preferred orientation along the electric field. The only structural changes observed were those due to heating, and these effects were found to be the same as for bulk water. These X-ray scattering measurements are supported by molecular dynamics (MD) simulations which were performed under electric fields of 106 V/m and 109 V/m. Directional structure factor calculations were made from these simulations parallel and perpendicular to the E-field. The 106 V/m model showed no significant directional-dependence (anisotropy) in the structure factors. The 109 V/m model however, contained molecules aligned by the E-field, and had significant structural anisotropy. PMID:23010930

  11. MMPP Attenuates Non-Small Cell Lung Cancer Growth by Inhibiting the STAT3 DNA-Binding Activity via Direct Binding to the STAT3 DNA-Binding Domain.

    PubMed

    Son, Dong Ju; Zheng, Jie; Jung, Yu Yeon; Hwang, Chul Ju; Lee, Hee Pom; Woo, Ju Rang; Baek, Song Yi; Ham, Young Wan; Kang, Min Woong; Shong, Minho; Kweon, Gi Ryang; Song, Min Jong; Jung, Jae Kyung; Han, Sang-Bae; Kim, Bo Yeon; Yoon, Do Young; Choi, Bu Young; Hong, Jin Tae

    2017-01-01

    Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo . It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.

  12. Use of Direct Dynamics Simulations to Determine Unimolecular Reaction Paths and Arrhenius Parameters for Large Molecules.

    PubMed

    Yang, Li; Sun, Rui; Hase, William L

    2011-11-08

    In a previous study (J. Chem. Phys.2008, 129, 094701) it was shown that for a large molecule, with a total energy much greater than its barrier for decomposition and whose vibrational modes are harmonic oscillators, the expressions for the classical Rice-Ramsperger-Kassel-Marcus (RRKM) (i.e., RRK) and classical transition-state theory (TST) rate constants become equivalent. Using this relationship, a molecule's unimolecular rate constants versus temperature may be determined from chemical dynamics simulations of microcanonical ensembles for the molecule at different total energies. The simulation identifies the molecule's unimolecular pathways and their Arrhenius parameters. In the work presented here, this approach is used to study the thermal decomposition of CH3-NH-CH═CH-CH3, an important constituent in the polymer of cross-linked epoxy resins. Direct dynamics simulations, at the MP2/6-31+G* level of theory, were used to investigate the decomposition of microcanonical ensembles for this molecule. The Arrhenius A and Ea parameters determined from the direct dynamics simulation are in very good agreement with the TST Arrhenius parameters for the MP2/6-31+G* potential energy surface. The simulation method applied here may be particularly useful for large molecules with a multitude of decomposition pathways and whose transition states may be difficult to determine and have structures that are not readily obvious.

  13. Crystalline Organic Pigment-Based Field-Effect Transistors.

    PubMed

    Zhang, Haichang; Deng, Ruonan; Wang, Jing; Li, Xiang; Chen, Yu-Ming; Liu, Kewei; Taubert, Clinton J; Cheng, Stephen Z D; Zhu, Yu

    2017-07-05

    Three conjugated pigment molecules with fused hydrogen bonds, 3,7-diphenylpyrrolo[2,3-f]indole-2,6(1H,5H)-dione (BDP), (E)-6,6'-dibromo-[3,3'-biindolinylidene]-2,2'-dione (IIDG), and 3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo-[3,4-c]pyrrole-1,4-dione (TDPP), were studied in this work. The insoluble pigment molecules were functionalized with tert-butoxylcarbonyl (t-Boc) groups to form soluble pigment precursors (BDP-Boc, IIDG-Boc, and TDPP-Boc) with latent hydrogen bonding. The single crystals of soluble pigment precursors were obtained. Upon simple thermal annealing, the t-Boc groups were removed and the soluble pigment precursor molecules with latent hydrogen bonding were converted into the original pigment molecules with fused hydrogen bonding. Structural analysis indicated that the highly crystalline soluble precursors were directly converted into highly crystalline insoluble pigments, which are usually only achievable by gas-phase routes like physical vapor transport. The distinct crystal structure after the thermal annealing treatment suggests that fused hydrogen bonding is pivotal for the rearrangement of molecules to form a new crystal in solid state, which leads to over 2 orders of magnitude enhancement in charge mobility in organic field-effect transistor (OFET) devices. This work demonstrated that crystalline OFET devices with insoluble pigment molecules can be fabricated by their soluble precursors. The results indicated that a variety of commercially available conjugated pigments could be potential active materials for high-performance OFETs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less

  15. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation.

    PubMed

    Mowat, Eilidh; Rajendran, Ranjith; Williams, Craig; McCulloch, Elaine; Jones, Brian; Lang, Sue; Ramage, Gordon

    2010-12-01

    Aspergillus fumigatus is often isolated from the lungs of cystic fibrosis (CF) patients, but unlike in severely immunocompromised individuals, the mortality rates are low. This suggests that competition from bacteria within the CF lung may be inhibitory. The purpose of this study was to investigate how Pseudomonas aeruginosa influences A. fumigatus conidial germination and biofilm formation. Aspergillus fumigatus biofilm formation was inhibited by direct contact with P. aeruginosa, but had no effect on preformed biofilm. A secreted heat-stable soluble factor was also shown to exhibit biofilm inhibition. Coculture of P. aeruginosa quorum-sensing mutants (PAO1:ΔLasI, PAO1:ΔLasR) did not significantly inhibit A. fumigatus biofilms (52.6-58.8%) to the same extent as that of the PA01 wild type (22.9-30.1%), both by direct and by indirect interaction (P<0.001). Planktonic and sessile inhibition assays with a series of short carbon chain molecules (decanol, decanoic acid and dodecanol) demonstrated that these molecules could both inhibit and disrupt biofilms in a concentration-dependent manner. Overall, this suggests that small diffusible and heat-stable molecules may be responsible for the competitive inhibition of filamentous fungal growth in polymicrobial environments such as the CF lung. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron

    NASA Astrophysics Data System (ADS)

    Vutha, A.; Horbatsch, M.; Hessels, E.

    2018-01-01

    We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $\\hat{\\rm{z}}$ direction by an applied electric field, as has recently been demonstrated by Park, et al. [Angewandte Chemie {\\bf 129}, 1066 (2017)]. The trapped molecules are prepared into a state which has its electron spin perpendicular to $\\hat{\\rm{z}}$, and a magnetic field along $\\hat{\\rm{z}}$ causes precession of this spin. An electron electric dipole moment $d_e$ would affect this precession due to the up to 100~GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring $d_e$ to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.

  17. NO adsorption on Cu(110) and O(2 × 1)/Cu(110) surfaces from density functional theory calculations.

    PubMed

    Brión-Ríos, Antón X; Sánchez-Portal, Daniel; Cabrera-Sanfelix, Pepa

    2016-04-14

    In a recent study [M. Feng, et al., ACS Nano, 2011, 5, 8877], it was shown that CO molecules adsorbed on the quasi-one-dimensional O(2 × 1)/Cu(110) surface reconstruction tend to form highly-ordered single-molecule-wide rows along the direction perpendicular to the Cu-O chains. This stems from the peculiar tilted adsorption configuration of CO on this substrate, which gives rise to short-range attractive dipole-dipole interactions. Motivated by this observation, here we study the adsorption of nitric oxide (NO) on O(2 × 1)/Cu(110) and Cu(110) using density functional theory, with the aim of elucidating whether a similar behaviour can be expected for this molecule. We first study NO adsorption on a clean Cu(110) surface, where the role of short-range attractions between molecules has already been pointed out by the observation of the formation of NO dimers by scanning tunnelling microscopy [A. Shiotari, et al., Phys. Rev. Lett., 2011, 106, 156104]. On the clean Cu(110), the formation of dimers along the [110̄] direction is favourable, in agreement with published experimental results. However, the formation of extended NO rows is found to be unstable. Regarding the O(2 × 1)/Cu(110) substrate, we observe that NO molecules adsorb in between the Cu-O chains, causing a substantial disruption of the surface structure. Although individual molecules can be tilted with negligible energetic cost along the direction of the Cu-O chains, the interaction among neighbouring molecules was found to be repulsive along all directions and, consequently, the formation of dimers unfavourable.

  18. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    PubMed

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  19. Life Before RNA

    NASA Astrophysics Data System (ADS)

    Sowerby, Stephen J.; Petersen, George B.

    2002-08-01

    The hypothesis that life originated and evolved from linear informational molecules capable of facilitating their own catalytic replication is deeply entrenched. However, widespread acceptance of this paradigm seems oblivious to a lack of direct experimental support. Here, we outline the fundamental objections to the de novo appearance of linear, self-replicating polymers and examine an alternative hypothesis of template-directed coding of peptide catalysts by adsorbed purine bases. The bases (which encode biological information in modern nucleic acids) spontaneously self-organize into two-dimensional molecular solids adsorbed to the uncharged surfaces of crystalline minerals; their molecular arrangement is specified by hydrogen bonding rules between adjacent molecules and can possess the aperiodic complexity to encode putative protobiological information. The persistence of such information through self-reproduction, together with the capacity of adsorbed bases to exhibit enantiomorphism and effect amino acid discrimination, would seem to provide the necessary machinery for a primitive genetic coding mechanism.

  20. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-{alpha}-induced vascular endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayermore » binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.« less

  1. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  2. Polyamine conjugation of curcumin analogues toward the discovery of mitochondria-directed neuroprotective agents.

    PubMed

    Simoni, Elena; Bergamini, Christian; Fato, Romana; Tarozzi, Andrea; Bains, Sandip; Motterlini, Roberto; Cavalli, Andrea; Bolognesi, Maria Laura; Minarini, Anna; Hrelia, Patrizia; Lenaz, Giorgio; Rosini, Michela; Melchiorre, Carlo

    2010-10-14

    Mitochondria-directed antioxidants 2-5 were designed by conjugating curcumin congeners with different polyamine motifs as vehicle tools. The conjugates emerged as efficient antioxidants in mitochondria and fibroblasts and also exerted a protecting role through heme oxygenase-1 activation. Notably, the insertion of a polyamine function into the curcumin-like moiety allowed an efficient intracellular uptake and mitochondria targeting. It also resulted in a significant decrease in the cytotoxicity effects. 2-5 are therefore promising molecules for neuroprotectant lead discovery.

  3. Increase of gap junction activities in SW480 human colorectal cancer cells.

    PubMed

    Bigelow, Kristina; Nguyen, Thu A

    2014-07-09

    Colorectal cancer is one of the most common cancers in the United States with an early detection rate of only 39%. Colorectal cancer cells along with other cancer cells exhibit many deficiencies in cell-to-cell communication, particularly gap junctional intercellular communication (GJIC). GJIC has been reported to diminish as cancer cells progress. Gap junctions are intercellular channels composed of connexin proteins, which mediate the direct passage of small molecules from one cell to the next. They are involved in the regulation of the cell cycle, cell differentiation, and cell signaling. Since the regulation of gap junctions is lost in colorectal cancer cells, the goal of this study is to determine the effect of GJIC restoration in colorectal cancer cells. Gap Junction Activity Assay and protein analysis were performed to evaluate the effects of overexpression of connexin 43 (Cx43) and treatment of PQ1, a small molecule, on GJIC. Overexpression of Cx43 in SW480 colorectal cancer cells causes a 6-fold increase of gap junction activity compared to control. This suggests that overexpressing Cx43 can restore GJIC. Furthermore, small molecule like PQ1 directly targeting gap junction channel was used to increase GJIC. Gap junction enhancers, PQ1, at 200 nM showed a 4-fold increase of gap junction activity in SW480 cells. A shift from the P0 to the P2 isoform of Cx43 was seen after 1 hour treatment with 200 nM PQ1. Overexpression of Cx43 and treatment of PQ1 can directly increase gap junction activity. The findings provide an important implication in which restoration of gap junction activity can be targeted for drug development.

  4. Observation des cycles enzymatiques des ADN topoisomérases par micromanipulation de molécules individuelles

    NASA Astrophysics Data System (ADS)

    Strick, Terence R.; Charvin, Gilles; Dekker, Nynke H.; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    In this article, we describe single-molecule assays using magnetic traps and we applied these assays to topoisomerase enzymes which unwind and disentangle DNA molecules. First, the elasticity of single DNA molecule is characterized using the magnetic trap. We show that a twisting constraint may be easily applied and that its effect upon DNA may be measured accurately. Then we describe how the topoisomerase activity may be observed at the single-molecule level giving direct access to the important biological parameters of the enzyme such as velocity and processivity. Furthermore, individual cycles of unwinding can be observed in real time. This permits an accurate characterization of the enzyme's biochemical cycle. The data treatment required to identify and analyze individual topoisomerization cycles will be presented in detail. This analysis is applicable to a wide variety of molecular motors. To cite this article: T.R. Strick et al., C. R. Physique 3 (2002) 595-618.

  5. Structure–property relationships in atomic-scale junctions: Histograms and beyond

    DOE PAGES

    Mark S. Hybertsen; Venkataraman, Latha

    2016-03-03

    Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less

  6. Structure–property relationships in atomic-scale junctions: Histograms and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark S. Hybertsen; Venkataraman, Latha

    Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less

  7. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    PubMed

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.

  8. Effect of Osmolytes on the Conformational Behavior of a Macromolecule in a Cytoplasm-like Crowded Environment: A Femtosecond Mid-IR Pump-Probe Spectroscopy Study.

    PubMed

    Kundu, Achintya; Verma, Pramod Kumar; Cho, Minhaeng

    2018-02-15

    Osmolytes found endogenously in almost all living beings play an important role in regulating cell volume under harsh environment. Here, to address the longstanding questions about the underlying mechanism of osmolyte effects, we use femtosecond mid-IR pump-probe spectroscopy with two different IR probes that are the OD stretching mode of HDO and the azido stretching mode of azido-derivatized poly(ethylene glycol) dimethyl ether (PEGDME). Our experimental results show that protecting osmolytes bind strongly with water molecules and dehydrate polymer surface, which results in promoting intramolecular interactions of the polymer. By contrast, urea behaves like water molecules without significantly disrupting water H-bonding network and favors extended and random-coil segments of the polymer chain by directly participating in solvation of the polymer. Our findings highlight the importance of direct interaction between urea and macromolecule, while protecting osmolytes indirectly affect the macromolecule through enhancing the water-osmolyte interaction in a crowded environment, which is the case that is often encountered in real biological systems.

  9. Transport of water molecules through noncylindrical pores in multilayer nanoporous graphene.

    PubMed

    Shahbabaei, Majid; Kim, Daejoong

    2017-08-09

    In this study, molecular dynamics (MD) simulations are used to examine the water transport properties through asymmetric hourglass-shaped pores in multilayer nanoporous graphene with a constant interlayer separation of 6 Å. The properties of the tested asymmetric hourglass-shaped pores [with the models having long cone (l 1 , -P) and short cone (l 2 , +P) entrances] are compared to a symmetric pore model. The study findings indicate that the water occupancy increases across the asymmetric pore (l 1 , -P) compared to (l 2 , +P), because of the length effect. The asymmetric pore, (l 1 , -P), yields higher flux compared to (l 2 , +P) and even the symmetric model, which can be attributed to the increase in the hydrogen bonds. In addition, the single-file water molecules across the narrowest pore diameter inside the (l 2 , +P) pore exhibit higher viscosity compared to those in the (l 1 , -P) pore because of the increase in the water layering effect. Moreover, it is found that the permeability inside the multilayer hourglass-shaped pore depends on the length of the flow path of the water molecules before approaching the layer with the smallest pore diameter. The probability of dipole orientation exhibits wider distribution inside the (l 1 , -P) system compared to (l 2 , +P), implying an enhanced formation of hydrogen bonding of water molecules. This results in the fast flow of water molecules. The MD trajectory shows that the dipole orientation across the single-layer graphene has frequently flipped compared to the dipole orientation across the pores in multilayer graphene, which is maintained during the whole simulation time (although the dipole orientation has flipped for a few picoseconds at the beginning of the simulation). This can be attributed to the energy barrier induced by the individual layer. The diffusion coefficient of water molecules inside the (l 2 , +P) system increases with pressure difference, however, it decreases inside the (l 1 , -P) system because of the increase in the number of collisions. It was found that the velocity in the axial direction (z-direction) has a significant impact on the permeation ability of water molecules across the asymmetric nanopores examined in this study. Finally, the study results suggest that the appropriate design of an asymmetric hourglass-shaped nanopore in multilayer graphene can significantly improve the water permeation rate even compared to a symmetric structure.

  10. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1994-01-01

    The objective of this project is to generate a library of monoclonial antibodies (MAbs) directed against surface molecules of tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, 3-dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues which are not found in conventional monolayer or suspension culture. In brief, MCS combine the relevance or organized tissues with in vitro methodology making the MCS a good model system to study the interactions of mammalian cells, and thereby provide a functional assay for surface adhesion molecules. This project also involves investigations of cell-cell interactions in a gravity-based environment. It will provide an important base of scientific information for future comparative studies on the effects of hypergravity and simulated microgravity environments on cell-cell interactions. This project also has the potential to yield important materials (e.g. cellular products) which may be useful for the diagnosis and/or treatment of certain human diseases. Moreover, this project supports the training of one undergraduate and one graduate student; thus, it will also assist in developing a pool of future scientists with research experience in gravitational biology research.

  11. Observation and Spectroscopy of a Two-Electron Wigner Molecule in Ultra-Clean Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Pecker, Sharon; Kuemmeth, Ferdinand; Secchi, Andrea; Rontani, Massimo; Ralph, Dan; McEuen, Paul; Ilani, Shahal

    2013-03-01

    Coulomb interactions can have a decisive effect on the ground state of electronic systems. The simplest system in which interactions can play an interesting role is that of two electrons on a string. In the presence of strong interactions the two electrons are predicted to form a Wigner molecule, separating to the ends of the string due to their mutual repulsion. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet to date a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultra-clean suspended carbon nanotube to realize this strongly-correlated system in a tunable potential. Using tunneling spectroscopy we measure the excitation spectra of two interacting carriers, electrons or holes. Seven quantum states are identified, characterized by their spin and isospin quantum numbers. These states are seen to fall into two distinctive multiplets according to their exchange symmetries. Interestingly, we find that the splitting between multiplets is quenched by an order of magnitude compared to the non-interacting value. This quenching is shown to be a direct manifestation of the formation of a strongly-interacting Wigner-molecule ground state.

  12. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    PubMed

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  13. A comprehensive study of extended tetrathiafulvalene cruciform molecules for molecular electronics: synthesis and electrical transport measurements.

    PubMed

    Parker, Christian R; Leary, Edmund; Frisenda, Riccardo; Wei, Zhongming; Jennum, Karsten S; Glibstrup, Emil; Abrahamsen, Peter Bæch; Santella, Marco; Christensen, Mikkel A; Della Pia, Eduardo Antonio; Li, Tao; Gonzalez, Maria Teresa; Jiang, Xingbin; Morsing, Thorbjørn J; Rubio-Bollinger, Gabino; Laursen, Bo W; Nørgaard, Kasper; van der Zant, Herre; Agrait, Nicolas; Nielsen, Mogens Brøndsted

    2014-11-26

    Cruciform-like molecules with two orthogonally placed π-conjugated systems have in recent years attracted significant interest for their potential use as molecular wires in molecular electronics. Here we present synthetic protocols for a large selection of cruciform molecules based on oligo(phenyleneethynylene) (OPE) and tetrathiafulvalene (TTF) scaffolds, end-capped with acetyl-protected thiolates as electrode anchoring groups. The molecules were subjected to a comprehensive study of their conducting properties as well as their photophysical and electrochemical properties in solution. The complex nature of the molecules and their possible binding in different configurations in junctions called for different techniques of conductance measurements: (1) conducting-probe atomic force microscopy (CP-AFM) measurements on self-assembled monolayers (SAMs), (2) mechanically controlled break-junction (MCBJ) measurements, and (3) scanning tunneling microscopy break-junction (STM-BJ) measurements. The CP-AFM measurements showed structure-property relationships from SAMs of series of OPE3 and OPE5 cruciform molecules; the conductance of the SAM increased with the number of dithiafulvene (DTF) units (0, 1, 2) along the wire, and it increased when substituting two arylethynyl end groups of the OPE3 backbone with two DTF units. The MCBJ and STM-BJ studies on single molecules both showed that DTFs decreased the junction formation probability, but, in contrast, no significant influence on the single-molecule conductance was observed. We suggest that the origins of the difference between SAM and single-molecule measurements lie in the nature of the molecule-electrode interface as well as in effects arising from molecular packing in the SAMs. This comprehensive study shows that for complex molecules care should be taken when directly comparing single-molecule measurements and measurements of SAMs and solid-state devices thereof.

  14. Metastatic Melanoma Secreted IL-10 Down-Regulates CD1 Molecules on Dendritic Cells in Metastatic Tumor Lesions

    PubMed Central

    Gerlini, Gianni; Tun-Kyi, Adrian; Dudli, Christa; Burg, Günter; Pimpinelli, Nicola; Nestle, Frank O.

    2004-01-01

    CD1 molecules are expressed by antigen-presenting cells such as dendritic cells and mediate primary immune responses to lipids and glycolipids which have been shown to be expressed by various tumors. Glycolipids are expressed by melanoma cells but, despite their immunogenicity, no efficient spontaneous immune responses are elicited. As IL-10 has previously been shown to down-regulate CD1a on dendritic cells and is known to be expressed by various melanoma cell lines, we investigated if melanoma-derived IL-10 could down-regulate CD1 molecule expression on dendritic cells as a possible way to circumvent immune recognition. We found that CD1a, CD1b, CD1c, and CD1d were significantly down-regulated on dendritic cells in metastatic (n = 10) but not in primary melanoma lesions (n = 10). We further detected significantly higher IL-10 protein levels in metastatic than in primary melanomas. Moreover, supernatants from metastatic melanomas were significantly more effective in down-regulating CD1 molecules on dendritic cells than supernatants from primary melanoma cultures. This effect was blocked using a neutralizing IL-10 antibody in a dose dependent manner. Our findings suggest that metastatic but not primary melanomas can down-regulate CD1 molecules on infiltrating dendritic cells by secreting IL-10 which may represent a novel way to escape the immune response directed against the tumor. PMID:15579430

  15. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling.

    PubMed

    Burns, Michael C; Howes, Jennifer E; Sun, Qi; Little, Andrew J; Camper, DeMarco V; Abbott, Jason R; Phan, Jason; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2018-05-01

    K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Task Order Final Report for the Period 20 January 2003 to 19 January 2005 (Northrop Grumman)

    DTIC Science & Technology

    2005-04-01

    34Nonlinear optical characterization of retinal molecules," Laser and Noncoherent Light Ocular Effects: Epidemiology, Prevention, and Treatment III, Bruce E...BIOEFFECTS DIVISION OPTICAL RADIATION BRANCH 2624 LOUIS BAUER DRIVE BROOKS CITY-BASE TX 78235 April2005 Approved for public release, distribution...SPONSORIMONITOR’S ACRONYM(S) Air Force Research Laboratory AFRL/HE Human Effectiveness Directorate, Directed Energy Bioeffects Division Optical Radiation

  17. A New Venue of TNF Targeting

    PubMed Central

    Libert, Claude

    2018-01-01

    The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases. PMID:29751683

  18. A general electrochemical method for label-free screening of protein–small molecule interactions†

    PubMed Central

    Cash, Kevin J.; Ricci, Francesco

    2010-01-01

    Here we report a versatile method by which the interaction between a protein and a small molecule, and the disruption of that interaction by competition with other small molecules, can be monitored electrochemically directly in complex sample matrices. PMID:19826675

  19. Programming of a Mn-coordinated 4-4‧-biphenyl dicarboxylic acid nanosystem on Au(1 1 1) and investigation of the non-covalent binding of C60 molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Feng; Zhu, Na; Komeda, T.

    The fabrication of Mn-based coordination networks on a Au(1 1 1) substrate with 4-4 '-biphenyl dicarboxylic acid (BDA) as the linker molecule was investigated by scanning tunneling microscopy. Intriguing structures of ladder and rectangular-shaped networks were obtained by controlling the ratios of deposited amount of BDA molecules and Mn atoms. These structures are well explained by models in which BDA molecules occupy the perimeter of the rectangles and a pair of two Mn atoms are placed at the lattice points. For the rectangular structure, further two phases of a rectangular and a square networks were identified in which the paired Mn atoms were directing an identical direction and 90° rotated in an alternate manner, respectively. In addition, it was revealed that the open space surrounded by rectangle BDA molecules could capture a dimer of C60 molecules which were deposited on the Mn-based BDA networks.

  20. A molecular-sized tunnel-porous crystal with a ratchet gear structure and its one-way guest-molecule transportation property

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Yasumoto, Tetsuaki; Manabe, Yousuke; Sato, Hiroyasu; Yamano, Akihito; Katagiri, Toshimasa

    2013-01-01

    An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet.An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet. Electronic supplementary information (ESI) available. CCDC reference numbers 837539 and 837540. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30880k

  1. ERp57 interacts with conserved cysteine residues in the MHC class I peptide-binding groove.

    PubMed

    Antoniou, Antony N; Santos, Susana G; Campbell, Elaine C; Lynch, Sarah; Arosa, Fernando A; Powis, Simon J

    2007-05-15

    The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.

  2. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    PubMed

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  3. Rediscovering Chirality - Role of S-Metoprolol in Cardiovascular Disease Management.

    PubMed

    Mohan, Jagdish C; Shah, Siddharth N; Chinchansurkar, Sunny; Dey, Arindam; Jain, Rishi

    2017-06-01

    The process of drug discovery and development today encompass a myriad of paths for bringing a new therapeutic molecule that has minimal adverse effects and of optimal use to the patient. Chirality was proposed in the direction of providing a purer and safer form of drug [Ex- cetrizine and levocetrizine]. Decades have passed since the introduction of this concept and numerous chiral molecules are in existence in therapeutics, yet somehow this concept has been ignored. This review aims to rediscover the ignored facts about chirality, its benefits and clear some common myths considering the example of S-Metoprolol in the management of Hypertension and other cardiovascular diseases. Relevant articles from Pubmed, Embase, Medline and Google Scholar were searched using the terms "Chiral", "Chirality", "Enantiomers", "Isomers", "Isomerism", "Stereo-chemistry", and "S-Metoprolol". Out of 103 articles found 17 articles mentioning in general about the concept of chirality and articles on study of S-metoprolol in various cardiovascular diseases were then reviewed. Many articles mention about the importance of chirality yet the concept has not been highlighted much. Clear benefits with chiral molecules have been documented for various drug molecules few amongst them being anaesthetics, antihypertensives, antidepressants. Benefits of S-metoprolol over racemate are also clear in terms of responder rates, dose of administration and adverse effects profile in various cardiovascular diseases. Chirality is a good way forward in providing a new drug molecule which is safe with lesser pharmacokinetic and pharmacodynamics variability, lesser side effects and more potent action. S-metoprolol is chirally pure form of racemate metoprolol and has lesser side effects, is safer in patients of COPD and Diabetes who also have hypertension and comparable responder rates at half the doses when compared to racemate.

  4. Substituent effects on the electronic characteristics of pentacene derivatives for organic electronic devices: dioxolane-substituted pentacene derivatives with triisopropylsilylethynyl functional groups.

    PubMed

    Griffith, Olga Lobanova; Anthony, John E; Jones, Adolphus G; Shu, Ying; Lichtenberger, Dennis L

    2012-08-29

    The intramolecular electronic structures and intermolecular electronic interactions of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene), 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]-pentacene (TP-5 pentacene), and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5 pentacene) have been investigated by the combination of gas-phase and solid-phase photoelectron spectroscopy measurements. Further insight has been provided by electrochemical measurements in solution, and the principles that emerge are supported by electronic structure calculations. The measurements show that the energies of electron transfer such as the reorganization energies, ionization energies, charge-injection barriers, polarization energies, and HOMO-LUMO energy gaps are strongly dependent on the particular functionalization of the pentacene core. The ionization energy trends as a function of the substitution observed for molecules in the gas phase are not reproduced in measurements of the molecules in the condensed phase due to polarization effects in the solid. The electronic behavior of these materials is impacted less by the direct substituent electronic effects on the individual molecules than by the indirect consequences of substituent effects on the intermolecular interactions. The ionization energies as a function of film thickness give information on the relative electrical conductivity of the films, and all three molecules show different material behavior. The stronger intermolecular interactions in TP-5 pentacene films lead to better charge transfer properties versus those in TIPS pentacene films, and EtTP-5 pentacene films have very weak intermolecular interactions and the poorest charge transfer properties of these molecules.

  5. Label-free detection of protein molecules secreted from an organ-on-a-chip model for drug toxicity assays

    NASA Astrophysics Data System (ADS)

    Morales, Andres W.; Zhang, Yu S.; Aleman, Julio; Alerasool, Parissa; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2016-03-01

    Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity assays using human-based models that are complementary to traditional animal models before starting expensive clinical trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, but the amount of the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been demonstrated.

  6. Single molecule sequencing of the M13 virus genome without amplification

    PubMed Central

    Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X.; Yan, Qin; Deem, Michael W.; He, Jiankui

    2017-01-01

    Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias. PMID:29253901

  7. Single molecule sequencing of the M13 virus genome without amplification.

    PubMed

    Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X; Yan, Qin; Deem, Michael W; He, Jiankui

    2017-01-01

    Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias.

  8. Spontaneous emission near the edge of a photonic band gap

    NASA Astrophysics Data System (ADS)

    John, Sajeev; Quang, Tran

    1994-08-01

    The spectral and dynamical features of spontaneous emission from two and three-level atoms in which one transition frequency lay near the edge of a photonic band gap (PBG) were derived. These features included temporal oscillations, fractionalized steady-state atomic population on the excited state, spectral splitting and subnatural bandwidth. The effect of N-1 unexcited atoms were also taken into account. The direct consequences of photon localization as embodied in the photon-atom bound state were observed. One feasible experimental accomplishment of these effects may ensue from laser-cooled atoms in the void regions of a PBG medium. Another option is the application of an organic impurity molecule such as pentacene. Such molecules were known to show extremely narrow linewidths when placed in fitting solid hosts.

  9. Double photoionization of atoms

    NASA Astrophysics Data System (ADS)

    Wiedenhoeft, Marco

    2003-10-01

    Double photoionization studies of atoms and molecules are new state-of-the-art studies providing a deeper knowledge of multi-electron excitations. This type of work advances the understanding of many-body problems. Double photoionization of atoms is of great interest to learn about electron-electron correlation and relaxation effects in atoms and molecules. In order to study double photoionization processes, a new electron-electron coincidence apparatus was built to carry out the measurements. I will present the apparatus I built as well as the results of the measurement of the triply-differential-cross-section (TDCS) for the predicted interference and Post-Collision-Interaction (PCI) effects in the Xenon N5O2,3 O2,3 Auger decay after 4d5/2 photoionization. Furthermore I present measurements for direct double photoionization of Helium at various photon energies.

  10. Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy

    PubMed Central

    He, Xiaochuan; Zhu, Gangbei; Yang, Jianbing; Chang, Hao; Meng, Qingyu; Zhao, Hongwu; Zhou, Xin; Yue, Shuai; Wang, Zhuan; Shi, Jinan; Gu, Lin; Yan, Donghang; Weng, Yuxiang

    2015-01-01

    Confirmation of direct photogeneration of intrinsic delocalized free carriers in small-molecule organic semiconductors has been a long-sought but unsolved issue, which is of fundamental significance to its application in photo-electric devices. Although the excitonic description of photoexcitation in these materials has been widely accepted, this concept is challenged by recently reported phenomena. Here we report observation of direct delocalized free carrier generation upon interband photoexcitation in highly crystalline zinc phthalocyanine films prepared by the weak epitaxy growth method using ultrafast spectroscopy. Transient absorption spectra spanning the visible to mid-infrared region revealed the existence of short-lived free electrons and holes with a diffusion length estimated to cross at least 11 molecules along the π−π stacking direction that subsequently localize to form charge transfer excitons. The interband transition was evidenced by ultraviolet-visible absorption, photoluminescence and electroluminescence spectroscopy. Our results suggest that delocalized free carriers photogeneration can also be achieved in organic semiconductors when the molecules are packed properly. PMID:26611323

  11. Infrared radiation and inversion population of CO2 laser levels in Venusian and Martian atmospheres

    NASA Technical Reports Server (NTRS)

    Gordiyets, B. F.; Panchenko, V. Y.

    1983-01-01

    Formation mechanisms of nonequilibrium 10 micron CO2 molecule radiation and the possible existence of a natural laser effect in the upper atmospheres of Venus and Mars are theoretically studied. An analysis is made of the excitation process of CO2 molecule vibrational-band levels (with natural isotropic content) induced by direct solar radiation in bands 10.6, 9.4, 4.3, 2.7 and 2.0 microns. The model of partial vibrational-band temperatures was used in the case. The problem of IR radiation transfer in vibrational-rotational bands was solved in the radiation escape approximation.

  12. Need of the regulation for profit percentage investment by pharmaceutical companies in new drug discovery research from the various local traditional medicinal and plant systems.

    PubMed

    Bhattarai, M D

    2012-01-01

    In the modern medical systems the active pharmacological ingredients, effective against any disease is identified, purified and studied for its various effects and side-effects whereas it is not so in the traditional systems. Therefore, it is not surprising that safety concerns have often been raised about the traditional medical products. The major issue now, is to make appropriate situation with basic supports to bring all the available experts and resources together for the identification, purification, and study of efficacy and safety of the active molecules of the popular traditional medicines. Government and public sectors in the countries with such rich traditional medicinal and plant systems have related experts, but they also have much hurdle regarding recruitment and retention of expert human resources, getting fund, purchase and maintenance of equipment, bureaucratic formalities and others. The pharmaceutical companies have basic laboratories with related infrastructure and human resources as well as interest about bringing the drug molecules. To bridge the gap, there is a need of the regulation which will make the pharmaceutical companies to invest certain percentage of their profit in the field of research to identify new drug molecules and to study their effects. It is just not an issue of discovering the active molecule but also of creating the concept and culture of research, purity and quality of drugs, safety of people, and future direction of the human society.

  13. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  14. Butter feeding enhances TNF-alpha production from macrophages and lymphocyte adherence in murine small intestinal microvessels.

    PubMed

    Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi

    2007-11-01

    Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.

  15. Effect of novel negative allosteric modulators of neuronal nicotinic receptors on cells expressing native and recombinant nicotinic receptors: implications for drug discovery.

    PubMed

    González-Cestari, Tatiana F; Henderson, Brandon J; Pavlovicz, Ryan E; McKay, Susan B; El-Hajj, Raed A; Pulipaka, Aravinda B; Orac, Crina M; Reed, Damon D; Boyd, R Thomas; Zhu, Michael X; Li, Chenglong; Bergmeier, Stephen C; McKay, Dennis B

    2009-02-01

    Allosteric modulation of nAChRs is considered to be one of the most promising approaches for drug design targeting nicotinic acetylcholine receptors (nAChRs). We have reported previously on the pharmacological activity of several compounds that seem to act noncompetitively to inhibit the activation of alpha3beta4(*) nAChRs. In this study, the effects of 51 structurally similar molecules on native and recombinant alpha3beta4 nAChRs are characterized. These 51 molecules inhibited adrenal neurosecretion activated via stimulation of native alpha3beta4(*) nAChR, with IC(50) values ranging from 0.4 to 13.0 microM. Using cells expressing recombinant alpha3beta4 nAChRs, these molecules inhibited calcium accumulation (a more direct assay to establish nAChR activity), with IC(50) values ranging from 0.7 to 38.2 microM. Radiolabeled nAChR binding studies to orthosteric sites showed no inhibitory activity on either native or recombinant nAChRs. Correlation analyses of the data from both functional assays suggested additional, non-nAChR activity of the molecules. To test this hypothesis, the effects of the drugs on neurosecretion stimulated through non-nAChR mechanisms were investigated; inhibitory effects ranged from no inhibition to 95% inhibition at concentrations of 10 microM. Correlation analyses of the functional data confirmed this hypothesis. Several of the molecules (24/51) increased agonist binding to native nAChRs, supporting allosteric interactions with nAChRs. Computational modeling and blind docking identified a binding site for our negative allosteric modulators near the orthosteric binding site of the receptor. In summary, this study identified several molecules for potential development as negative allosteric modulators and documented the importance of multiple screening assays for nAChR drug discovery.

  16. Effect of Novel Negative Allosteric Modulators of Neuronal Nicotinic Receptors on Cells Expressing Native and Recombinant Nicotinic Receptors: Implications for Drug Discovery

    PubMed Central

    González-Cestari, Tatiana F.; Henderson, Brandon J.; Pavlovicz, Ryan E.; McKay, Susan B.; El-Hajj, Raed A.; Pulipaka, Aravinda B.; Orac, Crina M.; Reed, Damon D.; Boyd, R. Thomas; Zhu, Michael X.; Li, Chenglong; Bergmeier, Stephen C.; McKay, Dennis B.

    2009-01-01

    Allosteric modulation of nAChRs is considered to be one of the most promising approaches for drug design targeting nicotinic acetylcholine receptors (nAChRs). We have reported previously on the pharmacological activity of several compounds that seem to act noncompetitively to inhibit the activation of α3β4* nAChRs. In this study, the effects of 51 structurally similar molecules on native and recombinant α3β4 nAChRs are characterized. These 51 molecules inhibited adrenal neurosecretion activated via stimulation of native α3β4* nAChR, with IC50 values ranging from 0.4 to 13.0 μM. Using cells expressing recombinant α3β4 nAChRs, these molecules inhibited calcium accumulation (a more direct assay to establish nAChR activity), with IC50 values ranging from 0.7 to 38.2 μM. Radiolabeled nAChR binding studies to orthosteric sites showed no inhibitory activity on either native or recombinant nAChRs. Correlation analyses of the data from both functional assays suggested additional, non-nAChR activity of the molecules. To test this hypothesis, the effects of the drugs on neurosecretion stimulated through non-nAChR mechanisms were investigated; inhibitory effects ranged from no inhibition to 95% inhibition at concentrations of 10 μM. Correlation analyses of the functional data confirmed this hypothesis. Several of the molecules (24/51) increased agonist binding to native nAChRs, supporting allosteric interactions with nAChRs. Computational modeling and blind docking identified a binding site for our negative allosteric modulators near the orthosteric binding site of the receptor. In summary, this study identified several molecules for potential development as negative allosteric modulators and documented the importance of multiple screening assays for nAChR drug discovery. PMID:18984653

  17. Linearisation of λDNA molecules by instantaneous variation of the trapping electrode voltage inside a micro-channel

    NASA Astrophysics Data System (ADS)

    Hanasaki, Itsuo; Yukimoto, Naoya; Uehara, Satoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2015-04-01

    Because long DNA molecules usually exist in random coil states due to the entropic effect, linearisation is required for devices equipped with nanopores where electrical sequencing is necessary during single-file translocation. We present a novel technique for linearising DNA molecules in a micro-channel. In our device, electrodes are embedded in the bottom surface of the channel. The application of a voltage induces the trapping of λDNA molecules on the positive electrode. An instantaneous voltage drop is used to put the λDNA molecules in a partly released state and the hydrodynamic force of the solution induces linearisation. Phenomena were directly observed using an optical microscopy system equipped with a high-speed camera and the linearisation principle was explored in detail. Furthermore, we estimate the tensile characteristics produced by the flow of the solution through a numerical model of a tethered polymer subject to a Poiseuille flow. The mean tensile force is in the range of 0.1-1 pN. This is sufficiently smaller than the structural transition point of λDNA but counterbalances the entropic elasticity that causes the random coil shape of λDNA molecules in solution. We show the important role of thermal fluctuation in the manipulation of molecules in solution and clarify the tensile conditions required for DNA linearisation using a combination of solution flow and voltage variation in a microchannel.

  18. Advances in the treatment of explicit water molecules in docking and binding free energy calculations.

    PubMed

    Hu, Xiao; Maffucci, Irene; Contini, Alessandro

    2018-05-13

    The inclusion of direct effects mediated by water during the ligand-receptor recognition is a hot-topic of modern computational chemistry applied to drug discovery and development. Docking or virtual screening with explicit hydration is still debatable, despite the successful cases that have been presented in the last years. Indeed, how to select the water molecules that will be included in the docking process or how the included waters should be treated remain open questions. In this review, we will discuss some of the most recent methods that can be used in computational drug discovery and drug development when the effect of a single water, or of a small network of interacting waters, needs to be explicitly considered. Here, we analyse software to aid the selection, or to predict the position, of water molecules that are going to be explicitly considered in later docking studies. We also present software and protocols able to efficiently treat flexible water molecules during docking, including examples of applications. Finally, we discuss methods based on molecular dynamics simulations that can be used to integrate docking studies or to reliably and efficiently compute binding energies of ligands in presence of interfacial or bridging water molecules. Software applications aiding the design of new drugs that exploit water molecules, either as displaceable residues or as bridges to the receptor, are constantly being developed. Although further validation is needed, workflows that explicitly consider water will probably become a standard for computational drug discovery soon. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  20. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    PubMed

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  1. Development of universal antidotes to control aptamer activity

    PubMed Central

    Oney, Sabah; Lam, Ruby T S; Bompiani, Kristin M; Blake, Charlene M; Quick, George; Heidel, Jeremy D; Liu, Joanna Yi-Ching; Mack, Brendan C; Davis, Mark E; Leong, Kam W; Sullenger, Bruce A

    2010-01-01

    With an ever increasing number of people taking numerous medications, the need to safely administer drugs and limit unintended side effects has never been greater. Antidote control remains the most direct means to counteract acute side effects of drugs, but, unfortunately, it has been challenging and cost prohibitive to generate antidotes for most therapeutic agents. Here we describe the development of a set of antidote molecules that are capable of counteracting the effects of an entire class of therapeutic agents based upon aptamers. These universal antidotes exploit the fact that, when systemically administered, aptamers are the only free extracellular oligonucleotides found in circulation. We show that protein-and polymer-based molecules that capture oligonucleotides can reverse the activity of several aptamers in vitro and counteract aptamer activity in vivo. The availability of universal antidotes to control the activity of any aptamer suggests that aptamers may be a particularly safe class of therapeutics. PMID:19801990

  2. The kinetic energy operator for distance-dependent effective nuclear masses: Derivation for a triatomic molecule.

    PubMed

    Khoma, Mykhaylo; Jaquet, Ralph

    2017-09-21

    The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .

  3. Biological effects of direct and indirect manipulation of the fascial system. Narrative review.

    PubMed

    Parravicini, Giovanni; Bergna, Andrea

    2017-04-01

    Osteopathic Manipulative Treatment (OMT) is effective in improving function, movement and restoring pain conditions. Despite clinical results, the mechanisms of how OMT achieves its' effects remain unclear. The fascial system is described as a tensional network that envelops the human body. Direct or indirect manipulations of the fascial system are a distinctive part of OMT. This review describes the biological effects of direct and indirect manipulation of the fascial system. Literature search was performed in February 2016 in the electronic databases: Cochrane, Medline, Scopus, Ostmed, Pedro and authors' publications relative to Fascia Research Congress Website. Manipulation of the fascial system seems to interfere with some cellular processes providing various pro-inflammatory and anti-inflammatory cells and molecules. Despite growing research in the osteopathic field, biological effects of direct or indirect manipulation of the fascial system are not conclusive. To elevate manual medicine as a primary intervention in clinical settings, it's necessary to clarify how OMT modalities work in order to underpin their clinical efficacies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn; Duy, Nguyen Van; Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxidemore » (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.« less

  5. A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control.

    PubMed

    Johnson, Keith C; Clemmens, Emilie; Mahmoud, Hani; Kirkpatrick, Robin; Vizcarra, Juan C; Thomas, Wendy E

    2017-01-01

    In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated separately. Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. Here we describe the instrument and its ability to apply 2-260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli ( E. coli ) bacteria, and see similar results to previous studies. This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.

  6. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    NASA Astrophysics Data System (ADS)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  7. MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals

    PubMed Central

    Fujimura, Yoshinori; Miura, Daisuke

    2014-01-01

    Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues regarding the technical limitations of MSI are as of yet still unresolved. In this review, we describe the capabilities of the latest matrix-assisted laser desorption/ionization (MALDI)-MSI technology for visualizing in situ metabolism of endogenous metabolites or dietary phytochemicals (food factors), and also discuss the technical problems and new challenges, including MALDI matrix selection and metabolite identification, that need to be addressed for effective and widespread application of MSI in the diverse fields of biological, biomedical, and nutraceutical (food functionality) research. PMID:24957029

  8. Conformational selection in protein binding and function

    PubMed Central

    Weikl, Thomas R; Paul, Fabian

    2014-01-01

    Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction. PMID:25155241

  9. Scanning tunneling microscopy studies of pulse deposition of dinuclear organometallic molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Guo, Song; Alex Kandel, S.

    2008-01-01

    Ultrahigh-vacuum scanning tunneling microscopy (STM) was used to study trans-[Cl(dppe)2Ru(CC)6Ru(dppe)2Cl] [abbreviated as Ru2, diphenylphosphinoethane (dppe)] on Au(111). This large organometallic molecule was pulse deposited onto the Au(111) surface under ultrahigh-vacuum (UHV) conditions. UHV STM studies on the prepared sample were carried out at room temperature and 77K in order to probe molecular adsorption and to characterize the surface produced by the pulse deposition process. Isolated Ru2 molecules were successfully imaged by STM at room temperature; however, STM images were degraded by mobile toluene solvent molecules that remain on the surface after the deposition. Cooling the sample to 77K allows the solvent molecules to be observed directly using STM, and under these conditions, toluene forms organized striped domains with regular domain boundaries and a lattice characterized by 5.3 and 2.7Å intermolecular distances. When methylene chloride is used as the solvent, it forms analogous domains on the surface at 77K. Mild annealing under vacuum causes most toluene molecules to desorb from the surface; however, this annealing process may lead to thermal degradation of Ru2 molecules. Although pulse deposition is an effective way to deposit molecules on surfaces, the presence of solvent on the surface after pulse deposition is unavoidable without thermal annealing, and this annealing may cause undesired chemical changes in the adsorbates under study. Preparation of samples using pulse deposition must take into account the characteristics of sample molecules, solvent, and surfaces.

  10. Allogeneic disparities in immunoglobulin-like transcript 5 induce potent antibody responses in hematopoietic stem cell transplant recipients.

    PubMed

    Pfistershammer, Katharina; Lawitschka, Anita; Klauser, Christoph; Leitner, Judith; Weigl, Roman; Heemskerk, Mirjam H M; Pickl, Winfried F; Majdic, Otto; Böhmig, Georg A; Fischer, Gottfried F; Greinix, Hildegard T; Steinberger, Peter

    2009-09-10

    In hematopoietic stem cell transplant (HSCT) recipients, the recognition of polymorphic antigens by the donor-derived immune system is an important mechanism underlying both graft-versus-host disease and graft-versus-leukemia (GVL) effect. Here we show that a subset of HSCT recipients (13.9%, n = 108) have antibodies directed to surface molecules of dendritic cells. We have used one such serum in conjunction with retroviral expression cloning to identify the highly polymorphic surface molecule immunoglobulin-like transcript 5 (ILT5) as one of the targets of dendritic cell-reactive antibodies. ILT5 reactive antibodies were found in 5.4% of HSCT patients but not in solid organ transplantation recipients, patients with collagen diseases, multiparous women, or polytransfused or healthy persons. We show that ILT5-specific antibodies can mediate killing of ILT5-bearing cells and furthermore demonstrate ILT5 expression in some leukemic cells, indicating that it might be a target for GVL effects. Thus, our results represent the first description of potent allogeneic antibody responses to a non-major histocompatibility complex cell surface molecule in hematopoietic stem cell transplanted patients and warrant further studies to elucidate the role of antibodies to polymorphic cell surface molecules in GVL and graft-versus-host responses.

  11. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2016-02-01

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  12. Molecular charge distribution and dispersion of electronic states in the contact layer between pentacene and Cu(119) and beyond

    NASA Astrophysics Data System (ADS)

    Annese, E.; Fujii, J.; Baldacchini, C.; Zhou, B.; Viol, C. E.; Vobornik, I.; Betti, M. G.; Rossi, G.

    2008-05-01

    The interaction of pentacene molecules in contact with the Cu(119) stepped surface has been directly imaged by scanning tunneling microscopy and analyzed by angle resolved photoemission spectroscopy. Interacting molecules, which are in contact with copper, generate dispersive electronic states associated with a perturbed electron charge density distribution of the molecular orbitals. In contrast, the electron charge density of molecules of the pentacene on top of the first layer, which is not in direct contact with the Cu surface, shows an intramolecular structure very similar to that of the free molecule. Our results indicate that the delocalization of the molecular states in the pentacene/Cu system is confined to the very first molecular layer at the interface.

  13. Optical Modification of a Single Impurity Molecule in a Solid

    DTIC Science & Technology

    1991-10-17

    have led to direct observations of the lifetime-limited homogeneous Iinewidth of a single pentacene molecule as well as the surprising observation of...advances in the optical detection and spectroscopy of single impurity centers in solids. For the system composed of pentacene impurity molecules in the...limited homogcncous linewidth of a single pentacene molecule as well as the surprising observation of spontaneous spectral diffusion in a crystal

  14. Controlling direct contact force for wet adhesion with different wedged film stabilities

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei

    2018-04-01

    In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.

  15. Modern Possibilities for Calculating Some Properties of Molecules and Crystals from the Experimental Electron Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stash, A.I.; Tsirelson, V.G.

    2005-03-01

    Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes itmore » possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.« less

  16. Perfluoropentacene adsorption on Cu(110)

    NASA Astrophysics Data System (ADS)

    Gall, J.; Zhang, L.; Fu, X.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The adsorption of perfluoropentacene (PFP) on the Cu(110) surface has been investigated using reflectance difference spectroscopy (RDS), low-energy electron diffraction, and low-temperature scanning tunneling microscopy. The PFP molecules within the first monolayer align their long molecular axis exclusively oriented along the [001] azimuthal direction of the Cu substrate. In comparison with the adsorption behavior of pentacene on the same surface, a strong effect of the fluorination regarding the molecular orientation and the intermolecular and molecule-substrate interactions was identified. Furthermore, a two-dimensional gas-solid phase transition accompanied by a reversible azimuthal rotation of the PFP molecules was observed at the beginning of the second monolayer growth. The change of the optical anisotropy associated with this reorientation was used to explore the two-dimensional (2D) condensation as a function of coverage and temperature by RDS, and the 2D heat of condensation in the PFP bilayer on Cu(110) was determined to be 105 meV.

  17. Magnetic blocking in a linear iron(I) complex.

    PubMed

    Zadrozny, Joseph M; Xiao, Dianne J; Atanasov, Mihail; Long, Gary J; Grandjean, Fernande; Neese, Frank; Long, Jeffrey R

    2013-07-01

    Single-molecule magnets that contain one spin centre may represent the smallest possible unit for spin-based computational devices. Such applications, however, require the realization of molecules with a substantial energy barrier for spin inversion, achieved through a large axial magnetic anisotropy. Recently, significant progress has been made in this regard by using lanthanide centres such as terbium(III) and dysprosium(III), whose anisotropy can lead to extremely high relaxation barriers. We contend that similar effects should be achievable with transition metals by maintaining a low coordination number to restrict the magnitude of the d-orbital ligand-field splitting energy (which tends to hinder the development of large anisotropies). Herein we report the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2](-), for which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero applied direct-current field. This S =  complex exhibits an effective spin-reversal barrier of Ueff = 226(4) cm(-1), the largest yet observed for a single-molecule magnet based on a transition metal, and displays magnetic blocking below 4.5 K.

  18. Momentum-resolved radio-frequency spectroscopy of a spin-orbit-coupled atomic Fermi gas near a Feshbach resonance in harmonic traps

    NASA Astrophysics Data System (ADS)

    Peng, Shi-Guo; Liu, Xia-Ji; Hu, Hui; Jiang, Kaijun

    2012-12-01

    We theoretically investigate the momentum-resolved radio-frequency spectroscopy of a harmonically trapped atomic Fermi gas near a Feshbach resonance in the presence of equal Rashba and Dresselhaus spin-orbit coupling. The system is qualitatively modeled as an ideal gas mixture of atoms and molecules, in which the properties of molecules, such as the wave function, binding energy, and effective mass, are determined from the two-particle solution of two interacting atoms. We calculate separately the radio-frequency response from atoms and molecules at finite temperatures by using the standard Fermi golden rule and take into account the effect of harmonic traps within local density approximation. The total radio-frequency spectroscopy is discussed as functions of temperature and spin-orbit coupling strength. Our results give a qualitative picture of radio-frequency spectroscopy of a resonantly interacting spin-orbit-coupled Fermi gas and can be directly tested in atomic Fermi gases of 40K atoms at Shanxi University and 6Li atoms at the Massachusetts Institute of Technology.

  19. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    PubMed

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-28

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  20. Formation of ions and radicals from icy grains in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Gerth, Christopher; Hendricks, Charles

    1991-01-01

    Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets.

  1. Directed Chemical Evolution with an Outsized Genetic Code

    PubMed Central

    Krusemark, Casey J.; Tilmans, Nicolas P.; Brown, Patrick O.; Harbury, Pehr B.

    2016-01-01

    The first demonstration that macromolecules could be evolved in a test tube was reported twenty-five years ago. That breakthrough meant that billions of years of chance discovery and refinement could be compressed into a few weeks, and provided a powerful tool that now dominates all aspects of protein engineering. A challenge has been to extend this scientific advance into synthetic chemical space: to enable the directed evolution of abiotic molecules. The problem has been tackled in many ways. These include expanding the natural genetic code to include unnatural amino acids, engineering polyketide and polypeptide synthases to produce novel products, and tagging combinatorial chemistry libraries with DNA. Importantly, there is still no small-molecule analog of directed protein evolution, i.e. a substantiated approach for optimizing complex (≥ 10^9 diversity) populations of synthetic small molecules over successive generations. We present a key advance towards this goal: a tool for genetically-programmed synthesis of small-molecule libraries from large chemical alphabets. The approach accommodates alphabets that are one to two orders of magnitude larger than any in Nature, and facilitates evolution within the chemical spaces they create. This is critical for small molecules, which are built up from numerous and highly varied chemical fragments. We report a proof-of-concept chemical evolution experiment utilizing an outsized genetic code, and demonstrate that fitness traits can be passed from an initial small-molecule population through to the great-grandchildren of that population. The results establish the practical feasibility of engineering synthetic small molecules through accelerated evolution. PMID:27508294

  2. Non-covalent interactions of a drug molecule encapsulated in a hybrid silica gel.

    PubMed

    Paul, Geo; Steuernagel, Stefan; Koller, Hubert

    2007-12-28

    The drug molecule Propranolol has been encapsulated by a sol-gel process in an organic-inorganic hybrid matrix by in-situ self-assembly; the 2D HETCOR solid state NMR spectroscopy provides direct proof of the intimate spatial relationship between the host matrix and guest drug molecules.

  3. Chemistry at molecular junctions: Rotation and dissociation of O2 on the Ag(110) surface induced by a scanning tunneling microscope.

    PubMed

    Roy, Sharani; Mujica, Vladimiro; Ratner, Mark A

    2013-08-21

    The scanning tunneling microscope (STM) is a fascinating tool used to perform chemical processes at the single-molecule level, including bond formation, bond breaking, and even chemical reactions. Hahn and Ho [J. Chem. Phys. 123, 214702 (2005)] performed controlled rotations and dissociations of single O2 molecules chemisorbed on the Ag(110) surface at precise bias voltages using STM. These threshold voltages were dependent on the direction of the bias voltage and the initial orientation of the chemisorbed molecule. They also observed an interesting voltage-direction-dependent and orientation-dependent pathway selectivity suggestive of mode-selective chemistry at molecular junctions, such that in one case the molecule underwent direct dissociation, whereas in the other case it underwent rotation-mediated dissociation. We present a detailed, first-principles-based theoretical study to investigate the mechanism of the tunneling-induced O2 dynamics, including the origin of the observed threshold voltages, the pathway dependence, and the rate of O2 dissociation. Results show a direct correspondence between the observed threshold voltage for a process and the activation energy for that process. The pathway selectivity arises from a competition between the voltage-modified barrier heights for rotation and dissociation, and the coupling strength of the tunneling electrons to the rotational and vibrational modes of the adsorbed molecule. Finally, we explore the "dipole" and "resonance" mechanisms of inelastic electron tunneling to elucidate the energy transfer between the tunneling electrons and chemisorbed O2.

  4. Cell biochemistry studied by single-molecule imaging.

    PubMed

    Mashanov, G I; Nenasheva, T A; Peckham, M; Molloy, J E

    2006-11-01

    Over the last decade, there have been remarkable developments in live-cell imaging. We can now readily observe individual protein molecules within living cells and this should contribute to a systems level understanding of biological pathways. Direct observation of single fluorophores enables several types of molecular information to be gathered. Temporal and spatial trajectories enable diffusion constants and binding kinetics to be deduced, while analyses of fluorescence lifetime, intensity, polarization or spectra give chemical and conformational information about molecules in their cellular context. By recording the spatial trajectories of pairs of interacting molecules, formation of larger molecular complexes can be studied. In the future, multicolour and multiparameter imaging of single molecules in live cells will be a powerful analytical tool for systems biology. Here, we discuss measurements of single-molecule mobility and residency at the plasma membrane of live cells. Analysis of diffusional paths at the plasma membrane gives information about its physical properties and measurement of temporal trajectories enables rates of binding and dissociation to be derived. Meanwhile, close scrutiny of individual fluorophore trajectories enables ideas about molecular dimerization and oligomerization related to function to be tested directly.

  5. Probing Buffer-Gas Cooled Molecules with Direct Frequency Comb Spectroscopy in the Mid-Infrrared

    NASA Astrophysics Data System (ADS)

    Spaun, Ben; Changala, Bryan; Bjork, Bryce J.; Heckl, Oliver H.; Patterson, David; Doyle, John M.; Ye, Jun

    2015-06-01

    We present the first demonstration of cavity-enhanced direct frequency comb spectroscopy on buffer-gas cooled molecules.By coupling a mid-infrared frequency comb to a high-finesse cavity surrounding a helium buffer-gas chamber, we can gather rotationally resolved absorption spectra with high sensitivity over a broad wavelength region. The measured ˜10 K rotational and translational temperatures of buffer-gas cooled molecules drastically simplify the observed spectra, compared to those of room temperature molecules, and allow for high spectral resolution limited only by Doppler broadening (10-100 MHz). Our system allows for the extension of high-resolution spectroscopy to larger molecules, enabling detailed analysis of molecular structure and dynamics, while taking full advantage of the powerful optical properties of frequency combs. A. Foltynowicz et al. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Applied Physics B, vol. 110, pp. 163-175, 2013. {D. Patterson and J. M. Doyle. Cooling molecules in a cell for FTMW spectroscopy. Molecular Physics 110, 1757-1766, 2012

  6. Controlling drug efficiency by encapsulation into carbon nanotubes: A theoretical study of the antitumor Cisplatin and the anti-HIV TIBO molecules

    NASA Astrophysics Data System (ADS)

    Bessrour, R.; Belmiloud, Y.; Hosni, Z.; Tangour, B.

    2012-06-01

    From the beginning of last century, Paul Ehrlich, a specialist in the immune system and the Nobel Prize (1908) had raised the possibility of "magic bullets" can directly address, in an organism, drugs in a particular area of the body, sparing all other parts of side effects. Carbon nanotubes (CNTs) have particular property to cross cell membranes easily. In an effort to optimize the use of CNT as drug nanocarriers, we divided our study into two parts. In the first, our concern was to find the minimum diameter of a single wall CNT can encapsulate an anticancer drug that iscisplatin without altering its geometry in order conserve its therapeutic power. Behavior of one and two Cisplatin(Cp) molecules confined in capped and opened single-walled carbon nanotubes (CNTs) is studied by means of ab-initio calculations. Single molecule binding energies clearly exhibit encapsulation dependence on tube diameters that range from 6.26 Å to 12.04 Å. A weak stabilization energy of the Cp@(11,0) equal to -70 kcal.mol-1 has been obtained corresponding to a CNT's diameter of 8.5Å. We noticed that Cisplatin molecule changes shape when encapsulated into CNTs' whose diameters are less than 7.6 Å. In the presence of a second Cisplatin molecule in the (10,0) CNT, preferred position stays parallel to CNT's axis leading to a linear density of roughly 1588 molecules/μm of CNT's length corresponding to a linear density of 7.9 10-19 g/μm. The 195Pt chemical shift tensors are calculated using GIAO method. NMR calculations reveal that Platinum chemical shift is sensitive to CNT's diameter and is linearly correlated to confinement energy. 195Pt chemical shift measurement may be a direct method to access to the diameter of the encapsulating CNT's and to control the amount of drug molecule transported by this CNT. In the second part, the opposite has been sought is to say how the use of nanotubes with different diameters can control the change in a geometry of an anti-HIV drug that is TIBO molecule to bypass the mutation of the virus which wiped out its therapeutic effect. This work deals with the butterfly conformation control of the anti-HIV TIBO molecule confined into carbon nanotubes (CNT). This theoretical study concerns the variation of some pertinent conformation descriptors such as butterfly angle, wingspan, volume, dipole moment, solvation energy and confinement energy versus carbon nanotube diameters. Obtained results show that it is possible to describe the configurations of actual drugs as 8-Cl or 9-Cl TIBO as the parent molecule TIBO encapsulated in an adequate CNT. Our approach indicates that drug confinement inside CNTs may be a promising way to use a same drug in order to fellow HIV virus mutations.

  7. Effect of cleaning procedures on the electrical properties of carbon nanotube transistors—A statistical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tittmann-Otto, J., E-mail: jana.tittmann-otto@zfm.tu-chemnitz.de; Hermann, S.; Hartmann, M.

    The interface between a carbon nanotube (CNT) and its environment can dramatically affect the electrical properties of CNT-based field-effect transistors (FETs). For such devices, the channel environment plays a significant role inducing doping or charge traps giving rise to hysteresis in the transistor characteristics. Thereby the fabrication process strongly determines the extent of those effects and the final device performance. In CNT-based devices obtained from dispersions, a proper individualization of the nanotubes is mandatory. This is generally realized by an ultrasonic treatment combined with surfactant molecules, which enwrap nanotubes forming micelle aggregates. To minimize impact on device performance, it ismore » of vital importance to consider post-deposition treatments for removal of surfactant molecules and other impurities. In this context, we investigated the effect of several wet chemical cleaning and thermal post treatments on the electrical characteristics as well as physical properties of more than 600 devices fabricated only by wafer-level compatible technologies. We observed that nitric acid and water treatments improved the maximum-current of devices. Additionally, we found that the ethanol treatment successfully lowered hysteresis in the transfer characteristics. The effect of the chemical cleaning procedures was found to be more significant on CNT-metal contacts than for the FET channels. Moreover, we investigated the effect of an additional thermal cleaning step under vacuum after the chemical cleaning, which had an exceptional impact on the hysteresis behavior including hysteresis reversal. The presence of surfactant molecules on CNT was evidenced by X-ray photoelectron and Raman spectroscopies. By identifying the role of surfactant molecules and assessing the enhancement of device performance as a direct consequence of several cleaning procedures, these results are important for the development of CNT-based electronics at the wafer-level.« less

  8. Effect of cleaning procedures on the electrical properties of carbon nanotube transistors—A statistical study

    NASA Astrophysics Data System (ADS)

    Tittmann-Otto, J.; Hermann, S.; Kalbacova, J.; Hartmann, M.; Toader, M.; Rodriguez, R. D.; Schulz, S. E.; Zahn, D. R. T.; Gessner, T.

    2016-03-01

    The interface between a carbon nanotube (CNT) and its environment can dramatically affect the electrical properties of CNT-based field-effect transistors (FETs). For such devices, the channel environment plays a significant role inducing doping or charge traps giving rise to hysteresis in the transistor characteristics. Thereby the fabrication process strongly determines the extent of those effects and the final device performance. In CNT-based devices obtained from dispersions, a proper individualization of the nanotubes is mandatory. This is generally realized by an ultrasonic treatment combined with surfactant molecules, which enwrap nanotubes forming micelle aggregates. To minimize impact on device performance, it is of vital importance to consider post-deposition treatments for removal of surfactant molecules and other impurities. In this context, we investigated the effect of several wet chemical cleaning and thermal post treatments on the electrical characteristics as well as physical properties of more than 600 devices fabricated only by wafer-level compatible technologies. We observed that nitric acid and water treatments improved the maximum-current of devices. Additionally, we found that the ethanol treatment successfully lowered hysteresis in the transfer characteristics. The effect of the chemical cleaning procedures was found to be more significant on CNT-metal contacts than for the FET channels. Moreover, we investigated the effect of an additional thermal cleaning step under vacuum after the chemical cleaning, which had an exceptional impact on the hysteresis behavior including hysteresis reversal. The presence of surfactant molecules on CNT was evidenced by X-ray photoelectron and Raman spectroscopies. By identifying the role of surfactant molecules and assessing the enhancement of device performance as a direct consequence of several cleaning procedures, these results are important for the development of CNT-based electronics at the wafer-level.

  9. Plate-Focusing Based on a Meta-Molecule of Dendritic Structure in the Visible Frequency.

    PubMed

    Cheng, Suna; An, Di; Chen, Huan; Zhao, Xiaopeng

    2018-05-31

    To study the potential application of metasurfaces in lens technology, we propose a dendritic meta-molecule surface (also referred to as a dendritic metasurface) and realize the focusing effect in the visible spectrum through simulations and experiments. Using asymmetric dendritic structures, this metasurface can achieve distinct broadband anomalous reflection and refraction. When the metasurface is rotated by 180° around the z axis, anomalous reflection and refraction in vertically incident optical waves are in opposite directions. Considering this feature, a metasurface is designed to achieve a prominent plate-focusing effect. Samples with a transmission peak of green light at 555 nm, yellow light at 580 nm, and red light at 650 nm were prepared using bottom-up electrochemical deposition, and the focus intensity of approximately 10% and focal length of almost 600 µm were experimentally demonstrated.

  10. A series of terpyridine containing flexible amino diethylacetate derivatives with large two-photon action cross-sections for effective mitochondrial imaging in living liver cancerous cells

    NASA Astrophysics Data System (ADS)

    Jia, Ran; Zhu, Yingying; Hu, Lei; Xiong, Qiru; Zhao, Meng; Zhang, Mingzhu; Tian, Xiaohe

    2018-01-01

    Small molecules possess large two-photon action cross sections (Φσ) are highly demanded for biological purpose. Herein, three novel terpyridine containing flexible amino diethylacetate organic small molecules (A1, A2 and A3) were rationally designed and their photophysical properties were investigated both experimentally and theoretically. The results revealed that the three chromophores possess large Φσ and remarkable Stokes' shift in high polar solvents, which are particularly benefit for further biological imaging application. One chromophore (A1) displayed an effective intracellular uptake against lung cancerous living cells A549. Colocalization studies suggested the internalized subcellular compartment was mitochondria. Consequently, chromophore A1 provides a promising platform to directly monitor mitochondria in living cells under two-photon confocal laser scanning microscopy.

  11. Watching How Molecules Orient in a Surface Forces Apparatus, Using Confocal Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Kim, Minsu; Bae, Sung Chul; Granick, Steve

    2006-03-01

    Much is known about surface forces, less about where they come from. This laboratory is engaged in direct vibrational spectroscopic measurements of how molecules orient in confined geometries. Regarding force measurements, PDMS (polydimethylsiloxane) was a model system for many years. In this study, we describe direct experiments using a novel version of confocal Raman spectroscopy. This experiment allows direct measurement of how the PDMS molecules orient under confinment as well as under subsequent shear. When the thickness of the fluid film is less than the unperturbed radius of gyration of the polymer, we obtain two novel findings: (a) linewidth analysis of peaks reveals that vibrational relaxation times are perturbed in this confined geometry; (b) orientation of the chain backbone is not everywhere the same within the molecularly-thin film; domains of various orientation are observed instead.

  12. Direct manipulation of insect reproduction by agents of parasite origin

    PubMed Central

    Webb, T. J.; Hurd, H.

    1999-01-01

    Reproductive output of female Tenebrio molitor beetles is reduced upon infection with metacestodes of the rat tapeworm, Hymenolepis diminuta. We are using this as a model to investigate the adaptive significance of parasite-induced curtailment of insect reproduction. Production of the yolk protein vitellogenin (Vg) in the insect fat body is significantly reduced both in vitro and in vivo by metacestodes. Synthesis can be measured by using [14C]L-leucine incorporation, followed by immunoprecipitation. In this paper we demonstrate that a significant decrease in [14C]Vg can be produced by an acetic acid extract of the parasite. Conclusive evidence is presented that the active component(s) originate from the metacestodes: an extract of parasites grown entirely axenically has similar deleterious effects. The developmental stage of the metacestode is important: immature (stage I to II) parasites had greater capacity to suppress Vg synthesis than mature ones (stage V to VI). Examination of the chemical nature of the effector molecule(s) revealed that acetic-acid-extractable, boiling-resistant, pronase-sensitive agents in the molecular mass range 10 to 50 kDa reduced Vg synthesis by 47.4%. These data suggest that metacestodes produce a modulator molecule that directly affects insect vitellogenesis and, therefore, that reduction of host fitness may confer a selective advantage upon the parasite.

  13. End Groups of Functionalized Siloxane Oligomers Direct Block-Copolymeric or Liquid-Crystalline Self-Assembly Behavior

    PubMed Central

    2016-01-01

    Monodisperse oligodimethylsiloxanes end-functionalized with the hydrogen-bonding ureidopyrimidinone (UPy) motif undergo phase separation between their aromatic end groups and dimethylsiloxane midblocks to form ordered nanostructures with domain spacings of <5 nm. The self-assembly behavior of these well-defined oligomers resembles that of high degree of polymerization (N)–high block interaction parameter (χ) linear diblock copolymers despite their small size. Specifically, the phase morphology varies from lamellar to hexagonal to body-centered cubic with increasing asymmetry in molecular volume fraction. Mixing molecules with different molecular weights to give dispersity >1.13 results in disorder, showing importance of molecular monodispersity for ultrasmall ordered phase separation. In contrast, oligodimethylsiloxanes end-functionalized with an O-benzylated UPy derivative self-assemble into lamellar nanostructures regardless of volume fraction because of the strong preference of the end groups to aggregate in a planar geometry. Thus, these molecules display more classically liquid-crystalline self-assembly behavior where the lamellar bilayer thickness is determined by the siloxane midblock. Here the lamellar nanostructure is tolerant to molecular polydispersity. We show the importance of end groups in high χ–low N block molecules, where block-copolymer-like self-assembly in our UPy-functionalized oligodimethylsiloxanes relies upon the dominance of phase separation effects over directional end group aggregation. PMID:27054381

  14. Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways

    NASA Astrophysics Data System (ADS)

    Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J.; Lee, Gil U.

    2014-11-01

    Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.

  15. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water

    PubMed Central

    Raschke, Tanya M.; Tsai, Jerry; Levitt, Michael

    2001-01-01

    The hydrophobic interaction, the tendency for nonpolar molecules to aggregate in solution, is a major driving force in biology. In a direct approach to the physical basis of the hydrophobic effect, nanosecond molecular dynamics simulations were performed on increasing numbers of hydrocarbon solute molecules in water-filled boxes of different sizes. The intermittent formation of solute clusters gives a free energy that is proportional to the loss in exposed molecular surface area with a constant of proportionality of 45 ± 6 cal/mol⋅Å2. The molecular surface area is the envelope of the solute cluster that is impenetrable by solvent and is somewhat smaller than the more traditional solvent-accessible surface area, which is the area transcribed by the radius of a solvent molecule rolled over the surface of the cluster. When we apply a factor relating molecular surface area to solvent-accessible surface area, we obtain 24 cal/mol⋅Å2. Ours is the first direct calculation, to our knowledge, of the hydrophobic interaction from molecular dynamics simulations; the excellent qualitative and quantitative agreement with experiment proves that simple van der Waals interactions and atomic point-charge electrostatics account for the most important driving force in biology. PMID:11353861

  16. Identification of Direct Protein Targets of Small Molecules

    PubMed Central

    2010-01-01

    Small-molecule target identification is a vital and daunting task for the chemical biology community as well as for researchers interested in applying the power of chemical genetics to impact biology and medicine. To overcome this “target ID” bottleneck, new technologies are being developed that analyze protein–drug interactions, such as drug affinity responsive target stability (DARTS), which aims to discover the direct binding targets (and off targets) of small molecules on a proteome scale without requiring chemical modification of the compound. Here, we review the DARTS method, discuss why it works, and provide new perspectives for future development in this area. PMID:21077692

  17. Mechanosensing drives acuity of αβ T-cell recognition

    PubMed Central

    Feng, Yinnian; Brazin, Kristine N.; Kobayashi, Eiji; Mallis, Robert J.; Reinherz, Ellis L.; Lang, Matthew J.

    2017-01-01

    T lymphocytes use surface αβ T-cell receptors (TCRs) to recognize peptides bound to MHC molecules (pMHCs) on antigen-presenting cells (APCs). How the exquisite specificity of high-avidity T cells is achieved is unknown but essential, given the paucity of foreign pMHC ligands relative to the ubiquitous self-pMHC array on an APC. Using optical traps, we determine physicochemical triggering thresholds based on load and force direction. Strikingly, chemical thresholds in the absence of external load require orders of magnitude higher pMHC numbers than observed physiologically. In contrast, force applied in the shear direction (∼10 pN per TCR molecule) triggers T-cell Ca2+ flux with as few as two pMHC molecules at the interacting surface interface with rapid positional relaxation associated with similarly directed motor-dependent transport via ∼8-nm steps, behaviors inconsistent with serial engagement during initial TCR triggering. These synergistic directional forces generated during cell motility are essential for adaptive T-cell immunity against infectious pathogens and cancers. PMID:28811364

  18. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model

    PubMed Central

    Takashima, K; Matsunaga, N; Yoshimatsu, M; Hazeki, K; Kaisho, T; Uekata, M; Hazeki, O; Akira, S; Iizawa, Y; Ii, M

    2009-01-01

    Background and purpose: TAK-242, a novel synthetic small-molecule, suppresses production of multiple cytokines by inhibiting Toll-like receptor (TLR) 4 signalling. In this study, we investigated the target molecule of TAK-242 and examined its therapeutic effect in a mouse sepsis model. Experimental approach: Binding assay with [3H]-TAK-242 and nuclear factor-κB reporter assay were used to identify the target molecule and binding site of TAK-242. Bacillus calmette guerin (BCG)-primed mouse sepsis model using live Escherichia coli was used to estimate the efficacy of TAK-242 in sepsis. Key results: TAK-242 strongly bound to TLR4, but binding to TLR2, 3, 5, 9, TLR-related adaptor molecules and MD-2 was either not observed or marginal. Mutational analysis using TLR4 mutants indicated that TAK-242 inhibits TLR4 signalling by binding to Cys747 in the intracellular domain of TLR4. TAK-242 inhibited MyD88-independent pathway as well as MyD88-dependent pathway and its inhibitory effect was largely unaffected by lipopolysaccharide (LPS) concentration and types of TLR4 ligands. TAK-242 had no effect on the LPS-induced conformational change of TLR4-MD-2 and TLR4 homodimerization. In mouse sepsis model, although TAK-242 alone did not affect bacterial counts in blood, if co-administered with ceftazidime it inhibited the increases in serum cytokine levels and improved survival of mice. Conclusions and implications: TAK-242 suppressed TLR4 signalling by binding directly to a specific amino acid Cys747 in the intracellular domain of TLR4. When co-administered with antibiotics, TAK-242 showed potent therapeutic effects in an E. coli-induced sepsis model using BCG-primed mice. Thus, TAK-242 may be a promising therapeutic agent for sepsis. PMID:19563534

  19. Bioherbicidal activity of a germacranolide sesquiterpene dilactone from Ambrosia artemisiifolia L.

    PubMed

    Molinaro, Francesco; Monterumici, Chiara Mozzetti; Ferrero, Aldo; Tabasso, Silvia; Negre, Michèle

    2016-12-01

    Ambrosia artemisiifolia L. (common ragweed) is an invasive plant whose allelopathic properties have been suggested by its field behaviour and demonstrated through phytotoxicity bioassays. However, the nature of the molecules responsible for the allelopathic activity of common ragweed has not been explored. The main objective of this study was to identify the phytotoxic molecules produced by A. artemisiifolia. A preliminary investigation has indicated that a methanol extract of A. artemisiifolia completely inhibited the germination of cress and radish. Semi-preparative fractionation of the methanol extract allowed separating of phytotoxic fraction which contained a single compound. The structure of this compound was elucidated by liquid chromatography-mass spectrometry (LC-MS)/MS, high-resolution mass spectral, nuclear magnetic resonance, and Fourier transform infrared spectra as sesquiterpene lactone isabelin (C 15 H 16 O 4 ). The effect of pure isabelin was tested on four different weed species, confirming the inhibitory activity of molecule. The results indicate directions for the future studies about herbicidal specific activity of isabelin, as pure molecule or in the crude extract, as a potential candidate for biological weed control.

  20. Inhibition mechanism of lanthanum ion on the activity of horseradish peroxidase in vitro

    NASA Astrophysics Data System (ADS)

    Guo, Shaofen; Wang, Lihong; Lu, Aihua; Lu, Tianhong; Ding, Xiaolan; Huang, Xiaohua

    2010-02-01

    In order to understand the inhibition mechanism of lanthanum ion (La 3+) on the activity of horseradish peroxidase (HRP), the effects of La 3+ on the activity, electron transfer and conformation of HRP in vitro were investigated by using cyclic voltammetry (CV), atomic force microscopy (AFM), circular dichroism (CD), high performance liquid chromatography (HPLC), matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF/MS) and inductively coupled plasma mass spectrometry (ICP-MS). It was found that La 3+ can combine with the amide groups of the polypeptide chain in HRP molecule, forming the complex of La 3+ and HRP (La-HRP). The formation of the La-HRP complex causes the destruction of the native structure of HRP molecule, leading to the decrease in the non-planarity of the porphyrin ring in the heme group of HRP molecule, and then in the exposure extent of active center, Fe(III) of the porphyrin ring of HRP molecule. Thus, the direct electrochemical and catalytic activities of HRP are decreased. It is a possible inhibition mechanism of La 3+ on the activity of peroxidase.

  1. Performance of 3D-space-based atoms-in-molecules methods for electronic delocalization aromaticity indices.

    PubMed

    Heyndrickx, Wouter; Salvador, Pedro; Bultinck, Patrick; Solà, Miquel; Matito, Eduard

    2011-02-01

    Several definitions of an atom in a molecule (AIM) in three-dimensional (3D) space, including both fuzzy and disjoint domains, are used to calculate electron sharing indices (ESI) and related electronic aromaticity measures, namely, I(ring) and multicenter indices (MCI), for a wide set of cyclic planar aromatic and nonaromatic molecules of different ring size. The results obtained using the recent iterative Hirshfeld scheme are compared with those derived from the classical Hirshfeld method and from Bader's quantum theory of atoms in molecules. For bonded atoms, all methods yield ESI values in very good agreement, especially for C-C interactions. In the case of nonbonded interactions, there are relevant deviations, particularly between fuzzy and QTAIM schemes. These discrepancies directly translate into significant differences in the values and the trends of the aromaticity indices. In particular, the chemically expected trends are more consistently found when using disjoint domains. Careful examination of the underlying effects reveals the different reasons why the aromaticity indices investigated give the expected results for binary divisions of 3D space. Copyright © 2010 Wiley Periodicals, Inc.

  2. Microscopic solvent structure of subcritical and supercritical methanol from ultraviolet/visible absorption and fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Sako, Takeshi; Sugeta, Tsutomu; Otake, Katsuto; Takebayashi, Yoshihiro; Kamizawa, Chiyoshi; Uesugi, Masayuki; Kato, Masahiro

    1999-09-01

    Ultraviolet/visible absorption and fluorescence spectroscopies at different temperatures and pressures were applied to investigate the microscopic solvent structures of subcritical and supercritical methanol using 4-nitroanisole, ethyl-(4-dimethylamino)benzoate, Reichardt's dye, and anthracene as the probe molecules. It was found that at temperatures higher than 150 °C the long winding chains of sequentially hydrogen-bonded methanol molecules were probably broken, but the small hydrogen-bonded aggregates possibly existed in methanol even at higher temperature. It was also found that the solvation process of the anthracene molecule in the S0-ground state obeyed the Langmuir adsorption model. However, in the case of fluorescence measurements in supercritical methanol, we detected deviations from the simple Langmuir adsorption model. These deviations were explained in terms of preferential solvation of the solvent molecules around photoexcited anthracene. Judging from the experimental results, it was concluded that the local density augmentation of the supercritical methanol around the nonpolar solute was a short-ranged effect, which did not correspond directly to the large isothermal compressibility of fluid near the critical point.

  3. Microgravity

    NASA Image and Video Library

    1998-10-01

    Internation Flavors and Fragrances Inc. proprietary research technology, Solid Phase Micro Extraction (SPME) utilizes a special fiber needle placed directly next to the bloom of the living flower to collect the fragrance molecules. SPME was used in the Space Flower experiment aboard STS-95 space shuttle mission, after which Dr. Braja Mookherjee (left) and Subha Patel of IFF will analyze the effects of gravity on the Overnight Scentsation rose plant.

  4. A wireless centrifuge force microscope (CFM) enables multiplexed single-molecule experiments in a commercial centrifuge.

    PubMed

    Hoang, Tony; Patel, Dhruv S; Halvorsen, Ken

    2016-08-01

    The centrifuge force microscope (CFM) was recently introduced as a platform for massively parallel single-molecule manipulation and analysis. Here we developed a low-cost and self-contained CFM module that works directly within a commercial centrifuge, greatly improving accessibility and ease of use. Our instrument incorporates research grade video microscopy, a power source, a computer, and wireless transmission capability to simultaneously monitor many individually tethered microspheres. We validated the instrument by performing single-molecule force shearing of short DNA duplexes. For a 7 bp duplex, we observed over 1000 dissociation events due to force dependent shearing from 2 pN to 12 pN with dissociation times in the range of 10-100 s. We extended the measurement to a 10 bp duplex, applying a 12 pN force clamp and directly observing single-molecule dissociation over an 85 min experiment. Our new CFM module facilitates simple and inexpensive experiments that dramatically improve access to single-molecule analysis.

  5. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  6. Block copolymer templated self-assembly of disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Aragones, J. L.; Alexander-Katz, A.

    2017-08-01

    Stacking of disk-shaped organic molecules is a promising strategy to develop electronic and photovoltaic devices. Here, we investigate the capability of a soft block copolymer matrix that microphase separates into a cylindrical phase to direct the self-assembly of disk-shaped molecules by means of molecular simulations. We show that two disk molecules confined in the cylinder domain experience a depletion force, induced by the polymer chains, which results in the formation of stacks of disks. This entropic interaction and the soft confinement provided by the matrix are both responsible for the structures that can be self-assembled, which include slanted or columnar stacks. In addition, we evidence the transmission of stresses between the different minority domains of the microphase, which results in the establishment of a long-ranged interaction between disk molecules embedded in different domains; this interaction is of the order of the microphase periodicity and may be exploited to direct assembly of disks at larger scales.

  7. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure

    PubMed Central

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-01-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  8. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    PubMed

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. NOBAI: a web server for character coding of geometrical and statistical features in RNA structure

    PubMed Central

    Knudsen, Vegeir; Caetano-Anollés, Gustavo

    2008-01-01

    The Numeration of Objects in Biology: Alignment Inferences (NOBAI) web server provides a web interface to the applications in the NOBAI software package. This software codes topological and thermodynamic information related to the secondary structure of RNA molecules as multi-state phylogenetic characters, builds character matrices directly in NEXUS format and provides sequence randomization options. The web server is an effective tool that facilitates the search for evolutionary history embedded in the structure of functional RNA molecules. The NOBAI web server is accessible at ‘http://www.manet.uiuc.edu/nobai/nobai.php’. This web site is free and open to all users and there is no login requirement. PMID:18448469

  10. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.

    PubMed

    Zhang, Hui; Guo, Peixuan

    2014-05-15

    Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Orientation of chain molecules in ionotropic gels: a Brownian dynamics model

    NASA Astrophysics Data System (ADS)

    Woelki, Stefan; Kohler, Hans-Helmut

    2003-09-01

    As is known from birefringence measurements, polysaccharide molecules of ionotropic gels are preferentially orientated normal to the direction of gel growth. In this paper the orientation effect is investigated by means of an off-lattice Brownian dynamics model simulating the gel formation process. The model describes the integration of a single coarse grained phantom chain into the growing gel. The equations of motion of the chain are derived. The computer simulations show that, during the process of integration, the chain is contracting normal to the direction of gel growth. A scaling relation is obtained for the degree of contraction as a function of the length parameters of the chain, the velocity of the gel formation front and the rate constant of the crosslinking reaction. It is shown that the scaling relation, if applied to the example of ionotropic copper alginate gel, leads to reasonable predictions of the time course of the degree of contraction of the alginate chains.

  12. Rotational Energy Transfer and Collisional Induced Raman Linewidths in N2 Gas. 1; Energy Transfer Rates

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotationally inelastic transitions of N2 have been studied in the coupled state (CS) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigidrotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range. The CC and CS cross sections have been obtained both with and without identical molecule exchange symmetry, whereas exchange was neglected in the IOS calculations. The CS results track the CC cross sections rather well; between 113 - 219 cm(exp -1) the average deviation is 14%. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp -1), shows that IOS is sensitive to the amount of inelasticity and the results for large DELTA J transitions are subject to larger errors. It is found that the state-to-state cross sections with even and odd exchange symmetry agree to better than 2% and are well represented as a sum of direct and exchange cross sections for distinguishable molecules, an indication of the applicability of a classical treatment for this system. This result, however, does not apply to partial cross sections for given total J, but arises from a near cancellation in summing over partial waves. In order to use rigid-rotor results for the calculation of effective rotational excitation rates of N2 in the v=1 vibrational level colliding with bath N2 molecules in the v=0 level, it is assumed that exchange scattering between molecules in different vibrational levels is negligible and direct scattering is independent of Y. Good agreement with room temperature experimental data is obtained. The effective rates determined using the IOS and energy corrected sudden (ECS) approximations are also in reasonable agreement with experiment, with the ECS results being somewhat better. The problem with a degeneracy factor in earlier cross section expressions for collisions between identical molecules is pointed out and corrected.

  13. Electrochemical assembly of organic molecules by the reduction of iodonium salts

    DOEpatents

    Dirk, Shawn M [Albuquerque, NM; Howell, Stephen W [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2009-06-23

    Methods are described for the electrochemical assembly of organic molecules on silicon, or other conducting or semiconducting substrates, using iodonium salt precursors. Iodonium molecules do not assemble on conducting surfaces without a negative bias. Accordingly, the iodonium salts are preferred for patterning applications that rely on direct writing with negative bias. The stability of the iodonium molecule to acidic conditions allows them to be used with standard silicon processing. As a directed assembly process, the use of iodonium salts provides for small features while maintaining the ability to work on a surface and create structures on a wafer level. Therefore, the process is amenable for mass production. Furthermore, the assembled monolayer (or multilayer) is chemically robust, allowing for subsequent chemical manipulations and the introduction of various molecular functionalities for various chemical and biological applications.

  14. Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen

    NASA Astrophysics Data System (ADS)

    Zhao, Ni; Nie, Yongjie; Li, Shengtao

    2018-04-01

    Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.

  15. The catalytic effect of H2O on the hydrolysis of CO32- in hydrated clusters and its implication in the humidity driven CO2 air capture.

    PubMed

    Xiao, Hang; Shi, Xiaoyang; Zhang, Yayun; Liao, Xiangbiao; Hao, Feng; Lackner, Klaus S; Chen, Xi

    2017-10-18

    The hydration of ions in nanoscale hydrated clusters is ubiquitous and essential in many physical and chemical processes. Here we show that the hydrolysis reaction is strongly affected by relative humidity. The hydrolysis of CO 3 2- with n = 1-8 water molecules is investigated using an ab initio method. For n = 1-5 water molecules, all the reactants follow a stepwise pathway to the transition state. For n = 6-8 water molecules, all the reactants undergo a direct proton transfer to the transition state with overall lower activation free energy. The activation free energy of the reaction is dramatically reduced from 10.4 to 2.4 kcal mol -1 as the number of water molecules increases from 1 to 6. Meanwhile, the degree of hydrolysis of CO 3 2- is significantly increased compared to the bulk water solution scenario. Incomplete hydration shells facilitate the hydrolysis of CO 3 2- with few water molecules to be not only thermodynamically favorable but also kinetically favorable. We showed that the chemical kinetics is not likely to constrain the speed of CO 2 air capture driven by the humidity-swing. Instead, the pore-diffusion of ions is expected to be the time-limiting step in the humidity driven CO 2 air capture. The effect of humidity on the speed of CO 2 air capture was studied by conducting a CO 2 absorption experiment using IER with a high ratio of CO 3 2- to H 2 O molecules. Our result is able to provide valuable insights into designing efficient CO 2 air-capture sorbents.

  16. Activation of remote meta-C-H bonds assisted by an end-on template.

    PubMed

    Leow, Dasheng; Li, Gang; Mei, Tian-Sheng; Yu, Jin-Quan

    2012-06-27

    Functionalization of unactivated carbon-hydrogen (C-H) single bonds is an efficient strategy for rapid generation of complex molecules from simpler ones. However, it is difficult to achieve selectivity when multiple inequivalent C-H bonds are present in the target molecule. The usual approach is to use σ-chelating directing groups, which lead to ortho-selectivity through the formation of a conformationally rigid six- or seven-membered cyclic pre-transition state. Despite the broad utility of this approach, proximity-driven reactivity prevents the activation of remote C-H bonds. Here we report a class of easily removable nitrile-containing templates that direct the activation of distal meta-C-H bonds (more than ten bonds away) of a tethered arene. We attribute this new mode of C-H activation to a weak 'end-on' interaction between the linear nitrile group and the metal centre. The 'end-on' coordination geometry relieves the strain of the cyclophane-like pre-transition state of the meta-C-H activation event. In addition, this template overrides the intrinsic electronic and steric biases as well as ortho-directing effects with two broadly useful classes of arene substrates (toluene derivatives and hydrocinnamic acids).

  17. Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation.

    PubMed

    Hanford, Amanda D; O'Connor, Patrick D; Anderson, James B; Long, Lyle N

    2008-06-01

    In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.

  18. Depth profile of halide anions under highly charged biological membrane

    NASA Astrophysics Data System (ADS)

    Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok

    2015-03-01

    Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.

  19. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides.

    PubMed

    Koss, K M; Unsworth, L D

    2016-10-15

    Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering. Copyright © 2016. Published by Elsevier Ltd.

  20. Anisotropic dynamics of water ultra-confined in macroscopically oriented channels of single-crystal beryl: A multi-frequency analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Mamontov, Eugene; Ishai, Paul ben

    2013-01-01

    The properties of fluids can be significantly altered by the geometry of their confining environments. While there has been significant work on the properties of such confined fluids, the properties of fluids under ultraconfinement, environments where, at least in one plane, the dimensions of the confining environment are similar to that of the confined molecule, have not been investigated. This paper investigates the dynamic properties of water in beryl (Be3Al2Si6O18), the structure of which contains approximately 5-A-diam channels parallel to the c axis. Three techniques, inelastic neutron scattering, quasielastic neutron scattering, and dielectric spectroscopy, have been used to quantify thesemore » properties over a dynamic range covering approximately 16 orders of magnitude. Because beryl can be obtained in large single crystals we were able to quantify directional variations, perpendicular and parallel to the channel directions, in the dynamics of the confined fluid. These are significantly anisotropic and, somewhat counterintuitively, show that vibrations parallel to the c-axis channels are significantly more hindered than those perpendicular to the channels. The effective potential for vibrations in the c direction is harder than the potential in directions perpendicular to it. There is evidence of single-file diffusion of water molecules along the channels at higher temperatures, but below 150 K this diffusion is strongly suppressed. No such suppression, however, has been observed in the channel-perpendicular direction. Inelastic neutron scattering spectra include an intramolecular stretching O-H peak at 465 meV. As this is nearly coincident with that known for free water molecules and approximately 30 meV higher than that in liquid water or ice, this suggests that there is no hydrogen bonding constraining vibrations between the channel water and the beryl structure. However, dielectric spectroscopic measurements at higher temperatures and lower frequencies yield an activation energy for the dipole reorientation of 16.4 0.14 kJ/mol, close to the energy required to break a hydrogen bond in bulk water. This may suggest the presence of some other form of bonding between the water molecules and the structure, but the resolution of the apparent contradiction between the inelastic neutron and dielectric spectroscopic results remains uncertain.« less

  1. Column densities resulting from shuttle sublimator/evaporator operation. [optical density of nozzle flow containing water vapor

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1973-01-01

    The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.

  2. Modulation of Electroosmotic Flow through Skin: Effect of Poly(Amidoamine) Dendrimers

    PubMed Central

    Kim, Hye Ji; Oh, Seaung Youl

    2018-01-01

    The objective of this work is to evaluate the effect of polyamidoamine (PAMAM) dendrimers on electroosmotic flow (EOF) through skin. The effect of size and concentration of dendrimer was studied, using generation 1, 4 and 7 dendrimer (G1, G4 and G7, respectively). As a marker molecule for the direction and magnitude of EOF, a neutral molecule, acetoaminophen (AAP) was used. The visualization of dendrimer permeation into the current conducting pore (CCP) of skin was made using G4–fluorescein isothiocyanate (FITC) conjugate and confocal microscopy. Without dendrimer, anodal flux of AAP was much higher than cathodal or passive flux. When G1 dendrimer was added, anodal flux decreased, presumably due to the decrease in EOF by the association of G1 dendrimer with net negative charge in CCP. As the generation increased, larger decrease in anodal flux was observed, and the direction of EOF was reversed. Small amount of methanol used for the preparation of dendrimer solution also contributed to the decrease in anodal flux of AAP. Cross-sectional view perpendicular to the skin surface by confocal laser scanning microscope (CLSM) study showed that G4 dendrimer-FITC conjugate (G4-FITC) can penetrate into the viable epidermis and dermis under anodal current. The permeation route seemed to be localized on hair follicle region. These results suggest that PAMAM dendrimers can permeate into CCP and change the magnitude and direction of EOF. Overall, we obtained a better understanding on the mechanistic insights into the electroosmosis phenomena and its role on flux during iontophoresis. PMID:29310428

  3. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    PubMed

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  4. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR.

    PubMed

    Sidstedt, Maja; Hedman, Johannes; Romsos, Erica L; Waitara, Leticia; Wadsö, Lars; Steffen, Carolyn R; Vallone, Peter M; Rådström, Peter

    2018-04-01

    Blood samples are widely used for PCR-based DNA analysis in fields such as diagnosis of infectious diseases, cancer diagnostics, and forensic genetics. In this study, the mechanisms behind blood-induced PCR inhibition were evaluated by use of whole blood as well as known PCR-inhibitory molecules in both digital PCR and real-time PCR. Also, electrophoretic mobility shift assay was applied to investigate interactions between inhibitory proteins and DNA, and isothermal titration calorimetry was used to directly measure effects on DNA polymerase activity. Whole blood caused a decrease in the number of positive digital PCR reactions, lowered amplification efficiency, and caused severe quenching of the fluorescence of the passive reference dye 6-carboxy-X-rhodamine as well as the double-stranded DNA binding dye EvaGreen. Immunoglobulin G was found to bind to single-stranded genomic DNA, leading to increased quantification cycle values. Hemoglobin affected the DNA polymerase activity and thus lowered the amplification efficiency. Hemoglobin and hematin were shown to be the molecules in blood responsible for the fluorescence quenching. In conclusion, hemoglobin and immunoglobulin G are the two major PCR inhibitors in blood, where the first affects amplification through a direct effect on the DNA polymerase activity and quenches the fluorescence of free dye molecules, and the latter binds to single-stranded genomic DNA, hindering DNA polymerization in the first few PCR cycles. Graphical abstract PCR inhibition mechanisms of hemoglobin and immunoglobulin G (IgG). Cq quantification cycle, dsDNA double-stranded DNA, ssDNA single-stranded DNA.

  5. Cell-Based Small-Molecule Compound Screen Identifies Fenretinide as Potential Therapeutic for Translocation-Positive Rhabdomyosarcoma

    PubMed Central

    Herrero Martín, David; Boro, Aleksandar; Schäfer, Beat W.

    2013-01-01

    A subset of paediatric sarcomas are characterized by chromosomal translocations encoding specific oncogenic transcription factors. Such fusion proteins represent tumor specific therapeutic targets although so far it has not been possible to directly inhibit their activity by small-molecule compounds. In this study, we hypothesized that screening a small-molecule library might identify already existing drugs that are able to modulate the transcriptional activity of PAX3/FOXO1, the fusion protein specifically found in the pediatric tumor alveolar rhabdomyosarcoma (aRMS). Towards this end, we established a reporter cell line based on the well characterized PAX3/FOXO1 target gene AP2ß. A library enriched in mostly FDA approved drugs was screened using specific luciferase activity as read-out and normalized for cell viability. The most effective inhibitor identified from this screen was Fenretinide. Treatment with this compound resulted in down-regulation of PAX3/FOXO1 mRNA and protein levels as well as in reduced expression of several of its direct target genes, but not of wild-type FOXO1, in a dose- and time-dependent manner. Moreover, fenretinide induced reactive oxygen species and apoptosis as shown by caspase 9 and PARP cleavage and upregulated miR-9. Importantly, it demonstrated a significant anti-tumor effect in vivo. These results are similar to earlier reports for two other pediatric tumors, namely neuroblastoma and Ewing sarcoma, where fenretinide is under clinical development. Our results suggest that fenretinide might represent a novel treatment option also for translocation-positive rhabdomyosarcoma. PMID:23372815

  6. Dynamic acousto-optic control of a strongly coupled photonic molecule

    PubMed Central

    Kapfinger, Stephan; Reichert, Thorsten; Lichtmannecker, Stefan; Müller, Kai; Finley, Jonathan J.; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J.

    2015-01-01

    Strongly confined photonic modes can couple to quantum emitters and mechanical excitations. To harness the full potential in quantum photonic circuits, interactions between different constituents have to be precisely and dynamically controlled. Here, a prototypical coupled element, a photonic molecule defined in a photonic crystal membrane, is controlled by a radio frequency surface acoustic wave. The sound wave is tailored to deliberately switch on and off the bond of the photonic molecule on sub-nanosecond timescales. In time-resolved experiments, the acousto-optically controllable coupling is directly observed as clear anticrossings between the two nanophotonic modes. The coupling strength is determined directly from the experimental data. Both the time dependence of the tuning and the inter-cavity coupling strength are found to be in excellent agreement with numerical calculations. The demonstrated mechanical technique can be directly applied for dynamic quantum gate operations in state-of-the-art-coupled nanophotonic, quantum cavity electrodynamic and optomechanical systems. PMID:26436203

  7. Regioselective synthesis of C3 alkylated and arylated benzothiophenes

    NASA Astrophysics Data System (ADS)

    Shrives, Harry J.; Fernández-Salas, José A.; Hedtke, Christin; Pulis, Alexander P.; Procter, David J.

    2017-03-01

    Benzothiophenes are heterocyclic constituents of important molecules relevant to society, including those with the potential to meet modern medical challenges. The construction of molecules would be vastly more efficient if carbon-hydrogen bonds, found in all organic molecules, can be directly converted into carbon-carbon bonds. In the case of elaborating benzothiophenes, functionalization of carbon-hydrogen bonds at carbon-number 3 (C3) is markedly more demanding than at C2 due to issues of regioselectivity (C3 versus C2), and the requirement of high temperatures, precious metals and the installation of superfluous directing groups. Herein, we demonstrate that synthetically unexplored but readily accessible benzothiophene S-oxides serve as novel precursors for C3-functionalized benzothiophenes. Employing an interrupted Pummerer reaction to capture and then deliver phenol and silane coupling partners, we have discovered a directing group-free method that delivers C3-arylated and -alkylated benzothiophenes with complete regioselectivity, under metal-free and mild conditions.

  8. Multitargeting by curcumin as revealed by molecular interaction studies

    PubMed Central

    Gupta, Subash C.; Prasad, Sahdeo; Kim, Ji Hye; Patchva, Sridevi; Webb, Lauren J.; Priyadarsini, Indira K.

    2012-01-01

    Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca2+ ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto–enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin’s binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin–protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity. PMID:21979811

  9. [Study on X-ray powder diffraction of various structured zinc titanate prepared by the method of direct precipitation].

    PubMed

    Guo, Jian; Wang, Zhi-hua; Tao, Dong-liang; Guo, Guang-sheng

    2007-05-01

    Zinc titanate powders were prepared from Ti(SO4)2, Zn(NO3)2 x (6)H2O and (NH4)2CO3 by the method of direct precipitation. The effects of reaction conditions on the structure of zinc titanate were studied. The sample was analyzed by means of XRD and TG-DTA. The structure of zinc titanate was affected by the reaction subsequence of the formation of titanic acid and zinc carbonate. In the reaction system where titanic acid was generated earlier, collision reaction occurred between the generated zinc carbonate molecule and the surrounding titanic acid molecule. When titanic acid was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2Ti3O8 was obtained because of the sufficient collision reaction and superfluous titanic acid. In the reaction system where zinc carbonate was generated earlier, collision reaction occurred between the generated titanic acid molecule and the surrounding zinc carbonate molecule. When zinc carbonate was generated earlier and precipitant (NH4)2CO3 was sufficient, Zn2TiO4 was obtained because of the sufficient collision reaction and superfluous zinc carbonate. In addition, the kinds and structure of the production were affected by the dosage of precipitant and the reaction temperature. Zn2Ti3O8 or Zn2TiO4 could be obtained easier when using more precipitant or higher reaction temperature which could cause more sufficient collision reaction. ZnTiO3 could be obtained under the conditions of less precipitant and lower reaction temperature.

  10. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    PubMed

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  11. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  12. Single-molecule study of thymidine glycol and i-motif through the alpha-hemolysin ion channel

    NASA Astrophysics Data System (ADS)

    He, Lidong

    Nanopore-based devices have emerged as a single-molecule detection and analysis tool for a wide range of applications. Through electrophoretically driving DNA molecules across a nanosized pore, a lot of information can be received, including unfolding kinetics and DNA-protein interactions. This single-molecule method has the potential to sequence kilobase length DNA polymers without amplification or labeling, approaching "the third generation" genome sequencing for around $1000 within 24 hours. alpha-Hemolysin biological nanopores have the advantages of excellent stability, low-noise level, and precise site-directed mutagenesis for engineering this protein nanopore. The first work presented in this thesis established the current signal of the thymidine glycol lesion in DNA oligomers through an immobilization experiment. The thymidine glycol enantiomers were differentiated from each other by different current blockage levels. Also, the effect of bulky hydrophobic adducts to the current blockage was investigated. Secondly, the alpha-hemolysin nanopore was used to study the human telomere i-motif and RET oncogene i-motif at a single-molecule level. In Chapter 3, it was demonstrated that the alpha-hemolysin nanopore can differentiate an i-motif form and single-strand DNA form at different pH values based on the same sequence. In addition, it shows potential to differentiate the folding topologies generated from the same DNA sequence.

  13. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    PubMed

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  14. Nanopore Device for Reversible Ion and Molecule Sensing or Migration

    NASA Technical Reports Server (NTRS)

    Seger, R. Adam (Inventor); Pourmand, Nader (Inventor); Actis, Paolo (Inventor); Singaram, Bakthan (Inventor); Vilozny, Boaz (Inventor)

    2015-01-01

    Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.

  15. Deciphering the Landauer-Büttiker Transmission Function from Single Molecule Break Junction Experiments

    NASA Astrophysics Data System (ADS)

    Reuter, Matthew; Tschudi, Stephen

    When investigating the electrical response properties of molecules, experiments often measure conductance whereas computation predicts transmission probabilities. Although the Landauer-Büttiker theory relates the two in the limit of coherent scattering through the molecule, a direct comparison between experiment and computation can still be difficult. Experimental data (specifically that from break junctions) is statistical and computational results are deterministic. Many studies compare the most probable experimental conductance with computation, but such an analysis discards almost all of the experimental statistics. In this work we develop tools to decipher the Landauer-Büttiker transmission function directly from experimental statistics and then apply them to enable a fairer comparison between experimental and computational results.

  16. Tumors Induce Complex DNA Damage in Distant Proliferative Tissues in Vivo | Center for Cancer Research

    Cancer.gov

    In radiation biology, a bystander effect occurs when cells not directly exposed to ionizing radiation show increased genomic instability and impaired viability due to the release of signaling molecules by the irradiated cells in their vicinity. Christophe Redon, Ph.D., and colleagues in CCR’s Laboratory of Molecular Pharmacology, decided to ask whether a tumor itself could exhibit a similar effect. Their results were recently published in the Proceedings of the National Academy of Sciences.

  17. BioArena studies: unique function of endogenous formaldehyde and ozone in the antibiotic effect--a review.

    PubMed

    Tyihák, Erno; Móricz, Agnes M; Ott, Péter G

    2012-01-01

    The investigations demonstrated clearly a unique function and role of endogenous formaldehyde (HCHO) and ozone (O3) in the antibiotic effect of diverse molecules having different chemical structure. Elimination of HCHO and/or O3 from the layer chromatographic spots resulted in a decrease in the antimicrobial activity. On the basis of detection and measure of endogenous HCHO and O3 BioArena enables to both direct isolation and biological evaluation of new bioactive compounds.

  18. Do the same traffic rules apply? Directional chromosome segregation by SpoIIIE and FtsK.

    PubMed

    Besprozvannaya, Marina; Burton, Briana M

    2014-08-01

    Over a decade of studies have tackled the question of how FtsK/SpoIIIE translocases establish and maintain directional DNA translocation during chromosome segregation in bacteria. FtsK/SpoIIIE translocases move DNA in a highly processive, directional manner, where directionality is facilitated by sequences on the substrate DNA molecules that are being transported. In recent years, structural, biochemical, single-molecule and high-resolution microscopic studies have provided new insight into the mechanistic details of directional DNA segregation. Out of this body of work, a series of models have emerged and, ultimately, yielded two seemingly opposing models: the loading model and the target search model. We review these recent mechanistic insights into directional DNA movement and discuss the data that may serve to unite these suggested models, as well as propose future directions that may ultimately solve the debate. © 2014 John Wiley & Sons Ltd.

  19. Direct patterning of a cyclotriveratrylene derivative for directed self-assembly of C60

    NASA Astrophysics Data System (ADS)

    Osner, Zachary R.; Nyamjav, Dorjderem; Holz, Richard C.; Becker, Daniel P.

    2011-07-01

    A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials.

  20. Determination of the ground state of an Au-supported FePc film based on the interpretation of Fe K - and L -edge x-ray magnetic circular dichroism measurements

    NASA Astrophysics Data System (ADS)

    Natoli, Calogero R.; Krüger, Peter; Bartolomé, Juan; Bartolomé, Fernando

    2018-04-01

    We determine the magnetic ground state of the FePc molecule on Au-supported thin films based on the observed values of orbital anisotropy and spectroscopic x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and L edges. Starting from ab initio molecular orbital multiplet calculations for the isolated molecule, we diagonalize the spin-orbit interaction in the subspace spanned by the three lowest spin triplet states of 3A2 g and 3Eg symmetry in the presence of a saturating magnetic field at a polar angle θ with respect to the normal to the plane of the film, plus an external perturbation representing the effect of the molecules in the stack on the FePc molecule under consideration. We find that the orbital moment of the ground state strongly depends on the magnetic field direction in agreement with the sum rule analysis of the L23-edge XMCD data. We calculate integrals over the XMCD spectra at the Fe K and L23 edges as used in the sum rules and explicitly show that they agree with the expectation values of the orbital moment and effective spin moment of the ground state. On the basis of this analysis, we can rule out alternative candidates proposed in the literature.

  1. ADMET biosensors: up-to-date issues and strategies.

    PubMed

    Fang, Yan; Offenhaeusser, Andrease

    2004-12-01

    This insight review introduces the new concepts, theories, technology, instruments, frontier issues, and key strategies of ADMET (absorption, distribution, metabolism, elimination, and toxicity) biosensors, from the fermi to the quantum levels. Information about ADMET, originating from one author's invention, a patented pharmacotherapy for rescuing cardio-cerebral vascular stunning and regulating vascular endothelial growth-factor signaling at the post-genomic level, can be detected by a new generation of ADMET biosensor. This is a single-cell/single-molecule field-effect transistor (FET) hybrid system, where single molecules or single cells are assembled at the FET surface in a high density array manner via complementary metal-oxide-semiconductor (CMOS)-compatible technologies. Within a given nanometer distance, ADMET-mediated oxidation-reduction (redox) potentials, electrochemistry responses, and electron transfer processes can be simultaneously and directly probed by the gates of field-effect transistor arrays. The nanometer details of the functional coupling principles and characterization technologies of DNA single-molecule/single-cell FETs, as well as the design of lab-on-a-chip instruments, are indicated. Four frontier issues and key strategies are elucidated in detail. This can lead to innovative technology for high-throughout screening of labs-on-chips to resolve the pharmaceutical industry's current bottleneck via novel, FET-based drug discovery and single-molecule/single-cell screening methods, which can bring about a pharmaceutical industry revolution in the 21st century.

  2. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule.

    PubMed

    Kazuma, Emiko; Jung, Jaehoon; Ueba, Hiromu; Trenary, Michael; Kim, Yousoo

    2018-05-04

    Plasmon-induced chemical reactions of molecules adsorbed on metal nanostructures are attracting increased attention for photocatalytic reactions. However, the mechanism remains controversial because of the difficulty of direct observation of the chemical reactions in the plasmonic field, which is strongly localized near the metal surface. We used a scanning tunneling microscope (STM) to achieve real-space and real-time observation of a plasmon-induced chemical reaction at the single-molecule level. A single dimethyl disulfide molecule on silver and copper surfaces was dissociated by the optically excited plasmon at the STM junction. The STM study combined with theoretical calculations shows that this plasmon-induced chemical reaction occurred by a direct intramolecular excitation mechanism. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Stabilizing effects of hydrated fullerenes C₆₀ in a wide range of concentrations on luciferase, alkaline phosphatase, and peroxidase in vitro.

    PubMed

    Voeikov, Vladimir L; Yablonskaya, Olga I

    2015-01-01

    Hydrated fullerene (HyFnC60) is a highly hydrophilic supra-molecular complex consisting of unmodified С60 fullerene molecule enclosed into a hydrated shell. It has been shown in numerous experiments that aqueous solutions of HyFnC60 manifest a wide range of biological activities both in vivo and in vitro even at very low concentrations of HyFnC60. We used a spectrophotometric method and a method of biochemoluminescence to demonstrate that HyFnC60 in concentrations below 10(-9) M down to 10(-23) M stabilizes peroxidase, alkaline phosphatase, and bacterial luciferase against inactivation due to long-term incubation of the enzymes at room temperature and also against heat inactivation. In addition, HyFnC60 was able to "revive" heat inactivated enzymes. These effects cannot be explained by the direct action of the fullerene molecules upon the enzymes. We suggest that the effects of HyFnC60 on the enzymes are related to the ability of hydrated fullerene C60 molecules to organize thick aqueous shells around them. One of the specific properties of water phase in these shells is its ability to optimize redox reactions, which can support enzyme stability against factors deteriorating their structure.

  4. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells.

    PubMed

    Brenner, Annette K; Andersson Tvedt, Tor Henrik; Bruserud, Øystein

    2016-11-11

    Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.

  5. Solid Phase Micro Extraction (SPME)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Internation Flavors and Fragrances Inc. proprietary research technology, Solid Phase Micro Extraction (SPME) utilizes a special fiber needle placed directly next to the bloom of the living flower to collect the fragrance molecules. SPME was used in the Space Flower experiment aboard STS-95 space shuttle mission, after which Dr. Braja Mookherjee (left) and Subha Patel of IFF will analyze the effects of gravity on the Overnight Scentsation rose plant.

  6. Tumors Induce Complex DNA Damage in Distant Proliferative Tissues in Vivo | Center for Cancer Research

    Cancer.gov

    In radiation biology, a bystander effect occurs when cells not directly exposed to ionizing radiation show increased genomic instability and impaired viability due to the release of signaling molecules by the irradiated cells in their vicinity. Christophe Redon, Ph.D., and colleagues in CCR’s Laboratory of Molecular Pharmacology, decided to ask whether a tumor itself could

  7. Histone Deacetylase Inhibitors in Cell Pluripotency, Differentiation, and Reprogramming

    PubMed Central

    Kretsovali, Androniki; Hadjimichael, Christiana; Charmpilas, Nikolaos

    2012-01-01

    Histone deacetylase inhibitors (HDACi) are small molecules that have important and pleiotropic effects on cell homeostasis. Under distinct developmental conditions, they can promote either self-renewal or differentiation of embryonic stem cells. In addition, they can promote directed differentiation of embryonic and tissue-specific stem cells along the neuronal, cardiomyocytic, and hepatic lineages. They have been used to facilitate embryo development following somatic cell nuclear transfer and induced pluripotent stem cell derivation by ectopic expression of pluripotency factors. In the latter method, these molecules not only increase effectiveness, but can also render the induction independent of the oncogenes c-Myc and Klf4. Here we review the molecular pathways that are involved in the functions of HDAC inhibitors on stem cell differentiation and reprogramming of somatic cells into pluripotency. Deciphering the mechanisms of HDAC inhibitor actions is very important to enable their exploitation for efficient and simple tissue regeneration therapies. PMID:22550500

  8. The intrinsic role of nanoconfinement in chemical equilibrium: evidence from DNA hybridization.

    PubMed

    Rubinovich, Leonid; Polak, Micha

    2013-05-08

    Recently we predicted that when a reaction involving a small number of molecules occurs in a nanometric-scale domain entirely segregated from the surrounding media, the nanoconfinement can shift the position of equilibrium toward products via reactant-product reduced mixing. In this Letter, we demonstrate how most-recently reported single-molecule fluorescence measurements of partial hybridization of ssDNA confined within nanofabricated chambers provide the first experimental confirmation of this entropic nanoconfinement effect. Thus, focusing separately on each occupancy-specific equilibrium constant, quantitatively reveals extra stabilization of the product upon decreasing the chamber occupancy or size. Namely, the DNA hybridization under nanoconfined conditions is significantly favored over the identical reaction occurring in bulk media with the same reactant concentrations. This effect, now directly verified for DNA, can be relevant to actual biological processes, as well as to diverse reactions occurring within molecular capsules, nanotubes, and other functional nanospaces.

  9. Detection of ionized gas molecules in air by graphene and carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Hao, Ji; Li, Bo; Yung, Hyun Young; Liu, Fangze; Hong, Sanghyung; Jung, Yung Joon; Kar, Swastik

    The liquid phase ions sensing by graphene and carbon nanotube has been demonstrated in many publications due to the minimum gate voltage easily shift induced by ionic gating effect, but it is still unclear for vapor phase ions sensing. Here we want to report that the ionized gas molecules in air can be also very sensitively detected by graphene and carbon nanotube networks under very low applied voltage, which shows the very high charge to current amplification factor, the value can be up to 108 A/C, and the direction of current-change can be used to differentiate the positive and negative ions. In further, the field effect of graphene device induced by vapor phase ions was discussed. NSF ECCS 1202376, NSF ECCS CAREER 1351424 and NSF DMREF 1434824, a Northeastern University Provost's Tier-1 seed Grant for interdisciplinary research, Technology Innovation Program (10050481) from Ministry of Trade, Industry & Energy of Republic of Korea.

  10. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules.

    PubMed

    Harper, Jason C; Polsky, Ronen; Wheeler, David R; Brozik, Susan M

    2008-03-04

    A versatile and simple method is introduced for formation of maleimide-functionalized surfaces using maleimide-activated aryl diazonium salts. We show for the first time electrodeposition of N-(4-diazophenyl)maleimide tetrafluoroborate on gold and carbon electrodes which was characterized via voltammetry, grazing angle FTIR, and ellipsometry. Electrodeposition conditions were used to control film thickness and yielded submonolayer-to-multilayer grafting. The resulting phenylmaleimide surfaces served as effective coupling agents for electrode functionalization with ferrocene and the redox-active protein cytochrome c. The utility of phenylmaleimide diazonium toward formation of a diazonium-activated conjugate, followed by direct electrodeposition of the diazonium-modified DNA onto the electrode surface, was also demonstrated. Effective electron transfer was obtained between immobilized molecules and the electrodes. This novel application of N-phenylmaleimide diazonium may facilitate the development of bioelectronic devices including biofuel cells, biosensors, and DNA and protein microarrays.

  11. Imaging angiogenesis.

    PubMed

    Charnley, Natalie; Donaldson, Stephanie; Price, Pat

    2009-01-01

    There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

  12. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.

    2003-01-01

    A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.

  13. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternativemore » assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.« less

  14. Using Perturbation Theory to Compute the Morphological Similarity of Diffusion Tensors

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Royal, Jason; Peterson, Bradley S.

    2008-01-01

    Computing the morphological similarity of Diffusion Tensors (DTs) at neighboring voxels within a DT image, or at corresponding locations across different DT images, is a fundamental and ubiquitous operation in the post-processing of DT images. The morphological similarity of DTs typically has been computed using either the Principal Directions (PDs) of DTs (i.e., the direction along which water molecules diffuse preferentially) or their tensor elements. Although comparing PDs allows the similarity of one morphological feature of DTs to be visualized directly in eigenspace, this method takes into account only a single eigenvector, and it is therefore sensitive to the presence of noise in the images that can introduce error into the estimation of that vector. Although comparing tensor elements, rather than PDs, is comparatively more robust to the effects of noise, the individual elements of a given tensor do not directly reflect the diffusion properties of water molecules. We propose a measure for computing the morphological similarity of DTs that uses both their eigenvalues and eigenvectors, and that also accounts for the noise levels present in DT images. Our measure presupposes that DTs in a homogeneous region within or across DT images are random perturbations of one another in the presence of noise. The similarity values that are computed using our method are smooth (in the sense that small changes in eigenvalues and eigenvectors cause only small changes in similarity), and they are symmetric when differences in eigenvalues and eigenvectors are also symmetric. In addition, our method does not presuppose that the corresponding eigenvectors across two DTs have been identified accurately, an assumption that is problematic in the presence of noise. Because we compute the similarity between DTs using their eigenspace components, our similarity measure relates directly to both the magnitude and the direction of the diffusion of water molecules. The favorable performance characteristics of our measure offer the prospect of substantially improving additional post-processing operations that are commonly performed on DTI datasets, such as image segmentation, fiber tracking, noise filtering, and spatial normalization. PMID:18450533

  15. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.

    PubMed

    Fu, Qiang; Liu, Jie

    2005-07-21

    A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.

  16. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery

    NASA Astrophysics Data System (ADS)

    Wei, Weijia; Zhang, Xiujuan; Chen, Xianfeng; Zhou, Mengjiao; Xu, Ruirui; Zhang, Xiaohong

    2016-04-01

    Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future.Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09167e

  17. Organizing and addressing magnetic molecules.

    PubMed

    Gatteschi, Dante; Cornia, Andrea; Mannini, Matteo; Sessoli, Roberta

    2009-04-20

    Magnetic molecules ranging from simple organic radicals to single-molecule magnets (SMMs) are intensively investigated for their potential applications in molecule-based information storage and processing. The goal of this Article is to review recent achievements in the organization of magnetic molecules on surfaces and in their individual probing and manipulation. We stress that the inherent fragility and redox sensitivity of most SMM complexes, combined with the noninnocent role played by the substrate, ask for a careful evaluation of the structural and electronic properties of deposited molecules going beyond routine methods for surface analysis. Detailed magnetic information can be directly obtained using X-ray magnetic circular dichroism or newly emerging scanning probe techniques with magnetic detection capabilities.

  18. A simple but fully nonlocal correction to the random phase approximation

    NASA Astrophysics Data System (ADS)

    Ruzsinszky, Adrienn; Perdew, John P.; Csonka, Gábor I.

    2011-03-01

    The random phase approximation (RPA) stands on the top rung of the ladder of ground-state density functional approximations. The simple or direct RPA has been found to predict accurately many isoelectronic energy differences. A nonempirical local or semilocal correction to this direct RPA leaves isoelectronic energy differences almost unchanged, while improving total energies, ionization energies, etc., but fails to correct the RPA underestimation of molecular atomization energies. Direct RPA and its semilocal correction may miss part of the middle-range multicenter nonlocality of the correlation energy in a molecule. Here we propose a fully nonlocal, hybrid-functional-like addition to the semilocal correction. The added full nonlocality is important in molecules, but not in atoms. Under uniform-density scaling, this fully nonlocal correction scales like the second-order-exchange contribution to the correlation energy, an important part of the correction to direct RPA, and like the semilocal correction itself. For the atomization energies of ten molecules, and with the help of one fit parameter, it performs much better than the elaborate second-order screened exchange correction.

  19. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2017-01-03

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  20. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2015-06-09

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  1. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2014-07-15

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  2. Structure and Dynamics of Confined Alcohol-Water Mixtures.

    PubMed

    Bampoulis, Pantelis; Witteveen, Jorn P; Kooij, E Stefan; Lohse, Detlef; Poelsema, Bene; Zandvliet, Harold J W

    2016-07-26

    The effect of confinement between mica and graphene on the structure and dynamics of alcohol-water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted alcohol-rich islands on top of an ice layer on mica, surrounded by a pre-existing multilayer water-rich film. These faceted islands are in direct contact with the graphene surface, revealing a preferred adsorption site. Moreover, alcohol adsorption at low relative humidity (RH) reveals a strong preference of the alcohol molecules for the ordered ice interface. The growth dynamics of the alcohol islands is governed by supersaturation, temperature, the free energy of attachment of molecules to the island edge and two-dimensional (2D) diffusion. The measured diffusion coefficients display a size dependence on the molecular size of the alcohols, and are about 6 orders of magnitude smaller than the bulk diffusion coefficients, demonstrating the effect of confinement on the behavior of the alcohols. These experimental results provide new insights into the behavior of multicomponent fluids in confined geometries, which is of paramount importance in nanofluidics and biology.

  3. Molecular Dynamics Simulations of Hydration Effects on Solvation, Diffusivity, and Permeability in Chitosan/Chitin Films.

    PubMed

    McDonnell, Marshall T; Greeley, Duncan A; Kit, Kevin M; Keffer, David J

    2016-09-01

    The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in sustainable, biodegradable chitosan/chitin food packaging films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane has a more homogeneous water distribution with the polymer chains being fully solvated. The diffusivity increased by a factor of 4 for oxygen molecules and by an order of magnitude for water with increasing the humidity. To calculate the Henry's constant and solubility of oxygen in the membranes with changing hydration, the excess chemical potential was calculated via free energy perturbation, thermodynamic integration and direct particle deletion methods. The simulations predicted a higher solubility and permeability for the lower humidity, in contradiction to experimental results. All three methods for calculating the solubility were in good agreement. It was found that the Coulombic interactions in the potential caused the oxygen to bind too strongly to the protonated amine group. Insight from this work will help guide molecular modeling of chitosan/chitin membranes, specifically permeability measurements for small solute molecules. Efforts to chemically tailor chitosan/chitin membranes to favor discrete as opposed to continuous aqueous domains could reduce oxygen permeability.

  4. Anesthetics lower Tc of a 2D miscibility critical point in the plasma membrane

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; Gray, Elly; Veatch, Sarah

    2014-03-01

    Many small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their hydrophobicity and with their potency in inhibiting certain ligand gated ion channels. I will first report on our experiments on the effects that these molecules have on the two-dimensional miscibility critical point observed in cell derived vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs but do not strongly affect the ratio of phases found below Tc. The magnitude of this affect is consistent across the n-alcohols only when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia and at AC50 we see a 4K downward shift in Tc. I will next present a model in which anesthetics interfere with native allosteric regulation of ligand gated channels by the critical membrane, showing that our observed change in critical properties could lead to the previously observed changes in channel conductance without a direct interaction between anesthetic molecules and their target proteins. Finally, I will discuss ongoing experiments that will clarify the role of this membrane effect in mediating the organism level anesthetic response.

  5. Tracking individual membrane proteins and their biochemistry: The power of direct observation.

    PubMed

    Barden, Adam O; Goler, Adam S; Humphreys, Sara C; Tabatabaei, Samaneh; Lochner, Martin; Ruepp, Marc-David; Jack, Thomas; Simonin, Jonathan; Thompson, Andrew J; Jones, Jeffrey P; Brozik, James A

    2015-11-01

    The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Laser Cooling the Diatomic Molecule CaH

    NASA Astrophysics Data System (ADS)

    Velasquez, Joe, III; Di Rosa, Michael

    2014-06-01

    To laser-cool a species, a closed (or nearly closed) cycle is required to dissipate translational energy through many directed laser-photon absorption and subsequent randomly-directed spontaneous emission events. Many atoms lend themselves to such a closed-loop cooling cycle. Attaining laser-cooled molecular species is challenging because of their inherently complex internal structure, yet laser-cooling molecules could lead to studies in interesting chemical dynamics among other applications. Typically, laser-cooled atoms are assembled into molecules through photoassociation or Feschbach resonance. CaH is one of a few molecules whose internal structure is quite atom-like, allowing a nearly closed cycle without the need for many repumping lasers. We will also present our work-to-date on laser cooling this molecule. We employ traditional pulsed atomic/molecular beam techniques with a laser vaporization source to generate species with well-defined translational energies over a narrow range of velocity. In this way, we can apply laser-cooling to most species in the beam along a single dimension (the beam's axis). This project is funded by the LDRD program of the Los Alamos National Laboratory.

  7. Modeling collective behavior of molecules in nanoscale direct deposition processes

    NASA Astrophysics Data System (ADS)

    Lee, Nam-Kyung; Hong, Seunghun

    2006-03-01

    We present a theoretical model describing the collective behavior of molecules in nanoscale direct deposition processes such as dip-pen nanolithography. We show that strong intermolecular interactions combined with nonuniform substrate-molecule interactions can produce various shapes of molecular patterns including fractal-like structures. Computer simulations reveal circular and starlike patterns at low and intermediate densities of preferentially attractive surface sites, respectively. At large density of such surface sites, the molecules form a two-dimensional invasion percolation cluster. Previous experimental results showing anisotropic patterns of various chemical and biological molecules correspond to the starlike regime [P. Manandhar et al., Phys. Rev. Lett. 90, 115505 (2003); J.-H. Lim and C. A. Mirkin, Adv. Mater. (Weinheim, Ger.) 14, 1474 (2002); D. L. Wilson et al., Proc. Natl. Acad. Sci. U.S.A. 98, 13660 (2001); M. Su et al., Appl. Phys. Lett. 84, 4200 (2004); R. McKendry et al., Nano Lett. 2, 713 (2002); H. Zhou et al., Appl. Surf. Sci. 236, 18 (2004); G. Agarwal et al., J. Am. Chem. Soc. 125, 580 (2003)].

  8. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    PubMed

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  9. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.

    PubMed

    Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus

    2008-09-01

    Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods.

  10. Immunomodulatory Effects of Amblyomma variegatum Saliva on Bovine Cells: Characterization of Cellular Responses and Identification of Molecular Determinants

    PubMed Central

    Rodrigues, Valérie; Fernandez, Bernard; Vercoutere, Arthur; Chamayou, Léo; Andersen, Alexandre; Vigy, Oana; Demettre, Edith; Seveno, Martial; Aprelon, Rosalie; Giraud-Girard, Ken; Stachurski, Frédéric; Loire, Etienne; Vachiéry, Nathalie; Holzmuller, Philippe

    2018-01-01

    The tropical bont tick, Amblyomma variegatum, is a tick species of veterinary importance and is considered as one of major pest of ruminants in Africa and in the Caribbean. It causes direct skin lesions, transmits heartwater, and reactivates bovine dermatophilosis. Tick saliva is reported to affect overall host responses through immunomodulatory and anti-inflammatory molecules, among other bioactive molecules. The general objective of this study was to better understand the role of saliva in interaction between the Amblyomma tick and the host using cellular biology approaches and proteomics, and to discuss its impact on disease transmission and/or activation. We first focused on the immuno-modulating effects of semi-fed A. variegatum female saliva on bovine peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages in vitro. We analyzed its immuno-suppressive properties by measuring the effect of saliva on PBMC proliferation, and observed a significant decrease in ConA-stimulated PBMC lymphoproliferation. We then studied the effect of saliva on bovine macrophages using flow cytometry to analyze the expression of MHC-II and co-stimulation molecules (CD40, CD80, and CD86) and by measuring the production of nitric oxide (NO) and pro- or anti-inflammatory cytokines. We observed a significant decrease in the expression of MHC-II, CD40, and CD80 molecules, associated with decreased levels of IL-12-p40 and TNF-α and increased level of IL-10, which could explain the saliva-induced modulation of NO. To elucidate these immunomodulatory effects, crude saliva proteins were analyzed using proteomics with an Orbitrap Elite mass spectrometer. Among the 336 proteins identified in A. variegatum saliva, we evidenced bioactive molecules exhibiting anti-inflammatory, immuno-modulatory, and anti-oxidant properties (e.g., serpins, phospholipases A2, heme lipoprotein). We also characterized an intriguing ubiquitination complex that could be involved in saliva-induced immune modulation of the host. We propose a model for the interaction between A. variegatum saliva and host immune cells that could have an effect during tick feeding by favoring pathogen dissemination or activation by reducing the efficiency of host immune response to the corresponding tick-borne diseases. PMID:29354598

  11. The origin of the 5S ribosomal RNA molecule could have been caused by a single inverse duplication: strong evidence from its sequences.

    PubMed

    Branciamore, Sergio; Di Giulio, Massimo

    2012-04-01

    The secondary structure of the 5S ribosomal RNA (5S rRNA) molecule shows a high degree of symmetry. In order to explain the origin of this symmetry, it has been conjectured that one half of the 5S rRNA molecule was its precursor and that an indirect duplication of this precursor created the other half and thus the current symmetry of the molecule. Here, we have subjected to an empirical test both the indirect duplication model, analysing a total of 684 5S rRNA sequences for complementarity between the two halves of the 5S rRNA, and the direct duplication model analysing in this case the similarity between the two halves of this molecule. In intra- and inter-molecule and intra- and inter-domain comparisons, we find a high statistical support to the hypothesis of a complementarity relationship between the two halves of the 5S rRNA molecule, denying vice versa the hypothesis of similarity between these halves. Therefore, these observations corroborate the indirect duplication model at the expense of the direct duplication model, as reason of the origin of the 5S rRNA molecule. More generally, we discuss and favour the hypothesis that all RNAs and proteins, which present symmetry, did so through gene duplication and not by gradualistic accumulation of few monomers or segments of molecule into a gradualistic growth process. This would be the consequence of the very high propensity that nucleic acids have to be subjected to duplications.

  12. Robust nonparametric quantification of clustering density of molecules in single-molecule localization microscopy

    PubMed Central

    Jiang, Shenghang; Park, Seongjin; Challapalli, Sai Divya; Fei, Jingyi; Wang, Yong

    2017-01-01

    We report a robust nonparametric descriptor, J′(r), for quantifying the density of clustering molecules in single-molecule localization microscopy. J′(r), based on nearest neighbor distribution functions, does not require any parameter as an input for analyzing point patterns. We show that J′(r) displays a valley shape in the presence of clusters of molecules, and the characteristics of the valley reliably report the clustering features in the data. Most importantly, the position of the J′(r) valley (rJm′) depends exclusively on the density of clustering molecules (ρc). Therefore, it is ideal for direct estimation of the clustering density of molecules in single-molecule localization microscopy. As an example, this descriptor was applied to estimate the clustering density of ptsG mRNA in E. coli bacteria. PMID:28636661

  13. Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation

    NASA Astrophysics Data System (ADS)

    Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei

    2017-12-01

    CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG-HCuSNPs-DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.

  14. Direct chemiluminescence of carbon dots induced by potassium ferricyanide and its analytical application

    NASA Astrophysics Data System (ADS)

    Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba; Sorouraddin, Mohammad H.

    2014-03-01

    The chemiluminescence (CL) of water-soluble fluorescent carbon dots (C-dots) induced by direct chemical oxidation was investigated. C-dots were prepared by solvothermal method and characterized by fluorescence spectra and transmission electron microscopy. It was found that K3Fe(CN)6 could directly oxidize C-dots to produce a relatively intense CL emission. The mechanism of CL generation was investigated based on the fluorescence and CL emission spectra and the effect of radical scavengers on the CL intensity. The inhibitive effect of some metal ions and biologically important molecules on the CL intensity of the system was examined and the potential of the system for the determination of these species at trace levels was studied. In order to evaluate the capability of method to real sample analysis, it was applied to the determination of Cr(VI) and adrenaline in water and injection samples, respectively.

  15. Increasing the Analytical Sensitivity by Oligonucleotides Modified with Para- and Ortho-Twisted Intercalating Nucleic Acids – TINA

    PubMed Central

    Schneider, Uffe V.; Géci, Imrich; Jøhnk, Nina; Mikkelsen, Nikolaj D.; Pedersen, Erik B.; Lisby, Gorm

    2011-01-01

    The sensitivity and specificity of clinical diagnostic assays using DNA hybridization techniques are limited by the dissociation of double-stranded DNA (dsDNA) antiparallel duplex helices. This situation can be improved by addition of DNA stabilizing molecules such as nucleic acid intercalators. Here, we report the synthesis of a novel ortho-Twisted Intercalating Nucleic Acid (TINA) amidite utilizing the phosphoramidite approach, and examine the stabilizing effect of ortho- and para-TINA molecules in antiparallel DNA duplex formation. In a thermal stability assay, ortho- and para-TINA molecules increased the melting point (Tm) of Watson-Crick based antiparallel DNA duplexes. The increase in Tm was greatest when the intercalators were placed at the 5′ and 3′ termini (preferable) or, if placed internally, for each half or whole helix turn. Terminally positioned TINA molecules improved analytical sensitivity in a DNA hybridization capture assay targeting the Escherichia coli rrs gene. The corresponding sequence from the Pseudomonas aeruginosa rrs gene was used as cross-reactivity control. At 150 mM ionic strength, analytical sensitivity was improved 27-fold by addition of ortho-TINA molecules and 7-fold by addition of para-TINA molecules (versus the unmodified DNA oligonucleotide), with a 4-fold increase retained at 1 M ionic strength. Both intercalators sustained the discrimination of mismatches in the dsDNA (indicated by ΔTm), unless placed directly adjacent to the mismatch – in which case they partly concealed ΔTm (most pronounced for para-TINA molecules). We anticipate that the presented rules for placement of TINA molecules will be broadly applicable in hybridization capture assays and target amplification systems. PMID:21673988

  16. Modeled Microgravity Inhibits Apoptosis in Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Pellis, Neal R.

    1999-01-01

    Impairment of the immunity in astronauts and cosmonauts even in short term flights is a recognized risk. Long term orbital space missions and anticipated interplanetary flights increase the concern for more pronounced effects on the immune system with potential clinical consequences. Impairment of the immunity in space may be due tonumerous physiological changes caused by space-related factors, which in turn affect the immune system, or alternatively, it may be due to direct effects of different factors encountered in space on lymphoid cells and their interactions. Indeed, in modeled microgravity (MMG) experiments on Earth we and others showed that microgravity directly affects multiple lymphocyte functions. It interferes with expression of cell surface molecules, causes inhibition of lymphocyte locomotion, suppresses polyclopal and antigen-specific lymphocyte activation, selectively inhibits protein kinase C (PKC) isoforms. Some of these effects were also confirmed in cell culture experiments in real space conditions during Spacelab, Biokosmos and Shuttle Missions. The results of these studies, taken together, strongly indicated that microgravity interferes with fundamental biological processes associated with functional and structural changes in cell surface membranes, cell surface molecules and in their interaction. Based on the data and on their interpretation, we hypothesized that microgravity in addition to observed functional changes affects programmed cell death (PCD) in lymphocyte populations and that this mechanism could contribute to the impairment of the immunity.

  17. Perturbed path integrals in imaginary time: Efficiently modeling nuclear quantum effects in molecules and materials

    NASA Astrophysics Data System (ADS)

    Poltavsky, Igor; DiStasio, Robert A.; Tkatchenko, Alexandre

    2018-03-01

    Nuclear quantum effects (NQE), which include both zero-point motion and tunneling, exhibit quite an impressive range of influence over the equilibrium and dynamical properties of molecules and materials. In this work, we extend our recently proposed perturbed path-integral (PPI) approach for modeling NQE in molecular systems [I. Poltavsky and A. Tkatchenko, Chem. Sci. 7, 1368 (2016)], which successfully combines the advantages of thermodynamic perturbation theory with path-integral molecular dynamics (PIMD), in a number of important directions. First, we demonstrate the accuracy, performance, and general applicability of the PPI approach to both molecules and extended (condensed-phase) materials. Second, we derive a series of estimators within the PPI approach to enable calculations of structural properties such as radial distribution functions (RDFs) that exhibit rapid convergence with respect to the number of beads in the PIMD simulation. Finally, we introduce an effective nuclear temperature formalism within the framework of the PPI approach and demonstrate that such effective temperatures can be an extremely useful tool in quantitatively estimating the "quantumness" associated with different degrees of freedom in the system as well as providing a reliable quantitative assessment of the convergence of PIMD simulations. Since the PPI approach only requires the use of standard second-order imaginary-time PIMD simulations, these developments enable one to include a treatment of NQE in equilibrium thermodynamic properties (such as energies, heat capacities, and RDFs) with the accuracy of higher-order methods but at a fraction of the computational cost, thereby enabling first-principles modeling that simultaneously accounts for the quantum mechanical nature of both electrons and nuclei in large-scale molecules and materials.

  18. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.

    PubMed

    Thomas, Andrew S; Elcock, Adrian H

    2006-06-21

    Proteins and other biomolecules function in cellular environments that contain significant concentrations of dissolved salts and even simple salts such as NaCl can significantly affect both the kinetics and thermodynamics of macromolecular interactions. As one approach to directly observing the effects of salt on molecular associations, explicit-solvent molecular dynamics (MD) simulations have been used here to model the association of pairs of the amino acid analogues acetate and methylammonium in aqueous NaCl solutions of concentrations 0, 0.1, 0.3, 0.5, 1, and 2 M. By performing simulations of 500 ns duration for each salt concentration properly converged estimates of the free energy of interaction of the two molecules have been obtained for all intermolecular separation distances and geometries. The resulting free energy surfaces are shown to give significant new insights into the way salt modulates interactions between molecules containing both charged and hydrophobic groups and are shown to provide valuable new benchmarks for testing the description of salt effects provided by the simpler but faster Poisson-Boltzmann method. In addition, the complex many-dimensional free energy surfaces are shown to be decomposable into a number of one-dimensional effective energy functions. This decomposition (a) allows an unambiguous view of the qualitative differences between the salt dependence of electrostatic and hydrophobic interactions, (b) gives a clear rationalization for why salt exerts different effects on protein-protein association and dissociation rates, and (c) produces simplified energy functions that can be readily used in much faster Brownian dynamics simulations.

  19. NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Shi, Changmin

    2018-03-01

    Using density functional theory (DFT), we predict the NO-sensing performance of monolayer MoS2 (MoS2-MLs) with and without MoS3-vacancy/S-vacancy defects. Our theoretical results demonstrate that MoS3- and S-vacancy defective MoS2-MLs show stronger chemisorption and greater electron transfer effects than pure MoS2-MLs. The charge transfer analysis showed pure and defective MoS2-MLs all act as donors. Both MoS3-vacancy and S-vacancy defects induce dramatic changes of electronic properties of MoS2-MLs, which have direct relationship with gas sensing performance. In addition, S-vacancy defect leads to more electrons transfer to NO molecule than MoS3-vacancy defect. The H2O molecule urges more electrons transfer from MoS3- or S-vacancy defective MoS2-MLs to NO molecule. We believe that this calculation results will provide some information for future experiment.

  20. Solvent-driven reductive activation of carbon dioxide by gold anions.

    PubMed

    Knurr, Benjamin J; Weber, J Mathias

    2012-11-14

    Catalytic activation and electrochemical reduction of CO(2) for the formation of chemically usable feedstock and fuel are central goals for establishing a carbon neutral fuel cycle. The role of solvent molecules in catalytic processes is little understood, although solvent-solute interactions can strongly influence activated intermediate species. We use vibrational spectroscopy of mass-selected Au(CO(2))(n)(-) cluster ions to probe the solvation of AuCO(2)(-) as a model for a reactive intermediate in the reductive activation of a CO(2) ligand by a single-atom catalyst. For the first few solvent molecules, solvation of the complex preferentially occurs at the CO(2) moiety, enhancing reductive activation through polarization of the excess charge onto the partially reduced ligand. At higher levels of solvation, direct interaction of additional solvent molecules with the Au atom diminishes reduction. The results show how the solvation environment can enhance or diminish the effects of a catalyst, offering design criteria for single-atom catalyst engineering.

  1. Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Zheng, Yingxuan; Xiong, Wei; Peng, Cheng; Zhang, Yifan; Duan, Ran; Che, Yanke; Zhao, Jincai

    2016-06-01

    Kinetic control over the assembly pathways towards novel metastable functional materials or far-from-equilibrium systems has been much less studied compared to the thermodynamic equilibrium self-assembly. Herein, we report the distinct morphological transformation between nanocoils and nanoribbons in the self-assembly of unsymmetric perylene diimide (PDI) molecules. We demonstrate that the morphological transformation of the kinetically trapped assemblies into the thermodynamically stable forms proceeds via two distinct mechanisms, i.e., a direct structural rearrangement (molecule 1 or 2) and a fragmentation-recombination mechanism (molecule 4), respectively. The subtle interplay of the steric hindrance of the bulky substituents and the flexibility of the linker structure between the bulky moiety and the perylene core was demonstrated to enable the effective modulation of the energetic landscape of the assemblies and thus modulation of the assembly pathways. Herein, our work presents a new approach to control the self-assembly pathways and thereby can be used to achieve novel far-from-equilibrium systems.

  2. Translational, rotational and vibrational relaxation dynamics of a solute molecule in a non-interacting solvent.

    PubMed

    Grubb, Michael P; Coulter, Philip M; Marroux, Hugo J B; Hornung, Balazs; McMullen, Ryan S; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2016-11-01

    Spectroscopically observing the translational and rotational motion of solute molecules in liquid solutions is typically impeded by their interactions with the solvent, which conceal spectral detail through linewidth broadening. Here we show that unique insights into solute dynamics can be made with perfluorinated solvents, which interact weakly with solutes and provide a simplified liquid environment that helps to bridge the gap in our understanding of gas- and liquid-phase dynamics. Specifically, we show that in such solvents, the translational and rotational cooling of an energetic CN radical can be observed directly using ultrafast transient absorption spectroscopy. We observe that translational-energy dissipation within these liquids can be modelled through a series of classic collisions, whereas classically simulated rotational-energy dissipation is shown to be distinctly faster than experimentally measured. We also observe the onset of rotational hindering from nearby solvent molecules, which arises as the average rotational energy of the solute falls below the effective barrier to rotation induced by the solvent.

  3. Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Itikawa, Y.

    1976-01-01

    The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

  4. Shear-induced desorption of isolated polymer molecules from a planar wall

    NASA Astrophysics Data System (ADS)

    Dutta, Sarit; Dorfman, Kevin; Kumar, Satish

    2014-03-01

    Shear-induced desorption of isolated polymer molecules is studied using Brownian dynamics simulations. The polymer molecules are modeled as freely jointed bead-spring chains interacting with a planar wall via a short-range potential. The simulations include both intrachain and chain-wall hydrodynamic interactions. Shear flow is found to cause chain flattening, resulting at low shear rates in an increased fraction of chain segments bound to the wall. However, above a critical shear rate the chains desorb completely. The desorption process is nucleated by random protrusions in the shear gradient direction which evolve under the combined effect of drag, hydrodynamic interaction, and vorticity-induced rotation, and subsequently lead to recapture. Above the critical shear rate, these protrusions grow in length until the entire chain is peeled off the wall. For free-draining chains, the protrusions are not sustained and no desorption is observed even at shear rates much higher than the critical value. These simulations can help in interpreting experiments on shear-induced desorption of polymer films and brushes.

  5. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors.

    PubMed

    Thurber, Greg M; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer H; Weissleder, Ralph

    2014-04-01

    The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging, given the complex tumor microenvironment including intra- and intertumor heterogeneity. The difficulty in studying this distribution is even more significant for small-molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small-molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model.

  6. Effect of Small Molecule Modification on Single Cell Pharmacokinetics of PARP Inhibitors

    PubMed Central

    Thurber, Greg M.; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer; Weissleder, Ralph

    2014-01-01

    The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging given the complex tumor microenvironment including intra- and inter-tumor heterogeneity. The difficulty in studying this distribution is even more significant for small molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model. PMID:24552776

  7. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field.

    PubMed

    Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi

    2017-02-23

    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10 6  A·cm -2 , or about 1 × 10 25 electrons s -1 cm -2 . This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10 13 electrons per cm 2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.

  8. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field

    PubMed Central

    Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi

    2017-01-01

    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054

  9. The oxidation of methionine-54 of epoetinum alfa does not affect molecular structure or stability, but does decrease biological activity.

    PubMed

    Labrenz, Steven R; Calmann, Melissa A; Heavner, George A; Tolman, Glen

    2008-01-01

    Erythropoietin therapy is used to treat severe anemia in renal failure and chemotherapy patients. One of these therapies based on recombinant human erythropoietin is marketed under the trade name of EPREX and utilizes epoetinum alfa as the active pharmaceutical ingredient. The effect of oxidation of methionine-54 on the structure and stability of the erythropoietin molecule has not been directly tested. We have observed partial and full chemical oxidation of methionine-54 to methionine-54 sulfoxide, accomplished using tert-Butylhydroperoxide and hydrogen peroxide, respectively. A blue shift in the fluorescence center of spectral mass wavelength was observed as a linear response to the level of methionine sulfoxide in the epoetinum alfa molecule, presumably arising from a local change in the environment near tryptophan-51, as supported by potassium iodide quenching studies. Circular dichroism studies demonstrated no change in the folded structure of the molecule with methionine oxidation. The thermal unfolding profiles of partial and completely oxidized epoetinum alfa overlap, with a T(m) of 49.5 degrees C across all levels of methionine sulfoxide content. When the protein was tested for activity, a decrease in biological activity was observed, correlating with methionine sulfoxide levels. An allosteric effect between Met54, Trp51, and residues involved in receptor binding is proposed. These results indicate that methionine oxidation has no effect on the folded structure and global thermodynamic stability of the recombinant human erythropoietin molecule. Oxidation can affect potency, but only at levels significantly in excess of those seen in EPREX.

  10. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    PubMed

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  11. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion

    PubMed Central

    Hovingh, Elise S.; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed. PMID:28066340

  12. Direct Observation of Individual Charges and Their Dynamics on Graphene by Low-Energy Electron Holography.

    PubMed

    Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-09-14

    Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.

  13. Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil

    PubMed Central

    Tiberti, Matteo

    2017-01-01

    New promising avenues for the pharmacological treatment of skeletal and heart muscle diseases rely on direct sarcomeric modulators, which are molecules that can directly bind to sarcomeric proteins and either inhibit or enhance their activity. A recent breakthrough has been the discovery of the myosin activator omecamtiv mecarbil (OM), which has been shown to increase the power output of the cardiac muscle and is currently in clinical trials for the treatment of heart failure. While the overall effect of OM on the mechano-chemical cycle of myosin is to increase the fraction of myosin molecules in the sarcomere that are strongly bound to actin, the molecular basis of its action is still not completely clear. We present here a Molecular Dynamics study of the motor domain of human cardiac myosin bound to OM, where the effects of the drug on the dynamical properties of the protein are investigated for the first time with atomistic resolution. We found that OM has a double effect on myosin dynamics, inducing a) an increased coupling of the motions of the converter and lever arm subdomains to the rest of the protein and b) a rewiring of the network of dynamic correlations, which produces preferential communication pathways between the OM binding site and distant functional regions. The location of the residues responsible for these effects suggests possible strategies for the future development of improved drugs and the targeting of specific cardiomyopathy-related mutations. PMID:29108014

  14. Theoretical underpinning of the single-molecule-dilution (SMD) method of direct haplotype resolution.

    PubMed Central

    Stephens, J C; Rogers, J; Ruano, G

    1990-01-01

    In a recent paper we have shown that DNA haplotypes of multiply heterozygous individuals can be resolved directly by polymerase-chain-reaction (PCR) amplification of a single molecule of genomic template. Our method (the single-molecule-dilution [SMD] method) relies on the stochastic separation of maternal and paternal alleles at high dilution. The stochasticity of separation and the potential for DNA shearing (which could separate the loci of interest) are two factors that can compromise the results of the experiment. This paper explores the consequences of these two factors and shows that the SMD method can be expected to work very reliably even in the presence of a moderate amount of DNA shearing. PMID:2339707

  15. New Modeling Approaches to Study DNA Damage by the Direct and Indirect Effects of Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2012-01-01

    DNA is damaged both by the direct and indirect effects of radiation. In the direct effect, the DNA itself is ionized, whereas the indirect effect involves the radiolysis of the water molecules surrounding the DNA and the subsequent reaction of the DNA with radical products. While this problem has been studied for many years, many unknowns still exist. To study this problem, we have developed the computer code RITRACKS [1], which simulates the radiation track structure for heavy ions and electrons, calculating all energy deposition events and the coordinates of all species produced by the water radiolysis. In this work, we plan to simulate DNA damage by using the crystal structure of a nucleosome and calculations performed by RITRACKS. The energy deposition events are used to calculate the dose deposited in nanovolumes [2] and therefore can be used to simulate the direct effect of the radiation. Using the positions of the radiolytic species with a radiation chemistry code [3] it will be possible to simulate DNA damage by indirect effect. The simulation results can be compared with results from previous calculations such as the frequencies of simple and complex strand breaks [4] and with newer experimental data using surrogate markers of DNA double ]strand breaks such as . ]H2AX foci [5].

  16. Small-Molecule Hormones: Molecular Mechanisms of Action

    PubMed Central

    Budzińska, Monika

    2013-01-01

    Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406

  17. Bias-dependent local structure of water molecules at an electrochemical interface

    NASA Astrophysics Data System (ADS)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre R.; Fernandez-Serra, Marivi

    2015-03-01

    Following the need for new - and renewable - sources of energy worldwide, fuel cells using electrocatalysts can be thought of as a viable option. Understanding the local structure of water molecules at the interfaces of the metallic electrodes is a key problem. Notably the system is under an external potential bias, which makes the task of simulating this setup difficult. A first principle description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemical processes. There, the metal is usually charged. To correctly compute the effect of an external bias potential applied to electrodes, we combine density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), with and without van der Waals interactions. In this work, we apply this methodology to study the electronic properties and forces of one water molecule and water monolayer at the interface of gold electrodes. We find that the water molecule has a different torque direction depending on the sign of the bias applied. We also show that it changes the position of the most stable configuration indicating that the external bias plays an important role in the structural properties of the interface. We acknowledge financial support from FAPESP.

  18. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis.

    PubMed

    Chen, Wei; Zhang, Shan; Jiang, Peixia; Yao, Jun; He, Yongzhi; Chen, Lincai; Gui, Xiwu; Dong, Zhiyang; Tang, Shuang-Yan

    2015-07-01

    Advanced high-throughput screening methods for small molecules may have important applications in the metabolic engineering of the biosynthetic pathways of these molecules. Ectoine is an excellent osmoprotectant that has been widely used in cosmetics. In this study, the Escherichia coli regulatory protein AraC was engineered to recognize ectoine as its non-natural effector and to activate transcription upon ectoine binding. As an endogenous reporter of ectoine, the mutated AraC protein was successfully incorporated into high-throughput screening of ectoine hyper-producing strains. The ectoine biosynthetic cluster from Halomonas elongata was cloned into E. coli. By engineering the rate-limiting enzyme L-2,4-diaminobutyric acid (DABA) aminotransferase (EctB), ectoine production and the specific activity of the EctB mutant were increased. Thus, these results demonstrated the effectiveness of engineering regulatory proteins into sensitive and rapid screening tools for small molecules and highlighted the importance and efficacy of directed evolution strategies applied to the engineering of genetic components for yield improvement in the biosynthesis of small molecules. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Enzyme/indicator optrodes for detection of heavy metal ions and pesticides

    NASA Astrophysics Data System (ADS)

    Nabok, Alexei V.; Ray, Asim K.; Starodub, Nickolaj F.; Dowker, Kenneth P.

    2000-12-01

    Composite films containing enzyme and indicator molecules were produced by means of polyelectrolyte self-assembly. These membranes provide two functions: (i) molecular recognition of the substratum by respective enzyme, and (ii) optrode transducing, when the products o the substratum decomposition affect optical spectra of indicator molecules. Apart from direct registration of enzyme reactions, inhibition reactions can also be monitored with this method. Particularly, heavy metal salts and phosphor organic pesticides acting as inhibitors for Urease and Cholinesterase, respectively, were registered. Composite PESA films were deposited onto glass slides and consisted of several layers of poly(alylamine) hydrochloride (PAA) alternated with indicator molecules, either Cyclo-tetra- chromotropylene or Thymol Blue, both containing SO3- Na+ groups. Then a few layers of PAA/enzyme were deposited on top. A typical structure of the samples was (PAA/Indicator)n/(PAA/Enzyme)m/PAA with n equals 1-5. The obtained films were characterized with UV-visible absorption spectroscopy. The effect of the substrate decomposition on the UV-vis spectra of respective indicator molecules was studied. The inhibition of enzymes Urease and Cholinesterase by heavy metal ions and phosphor organic pesticide, respectively was found. The results obtained show the prospects towards development of optical enzyme sensor arrays.

  20. Model of biological quantum logic in DNA.

    PubMed

    Mihelic, F Matthew

    2013-08-02

    The DNA molecule has properties that allow it to act as a quantum logic processor. It has been demonstrated that there is coherent conduction of electrons longitudinally along the DNA molecule through pi stacking interactions of the aromatic nucleotide bases, and it has also been demonstrated that electrons moving longitudinally along the DNA molecule are subject to a very efficient electron spin filtering effect as the helicity of the DNA molecule interacts with the spin of the electron. This means that, in DNA, electrons are coherently conducted along a very efficient spin filter. Coherent electron spin is held in a logically and thermodynamically reversible chiral symmetry between the C2-endo and C3-endo enantiomers of the deoxyribose moiety in each nucleotide, which enables each nucleotide to function as a quantum gate. The symmetry break that provides for quantum decision in the system is determined by the spin direction of an electron that has an orbital angular momentum that is sufficient to overcome the energy barrier of the double well potential separating the C2-endo and C3-endo enantiomers, and that enantiomeric energy barrier is appropriate to the Landauer limit of the energy necessary to randomize one bit of information.

  1. Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas.

    PubMed

    Hou, Huaming; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E

    2017-07-18

    Recently, laser ablated molecular isotopic spectrometry (LAMIS) has expanded its capability to explore molecules formation mechanism in laser-induced plasma in addition to isotope analysis. LAMIS is a powerful tool for tracking the origination of atoms that is involved in formation of investigated molecules by labeling atoms with their isotopic substitution. The evolutionary formation pathways of organic molecules, especially of C 2 dimers and CN radicals, were frequently reported. However, very little is known about the formation pathways for metallic radicals and heterodimers in laser ablated plasma. This research focuses on elucidating the formation pathways of AlO radicals in femtosecond laser ablated plasma from 18 O-labeled Al 2 O 3 pellet. Plasmas expanding with strong forward bias in the direction normal to the sample surface were generated in the wake of a weakly ionized channel created by a femtosecond laser. The formation mechanism of AlO and influence of air were investigated with multiple plasma diagnostic methods such as monochromatic fast gating imaging, spatiotemporal resolved optical emission spectroscopy, and LAMIS. An advanced LAMIS fitting procedure was used to deduce the spatiotemporal distributions of Al 18 O and Al 16 O number densities and also their ratios. We found that the Al 16 O/Al 18 O number density ratio is higher for plasma portion closer to the sample surface, which suggests that chemical reactions between the plasma plume and ambient air are more intense at the tail of the plasma. The results also reveals that direct association of free Al and O atoms is the main mechanism for the formation of AlO at the early stage of the plasma. To the contrast, chemical reactions between plasma materials and ambient oxygen molecules and the isotope exchange effect are the dominant mechanisms of the formation of AlO and evolution of Al 16 O/Al 18 O number density ratio at the late stage of the plasma.

  2. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    PubMed

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that bear them.

  3. Design and chemical synthesis of iodine-containing molecules for application to solar-pumped I* lasers

    NASA Technical Reports Server (NTRS)

    Shiner, Christopher S.

    1986-01-01

    Research is directed toward the design and synthesis of new media for solar-pumped I* lasers. Since the most effective existing lasants are perfluoroalkyl iodides, a strategy was proposed for the development of improved materials of this type with absorption maxima at 300 nm. Absorption spectra were synthesized and measured for prototypical species containing iodine bound to boron, iron, and cobalt.

  4. On the optimization, and the intensity dependence, of the excitation rate for the absorption of two-photons due to the direct permanent dipole moment excitation mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meath, William J., E-mail: wmeath@uwo.ca

    2016-07-15

    A model two-level dipolar molecule, and the rotating wave approximation and perturbation theory, are used to investigate the optimization and the laser intensity dependence of the two-photon excitation rate via the direct permanent dipole mechanism. The rate is proportional to the square of the laser intensity I only for small intensities and times when perturbation theory is applicable. An improvement on perturbation theory is provided by a small time RWA result for the rate which is not proportional to I{sup 2}; rather it is proportional to the square of an effective intensity I{sub eff}. For each laser intensity the optimummore » RWA excitation rate as a function of time, for low intensities, is proportional to I, not I{sup 2}, and for high intensities it is proportional to I{sub eff}. For a given two-photon transition the laser-molecule coupling optimizes for an intensity I{sub max} which, for example, leads to a maximum possible excitation rate as a function of time. The validity of the RWA results of this paper, and the importance of including the effects of virtual excited states, are also discussed briefly.« less

  5. Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects

    NASA Astrophysics Data System (ADS)

    Gramlich, Michael W.; Conway, Leslie; Liang, Winnie H.; Labastide, Joelle A.; King, Stephen J.; Xu, Jing; Ross, Jennifer L.

    2017-03-01

    The structure of the microtubule is tightly regulated in cells via a number of microtubule associated proteins and enzymes. Microtubules accumulate structural defects during polymerization, and defect size can further increase under mechanical stresses. Intriguingly, microtubule defects have been shown to be targeted for removal via severing enzymes or self-repair. The cell’s control in defect removal suggests that defects can impact microtubule-based processes, including molecular motor-based intracellular transport. We previously demonstrated that microtubule defects influence cargo transport by multiple kinesin motors. However, mechanistic investigations of the observed effects remained challenging, since defects occur randomly during polymerization and are not directly observable in current motility assays. To overcome this challenge, we used end-to-end annealing to generate defects that are directly observable using standard epi-fluorescence microscopy. We demonstrate that the annealed sites recapitulate the effects of polymerization-derived defects on multiple-motor transport, and thus represent a simple and appropriate model for naturally-occurring defects. We found that single kinesins undergo premature dissociation, but not preferential pausing, at the annealed sites. Our findings provide the first mechanistic insight to how defects impact kinesin-based transport. Preferential dissociation on the single-molecule level has the potential to impair cargo delivery at locations of microtubule defect sites in vivo.

  6. Overcoming the “Oxidant Problem”: Strategies to Use O2 as the Oxidant in Organometallic C–H Oxidation Reactions Catalyzed by Pd (and Cu)

    PubMed Central

    Campbell, Alison N.; Stahl, Shannon S.

    2012-01-01

    Oxidation reactions are key transformations in organic chemistry because they can increase chemical complexity and incorporate heteroatom substituents into carbon-based molecules. This principle is manifested in the conversion of petrochemical feedstocks into commodity chemicals and in the synthesis of fine chemicals, pharmaceuticals, and other complex organic molecules. The utility and function of such molecules correlate directly with the presence and specific placement of oxygen and nitrogen heteroatoms and other functional groups within the molecules. PMID:22263575

  7. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  8. Deformation of DNA molecules by hydrodynamic focusing

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Lee, Yi-Kuen; Ho, Chih-Ming

    2003-12-01

    The motion of a DNA molecule in a solvent flow reflects the deformation of a nano/microscale flexible mass spring structure by the forces exerted by the fluid molecules. The dynamics of individual molecules can reveal both fundamental properties of the DNA and basic understanding of the complex rheological properties of long-chain molecules. In this study, we report the dynamics of isolated DNA molecules under homogeneous extensional flow. Hydrodynamic focusing generates homogeneous extensional flow with uniform velocity in the transverse direction. The deformation of individual DNA molecules in the flow was visualized with video fluorescence microscopy. A coil stretch transition was observed when the Deborah number (De) is larger than 0.8. With a sudden stopping of the flow, the DNA molecule relaxes and recoils. The longest relaxation time of T2 DNA was determined to be 0.63 s when scaling viscosity to 0.9 cP.

  9. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells.

    PubMed

    Ellis, Robert J; Small, David M; Ng, Keng Lim; Vesey, David A; Vitetta, Luis; Francis, Ross S; Gobe, Glenda C; Morais, Christudas

    2018-06-01

    Indoxyl sulfate (IS) is a protein-bound uremic toxin that accumulates in patients with declining kidney function. Although generally thought of as a consequence of declining kidney function, emerging evidence demonstrates direct cytotoxic role of IS on endothelial cells and cardiomyocytes, largely through the expression of pro-inflammatory and pro-fibrotic factors. The direct toxicity of IS on human kidney proximal tubular epithelial cells (PTECs) remains a matter of debate. The current study explored the effect of IS on primary cultures of human PTECs and HK-2, an immortalized human PTEC line. Pathologically relevant concentrations of IS induced apoptosis and increased the expression of the proapoptotic molecule Bax in both cell types. IS impaired mitochondrial metabolic activity and induced cellular hypertrophy. Furthermore, statistically significant upregulation of pro-fibrotic (transforming growth factor-β, fibronectin) and pro-inflammatory molecules (interleukin-6, interleukin-8, and tumor necrosis factor-α) in response to IS was observed. Albumin had no influence on the toxicity of IS. The results of this study suggest that IS directly induced a pro-inflammatory and pro-fibrotic phenotype in proximal tubular cells. In light of the associated apoptosis, hypertrophy, and metabolic dysfunction, this study demonstrates that IS may play a role in the progression of chronic kidney disease.

  10. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction

    NASA Astrophysics Data System (ADS)

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu

    2009-06-01

    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  11. Studies of Rotationally and Vibrationally Inelastic Collisions of NaK with Atomic Perturbers

    NASA Astrophysics Data System (ADS)

    Richter, Kara M.

    This dissertation discusses investigations of vibrationally and rotationally inelastic collisions of NaK with argon, helium and potassium as collision partners. We have investigated collisions of NaK molecules in the 2(A) 1Sigma+, state with argon and helium collision partners in a laser-induced fluorescence (LIF) experiment. The pump laser prepares the molecules in particular ro-vibrational (v, J) levels in the 2(A) 1Sigma+, state. These excited molecules then emit fluorescence as they make transitions back to the ground [2(X)1Sigma +] state, and this fluorescence is collected by a Bomem Fourier-transform spectrometer. Weak collisional satellite lines appear flanking strong, direct lines in the recorded spectra. These satellite lines are due to collisions of the NaK molecule in the 2(A)1Sigma+, state with noble gas and alkali atom perturbers, which carry population to nearby rotational levels [(v, J) →(v, J + DeltaJ)] or to various rotational levels of nearby vibrational levels, [(v, J)→ (v + Deltav, J + DeltaJ)]. Ratios of the intensity of each collisional line to the intensity of the direct line then yields information pertaining to the transfer of population in the collision. Our results show a propensity for DeltaJ = even collisions of NaK with noble gas atoms, which is slightly more pronounced for collisions with helium than with argon. Such a DeltaJ = even propensity was not observed in the vibrationally inelastic collisions. Although it would be desirable to operate in the single collision regime, practical considerations make that difficult to achieve. Therefore, we have developed a method to estimate the effects of multiple collisions on our measured rate coefficients and have obtained approximate corrected values.

  12. On a fast calculation of structure factors at a subatomic resolution.

    PubMed

    Afonine, P V; Urzhumtsev, A

    2004-01-01

    In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 A. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.

  13. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging.

    PubMed

    Kwon, Sung-Pil; Jeon, Sangmin; Lee, Sung-Hoon; Yoon, Hong Yeol; Ryu, Ju Hee; Choi, Dayil; Kim, Jeong-Yeon; Kim, Jiwon; Park, Jae Hyung; Kim, Dong-Eog; Kwon, Ick Chan; Kim, Kwangmeyung; Ahn, Cheol-Hee

    2018-01-01

    Thrombosis is an important pathophysiologic phenomenon in various cardiovascular diseases, which can lead to oxygen deprivation and infarction of tissues by generation of a thrombus. Thus, direct thrombus imaging can provide beneficial in diagnosis and therapy of thrombosis. Herein, we developed thrombin-activatable fluorescent peptide (TAP) incorporated silica-coated gold nanoparticles (TAP-SiO 2 @AuNPs) for direct imaging of thrombus by dual near-infrared fluorescence (NIRF) and micro-computed tomography (micro-CT) imaging, wherein TAP molecules were used as targeted thrombin-activatable peptide probes for thrombin-specific NIRF imaging. The freshly prepared TAP-SiO 2 @AuNPs had an average diameter of 39.8 ± 2.55 nm and they showed the quenched NIRF signal in aqueous condition, due to the excellent quenching effect of TAP molecules on the silica-gold nanoparticle surface. However, 30.31-fold higher NIRF intensity was rapidly recovered in the presence of thrombin in vitro, due to the thrombin-specific cleavage of quenched TAP molecules on the gold particle surface. Furthermore, TAP-SiO 2 @AuNPs were successfully accumulated in thrombus by their particle size-dependent capturing property, and they presented a potential X-ray absorption property in a dose-dependent manner. Finally, thrombotic lesion was clearly distinguished from peripheral tissues by dual NIRF/micro-CT imaging after intravenous injection of TAP-SiO 2 @AuNPs in the in situ thrombotic mouse model, simultaneously. This study showed that thrombin-activatable fluorescent peptide incorporated silica-coated gold nanoparticles can be potentially used as a dual imaging probe for direct thrombus imaging and therapy in clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-01

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  15. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less

  16. Testing a new analytical approach for determination of vibrational transition moment directions in low symmetry planar molecules: 1-D- and 2-D-naphthalene.

    PubMed

    Rogojerov, Marin; Keresztury, Gábor; Kamenova-Nacheva, Mariana; Sundius, Tom

    2012-12-01

    A new analytical approach for improving the precision in determination of vibrational transition moment directions of low symmetry molecules (lacking orthogonal axes) is discussed in this paper. The target molecules are partially uniaxially oriented in nematic liquid crystalline solvent and are studied by IR absorption spectroscopy using polarized light. The fundamental problem addressed is that IR linear dichroism measurements of low symmetry molecules alone cannot provide sufficient information on molecular orientation and transition moment directions. It is shown that computational prediction of these quantities can supply relevant complementary data, helping to reveal the hidden information content and achieve a more meaningful and more precise interpretation of the measured dichroic ratios. The combined experimental and theoretical/computational method proposed by us recently for determination of the average orientation of molecules with C(s) symmetry has now been replaced by a more precise analytical approach. The new method introduced and discussed in full detail here uses a mathematically evaluated angle between two vibrational transition moment vectors as a reference. The discussion also deals with error analysis and estimation of uncertainties of the orientational parameters. The proposed procedure has been tested in an analysis of the infrared linear dichroism (IR-LD) spectra of 1-D- and 2-D-naphthalene complemented with DFT calculations using the scaled quantum mechanical force field (SQM FF) method. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Update on the direct n-n scattering experiment at the reactor YAGUAR

    NASA Astrophysics Data System (ADS)

    Stephenson, S. L.; Crawford, B. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Sharapov, E. I.; Shvetsov, V. N.; Strelkov, A. V.; Levakov, B. G.; Lyzhin, A. E.; Chernukhin, Yu. I.; Howell, C. R.; Mitchell, G. E.; Tornow, W.; Showalter-Bucher, R. A.

    2013-10-01

    The first direct measurement of the 1S0 neutron-neutron scattering experiment using the YAGUAR aperiodic reactor at the Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics has preliminary results. Thermal neutrons are scattered from a thermal neutron ``gas'' within the scattering chamber of the reactor and measured via time-of-flight. These initial results show an unexpectedly large thermal neutron background now understood to be from radiation-induced desorption within the scattering chamber. Analysis of the neutron time-of-flight spectra suggests neutron scattering from H2 and possibly H2O molecules. An experimental value for the desorption yield ηγ of 0.02 molecules/gamma agrees with modeled results. Techniques to reduce the effect of the nonthermal desorption will be presented. This work was supported in part by ISTC project No. 2286, Russia Found. Grant 01-02-17181, the US DOE grants Nos. DE-FG02-97-ER41042 and DE-FG02-97-ER41033, and by the US NSF through Award Nos. 0107263 and 0555652.

  18. Entropic-elasticity-controlled dissociation and energetic-elasticity-controlled rupture induce catch-to-slip bonds in cell-adhesion molecules.

    PubMed

    Wei, YuJie

    2008-03-01

    We develop a physical model to describe the kinetic behavior in cell-adhesion molecules. Unbinding of noncovalent biological bonds is assumed to occur by both bond dissociation and bond rupture. Such a decomposition of debonding processes is a space decomposition of the debonding events. Dissociation under thermal fluctuation is nondirectional in a three-dimensional space, and its energy barrier to escape is not influenced by a tensile force, but the microstates that could lead to dissociation are changed by the tensile force; rupture happens along the tensile force direction. An applied force effectively lowers the energy barrier to escape along the loading direction. The lifetime of the biological bond, due to the two concurrent off rates, may grow with increasing tensile force to a moderate amount and then decrease with further increasing load. We hypothesize that a catch-to-slip bond transition is a generic feature in biological bonds. The model also predicts that catch bonds in a more flexible molecular structure have longer lifetimes and need less force to be fully activated.

  19. [Diagnosis of electron energy and comparative effects of OH, O or O3 on NO oxidation in pulsed corona discharge].

    PubMed

    Xuan, Jian-yong; Luo, Zhong-yang; Zhao, Lei; Jiang, Jian-ping; Gao, Xiang

    2012-05-01

    The spectrum of excited N2 molecules and ions was measured by optical emission spectroscopy in pulsed corona discharge with a wire-to-plate reactor. The ratio of emission intensities emitted by the excited molecules and ions of N2 was compared with numerical simulation to determine average electron energies and electric field distributions. Within 2 cm distance from wire electrode in horizontal and vertical directions, electric field and average electron energies appear to be in the ranges of 11.05 19.6 MV x m(-1) and 10.10-13.92 eV respectively; as the distance increases, average electron energies and electric field show a similar trend: first decrease and then increase. Chemically active species, such as OH, O and O3, can be generated through the energetic electron collisions with H2O and O2 directly or indirectly. For the NO oxidation, there is no coexistence of NO and O3, whereas there is a coexistence of NO and OH. NO is oxidized by O3 or O more efficiently than by OH radical.

  20. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    PubMed

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  1. A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya

    2010-05-01

    In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.

  2. Regioselective synthesis of C3 alkylated and arylated benzothiophenes

    PubMed Central

    Shrives, Harry J.; Fernández-Salas, José A.; Hedtke, Christin; Pulis, Alexander P.; Procter, David J.

    2017-01-01

    Benzothiophenes are heterocyclic constituents of important molecules relevant to society, including those with the potential to meet modern medical challenges. The construction of molecules would be vastly more efficient if carbon–hydrogen bonds, found in all organic molecules, can be directly converted into carbon–carbon bonds. In the case of elaborating benzothiophenes, functionalization of carbon–hydrogen bonds at carbon-number 3 (C3) is markedly more demanding than at C2 due to issues of regioselectivity (C3 versus C2), and the requirement of high temperatures, precious metals and the installation of superfluous directing groups. Herein, we demonstrate that synthetically unexplored but readily accessible benzothiophene S-oxides serve as novel precursors for C3-functionalized benzothiophenes. Employing an interrupted Pummerer reaction to capture and then deliver phenol and silane coupling partners, we have discovered a directing group-free method that delivers C3-arylated and -alkylated benzothiophenes with complete regioselectivity, under metal-free and mild conditions. PMID:28317882

  3. Quantum mechanical computations and spectroscopy: from small rigid molecules in the gas phase to large flexible molecules in solution.

    PubMed

    Barone, Vincenzo; Improta, Roberto; Rega, Nadia

    2008-05-01

    Interpretation of structural properties and dynamic behavior of molecules in solution is of fundamental importance to understand their stability, chemical reactivity, and catalytic action. While information can be gained, in principle, by a variety of spectroscopic techniques, the interpretation of the rich indirect information that can be inferred from the analysis of experimental spectra is seldom straightforward because of the subtle interplay of several different effects, whose specific role is not easy to separate and evaluate. In such a complex scenario, theoretical studies can be very helpful at two different levels: (i) supporting and complementing experimental results to determine the structure of the target molecule starting from its spectral properties; (ii) dissecting and evaluating the role of different effects in determining the observed spectroscopic properties. This is the reason why computational spectroscopy is rapidly evolving from a highly specialized research field into a versatile and widespread tool for the assignment of experimental spectra and their interpretation in terms of chemical physical effects. In such a situation, it becomes important that both computationally and experimentally oriented chemists are aware that new methodological advances and integrated computational strategies are available, providing reliable estimates of fundamental spectral parameters not only for relatively small molecules in the gas phase but also for large and flexible molecules in condensed phases. In this Account, we review the most significant methodological contributions from our research group in this field, and by exploiting some recent results of their application to the computation of IR, UV-vis, NMR, and EPR spectral parameters, we discuss the microscopic mechanisms underlying solvent and vibrational effects on the spectral parameters. After reporting some recent achievements for the study of excited states by first principle quantum mechanical approaches, we focus on the treatment of environmental effects by means of mixed discrete-continuum solvent models and on effective methods for computing vibronic contributions to the spectra. We then discuss some new developments, mainly based on time-dependent approaches, allowing us to go beyond the determination of spectroscopic parameters toward the simulation of line widths and shapes. Although further developments are surely needed to improve the accuracy and effectiveness of several items in the proposed approach, we try to show that the first important steps toward a direct comparison between the results obtained in vitro and those obtained in silico have been made, making easier fruitful crossovers among experiments, computations and theoretical models, which would be decisive for a deeper understanding of the spectral behavior associated with complex systems and processes.

  4. Effect of acidic pH on the stability of α-synuclein dimers.

    PubMed

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean Christophe; Blanchard, Scott C; Lyubchenko, Yuri L

    2016-10-01

    Environmental factors, such as acidic pH, facilitate the assembly of α-synuclein (α-Syn) in aggregates, but the impact of pH on the very first step of α-Syn aggregation remains elusive. Recently, we developed a single-molecule approach that enabled us to measure directly the stability of α-Syn dimers. Unlabeled α-Syn monomers were immobilized on a substrate, and fluorophore-labeled monomers were added to the solution to allow them to form dimers with immobilized α-Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single-molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α-Syn dimers. The experiments were performed at pH 5 and 7 for wild-type α-Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α-Syn dimers lifetimes with some variability between the α-Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96-140 of α-Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α-Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α-Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715-724, 2016. © 2016 Wiley Periodicals, Inc.

  5. Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction.

    PubMed

    Bi, Hai; Palma, Carlos-Andres; Gong, Yuxiang; Hasch, Peter; Elbing, Mark; Mayor, Marcel; Reichert, Joachim; Barth, Johannes V

    2018-04-11

    Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.

  6. Single-Molecule Plasmon Sensing: Current Status and Future Prospects

    PubMed Central

    2017-01-01

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle–single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics. PMID:28762723

  7. Slow approach to steady motion of a concave body in a free-molecular gas

    NASA Astrophysics Data System (ADS)

    Tsuji, Tetsuro; Arai, Junichi; Kawano, Satoyuki

    2015-07-01

    A body in a free-molecular gas accelerated by a constant external force is considered on the basis of kinetic theory. The body is an infinitely long rectangular hollow column with one face removed, and thus it has a squarish U -shaped cross section. The concave part of the body points toward the direction of motion, and thus the gas molecules may be trapped in the concavity. Gas molecules undergo diffuse reflection on a base part, whereas specular reflection on two lateral parts. It is numerically shown that the velocity of the body approaches a terminal velocity, for which a drag force exerted by the gas counterbalances the external force, in such a way that their difference decreases in proportion to the inverse square of time for a large time. This rate of approach is slower than the known rate proportional to the inverse cube of time in the case of a body without concavity [Aoki et al., Phys. Rev. E 80, 016309 (2009), 10.1103/PhysRevE.80.016309]. Based on the detailed investigation on the velocity distribution function of gas molecules impinging on the body, it is clarified that the concavity prevents some molecules from escaping to infinity. This trapping enhances the effect of recollision between the body and the gas molecules, which is the cause of the inverse power laws, and thus leads to the slower approach.

  8. A new model for simulating 3-d crystal growth and its application to the study of antifreeze proteins.

    PubMed

    Wathen, Brent; Kuiper, Michael; Walker, Virginia; Jia, Zongchao

    2003-01-22

    A novel computational technique for modeling crystal formation has been developed that combines three-dimensional (3-D) molecular representation and detailed energetics calculations of molecular mechanics techniques with the less-sophisticated probabilistic approach used by statistical techniques to study systems containing millions of molecules undergoing billions of interactions. Because our model incorporates both the structure of and the interaction energies between participating molecules, it enables the 3-D shape and surface properties of these molecules to directly affect crystal formation. This increase in model complexity has been achieved while simultaneously increasing the number of molecules in simulations by several orders of magnitude over previous statistical models. We have applied this technique to study the inhibitory effects of antifreeze proteins (AFPs) on ice-crystal formation. Modeling involving both fish and insect AFPs has produced results consistent with experimental observations, including the replication of ice-etching patterns, ice-growth inhibition, and specific AFP-induced ice morphologies. Our work suggests that the degree of AFP activity results more from AFP ice-binding orientation than from AFP ice-binding strength. This technique could readily be adapted to study other crystal and crystal inhibitor systems, or to study other noncrystal systems that exhibit regularity in the structuring of their component molecules, such as those associated with the new nanotechnologies.

  9. The spontaneous synchronized dance of pairs of water molecules

    NASA Astrophysics Data System (ADS)

    Roncaratti, Luiz F.; Cappelletti, David; Pirani, Fernando

    2014-03-01

    Molecular beam scattering experiments have been performed to study the effect of long-range anisotropic forces on the collision dynamics of two small polar molecules. The main focus of this paper is on water, but also ammonia and hydrogen sulphide molecules have been investigated, and some results will be anticipated. The intermolecular distances mainly probed are of the order of 1 nm and therefore much larger than the molecular dimensions. In particular, we have found that the natural electric field gradient, generated by different spatial orientations of the permanent electric dipoles, is able to promote the transformation of free rotations into coupled pendular states, letting the molecular partners involved in the collision complex swinging to and fro around the field direction. This long-ranged concerted motion manifested itself as large increases of the magnitude of the total integral cross section. The experimental findings and the theoretical treatment developed to shed light on the details of the process suggest that the transformation from free rotations to pendular states depends on the rotational level of both molecules, on the impact parameter, on the relative collision velocity, on the dipole moment product and occurs in the time scale of picoseconds. The consequences of this intriguing phenomenon may be important for the interpretation and, in perspective, for the control of elementary chemical and biological processes, given by polar molecules, ions, and free radicals, occurring in several environments under various conditions.

  10. Surface charge sensing by altering the phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y.

    2014-08-01

    Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20 K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2.

  11. Molecular dynamics simulations of void defects in the energetic material HMX.

    PubMed

    Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing

    2013-09-01

    A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.

  12. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  13. Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry.

    PubMed

    Feng, Dan; Xia, Yan

    2018-07-19

    Covalent organic framework (COF) was explored as a novel matrix with a high desorption/ionization efficiency for direct detection of small molecules by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). By using COF as an LDI MS matrix, we could detect not only biological micro molecules such as amino acids and fatty acids, but also emerging environmental pollutants like bisphenol S (BPS) and pyrene. With COF as the matrix, higher desorption/ionization efficiency, and less background interference were achieved than the conventional organic matrices. Good salt tolerance (as high as 500 mM NaCl) and repeatability allowed the detection limit of amino acids was 90 fmol. In addition, COF matrix performed well for amino acids analysis in the honey sample. The ionization mechanism was also discussed. These results demonstrate that COF is a powerful matrix for small molecules analysis in real samples by MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Synthesis of RNA oligomers on heterogeneous templates

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1996-01-01

    The concept of an RNA world in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3',5' linkages between the nucleotide monomers. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2',5'-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.

  15. SPM for functional identification of individual biomolecules

    NASA Astrophysics Data System (ADS)

    Ros, Robert; Schwesinger, Falk; Padeste, Celestino; Plueckthun, Andreas; Anselmetti, Dario; Guentherodt, Hans-Joachim; Tiefenauer, Louis

    1999-06-01

    The identification of specific binding molecules is of increasing interest in the context of drug development based on combinatorial libraries. Scanning Probe Microscopy (SPM) is the method of choice to image and probe individual biomolecules on a surface. Functional identification of biomolecules is a first step towards screening on a single molecule level. As a model system we use recombinant single- chain Fv fragment (scFv) antibody molecules directed against the antigen fluorescein. The scFv's are covalently immobilized on a flat gold surface via the C-terminal cysteine, resulting in a high accessibility of the binding site. The antigen is immobilized covalently via a long hydrophilic spacer to the silicon nitride SPM-tip. This arrangement allows a direct measurement of binding forces. Thus, closely related antibody molecules differing in only one amino acid at their binding site could be distinguished. A novel SPM-software has been developed which combines imaging, force spectroscopic modes, and online analysis. This is a major prerequisite for future screening methods.

  16. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm

    NASA Astrophysics Data System (ADS)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  17. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm.

    PubMed

    Kassem, Salma; Lee, Alan T L; Leigh, David A; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  18. Real-time single-molecule observations of proteins at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Langdon, Blake Brianna

    Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.

  19. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  20. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  1. Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules

    DTIC Science & Technology

    2017-02-07

    AFRL-AFOSR-VA-TR-2017-0035 Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules Wesley Campbell UNIVERSITY OF CALIFORNIA...REPORT TYPE Final 3. DATES COVERED (From - To) April 2013 - June 2016 4. TITLE AND SUBTITLE Mode-Locked Deceleration of Molecular Beams: Physics with...of Molecular Beams: Physics with Ultracold Molecules" P.I. Wesley C. Campbell Report Period: April 1, 2013- March 30, 2016 As a direct result of

  2. One-step formation of straight nanostripes from a mammal lipid-oleamide directly on highly oriented pyrolytic graphite.

    PubMed

    Zhang, Renjie; Möhwald, Helmuth; Kurth, Dirk G

    2009-02-17

    Hierarchical nanostructures are obtained directly on highly oriented pyrolytic graphite (HOPG) by spin coating of dilute chloroform solution of 9-Z-octadecenamide (oleamide), a natural lipid with cis-CdC- conformation, existing in the cerebrospinal fluid of mammal animals and being an additive for medical use and food packaging. Straight separated nanostripes with a length of 70-300 nm exist in the topmost layer and compact nanostripes in the bottom layer contacting HOPG. Compact nanostripes have a periodicity spacing of 3.8 nm, indicating H-bonding between two rows of oleamide molecules. The orientation of the hierarchical nanostructures differs by n60 degrees+/-8 degrees (n=1 or 2), reflecting the epitaxial ordering along theHOPGsubstrate. The nanostripes are stable against annealing.Amolecular packing scheme for the nanostructures is proposed, where the -C=C bond angle in oleamide is 120 degrees and the plane of the carbon skeleton lies parallel to the HOPG substrate. Nanostripes in the topmost layer are formed from separated rows of oleamide molecules, due to the short-range surface potential of the substrate. The scheme involves direct influence ofHOPGon the orientation of oleamide molecules to form nanostripes without any purposely added saturated alkanes and H-bonds between amide groups in adjacent two rows of oleamide molecules.

  3. Evolution of organic molecules under Mars-like UV radiation with EXPOSE-R2, a photochemistry experiment outside the International Space Station

    NASA Astrophysics Data System (ADS)

    Rouquette, Laura; Stalport, Fabien; Cottin, Hervé; Coll, Patrice; Szopa, Cyril; Saiagh, Kafila; Poch, Olivier; Khalaf, Diana; Chaput, Didier; Grira, Katia; Chaouche, Naila; Dequaire, Tristan

    2016-10-01

    The detection and identification of organic molecules on Mars are of prime importance, as some of these molecules are life precursors and components. While in situ planetary missions are searching for them, it is essential to understand how organic molecules evolve and are preserved at the surface of Mars. Indeed the harsh conditions of the environment of Mars such as ultraviolet (UV) radiation or oxidative processes could explain the low abundance and diversity of organic molecules detected by now.The EXPOSE R2 facility has been placed in low Earth orbit (LEO) under solar radiation, outside the International Space Station (ISS) in 2014. One of the EXPOSE R2 experiment, called PSS (Photochemistry on the Space Station), is dedicated to astrobiology- and astrochemistry-related studies. Part of PSS samples have been dedicated to the study of the evolution of organic molecules under Mars-like surface radiation conditions. Indeed, UV radiation above 200 nm reaches the surface of Mars and could degrade organic matter. Organic samples have been exposed directly to the Sun under KBr filters (>200 nm) from November 2014 to February 2016, mimicking the UV radiation conditions of the surface of Mars. Four types of samples were exposed as thin layers of solid molecules: adenine, adenine with nontronite (a kind of clay mineral detected on Mars), chrysene and glycine with nontronite.To characterize the evolution of our samples under irradiation, infrared (IR) transmission analyses were performed, before the launch of EXPOSE R2 to the ISS in 2014, and after the exposure in space and the return on Earth, this year. These analyses allowed determining whether each molecule is preserved or photodegraded, and if so, its photolysis rate. The effect of nontronite on organic molecules preservation has been investigated as well. We also compared these results from LEO with laboratory data, obtained by irradiating organic samples under a UV lamp.

  4. A chemical biology approach demonstrates G protein βγ subunits are sufficient to mediate directional neutrophil chemotaxis.

    PubMed

    Surve, Chinmay R; Lehmann, David; Smrcka, Alan V

    2014-06-20

    Our laboratory has identified a number of small molecules that bind to G protein βγ subunits (Gβγ) by competing for peptide binding to the Gβγ "hot spot." M119/Gallein were identified as inhibitors of Gβγ subunit signaling. Here we examine the activity of another molecule identified in this screen, 12155, which we show that in contrast to M119/Gallein had no effect on Gβγ-mediated phospholipase C or phosphoinositide 3-kinase (PI3K) γ activation in vitro. Also in direct contrast to M119/Gallein, 12155 caused receptor-independent Ca(2+) release, and activated other downstream targets of Gβγ including extracellular signal regulated kinase (ERK), protein kinase B (Akt) in HL60 cells differentiated to neutrophils. We show that 12155 releases Gβγ in vitro from Gαi1β1γ2 heterotrimers by causing its dissociation from GαGDP without inducing nucleotide exchange in the Gα subunit. We used this novel probe to examine the hypothesis that Gβγ release is sufficient to direct chemotaxis of neutrophils in the absence of receptor or G protein α subunit activation. 12155 directed chemotaxis of HL60 cells and primary neutrophils in a transwell migration assay with responses similar to those seen for the natural chemotactic peptide n-formyl-Met-Leu-Phe. These data indicate that release of free Gβγ is sufficient to drive directional chemotaxis in a G protein-coupled receptor signaling-independent manner. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. In vivo Delivery of Fluoresceinated Dextrans to the Murine Growth Plate: Imaging of Three Vascular Routes by Multiphoton Microscopy

    PubMed Central

    Farnum, Cornelia; Lenox, Michelle; Zipfel, Warren; Horton, William; Williams, Rebecca

    2008-01-01

    Bone elongation by endochondral ossification occurs through the differentiation cascade of chondrocytes of cartilaginous growth plates. Molecules from the systemic vasculature reach the growth plate from three different directions: epiphyseal, metaphyseal, and via a ring vessel and plexus associated with the perichondrium. This study is an analysis of the real-time dynamics of entrance of fluoresceinated tracers of different molecular weights into the growth plate from the systemic vasculature, and tests the hypothesis that molecular weight is a key variable in the determination of both the directionality and the extent of tracer movement into the growth plate. Multiphoton microscopy was used for direct in vivo imaging of the murine proximal tibial growth plate in anesthetized 4-5-week-old transgenic mice with green fluorescent protein linked to the collagen II promoter. Mice were given an intracardiac injection of either fluorescein (332.3 Da), or fluoresceinated dextrans of 3, 10, 40, 70 kDa, singly or sequentially. For each tracer, directionality and rate of arrival, together with extent of movement within the growth plate, were imaged in real time. For small molecules (up to 10 kDa) vascular access from all three directions was observed and entrance was equally permissive from the metaphyseal and the epiphyseal sides. Within our detection limit (a few per cent of vascular concentration) 40 kDa and larger dextrans did not enter. These results have implications both for understanding systemic and paracrine regulation of growth plate chondrocytic differentiation, as well as variables associated with effective drug delivery to growth plate chondrocytes. PMID:16342207

  6. Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function

    PubMed Central

    Feng, Suihan; Harayama, Takeshi; Montessuit, Sylvie; David, Fabrice PA; Winssinger, Nicolas; Martinou, Jean-Claude

    2018-01-01

    Photoactivation ('uncaging’) is a powerful approach for releasing bioactive small-molecules in living cells. Current uncaging methods are limited by the random distribution of caged molecules within cells. We have developed a mitochondria-specific photoactivation method, which permitted us to release free sphingosine inside mitochondria and thereafter monitor local sphingosine metabolism by lipidomics. Our results indicate that sphingosine was quickly phosphorylated into sphingosine 1-phosphate (S1P) driven by sphingosine kinases. In time-course studies, the mitochondria-specific uncaged sphingosine demonstrated distinct metabolic patterns compared to globally-released sphingosine, and did not induce calcium spikes. Our data provide direct evidence that sphingolipid metabolism and signaling are highly dependent on the subcellular location and opens up new possibilities to study the effects of lipid localization on signaling and metabolic fate. PMID:29376826

  7. “On-Target” Cardiac Effects of Anticancer Drugs

    PubMed Central

    Simons, Michael; Eichmann, Anne

    2014-01-01

    The development of new biological therapeutics such as neutralizing antibodies and small molecule inhibitors of receptors signaling is revolutionizing many fields of medicine—and creating new insights into normal biology. In particular, inhibition of blood vessel growth has been vigorously pursued in a number of fields, including oncology and ophthalmology. To date, most experience with this class of drugs centers on anti-vascular endothelial growth factor (VEGF) agents such as a neutralizing antibody bevacizumab and small molecule inhibitors of VEGF receptor-2 (VEGFR2). Anti-VEGF therapies have been spectacularly successful for treatment of macular degeneration, and somewhat less so in the treatment of cancer. Hand in hand with these advances is the emergence of new cardiac illnesses directly related to the activity of these agents. PMID:22703925

  8. Nucleic Acid Templated Reactions for Chemical Biology.

    PubMed

    Di Pisa, Margherita; Seitz, Oliver

    2017-06-21

    Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Physical limits to biochemical signaling

    NASA Astrophysics Data System (ADS)

    Bialek, William; Setayeshgar, Sima

    2005-07-01

    Many crucial biological processes operate with surprisingly small numbers of molecules, and there is renewed interest in analyzing the impact of noise associated with these small numbers. Twenty-five years ago, Berg and Purcell showed that bacterial chemotaxis, where a single-celled organism must respond to small changes in concentration of chemicals outside the cell, is limited directly by molecule counting noise and that aspects of the bacteria's behavioral and computational strategies must be chosen to minimize the effects of this noise. Here, we revisit and generalize their arguments to estimate the physical limits to signaling processes within the cell and argue that recent experiments are consistent with performance approaching these limits. Author contributions: W.B. and S.S. designed research, performed research, and wrote the paper.†Present address: Department of Physics, Indiana University, Bloomington, IN 47405.

  10. Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces.

    PubMed

    Patrick, Christopher E; Giustino, Feliciano

    2012-09-14

    Investigating quasiparticle excitations of molecules on surfaces through photoemission spectroscopy forms a major part of nanotechnology research. Resolving spectral features at these interfaces requires a comprehensive theory of electron removal and addition processes in molecules and solids which captures the complex interplay of image charges, thermal effects, and configurational disorder. Here, we develop such a theory and calculate the quasiparticle energy-level alignment and the valence photoemission spectrum for the prototype biomimetic solar cell interface between anatase TiO(2) and the N3 chromophore. By directly matching our calculated photoemission spectrum to experimental data, we clarify the atomistic origin of the chromophore peak at low binding energy. This case study sets a new standard in the interpretation of photoemission spectroscopy at complex chromophore-semiconductor interfaces.

  11. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    PubMed

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants.

  12. Sensitivity improvement in hydrophilic interaction chromatography negative mode electrospray ionization mass spectrometry using 2-(2-methoxyethoxy)ethanol as a post-column modifier for non-targeted metabolomics.

    PubMed

    Koch, Wendelin; Forcisi, Sara; Lehmann, Rainer; Schmitt-Kopplin, Philippe

    2014-09-26

    The application of ammonia acetate buffered liquid chromatography (LC) eluents is known to concomitantly lead to ion suppression when electrospray ionization mass spectrometry (ESI-MS) detection is used. In negative ESI mode, post column infusion of 2-(2-methoxyethoxy)ethanol (2-MEE) was shown in the literature to help to compensate this adverse effect occurring in reversed phase liquid chromatography mass spectrometry (RP-LC-MS) analyses. Here a setup of direct infusion and hydrophilic interaction chromatography (HILIC) post-column infusion experiments was established in order to investigate systematically the beneficial effects of 2-MEE. We demonstrate that, 2-MEE can help to improve ESI-MS sensitivity in HILIC too and reveal analyte structure specific behaviors. Our study indicates that 2-MEE especially improves ESI response for small and polar molecules. The ESI response of stable isotope labeled amino acids spiked into biological matrices increases up to 50-fold (i.e. D5-l-glutamic acid) when post column infusion of 2-MEE is applied. A non-targeted analysis of a pooled urine sample via HILIC-ESI-QTOF-MS supports this hypothesis. In direct infusion, the combined application of an ammonia acetate buffered solution together with 2-MEE results in an improved ESI response compared to a non-buffered solution. We observed up to 60-fold increased ESI response of l-lysine. We propose this effect is putatively caused by the formation of smaller ESI droplets and stripping of positive charge from ESI droplets due to evaporation of acetic acid anions. In summary, post-column infusion of 2-MEE especially enhances ESI response of small and polar molecules. Therefore it can be regarded as a valuable add-on in targeted or non-targeted metabolomic HILIC-MS studies since this method sets a focus on this molecule category. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Appearance and distribution of surface proteins of the human erythrocyte membrane. An electron microscope and immunochemical labeling study

    PubMed Central

    Shotton, D.; Thompson, K.; Wofsy, L.; Branton, D.

    1978-01-01

    We have used freeze-etching, before and after immunoferritin labeling, to visualize spectrin molecules and other surface proteins of the human erythrocyte membrane. After intramembrane particle aggregation was induced, spectrin molecules, identified by labeling with ferritin-conjugated antispectrin, were clustered on the cytoplasmic surface of the membrane in patches directly underlying the particle clusters. This labeling pattern confirms the involvement of spectrin in such particle aggregates, as previously inferred from indirect evidence. Ferritin-conjugated antihapten molecules, directed against external and cytoplasmic surface proteins of the erythrocyte membrane which had been covalently labeled nonspecifically with the hapten p-diazoniumphenyl-beta-D-lactoside, were similarly found in direct association with such intramembrane particle aggregates. This indicates that when spectrin and the intramembrane particles are aggregated, all the major proteins of the erythrocyte membrane are constrained to coaggregate with them. Although giving no direct information concerning the freedom of translational movement of proteins in the unperturbed erythrocyte membrane, these experiments suggest that a close dynamic association may exist between the integral and peripheral protein components of the membrane, such that immobilization of one component can restrict the lateral mobility of others. PMID:10605454

  14. Direct Profiling the Post-Translational Modification Codes of a Single Protein Immobilized on a Surface Using Cu-free Click Chemistry.

    PubMed

    Kim, Kyung Lock; Park, Kyeng Min; Murray, James; Kim, Kimoon; Ryu, Sung Ho

    2018-05-23

    Combinatorial post-translational modifications (PTMs), which can serve as dynamic "molecular barcodes", have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.

  15. Direct Profiling the Post-Translational Modification Codes of a Single Protein Immobilized on a Surface Using Cu-free Click Chemistry

    PubMed Central

    2018-01-01

    Combinatorial post-translational modifications (PTMs), which can serve as dynamic “molecular barcodes”, have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.

  16. Metal-porphyrin: a potential catalyst for direct decomposition of N(2)O by theoretical reaction mechanism investigation.

    PubMed

    Maitarad, Phornphimon; Namuangruk, Supawadee; Zhang, Dengsong; Shi, Liyi; Li, Hongrui; Huang, Lei; Boekfa, Bundet; Ehara, Masahiro

    2014-06-17

    The adsorption of nitrous oxide (N2O) on metal-porphyrins (metal: Ti, Cr, Fe, Co, Ni, Cu, or Zn) has been theoretically investigated using density functional theory with the M06L functional to explore their use as potential catalysts for the direct decomposition of N2O. Among these metal-porphyrins, Ti-porphyrin is the most active for N2O adsorption in the triplet ground state with the strongest adsorption energy (-13.32 kcal/mol). Ti-porphyrin was then assessed for the direct decomposition of N2O. For the overall reaction mechanism of three N2O molecules on Ti-porphyrin, two plausible catalytic cycles are proposed. Cycle 1 involves the consecutive decomposition of the first two N2O molecules, while cycle 2 is the decomposition of the third N2O molecule. For cycle 1, the activation energies of the first and second N2O decompositions are computed to be 3.77 and 49.99 kcal/mol, respectively. The activation energy for the third N2O decomposition in cycle 2 is 47.79 kcal/mol, which is slightly lower than that of the second activation energy of the first cycle. O2 molecules are released in cycles 1 and 2 as the products of the reaction, which requires endothermic energies of 102.96 and 3.63 kcal/mol, respectively. Therefore, the O2 desorption is mainly released in catalytic cycle 2 of a TiO3-porphyrin intermediate catalyst. In conclusion, regarding the O2 desorption step for the direct decomposition of N2O, the findings would be very useful to guide the search for potential N2O decomposition catalysts in new directions.

  17. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides

    DOEpatents

    Studier, F. William

    1995-04-18

    Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient.

  18. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides

    DOEpatents

    Studier, F.W.

    1995-04-18

    Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient. 2 figs.

  19. Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Srivastava, Deepak

    2003-01-01

    A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using Fokker-Planck equation and direct molecular dynamics (MD) simulations. The mean transport or translocation time tau is found to depend on the chemical potential energy, entropy and diffusion coefficient. A power law dependence tau approx. N(sup 2)is found where N is number of monomers in a molecule. For 10(exp 5)-unit long polyethylene molecules, tau is estimated to be approx. 1micro-s. The diffusion coefficient of long polymer molecules inside CNTs, like that of short ones, are found to be few orders of magnitude larger than in ordinary silicate based zeolite systems.

  20. Electron beam controlled covalent attachment of small organic molecules to graphene

    NASA Astrophysics Data System (ADS)

    Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N.; Kaiser, Ute; Besley, Elena

    2016-01-01

    The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography. Electronic supplementary information (ESI) available: A table showing the calculated binding energies and magnetic moments for all studied molecular radicals; details of samples preparation and characterization; time series of TEM images showing transformations of a C24Cl12 molecule on graphene under electron irradiation. See DOI: 10.1039/c5nr07539d

  1. Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics.

    PubMed

    Bustamante, Carlos

    2005-11-01

    During the last 15 years, scientists have developed methods that permit the direct mechanical manipulation of individual molecules. Using this approach, they have begun to investigate the effect of force and torque in chemical and biochemical reactions. These studies span from the study of the mechanical properties of macromolecules, to the characterization of molecular motors, to the mechanical unfolding of individual proteins and RNA. Here I present a review of some of our most recent results using mechanical force to unfold individual molecules of RNA. These studies make it possible to follow in real time the trajectory of each molecule as it unfolds and characterize the various intermediates of the reaction. Moreover, if the process takes place reversibly it is possible to extract both kinetic and thermodynamic information from these experiments at the same time that we characterize the forces that maintain the three-dimensional structure of the molecule in solution. These studies bring us closer to the biological unfolding processes in the cell as they simulate in vitro, the mechanical unfolding of RNAs carried out in the cell by helicases. If the unfolding process occurs irreversibly, I show here that single-molecule experiments can still provide equilibrium, thermodynamic information from non-equilibrium data by using recently discovered fluctuation theorems. Such theorems represent a bridge between equilibrium and non-equilibrium statistical mechanics. In fact, first derived in 1997, the first experimental demonstration of the validity of fluctuation theorems was obtained by unfolding mechanically a single molecule of RNA. It is perhaps a sign of the times that important physical results are these days used to extract information about biological systems and that biological systems are being used to test and confirm fundamental new laws in physics.

  2. Ion-Molecule Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Meyer, Jennifer; Wester, Roland

    2017-05-01

    We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.

  3. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    PubMed

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  4. Visualizing Chemical Bonds in Synthetic Molecules

    NASA Astrophysics Data System (ADS)

    Collins, Laura C.; Ruth, Anthony; Green, David B.; Janko, Boldizsar; Gomes, Kenjiro K.

    The use of synthetic quantum systems makes it possible to study phenomena that cannot be probed by conventional experiments. We created synthetic molecules using atomic manipulation and directly imaged the chemical bonds using tunneling spectroscopy. These synthetic systems allow us to probe the structure and electronic properties of chemical bonds in molecules, including those that would be unstable in nature, with unprecedented detail. The experimental images of electronic states in our synthetic molecules show a remarkable match to the charge distribution predicted by density functional theory calculations. The statistical analysis of the spectroscopy of these molecules can be adapted in the future to quantify aromaticity, which has been difficult to quantify universally thus far due to vague definitions. We can also study anti-aromatic molecules which are unstable naturally, to illuminate the electronic consequences of antiaromaticity.

  5. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    PubMed

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Single Molecules as Optical Probes for Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Orrit, Michel

    Single molecules and single nanoparticles are convenient links between the nanoscale world and the laboratory. We discuss the limits for their optical detection by three different methods: fluorescence, direct absorption, and photothermal detection. We briefly review some recent illustrations of qualitatively new information gathered from single-molecule signals: intermittency of the fluorescence intensity, acoustic vibrations of nanoparticles (1-100 GHz) or of extended defects in molecular crystals (0.1-1 MHz), and dynamical heterogeneity in glass-forming molecular liquids. We conclude with an outlook of future uses of single-molecule methods in physical chemistry, soft matter, and material science.

  7. "Imposed" and "inherent" mucosal activity patterns. Their composite representation of olfactory stimuli

    PubMed Central

    1987-01-01

    Both regional differences in mucosal sensitivity and a gas chromatography-like process along the mucosal sheet have been separately proposed in two sets of earlier studies to produce different odorant-dependent activity patterns across the olfactory mucosa. This investigation evaluated, in one study, whether and to what degree these two mechanisms contribute to the generation of these activity patterns. Summated multiunit discharges were simultaneously recorded from lateral (LN) and medial (MN) sites on the bullfrog's olfactory nerve to sample the mucosal activity occurring near the internal and external nares, respectively. Precisely controlled sniffs of four odorants (benzaldehyde, butanol, geraniol, and octane) were drawn through the frog's olfactory sac in both the forward (H1) and reverse (H2) hale directions. By combining the four resulting measurements, LNH1, LNH2, MNH1, and MNH2, in different mathematical expressions, indexes reflecting the relative effects of the chromatographic process, regional sensitivity, and hale direction could be calculated. Most importantly, the chromatographic process and the regional sensitivity differences both contributed significantly to the mucosal activity patterns. However, their relative roles varied markedly among the four odorants, ranging from complete dominance by either one to substantial contributions from each. In general, the more strongly an odorant was sorbed by the mucosa, the greater was the relative effect of the chromatographic process; the weaker the sorption, the greater the relative effect of regional sensitivity. Similarly, the greater an odorant's sorption, the greater was the effect of hale direction. Other stimulus variables (sniff volume, sniff duration, and the number of molecules within the sniff) had marked effects upon the overall size of the response. For strongly sorbed odorants, the effect of increasing volume was positive; for a weakly sorbed odorant, it was negative. The reverse may be true for duration. In contrast, the effect of increasing the number of molecules was uniformly positive for all four odorants. However, there was little evidence that these other stimulus variables had a major influence upon the effects of the chromatographic process and regional sensitivity differences in their generation of mucosal activity patterns. PMID:3500998

  8. Hydrogen bonding directed self-assembly of small-molecule amphiphiles in water.

    PubMed

    Xu, Jiang-Fei; Niu, Li-Ya; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2014-08-01

    Compounds comprising one or two quadruply hydrogen bonding units, 2-ureido-4[1H]-pyrimidinone (UPy) and tris(tetraethylene glycol monomethyl ether) moieties, were reported to form highly stable hydrogen-bonded assemblies in water. Compound 1, containing one UPy, assembles into vesicles, and compound 2, containing two UPy units, forms micelles. The aggregates disassemble reversibly when the solution pH is raised to 9.0 or above. The results demonstrate the utility of hydrogen bonding to direct the self-assembly of small-molecule building blocks in aqueous media.

  9. The alloying effect and AgCl-directing growth for synthesizing a trimetallic nanoring with improved SERS

    NASA Astrophysics Data System (ADS)

    Han, Shuhua; Zhou, Guangju; Fu, Yunzhi; Ma, Ying; Xu, Li; Zou, Chao; Chen, Wei; Yang, Yun; Huang, Shaoming

    2015-12-01

    We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance.We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance. Electronic supplementary information (ESI) available: The synthesis of pure Au decahedra, electrochemical measurements, other TEM images, HAADF images, EDS patterns, UV-vis spectra of products prepared under other conditions. See DOI: 10.1039/c5nr05531h

  10. Effect of the dynamic core-electron polarization of CO molecules on high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Le, Cam-Tu; Hoang, Van-Hung; Tran, Lan-Phuong; Le, Van-Hoang

    2018-04-01

    We theoretically investigate the influence of dynamic core-electron polarization (DCeP) of CO molecules on high-order harmonic generation (HHG) by solving the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation. The effect of DCeP is shown to depend strongly on the molecular orientation angle θ . Particularly, compared to the calculations without DCeP, the inclusion of this effect gives rise to an enhancement of harmonic intensity at θ =0° when the electric field aligns along the O-C direction and to a suppression at θ =180° when the field heads in the opposite direction. Meanwhile, when the electric field is perpendicular to the molecular axis, the effect is almost insignificant. The phenomenon is thought to be linked to the ionization process. However, this picture is not completed yet. By solving the TDSE within the SAE approximation and conducting a classical simulation, we are able to obtain the ionization probability as well as the ionization rate and prove that HHG, in fact, receives a major contribution from electrons ionized at only a certain time interval, rather than throughout the whole pulse propagation. Including DCeP, the variation of the ionization rate in this interval highly correlates to that of the HHG intensity. To better demonstrate the origin of this manifestation, we also show the alternation DCeP makes on the effective potential that corresponds to the observed change in the ionization rate and consequently the HHG intensity. Our results confirm previous studies' observations and, more importantly, provide the missing physical explanation. With the role of DCeP now better understood for the entire range of the orientation angle, this effect can be handled more conveniently for calculating the HHG of other targets.

  11. A single-electron picture based on the multiconfiguration time-dependent Hartree-Fock method: application to the anisotropic ionization and subsequent high-harmonic generation of the CO molecule

    NASA Astrophysics Data System (ADS)

    Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.

    2018-02-01

    The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.

  12. Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3.

    PubMed

    Lee, Sooho; Yang, Woo Kyeom; Song, Ji Ho; Ra, Young Min; Jeong, Jin-Hyun; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2013-04-01

    Glycogen synthase kinase 3 (GSK-3) plays a central role in cellular energy metabolism, and dysregulation of GSK-3 activity is implicated in a variety of metabolic disorders, including obesity, type 2 diabetes, and cancer. Hence, GSK-3 has emerged as an attractive target molecule for the treatment of metabolic disorders. Therefore, this research focused on identification and characterization of a novel small-molecule GSK-3 inhibitor. Compound 1a, a structure based on 3-hydroxychromone bearing isothiazolidine-1,1-dione, was identified from chemical library as a highly potent GSK-3 inhibitor. An in vitro kinase assay utilizing a panel of kinases demonstrated that compound 1a strongly inhibits GSK-3β. The potential effects of compound 1a on the inactivation of GSK-3 were confirmed in human liver HepG2 and human embryonic kidney HEK293 cells. Stabilization of glycogen synthase and β-catenin, which are direct targets of GSK-3, by compound 1a was assessed in comparison with two other GSK-3 inhibitors: LiCl and SB-415286. In mouse 3T3-L1 preadipocytes, compound 1a markedly blocked adipocyte differentiation. Consistently, intraperitoneal administration of compound 1a to diet-induced obese mice significantly ameliorated their key symptoms such as body weight gain, increased adiposity, dyslipidemia, and hepatic steatosis due to the marked reduction of whole-body lipid level. In vitro and in vivo effects were accompanied by upregulation of β-catenin stability and downregulation of the expression of several critical genes related to lipid metabolism. From these results, it can be concluded that compound 1a, a novel small-molecule inhibitor of GSK-3, has potential as a new class of therapeutic agent for obesity treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A direct ab initio molecular dynamics (MD) study on the benzophenone-water 1 : 1 complex.

    PubMed

    Tachikawa, Hiroto; Iyama, Tetsuji; Kato, Kohichi

    2009-07-28

    Direct ab initio molecular dynamics (MD) method has been applied to a benzophenone-water 1 : 1 complex Bp(H(2)O) and free benzophenone (Bp) to elucidate the effects of zero-point energy (ZPE) vibration and temperature on the absorption spectra of Bp(H(2)O). The n-pi transition of free-Bp (S(1) state) was blue-shifted by the interaction with a water molecule, whereas three pi-pi transitions (S(2), S(3) and S(4)) were red-shifted. The effects of the ZPE vibration and temperature of Bp(H(2)O) increased the intensity of the n-pi transition of Bp(H(2)O) and caused broadening of the pi-pi transitions. In case of the temperature effect, the intensity of n-pi transition increases with increasing temperature. The electronic states of Bp(H(2)O) were discussed on the basis of the theoretical results.

  14. Direct NOE simulation from long MD trajectories.

    PubMed

    Chalmers, G; Glushka, J N; Foley, B L; Woods, R J; Prestegard, J H

    2016-04-01

    A software package, MD2NOE, is presented which calculates Nuclear Overhauser Effect (NOE) build-up curves directly from molecular dynamics (MD) trajectories. It differs from traditional approaches in that it calculates correlation functions directly from the trajectory instead of extracting inverse sixth power distance terms as an intermediate step in calculating NOEs. This is particularly important for molecules that sample conformational states on a timescale similar to molecular reorientation. The package is tested on sucrose and results are shown to differ in small but significant ways from those calculated using an inverse sixth power assumption. Results are also compared to experiment and found to be in reasonable agreement despite an expected underestimation of water viscosity by the water model selected. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoya; Shibata, Yosei; Takeda, Risa; Ishinabe, Takahiro; Fujikake, Hideo

    2017-01-01

    For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

  16. Discovery and Development of Kelch-like ECH-Associated Protein 1. Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction Inhibitors: Achievements, Challenges, and Future Directions.

    PubMed

    Jiang, Zheng-Yu; Lu, Meng-Chen; You, Qi-Dong

    2016-12-22

    The transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.

  17. In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.

    PubMed

    Oh, Seung Soo; Plakos, Kory; Xiao, Yi; Eisenstein, Michael; Soh, H Tom

    2013-11-26

    Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.

  18. Simple and green synthesis of protein-conjugated CdS nanoparticles and spectroscopic study on the interaction between CdS and zein

    NASA Astrophysics Data System (ADS)

    Qin, Dezhi; Zhang, Li; Du, Xian; Wang, Yabo; Zhang, Qiuxia

    2016-09-01

    The present study demonstrates the role of zein molecules in synthesizing CdS nanoassemblies through protein-directed, green synthetic approach. Zein molecules can as capping ligand and stabilizing agent to regulate the nucleation and growth of CdS nanocrystals, and the obtained products are organic-inorganic nanocomposites. The analysis of surface charge and conductivity indicates that strong electrostatic force restricts mobility of ions, which creates a local supersaturation surrounding the binding sites of zein and reduces the activated energy of nucleation. The interaction between Cd2+/CdS and zein molecules was systematically investigated through spectroscopy techniques. Fourier transform infrared (FT-IR) spectra were used to envisage the binding of the functional groups of zein with the surface of CdS nanoparticles. Ultraviolet visible (UV-Vis) and photoluminescence (PL) spectra results show that Cd2+/CdS might interact with the aromatic amino acids of protein molecules and change its chemical microenvironment. The quantum-confined effect of nanocrystals is confirmed by optical absorption spectrum due to the small size (3-5 nm) of CdS particles. The data of circular dichroism (CD) spectra indicate that the formation of CdS nanocrystals could lead to the conformational change of zein molecules. Moreover, the possible mechanism of CdS nanocrystals growth in zein solution was also discussed. The weak interactions such as Van der Waals, hydrophobic forces and hydrogen bonds in zein molecules should play a crucial factor in the self-assembly of small nanoparticles.

  19. Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Sun, Hao; Wang, Fengdi; Zhang, Wanqiao; Ma, Junmei; Tang, Shuwei; Gong, Hongwei; Zhang, Jingping

    2018-01-01

    Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene.

  20. Effect of gold nanoparticle on stability of the DNA molecule: A study of molecular dynamics simulation.

    PubMed

    Izanloo, Cobra

    2017-09-02

    An understanding of the mechanism of DNA interactions with gold nanoparticles is useful in today medicine applications. We have performed a molecular dynamics simulation on a B-DNA duplex (CCTCAGGCCTCC) in the vicinity of a gold nanoparticle with a truncated octahedron structure composed of 201 gold atoms (diameter ∼1.8 nm) to investigate gold nanoparticle (GNP) effects on the stability of DNA. During simulation, the nanoparticle is closed to DNA and phosphate groups direct the particles into the major grooves of the DNA molecule. Because of peeling and untwisting states that are occur at end of DNA, the nucleotide base lies flat on the surface of GNP. The configuration entropy is estimated using the covariance matrix of atom-positional fluctuations for different bases. The results show that when a gold nanoparticle has interaction with DNA, entropy increases. The results of conformational energy and the hydrogen bond numbers for DNA indicated that DNA becomes unstable in the vicinity of a gold nanoparticle. The radial distribution function was calculated for water hydrogen-phosphate oxygen pairs. Almost for all nucleotide, the presence of a nanoparticle around DNA caused water molecules to be released from the DNA duplex and cations were close to the DNA.

  1. Giant lipid vesicles under electric field pulses assessed by non invasive imaging.

    PubMed

    Mauroy, Chloé; Portet, Thomas; Winterhalder, Martin; Bellard, Elisabeth; Blache, Marie-Claire; Teissié, Justin; Zumbusch, Andreas; Rols, Marie-Pierre

    2012-10-01

    We present experimental results regarding the effects of electric pulses on giant unilamellar vesicles (GUVs). We have used phase contrast and coherent anti-Stokes Raman scattering (CARS) microscopy as relevant optical approaches to gain insight into membrane changes under electropermeabilization. No addition of exogenous molecules (lipid analogue, fluorescent dye) was needed. Therefore, experiments were performed on pure lipid systems avoiding possible artefacts linked to their use. Structural membrane changes were assessed by loss of contrast inside the GUVs due to sucrose and glucose mixing. Our observations, performed at the single vesicle level, indicate these changes are under the control of the number of pulses and field intensity. Larger number of pulses enhances membrane alterations. A threshold value of the field intensity must be applied to allow exchange of molecules between GUVs and the external medium. This threshold depends on the size of the vesicles, the larger GUVs being affected at lower electric field strengths than the smaller ones. Our experimental data are well described by a simple model in which molecule entry is driven by direct exchange. The CARS microscopic study of the effect of pulse duration confirms that pulses, in the ms time range, induce loss of lipids and membrane deformations facing the electrodes. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Prediction of charge mobility in organic semiconductors with consideration of the grain-size effect

    NASA Astrophysics Data System (ADS)

    Park, Jin Woo; Lee, Kyu Il; Choi, Youn-Suk; Kim, Jung-Hwa; Jeong, Daun; Kwon, Young-Nam; Park, Jong-Bong; Ahn, Ho Young; Park, Jeong-Il; Lee, Hyo Sug; Shin, Jaikwang

    2016-09-01

    A new computational model to predict the hole mobility of poly-crystalline organic semiconductors in thin film was developed (refer to Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/C6CP02993K). Site energy differences and transfer integrals in crystalline morphologies of organic molecules were obtained from quantum chemical calculation, in which the periodic boundary condition was efficiently applied to capture the interactions with the surrounding molecules in the crystalline organic layer. Then the parameters were employed in kinetic Monte Carlo (kMC) simulations to estimate the carrier mobility. Carrier transport in multiple directions has been considered in the kMC simulation to mimic polycrystalline characteristic in thin-film condition. Furthermore, the calculated mobility was corrected with a calibration equation based on the microscopic images of thin films to take the effect of grain boundary into account. As a result, good agreement was observed between the predicted and measured hole mobility values for 21 molecular species: the coefficient of determination (R2) was estimated to be 0.83 and the mean absolute error was 1.32 cm2 V-1 s-1. This numerical approach can be applied to any molecules for which crystal structures are available and will provide a rapid and precise way of predicting the device performance.

  3. Olive Oil and its Potential Effects on Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Antony, Shan; Zhang, G. P.

    Alzheimer's disease is a neuro-degenerative brain disease that is responsible for affecting the lives of hundreds of thousands of people every year. There has been no evidence to suggest a cure for the disease and the only existing treatments have very low rates of success in trial patients. This is largely due to the fact that the brain is one of the most undiscovered parts of the human body. Brain chemistry is highly complex and responds to its environment in random and radical ways. My research includes testing the reactionary outcomes of combining compounds of olive oil with the 20 basic amino acids. Regions around the world with olive oil based diets show a direct correlation to lower rates of Alzheimer's. Testing few compounds of olive oil with chemicals already found in the brain may yield to a better understanding as to why that is. I took the compounds tyrosol, hydroxytyrosol, and oleocanthal, and combined them with the 20 basic amino acids and calculated the total energy of the new molecule. The molecules produced with acceptably low energy values will be the center of further research. These molecules could lead to truly understanding olive oil's effect on the brain, and ultimately, the cure or prevention of Alzheimer's disease.

  4. Effect of humic acids on the adsorption of paraquat by goethite.

    PubMed

    Brigante, Maximiliano; Zanini, Graciela; Avena, Marcelo

    2010-12-15

    The adsorption of the herbicide paraquat (PQ(2+)) on goethite and on the binary system humic acid-goethite has been studied in batch experiments by performing adsorption isotherms under different conditions of pH, supporting electrolyte concentration and temperature. The results were completed with capillary electrophoresis (CE) in order to measure the binding isotherm between PQ(2+) and humic acid (HA) molecules in solution. PQ(2+) adsorption is negligible on the bare goethite surface but important on the HA-goethite adsorbent. In this last case, the adsorption increases by increasing pH and decreasing electrolyte concentration. There are no significant effects of temperature on the adsorption. The adsorption takes place by direct binding of PQ(2+) to adsorbed HA molecules leading to the formation of surface species of the type goethite-HA-PQ(2+). The results are consistent with a mechanism where PQ(2+) binds negatively charged groups of HA (carboxylates and phenolates) forming ionic pairs or outer-sphere complexes. Since goethite in nature usually contains adsorbed HA molecules, it may act as a good adsorbent for cationic herbicides. This will not only benefit the deactivation of the herbicides but also reduce their leaching and transport through groundwater. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  6. Direct quantitative identification of the “surface trans-effect”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deimel, Peter S.; Bababrik, Reda M.; Wang, Bin

    The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed “surface trans-effect” (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule–metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal–organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structuralmore » parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H 2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. Finally, this apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect.« less

  7. Direct quantitative identification of the “surface trans-effect”

    DOE PAGES

    Deimel, Peter S.; Bababrik, Reda M.; Wang, Bin; ...

    2016-06-09

    The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed “surface trans-effect” (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule–metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal–organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structuralmore » parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H 2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. Finally, this apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect.« less

  8. A Radio Frequency Electric Current Enhances Antibiotic Efficacy against Bacterial Biofilms

    PubMed Central

    Caubet, R.; Pedarros-Caubet, F.; Chu, M.; Freye, E.; de Belém Rodrigues, M.; Moreau, J. M.; Ellison, W. J.

    2004-01-01

    Bacterial biofilms are notably resistant to antibiotic prophylaxis. The concentration of antibiotic necessary to significantly reduce the number of bacteria in the biofilm matrix can be several hundred times the MIC for the same bacteria in a planktonic phase. It has been observed that the addition of a weak continuous direct electric current to the liquid surrounding the biofilm can dramatically increase the efficacy of the antibiotic. This phenomenon, known as the bioelectric effect, has only been partially elucidated, and it is not certain that the electrical parameters are optimal. We confirm here the bioelectric effect for Escherichia coli biofilms treated with gentamicin and with oxytetracycline, and we report a new bioelectric effect with a radio frequency alternating electric current (10 MHz) instead of the usual direct current. None of the proposed explanations (transport of ions within the biofilm, production of additional biocides by electrolysis, etc.) of the direct current bioelectric effect are applicable to the radio frequency bioelectric effect. We suggest that this new phenomenon may be due to a specific action of the radio frequency electromagnetic field upon the polar parts of the molecules forming the biofilm matrix. PMID:15561841

  9. Determination of thermodynamics and kinetics of RNA reactions by force

    PubMed Central

    Tinoco, Ignacio; Li, Pan T. X.; Bustamante, Carlos

    2008-01-01

    Single-molecule methods have made it possible to apply force to an individual RNA molecule. Two beads are attached to the RNA; one is on a micropipette, the other is in a laser trap. The force on the RNA and the distance between the beads are measured. Force can change the equilibrium and the rate of any reaction in which the product has a different extension from the reactant. This review describes use of laser tweezers to measure thermodynamics and kinetics of unfolding/refolding RNA. For a reversible reaction the work directly provides the free energy; for irreversible reactions the free energy is obtained from the distribution of work values. The rate constants for the folding and unfolding reactions can be measured by several methods. The effect of pulling rate on the distribution of force-unfolding values leads to rate constants for unfolding. Hopping of the RNA between folded and unfolded states at constant force provides both unfolding and folding rates. Force-jumps and force-drops, similar to the temperature jump method, provide direct measurement of reaction rates over a wide range of forces. The advantages of applying force and using single-molecule methods are discussed. These methods, for example, allow reactions to be studied in non-denaturing solvents at physiological temperatures; they also simplify analysis of kinetic mechanisms because only one intermediate at a time is present. Unfolding of RNA in biological cells by helicases, or ribosomes, has similarities to unfolding by force. PMID:17040613

  10. Crankshafts: using simple, flat C2h-symmetric molecules to direct the assembly of chiral 2D nanopatterns.

    PubMed

    Zhou, Hui; Wuest, James D

    2013-06-18

    Linear D2h-symmetric bisisophthalic acids 1 and 2 and related substances have well-defined flattened structures, high affinities for graphite, and strong abilities to engage in specific intermolecular interactions. Their adsorption produces characteristic nanopatterns that reveal how 2D molecular organization can be controlled by reliable interadsorbate interactions such as hydrogen bonds when properly oriented by molecular geometry. In addition, the behavior of these compounds shows how large-scale organization can be obstructed by programming molecules to associate strongly according to competing motifs that have similar stability and can coexist smoothly without creating significant defects. Analogous new bisisophthalic acids 3a and 4a have similar associative properties, and their unique C2h-symmetric crankshaft geometry gives them the added ability to probe the poorly understood effect of chirality on molecular organization. Their adsorption shows how nanopatterns composed predictably of a single enantiomer can be obtained by depositing molecules that can respect established rules of association only by accepting neighbors of the same configuration. In addition, an analysis of the adsorption of crankshaft compounds 3a and 4a and their derivatives by STM reveals directly on the molecular level how kinetics and thermodynamics compete to control the crystallization of chiral compounds. In such ways, detailed studies of the adsorption of properly designed compounds on surfaces are proving to be a powerful way to discover and test rules that broadly govern molecular organization in both 2D and 3D.

  11. Modeling and simulation of Li-ion conduction in poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Gitelman, L.; Israeli, M.; Averbuch, A.; Nathan, M.; Schuss, Z.; Golodnitsky, D.

    2007-12-01

    Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li + ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na +, K +, and other ions, and the PEO helical chain that conducts Li + ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.

  12. The SERS and TERS effects obtained by gold droplets on top of Si nanowires.

    PubMed

    Becker, M; Sivakov, V; Andrä, G; Geiger, R; Schreiber, J; Hoffmann, S; Michler, J; Milenin, A P; Werner, P; Christiansen, S H

    2007-01-01

    We show that hemispherical gold droplets on top of silicon nanowires when grown by the vapor-liquid-solid (VLS) mechanism, can produce a significant enhancement of Raman scattered signals. Signal enhancement for a few or even just single gold droplets is demonstrated by analyzing the enhanced Raman signature of malachite green molecules. For this experiment, trenches (approximately 800 nm wide) were etched in a silicon-on-insulator (SOI) wafer along <110> crystallographic directions that constitute sidewalls ({110} surfaces) suitable for the growth of silicon nanowires in <111> directions with the intention that the gold droplets on the silicon nanowires can meet somewhere in the trench when growth time is carefully selected. Another way to realize gold nanostructures in close vicinity is to attach a silicon nanowire with a gold droplet onto an atomic force microscopy (AFM) tip and to bring this tip toward another gold-coated AFM tip where malachite green molecules were deposited prior to the measurements. In both experiments, signal enhancement of characteristic Raman bands of malachite green molecules was observed. This indicates that silicon nanowires with gold droplets atop can act as efficient probes for tip-enhanced Raman spectroscopy (TERS). In our article, we show that a nanowire TERS probe can be fabricated by welding nanowires with gold droplets to AFM tips in a scanning electron microscope (SEM). TERS tips made from nanowires could improve the spatial resolution of Raman spectroscopy so that measurements on the nanometer scale are possible.

  13. The properties of residual water molecules in ionic liquids: a comparison between direct and inverse Kirkwood-Buff approaches.

    PubMed

    Kobayashi, Takeshi; Reid, Joshua E S J; Shimizu, Seishi; Fyta, Maria; Smiatek, Jens

    2017-07-26

    We study the properties of residual water molecules at different mole fractions in dialkylimidazolium based ionic liquids (ILs), namely 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM/BF 4 ) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM/BF 4 ) by means of atomistic molecular dynamics (MD) simulations. The corresponding Kirkwood-Buff (KB) integrals for the water-ion and ion-ion correlation behavior are calculated by a direct evaluation of the radial distribution functions. The outcomes are compared to the corresponding KB integrals derived by an inverse approach based on experimental data. Our results reveal a quantitative agreement between both approaches, which paves a way towards a more reliable comparison between simulation and experimental results. The simulation outcomes further highlight that water even at intermediate mole fractions has a negligible influence on the ion distribution in the solution. More detailed analysis on the local/bulk partition coefficients and the partial structure factors reveal that water molecules at low mole fractions mainly remain in the monomeric state. A non-linear increase of higher order water clusters can be found at larger water concentrations. For both ILs, a more pronounced water coordination around the cations when compared to the anions can be observed, which points out that the IL cations are mainly responsible for water pairing mechanisms. Our simulations thus provide detailed insights in the properties of dialkylimidazolium based ILs and their effects on water binding.

  14. High-mobility strained organic semiconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Takeya, Jun; Matsui, H.; Kubo, T.; Hausermann, Roger

    2016-11-01

    Small molecular organic semiconductor crystals form interesting electronic systems of periodically arranged "charge clouds" whose mutual electronic coupling determines whether or not electronic states can be coherent over fluctuating molecules. This presentation focuses on two methods to reduce molecular fluctuation, which strongly restricts mobility of highly mobile charge in single-crystal organic transistors. The first example is to apply external hydrostatic pressure. Using Hall-effect measurement for pentacene FETs, which tells us the extent of the electronic coherence, we found a crossover from hopping-like transport of nearly localized charge to band transport of delocalized charge with full coherence. As the result of temperature dependence measurement, it turned out that reduced molecular fluctuation is mainly responsible for the crossover. The second is to apply uniaxial strain to single-crystal organic FETs. We applied stain by bending thin films of newly synthesized decyldinaphthobenzodithiophene (C10-DNBDT) on plastic substrate so that 3% strain is uniaxially applied. As the result, the room-temperature mobility increased by the factor of 1.7. In-depth analysis using X-ray diffraction (XRD) measurements and density functional theory (DFT) calculations reveal the origin to be the suppression of the thermal fluctuation of the individual molecules, which is confirmed by temperature dependent measurements. Our findings show that compressing the crystal structure directly restricts the vibration of the molecules, thus suppressing dynamic disorder, a unique mechanism in organic semiconductors. Since strain can easily be induced during the fabrication process, these findings can directly be exploited to build high performance organic devices.

  15. Cytokine Network Involvement in Subjects Exposed to Benzene

    PubMed Central

    Gangemi, Sebastiano

    2014-01-01

    Benzene represents an ubiquitous pollutant both in the workplace and in the general environment. Health risk and stress posed by benzene have long been a concern because of the carcinogenic effects of the compound which was classified as a Group 1 carcinogen to humans and animals. There is a close correlation between leukemia, especially acute myeloid leukemia, and benzene exposure. In addition, exposure to benzene can cause harmful effects on immunological, neurological, and reproductive systems. Benzene can directly damage hematopoietic progenitor cells, which in turn could lead to apoptosis or may decrease responsiveness to cytokines and cellular adhesion molecules. Alternatively, benzene toxicity to stromal cells or mature blood cells could disrupt the regulation of hematopoiesis, including hematopoietic commitment, maturation, or mobilization, through the network of cytokines, chemokines, and adhesion molecules. Today there is mounting evidence that benzene may alter the gene expression, production, or processing of several cytokines in vitro and in vivo. The purpose of this review was to systematically analyze the published cases of cytokine effects on human benzene exposure, particularly hematotoxicity, and atopy, and on lungs. PMID:25202711

  16. Development of an electrically driven molecular motor.

    PubMed

    Murphy, Colin J; Sykes, E Charles H

    2014-10-01

    For molecules to be used as components in molecular machinery, methods are required that couple individual molecules to external energy sources in order to selectively excite motion in a given direction. While significant progress has been made in the construction of synthetic molecular motors powered by light and by chemical reactions, there are few experimental examples of electrically driven molecular motors. To this end, we pioneered the use of a new, stable and tunable molecular rotor system based on surface-bound thioethers to comprehensively study many aspects of molecular rotation. As biological molecular motors often operate at interfaces, our synthetic system is especially amenable to microscopic interrogation as compared to solution-based systems. Using scanning tunneling microscopy (STM) and density functional theory, we studied the rotation of surface-bound thioethers, which can be induced either thermally or by electrons from the STM tip in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. This work culminated in the first experimental demonstration of a single-molecule electric motor, where the electrically driven rotation of a butyl methyl sulfide molecule adsorbed on a copper surface could be directionally biased. The direction and rate of the rotation are related to the chirality of both the molecule and the STM tip (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Kim, Ho Young; Oh, Mi Hyun; Byun, Sanguine; Lim, Sung Hwan; Heo, Yong-Seok; Kang, Nam Joo; Bode, Ann M.; Dong, Zigang; Lee, Hyong Joo

    2010-01-01

    Chronic exposure to solar ultraviolet (UV) light causes skin photoaging. Many studies have shown that naturally occurring phytochemicals have anti-photoaging effects, but their direct target molecule(s) and mechanism(s) remain unclear. We found that myricetin, a major flavonoid in berries and red wine, inhibited wrinkle formation in mouse skin induced by chronic UVB irradiation (0.18 J/cm2, 3 days/wk for 15 wk). Myricetin treatment reduced UVB-induced epidermal thickening of mouse skin and also suppressed UVB-induced matrix metalloproteinase-9 (MMP-9) protein expression and enzyme activity. Myricetin appeared to exert its anti-aging effects by suppressing UVB-induced Raf kinase activity and subsequent attenuation of UVB-induced phosphorylation of MEK and ERK in mouse skin. In vitro and in vivo pull-down assays revealed that myricetin bound with Raf in an ATP-noncompetitive manner. Overall, these results indicate that myricetin exerts potent anti-photoaging activity by regulating MMP-9 expression through the suppression of Raf kinase activity. PMID:20093107

  18. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    PubMed Central

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  19. Computational investigation of fullerene-DNA interactions: Implications of fullerene's size and functionalization on DNA structure and binding energetics.

    PubMed

    Papavasileiou, Konstantinos D; Avramopoulos, Aggelos; Leonis, Georgios; Papadopoulos, Manthos G

    2017-06-01

    DNA is the building block of life, as it carries the biological information controlling development, function and reproduction of all organisms. However, its central role in storing and transferring genetic information can be severely hindered by molecules with structure altering abilities. Fullerenes are nanoparticles that find a broad spectrum of uses, but their toxicological effects on living organisms upon exposure remain unclear. The present study examines the interactions of a diverse array of fullerenes with DNA, by means of Molecular Dynamics and MM-PBSA methodologies, with special focus on structural deformations that may hint toxicity implications. Our results show that pristine and hydroxylated fullerenes have no unwinding effects upon DNA structure, with the latter displaying binding preference to the DNA major groove, achieved by both direct formation of hydrogen bonds and water molecule mediation. Fluorinated derivatives are capable of penetrating DNA structure, forming intercalative complexes with high binding affinities. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  1. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions

    PubMed Central

    Kagan, Valerian E.; Wipf, Peter; Stoyanovsky, Detcho; Greenberger, Joel S.; Borisenko, Grigory; Belikova, Natalia A.; Yanamala, Naveena; Samhan Arias, Alejandro K.; Tungekar, Muhammad A.; Jiang, Jianfei; Tyurina, Yulia Y.; Ji, Jing; Klein-Seetharaman, Judith; Pitt, Bruce R.; Shvedova, Anna A; Bayır, Hülya

    2009-01-01

    Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader-sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants. PMID:19716396

  2. Subcellular storage compartments of bacteriopheophorbide sensitizers

    NASA Astrophysics Data System (ADS)

    Moser, Joerg G.; Dembeck, U.; Hubert, M.; Spengler, Bernhard; Bayer, Rainer; Wagner, Birgit

    1994-03-01

    Fluorescence colocalization with the Golgi specific stain, NBD-ceramide, and the mitochondrial localizing stain, Rhodamine 123, confirmed the earlier assumption that the Golgi apparatus is one of the prominent storage compartments for bacteriopheophorbide esters in OAT 75 SCLC cells and several amelanotic melanoma cell lines (A375, Melur SP18, SkAMel 25). Furthermore, a diffuse staining of mitochondria, of non-structured cytoplasm, and an additional storage in melanine vesicles of the amelanotic melanoma cells suggests further storage compartments with quantitatively different contributions to the phototoxicity of bacteriochlorophyll-derived photosensitizers. Independent observations of early phototoxic effects on microfilamentous networks, enzymatic activities (succinate dehydrogenase, lactate dehydrogenase), and redistribution phenomena following primary uptake of the sensitizers let us assume that only a part of the 108 molecules taken up by a cell contribute directly to phototoxicity. Thus it may be asked if a proper subcellular positioning of only a few sensitizer molecules may have similar phototoxic effects as the huge amounts stored at apparently ineffective sites.

  3. Ultrafast X-Ray Spectroscopy of Conical Intersections

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  4. Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin

    PubMed Central

    Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela

    2012-01-01

    Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidant activity and can also increase the intracellular levels of glutathione (GSH), the major endogenous antioxidant. In addition, fisetin has both neurotrophic and anti-inflammatory activity. However, its relatively high EC50 in cell based assays, low lipophilicity, high tPSA and poor bioavailability suggest that there is room for medicinal chemical improvement. Here we describe a multi-tiered approach to screening that has allowed us to identify fisetin derivatives with significantly enhanced activity in an in vitro neuroprotection model while at the same time maintaining other key activities. PMID:22192055

  5. Directional charge separation in isolated organic semiconductor crystalline nanowires

    DOE PAGES

    Labastide, J. A.; Thompson, H. B.; Marques, S. R.; ...

    2016-02-25

    One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n-type organic semiconductor, 7,8,15,16-tetraazaterrylene, generates a significant population of charge-separated polaron pairs along the π-stacking direction. Charge separation was signalled by pronounced power-law photoluminescence decay polarized alongmore » the same axis. In the transverse direction, we observed exponential decay associated with excitons localized on individual monomers. We propose that this effect derives from an intrinsic directional charge-transfer interaction that can ultimately be programmed by molecular packing geometry.« less

  6. An investigation of isomerization pathways of epoxysaccharides

    NASA Astrophysics Data System (ADS)

    Andrianov, V. M.; Kirillova, S. G.; Zhbankov, R. G.

    1997-07-01

    Direct and reverse interconversion pathways of six epoxysaccharide molecules, namely, three molecules with epoxypyranose rings: methyl 2,3-anhydro-2,3,4-trideoxy- β- D-lyxohexopyranoside, methyl 2,3-anhydro-4-deoxy- α- D, L-ribo- and - α- D, L-lyxohexopyranosides and three molecules with epoxypyranose rings: methyl 2,6-di- O-acetyl-3,4-anhydro- α- D, L-( 6,6- 2H2) derivatives of talopyranoside and galactopyranoside, and methyl 3,4-anhydro- α- D, L-allopyranoside were simulated by the Wiberg and Boyd method. This made it possible to determine all stationary and intermediate forms in which anhydropyranose rings can exist. Calculations of barrier heights for interconversion and energies of global minima have shown that conformations revealed in X-ray studies are more favorable. Most of the local minima found lie in the vicinity of the boat (B) forms, the other minima correspond to conformations possessing symmetry elements of the skew-boat (S) and twist (T) forms. The interconversion pathways of the molecules investigated are presented on the Cremer-Pople diagram. We studied the effect of various structural factors on the character of conformational transformations, heights of transition barriers, the form of the ground state, and the energy of stationary forms, and their number and location on the Cremer-Pople diagram.

  7. Role of quinones in electron transfer of PQQ–glucose dehydrogenase anodes—mediation or orientation effect

    DOE PAGES

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; ...

    2015-06-16

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-sGDH anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introducedmore » in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.« less

  8. Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow

    2015-06-24

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-dependent glucose dehydrogenase (PQQ–sGDH) anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2-more » and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.« less

  9. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography.

    PubMed

    Nelson, Edward M; Li, Hui; Timp, Gregory

    2014-06-24

    We report direct, concurrent measurements of the forces and currents associated with the translocation of a single-stranded DNA molecule tethered to the tip of an atomic force microscope (AFM) cantilever through synthetic pores with topagraphies comparable to the DNA. These measurements were performed to gauge the signal available for sequencing and the electric force required to impel a single molecule through synthetic nanopores ranging from 1.0 to 3.5 nm in diameter in silicon nitride membranes 6-10 nm thick. The measurements revealed that a molecule can slide relatively frictionlessly through a pore, but regular fluctuations are observed intermittently in the force (and the current) every 0.35-0.72 nm, which are attributed to individual nucleotides translating through the nanopore in a turnstile-like motion.

  10. Expanding Biosensing Abilities through Computer-Aided Design of Metabolic Pathways.

    PubMed

    Libis, Vincent; Delépine, Baudoin; Faulon, Jean-Loup

    2016-10-21

    Detection of chemical signals is critical for cells in nature as well as in synthetic biology, where they serve as inputs for designer circuits. Important progress has been made in the design of signal processing circuits triggering complex biological behaviors, but the range of small molecules recognized by sensors as inputs is limited. The ability to detect new molecules will increase the number of synthetic biology applications, but direct engineering of tailor-made sensors takes time. Here we describe a way to immediately expand the range of biologically detectable molecules by systematically designing metabolic pathways that transform nondetectable molecules into molecules for which sensors already exist. We leveraged computer-aided design to predict such sensing-enabling metabolic pathways, and we built several new whole-cell biosensors for molecules such as cocaine, parathion, hippuric acid, and nitroglycerin.

  11. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of moleculesmore » in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease of operation, ability to analyze samples in their native environments, speed of analysis, and ability to tune the extraction solvent composition to a problem at hand. For example, solvent composition may be optimized for efficient extraction of different classes of analytes from the sample or for quantification or online derivatization through reactive analysis. In this review, we will: 1) introduce individual liquid extraction techniques capable of localized analysis and imaging, 2) describe approaches for quantitative MSI experiments free of matrix effects, 3) discuss advantages of reactive analysis for MSI experiments, and 4) highlight selected applications (published between 2012 and 2015) that focus on imaging and spatial profiling of molecules in complex biological and environmental samples.« less

  12. [Interactions of fibroblasts, adipocytes and immunocompeent cells in the pathogenesis of endocrine ophthalmopathy].

    PubMed

    Heufelder, A E

    2001-01-01

    Graves' ophthalmopathy is thought to result from a complex interplay of genetic and environmental factors. Various genes including those coding for HLA may determine a patient's susceptibility to the disease and its severity, but in addition numerous and often unknown environmental factors may determine its course. The orbital immune process is thought to be initiated, on the background of a permissive immunogenetic milieu, by circulating T cells directed against certain antigens on thyroid follicular cells that also recognize antigenic epitopes which are shared by tissues contained in the orbital space. Analysis of variable region genes of T cell antigen receptors in orbital T cells of patients with active Graves' ophthalmopathy has revealed limited variability of TcR V gene usage, suggesting that antigen-driven selection and/or expansion of specific T cells may occur during the early stages of Graves' ophthalmopathy. T cell recruitment into the orbital tissues is facilitated by certain chemokines and cytokines, which attract T cells by stimulating the expression of several adhesion molecules (e.g. ICAM-1, VCAM-1, CD44) in vascular endothelium and connective tissue cells. Adhesion molecules are known to be important for a variety of interactions between immunocompetent cells, preadipocyte fibroblasts and adipocytes. In addition, these molecules play a central role in lymphocyte activation and localization, facilitating antigen recognition, T cell costimulation, and various effector-target cell functions at the inflammatory sites, which result in amplification of the cellular immune process in active Graves' ophthalmopathy. T cells and macrophages populate the orbital space and release a number of cytokines (most likely a Th-1-type spectrum) into the surrounding tissues. Cytokines, oxygen free radicals and fibrogenic growth factors, released both from infiltrating inflammatory and residential cells, act upon orbital preadipocytes in a paracrine and autocrine manner to stimulate adipogenesis, fibroblast proliferation, glycosaminoglycan synthesis, and the expression of immunomodulatory molecules. Smoking, a well-known aggravating factor in Graves' ophthalmopathy, may aggravate tissue hypoxia and exert important immunomodulatory and pro-oxidant effects. Differentiation of orbital preadipocyte fibroblasts into mature adipocytes expressing increased levels of TSHR may also be driven by stimulation with circulating or locally produced cytokines or effectors. TSHR-directed autoantibodies or T cells may thus play a direct role promoting adipogenesis, glycosaminoglycan synthesis and expression of immunomodulatory proteins within the orbits. Once the net effect of these changes has come to increase the volume of the fatty connective tissues within the orbit, then proptosis, extraocular muscle dysfunction, and periorbital congestion will ensue.

  13. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilan, Ayelet

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at themore » metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.« less

  14. Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    You, Sixian; Liu, Yuan; Arp, Zane; Zhao, Youbo; Chaney, Eric J.; Marjanovic, Marina; Boppart, Stephen A.

    2017-07-01

    Docosanol is an over-the-counter topical agent that has proved to be one of the most effective therapies for treating herpes simplex labialis. However, the mechanism by which docosanol suppresses lesion formation remains poorly understood. To elucidate its mechanism of action, we investigated the uptake of docosanol in living cells using coherent anti-Stokes Raman scattering microscopy. Based on direct visualization of the deuterated docosanol, we observed highly concentrated docosanol inside living cells 24 h after drug treatment. In addition, different spatial patterns of drug accumulation were observed in different cell lines. In keratinocytes, which are the targeted cells of docosanol, the drug molecules appeared to be docking at the periphery of the cell membrane. In contrast, the drug molecules in fibroblasts appeared to accumulate in densely packed punctate regions throughout the cytoplasm. These results suggest that this molecular imaging approach is suitable for the longitudinal tracking of drug molecules in living cells to identify cell-specific trafficking and may also have implications for elucidating the mechanism by which docosanol suppresses lesion formation.

  15. Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family.

    PubMed

    Reidenbach, Andrew G; Kemmerer, Zachary A; Aydin, Deniz; Jochem, Adam; McDevitt, Molly T; Hutchins, Paul D; Stark, Jaime L; Stefely, Jonathan A; Reddy, Thiru; Hebert, Alex S; Wilkerson, Emily M; Johnson, Isabel E; Bingman, Craig A; Markley, John L; Coon, Joshua J; Dal Peraro, Matteo; Pagliarini, David J

    2018-02-15

    Human COQ8A (ADCK3) and Saccharomyces cerevisiae Coq8p (collectively COQ8) are UbiB family proteins essential for mitochondrial coenzyme Q (CoQ) biosynthesis. However, the biochemical activity of COQ8 and its direct role in CoQ production remain unclear, in part due to lack of known endogenous regulators of COQ8 function and of effective small molecules for probing its activity in vivo. Here, we demonstrate that COQ8 possesses evolutionarily conserved ATPase activity that is activated by binding to membranes containing cardiolipin and by phenolic compounds that resemble CoQ pathway intermediates. We further create an analog-sensitive version of Coq8p and reveal that acute chemical inhibition of its endogenous activity in yeast is sufficient to cause respiratory deficiency concomitant with CoQ depletion. Collectively, this work defines lipid and small-molecule modulators of an ancient family of atypical kinase-like proteins and establishes a chemical genetic system for further exploring the mechanistic role of COQ8 in CoQ biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    NASA Astrophysics Data System (ADS)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  17. Structural basis of AMPK regulation by small molecule activators

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.

    2013-12-01

    AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.

  18. Seaweed-microbial interactions: key functions of seaweed-associated bacteria.

    PubMed

    Singh, Ravindra Pal; Reddy, C R K

    2014-05-01

    Seaweed-associated bacteria play a crucial role in morphogenesis and growth of seaweeds (macroalgae) in direct and/or indirect ways. Bacterial communities belonging to the phyla Proteobacteria and Firmicutes are generally the most abundant on seaweed surfaces. Associated bacterial communities produce plant growth-promoting substances, quorum sensing signalling molecules, bioactive compounds and other effective molecules that are responsible for normal morphology, development and growth of seaweeds. Also, bioactive molecules of associated bacteria determine the presence of other bacterial strains on seaweeds and protect the host from harmful entities present in the pelagic realm. The ecological functions of cross-domain signalling between seaweeds and bacteria have been reported as liberation of carpospores in the red seaweeds and settlement of zoospores in the green seaweeds. In the present review, the role of extracellular polymeric substances in growth and settlement of seaweeds spores is also highlighted. To elucidate the functional roles of associated bacteria and the molecular mechanisms underlying reported ecological phenomena in seaweeds requires a combined ecological, microbiological and biochemical approach. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample

    NASA Technical Reports Server (NTRS)

    Freissinet, C.; Glavin, D. P.; Buch, A.; Szopa, C.; Summons, R. E.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brinckerhoff, W. B.; Brunner, A. E.; Cabane, M.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.

  20. Optoelectrical Cooling of Polar Molecules to Submillikelvin Temperatures.

    PubMed

    Prehn, Alexander; Ibrügger, Martin; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2016-02-12

    We demonstrate direct cooling of gaseous formaldehyde (H2CO) to the microkelvin regime. Our approach, optoelectrical Sisyphus cooling, provides a simple dissipative cooling method applicable to electrically trapped dipolar molecules. By reducing the temperature by 3 orders of magnitude and increasing the phase-space density by a factor of ∼10(4), we generate an ensemble of 3×10(5) molecules with a temperature of about 420  μK, populating a single rotational state with more than 80% purity.

  1. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) to surface molecules of mammalian tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, three dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture; therefore, MCS make better in vitro model systems to study the interactions of mammalian cells. Additionally, they provide a functional assay for surface adhesion molecules.

  2. Nanoscale methods for single-molecule electrochemistry.

    PubMed

    Mathwig, Klaus; Aartsma, Thijs J; Canters, Gerard W; Lemay, Serge G

    2014-01-01

    The development of experiments capable of probing individual molecules has led to major breakthroughs in fields ranging from molecular electronics to biophysics, allowing direct tests of knowledge derived from macroscopic measurements and enabling new assays that probe population heterogeneities and internal molecular dynamics. Although still somewhat in their infancy, such methods are also being developed for probing molecular systems in solution using electrochemical transduction mechanisms. Here we outline the present status of this emerging field, concentrating in particular on optical methods, metal-molecule-metal junctions, and electrochemical nanofluidic devices.

  3. Direct Imaging of Deformation and Disorder in Extended-Chain Polymer Fibers

    DTIC Science & Technology

    1991-03-01

    conformation. A comparable physical picture of a rigid-rod molecule is that of a stiff strand of "uncooked linguine ". The linguine " analogy is...standing what happens when these " linguine -like" molecules 2 pack together in the solid state. Also, we wished to under- stand how supposedly completely

  4. Identification and Use of the Putative Bacteroides ovatus Xylanase Promoter for the Inducible Production of Recombinant Human Proteins

    USDA-ARS?s Scientific Manuscript database

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ov...

  5. A Direct, Competitive Enzyme-Linked Immunosorbent Assay (ELISA) as a Quantitative Technique for Small Molecules

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Rippe, Karen Duda; Imarhia, Kelly; Swift, Aileen; Scholten, Melanie; Islam, Naina

    2012-01-01

    ELISA (enzyme-linked immunosorbent assay) is a widely used technique with applications in disease diagnosis, detection of contaminated foods, and screening for drugs of abuse or environmental contaminants. However, published protocols with a focus on quantitative detection of small molecules designed for teaching laboratories are limited. A…

  6. Modeling a Membrane: Using Engineering Design to Simulate Cell Transport Processes

    ERIC Educational Resources Information Center

    Mason, Kevin; Evans, Brian

    2017-01-01

    The "plasma membrane," which controls what comes in and goes out of a cell, is integral to maintaining homeostasis. Cell transport of small molecules across the cell membrane happens in several different ways. Some small, nonpolar molecules cross the plasma membrane along the concentration gradient directly through the "phospholipid…

  7. Method and apparatus for combinatorial chemistry

    DOEpatents

    Foote, Robert S.

    2007-02-20

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  8. Method and apparatus for combinatorial chemistry

    DOEpatents

    Foote, Robert S [Oak Ridge, TN

    2012-06-05

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  9. Self-assembly patterning of organic molecules on a surface

    DOEpatents

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  10. Hippocampal and cortical neuronal growth mediated by the small molecule natural product clovanemagnolol.

    PubMed

    Khaing, Zin; Kang, Danby; Camelio, Andrew M; Schmidt, Christine E; Siegel, Dionicio

    2011-08-15

    The use of small molecule surrogates of growth factors that directly or indirectly promote growth represents an attractive approach to regenerative medicine. With synthetic access to clovanemagnolol, a small molecule initially isolated from the bark of the Bigleaf Magnolia tree, we have examined the small molecule's ability to promote growth of embryonic hippocampal and cortical neurons in serum-free medium. Comparisons with magnolol, a known promoter of growth, reveals that clovanmagnolol is a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM. In addition, both clovanemagnolol and magnolol promote growth through a biphasic dose response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Chemical approaches to targeted protein degradation through modulation of the ubiquitin-proteasome pathway.

    PubMed

    Collins, Ian; Wang, Hannah; Caldwell, John J; Chopra, Raj

    2017-03-15

    Manipulation of the ubiquitin-proteasome system to achieve targeted degradation of proteins within cells using chemical tools and drugs has the potential to transform pharmacological and therapeutic approaches in cancer and other diseases. An increased understanding of the molecular mechanism of thalidomide and its analogues following their clinical use has unlocked small-molecule modulation of the substrate specificity of the E3 ligase cereblon (CRBN), which in turn has resulted in the advancement of new immunomodulatory drugs (IMiDs) into the clinic. The degradation of multiple context-specific proteins by these pleiotropic small molecules provides a means to uncover new cell biology and to generate future drug molecules against currently undruggable targets. In parallel, the development of larger bifunctional molecules that bring together highly specific protein targets in complexes with CRBN, von Hippel-Lindau, or other E3 ligases to promote ubiquitin-dependent degradation has progressed to generate selective chemical compounds with potent effects in cells and in vivo models, providing valuable tools for biological target validation and with future potential for therapeutic use. In this review, we survey recent breakthroughs achieved in these two complementary methods and the discovery of new modes of direct and indirect engagement of target proteins with the proteasome. We discuss the experimental characterisation that validates the use of molecules that promote protein degradation as chemical tools, the preclinical and clinical examples disclosed to date, and the future prospects for this exciting area of chemical biology. © 2017 The Author(s).

  12. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.

    PubMed

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-11-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.

  13. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors

    PubMed Central

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-01-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or coopted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host. PMID:22053884

  14. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery.

    PubMed

    Wei, Weijia; Zhang, Xiujuan; Chen, Xianfeng; Zhou, Mengjiao; Xu, Ruirui; Zhang, Xiaohong

    2016-04-21

    Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future.

  15. The spontaneous synchronized dance of pairs of water molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roncaratti, Luiz F.; Instituto de Física, Universidade de Brasília, 70910-900 Brasília; Cappelletti, David, E-mail: david.cappelletti@unipg.it

    2014-03-28

    Molecular beam scattering experiments have been performed to study the effect of long-range anisotropic forces on the collision dynamics of two small polar molecules. The main focus of this paper is on water, but also ammonia and hydrogen sulphide molecules have been investigated, and some results will be anticipated. The intermolecular distances mainly probed are of the order of 1 nm and therefore much larger than the molecular dimensions. In particular, we have found that the natural electric field gradient, generated by different spatial orientations of the permanent electric dipoles, is able to promote the transformation of free rotations into coupledmore » pendular states, letting the molecular partners involved in the collision complex swinging to and fro around the field direction. This long-ranged concerted motion manifested itself as large increases of the magnitude of the total integral cross section. The experimental findings and the theoretical treatment developed to shed light on the details of the process suggest that the transformation from free rotations to pendular states depends on the rotational level of both molecules, on the impact parameter, on the relative collision velocity, on the dipole moment product and occurs in the time scale of picoseconds. The consequences of this intriguing phenomenon may be important for the interpretation and, in perspective, for the control of elementary chemical and biological processes, given by polar molecules, ions, and free radicals, occurring in several environments under various conditions.« less

  16. Yeast cytochrome c integrated with electronic elements: a nanoscopic and spectroscopic study down to single-molecule level

    NASA Astrophysics Data System (ADS)

    Delfino, I.; Bonanni, B.; Andolfi, L.; Baldacchini, C.; Bizzarri, A. R.; Cannistraro, S.

    2007-06-01

    Various aspects of redox protein integration with nano-electronic elements are addressed by a multi-technique investigation of different yeast cytochrome c (YCC)-based hybrid systems. Three different immobilization strategies on gold via organic linkers are explored, involving either covalent bonding or electrostatic interaction. Specifically, Au surfaces are chemically modified by self-assembled monolayers (SAMs) exposing thiol-reactive groups, or by acid-oxidized single-wall carbon nanotubes (SWNTs). Atomic force microscopy and scanning tunnelling microscopy are employed to characterize the morphology and the electronic properties of single YCC molecules adsorbed on the modified gold surfaces. In each hybrid system, the protein molecules are stably assembled, in a native configuration. A standing-up arrangement of YCC on SAMs is suggested, together with an enhancement of the molecular conduction, as compared to YCC directly assembled on gold. The electrostatic interaction with functionalized SWNTs allows several YCC adsorption geometries, with a preferential high-spin haem configuration, as outlined by Raman spectroscopy. Moreover, the conduction properties of YCC, explored in different YCC nanojunctions by conductive atomic force microscopy, indicate the effectiveness of electrical conduction through the molecule and its dependence on the electrode material. The joint employment of several techniques confirms the key role of a well-designed immobilization strategy, for optimizing biorecognition capabilities and electrical coupling with conductive substrates at the single-molecule level, as a starting point for advanced applications in nano-biotechnology.

  17. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Chapes, S. K.

    1999-01-01

    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  18. Amide-Directed Photoredox Catalyzed C-C Bond Formation at Unactivated sp3 C-H Bonds

    PubMed Central

    Chu, John C. K.; Rovis, Tomislav

    2017-01-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds allow scientists to access molecules which would otherwise be inaccessible and to develop more efficient syntheses of complex molecules.1,2 Herein we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for the selective C-C bond formation at single C-H bonds in molecules that contain a multitude of seemingly indifferentiable such bonds. Selectivity arises through a relayed photoredox catalyzed oxidation of an N-H bond. We anticipate our findings to serve as a starting point for functionalization at inert C-H bonds through a hydrogen atom transfer strategy. PMID:27732580

  19. Direct numerical solution of the Ornstein-Zernike integral equation and spatial distribution of water around hydrophobic molecules

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Mitsunori; Doi, Junta

    1995-09-01

    The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.

  20. Adsorption effectiveness of β-lactoglobulin onto gold surface determined by quartz crystal microbalance.

    PubMed

    Jachimska, B; Świątek, S; Loch, J I; Lewiński, K; Luxbacher, T

    2018-06-01

    Bovine β-lactoglobulin (LGB) is a transport protein that can bind to its structure hydrophobic bioactive molecules. Due to the lack of toxicity, high stability and pH-dependent molecular binding mechanism, lactoglobulin can be used as a carrier of sparingly soluble drugs. Dynamic light scattering has confirmed LGB's tendency to create oligomeric forms. The hydrodynamic diameter of LGB molecules varies from 4 nm to 6 nm in the pH range of 2-10 and ionic strength I = 0.001-0.15 M, which corresponds to the presence of mono or dimeric LGB forms. The LGB zeta potential varies from 26.5 mV to -33.3 mV for I = 0.01 M and from 13.3 mV to -16 mV for I = 0.15 M in the pH range of 2-10. The isoelectric point is at pH 4.8. As a result of strong surface charge compensation, the maximum effective ionization degree of the LGB molecule is 35% for ionic strength I = 0.01 M and 22% for I = 0.15 M. The effectiveness of adsorption is linked with the properties of the protein, as well as those of the adsorption surface. The functionalization of gold surfaces with β-lactoglobulin (LGB) was studied using a quartz crystal microbalance with energy dissipation monitoring (QCM-D). The effectiveness of LGB adsorption correlates strongly with a charge of gold surface and the zeta potential of the molecule. The greatest value of the adsorbed mass was observed in the pH range in which LGB has a positive zeta potential values, below pH 4.8. This observation shows that electrostatic interactions play a dominant role in LGB adsorption on gold surfaces. Based on the adsorbed mass, protein orientation on gold surfaces was determined. The preferential side-on orientation of LGB molecules observed in the adsorption layer is consistent with the direction of the molecule dipole momentum determined by molecular dynamics simulations of the protein (MD). The use of the QCM-D method also allowed us to determine the effectiveness of adsorption of LGB on gold surface. Knowing the mechanism of LGB adsorption is significant importance for determining the optimum conditions for immobilizing this protein on solid surfaces. As β-lactoglobulin is a protein that binds various ligands, the binding properties of immobilized β-lactoglobulin can be used to design controlled protein structures for biomedical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

Top