Science.gov

Sample records for molecules including nuclear

  1. High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    SciTech Connect

    Madsen, C. B.; Abu-samha, M.; Madsen, L. B.

    2010-04-15

    We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH{sub 4} and CD{sub 4} and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane.

  2. Dynamical Green's function and an exact optical potential for electron-molecule scattering including nuclear dynamics

    NASA Astrophysics Data System (ADS)

    Brand, Joachim; Cederbaum, Lorenz S.; Meyer, Hans-Dieter

    1999-10-01

    We derive a rigorous optical potential for electron-molecule scattering including the effects of nuclear dynamics by extending the common many-body Green's function approach to optical potentials beyond the fixed-nuclei limit for molecular targets. Our formalism treats the projectile electron and the nuclear motion of the target molecule on the same footing whereby the dynamical optical potential rigorously accounts for the complex many-body nature of the scattering target. One central result of the present work is that the common fixed-nuclei optical potential is a valid adiabatic approximation to the dynamical optical potential even when projectile and nuclear motion are (nonadiabatically) coupled as long as the scattering energy is well below the electronic excitation thresholds of the target. For extremely low projectile velocities, however, when the cross sections are most sensitive to the scattering potential, we expect the influences of the nuclear dynamics on the optical potential to become relevant. For these cases, a systematic way to improve the adiabatic approximation to the dynamical optical potential is presented that yields nonlocal operators with respect to the nuclear coordinates.

  3. Nuclear Chemistry: Include It in Your Curriculum.

    ERIC Educational Resources Information Center

    Atwood, Charles H.; Sheline, R. K.

    1989-01-01

    Some of the topics that might be included in a nuclear chemistry section are explored. Offers radioactivity, closed shells in nuclei, energy of nuclear processes, nuclear reactions, and fission and fusion as topics of interest. Provided are ideas and examples for each. (MVL)

  4. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  5. Single-Molecule Imaging of Nuclear Transport

    PubMed Central

    Goryaynov, Alexander; Sarma, Ashapurna; Ma, Jiong; Yang, Weidong

    2010-01-01

    The utility of single molecule fluorescence microscopy approaches has been proven to be of a great avail in understanding biological reactions over the last decade. The investigation of molecular interactions with high temporal and spatial resolutions deep within cells has remained challenging due to the inherently weak signals arising from individual molecules. Recent works by Yang et al. demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single molecule level. By the single molecule approach, important kinetics, such as nuclear transport time and efficiency, for signal-dependent and independent cargo molecules have been obtained. Here we described a protocol for the methodological approach with an improved spatiotemporal resolution of 0.4 ms and 12 nm. The improved resolution enabled us to capture transient active transport and passive diffusion events through the nuclear pore complexes (NPC) in semi-intact cells. We expect this method to be used in elucidating other binding and trafficking events within cells. PMID:20548283

  6. Aerosol simulation including chemical and nuclear reactions

    SciTech Connect

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs.

  7. Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules.

    PubMed

    Sundholm, Dage; Rauhalahti, Markus; Özcan, Nergiz; Mera-Adasme, Raúl; Kussmann, Jörg; Luenser, Arne; Ochsenfeld, Christian

    2017-04-04

    Nuclear magnetic shieldings have been calculated at the density functional theory (DFT) level for stacks of benzene, hexadehydro[12]annulene, dodecadehydro[18]annulene, and hexabenzocoronene. The magnetic shieldings due to the ring currents in the adjacent molecules have been estimated by calculating nucleus independent molecular shieldings for the monomer in the atomic positions of neighbor molecules. The calculations show that the independent shielding model works reasonably well for the (1)H NMR shieldings of benzene and hexadehydro[12]annulene, whereas for the larger molecules and for the (13)C NMR shieldings the interaction between the molecules leads to shielding effects that are at least of the same size as the ring current contributions from the adjacent molecules. A better agreement is obtained when the nearest neighbors are also considered at full quantum mechanical (QM) level. The calculations suggest that the nearest solvent molecules must be included in the quantum mechanical system, at least when estimating solvent shifts at the molecular mechanics (MM) level. Current density calculations show that the stacking does not significantly affect the ring current strengths of the individual molecules, whereas the shape of the ring current for a single molecule differs from that of the stacked molecules.

  8. Attosecond electronic and nuclear quantum photodynamics of the ozone molecule

    SciTech Connect

    Halász, G. J.; Perveaux, A.; Lasorne, B.; Gatti, F.; Robb, M. A.; Vibók, Á.

    2013-11-13

    Coupled electron-nuclear dynamics simulations are investigated for the ozone molecule on the attosecond time scale. The initial wavepacket is pumped as a coherent superposition of two or three electronic states.

  9. Nuclear spin-induced Cotton-Mouton effect in molecules.

    PubMed

    Fu, Li-juan; Vaara, Juha

    2013-05-28

    In nuclear magneto-optic spectroscopy, effects of nuclear magnetization are detected in light passing through a sample containing spin-polarized nuclei. An optical analogue of nuclear magnetic resonance (NMR) chemical shift has been predicted and observed in the nuclear spin optical rotation of linearly polarized light propagating parallel to the nuclear magnetization. A recently proposed magneto-optic analogue of the NMR spin-spin coupling, the nuclear spin-induced Cotton-Mouton (NSCM) effect entails an ellipticity induced to linearly polarized light when passing through a medium with the nuclear spins polarized in a direction perpendicular to the light beam. Here we present a first-principles electronic structure formulation of NSCM in terms of response theory as well as ab initio and density-functional theory calculations for small molecules. The roles of basis set (we use completeness-optimized sets), electron correlation, and relativistic effects are discussed. It is found that the explicitly temperature-dependent contribution to NSCM, arising from the partial orientation of the molecules due to the nuclear magnetization, typically dominates the effect. This part of NSCM is proportional to the tensor product of molecular polarizability and the NMR direct dipolar coupling tensor. Hence, NSCM provides a means of investigating the dipolar coupling and, thus, molecular structure in a formally isotropic medium. Overall ellipticities of the order of magnitude of 10(-8)...10(-7) rad/(M cm) are predicted for fully polarized nuclei. These should be detectable with modern instrumentation in the Voigt setup.

  10. Observation of rotating nuclear molecules and determination of their lifetimes

    NASA Astrophysics Data System (ADS)

    Comas, V.; Heinz, S.; Hofmann, S.; Ackermann, D.; Heredia, J.; Heßberger, F. P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R.

    2012-12-01

    Long-living rotating nuclear molecules (or "dinuclear systems") have been observed at the velocity filter SHIP at GSI in reactions of 64Ni + 207Pb at Coulomb barrier energies. The rotation was directly revealed by the velocity spectra of deep inelastic target-like transfer products which are formed during the lifetime of the nuclear molecule and emitted after its breakup. The corresponding rotation angles were about 180 degree pointing to long nuclear interaction times or lifetimes of the system, respectively. We deduced the lifetimes from the lines in the velocity spectra originating from two different rotation angles. Further, the unambiguous correlation of a certain transfer product with its individual velocity spectrum allowed us to study the lifetimes as a function of the number of transferred protons.

  11. Nuclear spin-induced Cotton-Mouton effect in molecules

    NASA Astrophysics Data System (ADS)

    Fu, Li-juan; Vaara, Juha

    2013-05-01

    In nuclear magneto-optic spectroscopy, effects of nuclear magnetization are detected in light passing through a sample containing spin-polarized nuclei. An optical analogue of nuclear magnetic resonance (NMR) chemical shift has been predicted and observed in the nuclear spin optical rotation of linearly polarized light propagating parallel to the nuclear magnetization. A recently proposed magneto-optic analogue of the NMR spin-spin coupling, the nuclear spin-induced Cotton-Mouton (NSCM) effect entails an ellipticity induced to linearly polarized light when passing through a medium with the nuclear spins polarized in a direction perpendicular to the light beam. Here we present a first-principles electronic structure formulation of NSCM in terms of response theory as well as ab initio and density-functional theory calculations for small molecules. The roles of basis set (we use completeness-optimized sets), electron correlation, and relativistic effects are discussed. It is found that the explicitly temperature-dependent contribution to NSCM, arising from the partial orientation of the molecules due to the nuclear magnetization, typically dominates the effect. This part of NSCM is proportional to the tensor product of molecular polarizability and the NMR direct dipolar coupling tensor. Hence, NSCM provides a means of investigating the dipolar coupling and, thus, molecular structure in a formally isotropic medium. Overall ellipticities of the order of magnitude of 10-8…10-7 rad/(M cm) are predicted for fully polarized nuclei. These should be detectable with modern instrumentation in the Voigt setup.

  12. Diffractive Imaging of Coherent Nuclear Motion in Isolated Molecules

    SciTech Connect

    Yang, Jie; Guehr, Markus; Shen, Xiaozhe; Li, Renkai; Vecchione, Theodore; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Hartmann, Nick; Hast, Carsten; Hegazy, Kareem; Jobe, Keith; Makasyuk, Igor; Robinson, Joseph; Robinson, Matthew S.; Vetter, Sharon; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-10-03

    Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 Å and temporal resolution of 230 fs full width at half maximum. The method is not only sensitive to the position but also the shape of the nuclear wave packet.

  13. Diffractive imaging of coherent nuclear motion in isolated molecules

    DOE PAGES

    Yang, Jie; Guehr, Markus; Shen, Xiaozhe; ...

    2016-10-03

    Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 Å and temporal resolution of 230 fs full width at half maximum. Lastly, the method is not only sensitive to the position but also the shape of the nuclear wave packet.

  14. Nuclear Fusion Rate Study of a Muonic Molecule via Nuclear Threshold Resonances

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Eskandari, M. R.

    This work follows our previous calculations of the ground state binding energy, size, and the effective nuclear charge of the muonic T3 molecule, using the Born-Oppenheimer adiabatic approximation. In our past articles, we showed that the system possesses two minimum positions, the first one at the muonic distance and the second at the atomic distance. Also, the symmetric planner vibrational model assumed between the two minima and the approximated potential were calculated. Following from the previous studies, we now calculate the fusion rate of the T3 muonic molecule according to the overlap integral of the resonance nuclear compound nucleus and the molecular wave functions.

  15. Electron flux in molecules induced by nuclear motion

    NASA Astrophysics Data System (ADS)

    Okuyama, Michihiro; Takatsuka, Kazuo

    2009-07-01

    As a general tool for analysis of chemical reactions from the view point of electron wavepacket dynamics, electron flux within a molecule is numerically realized in terms of physically time-dependent electronic wavefunctions given by the semiclassical Ehrenfest theory. These wavefunctions are synchronized with real time motion of molecular nuclei through the nuclear kinematic coupling (nonadiabatic elements). Since the standard quantum flux gives only a null field for a real-valued electronic eigenfunction, we extend the definition of flux such that the essential information of dynamical flow of electrons can be retrieved even from adiabatic electronic wavefunctions calculated in the scheme of the so-called ab initio molecular dynamics.

  16. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    ERIC Educational Resources Information Center

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  17. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect

    Goodson, Boyd McLean

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  18. Nuclear data evaluation methodology including estimates of covariances

    NASA Astrophysics Data System (ADS)

    Capote, R.; Smith, D. L.; Trkov, A.

    2010-10-01

    Evaluated nuclear data rather than raw experimental and theoretical information are employed in nuclear applications such as the design of nuclear energy systems. Therefore, the process by which such information is produced and ultimately used is of critical interest to the nuclear science community. This paper provides an overview of various contemporary methods employed to generate evaluated cross sections and related physical quantities such as particle emission angular distributions and energy spectra. The emphasis here is on data associated with neutron induced reaction processes, with consideration of the uncertainties in these data, and on the more recent evaluation methods, e.g., those that are based on stochastic (Monte Carlo) techniques. There is no unique way to perform such evaluations, nor are nuclear data evaluators united in their opinions as to which methods are superior to the others in various circumstances. In some cases it is not critical which approaches are used as long as there is consistency and proper use is made of the available physical information. However, in other instances there are definite advantages to using particular methods as opposed to other options. Some of these distinctions are discussed in this paper and suggestions are offered regarding fruitful areas for future research in the development of evaluation methodology.

  19. Electronic and nuclear flux densities in the H2 molecule

    NASA Astrophysics Data System (ADS)

    Hermann, G.; Paulus, B.; Pérez-Torres, J. F.; Pohl, V.

    2014-05-01

    We present a theoretical study of the electronic and nuclear flux densities of a vibrating H2 molecule after an electronic excitation by a short femtosecond laser pulse. The final state, a coherent superposition of the electronic ground state X1Σg+ and the electronic excited state B1Σu+, evolves freely and permits the partition of the electronic flux density into two competing fluxes: the adiabatic and the transition flux density. The nature of the two fluxes allows us to identify two alternating dynamics of the electronic motion, occurring on the attosecond and the femtosecond time scales. In contradistinction to the adiabatic electronic flux density, the transition electronic flux density shows a dependence on the carrier-envelope phase of the laser field, encoding information of the interaction of the electrons with the electric field. Furthermore, the nuclear flux density displays multiple reversals, a quantum effect recently discovered by Manz et al. [J. Manz, J. F. Pérez-Torres, and Y. Yang, Phys. Rev. Lett. 111, 153004 (2013), 10.1103/PhysRevLett.111.153004], calling for investigation of the electronic flux density.

  20. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect

    Laws, David Douglas

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  1. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  2. Maria Goeppert Mayer: atoms, molecules and nuclear shells

    SciTech Connect

    Johnson, K.E.

    1986-09-01

    The mathematical physicist's early work in atomic and molecular physics, and her unfamiliarity with the ''fashions'' in nuclear physics, gave her the ideal preparation for solving the puzzle of the nuclear ''magic numbers.''

  3. Monitoring Nonadiabatic Electron-Nuclear Dynamics in Molecules by Attosecond Streaking of Photoelectrons

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Rouxel, Jérémy R.; Mukamel, Shaul

    2016-07-01

    Streaking of photoelectrons has long been used for the temporal characterization of attosecond extreme ultraviolet pulses. When the time-resolved photoelectrons originate from a coherent superposition of electronic states, they carry additional phase information, which can be retrieved by the streaking technique. In this contribution we extend the streaking formalism to include coupled electron and nuclear dynamics in molecules as well as initial coherences. We demonstrate how streaked photoelectrons offer a novel tool for monitoring nonadiabatic dynamics as it occurs in the vicinity of conical intersections and avoided crossings. Streaking can provide high time resolution direct signatures of electronic coherences, which affect many primary photochemical and biological events.

  4. Relativistic study of nuclear-anapole-moment effects in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Borschevsky, A.; Iliaš, M.; Dzuba, V. A.; Flambaum, V. V.; Schwerdtfeger, P.

    2013-08-01

    Nuclear-spin-dependent (NSD) parity violating effects are studied for a number of diatomic molecules using relativistic Hartree-Fock and density-functional theory and accounting for core polarization effects. Heavy diatomic molecules are good candidates for the successful measurement of the nuclear anapole moment, which is the dominant NSD parity violation term in heavy elements. Improved results for the molecules studied in our previous publication [Borschevsky , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.052509 85, 052509 (2012)] are presented along with the calculations for a number of other promising candidates for the nuclear anapole measurements.

  5. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule.

    PubMed

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-20

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH(2+) by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH(2+) reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  6. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-01

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  7. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule

    PubMed Central

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-01-01

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules. PMID:28218294

  8. Nuclear actin activates human transcription factor genes including the OCT4 gene.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Tokunaga, Makio; Sakata-Sogawa, Kumiko; Harata, Masahiko

    2015-01-01

    RNA microarray analyses revealed that nuclear actin activated many human transcription factor genes including OCT4, which is required for gene reprogramming. Oct4 is known to be activated by nuclear actin in Xenopus oocytes. Our findings imply that this process of OCT4 activation is conserved in vertebrates and among cell types and could be used for gene reprogramming of human cells.

  9. Non-nuclear Electron Transport Channels in Hollow Molecules

    SciTech Connect

    Zhao, Jin; Petek, Hrvoje

    2014-08-15

    Electron transport in inorganic semiconductors and metals occurs through delocalized bands formed by overlapping electron orbitals. Strong correlation of electronic wave functions with the ionic cores couples the electron and lattice motions, leading to efficient interaction and scattering that degrades coherent charge transport. By contrast, unoccupied electronic states at energies near the vacuum level with diffuse molecular orbitals may form nearly-free-electron bands with density maxima in non-nuclear interstitial voids, which are subject to weaker electron-phonon interaction. The position of such bands typically above the frontier orbitals, however, renders them unstable with respect to electronic interband relaxation and therefore unsuitable for charge transport. Through electronic-structure calculations, we engineer stable, non-nuclear, nearly-free-electron conduction channels in low-dimensional molecular materials by tailoring their electrostatic and polarization potentials. We propose quantum structures of graphane-derived Janus molecular sheets with spatially isolated conducting and insulating regions that potentially exhibit emergent electronic properties, as a paradigm for molecular-scale non-nuclear charge conductors; we also describe tuning of their electronic properties by application of external fields and calculate their electron–acoustic-phonon interaction.

  10. Time-Reversal Symmetry Violation in Molecules Induced by Nuclear Magnetic Quadrupole Moments

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.; DeMille, D.; Kozlov, M. G.

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions.

  11. Electron-nuclear correlation in above-threshold double ionization of molecules

    NASA Astrophysics Data System (ADS)

    Lu, Peifen; Zhang, Wenbin; Gong, Xiaochun; Song, Qiying; Lin, Kang; Ji, Qinying; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2017-03-01

    We report on the experimental observation of photon energy sharing among two electrons and two ions ejected from a doubly ionized molecule exposed to an intense ultraviolet femtosecond laser pulse. Although two electrons are successively released one after the other, bridged by the nuclear motion via their interactions, photon energy sharing among four particles is observed as multiple energy conservation lines in their joint energy spectrum. For sequential double ionization of H2, the electron-nuclear joint energy spectrum allows us to identify three pathways towards the charge-resonance enhanced ionization of the stretching H2+ in strong laser fields. By counting the photon number absorbed by the molecule, we trace the accessibility, enhancement, and suppression of various pathways. The correlated electron-nuclear motion provides profound insights of the complicated strong-field dynamics of molecules.

  12. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter

    SciTech Connect

    Engels, Ralf Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Schieck, Hans Paetz gen.

    2014-10-15

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H{sub 2}{sup +} (or D{sub 2}{sup +}) ions into the Lamb-shift polarimeter.

  13. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter.

    PubMed

    Engels, Ralf; Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Paetz gen Schieck, Hans

    2014-10-01

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H2(+) (or D2(+)) ions into the Lamb-shift polarimeter.

  14. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution

    PubMed Central

    Mudumbi, Krishna C; Schirmer, Eric C; Yang, Weidong

    2016-01-01

    The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo. PMID:27558844

  15. An independent-atom-model description of ion-molecule collisions including geometric screening corrections

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Achenbach, Alexander; Kalkbrenner, Thilo; Jankowiak, Hans-Christian; Kirchner, Tom

    2016-04-01

    A new model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is introduced. The ion-molecule cross sections for net capture and net ionization are represented as weighted sums of atomic cross sections with weight factors that are determined from a geometric model of overlapping cross section areas. Results are presented for proton collisions with targets ranging from diatomic to complex polyatomic molecules. Significant improvement compared to simple additivity rule results and in general good agreement with experimental data are found. The flexibility of the approach opens up the possibility to study more detailed observables such as orientation-dependent and charge-state-correlated cross sections for a large class of complex targets ranging from biomolecules to atomic clusters.

  16. Electron Dynamics upon Ionization of Polyatomic Molecules: Coupling to Quantum Nuclear Motion and Decoherence

    NASA Astrophysics Data System (ADS)

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.; Malhado, João Pedro

    2017-02-01

    Knowledge about the electronic motion in molecules is essential for our understanding of chemical reactions and biological processes. The advent of attosecond techniques opens up the possibility to induce electronic motion, observe it in real time, and potentially steer it. A fundamental question remains the factors influencing electronic decoherence and the role played by nuclear motion in this process. Here, we simulate the dynamics upon ionization of the polyatomic molecules paraxylene and modified bismethylene-adamantane, with a quantum mechanical treatment of both electron and nuclear dynamics using the direct dynamics variational multiconfigurational Gaussian method. Our simulations give new important physical insights about the expected decoherence process. We have shown that the decoherence of electron dynamics happens on the time scale of a few femtoseconds, with the interplay of different mechanisms: the dephasing is responsible for the fast decoherence while the nuclear overlap decay may actually help maintain it and is responsible for small revivals.

  17. Energy-Level Related Nuclear-Spin Effects and Super-Hyperfine Spectral Patterns: how Molecules do Self-Nmr

    NASA Astrophysics Data System (ADS)

    Harter, William; Mitchell, Justin

    2009-06-01

    At several points in his defining works on molecular spectroscopy, Herzberg notes that ``because nuclear moments ldots are so very slight ldots transitions between species ldots are very strictly forbiddenldots '' Herzberg's most recent statement of such selection rules pertained to spherical top spin-species. It has since been shown that spherical top species (as well as those of lower symmetry molecules) converge exponentially with momentum quanta J and K to degenerate level clusters wherein even ``very slight'' nuclear fields and moments cause pervasive resonance and total spin species mixing. Ultra-high resolution spectra of Borde, et .al and Pfister et .al shows how SF_6 and SiF_4 Fluorine nuclear spin levels rearrange from total-spin multiplets to NMR-like patterns as their superfine structure converges. Similar super-hyperfine effects are anticipated for lower symmetry molecules exhibiting converging superfine level-clusters. Examples include PH_3 molecules and asymmetric tops. Following this we consider models that treat nuclear spins as coupled rotors undergoing generalized Hund-case transitions from spin-lab-momentum coupling to various spin-rotor correlations. G. A. Herzberg, Electronic Spectra of Polyatomic Molecules, (Von Norstrand Rheinhold 1966) p. 246. W G. Harter and C. W Patterson, Phys. Rev. A 19, 2277 (1979) W. G. Harter, Phys. Rev. A 24, 192 (1981). Ch. J. Borde, J. Borde, Ch. Breant, Ch. Chardonnet, A. Van Lerberghe, and Ch. Salomon, in Laser Spectroscopy VII, T. W Hensch and Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985). O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, J. Opt. Soc. Am. B 10, 1521 (1993). O. Pfister, Ch. Chardonnet, and Ch. J. Bordè, Phys. Rev. Lett. 76, 4516 (1996) S. N. Yurchenko, W. Thiel, S. Patchkovskii, and P. Jensen, Phys. Chem. Chem. Phys.7, 573 (2005)

  18. Two-center interferences and nuclear wave packet imaging in dissociating H2+ molecule

    NASA Astrophysics Data System (ADS)

    Picon, Antonio; Bahabad, Alon; Kapteyn, Henry C.; Murnane, Margaret M.; Becker, Andreas

    2011-05-01

    Double-slit like interferences similar to those observed by Young in his experiment with light appear also in the photoionization of diatomic molecules. The partial electron waves ejected from the two atomic centers of the molecule take the role of the coherent light waves emerging from the two holes in Youngs experiment. We analyze theoretically and numerically a pump-probe scenario with two attosecond pulses in the hydrogen molecular ion. The first attosecond pulse induces the dissociation of the molecule, the second attosecond pulse is ionizing the molecule. By varying the delay between the pump and probe pulses we show how the two-center interferences allow to image main features of the nuclear wave packet, namely its velocity, internuclear distance, and spreading. Supported by Postdoctoral Program of the Spanish Government and NSF.

  19. Electronic friction near metal surfaces: A case where molecule-metal couplings depend on nuclear coordinates

    NASA Astrophysics Data System (ADS)

    Dou, Wenjie; Subotnik, Joseph E.

    2017-03-01

    We derive an explicit form for the electronic friction as felt by a molecule near a metal surface for the general case that molecule-metal couplings depend on nuclear coordinates. Our work generalizes a previous study by von Oppen et al. [Beilstein J. Nanotechnol. 3, 144 (2012)], where we now go beyond the Condon approximation (i.e., molecule-metal couplings are not held constant). Using a non-equilibrium Green's function formalism in the adiabatic limit, we show that fluctuating metal-molecule couplings lead to new frictional damping terms and random forces, plus a correction to the potential of mean force. Numerical tests are performed and compared with a modified classical master equation; our results indicate that violating the Condon approximation can have a large effect on dynamics.

  20. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport

    PubMed Central

    Ambrus, Géza; Whitby, Landon R.; Singer, Eric L.; Trott, Oleg; Choi, Euna; Olson, Arthur J.; Boger, Dale L.; Gerace, Larry

    2010-01-01

    Nucleocytoplasmic transport of macromolecules is a fundamental process of eukaryotic cells. Translocation of proteins and many RNAs between the nucleus and cytoplasm is carried out by shuttling receptors of the β-karyopherin family, also called importins and exportins. Leptomycin B, a small molecule inhibitor of the exportin CRM1, has proved to be an invaluable tool for cell biologists, but up to now no small molecule inhibitors of nuclear import have been described. We devised a microtiter plate based permeabilized cell screen for small molecule inhibitors of the importin α/β pathway. By analyzing peptidomimetic libraries, we identified β-turn and α-helix peptidomimetic compounds that selectively inhibit nuclear import by importin α/β but not by transportin. Structure-activity relationship analysis showed that large aromatic residues and/or a histidine side chain are required for effective import inhibition by these compounds. Our validated inhibitors can be useful for in vitro studies of nuclear import, and can also provide a framework for synthesis of higher potency nuclear import inhibitors. PMID:20869252

  1. Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Itikawa, Y.

    1976-01-01

    The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

  2. Fully relativistic ab initio calculations of the energies of chiral molecules including parity-violating weak interactions

    NASA Astrophysics Data System (ADS)

    Laerdahl, Jon K.; Schwerdtfeger, Peter

    1999-12-01

    The parity-odd perturbation operator for the inelastic electron-nucleon scattering by weak neutral currents (exchange of virtual Z0 bosons) has been implemented into a fully relativistic four-component Dirac-Hartree-Fock scheme. Dirac-Hartree-Fock electronic structure calculations on H2O2, H2S2, H2Se2, H2Te2, and H2Po2 provides a demonstration of the higher than Z5 scaling of the parity-violating energy shift (Z is the nuclear charge) in chiral molecules. To our knowledge, the calculations for H2Te2 and H2Po2 are the first for molecules containing heavy elements from period 5 or 6 of the Periodic Table, and the parity-violating energy shifts are some of the highest reported in any ab initio study. It has been shown that special care is needed in the basis set expansion of the wave function because of the coupling between the large and small components of the Dirac wave function through the γ5 matrix. Estimates of the remaining errors in the calculations have been given. A comparison with the calculated parity-violating energy shift of H2TeO have confirmed the importance of the single-center theorem, which states that the parity-violating energy shift is suppressed in molecules containing only a single heavy atomic center. Due to the close correspondence between parity-violating energy shifts and observable parity-odd properties, our results have important consequences for the current search for an experimental confirmation of parity-odd effects in molecular physics: (i) The experiments should be performed on molecules containing heavy (period 5 or 6) elements. (ii) Molecules with more than one heavy atomic center will be extremely favorable due to the single-center theorem.

  3. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules

    PubMed Central

    Valach, Matus; Burger, Gertraud; Gray, Michael W.; Lang, B. Franz

    2014-01-01

    5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator. PMID:25429974

  4. Relationship of sea level muon charge ratio to primary composition including nuclear target effects

    NASA Technical Reports Server (NTRS)

    Goned, A.; Shalaby, M.; Salem, A. M.; Roushdy, M.

    1985-01-01

    The discrepancy between the muon charge ratio observed at low energies and that calculated using pp data is removed by including nuclear target effects. Calculations at high energies show that the primary iron spectrum is expected to change slope from 2 to 2.2 to 2.4 to 2.5 for energies approx. 4 x 10 to the 3 GeV/nucleon if scaling features continue to the highest energies.

  5. Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy.

    PubMed

    Siebrasse, Jan Peter; Kaminski, Tim; Kubitscheck, Ulrich

    2012-06-12

    Nuclear export of mRNA is a key transport process in eukaryotic cells. To investigate it, we labeled native mRNP particles in living Chironomus tentans salivary gland cells with fluorescent hrp36, the hnRNP A1 homolog, and the nuclear envelope by fluorescent NTF2. Using light sheet microscopy, we traced single native mRNA particles across the nuclear envelope. The particles were observed to often probe nuclear pore complexes (NPC) at their nuclear face, and in only 25% of the cases yielded actual export. The complete export process took between 65 ms up to several seconds. A rate-limiting step was observed, which could be assigned to the nuclear basket of the pore and might correspond to a repositioning and unfolding of mRNPs before the actual translocation. Analysis of single fluorescent Dbp5 molecules, the RNA helicase essential for mRNA export, revealed that Dbp5 most often approached the cytoplasmic face of the NPC, and exhibited a binding duration of approximately 55 ms. Our results have allowed a refinement of the current models for mRNA export.

  6. [Development of asymmetric synthesis of optically active compounds including fluoroorganic molecules].

    PubMed

    Iseki, K

    1999-11-01

    The synthesis of chiral fluorinated molecules is important in the biological and medicinal chemistry fields in view of the influence of fluorine's unique properties on biological activity. In recent years, we have studied asymmetric synthesis focussing on such optically active compounds. This review describes 1) diastereoselective trifluoromethylation of chiral N-acyloxazolidinones, 2) catalytic enantioselective aldol reactions of fluorine-substituted ketene silyl acetals, and 3) catalytic enantioselective allylation of aldehydes mediated by chiral Lewis bases. The trifluoromethylation of lithium enolates of N-acyloxazolidinones with iodotrifluoromethane is mediated by triethylborane to give the corresponding trifluoromethylated products with up to 86% diastereomeric excess. The stereoselective reaction is considered to proceed through the attack of the trifluoromethyl radical on the less hindered face of the lithium imide. Difluoroketene and bromofluoroketene trimethylsilyl ethyl acetals react with various aldehydes in the presence of chiral Lewis acids to afford the corresponding desired aldols with up to 99% enantiomeric excess (ee). It is noteworthy that the aldol reactions of the fluorine-substituted acetals at -78 degrees C and at higher temperatures (-45 or -20 degrees C) provide the (+)- and (-)-aldols, respectively, with excellent-to-good enantioselectivity. Chiral phosphoramides newly prepared from (S)-proline were found to catalyze the allylation and crotylation of aromatic aldehydes with allylic trichlorosilanes in good enantioselective yields (up to 90% ee). (S,S)-Bis(alpha-methylbenzyl)formamide developed as an efficient catalyst for the allylation and crotylation of aliphatic aldehydes mediates the enantioselective addition with the assistance of hexamethylphosphoramide (HMPA) to afford the corresponding homoallylic alcohols in up to 98% ee.

  7. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    PubMed

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  8. Single-molecule conductance measurements of biomolecule translocation across biomimetic nuclear pores

    NASA Astrophysics Data System (ADS)

    Dekker, Cees

    2012-02-01

    After a brief overview of our recent work on solid-state nanopores, I will present single-molecule transport data across biomimetic nanopores that contain the key regulating parts of the nuclear pore complex (NPC). The mechanism for the remarkable selectivity of NPCs has remained unclear in a large part due to difficulties in designing experiments that can probe the transport at the relevant length and time scales. Building and measuring on biomimetic NPCs provides new opportunities to address this long-standing problem. covalently tether the natively unfolded Phe-Gly rich domains (FG-domains) of human nuclear binding proteins to a solid-state nanopore (a 10-100 nm sized hole in a SiN membrane). Ionic current measurements provide a probe to monitor single molecules that traverse the pore. Translocation events are observed for transport receptors (Impβ), whereas transport of passive molecules (BSA) is found to be blocked. Interestingly, a single type of nuclear pore proteins appears already sufficient to form a selective barrier for transport. A translocation time of about 2.5 ms is measured for Impβ. This time is found to be similar for transport across Nup153 and Nup98 coated pores, although the observed ionic conductance differs between these two types of pores. We compare two simple models for the pore conductance and find, for both Nups, that the data fits best to a model with an open central channel and a condensed layer along the outer circumference of the pore. reproducing the key features of the NPC, our biomimetic approach opens the way to study a wide variety of nucleo-cytoplasmic transport processes at the single-molecule level in vitro.

  9. Searches for new interstellar molecules, including a tentative detection of aziridine and a possible detection of propenal

    NASA Technical Reports Server (NTRS)

    Dickens, J. E.; Irvine, W. M.; Nummelin, A.; Mollendal, H.; Saito, S.; Thorwirth, S.; Hjalmarson, A.; Ohishi, M.

    2001-01-01

    Rotational spectroscopy at millimeter wavelengths is a powerful means of investigating the chemistry of dense interstellar clouds. These regions can exhibit an interesting complement of gas phase molecules, including relatively complex organics. Here we report the tentative first astronomical detection of aziridine (ethylenimine), the possible detection of propenal (acrolein), and upper limits on the abundances of cyclopropenone, furan, hydroxyethanal (glycolaldehyde), thiohydroxylamine (NH2SH), and ethenol (vinyl alcohol) in various interstellar clouds.

  10. Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping

    SciTech Connect

    Kruglyak, L.; Daly, M.J.; Lander, E.S. |

    1995-02-01

    Homozygosity mapping is a powerful strategy for mapping rare recessive traits in children of consanguineous marriages. Practical applications of this strategy are currently limited by the inability of conventional linkage analysis software to compute, in reasonable time, multipoint LOD scores for pedigrees with inbreeding loops. We have developed a new algorithm for rapid multipoint likelihood calculations in small pedigrees, including those with inbreeding loops. The running time of the algorithm grows, at most, linearly with the number of loci considered simultaneously. The running time is not sensitive to the presence of inbreeding loops, missing genotype information, and highly polymorphic loci. We have incorporated this algorithm into a software package, MAPMAKER/HOMOZ, that allows very rapid multipoint mapping of disease genes in nuclear families, including homozygosity mapping. Multipoint analysis with dozens of markers can be carried out in minutes on a personal workstation. 23 refs., 4 figs., 1 tab.

  11. Photo Library of the Nevada Site Office (Includes historical archive of nuclear testing images)

    DOE Data Explorer

    The Nevada Site Office makes available publicly released photos from their archive that includes photos from both current programs and historical activities. The historical collections include atmospheric and underground nuclear testing photos and photos of other events and people related to the Nevada Test Site. Current collections are focused on homeland security, stockpile stewardship, and environmental management and restoration. See also the Historical Film Library at http://www.nv.doe.gov/library/films/testfilms.aspx and the Current Film Library at http://www.nv.doe.gov/library/films/current.aspx. Current films can be viewed online, but only short clips of the historical films are viewable. They can be ordered via an online request form for a very small shipping and handling fee.

  12. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  13. Theoretical methods for attosecond electron and nuclear dynamics: applications to the H2 molecule

    NASA Astrophysics Data System (ADS)

    Palacios, Alicia; Sanz-Vicario, José Luis; Martín, Fernando

    2015-12-01

    Attosecond science, born at the beginning of this century with the generation of the first bursts of light with durations shorter than a femtosecond, has opened the way to look at electron dynamics in atoms and molecules at its natural timescale. Thus controlling chemical reactions at the electronic level or obtaining time-resolved images of the electronic motion has become a goal for many physics and chemistry laboratories all over the world. The new experimental capabilities have spurred the development of sophisticated theoretical methods that can accurately predict phenomena occurring in the sub-fs timescale. This review provides an overview of the capabilities of existing theoretical tools to describe electron and nuclear dynamics resulting from the interaction of femto- and attosecond UV/XUV radiation with simple molecular targets. We describe one of these methods in more detail, the time-dependent Feshbach close-coupling (TDFCC) formalism, which has been used successfully over the years to investigate various attosecond phenomena in the hydrogen molecule and can easily be extended to other diatomics. In addition to describing the details of the method and discussing its advantages and limitations, we also provide examples of the new physics that one can learn by applying it to different problems: from the study of the autoionization decay that follows attosecond UV excitation to the imaging of the coupled electron and nuclear dynamics in H2 using different UV-pump/IR-probe and UV-pump/UV-probe schemes.

  14. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review.

    PubMed

    Ricketts, Marie-Louise; Moore, David D; Banz, William J; Mezei, Orsolya; Shay, Neil F

    2005-06-01

    Consumption of soy has been demonstrated to reduce circulating cholesterol levels, most notably reducing low-density lipoprotein (LDL) cholesterol levels in hypercholesterolemic individuals. The component or components that might be responsible for this effect is still a matter of debate or controversy among many researchers. Candidate agents include an activity of soy protein itself, bioactive peptides produced during the digestive process, or the soy isoflavones. Although soy intake may provide other health benefits including preventative or remediative effects on cancer, osteoporosis and symptoms of menopause, this review will focus on isoflavones as agents affecting lipid metabolism. Isoflavones were first discovered as a bioactive agent disrupting estrogen action in female sheep, thereby earning the often-used term 'phytoestrogens'. Subsequent work confirmed the ability of isoflavones to bind to estrogen receptors. Along with the cholesterol-lowering effect of soy intake, research that is more recent has pointed to a beneficial antidiabetic effect of soy intake, perhaps mediated by soy isoflavones. The two common categories of antidiabetic drugs acting on nuclear receptors known as peroxisome proliferator activated receptors (PPARs) are the fibrates and glitazones. We and others have recently asked the research question 'do the soy isoflavones have activities as either "phytofibrates" or "phytoglitazones"?' Such an activity should be able to be confirmed both in vivo and in vitro. In both the in vivo and in vitro cases, this action has indeed been confirmed. Further work suggests a possible action of isoflavones similar to the nonestrogenic ligands that bind the estrogen-related receptors (ERRs). Recently, these receptors have been demonstrated to contribute to lipolytic processes. Finally, evaluation of receptor activation studies suggests that thyroid receptor activation may provide additional clues explaining the metabolic action of isoflavones. The recent

  15. A general nuclear magnetic resonance analysis of hetero-association of aromatic molecules in aqueous solution

    NASA Astrophysics Data System (ADS)

    Veselkov, Alexei N.; Evstigneev, Maxim P.; Veselkov, Dennis A.; Davies, David B.

    2001-08-01

    A general nuclear magnetic resonance analysis of a statistical-thermodynamical model of hetero-association of aromatic molecules in solution has been developed to take "edge effects" into consideration, i.e., the dependence of proton chemical shifts on the position of the molecule situated inside or at the edge of the aggregate. This generalized approach is compared with a previously published model, where an average contribution to proton shielding is considered irrespective of the position of the molecule in the stack. Association parameters have been determined from experimental concentration and temperature dependences of 500 MHz proton chemical shifts of the hetero-association of the acridine dye, proflavine, and the phenanthridinium dye, ethidium bromide, in aqueous solution. Differences in the parameters in the range 10%-30% calculated using the basic and generalized approaches have been found to depend substantially on the magnitude of the equilibrium hetero-association constant Khet—the larger the value of Khet, the higher the discrepancy between the two methods.

  16. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    SciTech Connect

    Unal, Cetin; Williams, Brian; Mc Clure, Patrick; Nelson, Ralph A

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  17. Electron and nuclear dynamics in many-electron atoms, molecules and chlorophyll-protein complexes: a review.

    PubMed

    Shuvalov, Vladimir A

    2007-06-01

    It has been shown [V.A. Shuvalov, Quantum dynamics of electrons in many-electron atoms of biologically important compounds, Biochemistry (Mosc.) 68 (2003) 1333-1354; V.A. Shuvalov, Quantum dynamics of electrons in atoms of biologically important molecules, Uspekhi biologicheskoi khimii, (Pushchino) 44 (2004) 79-108] that the orbit angular momentum L of each electron in many-electron atoms is L=mVr=nPlanck's and similar to L for one-electron atom suggested by N. Bohr. It has been found that for an atom with N electrons the total electron energy equation E=-(Z(eff))(2)e(4)m/(2n(2)Planck's(2)N) is more appropriate for energy calculation than standard quantum mechanical expressions. It means that the value of L of each electron is independent of the presence of other electrons in an atom and correlates well to the properties of virtual photons emitted by the nucleus and creating a trap for electrons. The energies for elements of the 1st up to the 5th rows and their ions (total amount 240) of Mendeleev' Periodical table were calculated consistent with the experimental data (deviations in average were 5 x 10(-3)). The obtained equations can be used for electron dynamics calculations in molecules. For H(2) and H(2)(+) the interference of electron-photon orbits between the atoms determines the distances between the nuclei which are in agreement with the experimental values. The formation of resonance electron-photon orbit in molecules with the conjugated bonds, including chlorophyll-like molecules, appears to form a resonance trap for an electron with E values close to experimental data. Two mechanisms were suggested for non-barrier primary charge separation in reaction centers (RCs) of photosynthetic bacteria and green plants by using the idea of electron-photon orbit interference between the two molecules. Both mechanisms are connected to formation of the exciplexes of chlorophyll-like molecules. The first one includes some nuclear motion before exciplex formation, the

  18. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors.

    PubMed

    Corton, J Christopher; Apte, Udayan; Anderson, Steven P; Limaye, Pallavi; Yoon, Lawrence; Latendresse, John; Dunn, Corrie; Everitt, Jeffrey I; Voss, Kenneth A; Swanson, Cynthia; Kimbrough, Carie; Wong, Jean S; Gill, Sarjeet S; Chandraratna, Roshantha A S; Kwak, Mi-Kyoung; Kensler, Thomas W; Stulnig, Thomas M; Steffensen, Knut R; Gustafsson, Jan-Ake; Mehendale, Harihara M

    2004-10-29

    The obesity epidemic in industrialized countries is associated with increases in cardiovascular disease (CVD) and certain types of cancer. In animal models, caloric restriction (CR) suppresses these diseases as well as chemical-induced tissue damage. These beneficial effects of CR overlap with those altered by agonists of nuclear receptors (NR) under control of the fasting-responsive transcriptional co-activator, peroxisome proliferator-activated co-activator 1alpha (PGC-1alpha). In a screen for compounds that mimic CR effects in the liver, we found statistically significant overlaps between the CR transcript profile in wild-type mice and the profiles altered by agonists of lipid-activated NR, including peroxisome proliferator-activated receptor alpha (PPARalpha), liver X receptor, and their obligate heterodimer partner, retinoid X receptor. The overlapping genes included those involved in CVD (lipid metabolism and inflammation) and cancer (cell fate). Based on this overlap, we hypothesized that some effects of CR are mediated by PPARalpha. As determined by transcript profiling, 19% of all gene expression changes in wild-type mice were dependent on PPARalpha, including Cyp4a10 and Cyp4a14, involved in fatty acid omega-oxidation, acute phase response genes, and epidermal growth factor receptor but not increases in PGC-1alpha. CR protected the livers of wild-type mice from damage induced by thioacetamide, a liver toxicant and hepatocarcinogen. CR protection was lost in PPARalpha-null mice due to inadequate tissue repair. These results demonstrate that PPARalpha mediates some of the effects of CR and indicate that a pharmacological approach to mimicking many of the beneficial effects of CR may be possible.

  19. Cytoplasmic-Nuclear Trafficking of G1/S Cell Cycle Molecules and Adult Human β-Cell Replication

    PubMed Central

    Fiaschi-Taesch, Nathalie M.; Kleinberger, Jeffrey W.; Salim, Fatimah G.; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E.; Takane, Karen K.; Srinivas, Harish; Scott, Donald K.; Stewart, Andrew F.

    2013-01-01

    Harnessing control of human β-cell proliferation has proven frustratingly difficult. Most G1/S control molecules, generally presumed to be nuclear proteins in the human β-cell, are in fact constrained to the cytoplasm. Here, we asked whether G1/S molecules might traffic into and out of the cytoplasmic compartment in association with activation of cell cycle progression. Cdk6 and cyclin D3 were used to drive human β-cell proliferation and promptly translocated into the nucleus in association with proliferation. In contrast, the cell cycle inhibitors p15, p18, and p19 did not alter their location, remaining cytoplasmic. Conversely, p16, p21, and p27 increased their nuclear frequency. In contrast once again, p57 decreased its nuclear frequency. Whereas proliferating β-cells contained nuclear cyclin D3 and cdk6, proliferation generally did not occur in β-cells that contained nuclear cell cycle inhibitors, except p21. Dynamic cytoplasmic-nuclear trafficking of cdk6 was confirmed using green fluorescent protein–tagged cdk6 and live cell imaging. Thus, we provide novel working models describing the control of cell cycle progression in the human β-cell. In addition to known obstacles to β-cell proliferation, cytoplasmic-to-nuclear trafficking of G1/S molecules may represent an obstacle as well as a therapeutic opportunity for human β-cell expansion. PMID:23493571

  20. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  1. A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles

    SciTech Connect

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-05-01

    DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs.

  2. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.

    PubMed

    Cheng, Lan; Xiao, Yunlong; Liu, Wenjian

    2009-12-28

    It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.

  3. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    SciTech Connect

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  4. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rümenapp, Christine; Gleich, Bernhard; Mannherz, Hans Georg; Haase, Axel

    2015-04-01

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5-7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T2 relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T2 relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 107 cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  5. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    SciTech Connect

    Steven R. Sherman

    2007-05-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant.

  6. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  7. MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Mielke, Steven L.; Clarkson, Kenneth L.; Truhlar, Donald G.

    2012-08-01

    We present a Fortran program package, MSTor, which calculates partition functions and thermodynamic functions of complex molecules involving multiple torsional motions by the recently proposed MS-T method. This method interpolates between the local harmonic approximation in the low-temperature limit, and the limit of free internal rotation of all torsions at high temperature. The program can also carry out calculations in the multiple-structure local harmonic approximation. The program package also includes six utility codes that can be used as stand-alone programs to calculate reduced moment of inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Catalogue identifier: AEMF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 77 434 No. of bytes in distributed program, including test data, etc.: 3 264 737 Distribution format: tar.gz Programming language: Fortran 90, C, and Perl Computer: Itasca (HP Linux cluster, each node has two-socket, quad-core 2.8 GHz Intel Xeon X5560 “Nehalem EP” processors), Calhoun (SGI Altix XE 1300 cluster, each node containing two quad-core 2.66 GHz Intel Xeon “Clovertown”-class processors sharing 16 GB of main memory), Koronis (Altix UV 1000 server with 190 6-core Intel Xeon X7542 “Westmere” processors at 2.66 GHz), Elmo (Sun Fire X4600 Linux cluster with AMD Opteron cores), and Mac Pro (two 2.8 GHz Quad-core Intel Xeon

  8. Stable, non-destructive immobilization of native nuclear membranes to micro-structured PDMS for single-molecule force spectroscopy.

    PubMed

    Rangl, Martina; Nevo, Reinat; Liashkovich, Ivan; Shahin, Victor; Reich, Ziv; Ebner, Andreas; Hinterdorfer, Peter

    2009-07-13

    In eukaryotic cells the nucleus is separated from the cytoplasm by a double-membraned nuclear envelope (NE). Exchange of molecules between the two compartments is mediated by nuclear pore complexes (NPCs) that are embedded in the NE membranes. The translocation of molecules such as proteins and RNAs through the nuclear membrane is executed by transport shuttling factors (karyopherines). They thereby dock to particular binding sites located all over the NPC, the so-called phenylalanine-glycin nucleoporines (FG Nups). Molecular recognition force spectroscopy (MRFS) allows investigations of the binding at the single-molecule level. Therefore the AFM tip carries a ligand for example, a particular karyopherin whereas the nuclear membrane with its receptors is mounted on a surface. Hence, one of the first requirements to study the nucleocytoplasmatic transport mechanism using MRFS is the development of an optimized membrane preparation that preserves structure and function of the NPCs. In this study we present a stable non-destructive preparation method of Xenopus laevis nuclear envelopes. We use micro-structured polydimethylsiloxane (PDMS) that provides an ideal platform for immobilization and biological integrity due to its elastic, chemical and mechanical properties. It is a solid basis for studying molecular recognition, transport interactions, and translocation processes through the NPC. As a first recognition system we investigate the interaction between an important transport shuttling factor, importin beta, and its binding sites on the NPC, the FG-domains.

  9. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    SciTech Connect

    Kim, Sun Young; Song, Kyung-A; Kieff, Elliott; Kang, Myung-Soo

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated with

  10. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  11. Nuclear winter - Three-dimensional simulations including interactive transport, scavenging, and solar heating of smoke

    NASA Technical Reports Server (NTRS)

    Malone, R. C.; Auer, L. H.; Glatzmaier, G. A.; Wood, M. C.; Toon, O. B.

    1986-01-01

    A reexamination is conducted of the 'nuclear winter' hypothesis with a three-dimensional global model modified to allow for localized injection of smoke, its transport by the simulated winds, its absorption of sunlight, and its removal by model-simulated precipitation. Smoke injected into the troposphere is driven upward by solar heating. The tropopause, initially above the smoke, reforms below the heat smoke layer and separates it from precipitation below. Although much smoke is scavenged while the thermal structure is being altered, the residence time of the remaining smoke is greatly increased. Particularly for July conditions, a longer-lasting 'nuclear winter' effect is observed than was found in earlier modeling studies in which normal tropospheric residence times were assumed. In January the smaller solar flux in the northern hemisphere allows faster removal of smoke than in July. Significant cooling of the northern hemisphere continents is predicted; its dependence on season and injected smoke mass is described.

  12. Supernova equations of state including full nuclear ensemble with in-medium effects

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2017-01-01

    We construct new equations of state for baryons at sub-nuclear densities for the use in core-collapse supernova simulations. The abundance of various nuclei is obtained together with thermodynamic quantities. The formulation is an extension of the previous model, in which we adopted the relativistic mean field theory with the TM1 parameter set for nucleons, the quantum approach for d, t, h and α as well as the liquid drop model for the other nuclei under the nuclear statistical equilibrium. We reformulate the model of the light nuclei other than d, t, h and α based on the quasi-particle description. Furthermore, we modify the model so that the temperature dependences of surface and shell energies of heavy nuclei could be taken into account. The pasta phases for heavy nuclei and the Pauli- and self-energy shifts for d, t, h and α are taken into account in the same way as in the previous model. We find that nuclear composition is considerably affected by the modifications in this work, whereas thermodynamical quantities are not changed much. In particular, the washout of shell effect has a great impact on the mass distribution above T ∼ 1 MeV. This improvement may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  13. Discovery of a Novel, Isothiazolonaphthoquinone-Based Small Molecule Activator of FOXO Nuclear-Cytoplasmic Shuttling

    PubMed Central

    Cautain, Bastien; Castillo, Francisco; Musso, Loana; Ferreira, Bibiana I.; de Pedro, Nuria; Rodriguez Quesada, Lorena; Machado, Susana; Vicente, Francisca; Dallavalle, Sabrina

    2016-01-01

    FOXO factors are tumour suppressor proteins commonly inactivated in human tumours by posttranslational modifications. Furthermore, genetic variation within the FOXO3a gene is consistently associated with human longevity. Therefore, the pharmacological activation of FOXO proteins is considered as an attractive therapeutic approach to treat cancer and age-related diseases. In order to identify agents capable of activating FOXOs, we tested a collection of small chemical compounds using image-based high content screening technology. Here, we report the discovery of LOM612 (compound 1a), a newly synthesized isothiazolonaphthoquinone as a potent FOXO relocator. Compound 1a induces nuclear translocation of a FOXO3a reporter protein as well as endogenous FOXO3a and FOXO1 in U2OS cells in a dose-dependent manner. This activity does not affect the subcellular localization of other cellular proteins including NFkB or inhibit CRM1-mediated nuclear export. Furthermore, compound 1a shows a potent antiproliferative effect in human cancer cell lines. PMID:27936162

  14. Dynamic two-center interference in high-order harmonic generation from molecules with attosecond nuclear motion.

    PubMed

    Baker, S; Robinson, J S; Lein, M; Chirilă, C C; Torres, R; Bandulet, H C; Comtois, D; Kieffer, J C; Villeneuve, D M; Tisch, J W G; Marangos, J P

    2008-08-01

    We report a new dynamic two-center interference effect in high-harmonic generation from H2, in which the attosecond nuclear motion of H2+ initiated at ionization causes interference to be observed at lower harmonic orders than would be the case for static nuclei. To enable this measurement we utilize a recently developed technique for probing the attosecond nuclear dynamics of small molecules. The experimental results are reproduced by a theoretical analysis based upon the strong-field approximation which incorporates the temporally dependent two-center interference term.

  15. Small-molecule targeting of proliferating cell nuclear antigen chromatin association inhibits tumor cell growth.

    PubMed

    Tan, Zongqing; Wortman, Matthew; Dillehay, Kelsey L; Seibel, William L; Evelyn, Chris R; Smith, Shanna J; Malkas, Linda H; Zheng, Yi; Lu, Shan; Dong, Zhongyun

    2012-06-01

    Proliferating cell nuclear antigen (PCNA), a potential anticancer target, forms a homotrimer and is required for DNA replication and numerous other cellular processes. The purpose of this study was to identify novel small molecules that modulate PCNA activity to affect tumor cell proliferation. An in silico screen of a compound library against a crystal structure of PCNA and a subsequent structural similarity search of the ZINC chemical database were carried out to derive relevant docking partners. Nine compounds, termed PCNA inhibitors (PCNA-Is), were selected for further characterization. PCNA-I1 selectively bound to PCNA trimers with a dissociation constant (K(d)) of ~0.2 to 0.4 μM. PCNA-Is promoted the formation of SDS-refractory PCNA trimers. PCNA-I1 dose- and time-dependently reduced the chromatin-associated PCNA in cells. Consistent with its effects on PCNA trimer stabilization, PCNA-I1 inhibited the growth of tumor cells of various tissue types with an IC(50) of ~0.2 μM, whereas it affected the growth of nontransformed cells at significantly higher concentrations (IC(50), ~1.6 μM). Moreover, uptake of BrdU was dose-dependently reduced in cells treated with PCNA-I1. Mechanistically the PCNA-Is mimicked the effect of PCNA knockdown by siRNA, inducing cancer cell arrest at both the S and G(2)/M phases. Thus, we have identified a class of compounds that can directly bind to PCNA, stabilize PCNA trimers, reduce PCNA association with chromatin, and inhibit tumor cell growth by inducing a cell cycle arrest. They are valuable tools in studying PCNA function and may be useful for future PCNA-targeted cancer therapy.

  16. Nuclear-wave-packet dynamics mapped out by two-center interference in the HeH2+ molecule

    NASA Astrophysics Data System (ADS)

    Schüler, M.; Pavlyukh, Y.; Berakdar, J.

    2014-06-01

    Photoemission from diatomic molecules closely resembles the Young-type double-slit experiment where each of the two atomic sites represents a coherent emission source. When the photoelectron wavelength becomes commensurate with the effective interatomic distance, the resulting spatial interference gives rise to oscillations in the photoionization total and differential cross sections. This phenomenon provides detailed information on the molecular geometry, a fact that can be utilized for probing the nuclear dynamics triggered by the interaction with a laser field. We demonstrate how this coherent wave-packet evolution can be traced by observing the photoelectron angular distribution. Based on ab initio scattering calculations we perform a proof-of-principle reconstruction of the nuclear-wave-packet evolution in the HeH2+ molecule.

  17. An independent atom model description of ion-molecule collisions including geometric screening corrections: application to biomolecules

    NASA Astrophysics Data System (ADS)

    Lüdde, H. J.; Achenbach, A.; Kalkbrenner, T.; Jankowiak, H. C.; Kirchner, T.

    2016-09-01

    Recently, we proposed to calculate electron removal cross sections for ion-molecule collisions in an independent atom model that accounts for geometric screening corrections. The correction coefficients are obtained from using a pixel counting method (PCM) for the exact calculation of the effective cross sectional area that emerges when the molecular cross section is pictured as a structure of (overlapping) atomic cross sections. This structure varies with the relative orientation of the molecule with respect to the projectile beam direction and, accordingly, orientation-independent total cross sections are obtained from averaging the pixel count over many orientations. In this contribution, we apply the PCM to proton collisions from amino acids and DNA and RNA nucleobases. The strength of the screening effect is analyzed by comparing the PCM results with Bragg additivity rule cross sections and with experimental data where available. Work supported by NSERC, Canada.

  18. Release and recovery of guest molecules during the reversible borate gel formation of guest-included macrocyclic boronic esters.

    PubMed

    Ito, Suguru; Takata, Hisatsugu; Ono, Kosuke; Iwasawa, Nobuharu

    2013-10-11

    Borate gel formation from guest-encapsulated macrocyclic boronic esters was realized by the addition of a diamine to the suspension of the boronic esters in various organic solvents, which triggered the release of the guest compounds. The guest molecules could be recovered from the borate gel by addition of an acid to remove the diamine, which facilitated the reconstruction of the initial guest-encapsulated macrocyclic boronic esters.

  19. Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes

    NASA Astrophysics Data System (ADS)

    Billeter, Salomon R.; Webb, Simon P.; Iordanov, Tzvetelin; Agarwal, Pratul K.; Hammes-Schiffer, Sharon

    2001-04-01

    A hybrid approach for simulating proton and hydride transfer reactions in enzymes is presented. The electronic quantum effects are incorporated with an empirical valence bond approach. The nuclear quantum effects of the transferring hydrogen are included with a mixed quantum/classical molecular dynamics method in which the hydrogen nucleus is described as a multidimensional vibrational wave function. The free energy profiles are obtained as functions of a collective reaction coordinate. A perturbation formula is derived to incorporate the vibrationally adiabatic nuclear quantum effects into the free energy profiles. The dynamical effects are studied with the molecular dynamics with quantum transitions (MDQT) surface hopping method, which incorporates nonadiabatic transitions among the adiabatic hydrogen vibrational states. The MDQT method is combined with a reactive flux approach to calculate the transmission coefficient and to investigate the real-time dynamics of reactive trajectories. This hybrid approach includes nuclear quantum effects such as zero point energy, hydrogen tunneling, and excited vibrational states, as well as the dynamics of the complete enzyme and solvent. The nuclear quantum effects are incorporated during the generation of the free energy profiles and dynamical trajectories rather than subsequently added as corrections. Moreover, this methodology provides detailed mechanistic information at the molecular level and allows the calculation of rates and kinetic isotope effects. An initial application of this approach to the enzyme liver alcohol dehydrogenase is also presented.

  20. Differential two-body compound nuclear cross section, including the width-fluctuation corrections

    SciTech Connect

    Brown, D.; Herman, M.

    2014-09-02

    We figure out the compound angular differential cross sections, following mainly Fröbrich and Lipperheide, but with the angular momentum couplings that make sense for optical model work. We include the width-fluctuation correction along with calculations.

  1. Modeling the Emission Spectra of Organic Molecules: A Competition between Franck-Condon and Nuclear Ensemble Methods.

    PubMed

    de Sousa, Leonardo Evaristo; Ribeiro, Luiz Antonio; Fonseca, Antonio Luciano de Almeida; da Silva Filho, Demétrio Antonio

    2016-07-14

    The emission spectra of flexible and rigid organic molecules are theoretically investigated in the framework of the Franck-Condon (FC) and nuclear ensemble (NE) approaches, both of which rely on results from density functional theory but differ in the way vibrational contributions are taken into account. Our findings show that the emission spectra obtained using the NE approach are in better agreement with experiment than the ones produced by FC calculations considering both rigid and flexible molecules. Surprisingly, the description of a suitable balance between the vibronic progression and the emission spectra envelope shows dependency on the initial sampling for the NE calculations which must be judiciously selected. Our results intend to provide guidance for a better theoretical description of light emission properties of organic molecules with applications in organic electronic devices.

  2. The development of a single molecule fluorescence standard and its application in estimating the stoichiometry of the nuclear pore complex.

    PubMed

    Tie, Hieng Chiong; Madugula, Viswanadh; Lu, Lei

    2016-09-30

    We report here an image-based method to quantify the stoichiometry of diffraction-limited sub-cellular protein complexes in vivo under spinning disk confocal microscopy. A GFP single molecule fluorescence standard was first established by immobilizing His-tagged GFP molecules onto the glass surface via nickel nitrilotriacetic acid functionalized polyethylene glycol. When endogenous nucleoporins were knocked down and replaced by the exogenously expressed and knockdown-resistant GFP-nucleoporins, the stoichiometry of the nucleoporin was estimated by the ratio of its fluorescence intensity to that of the GFP single molecules. Our measured stoichiometry of Nup35, Nup93, Nup133 and Nup88 is 23, 18, 14 and 9 and there are possibly16 copies of Nup107-160 complex per nuclear pore complex.

  3. An expanded Metrosideros (Myrtaceae) to include Carpolepis and Tepualia based on nuclear genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Metrosideros (Myrtaceae) comprises 50-60 species, found largely across the Pacific Islands. The relationships within this genus, including the circumscriptions of the subgenera Mearnsia and Metrosideros and their relationships with the other members of the tribe Metrosidereae, namely the N...

  4. An Intramolecular Silylene Borane Capable of Facile Activation of Small Molecules, Including Metal-Free Dehydrogenation of Water.

    PubMed

    Mo, Zhenbo; Szilvási, Tibor; Zhou, Yu-Peng; Yao, Shenglai; Driess, Matthias

    2017-02-27

    The first single-component N-heterocyclic silylene borane 1 (LSi-R-BMes2 ; L=PhC(N(t) Bu)2 ; R=1,12-xanthendiyl spacer; Mes=2,4,6-Me3 C6 H2 ), acting as a frustrated Lewis pair (FLP) in small-molecule activation, can be synthesized in 65 % yields. Its HOMO is largely localized at the silicon(II) atom and the LUMO has mainly boron 2p character. In small-molecule activation 1 allows access to the intramolecular silanone-borane 3 featuring a Si=O→B interaction through reaction with O2 , N2 O, or CO2 , and formation of silanethione borane 4 from reaction with S8 . The Si(II) center in 1 undergoes immediate hydrogenation if exposed to H2 at 1 atm pressure in benzene, affording the silane borane 5-H2 , L(H2 )Si-R-BMes2 . Remarkably, no H2 activation occurs if the single silylene LSiPh and Mes3 B intermolecularly separated are exposed to dihydrogen. Unexpectedly, the pre-organized Si-B separation in 1 enables a metal-free dehydrogenation of H2 O to give the silanone-borane 3 as reactive intermediate.

  5. Molecular and structural characterization of dissolved organic matter from the deep ocean by FTICR-MS, including hydrophilic nitrogenous organic molecules

    USGS Publications Warehouse

    Reemtsma, T.; These, A.; Linscheid, M.; Leenheer, J.; Spitzy, A.

    2008-01-01

    Dissolved organic matter isolated from the deep Atlantic Ocean and fractionated into a so-called hydrophobic (HPO) fraction and a very hydrophilic (HPI) fraction was analyzed for the first time by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to resolve the molecular species, to determine their exact masses, and to calculate their molecular formulas. The elemental composition of about 300 molecules was identified. Those in the HPO fraction (14C age of 5100 year) are very similar to much younger freshwater fulvic acids, but less aromatic and more oxygenated molecules are more frequent. This trend continues toward the HPI fraction and may indicate biotic and abiotic aging processes that this material experienced since its primary production thousands of years ago. In the HPI fraction series of nitrogenous molecules containing one, two, or three nitrogens were identified by FTICR-MS. Product ion spectra of the nitrogenous molecules suggest that the nitrogen atoms in these molecules are included in the (alicyclic) backbone of these molecules, possibly in reduced form. These mass spectrometric data suggest that a large set of stable fulvic acids is ubiquitous in all aquatic compartments. Although sources may differ, their actual composition and structure appears to be quite similar and largely independent from their source, because they are the remainder of intensive oxidative degradation processes. ?? 2008 American Chemical Society.

  6. Unravelling the molecular structure and packing of a planar molecule by combining nuclear magnetic resonance and scanning tunneling microscopy.

    PubMed

    Sáfar, Gustavo A M; Malachias, Angelo; Magalhães-Paniago, Rogério; Martins, Dayse C S; Idemori, Ynara M

    2013-12-21

    The determination of the molecular structure of a porphyrin is achieved by using nuclear magnetic resonance (NMR) and scanning tunneling microscopy (STM) techniques. Since macroscopic crystals cannot be obtained in this system, this combination of techniques is crucial to solve the molecular structure without the need for X-ray crystallography. For this purpose, previous knowledge of the flatness of the reagent molecules (a porphyrin and its functionalizing group, a naphthalimide) and the resulting molecular structure obtained by a force-field simulation are used. The exponents of the I-V curves obtained by scanning tunneling spectroscopy (STS) allow us to check whether the thickness of the film of molecules is greater than a monolayer, even when there is no direct access to the exposed surface of the metal substrate. Photoluminescence (PL), optical absorption, infrared (IR) reflectance and solubility tests are used to confirm the results obtained here with this NMR/STM/STS combination.

  7. Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction.

    PubMed

    Pardee, Keith; Necakov, Aleksandar S; Krause, Henry

    2011-01-01

    One of the largest groups of metazoan transcription factors (TFs), the Nuclear Receptor superfamily, regulates genes required for virtually all aspects of development, reproduction and metabolism. Together, these master regulators can be thought of as a fundamental operating system for metazoan life. Their most distinguishing feature is a structurally conserved domain that acts as a switch, powered by the presence of small diffusible ligands. This ligand-responsive regulation has allowed the Nuclear Receptors to help their hosts adapt to a wide variety of physiological niches and roles, making them one of the most evolutionarily successful TF families. Originally discovered as receptors for steroid hormones, the Nuclear Receptor field has grown to encompass much more than traditional endocrinology. For example, recent work has highlighted the role of Nuclear Receptors as major regulators of metabolism and biological clocks. By monitoring endogenous metabolites and absorbed xenobiotics, these receptors also coordinate rapid, system-wide responses to changing metabolic and environmental states. While many new Nuclear Receptor ligands have been discovered in the past couple of decades, approximately half of the 48 human receptors are still orphans, with a significantly higher percentage of orphans in other organisms. The discovery of new ligands has led to the elucidation of new regulatory mechanisms, target genes, pathways and functions. This review will highlight both the common as well as newly emerging traits and functions that characterize this particularly unique and important TF family.

  8. Microhydration of caesium compounds: Cs, CsOH, CsI and Cs₂I₂ complexes with one to three H₂O molecules of nuclear safety interest.

    PubMed

    Sudolská, Mária; Cantrel, Laurent; Cernušák, Ivan

    2014-04-01

    Structure and thermodynamic properties (standard enthalpies of formation and Gibbs free energies) of hydrated caesium species of nuclear safety interest, Cs, CsOH, CsI and its dimer Cs₂I₂, with one up to three water molecules, are calculated to assess their possible existence in severe accident occurring to a pressurized water reactor. The calculations were performed using the coupled cluster theory including single, double and non-iterative triple substitutions (CCSD(T)) in conjunction with the basis sets (ANO-RCC) developed for scalar relativistic calculations. The second-order spin-free Douglas-Kroll-Hess Hamiltonian was used to account for the scalar relativistic effects. Thermodynamic properties obtained by these correlated ab initio calculations (entropies and thermal capacities at constant pressure as a function of temperature) are used in nuclear accident simulations using ASTEC/SOPHAEROS software. Interaction energies, standard enthalpies and Gibbs free energies of successive water molecules addition determine the ordering of the complexes. CsOH forms the most hydrated stable complexes followed by CsI, Cs₂I₂, and Cs. CsOH still exists in steam atmosphere even at quite high temperature, up to around 1100 K.

  9. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains.

    PubMed

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-02-15

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (epsilon globin, p53 and gamma interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to alpha(lambda)mu(omicron)sigma(tau) 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed.

  10. Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion

    SciTech Connect

    Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.

    2007-05-15

    Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10{sup 14} W cm{sup -2}. The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode ({approx}10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field.

  11. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules.

    PubMed

    Fu, Li-juan; Vaara, Juha

    2014-01-14

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H2O, CH3NO2, CH3CH2OH, C6H6, C6H12 (cyclohexane), HI, XeF2, WF5Cl, and Pt(C2dtp)2. The roles of basis-set convergence, electron correlation, and relativistic effects are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10(-3)-10(-7) rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.

  12. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    SciTech Connect

    Fu, Li-juan E-mail: juha.vaara@iki.fi; Vaara, Juha E-mail: juha.vaara@iki.fi

    2014-01-14

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effects are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.

  13. Configuration interaction study including the effects of spin-orbit coupling for the electronic states of the LiX molecules (X = C, Si, Ge, Sn)

    NASA Astrophysics Data System (ADS)

    Rai-Constapel, Vidisha; Liebermann, Heinz-Peter; Alekseyev, Aleksey B.; Buenker, Robert J.

    2011-03-01

    Ab initio multireference configuration interaction calculations including spin-orbit coupling effects have been carried out for four LiX molecules (X = C, Si, Ge and Sn). Potential energy curves of the ground and low-lying excited states have been obtained in each case as well as the corresponding spectroscopic constants. Transition moments have also been computed in order to give estimates of the radiative lifetimes of the excited states for each system. Trends in a variety of quantities such as T e values, spin-orbit splittings, equilibrium bond lengths and vibrational frequencies for this series of molecules are discussed in detail and comparison with the corresponding data reported earlier for the PbLi system is also made.

  14. Molecular phylogenetics of subfamily Ornithogaloideae (Hyacinthaceae) based on nuclear and plastid DNA regions, including a new taxonomic arrangement

    PubMed Central

    Martínez-Azorín, Mario; Crespo, Manuel B.; Juan, Ana; Fay, Michael F.

    2011-01-01

    Background and Aims The taxonomic arrangement within subfamily Ornithogaloideae (Hyacinthaceae) has been a matter of controversy in recent decades: several new taxonomic treatments have been proposed, based exclusively on plastid DNA sequences, and these have resulted in classifications which are to a great extent contradictory. Some authors have recognized only a single genus Ornithogalum for the whole subfamily, including 250–300 species of variable morphology, whereas others have recognized many genera. In the latter case, the genera are inevitably much smaller and they are better defined morphologically. However, some are not monophyletic as circumscribed. Methods Phylogenetic analyses of Ornithogaloideae were based on nucleotide sequences of four plastid regions (trnL intron, trnL-F spacer, rbcL and matK) and a nuclear region (ITS). Eighty species covering all relevant taxonomic groups previously recognized in the subfamily were sampled. Parsimony and Bayesian analyses were performed. The molecular data were compared with a matrix of 34 morphological characters. Key Results Combinations of plastid and nuclear data yielded phylogenetic trees which are better resolved than those obtained with any plastid region alone or plastid regions in combination. Three main clades are found, corresponding to the previously recognized tribes Albuceae, Dipcadieae and Ornithogaleae. In these, up to 19 clades are described which are definable by morphology and biogeography. These mostly correspond to previously described taxa, though some need recircumscription. Morphological characters are assessed for their diagnostic value for taxonomy in the subfamily. Conclusions On the basis of the phylogenetic analyses, 19 monophyletic genera are accepted within Ornithogaloideae: Albuca, Avonsera, Battandiera, Cathissa, Coilonox, Dipcadi, Eliokarmos, Elsiea, Ethesia, Galtonia, Honorius, Loncomelos, Melomphis, Neopatersonia, Nicipe, Ornithogalum, Pseudogaltonia, Stellarioides and

  15. Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules

    SciTech Connect

    Weinhardt, Lothar; Benkert, Andreas; Meyer, Frank; Blum, Monika; Wilks, Regan G.; Yang, Wanli; Baer, Marcus; Reinert, Friedrich; and others

    2012-04-14

    The electronic structure of gas-phase H{sub 2}O and D{sub 2}O molecules has been investigated using resonant inelastic soft x-ray scattering (RIXS). We observe spectator shifts for all valence orbitals when exciting into the lowest three absorption resonances. Strong changes of the relative valence orbital emission intensities are found when exciting into the different absorption resonances, which can be related to the angular anisotropy of the RIXS process. Furthermore, excitation into the 4a{sub 1} resonance leads to nuclear dynamics on the time scale of the RIXS process; we find evidence for vibrational coupling and molecular dissociation in both, the spectator and the participant emission.

  16. LETTER TO THE EDITOR: Collective modes of tri-nuclear molecules of the type 96Sr+ 10Be+ 146Ba

    NASA Astrophysics Data System (ADS)

    Hess, P. O.; Scheid, W.; Greiner, W.; Hamilton, J. H.

    1999-12-01

    The collective modes of the tri-nuclear molecule 96Sr+ 10Be+ 146Ba, observed in recent cold fission decay of 252Cf into three clusters, are theoretically investigated. The main excitations are rotations, the butterfly and belly-dancer modes and icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/>- and icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-vibrations. Due to the presence of the Be nucleus, butterfly excitation energies are shifted up to 2 MeV. There are only a few collective states below 1 MeV which are not rotational. The first rotational level of spin 2+ lies at an energy of about 6 keV. Proposals of how these collective modes may be measured are suggested.

  17. Nuclear Magnetic Resonance of Hydrogen Molecules Trapped inside C70 Fullerene Cages

    PubMed Central

    Mamone, Salvatore; Concistrè, Maria; Heinmaa, Ivo; Carravetta, Marina; Kuprov, Ilya; Wall, Gary; Denning, Mark; Lei, Xuegong; Chen, Judy Y-C; Li, Yongjun; Murata, Yasujiro; Turro, Nicholas J; Levitt, Malcolm H

    2013-01-01

    We present a solid-state NMR study of H2 molecules confined inside the cavity of C70 fullerene cages over a wide range of temperatures (300 K to 4 K). The proton NMR spectra are consistent with a model in which the dipole–dipole coupling between the ortho-H2 protons is averaged over the rotational/translational states of the confined quantum rotor, with an additional chemical shift anisotropy δHCSA=10.1 ppm induced by the carbon cage. The magnitude of the chemical shift anisotropy is consistent with DFT estimates of the chemical shielding tensor field within the cage. The experimental NMR data indicate that the ground state of endohedral ortho-H2 in C70 is doubly degenerate and polarized transverse to the principal axis of the cage. The NMR spectra indicate significant magnetic alignment of the C70 long axes along the magnetic field, at temperatures below ∼10 K. PMID:23788291

  18. Enhanced effect of C P -violating nuclear magnetic quadrupole moment in a HfF+ molecule

    NASA Astrophysics Data System (ADS)

    Skripnikov, L. V.; Titov, A. V.; Flambaum, V. V.

    2017-02-01

    The HfF+ cation is a very promising system to use in the search for the electron electric dipole moment (EDM), and a corresponding experiment is carried out by JILA group [H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, and E. A. Cornell, Science 342, 1220 (2013), 10.1126/science.1243683; K.-K. Ni, H. Loh, M. Grau, K. C. Cossel, J. Ye, and E. A. Cornell, J. Mol. Spectrosc. 300, 12 (2014), 10.1016/j.jms.2014.02.001. Here we theoretically investigate the cation to search for another effect which violates time-reversal (T ) and spatial parity (P ) symmetries—the nuclear magnetic quadrupole moment (MQM) interaction with electrons. We report an accurate ab initio relativistic electronic structure calculations of the molecular parameter WM=0.494 10/33Hz e cm2 that is required to interpret the experimental data in terms of the MQM of the Hf nucleus. For this we have implemented and applied the combined Dirac-Coulomb(-Gaunt) and relativistic effective core potential approaches to treat electron correlation effects from all of the electrons and to take into account high-order correlation effects using the coupled cluster method with single, double, triple and noniterative quadruple cluster amplitudes. We discuss interpretation of the MQM effect in terms of the strength constants of T ,P -odd nuclear forces, proton and neutron EDMs, the QCD parameter θ , and quark chromo-EDMs.

  19. Identification of Novel Small Molecule Activators of Nuclear Factor-κB With Neuroprotective Action Via High-Throughput Screening

    PubMed Central

    Manuvakhova, Marina S.; Johnson, Guyla G.; White, Misti C.; Ananthan, Subramaniam; Sosa, Melinda; Maddox, Clinton; McKellip, Sara; Rasmussen, Lynn; Wennerberg, Krister; Hobrath, Judith V.; White, E. Lucile; Maddry, Joseph A.; Grimaldi, Maurizio

    2012-01-01

    Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity. PMID:21046675

  20. Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen

    PubMed Central

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  1. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation

    SciTech Connect

    Aoyama, Kazumasa; Fukumoto, Yasunori; Ishibashi, Kenichi; Kubota, Sho; Morinaga, Takao; Horiike, Yasuyoshi; Yuki, Ryuzaburo; Takahashi, Akinori; Nakayama, Yuji; Yamaguchi, Naoto

    2011-12-10

    c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.

  2. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    SciTech Connect

    Fries, Pascal H.; Belorizky, Elie

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  3. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-01

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  4. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    SciTech Connect

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  5. Electron-nuclear dynamics of the one-electron nonlinear polyatomic molecule H32+ in ultrashort intense laser pulses

    NASA Astrophysics Data System (ADS)

    Lefebvre, C.; Lu, H. Z.; Chelkowski, S.; Bandrauk, A. D.

    2014-02-01

    A quantum description of the one-electron triangular H32+ molecular ion, beyond the Born-Oppenheimer approximation, is used to study the full influence of the nuclear motion on the high-intensity photoionization and harmonic generation processes. A detailed analysis of electron and proton motions and their time-dependent acceleration allows for identification of the main electron recollision events as a function of time-dependent configuration of the protons. High-order-harmonic generation photons are shown to be produced by single-electron recollision in the second half of the pulse envelope, which also induces a redshift in the harmonics, due to the rapid few-femtosecond motions of protons. Perpendicular harmonics are produced, in general, with a linearly polarized laser pulse parallel to a bond of the triangular molecule, and, in particular, the harmonics in the cutoff region are elliptically polarized. When the laser-pulse polarization is parallel to a symmetry axis of the triangular molecular ion, creation and destruction of the chemical bond perpendicular to the polarization is predicted on a near-femtosecond time scale.

  6. Identification of a small molecule inhibitor of importin beta mediated nuclear import by confocal on-bead screening of tagged one-bead one-compound libraries

    PubMed Central

    Hintersteiner, Martin; Ambrus, Géza; Bednenko, Janna; Schmied, Mario; Knox, Andrew J.S.; Gstach, Hubert; Seifert, Jan-Marcus; Singer, Eric L.; Gerace, Larry; Auer, Manfred

    2010-01-01

    In eukaryotic cells, proteins and RNA are transported between the nucleus and the cytoplasm by nuclear import and export receptors. Over the past decade, small molecules that inhibit the nuclear export receptor CRM1 have been identified, most notably leptomycin B. However, up to now no small molecule inhibitors of nuclear import have been described. Here we have used our automated Confocal Nanoscanning and bead picking method (CONA) for on-bead screening of a one bead/one compound library to identify the first such import inhibitor, karyostatin 1A. Karyostatin 1A binds importin β with high nanomolar affinity and specifically inhibits importin α/β mediated nuclear import at low micromolar concentrations in vitro and in living cells, without perturbing transportin mediated nuclear import or CRM1 mediated nuclear export. Surface plasmon resonance binding experiments suggest that karyostatin 1A acts by disrupting the interaction between importin β and the GTPase Ran. As a selective inhibitor of the importin α/β import pathway, karyostatin 1A will provide a valuable tool for future studies of nucleocytoplasmic trafficking. PMID:20677820

  7. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  8. Motion of the Debris from a High-Altitude Nuclear Explosion: Simulations Including Collisionless Shock and Charge Exchange

    DTIC Science & Technology

    2014-06-01

    INTRODUCTION .......................................................................................................1   A.   INTRODUCTION ...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. INTRODUCTION STARFISH PRIME (hereafter referred to as STARFISH) was a high-altitude nuclear...analysis and presentation of the data. The editors stated in the introduction that, “a central purpose of this introduction is to call attention to the

  9. Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene

    SciTech Connect

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H{sub 2}, H{sub 2}O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  10. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing

    PubMed Central

    Pinder, Jordan; Salsman, Jayme; Dellaire, Graham

    2015-01-01

    CRISPR is a genome-editing platform that makes use of the bacterially-derived endonuclease Cas9 to introduce DNA double-strand breaks at precise locations in the genome using complementary guide RNAs. We developed a nuclear domain knock-in screen, whereby the insertion of a gene encoding the green fluorescent protein variant Clover is inserted by Cas9-mediated homology directed repair (HDR) within the first exon of genes that are required for the structural integrity of subnuclear domains such as the nuclear lamina and promyelocytic leukemia nuclear bodies (PML NBs). Using this approach, we compared strategies for enhancing CRISPR-mediated HDR, focusing on known genes and small molecules that impact non-homologous end joining (NHEJ) and homologous recombination (HR). Ultimately, we identified the small molecule RS-1 as a potent enhancer of CRISPR-based genome editing, enhancing HDR 3- to 6-fold depending on the locus and transfection method. We also characterized U2OS human osteosarcoma cells expressing Clover-tagged PML and demonstrate that this strategy generates cell lines with PML NBs that are structurally and functionally similar to bodies in the parental cell line. Thus, the nuclear domain knock-in screen that we describe provides a simple means of rapidly evaluating methods and small molecules that have the potential to enhance Cas9-mediated HDR. PMID:26429972

  11. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing.

    PubMed

    Pinder, Jordan; Salsman, Jayme; Dellaire, Graham

    2015-10-30

    CRISPR is a genome-editing platform that makes use of the bacterially-derived endonuclease Cas9 to introduce DNA double-strand breaks at precise locations in the genome using complementary guide RNAs. We developed a nuclear domain knock-in screen, whereby the insertion of a gene encoding the green fluorescent protein variant Clover is inserted by Cas9-mediated homology directed repair (HDR) within the first exon of genes that are required for the structural integrity of subnuclear domains such as the nuclear lamina and promyelocytic leukemia nuclear bodies (PML NBs). Using this approach, we compared strategies for enhancing CRISPR-mediated HDR, focusing on known genes and small molecules that impact non-homologous end joining (NHEJ) and homologous recombination (HR). Ultimately, we identified the small molecule RS-1 as a potent enhancer of CRISPR-based genome editing, enhancing HDR 3- to 6-fold depending on the locus and transfection method. We also characterized U2OS human osteosarcoma cells expressing Clover-tagged PML and demonstrate that this strategy generates cell lines with PML NBs that are structurally and functionally similar to bodies in the parental cell line. Thus, the nuclear domain knock-in screen that we describe provides a simple means of rapidly evaluating methods and small molecules that have the potential to enhance Cas9-mediated HDR.

  12. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway

    SciTech Connect

    Davis, L.I.; Blobel, G.

    1987-11-01

    Using a monoclonal antibody (mAb 414), the authors previously identified a protein of 62 kDa (p62) that was localized to the nuclear pore complex by immunoelectron microscopy. They also showed that p62 binds specifically to wheat germ agglutinin. Therefore, they proposed that this nuclear pore complex protein might be a member of a recently characterized family of glycoproteins that are labeled by in vitro galactosylation of rat liver nuclei and contain O-linked monosaccharidic GlcNAc residues. In support of this, they now show that incubation with N-acetylglucosaminidase reduces the molecular mass of p62 by approx. = 3 kDa because of the removal of terminal GlcNAc residues. Moreover, p62 can be galactosylated in vitro by using UDP-(/sup 3/H)galactose and galactosyltransferase. They also show that most of the GlcNAc residues are added within 5 min of synthesis, when p62 is soluble and cytosolic. Thus, the addition of GlcNAc is carried out in the cytoplasm and is clearly distinct from the N- and O-linked glycosylation pathways of the endoplasmic reticulum and Golgi complex. Using another mAb with a broad specificity for nuclear GlcNAc-containing proteins, they show by immunofluorescence and protein blotting of subnuclear fractions that some of these proteins are in the interior of the nucleus, and others are most likely located in the pore complex.

  13. Electric properties of the 3-methyl-4-nitropyridine-1-oxyde (POM) molecules in solid phase: A theoretical study including environment polarization effect

    NASA Astrophysics Data System (ADS)

    Santos, O. L.; Sabino, J. R.; Georg, H. C.; Fonseca, T. L.; Castro, M. A.

    2017-02-01

    The dipole moment, linear polarizability and first hyperpolarizability of the 3-methyl-4-nitropyridine-1-oxyde (POM) molecules in solid phase were determined by applying iteratively a supermolecule approach in combination with an electrostatic embedding scheme, in which the surrounding molecules are represented by point charges. It is found that the electrostatic interactions with the surrounding molecules lead to a quasi-vanishing molecular dipole moment for the unit cell, in concordance with the experiment. The environment polarization effect is mild for the linear polarizability but it can be marked for the first hyperpolarizability.

  14. End of FY2014 Report - Filter Measurement System for Nuclear Material Storage Canisters (Including Altitude Correction for Filter Pressure Drop)

    SciTech Connect

    Moore, Murray E.; Reeves, Kirk Patrick

    2015-02-24

    Two LANL FTS (Filter Test System ) devices for nuclear material storage canisters are fully operational. One is located in PF-4 ( i.e. the TA-55 FTS) while the other is located at the Radiation Protection Division’s Aerosol Engineering Facility ( i.e. the TA-3 FTS). The systems are functionally equivalent , with the TA-3 FTS being the test-bed for new additions and for resolving any issues found in the TA-55 FTS. There is currently one unresolved issue regarding the TA-55 FTS device. The canister lid clamp does not give a leak tight seal when testing the 1 QT (quart) or 2 QT SAVY lids. An adapter plate is being developed that will ensure a correct test configuration when the 1 or 2 QT SAVY lid s are being tested .

  15. Alternative wavefunction ansatz for including explicit electron-proton correlation in the nuclear-electronic orbital approach

    NASA Astrophysics Data System (ADS)

    Ko, Chaehyuk; Pak, Michael V.; Swalina, Chet; Hammes-Schiffer, Sharon

    2011-08-01

    The nuclear-electronic orbital (NEO) approach treats specified nuclei quantum mechanically on the same level as the electrons with molecular orbital techniques. The explicitly correlated Hartree-Fock (NEO-XCHF) approach was developed to incorporate electron-nucleus dynamical correlation directly into the variational optimization of the nuclear-electronic wavefunction. In the original version of this approach, the Hartree-Fock wavefunction is multiplied by (1 + hat G), where hat G is a geminal operator expressed as a sum of Gaussian type geminal functions that depend on the electron-proton distance. Herein, a new wavefunction ansatz is proposed to avoid the computation of five- and six-particle integrals and to simplify the computation of the lower dimensional integrals involving the geminal functions. In the new ansatz, denoted NEO-XCHF2, the Hartree-Fock wavefunction is multiplied by √ {1 + hat G} rather than (1 + hat G). Although the NEO-XCHF2 ansatz eliminates the integrals that are quadratic in the geminal functions, it introduces terms in the kinetic energy integrals with no known analytical solution. A truncated expansion scheme is devised to approximate these problematic terms. An alternative hybrid approach, in which the kinetic energy terms are calculated with the original NEO-XCHF ansatz and the potential energy terms are calculated with the NEO-XCHF2 ansatz, is also implemented. Applications to a series of model systems with up to four electrons provide validation for the NEO-XCHF2 approach and the treatments of the kinetic energy terms.

  16. Local vibrations in disordered solids studied via single-molecule spectroscopy: Comparison with neutron, nuclear, Raman scattering, and photon echo data

    NASA Astrophysics Data System (ADS)

    Vainer, Yu. G.; Naumov, A. V.; Kador, L.

    2008-06-01

    The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.

  17. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells.

    PubMed

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-09-01

    5,7-Dihydroxy-3',4',6'-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules.

  18. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells

    PubMed Central

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-01-01

    5,7-Dihydroxy-3′,4′,6′-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules. PMID:22862554

  19. A small molecule induces integrin β4 nuclear translocation and apoptosis selectively in cancer cells with high expression of integrin β4

    PubMed Central

    Liu, ShuYan; Ge, Di; Chen, LiNa; Zhao, Jing; Su, Le; Zhang, ShangLi; Miao, JunYing; Zhao, BaoXiang

    2016-01-01

    Increased integrin β4 (ITGB4) level is accompanied by malignant progression of multiple carcinomas. However, selective therapeutic strategies against cancer cells expressing a high level of ITGB4 have not been reported. Here, for the first time, we report that a chiral small molecule, SEC, selectively promotes apoptosis in cancer cells expressing a high level of ITGB4 by inducing ITGB4 nuclear translocation. Nuclear ITGB4 can bind to the ATF3 promoter region and activate the expression of ATF3, then upregulate the downstream pro-apoptosis genes. Furthermore, SEC promoted the binding of annexin A7 (ANXA7) to ITGB4 and increased ANXA7 GTPase activity. Activated ANXA7 promoted ITGB4 nuclear translocation by triggering ITGB4 phosphorylation at Y1494. SEC also inhibited the growth of xenograft tumors in the avian embryo model. We identified a small molecule, SEC, with selective pro-apoptosis effects on cancer cells with high expression of ITGB4, both in vitro and in vivo, by triggering the binding of ITGB4 and ANXA7, ITGB4 nuclear trafficking, and pro-apoptosis gene expression. PMID:26918348

  20. Observation of zero-point quantum fluctuations of a single-molecule magnet through the relaxation of its nuclear spin bath.

    PubMed

    Morello, A; Millán, A; de Jongh, L J

    2014-03-21

    A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.

  1. The importance of suppressing spin diffusion effects in the accurate determination of the spatial structure of a flexible molecule by nuclear Overhauser effect spectroscopy

    NASA Astrophysics Data System (ADS)

    Khodov, I. A.; Efimov, S. V.; Klochkov, V. V.; Batista de Carvalho, L. A. E.; Kiselev, M. G.

    2016-02-01

    Two-dimensional nuclear Overhauser effect spectroscopy is applied to the elucidation of conformation distribution of small molecules in solution. An essential influence of the nonlinear multistep magnetization transfer (spin diffusion) on the NMR-based analysis of conformers distribution for small druglike molecules in solution was revealed. Therefore, the spin diffusion should be eliminated from the obtained NMR data in order to obtain accurate results. Efficiency of QUIET-NOESY spectroscopy in solving the problem of accurate determination of inter-proton distances in a small molecule was shown in a study of ibuprofen. Although it requires much experimental time, this technique was found to be helpful to solve the spin diffusion problem.

  2. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  3. The Evaluation of Lithium Hydride for Use in a Space Nuclear Reactor Shield, Including a Historical Perspective

    SciTech Connect

    D. Poeth

    2005-12-09

    LiH was one of the five primary shield materials the NRPCT intended to develop (along with beryllium, boron carbide, tungsten, and water) for potential Prometheus application. It was also anticipated that {sup 10}B metal would be investigated for feasibility at a low level of effort. LiH historically has been selected as a low mass, neutron absorption material for space shields (Systems for Nuclear Auxiliary Power (SNAP), Topaz, SP-100). Initial NRPCT investigations did not produce convincing evidence that LiH was desirable or feasible for a Prometheus mission due to material property issues (primarily swelling and hydrogen cover gas containment), and related thermal design complexity. Furthermore, if mass limits allowed, an option to avoid use of LiH was being contemplated to lower development costs and associated risks. However, LiH remains theoretically the most efficient neutron shield material per unit mass, and, with sufficient testing and development, could be an optimal material choice for future flights.

  4. Charge and Nuclear Dynamics Induced by Deep Inner-Shell Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser Pulses.

    PubMed

    Motomura, Koji; Kukk, Edwin; Fukuzawa, Hironobu; Wada, Shin-ichi; Nagaya, Kiyonobu; Ohmura, Satoshi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Koga, Ryosuke; Sakai, Tsukasa; Matsunami, Kenji; Rudenko, Artem; Nicolas, Christophe; Liu, Xiao-Jing; Miron, Catalin; Zhang, Yizhu; Jiang, Yuhai; Chen, Jianhui; Anand, Mailam; Kim, Dong Eon; Tono, Kensuke; Yabashi, Makina; Yao, Makoto; Ueda, Kiyoshi

    2015-08-06

    In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed.

  5. Complexation of the vulcanization accelerator tetramethylthiuram disulfide and related molecules with zinc compounds including zinc oxide clusters (Zn4O4).

    PubMed

    Steudel, Ralf; Steudel, Yana; Wong, Ming Wah

    2008-01-01

    Zinc chemicals are used as activators in the vulcanization of organic polymers with sulfur to produce elastic rubbers. In this work, the reactions of Zn(2+), ZnMe(2), Zn(OMe)(2), Zn(OOCMe)(2), and the heterocubane cluster Zn(4)O(4) with the vulcanization accelerator tetramethylthiuram disulfide (TMTD) and with the related radicals and anions Me(2)NCS(2)(*), Me(2)NCS(3)(*), Me(2)NCS(2)(-), and Me(2)NCS(3)(-) have been studied by quantum chemical methods at the MP2/6-31+G(2df,p)//B3LYP/6-31+G* level of theory. More than 35 zinc complexes have been structurally characterized and the energies of formation from their components calculated for the first time. The binding energy of TMTD as a bidendate ligand increases in the order ZnMe(2)molecule at the S-S bond on reaction with the Zn(4)O(4) cluster is predicted to be strongly exothermic, in sharp contrast to the endothermic S-S bond dissociation of the free molecule. The same holds for tetramethylthiuram trisulfide (TMTT). Surprisingly, the resulting complexes contain Zn-S as well as S-O bonds. The Zn(4)O(4) nanocluster serves here as a model for bulk zinc oxide used as an activator in rubber vulcanization by sulfur. The further uptake of sulfur atoms by the various complexes from S(8) or TMTD with formation of species derived from the radical Me(2)NCS(3)(*) or the trithiocarbamate anion Me(2)NCS(3)(-) is endothermic for mono- and dinuclear zinc dithiocarbamate (dtc) complexes such as [Zn(dtc)(2)] and [Zn(2)(dtc)(4)], but exothermic in the case of polynuclear zinc oxide species containing bridging ligands as in [Zn(4)O(4)(mu-S(2)CNMe(2))] and [Zn(4)O(4)(mu-dtc)]. Therefore, zinc oxide as a polynuclear species is predicted to promote the formation of trisulfido complexes, which are generally assumed to serve as catalysts for the transfer of

  6. Structural characterization of new defective molecules in poly(amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance.

    PubMed

    Tintaru, Aura; Ungaro, Rémi; Liu, Xiaoxiuan; Chen, Chao; Giordano, Laurent; Peng, Ling; Charles, Laurence

    2015-01-01

    A new side-reaction occurring during divergent synthesis of PAMAM dendrimers (generations G0-G2) was revealed by mass spectrometric detection of defective molecules with a net gain of a single carbon atom as compared to expected compounds. Combining MS/MS experiments performed on different electrosprayed precursor ions (protonated molecules and lithiated adducts) with NMR analyses allowed the origin of these by-products to be elucidated. Modification of one ethylenediamine end-group of perfect dendrimers into a cyclic imidazolidine moiety was induced by formaldehyde present at trace level in the methanol solvent used as the synthesis medium. Dendrimers studied here were purposely constructed from a triethanolamine core to make them more flexible, as compared to NH3- or ethylenediamine-core PAMAM, and hence improve their interaction with DNA. Occurrence of this side-reaction would be favored by the particular flexibility of the dendrimer branches.

  7. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis.

    PubMed

    Tsepilov, R N; Beloded, A V

    2015-09-01

    Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.

  8. Diversity of Dicotyledenous-Infecting Geminiviruses and Their Associated DNA Molecules in Southern Africa, Including the South-West Indian Ocean Islands

    PubMed Central

    Rey, Marie E. C.; Ndunguru, Joseph; Berrie, Leigh C.; Paximadis, Maria; Berry, Shaun; Cossa, Nurbibi; Nuaila, Valter N.; Mabasa, Ken G.; Abraham, Natasha; Rybicki, Edward P.; Martin, Darren; Pietersen, Gerhard; Esterhuizen, Lindy L.

    2012-01-01

    The family Geminiviridae comprises a group of plant-infecting circular ssDNA viruses that severely constrain agricultural production throughout the temperate regions of the world, and are a particularly serious threat to food security in sub-Saharan Africa. While geminiviruses exhibit considerable diversity in terms of their nucleotide sequences, genome structures, host ranges and insect vectors, the best characterised and economically most important of these viruses are those in the genus Begomovirus. Whereas begomoviruses are generally considered to be either monopartite (one ssDNA component) or bipartite (two circular ssDNA components called DNA-A and DNA-B), many apparently monopartite begomoviruses are associated with additional subviral ssDNA satellite components, called alpha- (DNA-αs) or betasatellites (DNA-βs). Additionally, subgenomic molecules, also known as defective interfering (DIs) DNAs that are usually derived from the parent helper virus through deletions of parts of its genome, are also associated with bipartite and monopartite begomoviruses. The past three decades have witnessed the emergence and diversification of various new begomoviral species and associated DI DNAs, in southern Africa, East Africa, and proximal Indian Ocean islands, which today threaten important vegetable and commercial crops such as, tobacco, cassava, tomato, sweet potato, and beans. This review aims to describe what is known about these viruses and their impacts on sustainable production in this sensitive region of the world. PMID:23170182

  9. Organic–inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides

    DOE PAGES

    Feenstra, Adam D.; O'Neill, Kelly C.; Yagnik, Gargey B.; ...

    2016-10-13

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe3O4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionic phosphatidylethanolamine (PE)more » and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.« less

  10. Organic–inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides

    SciTech Connect

    Feenstra, Adam D.; O'Neill, Kelly C.; Yagnik, Gargey B.; Lee, Young Jin

    2016-10-13

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe3O4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionic phosphatidylethanolamine (PE) and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.

  11. Diversity of dicotyledenous-infecting geminiviruses and their associated DNA molecules in southern Africa, including the South-west Indian ocean islands.

    PubMed

    Rey, Marie E C; Ndunguru, Joseph; Berrie, Leigh C; Paximadis, Maria; Berry, Shaun; Cossa, Nurbibi; Nuaila, Valter N; Mabasa, Ken G; Abraham, Natasha; Rybicki, Edward P; Martin, Darren; Pietersen, Gerhard; Esterhuizen, Lindy L

    2012-09-01

    The family Geminiviridae comprises a group of plant-infecting circular ssDNA viruses that severely constrain agricultural production throughout the temperate regions of the world, and are a particularly serious threat to food security in sub-Saharan Africa. While geminiviruses exhibit considerable diversity in terms of their nucleotide sequences, genome structures, host ranges and insect vectors, the best characterised and economically most important of these viruses are those in the genus Begomovirus. Whereas begomoviruses are generally considered to be either monopartite (one ssDNA component) or bipartite (two circular ssDNA components called DNA-A and DNA-B), many apparently monopartite begomoviruses are associated with additional subviral ssDNA satellite components, called alpha- (DNA-αs) or betasatellites (DNA-βs). Additionally, subgenomic molecules, also known as defective interfering (DIs) DNAs that are usually derived from the parent helper virus through deletions of parts of its genome, are also associated with bipartite and monopartite begomoviruses. The past three decades have witnessed the emergence and diversification of various new begomoviral species and associated DI DNAs, in southern Africa, East Africa, and proximal Indian Ocean islands, which today threaten important vegetable and commercial crops such as, tobacco, cassava, tomato, sweet potato, and beans. This review aims to describe what is known about these viruses and their impacts on sustainable production in this sensitive region of the world.

  12. Ab initio study of the positronation of the CaO and SrO molecules including calculation of annihilation rates.

    PubMed

    Buenker, Robert J; Liebermann, Heinz-Peter

    2012-07-15

    Ab initio multireference single- and double-excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e(+)CaO, and e(+)SrO. The adiabatic dissociation limit for the (2)Σ(+) lowest states of the latter systems consists of the positive metal ion ground state (M(+)) and the OPs complex (e(+)O(-)), although the lowest energy limit is thought to be e(+)M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed-shell X (1)Σ(+) ground states of both systems is found to lie in the 0.16-0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e(+)SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance.

  13. Enneanuclear [Ni6Ln3] Cages: [Ln(III)3] Triangles Capping [Ni(II)6] Trigonal Prisms Including a [Ni6Dy3] Single-Molecule Magnet.

    PubMed

    Canaj, Angelos B; Tzimopoulos, Demetrios I; Siczek, Milosz; Lis, Tadeusz; Inglis, Ross; Milios, Constantinos J

    2015-07-20

    The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) ligand, H3L, in Ni/Ln chemistry has led to the isolation of three new isostructural [Ni(II)6Ln(III)3] metallic cages. More specifically, the reaction of Ni(ClO4)2·6H2O, the corresponding lanthanide nitrate salt, and H3L in MeCN, under solvothermal conditions in the presence of NEt3, led to the isolation of three complexes with the formulas [Ni6Gd3(OH)6(HL)6(NO3)3]·5.75MeCN·2Et2O·1.5H2O (1·5.75MeCN·2Et2O·1.5H2O), [Ni6Dy3(OH)6(HL)6(NO3)3]·2MeCN·2.7Et2O·2.4H2O (2·2MeCN·2.7Et2O·2.4H2O), and [Ni6Er3(OH)6(HL)6(NO3)3]·5.75MeCN·2Et2O·1.5H2O (3·5.75MeCN·2Et2O·1.5H2O). The structure of all three clusters describes a [Ln(III)3] triangle capping a [Ni(II)6] trigonal prism. Direct current magnetic susceptibility studies in the 5-300 K range for complexes 1-3 reveal the different nature of the magnetic interactions within the clusters: dominant antiferromagnetic exchange interactions for the Dy(III) and Er(III) analogues and dominant ferromagnetic interactions for the Gd(III) example. Alternating current magnetic susceptibility measurements under zero external dc field displayed fully formed temperature- and frequency-dependent out-of-phase peaks for the [Ni(II)6Dy(III)3] analogue, establishing its single molecule magnetism behavior with Ueff = 24 K.

  14. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    SciTech Connect

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly

  15. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    NASA Astrophysics Data System (ADS)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  16. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.

    PubMed

    Hamaya, S; Maeda, H; Funaki, M; Fukui, H

    2008-12-14

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Delta sigma = sigma(parallel) - sigma(perpendicular), for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator sigma x piU/2c, in which pi = p + A, U is a nonunitary transformation operator, and c approximately = 137.036 a.u. is the velocity of light. The operator U depends on the vector potential A (i.e., the magnetic perturbations in the system) with the leading order c(-2) and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c(-4). It is shown that the small Delta sigma for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  17. Crystal structures of tiotropium bromide and its monohydrate in view of combined solid-state nuclear magnetic resonance and gauge-including projector-augmented wave studies.

    PubMed

    Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Majka, Zbigniew; Kolodziejski, Waclaw

    2015-07-01

    Tiotropium bromide is an anticholinergic bronchodilator used in the management of chronic obstructive pulmonary disease. The crystal structures of this compound and its monohydrate have been previously solved and published. However, in this paper, we showed that those structures contain some major errors. Our methodology based on combination of the solid-state nuclear magnetic resonance (NMR) spectroscopy and quantum mechanical gauge-including projector-augmented wave (GIPAW) calculations of NMR shielding constants enabled us to correct those errors and obtain reliable structures of the studied compounds. It has been proved that such approach can be used not only to perform the structural analysis of a drug substance and to identify its polymorphs, but also to verify and optimize already existing crystal structures.

  18. Cytoplasmic-nuclear trafficking of G1/S cell cycle molecules and adult human β-cell replication: a revised model of human β-cell G1/S control.

    PubMed

    Fiaschi-Taesch, Nathalie M; Kleinberger, Jeffrey W; Salim, Fatimah G; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E; Takane, Karen K; Srinivas, Harish; Scott, Donald K; Stewart, Andrew F

    2013-07-01

    Harnessing control of human β-cell proliferation has proven frustratingly difficult. Most G1/S control molecules, generally presumed to be nuclear proteins in the human β-cell, are in fact constrained to the cytoplasm. Here, we asked whether G1/S molecules might traffic into and out of the cytoplasmic compartment in association with activation of cell cycle progression. Cdk6 and cyclin D3 were used to drive human β-cell proliferation and promptly translocated into the nucleus in association with proliferation. In contrast, the cell cycle inhibitors p15, p18, and p19 did not alter their location, remaining cytoplasmic. Conversely, p16, p21, and p27 increased their nuclear frequency. In contrast once again, p57 decreased its nuclear frequency. Whereas proliferating β-cells contained nuclear cyclin D3 and cdk6, proliferation generally did not occur in β-cells that contained nuclear cell cycle inhibitors, except p21. Dynamic cytoplasmic-nuclear trafficking of cdk6 was confirmed using green fluorescent protein-tagged cdk6 and live cell imaging. Thus, we provide novel working models describing the control of cell cycle progression in the human β-cell. In addition to known obstacles to β-cell proliferation, cytoplasmic-to-nuclear trafficking of G1/S molecules may represent an obstacle as well as a therapeutic opportunity for human β-cell expansion.

  19. A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering.

    PubMed

    Vaz da Cruz, Vinícius; Ertan, Emelie; Couto, Rafael C; Eckert, Sebastian; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Guimarães, Freddy F; Ågren, Hans; Gel'mukhanov, Faris; Odelius, Michael; Föhlisch, Alexander; Kimberg, Victor

    2017-03-29

    In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.

  20. Path-Integral Calculations of Nuclear Quantum Effects in Model Systems, Small Molecules, and Enzymes via Gradient-Based Forward Corrector Algorithms.

    PubMed

    Azuri, Asaf; Engel, Hamutal; Doron, Dvir; Major, Dan Thomas

    2011-05-10

    A practical approach to treat nuclear quantum mechanical (QM) effects in simulations of condensed phases, such as enzymes, is via Feynman path integral (PI) formulations. Typically, the standard primitive approximation (PA) is employed in enzymatic PI simulations. Nonetheless, these PI simulations are computationally demanding due to the large number of discretizations, or beads, required to obtain converged results. The efficiency of PI simulations may be greatly improved if higher order factorizations of the density matrix operator are employed. Herein, we compare the results of model calculations obtained employing the standard PA, the improved operator of Takahashi and Imada (TI), and several gradient-based forward corrector algorithms due to Chin (CH). The quantum partition function is computed for the harmonic oscillator, Morse, symmetric, and asymmetric double well potentials. These potentials are simple models for nuclear quantum effects, such as zero-point energy and tunneling. It is shown that a unique set of CH parameters may be employed for a variety of systems. Additionally, the nuclear QM effects of a water molecule, treated with density functional theory, are computed. Finally, we derive a practical perturbation expression for efficient computation of isotope effects in chemical systems using the staging algorithm. This new isotope effect approach is tested in conjunction with the PA, TI, and CH methods to compute the equilibrium isotope effect in the Schiff base-oxyanion keto-enol tautomerism in the cofactor pyridoxal-5'-phosphate in the enzyme alanine racemase. The study of the different factorization methods reveals that the higher-order actions converge substantially faster than the PA approach, at a moderate computational cost.

  1. Intercellular adhesion molecule 1 is a sensitive and diagnostically useful immunohistochemical marker of papillary thyroid cancer (PTC) and of PTC-like nuclear alterations in Hashimoto's thyroiditis

    PubMed Central

    ZHANG, KE; GE, SHU-JIAN; LIN, XIAO-YAN; LV, BEI-BEI; CAO, ZHI-XIN; LI, JIA-MEI; XU, JIA-WEN; WANG, QIANG-XIU

    2016-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is important in the progression of inflammatory responses. Recently, increased levels of ICAM-1 have been reported in a number of types of malignancy. The present study aimed to investigate ICAM-1 expression in papillary thyroid cancer (PTC) and in Hashimoto's thyroiditis (HT) with PTC-like nuclear alterations, and to assess the predictive value of ICAM-1 in thyroid lesions. ICAM-1 expression was retrospectively investigated in 132 consecutive cases of PTC, 72 cases of HT, 10 of follicular cancer, 15 of follicular adenoma, 16 of nodular goiter and 8 samples of normal thyroid tissue using immunohistochemical analyses, and in 42 PTC patients using western blotting. ICAM-1 expression was not detected in normal follicular cells, follicular lesions (adenoma and cancer) and benign nodular hyperplasia, but was frequently overexpressed in PTC cells. ICAM-1 overexpression was associated with extra-thyroidal invasion and lymph node metastasis; no association was found with age, gender, tumor size, multifocality, pathological stage, recurrence or distant metastasis. ICAM-1 expression in HT patients with PTC-like nuclear alterations was significantly higher than that in HT cases with non-PTC-like features. Compared with antibodies against cytokeratin 19, galectin-3 and Hector Battifora mesothelial-1, ICAM-1 was the most sensitive marker for the detection of PTC-like features in HT. These findings demonstrate that ICAM-1 expression is upregulated in PTC and in HT with PTC-like nuclear alterations. This feature may be an important factor in the progression of cancer of the thyroid gland. PMID:26998068

  2. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    PubMed

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  3. Espin actin-cytoskeletal proteins are in rat type I spiral ganglion neurons and include splice-isoforms with a functional nuclear localization signal.

    PubMed

    Sekerková, Gabriella; Zheng, Lili; Mugnaini, Enrico; Bartles, James R

    2008-08-20

    The espins are Ca(2+)-resistant actin-bundling proteins that are enriched in hair cell stereocilia and sensory cell microvilli. Here, we report a novel localization of espins to a large proportion of rat type I spiral ganglion neurons (SGNs) and their projections to the cochlear nucleus (CN). Moreover, we show that a fraction of these espins is in the nucleus of SGNs owing to the presence of splice-isoforms that contain a functional nuclear localization signal (NLS). Espin antibody labeled approximately 83% of type I SGNs, and the labeling intensity increased dramatically during early postnatal development. Type II SGNs and vestibular ganglion neurons were unlabeled. In the CN, espin-positive auditory nerve fibers showed a projection pattern typical of type I SGNs, with intense labeling in the nerve root region and posteroventral CN (PVCN). The anteroventral CN (AVCN) showed moderate labeling, whereas the dorsal CN showed weak labeling that was restricted to the deep layer. Espin-positive synaptic terminals were enriched around nerve root neurons and octopus cells in the PVCN and were also found on globular bushy cells and multipolar neurons in the PVCN and AVCN. SGNs expressed multiple espin transcripts and proteins, including splice-isoforms that contain a nonapeptide, which is rich in positively charged amino acids and creates a bipartite NLS. The nonapeptide was necessary to target espin isoforms to the nucleus and was sufficient to target an unrelated protein to the nucleus when joined with the upstream di-arginine-containing octapeptide. The presence of cytoplasmic and nuclear espins in SGNs suggests additional roles for espins in auditory neuroscience.

  4. Loss of Drosophila A-type lamin C initially causes tendon abnormality including disintegration of cytoskeleton and nuclear lamina in muscular defects.

    PubMed

    Uchino, Ryo; Nonaka, Yu-Ki; Horigome, Tuneyoshi; Sugiyama, Shin; Furukawa, Kazuhiro

    2013-01-01

    Lamins are the major components of nuclear envelope architecture, being required for both the structural and informational roles of the nuclei. Mutations of lamins cause a spectrum of diseases in humans, including muscular dystrophy. We report here that the loss of the A-type lamin gene, lamin C in Drosophila resulted in pupal metamorphic lethality caused by tendon defects, matching the characteristics of human A-type lamin revealed by Emery-Dreifuss muscular dystrophy (EDMD). In tendon cells lacking lamin C activity, overall cell morphology was affected and organization of the spectraplakin family cytoskeletal protein Shortstop which is prominently expressed in tendon cells gradually disintegrated, notably around the nucleus and in a manner correlating well with the degradation of musculature. Furthermore, lamin C null mutants were efficiently rescued by restoring lamin C expression to shortstop-expressing cells, which include tendon cells but exclude skeletal muscle cells. Thus the critical function of A-type lamin C proteins in Drosophila musculature is to maintain proper function and morphology of tendon cells.

  5. High nuclearity single-molecule magnets: a mixed-valence Mn26 cluster containing the di-2-pyridylketone diolate dianion.

    PubMed

    Stamatatos, Theocharis C; Nastopoulos, Vassilios; Tasiopoulos, Anastasios J; Moushi, Eleni E; Wernsdorfer, Wolfgang; Christou, George; Perlepes, Spyros P

    2008-11-03

    The employment of the dianion (dpkd(2-)) of the gem-diol form of di-2-pyridylketone (dpk) as a tetradentate chelate in manganese chemistry is reported, and the synthesis, crystal structure, and magnetochemical characterization of [Mn26O16(OMe)12(dpkd)12(MeOH)6](OH)6 x solv (3 x solv) are described. The reaction of Mn(ClO4)2 x 6 H2O, dpk, NaOMe, and NEt3 (2:1:4:2) in MeCN/MeOH affords complex 3, which possesses a rare metal topology and is mixed-valence (4 Mn(II), 22 Mn(III)). The complicated [Mn26(mu4-O)10(mu3-O)6(mu3-OMe)12(mu-OR)12](18+) core of 3 consists of an internal Mn(III)16 cage of adjacent Mn4 tetrahedra surrounded by an external Mn(II)4Mn(III)6 shell. The latter is held together by the alkoxide arms of twelve eta(1):eta(2):eta(1):eta(1):mu3 dpkd(2-) groups. Variable-temperature, solid-state direct current (dc), and alternating current (ac) magnetization studies were carried out on 3 in the 1.8-300 K range. Complex 3 is predominantly antiferromagnetically coupled with a resulting S = 6 ground state, a conclusion confirmed by the in-phase (chi'(M)) ac susceptibility data. The observation of out-of-phase (chi''(M)) ac susceptibility signals suggested that 3 might be a single-molecule magnet, and this was confirmed by single-crystal magnetization vs dc field sweeps that exhibited hysteresis, the diagnostic property of a magnet. Combined ac chi''(M) and magnetization decay vs time data collected below 1.1 K were used to construct an Arrhenius plot; the fit of the thermally activated region above approximately 0.1 K gave U(eff) = 30 K, where U(eff) is the effective relaxation barrier. At lower temperatures, the complex exhibits temperature-independent relaxation, characteristic of ground-state quantum tunneling of magnetization between the lowest-lying M(s) = +/-6 levels. The combined work demonstrates the ligating flexibility of dipyridyl-diolate chelates and their usefulness in the synthesis of polynuclear Mn(x) clusters with interesting magnetic properties

  6. Berberine inhibits tumor necrosis factor-α-induced expression of inflammatory molecules and activation of nuclear factor-κB via the activation of AMPK in vascular endothelial cells.

    PubMed

    Liu, Su-Jian; Yin, Cai-Xia; Ding, Ming-Chao; Wang, Yi-Zhong; Wang, Hong

    2015-10-01

    Berberine, which is a well‑known drug used in traditional medicine, has been demonstrated to exert diverse pharmacological effects, including anti‑inflammatory effects. However, whether berberine can affect the production of inflammatory molecules in vascular endothelial cells remains to be elucidated. Therefore, the present study aimed to determine the effects of berberine, and the underlying molecular mechanisms of these effects. The effect of berberine on tumor necrosis factor (TNF)‑α‑induced inflammatory molecule expression was examined in cultured human aortic endothelial cells (HAECs). The HAECs were stimulated with TNF‑α and incubated with or without berberine. The activation of nuclear factor (NF)‑κB and adenosine monophosphate‑activated protein kinase (AMPK) were analyzed using western blotting, and the protein secretion of intercellular adhesion molecule (ICAM)‑1 and monocyte chemoattractant protein (MCP)‑1 was measured using ELISA kits. The mRNA expression levels of ICAM‑1 and MCP‑1 were analyzed using reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that berberine significantly inhibited the TNF‑α‑induced expression of ICAM‑1 and MCP‑1, as well as the activation of NF‑κB in the HAECs. These effects were attenuated following co‑treatment with AMPK inhibitor compound C, or specific small interfering RNAs. In conclusion, the results of the present study indicated that berberine inhibits the TNF‑α‑induced expression of ICAM‑1 and MCP‑1, and the activation of NF‑κB in HAECs in vitro, possibly through the AMPK‑dependent pathway.

  7. The effect of an iodine restricted including no sea foods diet, on technetium-99m thyroid scintigraphy: a neglected issue in nuclear medicine practice.

    PubMed

    Javadi, Hamid; Neshandarasli, Isa; Mogharrabi, Mehdi; Jalallat, Sara; Nabipour, Iraj; Assadi, Majid

    2012-01-01

    Although it is recommended to patients to avoid sea food and iodine-containing medications prior to iodine-131 (¹³¹I) scanning, the efficacy of this diet as for technetium-99m pertechnetate ((99m)Tc-P) thyroid scintigraphy is not well addressed in the literature. We evaluated a self-managed, outpatients, iodine restricted diet (IRD) designed to reduce total body iodine in preparation for such a scan. We have studied 39 patients who referred to our Department for multinodular goiter, 30 females and 9 males, aged:14-54 years and their (99m)Tc-P thyroid scintigraphy showed poor visualization of the thyroid gland. These patiens were living in regions with high consumption of sea foods went underwent a two-weeks iodine restriction including restriction of sea food diet for the reduction of iodine body content. These patients were called for a repeated scan after going on a IRD for at least two weeks. The two scans were compared visually, and by semiquantitative analysis. Semiquantitative analysis was applied in 8 regions of interest (ROI) by using Wilcoxon signed rank test. Thirty-six subjects had better quality scintigraphy images in the post IRD thyroid scan, as was visually assessed by two nuclear medicine physicians. Semiquantitatetively, there was a significant difference in the mean counts of ROI of the right and the left thyroid lobes in favor of the post IRD scans (P<0.05). In conclusion, this study suggests that in patients with multinodular goiter, living in regions with high consumption of sea foods a two-weeks diet for the reduction of iodine body content induces in most of the cases a slightly better diagnostic thyroid (99m)Tc-P scan.

  8. Identification of small molecule proliferating cell nuclear antigen (PCNA) inhibitor that disrupts interactions with PIP-box proteins and inhibits DNA replication.

    PubMed

    Punchihewa, Chandanamali; Inoue, Akira; Hishiki, Asami; Fujikawa, Yoshihiro; Connelly, Michele; Evison, Benjamin; Shao, Youming; Heath, Richard; Kuraoka, Isao; Rodrigues, Patrick; Hashimoto, Hiroshi; Kawanishi, Masanobu; Sato, Mamoru; Yagi, Takashi; Fujii, Naoaki

    2012-04-20

    We have discovered that 3,3',5-triiodothyronine (T3) inhibits binding of a PIP-box sequence peptide to proliferating cell nuclear antigen (PCNA) protein by competing for the same binding site, as evidenced by the co-crystal structure of the PCNA-T3 complex at 2.1 Å resolution. Based on this observation, we have designed a novel, non-peptide small molecule PCNA inhibitor, T2 amino alcohol (T2AA), a T3 derivative that lacks thyroid hormone activity. T2AA inhibited interaction of PCNA/PIP-box peptide with an IC(50) of ~1 μm and also PCNA and full-length p21 protein, the tightest PCNA ligand protein known to date. T2AA abolished interaction of PCNA and DNA polymerase δ in cellular chromatin. De novo DNA synthesis was inhibited by T2AA, and the cells were arrested in S-phase. T2AA inhibited growth of cancer cells with induction of early apoptosis. Concurrently, Chk1 and RPA32 in the chromatin are phosphorylated, suggesting that T2AA causes DNA replication stress by stalling DNA replication forks. T2AA significantly inhibited translesion DNA synthesis on a cisplatin-cross-linked template in cells. When cells were treated with a combination of cisplatin and T2AA, a significant increase in phospho(Ser(139))histone H2AX induction and cell growth inhibition was observed.

  9. Identification of Small Molecule Proliferating Cell Nuclear Antigen (PCNA) Inhibitor That Disrupts Interactions with PIP-box Proteins and Inhibits DNA Replication*

    PubMed Central

    Punchihewa, Chandanamali; Inoue, Akira; Hishiki, Asami; Fujikawa, Yoshihiro; Connelly, Michele; Evison, Benjamin; Shao, Youming; Heath, Richard; Kuraoka, Isao; Rodrigues, Patrick; Hashimoto, Hiroshi; Kawanishi, Masanobu; Sato, Mamoru; Yagi, Takashi; Fujii, Naoaki

    2012-01-01

    We have discovered that 3,3′,5-triiodothyronine (T3) inhibits binding of a PIP-box sequence peptide to proliferating cell nuclear antigen (PCNA) protein by competing for the same binding site, as evidenced by the co-crystal structure of the PCNA-T3 complex at 2.1 Å resolution. Based on this observation, we have designed a novel, non-peptide small molecule PCNA inhibitor, T2 amino alcohol (T2AA), a T3 derivative that lacks thyroid hormone activity. T2AA inhibited interaction of PCNA/PIP-box peptide with an IC50 of ∼1 μm and also PCNA and full-length p21 protein, the tightest PCNA ligand protein known to date. T2AA abolished interaction of PCNA and DNA polymerase δ in cellular chromatin. De novo DNA synthesis was inhibited by T2AA, and the cells were arrested in S-phase. T2AA inhibited growth of cancer cells with induction of early apoptosis. Concurrently, Chk1 and RPA32 in the chromatin are phosphorylated, suggesting that T2AA causes DNA replication stress by stalling DNA replication forks. T2AA significantly inhibited translesion DNA synthesis on a cisplatin-cross-linked template in cells. When cells were treated with a combination of cisplatin and T2AA, a significant increase in phospho(Ser139)histone H2AX induction and cell growth inhibition was observed. PMID:22383522

  10. Stable transfection of Epstein-Barr virus (EBV) nuclear antigen 2 in lymphoma cells containing the EBV P3HR1 genome induces expression of B-cell activation molecules CD21 and CD23.

    PubMed Central

    Cordier, M; Calender, A; Billaud, M; Zimber, U; Rousselet, G; Pavlish, O; Banchereau, J; Tursz, T; Bornkamm, G; Lenoir, G M

    1990-01-01

    A set of B-cell activation molecules, including the Epstein-Barr virus (EBV) receptor CR2 (CD21) and the B-cell activation antigen CD23 (Blast2/Fc epsilon RII), is turned on by infecting EBV-negative B-lymphoma cell lines with immortalizing strains of the viruslike B95-8 (BL/B95 cells). This up regulation may represent one of the mechanisms involved in EBV-mediated B-cell immortalization. The P3HR1 nonimmortalizing strain of the virus, which is deleted for the entire Epstein-Barr nuclear antigen 2 (EBNA2) protein open reading frame, is incapable of inducing the expression of CR2 and CD23, suggesting a crucial role for EBNA2 in the activation of these molecules. In addition, lymphoma cells containing the P3HR1 genome (BL/P3HR1 cells) do not express the viral latent membrane protein (LMP), which is regularly expressed in cells infected with immortalizing viral strains. Using electroporation, we have transfected the EBNA2 gene cloned in an episomal vector into BL/P3HR1 cells and have obtained cell clones that stably express the EBNA2 protein. In these clones, EBNA2 expression was associated with an increased amount of CR2 and CD23 steady-state RNAs. Of the three species of CD23 mRNAs described, the Fc epsilon RIIa species was preferentially expressed in these EBNA2-expressing clones. An increased cell surface expression of CR2 but not of CD23 was observed, and the soluble form of CD23 molecule (SCD23) was released. We were, however, not able to detect any expression of LMP in these cell clones. These data demonstrate that EBNA2 gene is able to complement P3HR1 virus latent functions to induce the activation of CR2 and CD23 expression, and they emphasize the role of EBNA2 protein in the modulation of cellular gene implicated in B-cell proliferation and hence in EBV-mediated B-cell immortalization. Nevertheless, EBNA2 expression in BL/P3HR1 cells is not able to restore the level of CR2 and CD23 expression observed in BL/B95 cells, suggesting that other cellular or viral

  11. Phenolic promiscuity in the cell nucleus--epigallocatechingallate (EGCG) and theaflavin-3,3'-digallate from green and black tea bind to model cell nuclear structures including histone proteins, double stranded DNA and telomeric quadruplex DNA.

    PubMed

    Mikutis, Gediminas; Karaköse, Hande; Jaiswal, Rakesh; LeGresley, Adam; Islam, Tuhidul; Fernandez-Lahore, Marcelo; Kuhnert, Nikolai

    2013-02-01

    Flavanols from tea have been reported to accumulate in the cell nucleus in considerable concentrations. The nature of this phenomenon, which could provide novel approaches in understanding the well-known beneficial health effects of tea phenols, is investigated in this contribution. The interaction between epigallocatechin gallate (EGCG) from green tea and a selection of theaflavins from black tea with selected cell nuclear structures such as model histone proteins, double stranded DNA and quadruplex DNA was investigated using mass spectrometry, Circular Dichroism spectroscopy and fluorescent assays. The selected polyphenols were shown to display affinity to all of the selected cell nuclear structures, thereby demonstrating a degree of unexpected molecular promiscuity. Most interestingly theaflavin-digallate was shown to display the highest affinity to quadruplex DNA reported for any naturally occurring molecule reported so far. This finding has immediate implications in rationalising the chemopreventive effect of the tea beverage against cancer and possibly the role of tea phenolics as "life span essentials".

  12. The E1 replication protein of bovine papillomavirus type 1 contains an extended nuclear localization signal that includes a p34cdc2 phosphorylation site.

    PubMed Central

    Lentz, M R; Pak, D; Mohr, I; Botchan, M R

    1993-01-01

    Bovine papillomavirus (BPV) DNA replication occurs in the nucleus of infected cells. Most enzymatic activities are carried out by host cell proteins, with the viral E1 and E2 proteins required for the assembly of an initiation complex at the replication origin. In latently infected cells, viral DNA replication occurs in synchrony with the host cell chromosomes, maintaining a constant average copy number of BPV genomes per infected cell. By analyzing a series of mutants of the amino-terminal region of the E1 protein, we have identified the signal for transport of this protein to the cell nucleus. The E1 nuclear transport motif is highly conserved in the animal and human papillomaviruses and is encoded in a similar region in the related E1 genes. The signal is extended relative to the simple nuclear localization signals and contains two short amino acid sequences which contribute to nuclear transport, located between amino acids 85 and 108 of the BPV-1 E1 protein. Mutations in either basic region reduce nuclear transport of E1 protein and interfere with viral DNA replication. Mutations in both sequences simultaneously prevent any observable accumulation of the protein and reduce replication in transient assays to barely detectable levels. Surprisingly, these mutations had no effect on the ability of viral genomes to morphologically transform cells, although the plasmid DNA in the transformed cells was maintained at a very low copy number. Between these two basic amino acid blocks in the nuclear transport signal, at threonine 102, is a putative site for phosphorylation by the cell cycle regulated kinase p34cdc2. Utilizing an E1 protein purified from either a baculovirus vector system or Escherichia coli, we have shown that the E1 protein is a substrate for this kinase. An E1 gene mutant at threonine 102 encodes for a protein which is no longer a substrate for the p34cdc2 kinase. Mutation of this threonine to isoleucine had no observable effect on either nuclear

  13. Target-specific cytotoxic effects on HER2-expressing cells by the tripartite fusion toxin ZHER2:2891-ABD-PE38X8, including a targeting affibody molecule and a half-life extension domain.

    PubMed

    Liu, Hao; Seijsing, Johan; Frejd, Fredrik Y; Tolmachev, Vladimir; Gräslund, Torbjörn

    2015-08-01

    Development of cancer treatment regimens including immunotoxins is partly hampered by their immunogenicity. Recently, deimmunized versions of toxins have been described, potentially being better suited for translation to the clinic. In this study, a recombinant tripartite fusion toxin consisting of a deimmunized version of exotoxin A from Pseudomonas aeruginosa (PE38) genetically fused to an affibody molecule specifically interacting with the human epidermal growth factor receptor 2 (HER2), and also an albumin binding domain (ABD) for half-life extension, has been produced and characterized in terms of functionality of the three moieties. Biosensor based assays showed that the fusion toxin was able to interact with human and mouse serum albumin, but not with bovine serum albumin and that it interacted with HER2 (KD=5 nM). Interestingly, a complex of the fusion toxin and human serum albumin also interacted with HER2 but with a somewhat weaker affinity (KD=12 nM). The IC50-values of the fusion toxin ranged from 6 to 300 pM on SKOV-3, SKBR-3 and A549 cells and was lower for cells with higher surface densities of HER2. The fusion toxin was found specific for HER2 as shown by blocking available HER2 receptors with free affibody molecule before subjecting the cells to the toxin. Analysis of contact time showed that 10 min was sufficient to kill 50% of the cells. In conclusion, all three regions of the fusion toxin were found to be functional.

  14. Role of nuclear factor-kappa B in the regulation of intercellular adhesion molecule 1 after infection of human bronchial epithelial cells by Bordetella pertussis.

    PubMed

    Ishibashi, Yoshio; Nishikawa, Akemi

    2003-10-01

    Previous work has demonstrated that infection of human bronchial epithelial cells by Bordetella pertussis up-regulates intercellular adhesion molecule-1 (ICAM-1) gene and protein expression. It has also been shown that interaction of the Arg-Gly-Asp (RGD) site of filamentous hemagglutinin (FHA) with host cell very late antigen (VLA)-5 (alpha 5 beta 1 integrin) is required for the up-regulation of epithelial ICAM-1 expression, and that pertussis toxin (PT) impairs this response. We therefore examined the molecular mechanisms leading to B. pertussis-induced ICAM-1 up-regulation in BEAS-2B human bronchial epithelial cells. A colorimetric nuclear factor kappa B (NF-kappa B) activation assay demonstrated that NF-kappa B was activated in response to infection of these cells with B. pertussis. This activation occurred in an FHA(RGD)-dependent manner, and was blocked by an antibody against VLA-5, implying that binding of the RGD to VLA-5 integrin is involved in NF-kappa B activation. Western blot analysis revealed that the activation of NF-kappa B by B. pertussis was preceded by degradation of I kappa B alpha, a major cytoplasmic inhibitor of NF-kappa B. Pretreatment of the BEAS-2B cells with the NF-kappa B inhibitors pyrrolidine dithiocarbamate (PDTC), MG-132, and SN50 resulted in a marked decrease in B. pertussis-induced ICAM-1 expression, implying the involvement of NF-kappa B in ICAM-1 expression. Purified PT abrogated both NF-kappa B activation and I kappa B alpha degradation. These results suggest that ligation of VLA-5 integrin by FHA induces RGD-dependent NF-kappa B activation, thus leading to the up-regulation of epithelial ICAM-1 expression, and that a PT-sensitive G protein may be involved in this signaling pathway.

  15. Effect of Hyperketonemia (Acetoacetate) on Nuclear Factor-κB and p38 Mitogen-Activated Protein Kinase Activation Mediated Intercellular Adhesion Molecule 1 Upregulation in Endothelial Cells

    PubMed Central

    Rains, Justin L.

    2015-01-01

    Abstract Background: Hyperketonemia is a pathological condition observed in patients with type 1 diabetes and ketosis-prone diabetes (KPD), which results in increased blood levels of acetoacetate (AA) and β-hydroxybutyrate (BHB). Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. We examined the hypothesis that hyperketonemia activates the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that regulate intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured with AA (0–8 mM) or BHB (0–10 mM) for 0–24 hr. Western blotting was used to determine NF-κB activation in whole-cell lysates. ICAM-1 expression was measured using flow cytometry. Results: Results show a 2.4-fold increase in NF-κB activation in cells treated with 8 mM AA compared to the control. BHB had little or no effect on NF-κB activation. Pretreatment with a reactive oxygen species (ROS) inhibitor [N-acetyl-l-cysteine (NAC)] reduced NF-κB to near-control levels. The expression of AA-induced ICAM-1 was significantly reduced when cells were pretreated with either NAC or p38 MAPK inhibitor. Conclusions: These results suggest that NF-κB and p38 MAPK mediate upregulation of ICAM-1 expression in endothelial cells exposed to elevated levels of AA, which may contribute to the development of vascular disease in diabetes. PMID:25489974

  16. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  17. Nuclear dreams: the malignant alteration of nuclear architecture.

    PubMed

    Nickerson, J A

    1998-08-01

    Cancer is diagnosed by examining the architectural alterations to cells and tissues. Changes in nuclear structure are among the most universal of these and include increases in nuclear size, deformities in nuclear shape, and changes in the internal organization of the nucleus. These may all reflect changes in the nuclear matrix, a non-chromatin nuclear scaffolding determining nuclear form, higher order chromatin folding, and the spatial organization of nucleic acid metabolism. Malignancy-induced changes in this structure may have profound effects on chromatin folding, on the fidelity of genome replication, and on gene expression. Elucidating the mechanisms and the biological consequences of nuclear changes will require the identification of the major structural molecules of the internal nuclear matrix and an understanding of their assembly into structural elements. If biochemical correlates to malignant alterations in nuclear structure can be identified then nuclear matrix proteins and, perhaps nuclear matrix-associated structural RNAs, may be an attractive set of diagnostic markers and therapeutic targets.

  18. FBI-1 can stimulate HIV-1 Tat activity and is targeted to a novel subnuclear domain that includes the Tat-P-TEFb-containing nuclear speckles.

    PubMed

    Pendergrast, P Shannon; Wang, Chen; Hernandez, Nouria; Huang, Sui

    2002-03-01

    FBI-1 is a cellular POZ-domain-containing protein that binds to the HIV-1 LTR and associates with the HIV-1 transactivator protein Tat. Here we show that elevated levels of FBI-1 specifically stimulate Tat activity and that this effect is dependent on the same domain of FBI-1 that mediates Tat-FBI-1 association in vivo. FBI-1 also partially colocalizes with Tat and Tat's cellular cofactor, P-TEFb (Cdk9 and cyclin T1), at the splicing-factor-rich nuclear speckle domain. Further, a less-soluble population of FBI-1 distributes in a novel peripheral-speckle pattern of localization as well as in other nuclear regions. This distribution pattern is dependent on the FBI-1 DNA binding domain, on the presence of cellular DNA, and on active transcription. Taken together, these results suggest that FBI-1 is a cellular factor that preferentially associates with active chromatin and that can specifically stimulate Tat-activated HIV-1 transcription.

  19. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  20. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-08-07

    Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.

  1. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  2. Oscillator strengths for 1s2 1S0-1s2p 3P1,2 transitions in helium-like carbon, nitrogen and oxygen including the effects of a finite nuclear mass

    NASA Astrophysics Data System (ADS)

    Morton, Donald C.; Drake, G. W. F.

    2016-12-01

    We have calculated the electric dipole (E1) and magnetic quadrupole (M2) oscillator strengths and spontaneous decay rates for the 1{{{s}}}2{}1{{{S}}}0{--}1{{s}}2{{p}}{}3{{{P}}}{1,2} spin-changing transitions of helium-like C v, N vi and O vii. We added the effects of the finite nuclear mass and the anomalous magnetic moment of the electron including an extra term derived by Pachucki. For the E1 calculations we used the Breit approximation and pseudostate expansions to perform the perturbation sums over intermediate states in both the length and velocity gauge as a check on numerical accuracy and the validity of the transition operators. There is some cancellation in the corrections for the nuclear mass and the electron anomaly so that if one is included the other should not be ignored

  3. A small molecule inhibitor of monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin.

    PubMed

    Inoue, Akira; Kikuchi, Sotaro; Hishiki, Asami; Shao, Youming; Heath, Richard; Evison, Benjamin J; Actis, Marcelo; Canman, Christine E; Hashimoto, Hiroshi; Fujii, Naoaki

    2014-03-07

    Small molecule inhibitors of proliferating cell nuclear antigen (PCNA)/PCNA interacting protein box (PIP-Box) interactions, including T2 amino alcohol (T2AA), inhibit translesion DNA synthesis. The crystal structure of PCNA in complex with T2AA revealed that T2AA bound to the surface adjacent to the subunit interface of the homotrimer of PCNA in addition to the PIP-box binding cavity. Because this site is close to Lys-164, which is monoubiquitinated by RAD18, we postulated that T2AA would affect monoubiquitinated PCNA interactions. Binding of monoubiquitinated PCNA and a purified pol η fragment containing the UBZ and PIP-box was inhibited by T2AA in vitro. T2AA decreased PCNA/pol η and PCNA/REV1 chromatin colocalization but did not inhibit PCNA monoubiquitination, suggesting that T2AA hinders interactions of pol η and REV1 with monoubiquitinated PCNA. Interstrand DNA cross-links (ICLs) are repaired by mechanisms using translesion DNA synthesis that is regulated by monoubiquitinated PCNA. T2AA significantly delayed reactivation of a reporter plasmid containing an ICL. Neutral comet analysis of cells receiving T2AA in addition to cisplatin revealed that T2AA significantly enhanced formation of DNA double strand breaks (DSBs) by cisplatin. T2AA promoted colocalized foci formation of phospho-ATM and 53BP1 and up-regulated phospho-BRCA1 in cisplatin-treated cells, suggesting that T2AA increases DSBs. When cells were treated by cisplatin and T2AA, their clonogenic survival was significantly less than that of those treated by cisplatin only. These findings show that the inhibitors of monoubiquitinated PCNA chemosensitize cells by inhibiting repair of ICLs and DSBs.

  4. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  5. Overview of Non-nuclear Testing of the Safe, Affordable 30-kW Fission Engine, Including End-to-End Demonstrator Testing

    NASA Technical Reports Server (NTRS)

    VanDyke, M. K.; Martin, J. J.; Houts, M. G.

    2003-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3-300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashing with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished viz cooperative efforts with Department of Energy labs, industry, universiites, and other NASA centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.

  6. Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers?

    PubMed

    Joshi, Elizabeth M; Need, Anne; Schaus, John; Chen, Zhaogen; Benesh, Dana; Mitch, Charles; Morton, Stuart; Raub, Thomas J; Phebus, Lee; Barth, Vanessa

    2014-12-17

    Positron emission tomography (PET) imaging has become a useful noninvasive technique to explore molecular biology within living systems; however, the utility of this method is limited by the availability of suitable radiotracers to probe specific targets and disease biology. Methods to identify potential areas of improvement in the ability to predict small molecule performance as tracers prior to radiolabeling would speed the discovery of novel tracers. In this retrospective analysis, we characterized the brain penetration or peak SUV (standardized uptake value), binding potential (BP), and brain exposure kinetics across a series of known, nonradiolabeled PET ligands using in vivo LC-MS/MS (liquid chromatography coupled to mass spectrometry) and correlated these parameters with the reported PET ligand performance in nonhuman primates and humans available in the literature. The PET tracers studied included those reported to label G protein-coupled receptors (GPCRs), intracellular enzymes, and transporters. Additionally, data for each tracer was obtained from a mouse brain uptake assay (MBUA), previously published, where blood-brain barrier (BBB) penetration and clearance parameters were assessed and compared against similar data collected on a broad compound set of central nervous system (CNS) therapeutic compounds. The BP and SUV identified via nonradiolabeled LC-MS/MS, while different from the published values observed in the literature PET tracer data, allowed for an identification of initial criteria values we sought to facilitate increased potential for success from our early discovery screening paradigm. Our analysis showed that successful, as well as novel, clinical PET tracers exhibited BP of greater than 1.5 and peak SUVs greater than approximately 150% at 5 min post dose in rodents. The brain kinetics appeared similar between both techniques despite differences in tracer dose, suggesting linearity across these dose ranges. The assessment of tracers in a

  7. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA.

    PubMed

    de Souza, Tiago Antonio; Soprano, Adriana Santos; de Lira, Nayara Patricia Vieira; Quaresma, Alexandre José Christino; Pauletti, Bianca Alves; Paes Leme, Adriana Franco; Benedetti, Celso Eduardo

    2012-01-01

    Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.

  8. Connection between energy relations of solids and molecules

    NASA Technical Reports Server (NTRS)

    Smith, John R.; Schlosser, Herbert; Leaf, William; Ferrante, John; Rose, James H.

    1989-01-01

    The universal energy relation, discovered for metallic and covalent solids as well as nuclear matter, is tested for diatomic molecules. It is found that it applies well to covalent diatomic bonds, but that ionic diatomic bonds are in a distinct class. A simple extension of the universal binding energy relation that includes the effects of ionicity ensues. It yields accurate prediction of spectroscopic data for both ionic and covalent bonds in 150 molecules. The form of the covalent part is given by the universal relation, suggesting an intimate relationship between the energetics of solids and diatomic molecules.

  9. Light, Including Ultraviolet

    PubMed Central

    Maverakis, Emanual; Miyamura, Yoshinori; Bowen, Michael P.; Correa, Genevieve; Ono, Yoko; Goodarzi, Heidi

    2009-01-01

    Ultraviolet (UV) light is intricately linked to the functional status of the cutaneous immune system. In susceptible individuals, UV radiation can ignite pathogenic inflammatory pathways leading to allergy or autoimmunity. In others, this same UV radiation can be used as a phototherapy to suppress pathogenic cutaneous immune responses. These vastly different properties are a direct result of UV light’s ability to ionize molecules in the skin and thereby chemically alter them. Sometimes these UV-induced chemical reactions are essential, the formation of pre-vitamin D3 from 7-dehydrocholesterol, for example. In other instances they can be potentially detrimental. UV radiation can ionize a cell’s DNA causing adjacent pyrimidine bases to chemically bond to each other. To prevent malignant transformation, a cell may respond to this UV-induced DNA damage by undergoing apoptosis. Although this pathway prevents skin cancer it also has the potential of inducing or exacerbating autoreactive immune responses by exposing the cell’s nuclear antigens. Ultaviolet-induced chemical reactions can activate the immune system by a variety of other mechanisms as well. In response to UV irradiation keratinocytes secrete cytokines and chemokines, which activate and recruit leukocytes to the skin. In some individuals UV-induced chemical reactions can synthesize novel antigens resulting in a photoallergy. Alternatively, photosensitizing molecules can damage cells by initiating sunburn-like phototoxic reactions. Herein we review all types of UV-induced skin reactions, especially those involving the immune system. PMID:20018479

  10. Applications of nuclear physics.

    PubMed

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  11. Applications of nuclear physics

    DOE PAGES

    Hayes-Sterbenz, Anna Catherine

    2017-01-10

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  12. Applications of nuclear physics

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  13. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  14. Dissociative electron attachment to the H2O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model

    NASA Astrophysics Data System (ADS)

    Haxton, Daniel J.; Rescigno, T. N.; McCurdy, C. W.

    2007-01-01

    We report the results of a first-principles study of dissociative electron attachment to H2O . The cross sections were obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multiconfiguration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential-energy surfaces for the three ( B12 , A12 , and B22 ) electronic Feshbach resonances involved in this process. These three metastable states of H2O- undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the B12 and A12 states as well as the conical intersection between the A12 and B22 states into our treatment. The nuclear dynamics are inherently multidimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.

  15. Solvatochromic shifts of polar and non-polar molecules in ambient and supercritical water: a sequential quantum mechanics/molecular mechanics study including solute-solvent electron exchange-correlation.

    PubMed

    Ma, Haibo; Ma, Yingjin

    2012-12-07

    Polar and non-polar solutes (acetone and benzene) dissolved in ambient water and supercritical water are investigated theoretically using a sequential quantum mechanics (QM)/molecular mechanics (MM) method which combines classical molecular dynamics simulations and QM/MM calculations. From the detailed analysis of the dependence of the QM region size and point charge background region size as well as the different functionals, it is found that the inclusion of the solvent molecules within the first solvation shell into the QM region to account for the exchange-correlation between a solute and neighboring solvent molecules is important for the highly accurate spectral shift calculations, especially vital for the non-polar solutes whose interactions with the solvents are dominated by the quantum dispersions. At the same time, sufficiently large surrounding partial charge region (r(cutoff) ≥15 Å) as well as the functional corrections to describe the long-range dispersion-corrections are also essential for the study of the electronic excited states in condensed phase. Our calculated solvatochromic shift values and their density dependencies at ambient and high temperature conditions are found to be in good agreements with experimental observations. This indicates that sound theoretical studies of solvatochromic shift can be achieved provided that a reasonable computational scheme with sufficiently large N(water) (QM) and r(cutoff) values is implemented. We also find both of aqueous acetone and aqueous benzene under high temperatures present three distinctive regions: low-density gas-like region, supercritical region, and high-density liquid-like region. The plateau behavior of solvatochromic shift in the supercritical region can be ascribed to the solvent clustering around the solute, which is a fundamental phenomenon of supercritical fluids (SCFs). The density dependence of our calculated coordination number of the first solvation shell nicely reproduces the trend

  16. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  17. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  18. Polarization of deuterium molecules

    SciTech Connect

    J. F. J. van den Brand; H. J. Bulten; M. Ferro-Luzzi; Z.-L. Zhou; Ricardo Alarcon; T. Botto; M. Bouwhuis; Rolf Ent; Peter Heimberg; Douglas W. Higinbotham; Kees de Jager; J. Lang; D. J. de Lange; I. Passchier; H. R. Poolman; J. J. M. Steijger; O. Unal; H. de Vries

    1997-08-01

    For molecular systems, spin relaxation is expected to be suppressed compared to the case of atoms, since the paired electrons in a hydrogen or deuterium molecule are chemically stable, and only weakly interact with the spin of the nucleus. Such systems would be largely insensitive to polarization losses due to spin-exchange collisions, to the interaction of the electron spins with external fields (e.g. the RF-field of a bunched charged-particle beam), and/or to the presence of container walls. Here, we discuss the results of a recent experiment where we obtained evidence that nuclear polarization is maintained, when polarized atoms recombine to molecules on a copper surface (in a magnetic field of 23 mT and at a density of about 10{sup 12} molecules {center_dot} cm{sup -3}).

  19. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  20. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  1. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  2. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  3. Nuclear war: Opposing viewpoints

    SciTech Connect

    Szumski, B.

    1985-01-01

    This book presents opposing viewpoints on nuclear war. Topics discussed include: how nuclear would begin; would humanity survive; would civil defense work; will an arms agreement work; and can space weapons reduce the risk of nuclear war.

  4. Single-Molecule Tracking in Living Cells Using Single Quantum Dot Applications

    PubMed Central

    Baba, Koichi; Nishida, Kohji

    2012-01-01

    Revealing the behavior of single molecules in living cells is very useful for understanding cellular events. Quantum dot probes are particularly promising tools for revealing how biological events occur at the single molecule level both in vitro and in vivo. In this review, we will introduce how single quantum dot applications are used for single molecule tracking. We will discuss how single quantum dot tracking has been used in several examples of complex biological processes, including membrane dynamics, neuronal function, selective transport mechanisms of the nuclear pore complex, and in vivo real-time observation. We also briefly discuss the prospects for single molecule tracking using advanced probes. PMID:22896768

  5. Di- and octa-nuclear dysprosium clusters derived from pyridyl-triazole based ligand: {Dy2} showing single molecule magnetic behaviour.

    PubMed

    Akhtar, Muhammad Nadeem; Liao, Xiao-Fen; Chen, Yan-Cong; Liu, Jun-Liang; Tong, Ming-Liang

    2017-02-28

    Two dysprosium aggregates, formulated as [Dy2(μ-OH)2(H2bpte)2Cl2(MeOH)2]Cl2 (1), and [Dy8(μ-OH)8(bpte)8]·24H2O (2) (H2bpte = 1,2-bis(3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl)ethane), were obtained using solvothermal reactions. Upon changing the metal salt and synthetic reaction conditions, an eight-member {Dy8} (2) ring was isolated. Complex 1 is centrosymmetric in which two {Dy2} clusters are connecting to each other through the hydrogen bonding. Complex 2 forms an eight-member Dy(III) ring with an inner diameter of 4.5 Å and is the first reported {Dy8(μ-OH)8} core in lanthanide-hydroxo clusters. The H2bpte ligand displays trans,trans- and cis,cis-coordination modes in 1 and 2, respectively. Alternating current (ac) magnetic measurements of both complexes were carried out. In 1, the out-of-phase susceptibilities (χ''M) below 9 K confirm the slow relaxation of magnetization, which is a typical characteristic of single-molecule magnets (SMMs).

  6. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  7. Direct laser cooling of the BH molecule

    NASA Astrophysics Data System (ADS)

    Holland, Darren; Truppe, Stefan; Hendricks, Richard; Sauer, Ben; Tarbutt, Michael

    2015-03-01

    Ultracold polar molecules are of interest for a variety of applications, including tests of fundamental physics, ultracold chemistry, and simulation of many-body quantum systems. The laser cooling techniques that have been so successful in producing ultracold atoms are difficult to apply to molecules. Recently however, laser cooling has been applied successfully to a few molecular species, and a magneto-optical trap of SrF molecules has now been demonstrated. We have investigated the BH molecule as a candidate for laser cooling. We have produced a molecular beam of BH and have measured the branching ratios for the excited electronic state, A1 Π (v' = 0) , to decay to the various vibrational states of the ground electronic state, X1 Σ . We verify that the branching ratio for the spin-forbidden transition to an intermediate triplet state is inconsequentially small. We measure the frequency of the lowest rotational transition of the X state, and the hyperfine structure in the relevant levels of both the X and A states, and determine the nuclear electric quadrupole and magnetic dipole coupling constants. Our results show that a relatively simple laser cooling scheme can be used to cool, slow and trap BH molecules.

  8. The Orthologue of Sjögren's Syndrome Nuclear Autoantigen 1 (SSNA1) in Trypanosoma brucei Is an Immunogenic Self-Assembling Molecule

    PubMed Central

    Price, Helen P.; Hodgkinson, Michael R.; Curwen, Rachel S.; MacLean, Lorna M.; Brannigan, James A.; Carrington, Mark; Smith, Barbara A.; Ashford, David A.; Stark, Meg; Smith, Deborah F.

    2012-01-01

    Primary Sjögren's Syndrome (PSS) is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14) is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13) and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle. PMID:22363749

  9. Relativistic Double Group Spinor Representations of Non-rigid Molecules

    SciTech Connect

    Balasubramanian, K

    2003-12-22

    The character theory of relativistic double group spinor representations is developed in order to represent the total rovibronic states of non-rigid molecules. It is shown that the double groups can be represented in terms of wreath products and powerful matrix cycle type generators that are used to construct their character tables. It is shown that these tables are of use when spin-orbit coupling is included in the hamiltonian even for molecules containing lighter atoms. Applications to non-rigid molecules such as Tl{sub 2}H{sub 4} /Tl{sub 2}H{sub 4}{sup +} are considered. It is shown that the tunneling splittings and the nuclear spin statistical weights can be obtained for such species using the character tables thus constructed. The spinor double groups of several other molecules such as hexamethyl dilead and heavy weakly bound clusters such as (PoH{sub 2}){sub 4} are also considered.

  10. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.

    PubMed

    Matta, Chérif F; Bader, Richard F W

    2003-08-15

    This article presents a study of the molecular charge distributions of the genetically encoded amino acids (AA), one that builds on the previous determination of their equilibrium geometries and the demonstrated transferability of their common geometrical parameters. The properties of the charge distributions are characterized and given quantitative expression in terms of the bond and atomic properties determined within the quantum theory of atoms-in-molecules (QTAIM) that defines atoms and bonds in terms of the observable charge density. The properties so defined are demonstrated to be remarkably transferable, a reflection of the underlying transferability of the charge distributions of the main chain and other groups common to the AA. The use of the atomic properties in obtaining an understanding of the biological functions of the AA, whether free or bound in a polypeptide, is demonstrated by the excellent statistical correlations they yield with experimental physicochemical properties. A property of the AA side chains of particular importance is the charge separation index (CSI), a quantity previously defined as the sum of the magnitudes of the atomic charges and which measures the degree of separation of positive and negative charges in the side chain of interest. The CSI values provide a correlation with the measured free energies of transfer of capped side chain analogues, from the vapor phase to aqueous solution, yielding a linear regression equation with r2 = 0.94. The atomic volume is defined by the van der Waals isodensity surface and it, together with the CSI, which accounts for the electrostriction of the solvent, yield a linear regression (r2 = 0.98) with the measured partial molar volumes of the AAs. The changes in free energies of transfer from octanol to water upon interchanging 153 pairs of AAs and from cyclohexane to water upon interchanging 190 pairs of AAs, were modeled using only three calculated parameters (representing electrostatic and

  11. Intelligent distributed control for nuclear power plants. Final (third annual) technical progress report, September 1991--June 1993 (September 1989--June 1993): Includes no-cost extension period from September 1992--June 1993

    SciTech Connect

    Klevans, E.H.

    1993-12-31

    This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 steam plant. Described in this Final (Third Annual) Technical Progress Report is the accomplishment of the project`s final milestone, an in-plant intelligent control experiment conducted on April 1, 1993. The development of the experiment included: simulation validation, experiment formulation and final programming, procedure development and approval, and experimental results. Other third year developments summarized in this report are: (1) a theoretical foundation for Reconfigurable Hybrid Supervisory Control, (2) a steam plant diagnostic system, (3) control console design tools and (4) other advanced and intelligent control.

  12. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  13. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  14. Nuclear Speckles

    PubMed Central

    Spector, David L.; Lamond, Angus I.

    2011-01-01

    Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20–50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. Studies on the composition, structure, and dynamics of speckles have provided an important paradigm for understanding the functional organization of the nucleus and the dynamics of the gene expression machinery. PMID:20926517

  15. Nuclear accidents

    SciTech Connect

    Mobley, J.A.

    1982-05-01

    A nuclear accident with radioactive contamination can happen anywhere in the world. Because expert nuclear emergency teams may take several hours to arrive at the scene, local authorities must have a plan of action for the hours immediately following an accident. The site should be left untouched except to remove casualties. Treatment of victims includes decontamination and meticulous wound debridement. Acute radiation syndrome may be an overwhelming sequela.

  16. The New Nuclear Nations.

    ERIC Educational Resources Information Center

    Spector, Leonard S.

    1990-01-01

    Explores the issue of nuclear proliferation, noting that the countries with nuclear capability now include Israel, South Africa, India, and Pakistan. Describes the role and problems of the United States in halting nuclearization. Supplies charts, maps, and information concerning the state of nuclear capability in each country. (NL)

  17. Strategies on the nuclear-targeted delivery of genes

    PubMed Central

    Yao, Jing; Fan, Ying; Li, Yuanke; Huang, Leaf

    2016-01-01

    To improve the nuclear-targeted delivery of non-viral vectors, extensive effort has been carried out on the development of smart vectors which could overcome multiple barriers. The nuclear envelope presents a major barrier to transgene delivery. Viruses are capable of crossing the nuclear envelope to efficiently deliver their genome into the nucleus through the specialized protein components. However, non-viral vectors are preferred over viral ones because of the safety concerns associated with the latter. Non-viral delivery systems have been designed to include various types of components to enable nuclear translocation at the periphery of the nucleus. This review summarizes the progress of research regarding nuclear transport mechanisms. “Smart” non-viral vectors that have been modified by peptides and other small molecules are able to facilitate the nuclear translocation and enhance the efficacy of gene expression. The resulting technology may also enhance delivery of other macromolecules to the nucleus. PMID:23964565

  18. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  19. Irving Langmuir Prize in Chemical Physics Lecture: The Inner Machinery of Single Molecules: resolving the unresolved with the STM

    NASA Astrophysics Data System (ADS)

    Ho, Wilson

    2013-03-01

    The scanning tunneling microscope (STM) is a unique instrument that can probe and induce changes in a molecule with atomic scale resolution. Its operation is based on the current that flows between the tip and the substrate with the molecule sandwiched in between. Therefore, the STM can be used to understand the coupling of electrons to the different states and excitations in the molecule and to investigate the influence on them by its environment. From the spatial and energy dependences of the coupling to the charge, spin, and nuclear motions in the molecule, verification of and new insights into the quantum mechanical properties of molecules can be obtained, including the discovery of new conduction and energy transfer mechanisms. This understanding of electron-molecule interactions with the STM enables rational ways to control chemistry and the exploration of novel physical technologies based on molecules.

  20. Nuclear Power in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yun

    2012-02-01

    In response to the Fukushima accident, China is strengthening its nuclear safety at reactors in operation, under construction and in preparation, including efforts to improve nuclear safety regulations and guidelines based on lessons learned from the accident. Although China is one of the major contributors in the global nuclear expansion, China's nuclear power industry is relatively young. Its nuclear safety regulators are less experienced compared to those in other major nuclear power countries. To realize China's resolute commitment to rapid growth of safe nuclear energy, detailed analyses of its nuclear safety regulatory system are required. This talk explains China's nuclear energy program and policy at first. It also explores China's governmental activities and future nuclear development after Fukushima accidents. At last, an overview of China's nuclear safety regulations and practices are provided. Issues and challenges are also identified for police makers, regulators, and industry professionals.

  1. Thermodynamics of nuclear transport

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    Molecular transport across the nuclear envelope is important for eukaryotes for gene expression and signaling. Experimental studies have revealed that nuclear transport is inherently a nonequilibrium process and actively consumes energy. In this work we present a thermodynamics theory of nuclear transport for a major class of nuclear transporters that are mediated by the small GTPase Ran. We identify the molecular elements responsible for powering nuclear transport, which we term the ``Ran battery'' and find that the efficiency of transport, measured by the cargo nuclear localization ratio, is limited by competition between cargo molecules and RanGTP to bind transport receptors, as well as the amount of NTF2 (i.e. RanGDP carrier) available to circulate the energy flow. This picture complements our current understanding of nuclear transport by providing a comprehensive thermodynamics framework to decipher the underlying biochemical machinery. Pm and CHW were supported by a Simons Investigator in the Mathematical Modeling in Living Systems grant (to PM).

  2. Mechanistic Control of Carcinoembryonic Antigen-related Cell Adhesion Molecule-1 (CEACAM1) Splice Isoforms by the Heterogeneous Nuclear Ribonuclear Proteins hnRNP L, hnRNP A1, and hnRNP M*

    PubMed Central

    Dery, Kenneth J.; Gaur, Shikha; Gencheva, Marieta; Yen, Yun; Shively, John E.; Gaur, Rajesh K.

    2011-01-01

    Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is expressed in a variety of cell types and is implicated in carcinogenesis. Alternative splicing of CEACAM1 pre-mRNA generates two cytoplasmic domain splice variants characterized by the inclusion (L-isoform) or exclusion (S-isoform) of exon 7. Here we show that the alternative splicing of CEACAM1 pre-mRNA is regulated by novel cis elements residing in exon 7. We report the presence of three exon regulatory elements that lead to the inclusion or exclusion of exon 7 CEACAM1 mRNA in ZR75 breast cancer cells. Heterologous splicing reporter assays demonstrated that the maintenance of authentic alternative splicing mechanisms were independent of the CEACAM1 intron sequence context. We show that forced expression of these exon regulatory elements could alter CEACAM1 splicing in HEK-293 cells. Using RNA affinity chromatography, three members of the heterogeneous nuclear ribonucleoprotein family (hnRNP L, hnRNP A1, and hnRNP M) were identified. RNA immunoprecipitation of hnRNP L and hnRNP A1 revealed a binding motif located central and 3′ to exon 7, respectively. Depletion of hnRNP A1 or L by RNAi in HEK-293 cells promoted exon 7 inclusion, whereas overexpression led to exclusion of the variable exon. By contrast, overexpression of hnRNP M showed exon 7 inclusion and production of CEACAM1-L mRNA. Finally, stress-induced cytoplasmic accumulation of hnRNP A1 in MDA-MB-468 cells dynamically alters the CEACAM1-S:CEACAM1:L ratio in favor of the l-isoform. Thus, we have elucidated the molecular factors that control the mechanism of splice-site recognition in the alternative splicing regulation of CEACAM1. PMID:21398516

  3. The nuclear freeze controversy

    SciTech Connect

    Payne, K.B.; Gray, C.S.

    1984-01-01

    This book presents papers on nuclear arms control. Topics considered include the background and rationale behind the nuclear freeze proposal, nuclear deterrence, national defense, arms races, arms buildup, warfare, the moral aspects of nuclear deterrence, treaty verification, the federal budget, the economy, a historical perspective on Soviet policy toward the freeze, the other side of the Soviet peace offensive, and making sense of the nuclear freeze debate.

  4. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  5. Differential cross sections for muonic atom scattering from hydrogenic molecules

    SciTech Connect

    Adamczak, Andrzej

    2006-10-15

    The differential cross sections for low-energy muonic hydrogen atom scattering from hydrogenic molecules are directly expressed by the corresponding amplitudes for muonic atom scattering from hydrogen-isotope nuclei. The energy and angular dependence of these three-body amplitudes is thus taken naturally into account in scattering from molecules, without involving any pseudopotentials. Effects of the internal motion of nuclei inside the target molecules are included for every initial rotational-vibrational state. These effects are very significant as the considered three-body amplitudes often vary strongly within the energy interval < or approx. 0.1 eV. The differential cross sections, calculated using the presented method, have been successfully used for planning and interpreting many experiments in low-energy muon physics. Studies of {mu}{sup -} nuclear capture in p{mu} and the measurement of the Lamb shift in p{mu} atoms created in H{sub 2} gaseous targets are recent examples.

  6. Mind Molecules

    PubMed Central

    Snyder, Solomon H.

    2011-01-01

    Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius “Julie” Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the “high” that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes. PMID:21543333

  7. Positronium ions and molecules

    NASA Technical Reports Server (NTRS)

    Ho, Y. K.

    1990-01-01

    Recent theoretical studies on positronium ions and molecules are discussed. A positronium ion is a three particle system consisting of two electrons in singlet spin state, and a positron. Recent studies include calculations of its binding energy, positron annihilation rate, and investigations of its doubly excited resonant states. A positronium molecule is a four body system consisting of two positrons and two electrons in an overall singlet spin state. The recent calculations of its binding energy against the dissociation into two positronium atoms, and studies of auto-detaching states in positronium molecules are discussed. These auto-dissociating states, which are believed to be part of the Rydberg series as a result of a positron attaching to a negatively charged positronium ion, Ps-, would appear as resonances in Ps-Ps scattering.

  8. Effects of Nuclear Weapons.

    ERIC Educational Resources Information Center

    Sartori, Leo

    1983-01-01

    Fundamental principles governing nuclear explosions and their effects are discussed, including three components of a nuclear explosion (thermal radiation, shock wave, nuclear radiation). Describes how effects of these components depend on the weapon's yield, its height of burst, and distance of detonation point. Includes effects of three…

  9. Vibrational autoionization in polyatomic molecules.

    PubMed

    Pratt, S T

    2005-01-01

    The vibrationally autoionizing Rydberg states of small polyatomic molecules provide a fascinating laboratory in which to study fundamental nonadiabatic processes. In this review, recent results on the vibrational mode dependence of vibrational autoionization are discussed. In general, autoionization rates depend strongly on the character of the normal mode driving the process and on the electronic character of the Rydberg electron. Although quantitative calculations based on multichannel quantum defect theory are available for some polyatomic molecules, including H3, only qualitative information exists for most molecules. This review shows how qualitative information, such as Walsh diagrams along different normal coordinates of the molecule, can provide insight into the vibrational autoionization rates.

  10. Mn8 and Mn16 clusters from the use of 2-(hydroxymethyl)pyridine, and comparison with the products from bulkier chelates: a new high nuclearity single-molecule magnet.

    PubMed

    Taguchi, Taketo; Wernsdorfer, Wolfgang; Abboud, Khalil A; Christou, George

    2010-11-15

    The synthesis, crystal structures, and magnetochemical characterization of two new Mn clusters [Mn(8)O(2)(O(2)CPh)(10)(hmp)(4)(MeOH)(2)] (1; 6Mn(II), 2Mn(III)) and [Mn(16)O(8)(OH)(2)(O(2)CPh)(12)(hmp)(10)(H(2)O)(2)](O(2)CPh)(2) (2; 6Mn(II), 10Mn(III)) are reported. They were obtained from the use of 2-(hydroxymethyl)pyridine (hmpH) under the same reaction conditions but differing in the presence or absence of added base. Thus, the reaction of hmpH with Mn(O(2)CPh)(2) in CH(2)Cl(2)/MeOH led to isolation of octanuclear complex 1, whereas the analogous reaction in the presence of NEt(3) gave hexadecanuclear complex 2. Complexes 1 and 2 possess either very rare or unprecedented core structures that are related to each other: that of 1 can be described as a linked pair of incomplete [Mn(4)O(3)] cubanes, while that of 2 consists of a linked pair of complete [Mn(4)O(4)] cubanes, on either side of which is attached a tetrahedral [Mn(4)(μ(4)-O)] unit. Solid-state direct current (dc) and alternating current (ac) magnetic susceptibility measurements on 1 and 2 establish that they possess S = 5 and 8 ground states, respectively. Complex 2 exhibits frequency-dependent out-of-phase (χ(M)") ac susceptibility signals at temperatures below 3 K suggestive of a single-molecule magnet (SMM). Magnetization versus applied dc field sweeps on single crystals of 2·10MeOH down to 0.04 K exhibited hysteresis, confirming 2 to be a new SMM. Comparison of the structure of 2 (Mn(16)) with Mn(12) or Mn(6) clusters previously obtained under the same reaction conditions but with two Me or two Ph groups, respectively, added next to the alkoxide O atom of hmp(-) indicate their influence on the nuclearity and structure of the products as being due to the overall bulk of the chelate plus the decreased ability of the O atom to bridge.

  11. Nuclear pursuits

    SciTech Connect

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  12. Behavior of atypical amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Ko, John

    1997-08-01

    The physical behavior of several atypical amphiphilic molecules was studied in various environments including micelles, model bilayer membranes, and emulsions. The molecules under investigation were nor-chenodeoxycholic acid (nor-CDCA), ursodeoxycholic acid (UDCA), sphingosine (Sp), sphingosine hydrochloride (SpċHCl), and tetrahydrolipstatin (THL). The bile acids, nor-CDCA and UDCA, were studied using 13C-Nuclear Magnetic Resonance ([13C) -NMR) in micelles of taurocholate and in bilayers of phosphatidylcholine. The pK a values of the bile acids in each environment were determined by [13C) -NMR and are as follows: 6.08 ±.03 for nor-CDCA and 6.27 ±.01 for UDCA in micelles, and 7.04 ± 12 for nor-CDCA and 6.89 ±.05 for UDCA in vesicles. Using line shape analysis, the transbilayer movement rate at 36oC for nor-CDCA and UDCA was calculated to be 580 sec--1 and 409 sec-1, respectively. [13C) -NMR titration of Sp gave pK a values of 9.09 ±.02 in micelles and 9.69 ±.21 in bilayers. Differential scanning calorimetry (DSC) and X-ray diffraction were used to establish the Spċwater and SpċHClċwater phase diagrams. Anhydrous and hydrated samples ranging from 5- 90% water were analyzed. The DSC thermograms traced out the transition temperatures of each molecule while the X- ray diffraction patterns revealed their chain and crystalline lattice packing structures. In general, sphingosine exists as a hydrated crystal with β packing phase below 43oC and melts into an Lα phase. Sphingosine hydrochloride, however, exists as a gel phase (L_beta or /beta/sp') below 42oC that swells to 61% hydration. At low water concentrations (0-64%), a lamellar liquid crystal phase (L_alpha) is formed above the chain melting transition of 42oC. At medium concentration (65%), a Hexagonal I phase is present, and at high water concentrations (66-90%), a micellar phase is present. THL, a specific inhibitor of lipases, was analyzed with [ 13C) -NMR to study its behavior in various environments

  13. JPRS report: Nuclear developments, [October 6, 1989

    SciTech Connect

    1989-10-06

    Partial contents of this report include: Nuclear Weapons; Nuclear Development; Nuclear Power Plant; Uranium; Missiles; Space Firm Protested; Satellite; Rocket Launching; Nuclear Submarine; Environmental; Radioactivity; Radiation Accident; and Tritium Sparks.

  14. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  15. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  16. Revitalizing Nuclear Safety Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    This report covers the general issues involved in nuclear safety research and points out the areas needing detailed consideration. Topics included are: (1) "Principles of Nuclear Safety Research" (examining who should fund, who should conduct, and who should set the agenda for nuclear safety research); (2) "Elements of a Future…

  17. Crown ether alcohols. 1. Crystal and molecular structure of the complex between sym-hydroxydibenzo-14-crown-4- and water molecules ((C sub 18 H sub 20 O sub 5 )ter dot 1. 25(H sub 2 O)ter dot 0. 125(CH sub 3 OH)) including interesting water-methanol channels

    SciTech Connect

    Olsher, U.; Frolow, F.; Bartsch, R.A.; Pugia, M.J.; Shoham, G. Texas Tech Univ., Lubbock Hebrew Univ. of Jerusalem )

    1989-12-20

    The synthesis and crystal structure of the title compound are described. Single-crystal x-ray structure analysis indicates 8 formula units in the unit cell of parameters a = 16.024 (1) {angstrom} and c = 13.076 (1) {angstrom}. The space group is I{bar 4}. Direct methods yielded the structure, which was refined by least-squares techniques to a final R factor of 0.038 for 1533 independent observations. Unusual water-methanol channels are found in this structure. The crystal packing of the complex includes hydrophilic water-methanol channels which are surrounded by hydrophobic cylinders consisting mainly of benzo rings and methylene groups. The crystal structure provides a model for the encapsulation of water molecules by hydrophobic regions with potential application for the formation of hydrophilic pores in biological bilayers.

  18. Biophysical characterization of DNA binding from single molecule force measurements

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-09-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.

  19. Biophysical characterization of DNA binding from single molecule force measurements

    PubMed Central

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-01-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function. PMID:20576476

  20. Nuclear rights - nuclear wrongs

    SciTech Connect

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  1. Teaching Activities on Horizontal Nuclear Proliferation.

    ERIC Educational Resources Information Center

    Zola, John

    1990-01-01

    Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)

  2. Resonances in Positron-molecule Interactions

    NASA Astrophysics Data System (ADS)

    Surko, C. M.

    2006-05-01

    The development of cold, trap-based beams has enabled high-resolution, energy-resolved studies of positron scattering and annihilation processes [1]. This talk focuses on three topics in this area. For hydrocarbon molecules such as alkanes (CnH2n+2), giant enhancements in annihilation rates are observed due to vibrational Feshbach resonances. The dependence of the rates on positron energy provides evidence that positrons bind to these molecules and a measure of the binding energies [1]. Recent results include evidence for a second, ``positronically excited'' bound state and new data for the methane series, CH3X, where X is a halogen. Other ``resonance-like features'' are sharp increases in the near-threshold electronic excitation cross sections for CO and N2 [2], and in the vibrational excitation cross sections for CO, CO2 and CH4 [3, 4]. Outstanding questions and the relationship of these observations to available theoretical predictions will be discussed.1. C. M. Surko, G. F. Gribakin, and S. J. Buckman, J. Phys. B 38, R57 (2005).2. J. P. Marler and C. M. Surko, Phys. Rev. A 72, 062713 (2005).3. J. P. Marler and C. M. Surko, Phys. Rev. A 72, 062702 (2005).4. J. P. Marler, G. F. Gribakin and C. M. Surko, Nuclear Instrum. and Meth. B, in press (2006).

  3. Britain`s nuclear quandary

    SciTech Connect

    1994-07-01

    This article is review of energy policy in the United Kingdom, in particular, the British government`s review of the nuclear industry. Major topics of this review include: (1) The economic viability of new nuclear stations, (2) The privitization of the nuclear industry, (3) Nuclear waste disposal, and (4) Liabilities associated with decommissioning.

  4. Physics of Molecules

    NASA Astrophysics Data System (ADS)

    Williams, D.; Murdin, P.

    2000-11-01

    Many varieties of molecule have been detected in the Milky Way and in other galaxies. The processes by which these molecules are formed and destroyed are now broadly understood (see INTERSTELLAR CHEMISTRY). These molecules are important components of galaxies in two ways. Firstly, radiation emitted by molecules enables us to trace the presence of diffuse gas, to infer its physical properties and ...

  5. Single Molecule Electronics and Devices

    PubMed Central

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  6. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  7. Uranium-mediated activation of small molecules.

    PubMed

    Arnold, Polly L

    2011-08-28

    Molecular complexes of uranium are capable of activating a range of industrially and economically important small molecules such as CO, CO(2), and N(2); new and often unexpected reactions provide insight into an element that needs to be well-understood if future clean-energy solutions are to involve nuclear power.

  8. Nuclear pore complexes and regulation of gene expression.

    PubMed

    Raices, Marcela; D'Angelo, Maximiliano A

    2017-01-11

    Nuclear pore complexes (NPCs), are large multiprotein channels that penetrate the nuclear envelope connecting the nucleus to the cytoplasm. Accumulating evidence shows that besides their main role in regulating the exchange of molecules between these two compartments, NPCs and their components also play important transport-independent roles, including gene expression regulation, chromatin organization, DNA repair, RNA processing and quality control, and cell cycle control. Here, we will describe the recent findings about the role of these structures in the regulation of gene expression.

  9. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  10. Watching single molecules dance

    NASA Astrophysics Data System (ADS)

    Mehta, Amit Dinesh

    Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less

  11. High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines.

    PubMed

    Ketley, Ami; Chen, Catherine Z; Li, Xin; Arya, Sukrat; Robinson, Thelma E; Granados-Riveron, Javier; Udosen, Inyang; Morris, Glenn E; Holt, Ian; Furling, Denis; Chaouch, Soraya; Haworth, Ben; Southall, Noel; Shinn, Paul; Zheng, Wei; Austin, Christopher P; Hayes, Christopher J; Brook, J David

    2014-03-15

    Myotonic dystrophy (DM) is a multi-system neuromuscular disorder for which there is no treatment. We have developed a medium throughput phenotypic assay, based on the identification of nuclear foci in DM patient cell lines using in situ hybridization and high-content imaging to screen for potentially useful therapeutic compounds. A series of further assays based on molecular features of DM have also been employed. Two compounds that reduce and/or remove nuclear foci have been identified, Ro 31-8220 and chromomycin A3. Ro 31-8220 is a PKC inhibitor, previously shown to affect the hyperphosphorylation of CELF1 and ameliorate the cardiac phenotype in a DM1 mouse model. We show that the same compound eliminates nuclear foci, reduces MBNL1 protein in the nucleus, affects ATP2A1 alternative splicing and reduces steady-state levels of CELF1 protein. We demonstrate that this effect is independent of PKC activity and conclude that this compound may be acting on alternative kinase targets within DM pathophysiology. Understanding the activity profile for this compound is key for the development of targeted therapeutics in the treatment of DM.

  12. History of Nuclear India

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ram

    2000-04-01

    India emerged as a free and democratic country in 1947, and entered into the nuclear age in 1948 by establishing the Atomic Energy Commission (AEC), with Homi Bhabha as the chairman. Later on the Department of Atomic Energy (DAE) was created under the Office of the Prime Minister Jawahar Lal Nehru. Initially the AEC and DAE received international cooperation, and by 1963 India had two research reactors and four nuclear power reactors. In spite of the humiliating defeat in the border war by China in 1962 and China's nuclear testing in 1964, India continued to adhere to the peaceful uses of nuclear energy. On May 18, 1974 India performed a 15 kt Peaceful Nuclear Explosion (PNE). The western powers considered it nuclear weapons proliferation and cut off all financial and technical help, even for the production of nuclear power. However, India used existing infrastructure to build nuclear power reactors and exploded both fission and fusion devices on May 11 and 13, 1998. The international community viewed the later activity as a serious road block for the Non-Proliferation Treaty and the Comprehensive Test Ban Treaty; both deemed essential to stop the spread of nuclear weapons. India considers these treaties favoring nuclear states and is prepared to sign if genuine nuclear disarmament is included as an integral part of these treaties.

  13. Nuclear imaging in pediatrics

    SciTech Connect

    Siddiqui, A.R.

    1985-01-01

    The author's intent is to familiarize practicing radiologists with the technical aspects and interpretation of nuclear medicine procedures in children and to illustrate the indications for nuclear medicine procedures in pediatric problems. Pediatric doses, dosimetry, sedation, and injection techniques, organ systems, oncology and infection, testicular scanning and nuclear crystography, pediatric endocrine and skeletal systems, ventilation and perfusion imaging of both congenital and acquired pediatric disorders, cardiovascular problems, gastrointestinal, hepatobiliary, reticuloendothelial studies, and central nervous system are all topics which are included and discussed.

  14. Report Card on Nuclear Power

    ERIC Educational Resources Information Center

    Novick, Sheldon

    1974-01-01

    Problems facing the nuclear power industry include skyrocketing construction costs, technical failures, fuel scarcity, power plant safety, and the disposal of nuclear wastes. Possible solutions include: reductions in nuclear power plant construction, a complete moratorium on new plant construction, the construction of fast breeder reactors and the…

  15. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  16. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small

  17. Development of novel small molecules for imaging and drug release

    NASA Astrophysics Data System (ADS)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the

  18. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    Cold and ultracold molecules are the next wave of ultracold physics, giving rise to an exciting array of scientific opportunities, including many body physics for novel quantum phase transitions, new states of matter, and quantum information processing. Precision tests of fundamental physical laws benefit from the existence of molecular internal structure with exquisite control. The study of novel collision and reaction dynamics will open a new chapter of quantum chemistry. Cold molecules bring together researchers from a variety of fields, including atomic, molecular, and optical physics, chemistry and chemical physics, quantum information science and quantum simulations, condensed matter physics, nuclear physics, and astrophysics, a truly remarkable synergy of scientific explorations. For the past decade there have been steady advances in direct cooling techniques, from buffer-gas cooling to cold molecular beams to electro- and magneto-molecular decelerators. These techniques have allowed a large variety of molecules to be cooled for pioneering studies. Recent amazing advances in experimental techniques combining the ultracold and the ultraprecise have furthermore brought molecules to the point of quantum degeneracy. These latter indirect cooling techniques magnetically associate atoms from a Bose-Einstein condensate and/or a quantum degenerate Fermi gas, transferring at 90% efficiency highly excited Fano-Feshbach molecules, which are on the order of 10 000 Bohr radii in size, to absolute ground state molecules just a few Bohr across. It was this latter advance, together with significant breakthroughs in internal state manipulations, which inspired us to coordinate this focus issue now, and is the reason why we say the next wave of ultracold physics has now arrived. Whether directly or indirectly cooled, heteronuclear polar molecules offer distinct new features in comparison to cold atoms, while sharing all of their advantages (purity, high coherence

  19. Visualization of large elongated DNA molecules.

    PubMed

    Lee, Jinyong; Kim, Yongkyun; Lee, Seonghyun; Jo, Kyubong

    2015-09-01

    Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.

  20. Molecules in the Spotlight

    SciTech Connect

    Cryan, James

    2010-01-26

    SLAC has just unveiled the world's first X-ray laser, the LCLS. This machine produces pulses of X-rays that are ten billion times brighter than those from conventional sources. One of the goals of this machine is to make movies of chemical reactions, including reactions necessary for life and reactions that might power new energy technologies. This public lecture will show the first results from the LCLS. As a first target, we have chosen nitrogen gas, the main component of the air we breathe. Using the unprecedented power of the LCLS X-rays as a blasting torch, we have created new forms of this molecule and with unique electronic arrangements. Please share with us the first insights from this new technology.

  1. NMR study of small molecule adsorption in MOF-74-Mg

    NASA Astrophysics Data System (ADS)

    Lopez, M. G.; Canepa, Pieremanuele; Thonhauser, T.

    2013-04-01

    We calculate the carbon nuclear magnetic resonance (NMR) shielding for CO2 and the hydrogen shieldings for both H2 and H2O inside the metal organic framework MOF-74-Mg. Our ab initio calculations are at the density functional theory level using the van der Waals including density functional vdW-DF. The shieldings are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. We then explore relationships between loading, rotational and positional characteristics, and the NMR shieldings for each adsorbate. Our NMR calculations show a change in the shielding depending on adsorbate, position, and loading in a range that is experimentally observable. We further provide a simple model for the energy and the NMR shieldings throughout the cavity of the MOF. By providing this mapping of shielding to position and loading for these adsorbates, we argue that NMR probes could be used to provide additional information about the position at which these small molecules bind within the MOF, as well as the loading of the adsorbed molecule.

  2. Profiling of Short RNAs Using Helicos Single-Molecule Sequencing

    PubMed Central

    Kapranov, Philipp; Ozsolak, Fatih; Milos, Patrice M.

    2012-01-01

    The importance of short (<200 nt) RNAs in cell biogenesis has been well documented. These short RNAs include crucial classes of molecules such as transfer RNAs, small nuclear RNA, microRNAs, and many others (reviewed in Storz et al., Annu Rev Biochem 74:199–217, 2005; Ghildiyal and Zamore, Nat Rev Genet 10:94–108, 2009). Furthermore, the realm of functional RNAs that fall within this size range is growing to include less well-characterized RNAs such as short RNAs found at the promoters and 3′ termini of genes (Affymetrix ENCODE Transcriptome Project et al., Nature 457:1028–1032, 2009; Davis and Ares, Proc Natl Acad Sci USA 103:3262–3267, 2006; Kapranov et al., Science 316:1484–1488, 2007; Taft et al., Nat Genet 41:572–578, 2009; Kapranov et al., Nature 466:642–646, 2010), short RNAs involved in paramutation (Rassoulzadegan et al., Nature 441:469–474, 2006), and others (reviewed in Kawaji and Hayashizaki, PLoS Genet 4:e22, 2008). Discovery and accurate quantification of these RNA molecules, less than 200 bases in size, is thus an important and also challenging aspect of understanding the full repertoire of cellular and extracellular RNAs. Here, we describe the strategies and procedures we developed to profile short RNA species using single-molecule sequencing (SMS) and the advantages SMS offers. PMID:22144202

  3. Crystal structure of 5-amino-5'-chloro-6-(4-chloro-benzo-yl)-8-nitro-2,3-di-hydro-1H-spiro-[imidazo[1,2-a]pyridine-7,3'-indolin]-2'-one including an unknown solvent mol-ecule.

    PubMed

    Nagalakshmi, R A; Suresh, J; Sivakumar, S; Kumar, R Ranjith; Lakshman, P L Nilantha

    2014-09-01

    The asymmetric unit of the title compound, C21H15Cl2N5O4, contains two independent mol-ecules (A and B) having similar conformations. The amine (NH2) group forms an intra-molecular hydrogen bond with the benzoyl group, giving an S(6) ring motif in both mol-ecules. The central six-membered rings adopt sofa conformations and the imidazole rings are planar (r.m.s deviations = 0.0150 and 0.0166 Å). The pyridine and imidazole rings are inclined to one another by 3.54 (1) and 3.03 (1)° in mol-ecules A and B, respectively. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds, forming chains along the a axis which enclose R 2 (2)(16) ring motifs. The rings are linked by weak N-H⋯O and C-H⋯O hydrogen bonds and C-H⋯π inter-actions forming sheets lying parallel to (001). A region of disordered electron density, most probably disordered solvent mol-ecules, occupying voids of ca 753 Å(3) for an electron count of 260, was treated using the SQUEEZE routine in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155]. Their formula mass and unit-cell characteristics were not taken into account during refinement.

  4. Nonconventional applications of nuclear technology to space

    SciTech Connect

    Woodall, D.M.; Dolan, T.J. )

    1991-01-01

    The application of nuclear energy to power and propulsion to support President Bush's Space Exploration Initiative (SEI) has received considerable technical attention. This paper discusses the application of other nuclear technologies in space, including nuclear fusion, advanced accelerator research, antimatter research, nuclear technologies for exploration and mining, and nuclear astronomy.

  5. TRAINING NUCLEAR TECHNICIANS.

    ERIC Educational Resources Information Center

    KOVNER, EDGAR A.

    PROBLEMS CONFRONTED BY PLANNERS OF NUCLEAR PROGRAMS AT THE TECHNICIAN LEVEL INCLUDE (1) LACK OF PRECEDENT IN CURRICULUM, COURSE OUTLINES, AND GRADUATE PLACEMENT, (2) DIFFICULTY IN DETERMINING COSTS OF LABORATORY CONSTRUCTION, EQUIPMENT, AND OPERATION, AND (3) REQUIREMENT OF ATOMIC ENERGY COMMISSION LICENSES IN NUCLEAR OCCUPATIONS. A 92-SEMESTER…

  6. Comprehensive Nuclear Materials

    SciTech Connect

    Konings, Dr. Rudy J. M.; Allen, Todd R.; Stoller, Roger E; Yamanaka, Prof. Shinsuke

    2012-01-01

    This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  7. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  8. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  9. Formation of Ultracold Molecules

    SciTech Connect

    Cote, Robin

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  10. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  11. Electrorheological crystallization of proteins and other molecules

    DOEpatents

    Craig, George D.; Rupp, Bernhard

    1996-01-01

    An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an x-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the x-ray diffraction pattern.

  12. Electrorheological crystallization of proteins and other molecules

    DOEpatents

    Craig, G.D.; Rupp, B.

    1996-06-11

    An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an X-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the X-ray diffraction pattern. 4 figs.

  13. Electron attachment to the SF{sub 6} molecule

    SciTech Connect

    Smirnov, B. M. Kosarim, A. V.

    2015-09-15

    Various models for transition between electron and nuclear subsystems are compared in the case of electron attachment to the SF{sub 6} molecule. Experimental data, including the cross section of electron attachment to this molecule as a function of the electron energy and vibrational temperature, the rate constants of this process in swarm experiments, and the rates of the chemionization process involving Rydberg atoms and the SF{sub 6} molecule, are collected and treated. Based on the data and on the resonant character of electron capture into an autodetachment ion state in accordance with the Breit–Wigner formula, we find that intersection of the molecule and negative ion electron terms proceeds above the potential well bottom of the molecule with the barrier height 0.05–0.1 eV, and the transition between these electron terms has both the tunnel and abovebarrier character. The limit of small electron energies e for the electron attachment cross section at room vibrational temperature takes place at ε ≪ 2 meV, while in the range 2 meV ≪ ε ≪ 80 meV, the cross section is inversely proportional to ε. In considering the attachment process as a result of the interaction between the electron and vibrational degrees of freedom, we find the coupling factor f between them to be f = aT at low vibrational temperatures T with a ≈ 3 × 10{sup −4} K{sup −1}. The coupling factor is independent of the temperature at T > 400 K.

  14. Safe use of atomic (Nuclear) power (Nuclear Safety)

    NASA Astrophysics Data System (ADS)

    Sidorenko, V. A.

    2013-12-01

    The established concept of ensuring safety for nuclear power sources is presented; the influence of severe accidents on nuclear power development is considered, including the accident at a Japan NPP in 2011, as well as the role of state regulation of nuclear safety.

  15. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  16. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  17. A toy model for a diatomic molecule

    NASA Astrophysics Data System (ADS)

    Hecker Denschlag, Johannes

    2016-08-01

    We introduce a toy model for a diatomic molecule which is based on coupling electronic and nuclear spins to a rigid rotor. Despite its simplicity, the model can be used scientifically to analyze and understand complex molecular hyperfine spectra. In addition, the model has educational value as a number of fundamental symmetries and conservation laws of the molecule can be studied. Because of its simple structure, the model can be readily implemented as a computer program with comparatively short computing times on the order of a few seconds.

  18. Nuclear explosive safety study process

    SciTech Connect

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  19. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  20. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  1. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  2. Nuclear Fabrication Consortium

    SciTech Connect

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  3. Including Jews in Multiculturalism.

    ERIC Educational Resources Information Center

    Langman, Peter F.

    1995-01-01

    Discusses reasons for the lack of attention to Jews as an ethnic minority within multiculturalism both by Jews and non-Jews; why Jews and Jewish issues need to be included; and addresses some of the issues involved in the ethical treatment of Jewish clients. (Author)

  4. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    SciTech Connect

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-03-01

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.

  5. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  6. Special Issue: "Molecules against Alzheimer".

    PubMed

    Decker, Michael; Muñoz-Torrero, Diego

    2016-12-16

    This Special Issue, entitled "Molecules against Alzheimer", gathers a number of original articles, short communications, and review articles on recent research efforts toward the development of novel drug candidates, diagnostic agents and therapeutic approaches for Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and a leading cause of death worldwide. This Special Issue contains many interesting examples describing the design, synthesis, and pharmacological profiling of novel compounds that hit one or several key biological targets, such as cholinesterases, β-amyloid formation or aggregation, monoamine oxidase B, oxidative stress, biometal dyshomeostasis, mitochondrial dysfunction, serotonin and/or melatonin systems, the Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase, or nuclear erythroid 2-related factor. The development of novel AD diagnostic agents based on tau protein imaging and the use of lithium or intranasal insulin for the prevention or the symptomatic treatment of AD is also covered in some articles of the Special Issue.

  7. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)

  8. Advanced Nuclear Fuel Cycle Options

    SciTech Connect

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  9. Giant molecules composed of polar molecules and atoms in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Qi, Ran; Tan, Shina

    2014-05-01

    Two or three polar molecules, confined to one or two dimensions, can form stable bound states with a single atom living in three dimensions, if the molecule and the atom can interact resonantly such that their mixed dimensional scattering length is large. We call these bound states ``giant molecules'' since it's a molecule composed of smaller molecules and atoms. We study their properties using techniques including exact numerical solution, exact qunatum diffusion Monte Carlo (QMC), Born-Oppenheimer approximation (BOA), and semiclassical approximation. These bound states have a hierarchical structure reminiscent of the celestial systems.

  10. Probing Electron Dynamics in Simple Molecules with Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Rivière, Paula; Palacios, Alicia; Pérez-Torres, Jhon Fredy; Martín, Fernando

    Attosecond pulses are an ideal tool to explore electron and nuclear dynamics in atoms and molecules. Either as single attosecond pulses (SAP), in attosecond pulse trains (APT), or in combination with infrared (IR) pulses, these pulses, with frequencies in the VUV-XUV regime, have been widely used to probe ionization, electron tunneling, or autoionization in atoms. More recently, similar processes have been studied in molecules. A correct theoretical description of such processes in molecules often requires a fully dimensional treatment due to the important role of nuclear motion and electron correlation. This restricts ab initio calculations to the simplest molecules. In this chapter, we discuss single ionization of hydrogen molecules (H2 and D2) induced by time-delayed SAP+IR and APT+IR schemes. Ab initio time-dependent theoretical calculations are compared with existing experiments.

  11. Just war theory in the nuclear age

    SciTech Connect

    Jones, J.D.; Griesbach, M.F.

    1985-01-01

    This book presents papers on nuclear deterrence. Topics considered include the morality of war, the normative alternatives to war, national defense in the nuclear age, the environment of nuclear deterrence (empirical factors and moral judgments), morality and nuclear weaponry, the morality of nuclear deterrence and national defense in a changing strategic environment, alternatives to nuclear deterrence, and strengthening broadcasting capabilities into the USSR (e.g., Radio Liberty and Voice of America).

  12. Porous organic molecules

    NASA Astrophysics Data System (ADS)

    Holst, James R.; Trewin, Abbie; Cooper, Andrew I.

    2010-11-01

    Most synthetic materials that show molecular-scale porosity consist of one-, two- or three-dimensional networks. Porous metal-organic frameworks in particular have attracted a lot of recent attention. By contrast, discrete molecules tend to pack efficiently in the solid state, leaving as little empty space as possible, which leads to non-porous materials. This Perspective discusses recent developments with discrete organic molecules that are porous in the solid state. Such molecules, which may be either crystalline or amorphous, can be categorized as either intrinsically porous (containing permanent covalent cavities) or extrinsically porous (inefficiently packed). We focus on the possible advantages of organic molecules over inorganic or hybrid systems in terms of molecular solubility, choice of components and functionalities, and structural mobility and responsiveness in non-covalent extended solids. We also highlight the potential for 'undiscovered' porous systems among the large number of cage-like organic molecules that are already known.

  13. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... fundamentals of an SNM control and accounting system, including criteria for the receipt, internal control... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear...-5028, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants.'' In...

  14. Omega 3 (n-3) fatty acids down-regulate nuclear factor-kappa B (NF-κB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease.

    PubMed

    Daak, Ahmed A; Elderdery, Abozer Y; Elbashir, Leana M; Mariniello, Katia; Mills, Jeremy; Scarlett, Garry; Elbashir, Mustafa I; Ghebremeskel, Kebreab

    2015-06-01

    Chronic inflammation and reduced blood levels of omega-3 fatty acids (n-3) are known characteristics of sickle cell disease (SCD).The anti-inflammatory properties of n-3 fatty acids are well recognized. Omega-3 treated (n = 24), hydroxyurea (HU) treated (n = 18), and n-3 untreated (n=21) homozygous SCD patients (HbSS) and healthy (HbAA) controls (n = 25) matched for age (5-16 years), gender and socioeconomic status were studied. According to age (5-10) or (11-16) years, two or three capsules containing 277.8 mg docosahexaenoic (DHA) and 39.0mg eicosapentaenoic (EPA) or high oleic acid placebo (41%) were assigned to n-3 treated and n-3 untreated groups, respectively. Hydroxyurea treated group was on dosage more than 20 mg/kg/day. The effect of supplementation on systemic and blood cell markers of inflammation was investigated. The n-3 treated group had higher levels of DHA and EPA (p < 0.001) and lower white blood cell count and monocyte integrin (p < 0.05) compared with the n-3 untreated. No difference was detected between the two groups regarding C-reactive protein, granulocytes integrin and selectin, plasma tumour necrosis factor-α and interleukin-10. The n-3 treated group had lowered nuclear factor-kappa B (NF-κB) gene expression compared to n-3 untreated and HU treated groups (p < 0.05). This study provides evidence that supplementation with n-3 fatty acids may ameliorate inflammation and blood cell adhesion in patients with SCD.

  15. UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle.

    PubMed

    Blavet, Nicolas; Uřinovská, Jana; Jeřábková, Hana; Chamrád, Ivo; Vrána, Jan; Lenobel, René; Beinhauer, Jana; Šebela, Marek; Doležel, Jaroslav; Petrovská, Beáta

    2017-01-02

    Proteins are the most abundant component of the cell nucleus, where they perform a plethora of functions, including the assembly of long DNA molecules into condensed chromatin, DNA replication and repair, regulation of gene expression, synthesis of RNA molecules and their modification. Proteins are important components of nuclear bodies and are involved in the maintenance of the nuclear architecture, transport across the nuclear envelope and cell division. Given their importance, the current poor knowledge of plant nuclear proteins and their dynamics during the cell's life and division is striking. Several factors hamper the analysis of the plant nuclear proteome, but the most critical seems to be the contamination of nuclei by cytosolic material during their isolation. With the availability of an efficient protocol for the purification of plant nuclei, based on flow cytometric sorting, contamination by cytoplasmic remnants can be minimized. Moreover, flow cytometry allows the separation of nuclei in different stages of the cell cycle (G1, S, and G2). This strategy has led to the identification of large number of nuclear proteins from barley (Hordeum vulgare), thus triggering the creation of a dedicated database called UNcleProt, http://barley.gambrinus.ueb.cas.cz/ .

  16. UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle

    PubMed Central

    Uřinovská, Jana; Jeřábková, Hana; Chamrád, Ivo; Lenobel, René; Beinhauer, Jana; Šebela, Marek

    2017-01-01

    ABSTRACT Proteins are the most abundant component of the cell nucleus, where they perform a plethora of functions, including the assembly of long DNA molecules into condensed chromatin, DNA replication and repair, regulation of gene expression, synthesis of RNA molecules and their modification. Proteins are important components of nuclear bodies and are involved in the maintenance of the nuclear architecture, transport across the nuclear envelope and cell division. Given their importance, the current poor knowledge of plant nuclear proteins and their dynamics during the cell's life and division is striking. Several factors hamper the analysis of the plant nuclear proteome, but the most critical seems to be the contamination of nuclei by cytosolic material during their isolation. With the availability of an efficient protocol for the purification of plant nuclei, based on flow cytometric sorting, contamination by cytoplasmic remnants can be minimized. Moreover, flow cytometry allows the separation of nuclei in different stages of the cell cycle (G1, S, and G2). This strategy has led to the identification of large number of nuclear proteins from barley (Hordeum vulgare), thus triggering the creation of a dedicated database called UNcleProt, http://barley.gambrinus.ueb.cas.cz/. PMID:27813701

  17. Single molecule tracking

    DOEpatents

    Shera, E.B.

    1987-10-07

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photons are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions. 3 figs.

  18. Single molecule tracking

    DOEpatents

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  19. Nutritional therapies (including fosteum).

    PubMed

    Nieves, Jeri W

    2009-03-01

    Nutrition is important in promoting bone health and in managing an individual with low bone mass or osteoporosis. In adult women and men, known losses of bone mass and microarchitecture occur, and nutrition can help minimize these losses. In every patient, a healthy diet with adequate protein, fruits, vegetables, calcium, and vitamin D is required to maintain bone health. Recent reports on nutritional remedies for osteoporosis have highlighted the importance of calcium in youth and continued importance in conjunction with vitamin D as the population ages. It is likely that a calcium intake of 1200 mg/d is ideal, and there are some concerns about excessive calcium intakes. However, vitamin D intake needs to be increased in most populations. The ability of soy products, particularly genistein aglycone, to provide skeletal benefit has been recently studied, including some data that support a new medical food marketed as Fosteum (Primus Pharmaceuticals, Scottsdale, AZ).

  20. Organic Molecules in Meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (<30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochemistry [2-4]. Different carbonaceous meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10

  1. Dynamics of Activated Molecules

    SciTech Connect

    Mullin, Amy S.

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  2. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  3. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-01

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  4. High energy nuclear structures

    SciTech Connect

    Boguta, J.; Kunz, J.

    1984-03-09

    In conventional nuclear physics the nucleus is described as a non-relativistic many-body system, which is governed by the Schroedinger equation. Nucleons interact in this framework via static two-body potentials, mesonic degrees of freedom are neglected. An alternative description of nuclear physics in terms of a relativistic field theory has been developed by Walecka. The model Lagrangian containing baryons, sigma-mesons and ..omega..-mesons was subsequently extended to include also ..pi..-mesons and rho-mesons. An essential feature of such a nuclear Lagrangian is its renormalizability. In addition to the description of known nuclear structure the field theoretical approach may reveal entirely new nuclear phenomena, based on the explicit treatment of mesonic degrees of freedom. The existence of such abnormal nuclear states was proposed by Lee and Wick employing the sigma-model Lagrangian. There the non-linearity of the meson field equations allows for soliton solutions in the presence of nucleons, in particular the sigma-field may exhibit a kink. Different types of soliton solutions occur in gauge theories with hidden symmetries. In the phenomenological Lagrangian the rho-meson is described by a non-abelian gauge field, that acquires its mass spontaneously due to the non-vanishing vacuum expectation value of a Higgs field. A general ansatz for soliton solutions of such a gauge theory was given by Dashen et al. A specific solution and its possible implications for nuclear physics like anomalous nuclear states were discussed by Boguta.

  5. Answers to Questions: Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Electricity is an increasingly important part of our everyday lives. Its versatility allows one to heat, cool, and light homes; cook meals; watch television; listen to music; power computers; make medical diagnosis and treatment; explore the vastness of space; and study the tiniest molecules. Nuclear energy, second to coal, surpasses natural gas,…

  6. Optical highlighter molecules in neurobiology.

    PubMed

    Datta, Sandeep Robert; Patterson, George H

    2012-02-01

    The development of advanced optical methods has played a key role in propelling progress in neurobiology. Genetically-encoded fluorescent molecules found in nature have enabled labeling of individual neurons to study their physiology and anatomy. Here we discuss the recent use of both native and synthetic optical highlighter proteins to address key problems in neurobiology, including questions relevant to synaptic function, neuroanatomy, and the organization of neural circuits.

  7. Psychoanalysis and the nuclear threat

    SciTech Connect

    Levine, H.B.; Jacobs, D.; Rubin, L.J.

    1988-01-01

    {ital Psychoanalysis and the Nuclear Threat} provides coverage of the dynamic and clinical considerations that follow from life in the nuclear age. Of special clinical interest are chapters dealing with the developmental consequences of the nuclear threat in childhood, adolescence, and adulthood, and those exploring the technical issues raised by the occurrence in analytic and psychotherapeutic hours of material related to the nuclear threat. Additional chapters bring a psychoanalytic perspective to bear on such issues as the need to have enemies, silence as the real crime, love, work, and survival in the nuclear age, the relationship of the nuclear threat to issues of mourning and melancholia, apocalyptic fantasies, the paranoid process, considerations of the possible impact of gender on the nuclear threat, and the application of psychoanalytic thinking to nuclear arms strategy. Finally, the volume includes the first case report in the English language---albeit a brief psychotherapy---involving the treatment of a Hiroshima survivor.

  8. International Nuclear Safeguards at Sandia

    SciTech Connect

    Sternat, Matthew R.

    2015-02-01

    As global nuclear energy expands, assuring peaceful uses of nuclear technology becomes increasingly important. In addition to complying with international nuclear safeguards, a responsible nuclear energy program promotes a corresponding safeguards culture. Establishment of transparent peaceful uses of nuclear technologies starts with cooperative international engagements and safeguards systems. Developing states investing in nuclear energy must assure the international community of their longterm commitment to safeguards, safety, and security (3S) of nuclear materials and technologies. Cultivating a safeguards culture starts in the initial phases of infrastructure planning and must be integrated into the process of developing a responsible nuclear energy program. Sandia National Laboratories supports the implementation of safeguards culture through a variety of activities, including infrastructure development.

  9. Resource Letter FNP-1: Frontiers of nuclear physics

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.

    2004-08-01

    This Resource Letter provides a bibliography of the current research activities in nuclear physics and also a guide for finding useful nuclear data. The major areas included are nuclear structure and reactions, symmetry tests, nuclear astrophysics, nuclear theory, high-density matter, and nuclear instrumentation.

  10. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  11. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  12. Refraction, including prisms.

    PubMed

    Hiatt, R L

    1991-02-01

    The literature in the past year on refraction is replete with several isolated but very important topics that have been of interest to strabismologists and refractionists for many decades. The refractive changes in scleral buckling procedures include an increase in axial length as well as an increase in myopia, as would be expected. Tinted lenses in dyslexia show little positive effect in the nonasthmatic patients in one study. The use of spectacles or bifocals as a way to control increase in myopia is refuted in another report. It has been shown that in accommodative esotropia not all patients will be able to escape the use of bifocals in the teenage years, even though surgery might be performed. The hope that disposable contact lenses would cut down on the instance of giant papillary conjunctivitis and keratitis has been given some credence, and the conventional theory that sclerosis alone is the cause of presbyopia is attacked. Also, gas permeable bifocal contact lenses are reviewed and the difficulties of correcting presbyopia by this method outlined. The practice of giving an aphakic less bifocal addition instead of a nonaphakic, based on the presumption of increased effective power, is challenged. In the review of prisms, the majority of articles concern prism adaption. The most significant report is that of the Prism Adaptation Study Research Group (Arch Ophthalmol 1990, 108:1248-1256), showing that acquired esotropia in particular has an increased incidence of stable and full corrections surgically in the prism adaptation group versus the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Evaluated Nuclear Data

    SciTech Connect

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  14. Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.

  15. Nuclear Regulatory Commission issuances

    SciTech Connect

    1996-03-01

    This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

  16. Nuclear Medicine Annual, 1989

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine.

  17. Of Molecules and Models.

    ERIC Educational Resources Information Center

    Brinner, Bonnie

    1992-01-01

    Presents an activity in which models help students visualize both the DNA process and transcription. After constructing DNA, RNA messenger, and RNA transfer molecules; students model cells, protein synthesis, codons, and RNA movement. (MDH)

  18. Nuclear Plant Inspection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Engineers from the Power Authority of the State of New York use a Crack Growth Analysis Program supplied by COSMIC (Computer Software Management and Information Center) in one stage of nuclear plant inspection. Welds of the nuclear steam supply system are checked for cracks; radiographs, dye penetration and visual inspections are performed to locate cracks in the metal structure and welds. The software package includes three separate crack growth analysis models and enables necessary repairs to be planned before serious problems develop.

  19. Swelling-resistant nuclear fuel

    DOEpatents

    Arsenlis, Athanasios [Hayward, CA; Satcher, Jr., Joe; Kucheyev, Sergei O [Oakland, CA

    2011-12-27

    A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.

  20. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    SciTech Connect

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.

  1. Nuclear localization of the tight junction protein ZO-2 in epithelial cells.

    PubMed

    Islas, Socorro; Vega, Jesús; Ponce, Lissette; González-Mariscal, Lorenza

    2002-03-10

    The tight junction constitutes the major barrier to solute and water flow through the paracellular space of epithelia and endothelia. It is formed by transmembrane proteins and submembranous molecules such as the MAGUKs ZOs. We have previously found that several MAGUKs, including those of the tight (ZO-1, ZO-2, and ZO-3) and septate junction (tamou and Dlg), contain one or two nuclear sorting signals located at their first PDZ and GK domains. Now we show that these proteins also contain a nuclear export signal and focus our study on the nuclear membrane shuttling of ZO-2. In sparse cultures this molecule concentrates at the nucleus in clusters, where it partially colocalizes with splicing factor SC35. Nuclear staining diminishes as the monolayer acquires confluence through a process sensitive to the nuclear export inhibitor leptomycin B. Nuclear localization can be induced by impairing cell-cell contacts, by mechanical injury. ZO-2 that shuttles from the cell periphery into the nucleus is not newly synthesized but originates from a preexistent pool. The movement of this protein is mediated by the actin cytoskeleton.

  2. Nuclear reactor

    DOEpatents

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  3. Nuclear privatization

    SciTech Connect

    Jeffs, E.

    1995-11-01

    The United Kingdom government announced in May 1995 plans to privatize the country`s two nuclear generating companies, Nuclear Electric and Scottish Nuclear. Under the plan, the two companies will become operating divisions of a unified holding company, to be called British Electric, with headquarters in Scotland. Britain`s nuclear plants were left out of the initial privatization in 1989 because the government believed the financial community would be unwilling to accept the open-ended liability of decommissioning the original nine stations based on the Magnox gas-cooled reactor. Six years later, the government has found a way around this by retaining these power stations in state ownership, leaving the new nuclear company with the eight Advanced Gas-cooled Reactor (AGR) stations and the recently completed Sizewell B PWR stations. The operating Magnox stations are to be transferred to BNFL, which operates two Magnox stations of their own at Calder Hall and Chapelcross.

  4. Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions.

    PubMed

    Huili, Ji; Haosheng, Lu; Dengke, Pan

    2014-12-01

    Somatic cell nuclear transfer (SCNT) is a technology by which a highly differentiated somatic nucleus is transferred into an enucleated oocyte to generate a reconstructed embryo that subsequently develops to an offspring. However, to date, the efficiency of cloned animal is still low. The major reason is incomplete nuclear reprogramming of donor cells after nuclear transfer, which results in abnormal epigenetic modifications, including DNA methylation, histone acetylation, gene imprinting, X-chromosome inactivation, and telomere length. Most improvements have been made in somatic epigenetic reprogramming with small molecules and manipulating expression of specific genes. It is expected that SCNT will soon have broad applications in both basic research and practical production. In this review, we summarize the recent progress in epigenetic reprogramming by somatic cell nuclear transfer; in particular, we focus on strategies for rescuing the epigenetic errors occurring during SCNT.

  5. Nuclear stress test

    MedlinePlus

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  6. The new nuclear nations

    SciTech Connect

    Spector, L.

    1985-01-01

    Using 251 pages of text, 66 pages of references and 26 pages of appendixes, Spector delves into a world of new nuclear suppliers whose voracious hunger for profits may lead them to provide unwise assistance to countries that are unduly interested in nuclear weaponry. He assails a new dragon, a 'nuclear netherworld' that would illicitly supply such items for profit or political gain. Spector's book tells of covert dealings in nuclear technologies and materials. For him, the buyers have but one goal: '... to gain possession of the knowledge and materials necessary for development of nuclear weapons'. He warns of dangers from this illicit trade, of the loopholes in existing controls and the need to close them. His warnings come wrapped in stories of undercover transactions, many about Pakistan's efforts to get what it needs for its centrifuge enrichment plant. Recognizing the tightening of controls over nuclear trade since the 1970s, including those for dual-use items, Spector is nonetheless pessimistic that these efforts are sufficient to irradicate the nuclear netherworld or to deter newcomers from it.

  7. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  8. Atom-diatom scattering dynamics of spinning molecules

    SciTech Connect

    Eyles, C. J.; Floß, J.; Averbukh, I. Sh.; Leibscher, M.

    2015-01-14

    We present full quantum mechanical scattering calculations using spinning molecules as target states for nuclear spin selective atom-diatom scattering of reactive D+H{sub 2} and F+H{sub 2} collisions. Molecules can be forced to rotate uni-directionally by chiral trains of short, non-resonant laser pulses, with different nuclear spin isomers rotating in opposite directions. The calculations we present are based on rotational wavepackets that can be created in this manner. As our simulations show, target molecules with opposite sense of rotation are predominantly scattered in opposite directions, opening routes for spatially and quantum state selective scattering of close chemical species. Moreover, two-dimensional state resolved differential cross sections reveal detailed information about the scattering mechanisms, which can be explained to a large degree by a classical vector model for scattering with spinning molecules.

  9. Electric power monthly, September 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  10. Tris(tert-butoxy)siloxy derivatives of boron, including the boronous acid HOB[OSi(O(t)Bu)(3)](2) and the metal (siloxy)boryloxide complex Cp(2)Zr(Me)OB[OSi(O(t)Bu)(3)](2): a remarkable crystal structure with 18 independent molecules in its asymmetric unit.

    PubMed

    Fujdala, Kyle L; Oliver, Allen G; Hollander, Frederick J; Tilley, T Don

    2003-02-24

    Silanolysis of B(O(t)Bu)(3) with 2 and 3 equiv of HOSi(O(t)Bu)(3) led to the formation of (t)BuOB[OSi(O(t)Bu)(3)](2) (1) and B[OSi(O(t)Bu)(3)](3) (2), respectively. Compounds 1 and 2 are efficient single-source molecular precursors to B/Si/O materials via thermolytic routes in nonpolar media, as demonstrated by the generation of BO(1.5).2SiO(2) (BOSi2(xg)) and BO(1.5).3SiO(2) (BOSi3(xg)) xerogels, respectively. Use of a block copolymer template provided B/Si/O materials (BOSi2(epe) and BOSi3(epe)) with a broad distribution of mesopores (by N(2) porosimetry) and smaller, more uniform particle sizes (by TEM) as compared to the nontemplated materials. Hydrolyses of 1 and 2 with excess H(2)O resulted in formation of the expected amounts of (t)BuOH and HOSi(O(t)Bu)(3); however, reaction of 1 with 1 equiv of H(2)O led to isolation of the new boronous acid HOB[OSi(O(t)Bu)(3)](2) (3). This ligand precursor is well suited for the synthesis of new metal (siloxy)boryloxide complexes via proton-transfer reactions involving the BOH group. The reaction of 3 with Cp(2)ZrMe(2) resulted in formation of Cp(2)Zr(Me)OB[OSi(O(t)Bu)(3)](2) (4) in high yield. This rare example of a transition metal boryloxide complex crystallizes in the triclinic space group Ponemacr; and exhibits a crystal structure with an unprecedented number of independent molecules in its asymmetric unit (i.e., Z' = 18 and Z = 36). This unusual crystal structure presented an opportunity to perform statistical analyses of the metric parameters for the 18 crystallographically independent molecules. Complex 4 readily converts to Cp(2)Zr[OSi(O(t)Bu)(3)](2) (5) upon thermolysis or upon dissolution in Et(2)O at room temperature.

  11. Single-Molecule Bioelectronics

    PubMed Central

    Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.

    2014-01-01

    Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  12. MOLECULES IN {eta} CARINAE

    SciTech Connect

    Loinard, Laurent; Menten, Karl M.; Guesten, Rolf; Zapata, Luis A.; Rodriguez, Luis F.

    2012-04-10

    We report the detection toward {eta} Carinae of six new molecules, CO, CN, HCO{sup +}, HCN, HNC, and N{sub 2}H{sup +}, and of two of their less abundant isotopic counterparts, {sup 13}CO and H{sup 13}CN. The line profiles are moderately broad ({approx}100 km s{sup -1}), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO{sup +} do not appear to be underabundant in {eta} Carinae. On the other hand, molecules containing nitrogen or the {sup 13}C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of {eta} Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  13. Geometric phase and gauge connection in polyatomic molecules.

    PubMed

    Wittig, Curt

    2012-05-14

    Geometric phase is an interesting topic that is germane to numerous and varied research areas: molecules, optics, quantum computing, quantum Hall effect, graphene, and so on. It exists only when the system of interest interacts with something it perceives as exterior. An isolated system cannot display geometric phase. This article addresses geometric phase in polyatomic molecules from a gauge field theory perspective. Gauge field theory was introduced in electrodynamics by Fock and examined assiduously by Weyl. It yields the gauge field A(μ), particle-field couplings, and the Aharonov-Bohm phase, while Yang-Mills theory, the cornerstone of the standard model of physics, is a template for non-Abelian gauge symmetries. Electronic structure theory, including nonadiabaticity, is a non-Abelian gauge field theory with matrix-valued covariant derivative. Because the wave function of an isolated molecule must be single-valued, its global U(1) symmetry cannot be gauged, i.e., products of nuclear and electron functions such as χ(n)ψ(n) are forbidden from undergoing local phase transformation on R, where R denotes nuclear degrees of freedom. On the other hand, the synchronous transformations (first noted by Mead and Truhlar): ψ(n)→ψ(n)e(iζ) and simultaneously χ(n)→χ(n)e(-iζ), preserve single-valuedness and enable wave functions in each subspace to undergo phase transformation on R. Thus, each subspace is compatible with a U(1) gauge field theory. The central mathematical object is Berry's adiabatic connection i, which serves as a communication link between the two subsystems. It is shown that additions to the connection according to the gauge principle are, in fact, manifestations of the synchronous (e(iζ)/e(-iζ)) nature of the ψ(n) and χ(n) phase transformations. Two important U(1) connections are reviewed: qA(μ) from electrodynamics and Berry's connection. The gauging of SU(2) and SU(3) is reviewed and then used with molecules. The largest gauge

  14. Nuclear reprogramming.

    PubMed

    Halley-Stott, Richard P; Pasque, Vincent; Gurdon, J B

    2013-06-01

    There is currently particular interest in the field of nuclear reprogramming, a process by which the identity of specialised cells may be changed, typically to an embryonic-like state. Reprogramming procedures provide insight into many mechanisms of fundamental cell biology and have several promising applications, most notably in healthcare through the development of human disease models and patient-specific tissue-replacement therapies. Here, we introduce the field of nuclear reprogramming and briefly discuss six of the procedures by which reprogramming may be experimentally performed: nuclear transfer to eggs or oocytes, cell fusion, extract treatment, direct reprogramming to pluripotency and transdifferentiation.

  15. How organic molecules can control electronic devices.

    PubMed

    Vilan, Ayelet; Cahen, David

    2002-01-01

    This article examines a somewhat counter-intuitive approach to molecular-based electronic devices. Control over the electronic energy levels at the surfaces of conventional semiconductors and metals is achieved by assembling on the solid surfaces, poorly organized, partial monolayers (MLs) of molecules instead of the more commonly used ideal ones. Once those surfaces become interfaces, these layers exert electrostatic rather than electrodynamic control over the resulting devices, based on both electrical monopole and dipole effects of the molecules. Thus electronic transport devices, incorporating molecules, can be constructed without current flow through the molecules. This is illustrated for a gallium arsenide (GaAs) sensor as well as for gold-silicon (Au-Si) and Au-GaAs diodes. Incorporating molecules into solid interfaces becomes possible, using a 'soft' electrical contacting procedure, so as not to damage the molecules. Because there are only a few molecular restrictions, this approach opens up possibilities for the use of more complex (including biologically active) molecules as it circumvents requirements for ideal MLs and for molecules that can tolerate actual electron transport through them.

  16. Single molecule diffraction.

    PubMed

    Spence, J C H; Doak, R B

    2004-05-14

    For solving the atomic structure of organic molecules such as small proteins which are difficult to crystallize, the use of a jet of doped liquid helium droplets traversing a continuous high energy electron beam is proposed as a means of obtaining electron diffraction patterns (serial crystallography). Organic molecules (such as small proteins) within the droplet (and within a vitreous ice jacket) may be aligned by use of a polarized laser beam. Iterative methods for solving the phase problem are indicated. Comparisons with a related plan for pulsed x-ray diffraction from single proteins in a molecular beam are provided.

  17. Enzyme molecules as nanomotors.

    PubMed

    Sengupta, Samudra; Dey, Krishna K; Muddana, Hari S; Tabouillot, Tristan; Ibele, Michael E; Butler, Peter J; Sen, Ayusman

    2013-01-30

    Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.

  18. (Nuclear theory). [Research in nuclear physics

    SciTech Connect

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

  19. Nuclear battlefields

    SciTech Connect

    Arkin, W.M.; Fieldhouse, R.W.

    1985-01-01

    This book provides complete data on the nuclear operations and research facilities in the U.S.A., the U.S.S.R., France, China and the U.K. It describes detailed estimates on the U.S.S.R.'s nuclear stockpile for over 500 locations. It shows how non-nuclear countries cooperate with the world-wide war machine. And it maps the U.S. nuclear facilities from Little America, WY, and Charleston, SC, to the battleships patroling the world's oceans and subs stalking under the sea. The data were gathered from unclassified sources through the Freedom of Information Act, from data supplied to military installations, and from weapons source books. It provides guidance for policymakers, government and corporate officials.

  20. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  1. Nuclear Medicine

    MedlinePlus

    ... here Home » Science Education » Science Topics » Nuclear Medicine SCIENCE EDUCATION SCIENCE EDUCATION Science Topics Resource Links for ... administered by inhalation, by oral ingestion, or by direct injection into an organ. The mode of tracer ...

  2. Nuclear cardiac

    SciTech Connect

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques. (KRM)

  3. Nuclear Data

    SciTech Connect

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  4. Nuclear Nonproliferation

    SciTech Connect

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  5. Sweeping molecules with light

    NASA Astrophysics Data System (ADS)

    Hutzler, Nicholas R.

    2017-03-01

    Many areas of physics—precision measurements, quantum information, and physical chemistry, to name a few—are starting to benefit from the enormous advantages offered by cold and ultracold polar molecules. Molecules have more states, more interactions, and more chemical properties compared to atoms, which make them exciting to study but difficult to tame. In particular, the powerful techniques of atomic laser cooling cannot be naïvely applied to molecules due to their complicated structure. Developments over the past few years have made directly laser cooled and trapped molecules a reality, and now much effort is focused on making these samples larger, denser, and colder—an important step to realizing many of their exciting applications. A careful experimental and numerical study by Truppe et al (2017 New J. Phys. 19 022001) demonstrates a significant improvement and advance in understanding of one of the most limiting steps in laser cooling and trapping of molecules—slowing them from a molecular beam to a near-standstill, with small enough kinetic energy that they can be loaded into a trap.

  6. Disentangling DNA molecules.

    PubMed

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  7. Diversity in Biological Molecules

    ERIC Educational Resources Information Center

    Newbury, H. John

    2010-01-01

    One of the striking characteristics of fundamental biological processes, such as genetic inheritance, development and primary metabolism, is the limited amount of variation in the molecules involved. Natural selective pressures act strongly on these core processes and individuals carrying mutations and producing slightly sub-optimal versions of…

  8. Mighty Molecule Models

    ERIC Educational Resources Information Center

    Brown, Tom; Rushton, Greg; Bencomo, Marie

    2008-01-01

    As part of the SMATHematics Project: The Wonder of Science, The Power of Mathematics--a collaborative partnership between Kennesaw State University and two local school districts, fifth graders had the opportunity to puzzle out chemical formulas of propane, methanol, and other important molecules. In addition, they explored properties that…

  9. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  10. Single molecules: Thermodynamic limits

    NASA Astrophysics Data System (ADS)

    Liphardt, Jan

    2012-09-01

    Technologies aimed at single-molecule resolution of non-equilibrium systems increasingly require sophisticated new ways of thinking about thermodynamics. An elegant extension to standard fluctuation theory grants access to the kinetic intermediate states of these systems -- as DNA-pulling experiments now demonstrate.

  11. Disentangling DNA molecules

    NASA Astrophysics Data System (ADS)

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  12. Three new 'nonterrestrial' molecules

    NASA Astrophysics Data System (ADS)

    Thaddeus, P.; Guelin, M.; Linke, R. A.

    1981-05-01

    Eight new interstellar lines have been detected from three molecules not previously observed spectroscopically in space or in the laboratory. One is a linear or nearly linear molecule with microwave constants B0 equals 21,337.15 plus or minus 0.06 MHz, D0 equals 21.4 plus or minus 1.5 kHz. This is the thioformyl ion HCS(plus), first identified because B0 and D0 are close to those calculated, and now confirmed by laboratory detection of one of the present lines (Gudeman et al.). The second molecule, also linear or nearly so, has microwave constants B0 equals 10,691,406 plus or minus 0.043 MHz, D0 equals 1.84 plus or minus 0.91 kHz close to those expected for the isoelectronic systems HOCO(plus) and HOCN; a choice between the two cannot be made on the basis of the available astronomical data. The existence of a third molecule is deduced from an unidentified line at 85,338 MHz that has been found in many sources, is fairly intense in several, and may be self-absorbed in Sgr B2.

  13. Nuclear medicine annual, 1987

    SciTech Connect

    Freeman, L.M.; Weissmann, H.S.

    1987-01-01

    Radionuclide evaluation of brain death, bone imaging with SPECT, and lymphoscintigraphy are among the topics covered in Nuclear Medicine Annual, 1987. In addition, the book includes reviews of the role of nuclear medicine in the diagnosis of the Acquired Immunodeficiency Syndrome (AIDS) and in the management of patients with acute myocardial infarction. Reports describe advances in radionuclide and magnetic resonance imaging of the adrenal gland and assess the current status of diuretic renography. Also included are articles on changes in functional imaging with aging, on radionuclide evaluation of the lower genitourinary tract in children, and on cholescintigraphy in children.

  14. Nuclear telemedicine

    NASA Astrophysics Data System (ADS)

    Morrison, R. T.; Szasz, I. J.

    1990-06-01

    Diagnostic nuclear medicine patient images have been transniitted for 8 years from a regional conununity hospital to a university teaching hospital 700 kiloinetres away employing slow scan TV and telephone. Transruission and interpretation were done at the end of each working day or as circumstances required in cases of emergencies. Referring physicians received the nuclear medicine procedure report at the end of the completion day or within few minutes of completion in case of emergency procedures. To date more than 25 patient studies have been transmitted for interpretation. Blinded reinterpretation of the original hard copy data of 350 patient studies resulted in 100 agreement with the interpretation of transmitted data. This technique provides high quality diagnostic and therapeutic nuclear medicine services in remote hospitals where the services of an on-site nuclear physician is not available. 2. HISTORY Eight years ago when the nuclear medicine physician at Trail Regional Hospital left the Trail area and an other could not be recruited we examined the feasibility of image transmission by phone for interpretation since closing the department would have imposed unacceptable physical and financial hardship and medical constraints on the patient population the nearest nuclear medicine facility was at some 8 hours drive away. In hospital patients would have to be treated either based purely on physical findings or flown to Vancouver at considerable cost to the health care system (estimated cost $1500.

  15. NRC - regulator of nuclear safety

    SciTech Connect

    1997-05-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

  16. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  17. OMG: Open Molecule Generator.

    PubMed

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  18. Hadronic molecules in the heavy baryon spectrum

    SciTech Connect

    Entem, D. R.; Fernández, F.; Ortega, P. G.

    2016-01-22

    We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λ{sub c}(2940) as a D*N molecule with J{sup P} = 3/2{sup −} quantum numbers. We also find D{sup (*)}Δ candidates for the recently discovered X{sub c}(3250) resonance.

  19. Prospects for nuclear safety research

    SciTech Connect

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  20. Busting Myths about Nuclear Deterrence

    DTIC Science & Technology

    2015-01-01

    weapon capabilities, while Iran remains on course to do so. Moreover, ongoing nuclear modernization programs in China and Russia point to the... Russia —that “the U.S. nuclear posture must be designed . . . not just [for] deterrence of enemies in time of crisis and war but also assur- ance of our...combat radius to reach Okinawa, Guam, and Hawaii from the main- land.10 Russia also continues a robust nuclear modernization program that includes silo

  1. Bacterial invasion reconstructed molecule by molecule

    SciTech Connect

    Werner, James H

    2009-01-01

    We propose to visualize the initial stages of bacterial infection of a human host cell with unmatched spatial and temporal resolution. This work will develop a new capability for the laboratory (super-resolution optical imaging), will test unresolved scientific hypotheses regarding host-pathogen interaction dynamics, and leverages state of the art 3D molecular tracking instrumentation developed recently by our group. There is much to be gained by applying new single molecule tools to the important and familiar problem of pathogen entry into a host cell. For example, conventional fluorescence microscopy has identified key host receptors, such as CD44 and {alpha}5{beta}1 integrin, that aggregate near the site of Salmonella typhimurium infection of human cells. However, due to the small size of the bacteria ({approx} 2 {micro}m) and the diffraction of the emitted light, one just sees a fluorescent 'blob' of host receptors that aggregate at the site of attachment, making it difficult to determine the exact number of receptors present or whether there is any particular spatial arrangement of the receptors that facilitates bacterial adhesion/entry. Using newly developed single molecule based super-resolution imaging methods, we will visualize how host receptors are directed to the site of pathogen adhesion and whether host receptors adopt a specific spatial arrangement for successful infection. Furthermore, we will employ our 3D molecular tracking methods to follow the injection of virulence proteins, or effectors, into the host cell by the pathogen Type III secretion system (TTSS). We expect these studies to provide mechanistic insights into the early events of pathogen infection that have here-to-fore been technically beyond our reach. Our Research Goals are: Goal 1--Construct a super-resolution fluorescence microscope and use this new capability to image the spatial distribution of different host receptors (e.g. CD44, as {alpha}5{beta}1 integrin) at the point of

  2. Management of National Nuclear Power Programs for assured safety

    SciTech Connect

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  3. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  4. Children's (Pediatric) Nuclear Medicine

    MedlinePlus Videos and Cool Tools

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  5. 8. VIEW OF RADIOGRAPHY EQUIPMENT, TEST METHODS INCLUDED RADIOGRAPHY AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF RADIOGRAPHY EQUIPMENT, TEST METHODS INCLUDED RADIOGRAPHY AND BETA BACKSCATTERING. (7/13/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  6. Live CLEM imaging to analyze nuclear structures at high resolution.

    PubMed

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.

  7. Nuclear Rocket Technology Conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the

  8. Computation of free-molecular flow in nuclear materials

    NASA Astrophysics Data System (ADS)

    Casella, Andrew M.; Loyalka, Sudarshan K.; Hanson, Brady D.

    2009-11-01

    Generally, the transport of gases and vapors in nuclear materials is adequately described by the diffusion equation with an effective diffusion coefficient. There are instances however, in which the flow pathway can be so restrictive that the diffusion description has limitations. In general, molecular transport is governed by intermolecular forces and collisions (interactions between multiple gas/vapor molecules) and by molecule-surface interactions. However, if nano-scale pathways exist within these materials, as has been suggested, then molecular transport can be characterized as being in the free-molecular flow regime where intermolecular interactions can be ignored and flow is determined entirely by molecule-surface collisions. Our purpose in this investigation is to focus on free-molecular transport in fine capillaries of a range of shapes and to explore the effect of geometry on this transport. We have employed Monte Carlo techniques in our calculations, and for simple geometries we have benchmarked our results against some analytical and previously available results. We have used Mathematica ® which has exceptional built-in symbolic and graphical capabilities, permitting easy handling of complicated geometries and good visualization of the results. Our computations provide insights into the role of geometry in molecular transport in nuclear materials with narrow pathways for flows, and also will be useful in guiding computations that include intermolecular collisions and more realistic gas-surface collision operators.

  9. Nuclear Energy, Nuclear Weapons Proliferation, and the Arms Race.

    ERIC Educational Resources Information Center

    Hollander, Jack, Ed.

    A symposium was organized to reexamine the realities of vertical proliferation between the United States and the Soviet Union and to place into perspective the horizontal proliferation of nuclear weapons throughout the world, including the possible role of commercial nuclear power in facilitating proliferation. The four invited symposium…

  10. Molecular-beam spectroscopy of interhalogen molecules

    SciTech Connect

    Sherrow, S.A.

    1983-08-01

    A molecular-beam electric-resonance spectrometer employing a supersonic nozzle source has been used to obtain hyperfine spectra of /sup 79/Br/sup 35/Cl. Analyses of these spectra and of microwave spectra published by other authors have yielded new values for the electric dipole moment and for the nuclear quadrupole coupling constants in this molecule. The new constants are significantly different from the currently accepted values. Van der Waals clusters containing chlorine monofluoride have been studied under various expansion conditions by the molecular-beam electric-deflection method. The structural possibilities indicated by the results are discussed, and cluster geometries are proposed.

  11. Nuclear risk

    SciTech Connect

    Levenson, M.

    1989-01-01

    The title of our session, Nuclear Risk Versus Other Power Options, is provocative. It is also a title with different meanings to different people. To the utility chief executive officer, nuclear power is a high-risk financial undertaking because of political and economic barriers to cost recovery. To the utility dispatcher, it is a high-risk future power source since plant completion and start-up dates can be delayed for very long times due to uncertain legal and political issues. To the environmentalist, concerned about global effects such as greenhouse and acid rain, nuclear power is a relatively low risk energy source. To the financial people, nuclear power is a cash cow turned sour because of uncertainties as to what new plants will cost and whether they will even be allowed to operate. The statistics on risk are known and the results of probability risk assessment calculations of risks are known. The challenge is not to make nuclear power safer, it is already one of the safest, if not the safest, source of power currently available. The challenge is to find a way to communicate this to the public.

  12. Molecules in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  13. Towards attosecond measurement in molecules and at surfaces

    NASA Astrophysics Data System (ADS)

    Marangos, Jonathan

    2015-05-01

    1) We will present a number of experimental approaches that are being developed at Imperial College to make attosecond timescale measurements of electronic dynamics in suddenly photoionized molecules and at surfaces. A brief overview will be given of some of the unanswered questions in ultrafast electron and hole dynamics in molecules and solids. These questions include the existence of electronic charge migration in molecules and how this process might couple to nuclear motion even on the few femtosecond timescale. How the timescale of photoemission from a surface may differ from that of an isolated atom, e.g. due to electron transport phenomena associated with the distance from the surface of the emitting atom and the electron dispersion relation, is also an open question. 2) The measurement techniques we are currently developing to answer these questions are HHG spectroscopy, attosecond pump-probe photoelectron/photoion studies, and attosecond pump-probe transient absorption as well as attosecond streaking for measuring surface emission. We will present recent advances in generating two synchronized isolated attosecond pulses at different colours for pump-probe measurements (at 20 eV and 90 eV respectively). Results on generation of isolated attosecond pulses at 300 eV and higher photon energy using a few-cycle 1800 nm OPG source will be presented. The use of these resources for making pump-probe measurements will be discussed. Finally we will present the results of streaking measurement of photoemission wavepackets from two types of surface (WO3 and a evaporated Au film) that show a temporal broadening of ~ 100 as compared to atomic streaks that is consistent with the electron mean free path in these materials. Work supported by ERC and EPSRC.

  14. Trapping and manipulating single molecules of DNA

    NASA Astrophysics Data System (ADS)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  15. A quantum gas of polar molecules

    NASA Astrophysics Data System (ADS)

    Ni, Kang-Kuen

    Ultracold polar molecular gases promise new directions and exciting applications in precision measurements, ultracold chemistry, electric-field controlled collisions, dipolar quantum gases, and quantum information sciences. This thesis presents experimental realization of a near quantum degenerate gas of polar molecules, where the phase-space density of the gas achieved is more than 10 orders of magnitude higher than previous results. The near quantum degenerate gas of polar molecules is created using two coherent steps. First, atoms in an ultracold gas mixture are converted into extremely weakly bound molecules near a Fano-Feshbach resonance. Second, the weakly bound molecules are transferred to the ro-vibronic ground state using a coherent two-photon Raman technique. The fact that these ground-state molecules are polar is confirmed with a spectroscopic measurement of the permanent electric dipole moment. Finally, manipulation of the molecular hyperfine state is demonstrated; this allows molecules to be populated in a single quantum state, in particular, the lowest energy state. With an ultracold gas of molecules, full control of molecular internal state, and electric field as a new handle, ultracold molecular collisions, including ultracold chemical reactions and dipolar collisions, are studied.

  16. Strange skyrmion molecules

    NASA Astrophysics Data System (ADS)

    Kopeliovich, Vladimir B.; Stern, Boris E.

    1997-05-01

    Composed skyrmions with B=2, strangeness content close to 0.5 and the binding energy of several tens of Mev are described. These skyrmions are obtained starting from the system of two B=1 hedgehogs located in different SU(2) subgroups of SU(3) and have the mass and baryon number distribution of molecular (dipole) type. The quantization of zero modes of skyrmion molecules and physics consequences of their existence are discussed.

  17. Strange skyrmion molecules

    SciTech Connect

    Kopeliovich, Vladimir B.; Stern, Boris E.

    1997-05-20

    Composed skyrmions with B=2, strangeness content close to 0.5 and the binding energy of several tens of Mev are described. These skyrmions are obtained starting from the system of two B=1 hedgehogs located in different SU(2) subgroups of SU(3) and have the mass and baryon number distribution of molecular (dipole) type. The quantization of zero modes of skyrmion molecules and physics consequences of their existence are discussed.

  18. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect

    Hou, Hongtao

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  19. Waging nuclear peace: The technology and politics of nuclear war

    SciTech Connect

    Ehrlich, R.

    1985-01-01

    Since the explosions of the first atomic bombs, a large literature has appeared on the effects and risks of nuclear war. The most widely quoted recent publications have concentrated on the impossibility of any meaningful survival after a superpower nuclear exchange. By contrast, Dr. Ehrlich tries to show both sides of the various arguments involved. As a result, he undoubtedly succeeds in his avowed intention of angering both hawks and doves. He offers a critical analysis of most considerations apposite to the current nuclear-weapon impasse, including the nature of current nuclear arms, the possibility of limited nuclear war, the short-term and long-term effects of nuclear weapons, the value of civil defense, the importance of public opinion, and the feasibility of arms control.

  20. [Recent progress in nuclear magnetic resonance spectrum for drug research and development].

    PubMed

    Zhong, Jun; Jiang, Xue-mei

    2015-01-01

    In the process of modern drug research, the new methods and technologies which can detect drug molecules' chemical composition, structure and interaction with biomolecules are always the key scientific problems people care about. Spectra (including IR, UV and NMR) are the most common analytical methods, of which NMR can obtain detailed parameter about the nucleus of organic molecules through researching the laws of nuclear transition in the impact of surrounding chemical environment. The parameter contains rich information about the chemical composition, structure and interaction with other molecules of organic molecules. In many complex environments, such as liquid, solid or gas state, even biological in situ environment, NMR can provide molecules' chemical composition, atomic-resolution three-dimensional structure, information of interaction with each other and dynamic process, especially the information about drug interacting with biomacromolecules. In recent years, the applications of nuclear magnetic resonance spectrum in drug research and development are more and more widespread. This paper reviewed its recent progress in structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in drug research and development. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in drug research. In the second part, we explained the basic principles briefly and summarized progress in methods and techniques for drug research. In the third part, we discussed applications of nuclear magnetic resonance ir structure and dynamic of targeted biological macromolecules, drug design and screening and drug metabolism in detail. The conclusions were stated in the last part.

  1. Model molecules mimicking asphaltenes.

    PubMed

    Sjöblom, Johan; Simon, Sébastien; Xu, Zhenghe

    2015-04-01

    Asphalthenes are typically defined as the fraction of petroleum insoluble in n-alkanes (typically heptane, but also hexane or pentane) but soluble in toluene. This fraction causes problems of emulsion formation and deposition/precipitation during crude oil production, processing and transport. From the definition it follows that asphaltenes are not a homogeneous fraction but is composed of molecules polydisperse in molecular weight, structure and functionalities. Their complexity makes the understanding of their properties difficult. Proper model molecules with well-defined structures which can resemble the properties of real asphaltenes can help to improve this understanding. Over the last ten years different research groups have proposed different asphaltene model molecules and studied them to determine how well they can mimic the properties of asphaltenes and determine the mechanisms behind the properties of asphaltenes. This article reviews the properties of the different classes of model compounds proposed and present their properties by comparison with fractionated asphaltenes. After presenting the interest of developing model asphaltenes, the composition and properties of asphaltenes are presented, followed by the presentation of approaches and accomplishments of different schools working on asphaltene model compounds. The presentation of bulk and interfacial properties of perylene-based model asphaltene compounds developed by Sjöblom et al. is the subject of the next part. Finally the emulsion-stabilization properties of fractionated asphaltenes and model asphaltene compounds is presented and discussed.

  2. Single Molecule Mechanochemistry

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Zhang, Yanxing; Ho, Wilson; Wu, Ruqian; Ruqian Wu, Yanxing Zhang Team; Wilson Ho, Shaowei Li Team

    Mechanical forces can be used to trigger chemical reactions through bending and stretching of chemical bonds. Using the reciprocating movement of the tip of a scanning tunneling microscope (STM), mechanical energy can be provided to a single molecule sandwiched between the tip and substrate. When the mechanical pulse center was moved to the outer ring feature of a CO molecule, the reaction rate was significantly increased compared with bare Cu surface and over Au atoms. First, DFT calculations show that the presence of CO makes the Cu cavity more attractive toward H2 Second, H2 prefers the horizontal adsorption geometry in the Cu-Cu and Au-Cu cavities and no hybridization occurs between the antibonding states of H2 and states of Cu atoms. While H2 loses electrons from its bonding state in all three cavities, the filling of its anti-bonding state only occurs in the CO-Cu cavity. Both make the CO-Cu cavity much more effectively to chop the H2 molecule. Work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space-Time Limit (CaSTL) under Grant No. CHE-1414466.

  3. Photonic Molecule Lasers Revisited

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  4. Nuclear age thinking

    SciTech Connect

    Depastas, A.N.

    1990-01-01

    According to the practicalist school, thinking emerges from activity and each human practice is giving food to its own distinctive kinds of perception, conduct, and perspective of the world. The author, while studying and describing developments after the commencement of the nuclear age in many fields of human behavior and knowledge, including the social sciences, particularly psychology and international politics, became an adherent to the practicalist philosophy when he perceived new relevant thoughts coming to his mind at the same time. Indeed writing is a learning experience. He has, therefore, systematically included these thoughts in the following pages and synoptically characterized them in the title: Nuclear Age Thinking. He considers this kind of thinking as automatic, conscious activity which is gradually influencing our choices and decisions. The author has reservations as regards Albert Einstein's saying that the unleashed power of the atom changed everything save our modes of thinking, because the uncontrollability of nuclear energy is apparently in the subconscious of mankind nowadays, influencing the development of a new mode of thinking, and that is the nuclear age thinking which is the subject of this book. Nuclear age thinking drives from the collective fear of extinction of life on earth due to this new power at man's disposal, and it is not only limited to the change in the conventional meaning of the words war and peace.

  5. Nuclear waste

    SciTech Connect

    Not Available

    1988-05-01

    This paper discusses how, as part of the Department of Energy's implementation of the Nuclear Waste Policy Act of 1982, DOE is required to investigate a site at Yucca Mountain, Nevada and, if it determines that the site is suitable, recommend to the President its selection for a nuclear waste repository. The Nuclear Regulatory Commission, in considering development of the plan, issued five objections, one of which is DOE's failure to recognize the range of alternative conceptual models of the Yucca Mountain site that can be supported by the limited existing technical data. At the end of the quarter DOE directed its project offices in Washington and Texas to begin orderly phase-out of all site-specific repository activities. Costs for this phase-out are $53 million for the Deaf Smith site and $85 million for the Hanford site.

  6. Establishment of a nuclear pharmacy.

    PubMed

    Porter, W C; Ice, R D; Hetzel, K R

    1975-10-01

    The University of Michigan Regional Nuclear Pharmacy is described. The scope of operation of the nuclear pharmacy includes radiopharmaceutical formulation and dispensing, quality control, inventory control, research and development of new radiopharmaceuticals, and consultation. Also discussed are program objectives, pharmacy location, organizational structure, budget and staff, economic considerations, facilities and equipment, and legal considerations.

  7. Nuclear and radiological Security: Introduction.

    SciTech Connect

    Miller, James Christopher

    2016-02-24

    Nuclear security includes the prevention and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer, or other malicious acts involving nuclear or other radioactive substances or their associated facilities. The presentation begins by discussing the concept and its importance, then moves on to consider threats--insider threat, sabotage, diversion of materials--with considerable emphasis on the former. The intrusion at Pelindaba, South Africa, is described as a case study. The distinction between nuclear security and security of radiological and portable sources is clarified, and the international legal framework is touched upon. The paper concludes by discussing the responsibilities of the various entities involved in nuclear security.

  8. Russia's nuclear elite on rampage

    SciTech Connect

    Popova, L.

    1993-04-01

    In July 1992, the Russian Ministry of Nuclear Industry began pressing the Russian government to adopt a plan to build new nuclear power plants. In mid-January 1993 the government announced that it will build at least 30 new nuclear power plants, and that the second stage of the building program will include construction of three fast-breeder reactors. In this article, the author addresses the rationale behind this massive building program, despite the country's economic condition and public dread of another Chernobyl-type accident. The viewpoints of both the Russian Ministry of Nuclear Industry and opposing interests are discussed.

  9. Nuclear Models

    NASA Astrophysics Data System (ADS)

    Fossión, Rubén

    2010-09-01

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction). Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  10. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  11. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  12. The state of nuclear forensics

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Tumey, Scott J.

    2013-01-01

    Nuclear terrorism has been identified as one of the most serious security threats facing the world today. Many countries, including the United States, have incorporated nuclear forensic analysis as a component of their strategy to prevent nuclear terrorism. Nuclear forensics involves the laboratory analysis of seized illicit nuclear materials or debris from a nuclear detonation to identify the origins of the material or weapon. Over the years, a number of forensic signatures have been developed to improve the confidence with which forensic analysts can draw conclusions. These signatures are validated and new signatures are discovered through research and development programs and in round-robin exercises among nuclear forensic laboratories. The recent Nuclear Smuggling International Technical Working Group Third Round Robin Exercise and an on-going program focused on attribution of uranium ore concentrate provide prime examples of the current state of nuclear forensics. These case studies will be examined and the opportunities for accelerator mass spectrometry to play a role in nuclear forensics will be discussed.

  13. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  14. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10

    PubMed Central

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S.; Disney, Matthew D.

    2016-01-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells. PMID:27248057

  15. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    PubMed

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-06-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.

  16. In defiance of nuclear deterrence: anti-nuclear New Zealand after two decades.

    PubMed

    Reitzig, Andreas

    2006-01-01

    In 1984, nuclear-armed and nuclear-powered vessels were banned from New Zealand to express the country's rejection of the nuclear deterrence concept. This led to a disagreement with the United States. Today, the ban on nuclear-powered ships is the only element of the nuclear-free legislation that still strains US-New Zealand relations. This article presents the reasons for the ban on nuclear-powered ships, which include scientific safety concerns, a symbolic rejection of the nuclear deterrence posture, and patriotic factors such as a nuclear-free national identity. The military and economic consequences of the ban are also examined. Since the ban on nuclear-powered vessels appears to be neither widely known abroad nor commonly recognised as a supportive disarmament measure outside New Zealand, it is concluded that whatever the future of this ban will be, New Zealand's anti-nuclear image will remain known internationally through the ban on nuclear arms.

  17. Magnetic quantum tunneling: insights from simple molecule-based magnets.

    PubMed

    Hill, Stephen; Datta, Saiti; Liu, Junjie; Inglis, Ross; Milios, Constantinos J; Feng, Patrick L; Henderson, John J; del Barco, Enrique; Brechin, Euan K; Hendrickson, David N

    2010-05-28

    This perspectives article takes a broad view of the current understanding of magnetic bistability and magnetic quantum tunneling in single-molecule magnets (SMMs), focusing on three families of relatively simple, low-nuclearity transition metal clusters: spin S = 4 Ni(II)(4), Mn(III)(3) (S = 2 and 6) and Mn(III)(6) (S = 4 and 12). The Mn(III) complexes are related by the fact that they contain triangular Mn(III)(3) units in which the exchange may be switched from antiferromagnetic to ferromagnetic without significantly altering the coordination around the Mn(III) centers, thereby leaving the single-ion physics more-or-less unaltered. This allows for a detailed and systematic study of the way in which the individual-ion anisotropies project onto the molecular spin ground state in otherwise identical low- and high-spin molecules, thus providing unique insights into the key factors that control the quantum dynamics of SMMs, namely: (i) the height of the kinetic barrier to magnetization relaxation; and (ii) the transverse interactions that cause tunneling through this barrier. Numerical calculations are supported by an unprecedented experimental data set (17 different compounds), including very detailed spectroscopic information obtained from high-frequency electron paramagnetic resonance and low-temperature hysteresis measurements. Comparisons are made between the giant spin and multi-spin phenomenologies. The giant spin approach assumes the ground state spin, S, to be exact, enabling implementation of simple anisotropy projection techniques. This methodology provides a basic understanding of the concept of anisotropy dilution whereby the cluster anisotropy decreases as the total spin increases, resulting in a barrier that depends weakly on S. This partly explains why the record barrier for a SMM (86 K for Mn(6)) has barely increased in the 15 years since the first studies of Mn(12)-acetate, and why the tiny Mn(3) molecule can have a barrier approaching 60% of this

  18. Negative ions of polyatomic molecules.

    PubMed Central

    Christophorou, L G

    1980-01-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies. PMID:7428744

  19. Negative ions of polyatomic molecules.

    PubMed

    Christophorou, L G

    1980-06-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies.

  20. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  1. Nuclear Innovation Workshops Report

    SciTech Connect

    Jackson, John Howard; Allen, Todd Randall; Hildebrandt, Philip Clay; Baker, Suzanne Hobbs

    2015-09-01

    The Nuclear Innovation Workshops were held at six locations across the United States on March 3-5, 2015. The data collected during these workshops has been analyzed and sorted to bring out consistent themes toward enhancing innovation in nuclear energy. These themes include development of a test bed and demonstration platform, improved regulatory processes, improved communications, and increased public-private partnerships. This report contains a discussion of the workshops and resulting themes. Actionable steps are suggested at the end of the report. This revision has a small amount of the data in Appendix C removed in order to avoid potential confusion.

  2. NUCLEAR MEMBRANES FROM MAMMALIAN LIVER

    PubMed Central

    Franke, Werner W.; Deumling, Barbara; Ermen, Baerbel; Jarasch, Ernst-Dieter; Kleinig, Hans

    1970-01-01

    Nuclear membranes were isolated from rat and pig liver by sonication of highly purified nuclear fractions and subsequent removal of adhering nucleoproteins in a high salt medium. The fractions were examined in the electron microscope by both negative staining and thin sectioning techniques and were found to consist of nuclear envelope fragments of widely varying sizes. Nuclear pore complex constituents still could frequently be recognized. The chemical composition of the nuclear membrane fractions was determined and compared with those of microsomal fractions prepared in parallel. For total nuclei as well as for nuclear membranes and microsomes, various enzyme activities were studied. The results indicate that a similarity exists between both fractions of cytomembranes, nuclear envelope, and endoplasmic reticulum, with respect to their RNA:protein ratio and their content of polar and nonpolar lipids. Both membranous fractions had many proteins in common including some membrane-bound enzymes. Activities in Mg-ATPase and the two examined cytochrome reductases were of the same order of magnitude. The content of cytochrome b5 as well as of P-450 was markedly lower in the nuclear membranes. The nuclear membranes were found to have a higher buoyant density and to be richer in protein. The glucose-6-phosphatase and Na-K-ATPase activities in the nuclear membrane fraction were very low. In the gel electrophoresis, in addition to many common protein bands, some characteristic ones for either microsomal or nuclear membranous material were detected. Significant small amounts of DNA and RNA were found to remain closely associated with the nuclear envelope fragments. Our findings indicate that nuclear and endoplasmic reticulum membranes which are known to be in morphological continuity have, besides a far-reaching similarity, some characteristic differences. PMID:4317731

  3. Climatic Consequences of Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2011-12-01

    A nuclear war between Russia and the United States could still produce nuclear winter, even using the reduced arsenals of about 4000 total nuclear weapons that will result by 2017 in response to the New START treaty. A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, could produce climate change unprecedented in recorded human history. This scenario, using much less than 1% of the explosive power of the current global nuclear arsenal, would produce so much smoke from the resulting fires that it would plunge the planet to temperatures colder than those of the Little Ice Age of the 16th to 19th centuries, shortening the growing season around the world and threatening the global food supply. Crop model studies of agriculture in the U.S. and China show massive crop losses, even for this regional nuclear war scenario. Furthermore, there would be massive ozone depletion with enhanced ultraviolet radiation reaching the surface. These surprising conclusions are the result of recent research (see URL) by a team of scientists including those who produced the pioneering work on nuclear winter in the 1980s, using the NASA GISS ModelE and NCAR WACCM GCMs. The soot is self-lofted into the stratosphere, and the effects of regional and global nuclear war would last for more than a decade, much longer than previously thought. Nuclear proliferation continues, with nine nuclear states now, and more working to develop or acquire nuclear weapons. The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia, the U.S., and the rest of the world.

  4. Dynamics of interstitial hydrogen molecules in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Estreicher, S. K.; Wells, K.; Fedders, P. A.; Ordejón, Pablo

    2001-07-01

    The static and dynamic properties of interstitial H2, HD and D2 molecules in crystalline silicon are obtained from ab initio molecular-dynamics simulations with atomic-like basis sets. The static (T = 0) calculations agree with those of most other authors: the centre of mass (CM) of H2 is at the tetrahedral interstitial (T) site, the molecule is a nearly-free rotator, and the activation energy for diffusion is 0.90 eV. However, these results fail to explain a number of experimental observations, such as why H2 is infrared (IR) active, why the expected ortho/para splitting is not present, why the symmetry is C1, why the piezospectroscopic tensors of H2 and D2 are identical or why the exposure to an H/D mix results in a single HD line which is not only at the wrong place but also much weaker than expected. In the present work, we extend the static calculations to include the constant-temperature dynamics for H2 in Si. At T>0 K, the CM of the molecule no longer remains at the T site. Instead, H2 `bounces' off the walls of its tetrahedral cage and exchanges energy with the host crystal. The average position of the CM is away from the T site along <100>. Under uniaxial stress, the CM shifts off that axis and the molecule has C1 symmetry. The H-H stretch frequency calculated from the Fourier transform of the v-v autocorrelation function is close to the measured one. Since the potential energy experienced by H2 in Si near the T site is very flat, we argue that H2 should be a nearly free quantum mechanical rotator. Up to room temperature, only the j = 0 and j = 1 rotational states are occupied, H2 resembles a sphere rather than a dumbbell, the symmetry is determined by the position of the CM and HD is equivalent to DH in any symmetry. The rapid motion of the CM implies that an ortho-to-para transition will occur if a large magnetic moment is nearby. Several candidates are proposed. Since nuclear quantum effects are not included in our calculations, we cannot address the

  5. VizieR Online Data Catalog: Partition functions for molecules and atoms (Barklem+, 2016)

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Collet, R.

    2016-02-01

    The results and input data are presented in the following files. Table 1 contains dissociation energies from the literature, and final adopted values, for 291 molecules. The literature values are from the compilations of Huber & Herzberg (1979, Constants of Diatomic Molecules (Van Nostrand Reinhold), Luo (2007, Comprehensive Handbook of Chemical Bond Energies (CRC Press)) and G2 theory calculations of Curtiss et al. (1991, J. Chem. Phys., 94, 7221). Table 2 contains the input data for the molecular calculations including adopted dissociation energy, nuclear spins, molecular spectroscopic constants and their sources. There are 291 files, one for each molecule, labelled by the molecule name. The various molecular spectroscopic constants are as defined in the paper. Table 4 contains the first, second and third ionisation energies for all chemical elements from H to U. The data comes from the CRC Handbook of Chemistry and Physics (Haynes, W.M. 2010, CRC Handbook of Chemistry and Physics, 91st edn. (CRC Press, Taylor and Francis Group)). Table 5a contains a list of keys to bibliographic references for the atomic energy level data that was extracted from NIST Atomic Spectra Database and used in the present work to compute atomic partition functions. The citation keys are abbreviations of the full bibliographic references which are made available in Table 5b in BibTeX format. Table 5b contains the full bibliographic references for the atomic energy level data that was extracted from the NIST Atomic Spectra Database. Table 6 contains tabulated partition function data as a function of temperature for 291 molecules. Table 7 contains tabulated equilibrium constant data as a function of temperature for 291 molecules. Table 8 contains tabulated partition function data as a function of temperature for 284 atoms and ions. The paper should be consulted for further details. (10 data files).

  6. Nuclear orbiting

    SciTech Connect

    Shapira, D.

    1988-01-01

    Nuclear orbiting following collisions between sd and p shell nuclei is discussed. The dependence of this process on the real and imaginary parts of the nucleus-nucleus potential is discussed, as well as the evolution of the dinucleus toward a fully equilibrated fused system. 26 refs., 15 figs.

  7. Nuclear Misinformation

    ERIC Educational Resources Information Center

    Ford, Daniel F.; Kendall, Henry W.

    1975-01-01

    Many scientists feel that research into nuclear safety has been diverted or distorted, and the results of the research concealed or inaccurately reported on a large number of occasions. Of particular concern have been the emergency cooling systems which have not, as yet, been adequately tested. (Author/MA)

  8. Nuclear Terrorism.

    SciTech Connect

    Hecker, Siegfried S.

    2001-01-01

    As pointed out by several speakers, the level of violence and destruction in terrorist attacks has increased significantly during the past decade. Fortunately, few have involved weapons of mass destruction, and none have achieved mass casualties. The Aum Shinrikyo release of lethal nerve agent, sarin, in the Tokyo subway on March 20, 1995 clearly broke new ground by crossing the threshold in attempting mass casualties with chemical weapons. However, of all weapons of mass destruction, nuclear weapons still represent the most frightening threat to humankind. Nuclear weapons possess an enormous destructive force. The immediacy and scale of destruction are unmatched. In addition to destruction, terrorism also aims to create fear among the public and governments. Here also, nuclear weapons are unmatched. The public's fear of nuclear weapons or, for that matter, of all radioactivity is intense. To some extent, this fear arises from a sense of unlimited vulnerability. That is, radioactivity is seen as unbounded in three dimensions - distance, it is viewed as having unlimited reach; quantity, it is viewed as having deadly consequences in the smallest doses (the public is often told - incorrectly, of course - that one atom of plutonium will kill); and time, if it does not kill you immediately, then it will cause cancer decades hence.

  9. Nuclear medicine

    SciTech Connect

    Wagner, H.N. Jr.

    1986-10-17

    In 1985 and 1986 nuclear medicine became more and more oriented toward in vov chemistry, chiefly as a result of advances in positron emission tomography (PET). The most important trend was the extension of PET technology into the care of patients with brain tumors, epilepsy, and heart disease. A second trend was the increasing use of single-photon emission computed tomography (SPECT).

  10. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  11. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  12. Nuclear energy.

    PubMed

    Wilson, Peter D

    2010-01-01

    The technical principles and practices of the civil nuclear industry are described with particular reference to fission and its products, natural and artificial radioactivity elements principally concerned and their relationships, main types of reactor, safety issues, the fuel cycle, waste management, issues related to weapon proliferation, environmental considerations and possible future developments.

  13. Panel report: nuclear physics

    SciTech Connect

    Carlson, Joseph A; Hartouni, Edward P

    2010-01-01

    Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that supports the

  14. Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions

    NASA Technical Reports Server (NTRS)

    Shortt, Brian; Chutjian, Ara; Orient, Otto

    2008-01-01

    A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

  15. Molecules in crystals

    NASA Astrophysics Data System (ADS)

    Spackman, Mark A.

    2013-04-01

    Hirshfeld surface analysis has developed from the serendipitous discovery of a novel partitioning of the crystal electron density into discrete molecular fragments, to a suite of computational tools used widely for the identification, analysis and discussion of intermolecular interactions in molecular crystals. The relationship between the Hirshfeld surface and very early ideas on the internal structure of crystals is outlined, and applications of Hirshfeld surface analysis are presented for three molecules of historical importance in the development of modern x-ray crystallography: hexamethylbenzene, hexamethylenetetramine and diketopiperazine.

  16. Nuclear Regulatory Commission issuances

    SciTech Connect

    1996-04-01

    This report includes the issuances received during the April 1996 reporting period from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking. Included are issuances pertaining to: (1) Yankee Nuclear Power Station, (2) Georgia Tech Research Reactor, (3) River Bend Station, (4) Millstone Unit 1, (5) Thermo-Lag fire barrier material, and (6) Louisiana Energy Services.

  17. Nuclear concepts/propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Nuclear thermal and nuclear electric propulsion systems will enable and/or enhance important space exploration missions to the moon and Mars. Current efforts are addressing certain research areas, although NASA and DOE still have much work yet to do. Relative to chemical systems, nuclear thermal propulsion offers the potential of reduced vehicle weight, wider launch windows. and shorter transit times, even without aerobrakes. This would improve crew safety by reducing their exposure to cosmic radiation. Advanced materials and structures will be an important resource in responding to the challenges posed by safety and test facility requirements, environmental concerns, high temperature fuels and the high radiation, hot hydrogen environment within nuclear thermal propulsion systems. Nuclear electric propulsion (NEP) has its own distinct set of advantages relative to chemical systems. These include low resupply mass, the availability of large amounts of onboard electric power for other uses besides propulsion, improved launch windows, and the ability to share technology with surface power systems. Development efforts for NEP reactors will emphasize long life operation of compact designs. This will require designs that provide high fuel burnup and high temperature operation along with personnel and environmental safety.

  18. Ultra-cold molecule production.

    SciTech Connect

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-12-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled.

  19. Electronic spectroscopy of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1994-01-01

    This article provides an overview of the principal computational approaches and their accuracy for the study of electronic spectroscopy of diatomic molecules. We include a number of examples from our work that illustrate the range of application. We show how full configuration interaction benchmark calculations were instrumental in improving the understanding of the computational requirements for obtaining accurate results for diatomic spectroscopy. With this understanding it is now possible to compute radiative lifetimes accurate to within 10% for systems involving first- and second-row atoms. We consider the determination of the infrared vibrational transition probabilities for the ground states of SiO and NO, based on a globally accurate dipole moment function. We show how we were able to assign the a(sup "5)II state of CO as the upper state in the recently observed emission bands of CO in an Ar matrix. We next discuss the assignment of the photoelectron detachment spectra of NO and the alkali oxide negative ions. We then present several examples illustrating the state-of-the-art in determining radiative lifetimes for valence-valence and valence-Rydberg transitions. We next compare the molecular spectroscopy of the valence isoelectronic B2, Al2, and AlB molecules. The final examples consider systems involving transition metal atoms, which illustrate the difficulty in describing states with different numbers of d electrons.

  20. Is JPC = 3-+ molecule possible?

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Liu, Yan-Rui; Yao, Tao

    2015-02-01

    The confirmation of charged charmonium-like states indicates that heavy quark molecules should exist. Here we discuss the possibility of a molecule state with JPC = 3-+. In a one-boson-exchange model investigation for the S wave C = + D*D¯2* states, one finds that the strongest attraction is in the case J = 3 and I = 0 for both π and σ exchanges. Numerical analysis indicates that this hadronic bound state might exist if a phenomenological cutoff parameter around 2.3 GeV (1.5 GeV) is reasonable with a dipole (monopole) type form factor in the one-pion-exchange model. The cutoff for binding solutions may be reduced to a smaller value once the σ exchange contribution is included. If a state around the D*D¯2* threshold (≈4472 MeV) in the channel J/ψω (P wave) is observed, the heavy quark spin symmetry implies that it is not a cc¯ meson and the JPC are likely to be 3-+. Supported by National Natural Science Foundation of China (11275115), Shandong Province Natural Science Foundation (ZR2010AM023), SRF for ROCS, SEM, and Independent Innovation Foundation of Shandong University

  1. Covalent Chemistry beyond Molecules.

    PubMed

    Jiang, Juncong; Zhao, Yingbo; Yaghi, Omar M

    2016-03-16

    Linking molecular building units by covalent bonds to make crystalline extended structures has given rise to metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), thus bringing the precision and versatility of covalent chemistry beyond discrete molecules to extended structures. The key advance in this regard has been the development of strategies to overcome the "crystallization problem", which is usually encountered when attempting to link molecular building units into covalent solids. Currently, numerous MOFs and COFs are made as crystalline materials in which the large size of the constituent units provides for open frameworks. The molecular units thus reticulated become part of a new environment where they have (a) lower degrees of freedom because they are fixed into position within the framework; (b) well-defined spatial arrangements where their properties are influenced by the intricacies of the pores; and (c) ordered patterns onto which functional groups can be covalently attached to produce chemical complexity. The notion of covalent chemistry beyond molecules is further strengthened by the fact that covalent reactions can be carried out on such frameworks, with full retention of their crystallinity and porosity. MOFs are exemplars of how this chemistry has led to porosity with designed metrics and functionality, chemically-rich sequences of information within their frameworks, and well-defined mesoscopic constructs in which nanoMOFs enclose inorganic nanocrystals and give them new levels of spatial definition, stability, and functionality.

  2. Dihydrino molecule identification

    SciTech Connect

    Mills, R.L.; Good, W.R. ); Shaubach, R.M. )

    1994-01-01

    Three sets of heat production and [open quotes]ash[close quotes] identification data are presented. An exothermic reaction is reported wherein the electrons of hydrogen and deuterium atoms are stimulated to relax to quantized potential energy levels below that of the [open quotes]ground state[close quotes] via electrochemical reactants K[sup +] and K[sup +]; Pd[sup 2+] and Li[sup +]; or Pd and O[sub 2] of redox energy resonant with the energy hole that stimulates this transition. Calorimetry of pulsed current and continuous electrolysis of aqueous potassium carbonate (K[sup +]/K[sup +] electrocatalytic couple) at a nickel cathode were performed. The excess output power of 41 W exceeded by a factor >8 the total input power given by the product of the electrolysis voltage and current. The product of the exothermic reaction is atoms having electrons of energy below the ground state, which are predicted to form molecules. The predicted molecules were identified by their lack of reactivity with oxygen, by separation from molecular deuterium by cryofiltration, and by mass spectroscopic analysis. 15 refs., 12 figs., 9 tabs.

  3. Nuclear winter: implications for US and Soviet nuclear strategy

    SciTech Connect

    Romero, P.J.

    1984-12-01

    In November 1983 Dr. Carl Sagan and his colleagues reported to press on the results of their study of the atmospheric consequences of nuclear war. The TTAPS study found that for a wide range of possible U.S. -Soviet nuclear exchanges, including relatively small ones, the fires from nuclear detonations would inject into the stratosphere quantities of dust and soot that would obscure sunlight for months. Under the cloud, which would spread over most of the Northern Hemisphere, temperatures might drop scores of degrees, well below the freezing point of water; thus, nuclear winter. The TTAPS team's findings suggested that the consequences of a nuclear war might be even more gruesome than previously supposed, and the long-term climatic and biological results might be nearly as severe for a war of 100 megatons as for 5,000. From the point of view of informing policymakers and the public concerning the consequences of wars involving nuclear weapons, the politicization of the nuclear winter issue is unfortunate. We can hope that in the next few years the criticism and defense of the initial TTAPS work will give rise to significant additional analyses, to illuminate the question. Realistically, further study will probably include both confirmations and contradictions of the original findings, without necessarily resolving the issue. Sadly, the surrounding political atmosphere may obstruct sober consideration of the policy implications of the possibility of nuclear winter.

  4. Nuclear Weapons and Science Education.

    ERIC Educational Resources Information Center

    Wellington, J. J.

    1984-01-01

    Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)

  5. Molecules Best Paper Award 2013.

    PubMed

    McPhee, Derek J

    2013-02-05

    Molecules has started to institute a "Best Paper" award to recognize the most outstanding papers in the area of natural products, medicinal chemistry and molecular diversity published in Molecules. We are pleased to announce the second "Molecules Best Paper Award" for 2013.

  6. A Basic Guide to Nuclear Power.

    ERIC Educational Resources Information Center

    Martocci, Barbara; Wilson, Greg

    More than 100 nuclear power plants supply over 17 percent of the electricity in the United States. The basic principles of how nuclear energy works and how it is used to make electricity are explained in this profusely illustrated booklet written for the average sixth grade reader. Discussions include: (1) atomic structure; (2) nuclear fission;…

  7. Teaching Nuclear Issues. Occasional Paper No. 10.

    ERIC Educational Resources Information Center

    Hicks, David W.

    The nuclear debate is one of critical importance and should be explored as part of the school curriculum. The psychology of denying the issue of nuclear arms and the psychological effects of the arms race on children is examined in this paper. A number of topics that might be included in discussion of nuclear issues are the arms race, politics,…

  8. Nuclear Energy for Water Desalting, A Bibliography.

    ERIC Educational Resources Information Center

    Kuhns, Helen F., Comp.; And Others

    This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…

  9. Teaching Undergraduates about Nuclear Arms and Strategy.

    ERIC Educational Resources Information Center

    Harrison, Michael J.

    1985-01-01

    Nuclear arms education is being addressed in many academic disciplines and can be approached from many viewpoints. Rationale, ethical issues, instructional strategies, European views, and course materials are considered. A syllabus and references are also included for a course titled "Physics of Nuclear Arms and Nuclear War." (DH)

  10. Solvent effects on zero-point vibrational corrections to optical rotations and nuclear magnetic resonance shielding constants

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Ruud, Kenneth

    2008-01-01

    We present a study of solvent effects on the zero-point vibrational corrections (ZPVC) to optical rotations and nuclear magnetic resonance shielding constants of solvated molecules. The model used to calculate vibrational corrections rely on an expansion of the potential and property surfaces around an effective molecular geometry and includes both harmonic and anharmonic corrections. Numerical examples are presented for ( S)-propylene oxide in various solvents as well as for acetone and the three diazene molecules. We find that solvent effects on the ZPVCs may be significant and in some cases crucial to accurately predict solvent shifts on molecular properties.

  11. Nuclear Forensic Materials and Methods

    NASA Astrophysics Data System (ADS)

    Hutcheon, I. D.; Grant, P. M.; Moody, K. J.

    A short history and treatment of the various aspects of nuclear forensic analysis is followed by a discussion of the most common chemical procedures, including applications of tracers, radioisotopic generators, and sample chronometry. Analytic methodology discussed includes sample preparation, radiation detection, various forms of microscopy, and mass-spectrometric techniques. The chapter concludes with methods for the production and treatment of special nuclear materials and with a description of several actual case studies conducted at Livermore.

  12. Enhancing professionalism at GPU Nuclear

    SciTech Connect

    Coe, R.P. )

    1992-01-01

    Late in 1988, GPU Nuclear embarked on a major program aimed at enhancing professionalism at its Oyster Creek and Three Mile Island nuclear generating stations. The program was also to include its corporate headquarters in Parsippany, New Jersey. The overall program was to take several directions, including on-site degree programs, a sabbatical leave-type program for personnel to finish college degrees, advanced technical training for licensed staff, career progression for senior reactor operators, and expanded teamwork and leadership training for control room crew. The largest portion of this initiative was the development and delivery of professionalism training to the nearly 2,000 people at both nuclear generating sites.

  13. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  14. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  15. Small-molecule arginase inhibitors.

    PubMed

    Ivanenkov, Yan A; Chufarova, Nina V

    2014-01-01

    Arginase is an enzyme that metabolizes L-arginine to L-ornithine and urea. In addition to its fundamental role in the hepatic ornithine cycle, it also influences the immune systems in humans and mice. Arginase participates in many inflammatory disorders by decreasing the synthesis of nitric oxide and inducing fibrosis and tissue regeneration. L-arginine deficiency, which is modulated by myeloid cell arginase, suppresses T-cell immune response. This mechanism plays a fundamental role in inflammation-associated immunosuppression. Pathogens can synthesize their own arginase to elude immune reaction. Small-molecule arginase inhibitors are currently described as promising therapeutics for the treatment of several diseases, including allergic asthma, inflammatory bowel disease, ulcerative colitis, cardiovascular diseases (atherosclerosis and hypertension), diseases associated with pathogens (e.g., Helicobacter pylori, Trypanosoma cruzi, Leishmania, Mycobacterium tuberculosis and Salmonella), cancer and induced or spontaneous immune disorders. This article summarizes recent patents in the area of arginase inhibitors and discusses their properties.

  16. Electrokinetic concentration of charged molecules

    DOEpatents

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  17. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  18. Nuclear waste

    SciTech Connect

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review the alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.

  19. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  20. Biochips - Can molecules compute?

    NASA Astrophysics Data System (ADS)

    Tucker, J. B.

    1984-02-01

    In recent years the possibility has been considered to build 'biochip' computers, in which the silicon transistors of present machines would be replaced by large organic molecules or genetically engineered proteins. Two major advantages of such biochips over current devices would be related to vastly increased densities of computing elements, and entirely new styles of data processing, suited to such high-level tasks as pattern recognition and context-dependent analysis. The limitations of the semiconductor chip with respect to the density of elementary units due to size considerations and heat development could be overcome by making use of molecular switches. Attention is given to soliton switching, soliton logic, bulk molecular devices, analog biochips, 'intelligent' switches based on the employment of enzymes, robot vision, questions of biochip fabrication, protein engineering, and a strategy for the development of biochips.

  1. Fiber-mesh photonic molecule

    NASA Astrophysics Data System (ADS)

    Mishra, Subodha; Satpathy, Sashi

    2008-03-01

    Analogous to the photonic crystal, we introduce the concept of a fiber-mesh photonic molecule made up of optical fibers and study its transmission characteristics. We consider a specific example of a photonic molecule, inspired by the well-known C60 molecule, with the arms of the molecule formed out of single-moded optical fibers. The transmittance consists of sharp peaks determined by the pole structure of the scattering matrix in the complex energy plane. A molecule can be designed to control the positions and the widths of the transmission peaks, opening up the possibility of building new photonic devices such as high quality band-pass filters.

  2. The Future of Spacecraft Nuclear Propulsion

    NASA Astrophysics Data System (ADS)

    Jansen, F.

    2014-06-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  3. Nuclear education in public health and nursing

    SciTech Connect

    Winder, A.E.; Stanitis, M.A.

    1988-08-01

    Twenty-three public health schools and 492 university schools of nursing were surveyed to gather specific information on educational programs related to nuclear war. Twenty public health schools and 240 nursing schools responded. Nuclear war-related content was most likely to appear in disaster nursing and in environmental health courses. Three schools of public health report that they currently offer elective courses on nuclear war. Innovative curricula included political action projects for nuclear war prevention.

  4. US strategic nuclear forces, end of 1996

    SciTech Connect

    Norris, R.S.; Arkin, W.M.

    1997-01-01

    Quantitative data on operational nuclear weapons is tabulated and described in some detail in the article. Nuclear weapons categories reported include intercontinental ballistic missiles, nuclear-powered ballistic missile submarines, submarine-launched ballistic missiles, and bombers and weapons. The total number of warheads in the U.S. arsenal is approximately 7150, slightly lower than last year`s level of almost 8000 warheads. There are 1085 launchers and nuclear-powered ballistic missile submarines.

  5. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  6. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  7. SKIRT: Stellar Kinematics Including Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Dejonghe, Herwig; Davies, Jonathan

    2011-09-01

    SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.

  8. Reexamining the Ethics of Nuclear Technology.

    PubMed

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  9. Coupling of Photonic and Electronic Spin Catalyzed by Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Gay, Timothy

    2011-05-01

    Recent experiments involving the collisions of polarized photons or polarized electrons with simple diatomic molecules have shown novel ways in which the net spin of electrons can be converted into the net spin of photons following the collisions, or vice versa. I will discuss three recent experiments that illustrate such transformations: the production of nuclear rotational spin in nitrogen molecules excited by polarized electrons with the subsequent emission of polarized photons, the excitation by polarized electrons of rotational eigenstates of hydrogen molecules and the subsequent emission of circularly-polarized light, and the photolysis of hydrogen molecules by circularly-polarized light yielding photofragments that ``spin the wrong way.'' To our knowledge, these latter measurements represent the first observation of photofragment orientation by direct observation of the polarization of the photofragment fluoresence. Work supported by the NSF through grant PHY-0821385, the DOE through the use of the ALS at LBL, and ANSTO (Access to Major Research Facilities Programme).

  10. Prospects for Fundamental Symmetry Tests with Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Berger, Robert; Isaev, Timur

    2013-06-01

    Special features of polyatomic molecules make them attractive candidates for search for violation of fundamental symmetries and variation of fundamental constants [1, 2]. We discuss the possibility of searching for nuclear spin-dependent space-parity violating (NSD-PV) interaction in closed-shell and open-shell polyatomic molecules. The parameter W_{a} of the effective molecular spin-rotational Hamiltonian characterising the strength of NSD-PV interaction in open-shell linear molecules is discussed and approaches for its calculation outlined. In addition, possibilities for detecting NSD-PV in chiral molecules via NMR and MW spectroscopy are presented. REFERENCES: C. Stoeffler et al, Phys. Chem. Chem. Phys., 13 (3), 2011; M. Quack, J. Stohner and M. Willeke, Ann. Rev. Phys. Chem., 59, 2008 J. Bagdonaite et al, Science, 339 (6115), 2013.

  11. Investigating molecule-semiconductor interfaces with nonlinear spectroscopies

    NASA Astrophysics Data System (ADS)

    Giokas, Paul George

    Knowledge of electronic structures and transport mechanisms at molecule-semiconductor interfaces is motivated by their ubiquity in photoelectrochemical cells. In this dissertation, optical spectroscopies are used uncover the influence of electronic coupling, coherent vibrational motion, and molecular geometry, and other factors on dynamics initiated by light absorption at such interfaces. These are explored for a family of ruthenium bipyridyl chromophores bound to titanium dioxide. Transient absorption measurements show molecular singlet state electron injection in 100 fs or less. Resonance Raman intensity analysis suggests the electronic excitations possess very little charge transfer character. The connections drawn in this work between molecular structure and photophysical behavior contribute to the general understanding of photoelectrochemical cells. Knowledge of binding geometry in nanocrystalline films is challenged by heterogeneity of semiconductor surfaces. Polarized resonance Raman spectroscopy is used to characterize the ruthenium chromophore family on single crystal titanium dioxide . Chromophores display a broad distribution of molecular geometries at the interface, with increased variation in binding angle due to the presence of a methylene bridge, as well as additional phosphonate anchors. This result implies multiple binding configurations for chromophores which incorporate multiple phosphonate ligands, and indicates the need for careful consideration when developing surface-assembled chromophore-catalyst cells. Electron transfer transitions occurring on the 100 fs time scale challenge conventional second-order approximations made when modeling these reactions. A fourth-order perturbative model which includes the relationship between coincident electron transfer and nuclear relaxation processes is presented. Insights provided by the model are illustrated for a two-level donor molecule. The presented fourth-order rate formula constitutes a rigorous

  12. Language and the nuclear arms debate: Nukespeak today

    SciTech Connect

    Not Available

    1985-01-01

    This book presents papers on the political, cultural and ethical aspects of nuclear weapons. Topics considered include language and ideology, the pragmatics of speeches against the peace movement in Britain, the rhetoric of national defense in the US, pro-nuclear arguments, nuclear deterrence, the media's coverage of anti-nuclear demonstrations, news reports, an analysis of the television film The Day After, nuclear disarmament, an analysis of anti-nuclear humor, psychological models, and sociological models.

  13. Long-range effects in electron scattering by polar molecules

    NASA Astrophysics Data System (ADS)

    Fabrikant, Ilya I.

    2016-11-01

    We review long-range effects in electron collisions with polar molecules, starting with elastic scattering. We then go to rotationally and vibrationally inelastic processes and dissociative electron attachment. The last two are strongly affected by vibrational Feshbach resonances which have been observed and described theoretically in many systems from simple diatomic molecules to more complex polyatomics, biologically relevant molecules, and van der Waals clusters. We then review environmental effects which include electron interaction with molecules adsorbed on surfaces and molecules in cluster environments. We concentrate on physics rather than on listing results of ab initio calculations. With increasing complexity of targets and processes model approaches become more relevant. We demonstrate their success in the theoretical description of electron attachment to polyatomic molecules and to molecules in complex environments.

  14. A spatial model of cellular molecular trafficking including active transport along microtubules.

    PubMed

    Cangiani, A; Natalini, R

    2010-12-21

    We consider models of Ran-driven nuclear transport of molecules such as proteins in living cells. The mathematical model presented is the first to take into account for the active transport of molecules along the cytoplasmic microtubules. All parameters entering the models are thoroughly discussed. The model is tested by numerical simulations based on discontinuous Galerkin finite element methods. The numerical experiments are compared to the behavior observed experimentally.

  15. Rationally Designed Small Molecules Targeting the RNA That Causes Myotonic Dystrophy Type 1 Are Potently Bioactive

    PubMed Central

    Childs-Disney, Jessica L.; Hoskins, Jason; Rzuczek, Suzanne G.; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)exp, is present in the 3′ untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)exp folds into a hairpin with regularly repeating 5′CUG/3′GUC motifs and sequester muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1 including: (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)exp were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5′CUG/3′GUC motif in r(CUG)exp. Therefore, we designed multivalent ligands to bind multiple copies of this motif simultaneously in r(CUG)exp. Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence. PMID:22332923

  16. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.

    PubMed

    Childs-Disney, Jessica L; Hoskins, Jason; Rzuczek, Suzanne G; Thornton, Charles A; Disney, Matthew D

    2012-05-18

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.

  17. Organ Preference of Cancer Metastasis and Metastasis-Related Cell Adhesion Molecules Including Carbohydrates.

    PubMed

    Kawaguchi, Takanori

    2016-01-01

    This review starts on one of our special interests, the organ preference of metastasis. We examined data on 1,117 autopsy cases and found that the organ distribution of metastasis of cancers of the lung, pancreas, stomach, colon, rectum, uterine cervix, liver, bile duct, and esophagus involved the lung, liver, adrenal gland, bone/bone marrow, lymph node, and pleura/peritoneum. Cancers of the kidney, thyroid, ovary, choriocarcinoma, and breast, however, manifested different metastatic patterns. The distribution of leukemia and lymphoma metastases was quite different from that of epithelial cancers. On the basis of experimental studies, we believe that the anatomical-mechanical hypothesis should be replaced by the microinjury hypothesis, which suggests that tissue microinjury induced by temporal tumor cell embolization is crucial for successful metastasis. This hypothesis may actually reflect the so-called inflammatory oncotaxis concept. To clarify the mechanisms underlying metastasis, we developed an experimental model system of a rat hepatoma AH7974 that embraced substrate adhesiveness. This model did not prove a relationship between substrate-adhesion potential and metastatic lung-colonizing potential of tumor cells, but metastatic potential was correlated with the expression of the laminin carbohydrate that was recognized by Griffonia (Bandeiraea) simplicifolia isolectin G4. Therefore, we investigated the relationship between carbohydrate expression profiles and metastasis and prognosis. We indeed found an intimate relationship between the carbohydrate expression of cancer cells and the progression of malignant tumors, organ preference of metastasis, metastatic potential of tumor cells, and prognosis of patients.

  18. Nuclear Autonomy in Multinucleate Fungi

    PubMed Central

    Roberts, Samantha E.; Gladfelter, Amy S.

    2015-01-01

    Within many fungal syncytia, nuclei behave independently despite sharing a common cytoplasm. Creation of independent nuclear zones of control in one cell is paradoxical considering random protein synthesis sites, predicted rapid diffusion rates, and well-mixed cytosol. In studying the surprising fungal nuclear autonomy, new principles of cellular organization are emerging. We discuss the current understanding of nuclear autonomy, focusing on asynchronous cell cycle progression where most work has been directed. Mechanisms underlying nuclear autonomy are diverse including mRNA localization, ploidy variability, and nuclear spacing control. With the challenges fungal syncytia face due to cytoplasmic size and shape, they serve as powerful models for uncovering new subcellular organization modes, variability sources among isogenic uninucleate cells, and the evolution of multicellularity. PMID:26379197

  19. Modeling nuclear processes by Simulink

    SciTech Connect

    Rashid, Nahrul Khair Alang Md

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  20. Modeling nuclear processes by Simulink

    NASA Astrophysics Data System (ADS)

    Rashid, Nahrul Khair Alang Md

    2015-04-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  1. Compositions and methods for treating nuclear fuel

    DOEpatents

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  2. Compositions and methods for treating nuclear fuel

    DOEpatents

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2014-01-28

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  3. Small molecule inhibitors of ebola virus infection.

    PubMed

    Picazo, Edwige; Giordanetto, Fabrizio

    2015-02-01

    Ebola viruses are extremely virulent and highly transmissible. They are responsible for sporadic outbreaks of severe hemorrhagic fevers with human mortality rates of up to 90%. No prophylactic or therapeutic treatments in the form of vaccine, biologicals or small molecule, currently exist. Yet, a wealth of antiviral research on ebola virus is being generated and potential inhibitors have been identified in biological screening and medicinal chemistry programs. Here, we detail the state-of-the-art in small molecule inhibitors of ebola virus infection, with >60 examples, including approved drugs, compounds currently in clinical trials, and more exploratory leads, and summarize the associated in vitro and in vivo evidence for their effectiveness.

  4. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  5. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    SciTech Connect

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.; Wehnert, Manfred; Huebner, Stefan

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  6. The Nuclear Power and Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Leventhal, Paul

    1990-01-01

    Explains problems enforcing the Nuclear Non-Proliferation Treaty (NPT) of 1968. Provides factual charts and details concerning the production of nuclear energy and arms, the processing and disposal of waste products, and outlines the nuclear fuel cycle. Discusses safeguards, the risk of nuclear terrorism, and ways to deal with these problems. (NL)

  7. The Nuclear Power/Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Totten, Sam; Totten, Martha Wescoat

    1985-01-01

    Once they have nuclear power, most countries will divert nuclear materials from commercial to military programs. In excerpts from the book "Facing the Danger" (by Totten, S. and M. W., Crossing Press, 1984), five anti-nuclear activists explain how and why they have been addressing the nuclear connection. (RM)

  8. When lamins go bad: nuclear structure and disease.

    PubMed

    Schreiber, Katherine H; Kennedy, Brian K

    2013-03-14

    Mutations in nuclear lamins or other proteins of the nuclear envelope are the root cause of a group of phenotypically diverse genetic disorders known as laminopathies, which have symptoms that range from muscular dystrophy to neuropathy to premature aging syndromes. Although precise disease mechanisms remain unclear, there has been substantial progress in our understanding of not only laminopathies, but also the biological roles of nuclear structure. Nuclear envelope dysfunction is associated with altered nuclear activity, impaired structural dynamics, and aberrant cell signaling. Building on these findings, small molecules are being discovered that may become effective therapeutic agents.

  9. Electron-excited molecule interactions

    SciTech Connect

    Christophorou, L.G. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  10. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  11. Microfluidic devices and methods including porous polymer monoliths

    SciTech Connect

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  12. Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements.

    PubMed

    Walcott, Sam; Warshaw, David M; Debold, Edward P

    2012-08-08

    In contracting muscle, individual myosin molecules function as part of a large ensemble, hydrolyzing ATP to power the relative sliding of actin filaments. The technological advances that have enabled direct observation and manipulation of single molecules, including recent experiments that have explored myosin's force-dependent properties, provide detailed insight into the kinetics of myosin's mechanochemical interaction with actin. However, it has been difficult to reconcile these single-molecule observations with the behavior of myosin in an ensemble. Here, using a combination of simulations and theory, we show that the kinetic mechanism derived from single-molecule experiments describes ensemble behavior; but the connection between single molecule and ensemble is complex. In particular, even in the absence of external force, internal forces generated between myosin molecules in a large ensemble accelerate ADP release and increase how far actin moves during a single myosin attachment. These myosin-induced changes in strong binding lifetime and attachment distance cause measurable properties, such as actin speed in the motility assay, to vary depending on the number of myosin molecules interacting with an actin filament. This ensemble-size effect challenges the simple detachment limited model of motility, because even when motility speed is limited by ADP release, increasing attachment rate can increase motility speed.

  13. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  14. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  15. Nuclear security

    SciTech Connect

    Dingell, J.D.

    1991-02-01

    The Department of Energy's (DOE) Lawrence Livermore National Laboratory, located in Livermore, California, generates and controls large numbers of classified documents associated with the research and testing of nuclear weapons. Concern has been raised about the potential for espionage at the laboratory and the national security implications of classified documents being stolen. This paper determines the extent of missing classified documents at the laboratory and assesses the adequacy of accountability over classified documents in the laboratory's custody. Audit coverage was limited to the approximately 600,000 secret documents in the laboratory's custody. The adequacy of DOE's oversight of the laboratory's secret document control program was also assessed.

  16. Nuclear dualism.

    PubMed

    Karrer, Kathleen M

    2012-01-01

    Nuclear dualism is a characteristic feature of the ciliated protozoa. Tetrahymena have two different nuclei in each cell. The larger, polyploid, somatic macronucleus (MAC) is the site of transcriptional activity in the vegetatively growing cell. The smaller, diploid micronucleus (MIC) is transcriptionally inactive in vegetative cells, but is transcriptionally active in mating cells and responsible for the genetic continuity during sexual reproduction. Although the MICs and MACs develop from mitotic products of a common progenitor and reside in a common cytoplasm, they are different from one another in almost every respect.

  17. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  18. Electrochromic Graphene Molecules

    DOE PAGES

    Ji, Zhiqiang; Doorn, Stephen K.; Sykora, Milan

    2015-03-13

    Polyclic aromatic hydrocarbons, also called Graphene Molecules (GMs), with chemical composition C132H36(COOH)2 were synthesized in-situ on the surface of transparent nanocrystaline indium tin oxide (nc-ITO) electrodes. Their electronic structure was studied electrochemically and spectro-electrochemically. Variations in the potential applied onto the nc-ITO/GM electrodes induce only small changes in the observed current but they produce dramatic changes in the absorption of the GMs, which are associated with their oxidation and reduction. Analysis of the absorption changes using modified Nernst equation is used to determine standard potentials associated with the individual charge transfer processes. For the GMs prepared here these were foundmore » to be E1,ox 0 = 0.77± 0.01 V and E2,ox 0 = 1.24 ± 0.02 V vs. NHE for the first and second oxidation and E1,red 0 = -1.50 ± 0.04 V for the first reduction. The charge transfer processes are found to be non-ideal. The non-ideality factors associated with the oxidation and reduction processes suggest presence of strong interactions between the GM redox centers. Under the conditions of potential cycling GMs show rapid (seconds) color change with high contrast and stability. An electrochromic application is demonstrated wherein the GMs are used as the optically active component.« less

  19. Atmospheric trace molecule spectroscopy

    NASA Technical Reports Server (NTRS)

    Farmer, C. B.

    1982-01-01

    The Spacelab investigation entitled Atmospheric Trace Molecule Spectroscopy (ATMOS) is designed to obtain fundamental information related to the chemistry and physics of the Earth's upper atmosphere using the techniques of infrared absorption spectroscopy. There are two principal objectives to be met. The first is the determination, on a global scale, of the compositional structure of the upper atmosphere and its spatial variability. The establishment of this variability represents the first step toward determining the characteristic residence times for the upper atmospheric constituents; the magnitudes of their sources and sinks; and, ultimately, an understanding of their effects on the stability of the stratosphere. The second objective is to provide the high-resolution, calibrated spectral information which is essential for the detailed design of advanced instrumentation for subsequent global monitoring of specific species found to be critical to atmospheric stability. This information will be disseminated in the form of a three dimensional atlas of solar absorption spectra obtained over a range of latitudes, longitudes, and altitudes.

  20. The influence of morphology on excitons in single conjugated molecules

    NASA Astrophysics Data System (ADS)

    Thiessen, Alexander

    The electronic properties of pi-conjugated molecules are strongly related to their molecular shape and morphology of assembly in three-dimensional space. Understanding the various structure-property relationships is relevant to the applications of these materials in optoelectronic devices such as organic light-emitting diodes, field effect transistors and photovoltaic cells. The fact that conjugated systems interact with visible light opens these materials to a plethora of noninvasive spectroscopic investigation techniques. In this work, electronic properties of different pi-conjugated systems are studied spectroscopically on the ensemble and the single molecule levels. Single molecule spectroscopy is advantageous in that it allows the investigation of the individual nuclear building blocks that contribute to the properties of the ensemble. Additionally, transient photoluminescence spectroscopy methods can provide useful insight into the temporal evolution of the emissive states. In combination with these methods, novel pi-conjugated model molecules are used to probe processes related to exciton dynamics. For the first time, the spatial localization of excited states is probed experimentally in a molecule with a circular chromophoric structure. In addition, a set of model molecules with different geometries is employed to study exciton relaxation in pi-conjugated systems. The molecular morphology is utilized to distinguish between processes such as nuclear reorganization and torsional relaxation. Furthermore, single molecule spectroscopy is used to study the electronic structure of individual polymer chains in the photovoltaic cell material poly-(3-hexylthiophene). Optical spectra of this polymer are known to change with the morphology of the bulk film. Single molecule studies reveal that individual polymer chains exhibit similar behavior and indicate that spectral diversity is an intrinsic property of single P3HT molecules. The main results of this work are the

  1. Nuclear medicine at a crossroads.

    PubMed

    Schelbert, Heinrich R

    2011-12-01

    The growth of molecular imaging heightens the promise of clinical nuclear medicine as a tool for individualization of patient care and for improvement of health-care outcomes. Together with greater use of integrated structure-function imaging, clinical nuclear medicine reaches beyond traditional specialty borders into diagnostic radiology and oncology. Yet, there are concerns about the future of nuclear medicine, including progressively declining reimbursement, the competitive advantages of diagnostic radiology, limited translation of research accomplishments to clinical diagnostic imaging and patient care, and an insufficient pool of incoming highly qualified nuclear medicine clinicians. Thus, nuclear medicine views itself as being at a critical crossroads. What will be important is for nuclear medicine to be positioned as the quintessential molecular imaging modality more centrally within medical imaging and for the integration of nuclear medicine with primary care specialties to be driven more by patient needs than by specialty needs. In this way, the full potential of nuclear medicine as an effective and efficient tool for improving patient outcomes can be realized.

  2. Complex formation dynamics in a single-molecule electronic device

    PubMed Central

    Wen, Huimin; Li, Wengang; Chen, Jiewei; He, Gen; Li, Longhua; Olson, Mark A.; Sue, Andrew C.-H.; Stoddart, J. Fraser; Guo, Xuefeng

    2016-01-01

    Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications. PMID:28138528

  3. Nuclear light bulb

    NASA Technical Reports Server (NTRS)

    Latham, Tom

    1991-01-01

    The nuclear light bulb engine is a closed cycle concept. The nuclear light bulb concept provides containment by keeping the nuclear fuel fluid mechanically suspended in a cylindrical geometry. Thermal heat passes through an internally cooled, fused-silica, transparent wall and heats hydrogen propellant. The seeded hydrogen propellant absorbs radiant energy and is expanded through a nozzle. Internal moderation was used in the configuration which resulted in a reduced critical density requirement. This result was supported by criticality experiments. A reference engine was designed that had seven cells and was sized to fit in what was then predicted to be the shuttle bay mass and volume limitations. There were studies done of nozzle throat cooling schemes to remove the radiant heat. Elements of the nuclear light bulb program included closed loop critical assembly tests done at Los Alamos with UF6 confined by argon buffer gas. It was shown that the fuel region could be seeded with constituents that would block UV radiation from the uranium plasma. A combination of calculations and experiments showed that internal moderation produced a critical mass reduction. Other aspects of the research are presented.

  4. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  5. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  6. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  7. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  8. Small Molecule Immunosensing Using Surface Plasmon Resonance

    PubMed Central

    Mitchell, John

    2010-01-01

    Surface plasmon resonance (SPR) biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained. PMID:22163605

  9. Double point contact single molecule absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Howard, John Brooks

    Our primary objective with the presentation of this thesis is to utilize superconducting transport through microscopic objects to both excite and analyze the vibrational degrees of freedom of various molecules of a biological nature. The technique stems from a Josephson junction's ability to generate radiation that falls in the terahertz gap (≈ 10 THz) and consequently can be used to excite vibrational modes of simple and complex molecules. Analysis of the change in IV characteristics coupled with the differential conductance dIdV allows determination of both the absorption spectra and the vibrational modes of biological molecules. Presented here are both the theoretical foundations of superconductivity relevant to our experimental technique and the fabrication process of our samples. Comparisons between our technique and that of other absorption spectroscopy techniques are included as a means of providing a reference upon which to judge the merits of our novel procedure. This technique is meant to improve not only our understanding of the vibrational degrees of freedom of useful biological molecules, but also these molecule's structural, electronic and mechanical properties.

  10. Modelling the spectroscopic behaviour of hot molecules

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan

    2010-05-01

    At elevated temperatures the molecules absorb and emit light in a very complicated fashion which is hard to characterise on the basis of laboraroty measurement. Computed line lists of molecule transitions therefore provide a vital input for models of hot atmospheres. I will describe the calculation and use of such line lists including the BT2 water line list [1], which contains some 500 million distinct rotation-vibration transitions. This linelist proved crucial in the detection of water in extrasolar planet HD189733b and has been used extensively in atmospheric modelling. Illustrations will be given at the meeting. A new linelist for the ammonia molecule has just been completed [2] which shows that standard compilations for this molecule need to be improved. Progress on a more extensive linelist for hot ammonia and linelists for other molecules will be discussed at the meeting. [1] R.J. Barber, J. Tennyson, G.J. Harris and R.N. Tolchenov, Mon. Not. R. Astr. Soc., 368, 1087-1094 (2006) [2] S.N. Yurchenko, R.J. Barber, A. Yachmenev, W. Theil, P. Jensen and J. Tennyson, J. Phys. Chem. A, 113, 11845-11855 (2009).

  11. World nuclear fuel cycle requirements 1991

    SciTech Connect

    Not Available

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  12. High performance photovoltaic applications using solution-processed small molecules.

    PubMed

    Chen, Yongsheng; Wan, Xiangjian; Long, Guankui

    2013-11-19

    Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we

  13. Electron-driven excitations and dissociation of molecules

    SciTech Connect

    Miller, Greg; Orel, Ann E.

    2015-02-13

    This program studied how energy is interchanged in electron and photon collisions with molecules leading to ex-citation and dissociation. Modern ab initio techniques, both for the photoionization and electron scattering, and the subsequent nuclear dynamics studies, are used to accurately treat these problems. This work addresses vibrational ex-citation and dissociative attachment following electron impact, and the dynamics following inner shell photoionzation. These problems are ones for which a full multi-dimensional treatment of the nuclear dynamics is essential and where non-adiabatic effects are expected to be important.

  14. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-02

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  15. 16th International Conference on Nuclear Structure: NS2016

    SciTech Connect

    Galindo-Uribarri, Alfredo

    2016-10-28

    Every two years the Nuclear Structure (NS) conference series brings together researchers from an international community of experimental and theoretical nuclear physicists to present and discuss their latest results in nuclear structure. This biennial conference covered the latest results on experimental and theoretical research into the structure of nuclei at the extremes of isospin, excitation energy, mass, and angular momentum. Topics included many of the most exciting areas of modern nuclear structure research such as transitional behavior, nuclear structure and its evolution across the nuclear landscape, shell structure, collectivity, nuclear structure with radioactive beams, and macroscopic and microscopic approaches to nuclear structure.

  16. 16th International Conference on Nuclear Structure: NS2016

    DOE PAGES

    Galindo-Uribarri, Alfredo

    2016-10-28

    Every two years the Nuclear Structure (NS) conference series brings together researchers from an international community of experimental and theoretical nuclear physicists to present and discuss their latest results in nuclear structure. This biennial conference covered the latest results on experimental and theoretical research into the structure of nuclei at the extremes of isospin, excitation energy, mass, and angular momentum. Topics included many of the most exciting areas of modern nuclear structure research such as transitional behavior, nuclear structure and its evolution across the nuclear landscape, shell structure, collectivity, nuclear structure with radioactive beams, and macroscopic and microscopic approaches tomore » nuclear structure.« less

  17. Response functions for dimers and square-symmetric molecules in four-wave-mixing experiments with polarized light.

    PubMed

    Smith, Eric Ryan; Farrow, Darcie A; Jonas, David M

    2005-07-22

    Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.

  18. Electrical Transport through Organic Molecules

    NASA Astrophysics Data System (ADS)

    Lau, C. N.; Chang, Shun-Chi; Williams, Stan

    2003-03-01

    We investigate electrical transport properties of single organic molecules using electromigration break junctions[1]. A self-assembled monolayer of various organic molecules such as 1,4-di(phenylethynyl-4'-methanethiol)benzene was grown on narrow metal wires, and single or a few molecules were incorporated into the junctions which were created by applying a large voltage and breaking the wires. The transport properties of these molecules were then measured at low temperatures. Latest experimental results will be discussed. [1] Park, J. et al, Nature, 417, 722 (2002); Liang W. et al, Nature, 417, 725 (2002).

  19. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    PubMed Central

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  20. Electrochromic Graphene Molecules

    SciTech Connect

    Ji, Zhiqiang; Doorn, Stephen K.; Sykora, Milan

    2015-03-13

    Polyclic aromatic hydrocarbons, also called Graphene Molecules (GMs), with chemical composition C132H36(COOH)2 were synthesized in-situ on the surface of transparent nanocrystaline indium tin oxide (nc-ITO) electrodes. Their electronic structure was studied electrochemically and spectro-electrochemically. Variations in the potential applied onto the nc-ITO/GM electrodes induce only small changes in the observed current but they produce dramatic changes in the absorption of the GMs, which are associated with their oxidation and reduction. Analysis of the absorption changes using modified Nernst equation is used to determine standard potentials associated with the individual charge transfer processes. For the GMs prepared here these were found to be E1,ox 0 = 0.77± 0.01 V and E2,ox 0 = 1.24 ± 0.02 V vs. NHE for the first and second oxidation and E1,red 0 = -1.50 ± 0.04 V for the first reduction. The charge transfer processes are found to be non-ideal. The non-ideality factors associated with the oxidation and reduction processes suggest presence of strong interactions between the GM redox centers. Under the conditions of potential cycling GMs show rapid (seconds) color change with high contrast and stability. An electrochromic application is demonstrated wherein the GMs are used as the optically active component.

  1. Nuclear astrophysics and electron beams

    SciTech Connect

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  2. Nuclear Reactors and Technology; (USA)

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  3. Reports to the DOE Nuclear Data Committee

    SciTech Connect

    Not Available

    1988-05-01

    The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program.

  4. Nuclear autophagy: An evolutionarily conserved mechanism of nuclear degradation in the cytoplasm.

    PubMed

    Luo, Majing; Zhao, Xueya; Song, Ying; Cheng, Hanhua; Zhou, Rongjia

    2016-11-01

    Macroautophagy/autophagy is a catabolic process that is essential for cellular homeostasis. Studies on autophagic degradation of cytoplasmic components have generated interest in nuclear autophagy. Although its mechanisms and roles have remained elusive, tremendous progress has been made toward understanding nuclear autophagy. Nuclear autophagy is evolutionarily conserved in eukaryotes that may target various nuclear components through a series of processes, including nuclear sensing, nuclear export, autophagic substrate encapsulation and autophagic degradation in the cytoplasm. However, the molecular processes and regulatory mechanisms involved in nuclear autophagy remain largely unknown. Numerous studies have highlighted the importance of nuclear autophagy in physiological and pathological processes such as cancer. This review focuses on current advances in nuclear autophagy and provides a summary of its research history and landmark discoveries to offer new perspectives.

  5. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    PubMed

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation.

  6. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  7. Nuclear physics: a short course

    SciTech Connect

    Hirsch, Jorge G.

    2010-09-10

    Basic properties of atomic nuclei are reviewed. Starting with the energy and length scales for microscopic processes, we go through the charge density inside the nucleus, nuclear masses and abundances, and nuclear decays. The Liquid Drop Model is presented along with some extensions. Microscopic models are introduced, with emphasis in the shell model. Alpha, beta and gamma decays are commented with some detail, including the symmetry laws which govern these decays.

  8. Environmental Monitoring for Nuclear Safeguards

    DTIC Science & Technology

    1995-09-01

    l o inside tubes which in turn are inside the pressure probably be stored, following exposure, to allowvessel. Leakage of fission products and...be hand-carried at an inspection pressure or because they react with atmospheric site can provide immediate results to guide the gases to form other...agreement ending the war included the right for the spread of nuclear weapons. Prior to the United Nations to inspect all Iraqi nuclear the 1991 Persian

  9. Small molecule regulators of protein arginine methyltransferases.

    PubMed

    Cheng, Donghang; Yadav, Neelu; King, Randall W; Swanson, Maurice S; Weinstein, Edward J; Bedford, Mark T

    2004-06-04

    Here we report the identification of small molecules that specifically inhibit protein arginine N-methyltransferase (PRMT) activity. PRMTs are a family of proteins that either monomethylate or dimethylate the guanidino nitrogen atoms of arginine side chains. This common post-translational modification is implicated in protein trafficking, signal transduction, and transcriptional regulation. Most methyltransferases use the methyl donor, S-adenosyl-L-methionine (AdoMet), as a cofactor. Current methyltransferase inhibitors display limited specificity, indiscriminately targeting all enzymes that use AdoMet. In this screen we have identified a primary compound, AMI-1, that specifically inhibits arginine, but not lysine, methyltransferase activity in vitro and does not compete for the AdoMet binding site. Furthermore, AMI-1 prevents in vivo arginine methylation of cellular proteins and can modulate nuclear receptor-regulated transcription from estrogen and androgen response elements, thus operating as a brake on certain hormone actions.

  10. Single-Molecule Spectroscopy and Imaging Over the Decades

    PubMed Central

    Moerner, W. E.; Shechtman, Yoav; Wang, Quan

    2016-01-01

    As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990's, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many

  11. Nuclear engineering enrollments and degrees, 1994: Appendixes

    SciTech Connect

    1995-05-01

    This survey is designed to include those programs sponsored by the Department of Energy. The survey is designed to include those programs offering a major in nuclear engineering or course work equivalent to a major in other engineering disciplines that prepare the graduates to perform as nuclear engineers. This survey provides data on nuclear engineering enrollments and degrees for use in labor market analyses, information on education programs for students, and information on new graduates to employers, government agencies, academia and professional societies.

  12. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  13. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  14. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  15. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  16. Nuclear Dangers: A Resource Guide for Secondary School Teachers. Update.

    ERIC Educational Resources Information Center

    Mierzwa, Nancy; Bloom, Luanne

    The continuing escalation of the nuclear arms race and the proliferation of nuclear power have forced the current generation to face the dangers of living in a nuclear age. This period has brought a special responsibility to teachers. This guide is an annotated list of materials dealing with nuclear power and weapons issues. Sections include: (1)…

  17. Molecules for Fluorescence Detection of Specific Chemicals

    NASA Technical Reports Server (NTRS)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  18. Induced Orbital Paramagnetism and Paratropism in Closed-Shell Molecules

    NASA Astrophysics Data System (ADS)

    Pelloni, Stefano; Lazzeretti, Paolo; Zanasi, Riccardo

    2009-07-01

    Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field in the electron cloud have been obtained for closed-shell systems BeH-, BH, and CH+, characterized by induced orbital paramagnetism, and in planar unsaturated hydrocarbons C4H4 and clamped C8H8, exhibiting π paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as a sum of two formally "diamagnetic" terms for any molecule, including systems showing strong induced orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding first-order orbital.

  19. Induced orbital paramagnetism and paratropism in closed-shell molecules.

    PubMed

    Pelloni, Stefano; Lazzeretti, Paolo; Zanasi, Riccardo

    2009-12-31

    Three-dimensional models of the quantum-mechanical current density induced by a uniform magnetic field in the electron cloud have been obtained for closed-shell systems BeH(-), BH, and CH(+), characterized by induced orbital paramagnetism, and in planar unsaturated hydrocarbons C(4)H(4) and clamped C(8)H(8), exhibiting pi paramagnetism. It is shown that, even for these paramagnetic systems, the paramagnetic contributions to magnetic susceptibilities and nuclear magnetic shielding, customarily taken into account in perturbation theory approaches, can formally be eliminated via the procedure of continuous transformation of the origin of the current density-paramagnetic zero. The definition of magnetic response properties can therefore be recast as a sum of two formally "diamagnetic" terms for any molecule, including systems showing strong induced orbital paramagnetism. It is shown that the paramagnetism in the compounds studied arises from the nodal topology of the electronic wave function. In particular, paratropic vortices circulate about stagnation lines at the intersection of nodal surfaces of the highest-occupied zero-order molecular orbital and corresponding first-order orbital.

  20. Subfemtosecond directional control of chemical processes in molecules

    NASA Astrophysics Data System (ADS)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.