NASA Astrophysics Data System (ADS)
Agustin, RR; Liliasari, L.; Sinaga, P.; Rochintaniawati, D.
2017-09-01
Atoms, ions and molecules are considered as abstract concepts that often lead to students’ learning difficulties. Th is study aimed at providing description of pre-service science teachers (PSTs)’ creative thinking skills on atoms, elements and compounds digital media creation. Qualitative descriptive method were employed to acquire data. Instruments used were rubric of PSTs’ digital teaching media, open ended question related to PSTs’ technological knowledge and pre-test about atoms, ions and molecules that were given to eighteen PSTs. The study reveals that PSTs’ creative thinking skills were still low and inadequate to create qualified teaching media of atoms, ions and molecules. PSTs’ content and technological knowledge in regard with atoms, ions and molecules are the most contributing factors. This finding support the necessity of developing pre-service and in-service science teachers’ creative thinking skill in digital media that is embedded to development of technological content knowledge.
NASA Astrophysics Data System (ADS)
Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai
2016-07-01
The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).
Nicolaou, K C
2014-03-08
Synthetic organic chemists have the power to replicate some of the most intriguing molecules of living nature in the laboratory and apply their developed synthetic strategies and technologies to construct variations of them. Such molecules facilitate biology and medicine, as they often find uses as biological tools and drug candidates for clinical development. In addition, by employing sophisticated catalytic reactions and appropriately designed synthetic processes, they can synthesize not only the molecules of nature and their analogues, but also myriad other organic molecules for potential applications in many areas of science, technology and everyday life. After a short historical introduction, this article focuses on recent advances in the field of organic synthesis with demonstrative examples of total synthesis of complex bioactive molecules, natural or designed, from the author's laboratories, and their impact on chemistry, biology and medicine.
Nicolaou, K. C.
2014-01-01
Synthetic organic chemists have the power to replicate some of the most intriguing molecules of living nature in the laboratory and apply their developed synthetic strategies and technologies to construct variations of them. Such molecules facilitate biology and medicine, as they often find uses as biological tools and drug candidates for clinical development. In addition, by employing sophisticated catalytic reactions and appropriately designed synthetic processes, they can synthesize not only the molecules of nature and their analogues, but also myriad other organic molecules for potential applications in many areas of science, technology and everyday life. After a short historical introduction, this article focuses on recent advances in the field of organic synthesis with demonstrative examples of total synthesis of complex bioactive molecules, natural or designed, from the author’s laboratories, and their impact on chemistry, biology and medicine. PMID:24611027
The Knowledge of DNA and DNA Technologies among Pre-Service Science Teachers
ERIC Educational Resources Information Center
Cardak, Osman; Dikmenli, Musa
2008-01-01
The purpose of this study is to determine the alternative conceptions of elementary school pre-service science teachers regarding DNA and DNA technologies. The questions asked in the study related to subjects including the structure and role of DNA molecule, structure of genes, some genetic technologies, Genetically Modified Organism (GMO) plants,…
Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules
NASA Astrophysics Data System (ADS)
Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus
2016-06-01
Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.
Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip
NASA Astrophysics Data System (ADS)
Hla, S.-W.
The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques usef ul in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.
Ozak, Sule Tugba; Ozkan, Pelin
2013-01-01
Nanotechnology deals with the physical, chemical, and biological properties of structures and their components at nanoscale dimensions. Nanotechnology is based on the concept of creating functional structures by controlling atoms and molecules on a one-by-one basis. The use of this technology will allow many developments in the health sciences as well as in materials science, bio-technology, electronic and computer technology, aviation, and space exploration. With developments in materials science and biotechnology, nanotechnology is especially anticipated to provide advances in dentistry and innovations in oral health-related diagnostic and therapeutic methods. PMID:23408486
Kunig, Verena; Potowski, Marco; Gohla, Anne; Brunschweiger, Andreas
2018-06-27
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
Bioinformatics: Current Practice and Future Challenges for Life Science Education
ERIC Educational Resources Information Center
Hack, Catherine; Kendall, Gary
2005-01-01
It is widely predicted that the application of high-throughput technologies to the quantification and identification of biological molecules will cause a paradigm shift in the life sciences. However, if the biosciences are to evolve from a predominantly descriptive discipline to an information science, practitioners will require enhanced skills in…
Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses.
Calegari, F; Ayuso, D; Trabattoni, A; Belshaw, L; De Camillis, S; Anumula, S; Frassetto, F; Poletto, L; Palacios, A; Decleva, P; Greenwood, J B; Martín, F; Nisoli, M
2014-10-17
In the past decade, attosecond technology has opened up the investigation of ultrafast electronic processes in atoms, simple molecules, and solids. Here, we report the application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine and the subsequent detection of ultrafast dynamics on a sub-4.5-femtosecond temporal scale, which is shorter than the vibrational response of the molecule. The ability to initiate and observe such electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond science, which is progressively moving toward the investigation of more and more complex systems. Copyright © 2014, American Association for the Advancement of Science.
Ryals, John; Lawton, Kay; Stevens, Daniel; Milburn, Michael
2007-07-01
Metabolon is an emerging technology company developing proprietary analytical methods and software for biomarker discovery using metabolomics. The company's aim is to measure all small molecules (<1500 Da) in a biological sample. These small-molecule compounds include biochemicals of cellular metabolism and xenobiotics from diet and environment. Our proprietary mLIMStrade mark system contains advanced metabolomic software and automated data-processing tools that use a variety of data-analysis and quality-control algorithms to convert raw mass-spectrometry data to identified, quantitated compounds. Metabolon's primary focus is a fee-for-service business that exploits this technology for pharmaceutical and biotechnology companies, with additional clients in the consumer goods, cosmetics and agricultural industries. Fee-for-service studies are often collaborations with groups that employ a variety of technologies for biomarker discovery. Metabolon's goal is to develop technology that will automatically analyze any sample for the small-molecule components present and become a standard technology for applications in health and related sciences.
Control water molecules across carbon-based nanochannels
NASA Astrophysics Data System (ADS)
Meng, Xianwen; Huang, Jiping
2018-01-01
Not Available Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2015QNA48), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150173), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1445100), and the National Natural Science Foudnation of China (Grant Nos. 11725521 and 11605285).
Bartschat, Klaus; Kushner, Mark J.
2016-01-01
Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology–based society. PMID:27317740
Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research.
Mychaskiw, George
2011-09-06
Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology"Any sufficiently advanced technology is indistinguishable from magic".-Arthur C. Clarke.
Nanodevices for Single Molecule Studies
NASA Astrophysics Data System (ADS)
Craighead, H. G.; Stavis, S. M.; Samiee, K. T.
During the last two decades, biotechnology research has resulted in progress in fields as diverse as the life sciences, agriculture and healthcare. While existing technology enables the analysis of a variety of biological systems, new tools are needed for increasing the efficiency of current methods, and for developing new ones altogether. Interest has grown in single molecule analysis for these reasons.
NASA Astrophysics Data System (ADS)
Enoki, Toshiaki; Kiguchi, Manabu
2018-03-01
Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.
Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research
2011-01-01
Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology "Any sufficiently advanced technology is indistinguishable from magic". -Arthur C. Clarke PMID:22146602
NASA Astrophysics Data System (ADS)
Wohland, Thorsten
2015-06-01
Single Molecule Detection and Spectroscopy have grown from their first beginnings into mainstream, mature research areas that are widely applied in the biological sciences. However, despite the advances in technology and the application of many single molecule techniques even in in vivo settings, the data analysis of single molecule experiments is complicated by noise, systematic errors, and complex underlying processes that are only incompletely understood. Colomb and Sarkar provide in this issue an overview of single molecule experiments and the accompanying problems in data analysis, which have to be overcome for a proper interpretation of the experiments [1].
Positron-Electron Annihilation Process in (2,2)-Difluoropropane Molecule
NASA Astrophysics Data System (ADS)
Liu, Yang; Ma, Xiao-Guang; Zhu, Ying-Hao
2016-04-01
The positron-electron annihilation process in (2,2)-difluoropropane molecule and the corresponding gamma-ray spectra are studied by quantum chemistry method. The positrophilic electrons in (2,2)-difluoropropane molecule are found for the first time. The theoretical predictions show that the outermost 2s electrons of fluoride atoms play an important role in positron-electron annihilation process of (2,2)-difiuoropropane. In the present scheme, the correlation coefficient between the theoretical gamma-ray spectra and the experiments can be 99%. The present study gives an alternative annihilation model for positron-electron pair in larger molecules. Supported by the National Natural Science Foundation of China under Grant No. 11347011 and the Natural Science Foundation Project of Shandong Province under Grant No. ZR2011AM010 and 2014 Technology Innovation Fund of Ludong University under Grant Nos. 1d151007 and ld15l016
The Amazing Molecule Race: A WebQuest for 8th Grade Science
NASA Astrophysics Data System (ADS)
Soehl, Diana; Moats, S. J.; Langston, G. I.
2009-01-01
Did you ever wonder if life exists beyond Earth? The molecules that helped make up you and your friends are the same floating in outer space! The Race is ON to discover as many molecules in space as possible and to find the most important molecules for life: amino acids, DNA and RNA! As aspiring astronomers and astrobiologists, you will explore how these molecules are detected on Earth and in space. The `Search for Life’ is a pretty big task considering the size of the Universe. By learning how to find evidence of life forming molecules you will be able to provide conclusions that will shape policy regarding space missions, funding and technology development during your lifetime.
Immordino, Maria Laura; Dosio, Franco; Cattel, Luigi
2006-01-01
Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles (“first-generation liposomes”) to “second-generation liposomes”, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol) (PEG) in liposome composition. The presence of PEG on the surface of the liposomal carrier has been shown to extend blood-circulation time while reducing mononuclear phagocyte system uptake (stealth liposomes). This technology has resulted in a large number of liposome formulations encapsulating active molecules, with high target efficiency and activity. Further, by synthetic modification of the terminal PEG molecule, stealth liposomes can be actively targeted with monoclonal antibodies or ligands. This review focuses on stealth technology and summarizes pre-clinical and clinical data relating to the principal liposome formulations; it also discusses emerging trends of this promising technology. PMID:17717971
Surface Chemistry of CWAs for Decon Enabling Sciences
2014-11-04
representing the formation of a hydrogen-bonded mode. Characteristic modes of the sarin molecule itself are also observed. These experimental results show...Triangle Park, NC 27709-2211 surface science, CWA, uptake, decomposition, decontamination, filtration , XPS, FTIR, TPD, MS, UHV REPORT DOCUMENTATION PAGE 11...Karwacki, Team Leader CBR Filtration Research and Technology Directorate at ECBC. Through this collaboration, we have established a facility for the study
ERIC Educational Resources Information Center
Burgin, Stephen R.; Oramous, Jennifer; Kaminski, Michael; Stocker, Linda; Moradi, Mahmoud
2018-01-01
Modeling is a practice of science that is underemphasized in biology classrooms in comparison to its central focus in the physical sciences. Visualizations of the submicroscopic world of molecules are becoming increasingly sophisticated with the evolution of new technologies. With this in mind, we introduced high school biology classrooms to a…
H2: the benchmark molecule for ultrafast science and technologies
NASA Astrophysics Data System (ADS)
Ibrahim, Heide; Lefebvre, Catherine; Bandrauk, André D.; Staudte, André; Légaré, François
2018-02-01
This review article focuses on imaging and controlling ultrafast dynamics of the hydrogen molecule and its cation, initiated by ultrashort laser pulses. We discuss the mechanisms underlying these dynamics and theoretical methods to describe them. A broad variety of defining and influencing theoretical and experimental results is presented. We put special emphasis on the required experimental techniques, many of which have been developed in view of imaging the fastest of all nuclear dynamics.
Nanoarchitectonics of molecular aggregates: science and technology.
Ramanathan, Muruganathan; Hong, Kunlun; Ji, Qingmin; Yonamine, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko
2014-01-01
The field of making, studying and using molecular aggregates, in which the individual molecules (monomers) are arranged in a regular fashion, has come a long way. Taking control over the aggregation of small molecules and polymers in bulk, on surfaces and at interfaces pose a considerable challenge for their utilization in modern high tech applications. In this review, we provide a detailed insight into recent trends in molecular aggregates from the perspectives of nanoarchitectonics.
Nanoarchitectonics of Molecular Aggregates: Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Nathan Muruganathan; Hong, Kunlun; Ji, Dr. Qingmin
2014-01-01
The field of making, studying and using molecular aggregates, in which the individual molecules (monomers) are arranged in a regular fashion, has come a long way. Taking control over the aggregation of small molecules and polymers in bulk, on surfaces and at interfaces pose a considerable challenge for their utilization in modern high tech applications. In this review we provide a detailed insight into recent trends in molecular aggregates from the perspectives of nanoarchitectonics.
The optics inside an automated single molecule array analyzer
NASA Astrophysics Data System (ADS)
McGuigan, William; Fournier, David R.; Watson, Gary W.; Walling, Les; Gigante, Bill; Duffy, David C.; Rissin, David M.; Kan, Cheuk W.; Meyer, Raymond E.; Piech, Tomasz; Fishburn, Matthew W.
2014-02-01
Quanterix and Stratec Biomedical have developed an instrument that enables the automated measurement of multiple proteins at concentration ~1000 times lower than existing immunoassays. The instrument is based on Quanterix's proprietary Single Molecule Array technology (Simoa™ ) that facilitates the detection and quantification of biomarkers previously difficult to measure, thus opening up new applications in life science research and in-vitro diagnostics. Simoa is based on trapping individual beads in arrays of femtoliter-sized wells that, when imaged with sufficient resolution, allows for counting of single molecules associated with each bead. When used to capture and detect proteins, this approach is known as digital ELISA (Enzyme-linked immunosorbent assay). The platform developed is a merger of many science and engineering disciplines. This paper concentrates on the optical technologies that have enabled the development of a fully-automated single molecule analyzer. At the core of the system is a custom, wide field-of-view, fluorescence microscope that images arrays of microwells containing single molecules bound to magnetic beads. A consumable disc containing 24 microstructure arrays was developed previously in collaboration with Sony DADC. The system cadence requirements, array dimensions, and requirement to detect single molecules presented significant optical challenges. Specifically, the wide field-of-view needed to image the entire array resulted in the need for a custom objective lens. Additionally, cost considerations for the system required a custom solution that leveraged the image processing capabilities. This paper will discuss the design considerations and resultant optical architecture that has enabled the development of an automated digital ELISA platform.
ERIC Educational Resources Information Center
Tretter, Thomas
2006-01-01
Nanotechnology is an emergent technology that holds much promise and excitement. The ability to control and manipulate matter at the most basic level--atoms and molecules--offers possibilities that transcend traditional science discipline boundaries. This interdisciplinary nature of nanotechnology provides many avenues for teachers to connect the…
Bartke, Rebecca M; Cameron, Elizabeth L; Cristie-David, Ajitha S; Custer, Thomas C; Denies, Maxwell S; Daher, May; Dhakal, Soma; Ghosh, Soumi; Heinicke, Laurie A; Hoff, J Damon; Hou, Qian; Kahlscheuer, Matthew L; Karslake, Joshua; Krieger, Adam G; Li, Jieming; Li, Xiang; Lund, Paul E; Vo, Nguyen N; Park, Jun; Pitchiaya, Sethuramasundaram; Rai, Victoria; Smith, David J; Suddala, Krishna C; Wang, Jiarui; Widom, Julia R; Walter, Nils G
2015-05-01
Four days after the announcement of the 2014 Nobel Prize in Chemistry for "the development of super-resolved fluorescence microscopy" based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a "Principles of Single Molecule Techniques 2014" course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines. © 2014 Wiley Periodicals, Inc.
2008-11-01
ISTC Project No. #1592P The Comparative Study of The Effects of Extremely Low Frequency Electromagnetic Fields and Infrasound on Water Molecule...performed under the agreement with the International Science and Technology Center ( ISTC ), Moscow. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704...dissociation and generation of reactive oxygen spaces. 5a. CONTRACT NUMBER ISTC Registration No: A-1592p 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
NASA Astrophysics Data System (ADS)
Bai, Jiyuan; Li, Li; He, Zelong; Ye, Shujiang; Zhao, Shujun; Dang, Suihu; Sun, Weimin
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11447132 and 11504042), the Natural Science Foundation of Heilongjiang, China (Grant No. A201405), 111 Project to Harbin Engineering University, China (Grant No. B13015), Chongqing Science and Technology Commission Project, China (Grant Nos. cstc2014jcyjA00032 and cstc2016jcyjA1158), and Scientific Research Project for Advanced Talents of Yangtze Normal University, China (Grant No. 2017KYQD09).
Milos, Patrice
2008-04-01
Helicos BioSciences Corporation is a life sciences company developing revolutionary new single molecule sequencing technology to provide the path to the US$1000 genome. True Single Molecule Sequencing (tSMS) will drive advancements in pharmacogenomics that can enable a better understanding of an individual's susceptibility to disease, develop more effective disease diagnoses and differentiate response to disease therapies. During 2007, genome-wide disease-association studies, the encylopedia of DNA elements (ENCODE) and the published genome sequence of two individuals have revealed human genome variation far more extensive than originally believed. These also demonstrated that common variations explain only a fraction of the genetic basis of disease. Therefore, the capability to understand an individual genome is critical in setting the foundation for the next great revolution in healthcare. Helicos is committed to this vision and will provide cost-effective genome sequencing and comprehensive analysis of the transcribed genome that can unlock the era of personalized healthcare.
Understanding nanofluid stability through molecular simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Annapureddy, Harsha V.; Sun, Xiuquan
We performed molecular dynamics simulations to study solvation of a nanoparticle and nanoparticle-nanoparticle interactions in an n-hexane solution. Structural signatures are barely observed between the nanoparticle and n-hexane molecules because of weak binding and steric effects. The dynamic properties of the n-hexane molecule, on the other hand, are significantly influenced by the solvated nanoparticle. The diffusion of n-hexane molecules inside the nanoparticle is significantly decreased mainly because of the loss of dimensions of translation. Because one translational degree of freedom is lost by colliding with the wall of nanoparticle, the n-hexane molecules outside the nanoparticle diffuse 30% slower than themore » molecules in pure solution. The computed free energy profiles illustrate that the arrangement of the nanoparticles in bulk n-hexane solution are dependent on the orientation and functional group. We found that the n-hexane solvent exerts some effects on the interactions between the solvated nanoparticles. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
Functional network in posttranslational modifications: Glyco-Net in Glycoconjugate Data Bank.
Miura, Nobuaki; Okada, Takuya; Murayama, Daisuke; Hirose, Kazuko; Sato, Taku; Hashimoto, Ryo; Fukushima, Nobuhiro
2015-01-01
Elucidating pathways related to posttranslational modifications (PTMs) such as glycosylation is of growing importance in post-genome science and technology. Graphical networks describing the relationships among glycan-related molecules, including genes, proteins, lipids, and various biological events, are considered extremely valuable and convenient tools for the systematic investigation of PTMs. Glyco-Net (http://bibi.sci.hokudai.ac.jp/functions/) can dynamically make network figures among various biological molecules and biological events. A certain molecule or event is expressed with a node, and the relationship between the molecule and the event is indicated by arrows in the network figures. In this chapter, we mention the features and current status of the Glyco-Net and a simple example of the search with the Glyco-Net.
Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Bucholska, Justyna; Starowicz, Piotr; Czyrko, Emilia
2016-12-06
Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software. Data mining options may be enhanced by navigating through a network of links and cross-links between databases. Exemplary databases reviewed in this article belong to two classes: tools concerning small molecules (including general and specialized databases annotating food components) and tools annotating enzymes and metabolism. Some problems associated with database application are also discussed. Data summarized in computer databases may be used for calculation of daily intake of bioactive compounds, prediction of metabolism of food components, and their biological activity as well as for prediction of interactions between food component and drugs.
EDITORIAL: Molecular Imaging Technology
NASA Astrophysics Data System (ADS)
Asai, Keisuke; Okamoto, Koji
2006-06-01
'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.
Significant advancement of mass spectrometry imaging for food chemistry.
Yoshimura, Yukihiro; Goto-Inoue, Naoko; Moriyama, Tatsuya; Zaima, Nobuhiro
2016-11-01
Food contains various compounds that have an impact on our daily lives. Many technologies have been established to analyze these molecules of interest in foods. However, the analysis of the spatial distribution of these compounds in foods using conventional technology, such as high-performance liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is considered an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. MALDI-MSI can be used to visualize the spatial distribution of chemical compounds or biomolecules in foods. Although the methodology of MALDI-MSI in food science is not yet fully established, the versatility of MALDI-MSI is expected to open a new frontier in food science. Herein, we describe the principles and applications of MALDI-MSI in food science and related fields. Copyright © 2016 Elsevier Ltd. All rights reserved.
JPRS Report, Science & Technology, USSR: Life Sciences
1989-03-07
BIOORGANICHESKAYA KHIMIYA, Vol 14 No 4, Apr 88] 19 Intrinsic Fluorescence Studies on Effects of pH on Structure of Mistletoe Lectin [T. L. Bushuyeva, A. G...Figures 2; references 15: 3 Russian, 12 Western. UDC 576.8.097.29:547.962.3 Intrinsic Fluorescence Studies on Effects of pH on Structure of Mistletoe ...characteristics of the mistletoe lectin I (MLI), a molecule consisting of A (29 kD) and a B (34 kD) subunit, were used in assessing the structural
Yamamoto, Yohei
2012-01-01
Electroactive one-dimensional (1D) nano-objects possess inherent unidirectional charge and energy transport capabilities along with anisotropic absorption and emission of light, which are of great advantage for the development of nanometer-scale electronics and optoelectronics. In particular, molecular nanowires formed by self-assembly of π-conjugated molecules attract increasing attention for application in supramolecular electronics. This review introduces recent topics related to electroactive molecular nanowires. The nanowires are classified into four categories with respect to the electronic states of the constituent molecules: electron donors, acceptors, donor–acceptor pairs and miscellaneous molecules that display interesting electronic properties. Although many challenges still remain for practical use, state-of-the-art 1D supramolecular nanomaterials have already brought significant advances to both fundamental chemical sciences and technological applications. PMID:27877488
ERIC Educational Resources Information Center
Saritas, M. T.
2015-01-01
The meaningful knowledge creation about molecular geometry has always been the challenge of chemistry learning. In particular, microscopic world of chemistry science (example, atoms, molecules, structures) used in traditional two dimensional way of chemistry teaching can lead to such problem as students create misconceptions. In recent years,…
Designer drugs: the evolving science of drug discovery.
Wanke, L A; DuBose, R F
1998-07-01
Drug discovery and design are fundamental to drug development. Until recently, most drugs were discovered through random screening or developed through molecular modification. New technologies are revolutionizing this phase of drug development. Rational drug design, using powerful computers and computational chemistry and employing X-ray crystallography, nuclear magnetic resonance spectroscopy, and three-dimensional quantitative structure activity relationship analysis, is creating highly specific, biologically active molecules by virtual reality modeling. Sophisticated screening technologies are eliminating all but the most active lead compounds. These new technologies promise more efficacious, safe, and cost-effective medications, while minimizing drug development time and maximizing profits.
Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules
NASA Astrophysics Data System (ADS)
Zhang, Bin; Zhao, Jian; Zhao, Zeng-Xiu
2018-04-01
Not Available Supported by the National Basic Research Program of China under Grant No 2013CB922203, the National Natural Science Foundation of China under Grant No 11374366, the Innovation Foundation of National University of Defense Technology under Grant No B110204, and the Hunan Provincial Innovation Foundation for Postgraduate under Grant No CX2011B010.
Reflecting on Classroom Practice: Spatial Reasoning and Simple Coding
ERIC Educational Resources Information Center
King, Alessandra
2015-01-01
Spatial reasoning--the ability to visualise and play with shapes in one's mind--is essential in many fields, and crucial in any Science, Technology, Engineering, Mathematics [STEM] discipline. It is, for example, the ability that the engineer needs to build bridges; the chemist to see the three-dimensional structure of a molecule; the architect to…
Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk
2015-03-01
Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Science& Technology Review December 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budil, K S
2002-10-28
This issue has the following articles: (1) ''Doing It All: Sustaining Our Working Solutions, Rising to New Challenges''; (2) ''Emerging from the Cold War: Stockpile Stewardship and Beyond''--When the Cold War ended, Lawrence Livermore stepped up to a new national challenge--maintaining the safety and reliability of the U.S. nuclear stockpile without underground testing. (3) ''Machines from Interlocking Molecules''--Fundamental chemistry and physics research will enable scientists to control and use individual molecules. (4) ''Laser Zaps Communication Bottleneck''--Using laser communications, the U.S. military will be able to transmit data from advanced remote sensors in real time.
Advancement and applications of peptide phage display technology in biomedical science.
Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung
2016-01-19
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Bucholska, Justyna; Starowicz, Piotr; Czyrko, Emilia
2016-01-01
Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software. Data mining options may be enhanced by navigating through a network of links and cross-links between databases. Exemplary databases reviewed in this article belong to two classes: tools concerning small molecules (including general and specialized databases annotating food components) and tools annotating enzymes and metabolism. Some problems associated with database application are also discussed. Data summarized in computer databases may be used for calculation of daily intake of bioactive compounds, prediction of metabolism of food components, and their biological activity as well as for prediction of interactions between food component and drugs. PMID:27929431
Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles.
Conteduca, Donato; Dell'Olio, Francesco; Krauss, Thomas F; Ciminelli, Caterina
2017-03-01
The ability to manipulate and sense biological molecules is important in many life science domains, such as single-molecule biophysics, the development of new drugs and cancer detection. Although the manipulation of biological matter at the nanoscale continues to be a challenge, several types of nanotweezers based on different technologies have recently been demonstrated to address this challenge. In particular, photonic and plasmonic nanotweezers are attracting a strong research effort especially because they are efficient and stable, they offer fast response time, and avoid any direct physical contact with the target object to be trapped, thus preventing its disruption or damage. In this paper, we critically review photonic and plasmonic resonant technologies for biomolecule trapping, manipulation, and sensing at the nanoscale, with a special emphasis on hybrid photonic/plasmonic nanodevices allowing a very strong light-matter interaction. The state-of-the-art of competing technologies, e.g., electronic, magnetic, acoustic and carbon nanotube-based nanotweezers, and a description of their applications are also included.
NASA Astrophysics Data System (ADS)
Fan, Chun-Zhen; Zhu, Shuang-Mei; Xin, Hao-Yi
2017-02-01
We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering (SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics. Raman detections are carried out with the test crystal violet (CV) and rhodamine 6G (R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs (1 Gs = 10-4 T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10-9 M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications. Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 162102210164), the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002), the National Natural Science Foundations of China (Grant Nos. 11574276, 11404291, and 11604079), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 17HASTIT0).
Molecular electronics: some views on transport junctions and beyond.
Joachim, Christian; Ratner, Mark A
2005-06-21
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.
Molecular electronics: Some views on transport junctions and beyond
Joachim, Christian; Ratner, Mark A.
2005-01-01
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of “conduction as scattering” generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions. PMID:15956192
Using augmented reality to teach and learn biochemistry.
Vega Garzón, Juan Carlos; Magrini, Marcio Luiz; Galembeck, Eduardo
2017-09-01
Understanding metabolism and metabolic pathways constitutes one of the central aims for students of biological sciences. Learning metabolic pathways should be focused on the understanding of general concepts and core principles. New technologies such Augmented Reality (AR) have shown potential to improve assimilation of biochemistry abstract concepts because students can manipulate 3D molecules in real time. Here we describe an application named Augmented Reality Metabolic Pathways (ARMET), which allowed students to visualize the 3D molecular structure of substrates and products, thus perceiving changes in each molecule. The structural modification of molecules shows students the flow and exchange of compounds and energy through metabolism. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):417-420, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
A Haptic-Enhanced System for Molecular Sensing
NASA Astrophysics Data System (ADS)
Comai, Sara; Mazza, Davide
The science of haptics has received an enormous attention in the last decade. One of the major application trends of haptics technology is data visualization and training. In this paper, we present a haptically-enhanced system for manipulation and tactile exploration of molecules.The geometrical models of molecules is extracted either from theoretical or empirical data using file formats widely adopted in chemical and biological fields. The addition of information computed with computational chemistry tools, allows users to feel the interaction forces between an explored molecule and a charge associated to the haptic device, and to visualize a huge amount of numerical data in a more comprehensible way. The developed tool can be used either for teaching or research purposes due to its high reliance on both theoretical and experimental data.
Technological Microbiology: Development and Applications
Vitorino, Luciana C.; Bessa, Layara A.
2017-01-01
Over thousands of years, modernization could be predicted for the use of microorganisms in the production of foods and beverages. However, the current accelerated pace of new food production is due to the rapid incorporation of biotechnological techniques that allow the rapid identification of new molecules and microorganisms or even the genetic improvement of known species. At no other time in history have microorganisms been so present in areas such as agriculture and medicine, except as recognized villains. Currently, however, beneficial microorganisms such as plant growth promoters and phytopathogen controllers are required by various agricultural crops, and many species are being used as biofactories of important pharmacological molecules. The use of biofactories does not end there: microorganisms have been explored for the synthesis of diverse chemicals, fuel molecules, and industrial polymers, and strains environmentally important due to their biodecomposing or biosorption capacity have gained interest in research laboratories and in industrial activities. We call this new microbiology Technological Microbiology, and we believe that complex techniques, such as heterologous expression and metabolic engineering, can be increasingly incorporated into this applied science, allowing the generation of new and improved products and services. PMID:28539920
Bias voltage induced resistance switching effect in single-molecule magnets' tunneling junction.
Zhang, Zhengzhong; Jiang, Liang
2014-09-12
An electric-pulse-induced reversible resistance change effect in a molecular magnetic tunneling junction, consisting of a single-molecule magnet (SMM) sandwiched in one nonmagnetic and one ferromagnetic electrode, is theoretically investigated. By applying a time-varying bias voltage, the SMM's spin orientation can be manipulated with large bias voltage pulses. Moreover, the different magnetic configuration at high-resistance/low-resistance states can be 'read out' by utilizing relative low bias voltage. This device scheme can be implemented with current technologies (Khajetoorians et al 2013 Science 339 55) and has potential application in molecular spintronics and high-density nonvolatile memory devices.
Capillary electrophoresis: Biotechnology for separation of DNA and chromosomes
NASA Technical Reports Server (NTRS)
Williams, George O., Jr.
1994-01-01
Electrophoresis has been used for the separation of particles, ions, and molecules for a number of years. The technology for separation and detection of the results has many applications in the life sciences. One of the major goals of the scientific community is to separate DNA molecules and intact chromosomes based upon their different lengths or number of base pairs. This may be achieved by using some of the commercially available and widely used methods, but these processes require a considerable amount of time. The challenge is to achieve separation of intact chromosomes in a short time, preferably in a matter of minutes.
NASA Astrophysics Data System (ADS)
Alshehri, Mansoor H.; Cox, Barry J.; Hill, James M.
2014-09-01
Fullerenes have attracted considerable attention in various areas of science and technology. Owing to their exceptional physical, chemical, and biological properties, they have many applications, particularly in cosmetic and medical products. Using the Lennard-Jones 6-12 potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities, we determine the binding energies of a C60 fullerene with respect to both single-strand and double-strand DNA molecules. We assume that all configurations are in a vacuum and that the C60 fullerene is initially at rest. Double integrals are performed to determine the interaction energy of the system. We find that the C60 fullerene binds to the double-strand DNA molecule, at either the major or minor grooves, with binding energies of -4.7 eV or -2.3 eV, respectively, and that the C60 molecule binds to the single-strand DNA molecule with a binding energy of -1.6 eV. Our results suggest that the C60 molecule is most likely to be linked to the major groove of the dsDNA molecule.
Biosimilars and the long game.
Huzair, Farah; Kale, Dinar
2015-05-01
Despite greater certainty for biosimilar markets and regulation, the change that was seen in the small-molecule pharmaceuticals market with the rapid entrance of emerging-country generics suppliers will not be replicated exactly. The long game has yet to be played out, and recent changes in regulation, science, and production technology are likely to impact on future patterns of partnership and production. Copyright © 2015 Elsevier Ltd. All rights reserved.
What precision-protein-tuning and nano-resolved single molecule sciences can do for each other.
Milles, Sigrid; Lemke, Edward A
2013-01-01
While innovations in modern microscopy, spectroscopy, and nanoscopy techniques have made single molecule observation a standard in many laboratories, the actual design of meaningful fluorescence reporter systems now hinders major scientific breakthroughs. Even though the field of chemical biology is supercharging the fluorescence toolbox, surprisingly few strategies exist that make the transition from model systems to biologically relevant applications. At the same time, the number of microscopy techniques is growing dramatically. We explain our view on how the impact of modern technologies is influenced not only by further hard- and software developments, but also by the availability and suitability of protein-engineering tools. We identify how the largely independent research fields of chemical biology and fluorescence nanoscopy can influence each other to synergistically drive future technology that can visualize the localization, structure, and dynamics of molecular function without constraints. Copyright © 2013 WILEY Periodicals, Inc.
Infrared techniques for comet observations
NASA Technical Reports Server (NTRS)
Hanner, Martha S.; Tokunaga, Alan T.
1991-01-01
The infrared spectral region (1-1000 microns) is important for studies of both molecules and solid grains in comets. Infrared astronomy is in the midst of a technological revolution, with the development of sensitive 2D arrays leading to IR cameras and spectrometers with vastly improved sensitivity and resolution. The Halley campaign gave us tantalizing first glimpses of the comet science possible with this new technology, evidenced, for example, by the many new spectral features detected in the infrared. The techniques of photometry, imaging, and spectroscopy are reviewed in this chapter and their status at the time of the Halley observations is described.
Spectral Line Shapes. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoppi, M.; Ulivi, L.
1997-02-01
These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple{minus}free and ultra{minus}fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction{minus}induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energymore » Science and Technology database.(AIP)« less
Artificial photosynthesis: understanding water splitting in nature
Cox, Nicholas; Pantazis, Dimitrios A.; Neese, Frank; Lubitz, Wolfgang
2015-01-01
In the context of a global artificial photosynthesis (GAP) project, we review our current work on nature's water splitting catalyst. In a recent report (Cox et al. 2014 Science 345, 804–808 (doi:10.1126/science.1254910)), we showed that the catalyst—a Mn4O5Ca cofactor—converts into an ‘activated’ form immediately prior to the O–O bond formation step. This activated state, which represents an all MnIV complex, is similar to the structure observed by X-ray crystallography but requires the coordination of an additional water molecule. Such a structure locates two oxygens, both derived from water, in close proximity, which probably come together to form the product O2 molecule. We speculate that formation of the activated catalyst state requires inherent structural flexibility. These features represent new design criteria for the development of biomimetic and bioinspired model systems for water splitting catalysts using first-row transition metals with the aim of delivering globally deployable artificial photosynthesis technologies. PMID:26052426
Microbial‐based motor fuels: science and technology
Wackett, Lawrence P.
2008-01-01
Summary The production of biofuels via microbial biotechnology is a very active field of research. A range of fuel molecule types are currently under consideration: alcohols, ethers, esters, isoprenes, alkenes and alkanes. At the present, the major alcohol biofuel is ethanol. The ethanol fermentation is an old technology. Ongoing efforts aim to increase yield and energy efficiency of ethanol production from biomass. n‐Butanol, another microbial fermentation product, is potentially superior to ethanol as a fuel but suffers from low yield and unwanted side‐products currently. In general, biodiesel fuels consist of fatty acid methyl esters in which the carbon derives from plants, not microbes. A new biodiesel product, called microdiesel, can be generated in engineered bacterial cells that condense ethanol with fatty acids. Perhaps the best fuel type to generate from biomass would be biohydrocarbons. Microbes are known to produce hydrocarbons such as isoprenes, long‐chain alkenes and alkanes. The biochemical mechanisms of microbial hydrocarbon biosynthesis are currently under study. Hydrocarbons and minimally oxygenated molecules may also be produced by hybrid chemical and biological processes. A broad interest in novel fuel molecules is also driving the development of new bioinformatics tools to facilitate biofuels research. PMID:21261841
Twinning, Epitaxy and Domain Switching in Ferroelastic Inclusion Compounds
NASA Technical Reports Server (NTRS)
Hollingsworth, Mark D.; Peterson, Matthew L.
2003-01-01
Our research is in the area of solid-state organic chemistry, which lies at the interface between physical organic chemistry and materials science. We use crystalline solids as models to probe fundamental issues about physical processes, molecular interactions and chemical reactions that are important for fabrication, stabilization and application of technological materials. Much of our most recent work has focused on the phenomena of ferroelastic and ferroelectric domain switching, in which application of an external force or electric field to a crystal causes the molecules inside the crystal to reorient, in tandem, to a new orientational state. To better understand and control the domain switching process, we have designed and synthesized over twenty closely related, ferroelastic organic crystals. Our approach has been to use crystalline inclusion compounds, in which one molecule (the guest) is trapped within the crystalline framework of a second molecule (the host). By keeping the host constant and varying the proportions and kinds of guests, it has been possible to tailor these materials so that domain switching is rapid and reversible (which is desirable for high technology applications). Inclusion compounds therefore serve as powerful systems for understanding the specific molecular mechanisms that control domain switching.
Molecular separations using nanostructured porous thin films fabricated by glancing angle deposition
NASA Astrophysics Data System (ADS)
Bezuidenhout, Louis Wentzel
Biomolecular separation techniques are an enabling technology that indirectly in.uence many aspects of our lives. Advances have led to faster analyses, reduced costs, higher specificity, and new analytical techniques, impacting areas such as health care, environmental monitoring, polymer sciences, agriculture, and nutrition. Further development of separations technology is anticipated to follow the path of computing technology such that miniaturization through the development of microfluidics technology, lab-on-a-chip systems, and other integrative, multi-component systems will further extend our analysis capabilities. Creation of new and improvement of existing separation technologies is an integral part of the pathway to miniaturized systems. the work of this thesis investigates molecular separations using porous nanostructured films fabricated by the thin film process glancing angle deposition (GLAD). Structural architecture, pore size and shape, and film density can be finely controlled to produce high-surface area thin films with engineered morphology. The characteristic size scales and structural control of GLAD films are well-suited to biomolecules and separation techniques, motivating investigation into the utility and performance of GLAD films for biomolecular separations. This project consisted of three phases. First, chromatographic separation of dye molecules on silica GLAD films was demonstrated by thin layer chromatography Direct control of film nanostructure altered the separation characteristics; most strikingly, anisotropic structures provided two-dimensional analyte migration. Second, nanostructures made with GLAD were integrated in PDMS microfluidic channels using a sacrificial etching process; DNA molecules (10/48 kbp and 6/10/20 kbp mixtures) were electrophoretically separated on a microfluidic chip using a porous bed of SiO2 vertical posts. Third, mass spectrometry of proteins and drugs in the mass range of 100-1300 m/z was performed using laser desorption/ionization (LDI) on silicon GLAD films, and the influence of film thickness, porosity, structure, and substrate on performance was characterized. The application of GLAD nanostructured thin films to biomolecular separations is demonstrated and validated in this thesis. Chromatographic separation of dye molecules, electrophoretic separation of DNA molecules, and mass spectrometric isolation of small proteins and drug molecules by laser desorption ionization were demonstrated using GLAD films. All three methods yielded promising results and establish GLAD as a potential technology for biomolecular separations.
[When textiles help your recovery].
Martel, Bernard; Campagne, Christine; Behary Massika, Nemeshwaree
2017-01-01
Textiles are widely used in the biomedical domain, particularly in wound dressings or as implantable devices for strengthening or even replacing some damaged organs. Nowadays they present more and more sophisticated functionalities contributing to the healing process, to the organs regeneration, and fight against infection or thrombosis. Advanced spinning technologies of biostable or bioresorbable polymers and surface treatment technologies are often used, as well as nanotechnologies, to implement two main strategies for development of bio-active textiles. A long or medium term technology is obtained by grafting the bio-active molecule through stable chemical bonds while a short term activity is produced by using "reservoir" systems such as hydrogels and cyclodextrins that release the active agents in situ. ‡. © 2017 médecine/sciences – Inserm.
Emotion-on-a-chip (EOC): evolution of biochip technology to measure human emotion using body fluids.
Lee, Jung-Hyun; Hwang, Yoosun; Cheon, Keun-Ah; Jung, Hyo-Il
2012-12-01
Recent developments in nano/micro technology have made it possible to construct small-scale sensing chips for the analysis of biological markers such as nucleic acids, proteins, small molecules, and cells. Although biochip technology for the diagnosis of severe physiological diseases (e.g., cancer, diabetes, and cardiovascular disease) has been extensively studied, biochips for the monitoring of human emotions such as stress, fear, depression, and sorrow have not yet been introduced, and the development of such a biochip is in its infancy. Emotion science (or affective engineering) is a rapidly expanding engineering/scientific discipline that has a major impact on human society. The growing interest in the integration of emotion science and engineering is a result of the recent trend of merging various academic fields. In this paper we discuss the potential importance of biochip technology in which human emotion can be precisely measured in real time using body fluids such as blood, saliva, urine, or sweat. We call these biochips emotion-on-a-chip (EOC). The EOC system consists of four parts: (1) collection of body fluids, (2) separation of emotional markers, (3) detection of optical or electrical signals, and (4) display of results. These techniques provide new opportunities to precisely investigate human emotion. Future developments in EOC techniques will combine social and natural sciences to expand their scope of study. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kminek, Gerhard; Vago, Jorge; Gianfiglio, Giacinto; Haldemann, Albert; Elfving, Anders; Pinel, Jacques; McCoy, Don
The ExoMars mission will deploy two science elements on the Martian surface: a rover and a small, fixed package. The fixed Humboldt science package, will measure planetary geophysics parameters important for understanding Mars's evolution and habitability, identify possible surface hazards to future human missions, and study the environment. The Rover Pasteur science package will search for signs of past and present life on Mars, and characterise the water and geochemical environment with depth by collecting and analysing subsurface samples down to 2 meters. The very powerful combination of surface mobility and subsurface access to locations where organic molecules may be well-preserved is unique to this mission. ExoMars is currently in Phase B prior to PDR. This presentation will provide an update on the project status, including instrument and technology developments.
Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.
Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P
2017-09-13
The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.
Novel Modelling Tool for Energetics
NASA Astrophysics Data System (ADS)
Dossi, Licia
Polymer science combines an understanding of chemistry and material properties to design, develop, model and manufacture new materials with special properties for new applications. The Binders by Design UK programme, funded through the Weapons Science and Technology Centre (WSTC) by the Defence Science and Technology Laboratory (Dstl), develop new polymeric materials for energetic applications that can survive over the increased operating temperature ranges of future weapon platforms and satisfy international and national regulations. A multidisciplinary team of UK chemists, physicists, modellers and end users (Cranfield University, Sheffield-Hallam University, QinetiQ, Fluid Gravity Engineering, BAE Systems UK Land and Roxel UK) research together on the synthesis, characterisation and modelling of novel macromolecules with very promising thermal properties. Group Interaction Modelling supported by molecular mechanics calculations is used for a rapid assessment and selection of candidate molecules. New model and simulation protocols suitable for investigating the glass transition behaviour of HTPB oligomers are developed. The continuum level models and a constitutive model for a binder/energetic system are developing, for application in safety assessments (e.g. low-velocity impact tests).
Maréchal, Eric
2008-09-01
Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry open new fields of research for chemogenomics.
Wagner, Bridget K.; Clemons, Paul A.
2009-01-01
Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene-expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe- and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of “virtual” profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe and drug discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections. PMID:19825513
Zhang, Wei; Ma, Zhao; Du, Lupei; Li, Minyong
2014-06-07
As the cardinal support of innumerable biological processes, biomacromolecules such as proteins, nucleic acids and polysaccharides are of importance to living systems. The key to understanding biological processes is to realize the role of these biomacromolecules in thte localization, distribution, conformation and interaction with other molecules. With the current development and adaptation of fluorescent technologies in biomedical and pharmaceutical fields, the fluorescence imaging (FLI) approach of using small-molecule fluorescent probes is becoming an up-to-the-minute method for the detection and monitoring of these imperative biomolecules in life sciences. However, conventional small-molecule fluorescent probes may provide undesirable results because of their intrinsic deficiencies such as low signal-to-noise ratio (SNR) and false-positive errors. Recently, small-molecule fluorescent probes with a photoinduced electron transfer (PET) "on/off" switch for biomacromolecules have been thoroughly considered. When recognized by the biomacromolecules, these probes turn on/off the PET switch and change the fluorescence intensity to present a high SNR result. It should be emphasized that these PET-based fluorescent probes could be advantageous for understanding the pathogenesis of various diseases caused by abnormal expression of biomacromolecules. The discussion of this successful strategy involved in this review will be a valuable guide for the further development of new PET-based small-molecule fluorescent probes for biomacromolecules.
Luminescent nanodiamonds for biomedical applications.
Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C
2011-12-01
In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.
Japan Report, Science and Technology.
1987-04-17
suspended cells by using the microinjection method. Figure 2. Typical Drawing of Inject Scope _ # [Extracted from M . Furusawa , et. al.: "Erythropoiesis...yf-’n-uyx 7. •> t - \\y 8. fctftll’VX 1212 Injectoscope^iCE! M . Furusawa , et- ai ’. " Erythropoiesis and differentiation in Friend...34 o °f p -*K2) / DNA»* (1) V i = ^P’f vyi^i/3 > m ®f7v •y*’sym®<Di&&. m Key: 1. DNA molecule 2. Injector needle As previously mentioned, this
Next Generation LOCAD-PTS Cartridge Development
NASA Technical Reports Server (NTRS)
Morris, H.; Nutter, D.; Weite, E.; Wells, M.; Maule, J.; Damon, M.; Monaco, L.; Steele, A.; Wainwright, N.
2008-01-01
Future astrobiology exploration missions will require rapid, point-of-use techniques for surface science experiments and contamination monitoring. The Lab-On-a-Chip Application Development (LOCAD) team is developing operational instruments that advance spaceflight technologies to molecular-based methods. Currently, LOCAD-Portable Test System (PTS) is quantifying levels of the bacterial molecule endotoxin onboard the Internatioal Space Station. Future research and development will focus on more sensitive molecular techniques that expand the number of compounds detected to include beta-glucan from fungal cell walls.
Quo vadis, unimolecular electronics?
Metzger, Robert Melville
2018-06-07
This paper reviews the present status of unimolecular electronics (UME). The field started in the 1970s with a hope that some day organic molecules (∼2 nm in size), when used as electronic components, would challenge Si-based inorganic electronics in ultimate-high-density integrated circuits. The technological push to ever smaller inorganic device sizes (Moore's "law") was driven by a profit motive and by vast investments. UME, the underfunded pauper, may have lost that "race to the bottom", but some excellent science is left to be done.
Investigation of molecular penetration depth variation with SMBI fluxes
NASA Astrophysics Data System (ADS)
Zhou, Yu-Lin; Wang, Zhan-Hui; Xu, Min; Wang, Qi; Nie, Lin; Feng, Hao; Sun, Wei-Guo
2016-09-01
We study the molecular penetration depth variation with the SMBI fluxes. The molecular transport process and the penetration depth during SMBI with various injection velocities and densities are simulated and compared. It is found that the penetration depth of molecules strongly depends on the radial convective transport of SMBI and it increases with the increase of the injection velocity. The penetration depth does not vary much once the SMBI injection density is larger than a critical value due to the dramatic increase of the dissociation rate on the fueling path. An effective way to improve the SMBI penetration depth has been predicted, which is SMBI with a large radial injection velocity and a lower molecule injection density than the critical density. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375053, 11575055, 11405022, and 11405112), the Chinese National Fusion Project for ITER (Grant Nos. 2013GB107001 and 2013GB112005), the International S&T Cooperation Program of China (Grant No. 2015DFA61760), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).
Cassini's Grand Finale Science Highlights
NASA Astrophysics Data System (ADS)
Spilker, Linda
2017-10-01
After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini returned its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere satisfying planetary protection requirements. Cassini's Grand Finale covered a period of roughly five months and ended with the first time exploration of the region between the rings and planet.The final close flyby of Titan in late April 2017 propelled Cassini across Saturn’s main rings and into its Grand Finale orbits; 22 orbits that repeatedly dove between Saturn’s innermost rings and upper atmosphere making Cassini the first spacecraft to explore this region. The last orbit turned the spacecraft into the first Saturn upper atmospheric probe.The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet.Science highlights and new mysteries gleaned to date from the Grand Finale orbits will be discussed.The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.
Terahertz technology and applications
NASA Technical Reports Server (NTRS)
Siegel, P.
2002-01-01
Despite great scientific interest since at least the 1920's, the THz frequency range remains on e of the least tapped regions of the electromagnetic spectrum. Sandwiched between traditional microwave and optical technologies where there is a limited atmospheric propagation path, little commercial emphasis has been placed on THz systems. This has, perhaps fortunately, preserved some unique science and applications for tomorrow's technologies. For over 25 years the sole niche for THz technology has been in the high resolution spectroscopy and remote sensing areas where heterodyne and Fourier transform techniques have allowed astronomers, chemists, Earth, planetary and space scientists to measure, catalog and map thermal emission lines for a wide variety of lightweight molecules. As it turns out, no where else in the electromagnetic spectrum do we receive so much information about these chemical species. In fact, the universe is bathed in THz energy, most of it going unnoticed and undetected.
de Matas, Marcel; De Beer, Thomas; Folestad, Staffan; Ketolainen, Jarkko; Lindén, Hans; Lopes, João Almeida; Oostra, Wim; Weimer, Marco; Öhrngren, Per; Rantanen, Jukka
2016-07-30
The regulatory and technical landscape of the pharmaceutical field is rapidly evolving from one focused predominantly on development of small molecules, using well established manufacturing technologies towards an environment in which biologicals and complex modalities are being developed using advanced science and technology coupled with the application of modern Quality by Design (QbD) principles. In order that Europe keeps pace with these changes and sustains its position as major player in the development and commercialization of medicines, it is essential that measures are put in place to maintain a highly skilled workforce. A number of challenges however exist to equipping academic, industrial and health agency staff with the requisite knowledge, skills and experience to develop the next generation of medicines. In this regard, the EUFEPS QbD and PAT Sciences Network has proposed a structured framework for education, training and continued professional development, which comprises a number of pillars covering the fundamental principles of modern pharmaceutical development including the underpinning aspects of science, engineering and technology innovation. The framework is not prescriptive and is not aimed at describing specific course content in detail. It should however be used as a point of reference for those institutions delivering pharmaceutical based educational courses, to ensure that the necessary skills, knowledge and experience for successful pharmaceutical development are maintained. A positive start has been made and a number of examples of formal higher education courses and short training programs containing elements of this framework have been described. The ultimate vision for this framework however, is to see widespread adoption and proliferation of this curriculum with it forming the backbone of QbD and PAT science based skills development. Copyright © 2016 Elsevier B.V. All rights reserved.
Recent advances in DNA nanotechnology.
Chidchob, Pongphak; Sleiman, Hanadi F
2018-05-08
DNA is a powerful guiding molecule to achieve the precise construction of arbitrary structures and high-resolution organization of functional materials. The combination of sequence programmability, rigidity and highly specific molecular recognition in this molecule has resulted in a wide range of exquisitely designed DNA frameworks. To date, the impressive potential of DNA nanomaterials has been demonstrated from fundamental research to technological advancements in materials science and biomedicine. This review presents a summary of some of the most recent developments in structural DNA nanotechnology regarding new assembly approaches and efforts in translating DNA nanomaterials into practical use. Recent work on incorporating blunt-end stacking and hydrophobic interactions as orthogonal instruction rules in DNA assembly, and several emerging applications of DNA nanomaterials will also be highlighted. Copyright © 2018. Published by Elsevier Ltd.
Counting individual ions in the air by tagging them with particles
NASA Astrophysics Data System (ADS)
Gorbunov, B.
2017-07-01
The quantification of ultra-low concentrations of molecules and ions in gases is of fundamental and practical importance for science and technology, for example, the detection of explosives in airports or biomarkers in medical diagnostics. Often the Faraday cup is employed to transfer ion concentrations in an electric current that is then amplified and measured. One of the main challenges is to increase the sensitivity of detection. A novel concept has been developed that enables detection of individual ions in gases by tagging them with neutral nano-objects. The concentration of ionized molecules was measured and a detection limit of 5 cm-3 was observed. It is anticipated that this concept opens doors for advances in detection sensitivity for many applications including security, medical diagnostic, trace chemical analysis.
NASA Astrophysics Data System (ADS)
Felton, J. S.; Turteltaub, K. W.; Vogel, J. S.; Balhorn, R.; Gledhill, B. L.; Southon, J. R.; Caffee, M. W.; Finkel, R. C.; Nelson, D. E.; Proctor, I. D.; Davis, J. C.
1990-12-01
We are utilizing accelerator mass spectrometry as a sensitive detector for tracking the disposition of radioisotopically labeled molecules in the biomedical sciences. These applications have shown the effectiveness of AMS as a tool to quantify biologically important molecules at extremely low levels. For example, AMS is being used to determine the amount of carcinogen covalently bound to animal DNA (DNA adduct) at levels relevent to human exposure. Detection sensitivities are 1 carcinogen molecule bound in 1011 to 1012 DNA bases, depending on the specific activity of the radiolabeled carcinogen. Studies have been undertaken in our laboratory utilizing heterocyclic amine food-borne carcinogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent environmental carcinogen, to study the metabolism of carcinogens at low doses. In addition, AMS is being used to detect the presence of rare proteins (mutant forms of protamine) in human sperm. Approximately l per 106 sperm analyzed contain the rare form of the protamine. Protamine isolated from this small number of cells is being analyzed by AMS, following 14C labeling. Thus, AMS can be used to verify the identity of an extremely small amount of biological material. Furthermore, an additional improvement of 2 orders of magnitude in the sensitivity of biomédical tracer studies is suggested by preliminary work with bacterial hosts depleted in radiocarbon. Other problems in the life sciences where detection sensitivity or sample sizes are limitations should also benefit from AMS. Studies are underway to measure the molecular targeting of cancer chemotherapeutics in human tissue and to pursue applications for receptor biology. We are also applying other candidate isotopes, such as 3H (double labeling with 14C) and 41Ca (bone absorption) to problems in biology. The detection of 36Cl and 26Al have applications for determination of human neutron exposure and understanding neurological toxicity, respectively. The results described here with 14C-labeled molecules coupled with new isotope applications clearly show AMS technology to be an important new tool for the biomedical sciences community.
Molecular dynamics simulations through GPU video games technologies
Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia
2016-01-01
Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251
NASA Astrophysics Data System (ADS)
Schroeder, Mubina Khan
In science education, the use of digital technology-based learning can help students struggling with difficult concepts such as the movement of molecules. While digital learning tools hold much promise for science education, the question arises as to whether or not such technology can serve as an adequate surrogate for the teacher-student interactions that theorists like Lev Vygotsky (1978) underscored as being critical to learning. In response to such concerns, designers of digital curricula often utilize scaffolds to help students as they learn from such programs. Using a simulation designed to teach students about the concept of diffusion as an example, I examine the effect of including prompting language in the learning sequence of the simulation. The use of prompting language in digital curriculum appears to be successful because it elicits science students to reflect and metacognise about their learning, lending support to Vygotsky's (1978) ideas of teaching and learning involving outer and inner dialog. However, findings from think aloud data continue to underscore the importance of human linguistic exchange as a preferable learning paradigm.
Assembling new technologies at the interface of materials science and biology
NASA Astrophysics Data System (ADS)
Stendahl, John C.
Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA nanofibers were used in conjunction with fibrous poly(L-lactic acid] fabrics to create chemically functional scaffolds to facilitate islet cell transplantation. In transplant studies in diabetic mice, the use of scaffolds for islet delivery was shown to significantly improve transplant outcomes over free islet injections. Together, these studies illustrate that molecular self-assembly can be used to create functional materials for a variety of applications. These materials utilize noncovalent interactions to produce supramolecular structures that have important impacts on properties.
Time and Space Resolved High Harmonic Imaging of Electron Tunnelling from Molecules
NASA Astrophysics Data System (ADS)
Smirnova, O.
2009-05-01
High harmonic generation in intense laser fields carries the promise of combining sub-Angstrom spatial and attosecond temporal resolution of electronic structures and dynamics in molecules, see e.g. [1-3]. High harmonic emission occurs when an electron detached from a molecule by an intense laser field recombines with the parent ion [4]. Similar to Young's double-slit experiment, recombination to several ``lobes'' of the same molecular orbital can produce interference minima and maxima in harmonic intensities [1]. These minima (maxima) carry structural information -- they occur when the de-Broglie wavelength of the recombining electron matches distances between the centers. We demonstrate both theoretically and experimentally that amplitude minima (maxima) in the harmonic spectra can also have dynamical origin, reflecting multi-electron dynamics in the molecule. We use high harmonic spectra to record this dynamics and reconstruct the position of the hole left in the molecule after ionization. Experimental data are consistent with the hole starting in different places as the ionization dynamics changes from tunnelling to the multi-photon regime. Importantly, hole localization and subsequent attosecond dynamics are induced even in the tunnelling limit. Thus, even ``static'' tunnelling induced by a tip of a tunnelling microscope will generate similar attosecond dynamics in a sample. We anticipate that our approach will become standard in disentangling spatial and temporal information from high harmonic spectra of molecules.[4pt] In collaboration with Serguei Patchkovskii, National Research Council, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada; Yann Mairesse, NRC Canada and CELIA, Universit'e Bordeaux I, UMR 5107 (CNRS, Bordeaux 1, CEA), 351 Cours de la Lib'eration, 33405 Talence Cedex, France; Nirit Dudovich, NRC Canada and Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; David Villeneuve, Paul Corkum, NRC Canada; and Misha Yu. Ivanov, NRC Canada and Imperial College of Science, Technology and Medicine, London SW7 2BW, United Kingdom. [4pt] [1] Lein, M., et al. Phys. Rev. Lett. 88, 183903 (2002).[0pt] [2] Itatani, J. et al. Nature 432, 834 (2004).[0pt] [3] Baker, S. et al Science 312, 424 (2006).[0pt] [4] Corkum, P. B.Phys. Rev. Lett. 71, 1994 (1993).
A new understanding of inert gas narcosis
NASA Astrophysics Data System (ADS)
Meng, Zhang; Yi, Gao; Haiping, Fang
2016-01-01
Anesthetics are extremely important in modern surgery to greatly reduce the patient’s pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely and effectively. Inert gases, with low chemical activity, have been found to cause anesthesia for centuries, but the mechanism is unclear yet. In this review, we first summarize the progress of theories about general anesthesia, especially for inert gas narcosis, and then propose a new hypothesis that the aggregated rather than the dispersed inert gas molecules are the key to trigger the narcosis to explain the steep dose-response relationship of anesthesia. Project supported by the Supercomputing Center of Chinese Academy of Sciences in Beijing, China, the Shanghai Supercomputer Center, China, the National Natural Science Foundation of China (Grant Nos. 21273268, 11290164, and 11175230), the Startup Funding from Shanghai Institute of Applied Physics, Chinese Academy of Sciences (Grant No. Y290011011), “Hundred People Project” from Chinese Academy of Sciences, and “Pu-jiang Rencai Project” from Science and Technology Commission of Shanghai Municipality, China (Grant No. 13PJ1410400).
Positron Emission Tomography: Principles, Technology, and Recent Developments
NASA Astrophysics Data System (ADS)
Ziegler, Sibylle I.
2005-04-01
Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.
Electron transport in molecular wires with transition metal contacts
NASA Astrophysics Data System (ADS)
Dalgleish, Hugh
A molecular wire is an organic molecule that forms a conducting bridge between electronic contacts. Single molecules are likely to be the smallest entities to conduct electricity and thus molecular wires present many interesting challenges to fundamental science as well as enormous potential for nanoelectronic technological applications. A particular challenge stems from the realization that the properties of molecular wires are strongly influenced by the combined characteristics of the molecule and the metal contacts. While gold has been the most studied contact material to date, interest in molecular wires with transition metal contacts that are electronically more complex than gold is growing. This thesis presents a theoretical investigation of electron transport and associated phenomena in molecular wires with transition metal contacts. An appropriate methodology is developed on the basis of Landauer theory and ab initio and semi-empirical considerations and new, physically important systems are identified. Spin-dependent transport mechanisms and device characteristics are explored for molecular wires with ferromagnetic iron contacts, systems that have not been considered previously, either theoretically or experimentally. Electron transport between iron point contacts bridged by iron atoms is also investigated. Spin-dependent transport is also studied for molecules bridging nickel contacts and a possible explanation of some experimentally observed phenomena is proposed. A novel physical phenomenon termed strong spin current rectification and a new controllable negative differential resistance mechanism with potential applications for molecular electronic technology are introduced. The phenomena predicted in this thesis should be accessible to present day experimental techniques and this work is intended to stimulate experiments directed at observing them. Keywords. molecular electronics; spintronics; electron transport; interface states.
Single-molecule fluorescence microscopy review: shedding new light on old problems
Shashkova, Sviatlana
2017-01-01
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. PMID:28694303
Silva, Gabriel A
2010-06-01
Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullman, Andrew M.; Brown, Jonathan W.; Foster, Michael E.
As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal–organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling thesemore » MOF–guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Additionally, our work in the areas of H 2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.« less
Chemistry and Biology of the Caged Garcinia Xanthones
Chantarasriwong, Oraphin; Batova, Ayse; Chavasiri, Warinthorn
2011-01-01
Natural products have been a great source of many small molecule drugs for various diseases. In spite of recent advances in biochemical engineering and fermentation technologies that allow us to explore microorganisms and the marine environment as alternative sources of drugs, more than 70% of the current small molecule therapeutics derive their structures from plants used in traditional medicine. Natural-product-based drug discovery relies heavily on advances made in the sciences of biology and chemistry. Whereas biology aims to investigate the mode of action of a natural product, chemistry aims to overcome challenges related to its supply, bioactivity, and target selectivity. This review summarizes the explorations of the caged Garcinia xanthones, a family of plant metabolites that possess a unique chemical structure, potent bioactivities, and a promising pharmacology for drug design and development. PMID:20648491
Atoms and Molecules. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
There are more than 20 million known substances in the universe, and they are all made of the same basic ingredients--atoms and molecules. In this fun and engaging program, kids will learn about the three main subatomic particles--protons, neutrons and electrons--as well as the forces that keep atoms and molecules together. They'll discover how…
Schmidt, Roman; Engelhardt, Johann; Lang, Marion
2013-01-01
Optical microscopy has become a key technology in the life sciences today. Its noninvasive nature provides access to the interior of intact and even living cells, where specific molecules can be precisely localized by fluorescent tagging. However, the attainable 3D resolution of an optical microscope has long been hampered by a comparatively poor resolution along the optic axis. By coherent focusing through two objective lenses, 4Pi microscopy improves the axial resolution by three- to fivefold. This primer is intended as a starting point for the design and operation of a 4Pi microscope of type A.
Özdemir, Vural; Dove, Edward S; Gürsoy, Ulvi K; Şardaş, Semra; Yıldırım, Arif; Yılmaz, Şenay Görücü; Ömer Barlas, I; Güngör, Kıvanç; Mete, Alper; Srivastava, Sanjeeva
2017-01-01
No field in science and medicine today remains untouched by Big Data, and psychiatry is no exception. Proteomics is a Big Data technology and a next generation biomarker, supporting novel system diagnostics and therapeutics in psychiatry. Proteomics technology is, in fact, much older than genomics and dates to the 1970s, well before the launch of the international Human Genome Project. While the genome has long been framed as the master or "elite" executive molecule in cell biology, the proteome by contrast is humble. Yet the proteome is critical for life-it ensures the daily functioning of cells and whole organisms. In short, proteins are the blue-collar workers of biology, the down-to-earth molecules that we cannot live without. Since 2010, proteomics has found renewed meaning and international attention with the launch of the Human Proteome Project and the growing interest in Big Data technologies such as proteomics. This article presents an interdisciplinary technology foresight analysis and conceptualizes the terms "environtome" and "social proteome". We define "environtome" as the entire complement of elements external to the human host, from microbiome, ambient temperature and weather conditions to government innovation policies, stock market dynamics, human values, political power and social norms that collectively shape the human host spatially and temporally. The "social proteome" is the subset of the environtome that influences the transition of proteomics technology to innovative applications in society. The social proteome encompasses, for example, new reimbursement schemes and business innovation models for proteomics diagnostics that depart from the "once-a-life-time" genotypic tests and the anticipated hype attendant to context and time sensitive proteomics tests. Building on the "nesting principle" for governance of complex systems as discussed by Elinor Ostrom, we propose here a 3-tiered organizational architecture for Big Data science such as proteomics. The proposed nested governance structure is comprised of (a) scientists, (b) ethicists, and (c) scholars in the nascent field of "ethics-of-ethics", and aims to cultivate a robust social proteome for personalized medicine. Ostrom often noted that such nested governance designs offer assurance that political power embedded in innovation processes is distributed evenly and is not concentrated disproportionately in a single overbearing stakeholder or person. We agree with this assessment and conclude by underscoring the synergistic value of social and biological proteomes to realize the full potentials of proteomics science for personalized medicine in psychiatry in the present era of Big Data.
Science& Technology Review March 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D H
2004-01-23
This month's issue has the following articles: (1) ''Rethinking Atoms for Peace and the Future of Nuclear Technology'' a commentary by Ronald F. Lehman II; (2) ''Rich Legacy from Atoms for Peace'' In 1953, President Eisenhower encouraged world leaders to pursue peaceful uses of nuclear technology. Many of Livermore's contributions in the spirit of this initiative continue to benefit society today. (3) ''Tropopause Height Becomes Another Climate-Change Fingerprint'' Simulations and observational data show that human activities are largely responsible for the steady elevation of the tropopause, the boundary between the troposphere and the stratosphere. (4) ''A Better Method for Certifyingmore » the Nuclear Stockpile'' Livermore and Los Alamos are developing a common framework for evaluating the reliability and safety of nuclear weapons. (5) ''Observing How Proteins Loop the Loop'' A new experimental method developed at Livermore allows scientists to monitor the folding processes of proteins, one molecule at a time.« less
On ``The Congressional Fellowship as an Ethnographic Extravaganza''
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
2006-06-01
Josh Trapani's emerging experience as an AGU Congressional Fellow (Eos, 87(7), 76, 2006) is educational. Spectacular developments in the physical sciences tempt us to believe that finer and finer dissection of matter and sophisticated manipulation of molecules will soon enable us to control nature at will. Increasing knowledge, though, about the Earth and its interconnected biological systems makes us skeptical about the enthusiastic vision of physical sciences. Living things, unlike the nonliving things that are the concern of physical sciences, possess the attribute of `behavior,' associated with `mind' and `instinct.'. Trapani's ethnographic extravaganza is merely a subset of behavior, which lies beyond the scope of relativity, quantum mechanics, or thermodynamics. Rationally, one would expect that with its fine program of liberal education, congressional fellowships, and prestigious academies of sciences, the United States will enjoy a most harmonious interrelationship between science and national policies. Such rational thinking, a reflection of our training in the physical sciences, is valid in the case of inanimate things that are faithfully subject to physical laws. When on occasion we feel dismayed at a lack of harmony between what science tells us and how national policies take shape, we would do well to be reminded by Trapani's ethnographic extravaganza that `behavior' of even the most technologically advanced living things transcends the rationality of the physical sciences.
Leake, Mark C
2016-01-01
Our understanding of the processes involved in infection has grown enormously in the past decade due in part to emerging methods of biophysics. This new insight has been enabled through advances in interdisciplinary experimental technologies and theoretical methods at the cutting-edge interface of the life and physical sciences. For example, this has involved several state-of-the-art biophysical tools used in conjunction with molecular and cell biology approaches, which enable investigation of infection in living cells. There are also new, emerging interfacial science tools which enable significant improvements to the resolution of quantitative measurements both in space and time. These include single-molecule biophysics methods and super-resolution microscopy approaches. These new technological tools in particular have underpinned much new understanding of dynamic processes of infection at a molecular length scale. Also, there are many valuable advances made recently in theoretical approaches of biophysics which enable advances in predictive modelling to generate new understanding of infection. Here, I discuss these advances, and take stock on our knowledge of the biophysics of infection and discuss where future advances may lead.
A Single-Molecule Barcoding System using Nanoslits for DNA Analysis
NASA Astrophysics Data System (ADS)
Jo, Kyubong; Schramm, Timothy M.; Schwartz, David C.
Single DNA molecule approaches are playing an increasingly central role in the analytical genomic sciences because single molecule techniques intrinsically provide individualized measurements of selected molecules, free from the constraints of bulk techniques, which blindly average noise and mask the presence of minor analyte components. Accordingly, a principal challenge that must be addressed by all single molecule approaches aimed at genome analysis is how to immobilize and manipulate DNA molecules for measurements that foster construction of large, biologically relevant data sets. For meeting this challenge, this chapter discusses an integrated approach for microfabricated and nanofabricated devices for the manipulation of elongated DNA molecules within nanoscale geometries. Ideally, large DNA coils stretch via nanoconfinement when channel dimensions are within tens of nanometers. Importantly, stretched, often immobilized, DNA molecules spanning hundreds of kilobase pairs are required by all analytical platforms working with large genomic substrates because imaging techniques acquire sequence information from molecules that normally exist in free solution as unrevealing random coils resembling floppy balls of yarn. However, nanoscale devices fabricated with sufficiently small dimensions fostering molecular stretching make these devices impractical because of the requirement of exotic fabrication technologies, costly materials, and poor operational efficiencies. In this chapter, such problems are addressed by discussion of a new approach to DNA presentation and analysis that establishes scaleable nanoconfinement conditions through reduction of ionic strength; stiffening DNA molecules thus enabling their arraying for analysis using easily fabricated devices that can also be mass produced. This new approach to DNA nanoconfinement is complemented by the development of a novel labeling scheme for reliable marking of individual molecules with fluorochrome labels, creating molecular barcodes, which are efficiently read using fluorescence resonance energy transfer techniques for minimizing noise from unincorporated labels. As such, our integrative approach for the realization of genomic analysis through nanoconfinement, named nanocoding, was demonstrated through the barcoding and mapping of bacterial artificial chromosomal molecules, thereby providing the basis for a high-throughput platform competent for whole genome investigations.
Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state
NASA Astrophysics Data System (ADS)
Rogers, Joshua P.; Anstöter, Cate S.; Verlet, Jan R. R.
2018-03-01
The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.
Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia
2015-05-01
We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.
Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids
NASA Astrophysics Data System (ADS)
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and Technology Council ACTION: Notice of Meeting--Public input is.... SUMMARY: The Aeronautics Science and Technology Subcommittee (ASTS) of the National Science and Technology...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.
2000-09-01
This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices andmore » other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.« less
Reaction-diffusion systems in natural sciences and new technology transfer
NASA Astrophysics Data System (ADS)
Keller, André A.
2012-12-01
Diffusion mechanisms in natural sciences and innovation management involve partial differential equations (PDEs). This is due to their spatio-temporal dimensions. Functional semi-discretized PDEs (with lattice spatial structures or time delays) may be even more adapted to real world problems. In the modeling process, PDEs can also formalize behaviors, such as the logistic growth of populations with migration, and the adopters’ dynamics of new products in innovation models. In biology, these events are related to variations in the environment, population densities and overcrowding, migration and spreading of humans, animals, plants and other cells and organisms. In chemical reactions, molecules of different species interact locally and diffuse. In the management of new technologies, the diffusion processes of innovations in the marketplace (e.g., the mobile phone) are a major subject. These innovation diffusion models refer mainly to epidemic models. This contribution introduces that modeling process by using PDEs and reviews the essential features of the dynamics and control in biological, chemical and new technology transfer. This paper is essentially user-oriented with basic nonlinear evolution equations, delay PDEs, several analytical and numerical methods for solving, different solutions, and with the use of mathematical packages, notebooks and codes. The computations are carried out by using the software Wolfram Mathematica®7, and C++ codes.
Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar
NASA Technical Reports Server (NTRS)
Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane;
2010-01-01
In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights
NASA Technical Reports Server (NTRS)
2000-01-01
The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.
Chiang, Howard Hsueh-hao
2009-01-01
Preparative and analytical methods developed by separation scientists have played an important role in the history of molecular biology. One such early method is gel electrophoresis, a technique that uses various types of gel as its supporting medium to separate charged molecules based on size and other properties. Historians of science, however, have only recently begun to pay closer attention to this material epistemological dimension of biomolecular science. This paper substantiates the historiographical thread that explores the relationship between modern laboratory practice and the production of scientific knowledge. It traces the historical development of gel electrophoresis from the mid-1940s to the mid-1960s, with careful attention to the interplay between technical developments and disciplinary shifts, especially the rise of molecular biology in this time-frame. Claiming that the early 1950s marked a decisive shift in the evolution of electrophoretic methods from moving boundary to zone electrophoresis, I reconstruct various trajectories in which scientists such as Oliver Smithies sought out the most desirable solid supporting medium for electrophoretic instrumentation. Biomolecular knowledge, I argue, emerged in part from this process of seeking the most appropriate supporting medium that allowed for discrete molecular separation and visualization. The early 1950s, therefore, marked not only an important turning point in the history of separation science, but also a transformative moment in the history of the life sciences as the growth of molecular biology depended in part on the epistemological access to the molecular realm available through these evolving technologies.
Transforming MOFs for energy applications using the guest@MOF concept
Ullman, Andrew M.; Brown, Jonathan W.; Foster, Michael E.; ...
2016-07-11
As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal–organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling thesemore » MOF–guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Additionally, our work in the areas of H 2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.« less
Transforming MOFs for Energy Applications Using the Guest@MOF Concept.
Ullman, Andrew M; Brown, Jonathan W; Foster, Michael E; Léonard, François; Leong, Kirsty; Stavila, Vitalie; Allendorf, Mark D
2016-08-01
As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.
Analytical application of femtosecond laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Melikechi, Noureddine; Markushin, Yuri
2015-05-01
We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.
Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.
Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E
2017-11-01
Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.
Development of novel vaccines using DNA shuffling and screening strategies.
Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha
2004-02-01
DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.
Guo, Jing; You, Sifan; Wang, Zhichang; Peng, Jinbo; Ma, Runze; Jiang, Ying
2018-05-27
Water/solid interfaces are ubiquitous and play a key role in many environmental, biophysical, and technological processes. Resolving the internal structure and probing the hydrogen-bond (H-bond) dynamics of the water molecules adsorbed on solid surfaces are fundamental issues of water science, which remains a great challenge owing to the light mass and small size of hydrogen. Scanning tunneling microscopy (STM) is a promising tool for attacking these problems, thanks to its capabilities of sub-Ångström spatial resolution, single-bond vibrational sensitivity, and atomic/molecular manipulation. The designed experimental system consists of a Cl-terminated tip and a sample fabricated by dosing water molecules in situ onto the Au(111)-supported NaCl(001) surfaces. The insulating NaCl films electronically decouple the water from the metal substrates, so the intrinsic frontier orbitals of water molecules are preserved. The Cl-tip facilitates the manipulation of the single water molecules, as well as gating the orbitals of water to the proximity of Fermi level (EF) via tip-water coupling. This paper outlines the detailed methods of submolecular resolution imaging, molecular/atomic manipulation, and single-bond vibrational spectroscopy of interfacial water. These studies open up a new route for investigating the H-bonded systems at the atomic scale.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Aeronautics Science and Technology Subcommittee; Committee on Technology; National Science and Technology Council ACTION: Notice of Meeting--Public input is... Evaluation (RDT&E) Infrastructure Plan. SUMMARY: The Aeronautics Science and Technology Subcommittee (ASTS...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...
Molecule by molecule, the physics and chemistry of life: SMB 2007.
Block, Steven M; Larson, Matthew H; Greenleaf, William J; Herbert, Kristina M; Guydosh, Nicholas R; Anthony, Peter C
2007-04-01
Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference.
Novel engineered systems for oral, mucosal and transdermal drug delivery.
Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng
2013-08-01
Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Eric Cornell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornell, Eric
2008-08-30
Eric Cornell presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Kurt Gibble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibble, Kurt
2008-08-30
Kurt Gibble presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keasling, Jay
2008-08-30
Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman
Wieman, Carl
2017-12-09
Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Eric Cornell
Cornell, Eric
2018-02-05
Eric Cornell presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling
Keasling, Jay
2018-02-14
Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieman, Carl
Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Kurt Gibble
Gibble, Kurt
2018-02-05
Kurt Gibble presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Zhang, Hui; Guo, Peixuan
2014-05-15
Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described. Copyright © 2014 Elsevier Inc. All rights reserved.
75 FR 47317 - President's Council of Advisors on Science and Technology
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr. John P. Holdren, Assistant to the President for Science and Technology, and Director, Office of Science and Technology Policy...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National Science and Technology Council; Public Meetings AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meetings. SUMMARY...
Molecule by molecule, the physics and chemistry of life: SMB 2007
Block, Steven M; Larson, Matthew H; Greenleaf, William J; Herbert, Kristina M; Guydosh, Nicholas R; Anthony, Peter C
2007-01-01
Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference. PMID:17372599
Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.
Pippa, Natassa; Pispas, Stergios; Demetzos, Costas
2016-01-01
Polymer self-assembled nanostructures are used in pharmaceutical sciences as bioactive molecules' delivery systems for therapeutic and diagnostic purposes. Micelles, polyelectrolyte complexes, polymersomes, polymeric nanoparticles, nanogels and polymer grafted liposomes represent delivery vehicles that are marketed and/or under clinical development, as drug formulations. In this mini-review, these, recently appeared in the literature, innovative polymer drug nanocarrier platforms are discussed, starting from their technological development in the laboratory to their potential clinical use, through studies of their biophysics, thermodynamics, physical behavior, morphology, bio-mimicry, therapeutic efficacy and safety. The properties of an ideal drug delivery system are the structural control over size and shape of drug or imaging agent cargo/domain, biocompatibility, nontoxic polymer/ pendant functionality and the precise, nanoscale container and/or scaffolding properties with high drug or imaging agent capacity features. Self-assembled polymer nanostructures exhibit all these properties and could be considered as ideal drug nanocarriers through control of their size, structure and morphology, with the aid of a large variety of parameters, in vitro and in vivo. These modern trends reside at the interface of soft matter self-assembly and pharmaceutical sciences and the technologies for health. Great advantages related to basic science and applications are expected by understanding the self-assembly behavior of these polymeric nanotechnological drug delivery systems, created through bio-inspiration and biomimicry and have potential utilization into clinical applications.
NASA Astrophysics Data System (ADS)
Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.
2018-05-01
The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.
Martins, Ivone M; Reis, Rui L; Azevedo, Helena S
2016-11-18
The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Notice of Public Meeting AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meeting...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: General Notice. Nominations for Interagency Working Group participants. SUMMARY: The Subcommittee on Forensic Science of the National Science and Technology Council's...
77 FR 5282 - National Science and Technology Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Science and Technology Council ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and Technology Council (NSTC), will hold an ``International Symposium on Assessing the Economic...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr. John P. Holdren, Assistant to the President for Science and Technology, and Director, Office of Science and Technology Policy...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr. John P. Holdren, Assistant to the President for Science and Technology, and Director, Office of Science and Technology Policy...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-03
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of meeting. Public input is requested concerning... Forensic Science can be obtained through the Office of Science and Technology Policy's NSTC Web site at...
Advancing Biological Understanding and Therapeutics Discovery with Small Molecule Probes
Schreiber, Stuart L.; Kotz, Joanne D.; Li, Min; Aubé, Jeffrey; Austin, Christopher P.; Reed, John C.; Rosen, Hugh; White, E. Lucile; Sklar, Larry A.; Lindsley, Craig W.; Alexander, Benjamin R.; Bittker, Joshua A.; Clemons, Paul A.; de Souza, Andrea; Foley, Michael A.; Palmer, Michelle; Shamji, Alykhan F.; Wawer, Mathias J.; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E.; Schoenen, Frank J.; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R.; Pinkerton, Anthony B.; Chung, Thomas D.Y.; Griffin, Patrick R.; Cravatt, Benjamin F.; Hodder, Peter S.; Roush, William R.; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B.; Noah, James W.; Severson, William E.; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I.; Conn, P. Jeffrey; Hopkins, Corey R.; Wood, Michael R.; Stauffer, Shaun R.; Emmitte, Kyle A.
2015-01-01
Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436
Antipov, Sergey V; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří
2017-11-01
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research "Molecular Ultrafast Science and Technology," are presented: These include Bohmian dynamics description of the collision of H with H 2 , local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.
Granqvist, Niko; Hanning, Anders; Eng, Lars; Tuppurainen, Jussi; Viitala, Tapani
2013-01-01
Surface plasmon resonance (SPR) is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations. PMID:24217357
Antipov, Sergey V.; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří
2018-01-01
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research “Molecular Ultrafast Science and Technology,” are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase. PMID:29376107
Ju, Feng; Zhang, Tong
2015-11-03
Recent advances in DNA sequencing technologies have prompted the widespread application of metagenomics for the investigation of novel bioresources (e.g., industrial enzymes and bioactive molecules) and unknown biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. This review discusses the rigorous experimental design and sample preparation in the context of applying metagenomics in environmental sciences and biotechnology. Moreover, this review summarizes the principles, methodologies, and state-of-the-art bioinformatics procedures, tools and database resources for metagenomics applications and discusses two popular strategies (analysis of unassembled reads versus assembled contigs/draft genomes) for quantitative or qualitative insights of microbial community structure and functions. Overall, this review aims to facilitate more extensive application of metagenomics in the investigation of uncultured microorganisms, novel enzymes, microbe-environment interactions, and biohazards in biotechnological applications where microbial communities are engineered for bioenergy production, wastewater treatment, and bioremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steve
2008-08-30
Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize, presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium in his honor. The symposium was held August 30, 2008 in Berkeley.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holberg, Leo; Mills, Allen
2008-08-30
Leo Holberg and Allen Mills present a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Holberg, Leo; Mills, Allen
2018-05-07
Leo Holberg and Allen Mills present a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of Panel Session. Public input is requested... be obtained through the Office of Science and Technology Policy's NSTC Web site at http://www.ostp...
Antioxidants, mechanisms, and recovery by membrane processes.
Bazinet, Laurent; Doyen, Alain
2017-03-04
Antioxidants molecules have a great interest for bio-food and nutraceutical industries since they play a vital role for their capacity to reduce oxidative processes. Consequently, these molecules, generally present in complex matrices, have to be fractionated and purified to characterize them and to test their antioxidant activity. However, as natural or synthetics antioxidant molecules differ in terms of structural composition and physico-chemical properties, appropriate separation technologies must be selected. Different fractionation technologies are available but the most commonly used are filtration processes. Indeed, these technologies allow fractionation according to molecular size (pressure-driven processes), charge, or both size and charge (electrically driven processes). In this context, and after summarizing the reaction mechanisms of the different classes and nature of antioxidants as well as membrane fractionation technologies, this manuscript presents the specific applications of these membranes processes for the recovery of antioxidant molecules.
NIPTE: a multi-university partnership supporting academic drug development.
Gurvich, Vadim J; Byrn, Stephen R
2013-10-01
The strategic goal of academic translational research is to accelerate translational science through the improvement and development of resources for moving discoveries across translational barriers through 'first in humans' studies. To achieve this goal, access to drug discovery resources and preclinical IND-enabling infrastructure is crucial. One potential approach of research institutions for coordinating preclinical development, based on a model from the National Institute for Pharmaceutical Technology and Education (NIPTE), can provide academic translational and medical centers with access to a wide variety of enabling infrastructure for developing small molecule clinical candidates in an efficient, cost-effective manner. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multiscale assembly for tissue engineering and regenerative medicine
Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan
2015-01-01
Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bio-engineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. PMID:25796488
The diverse applications of plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Mukul, E-mail: mukulsharma@acropolis.edu.in; Darwhekar, Gajanan, E-mail: gdarwhekar@acropolis.edu.in; Dubey, Shivani, E-mail: dubeyshivani08@rediffmail.com
Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteriamore » and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.« less
The diverse applications of plasma
NASA Astrophysics Data System (ADS)
Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar
2015-07-01
Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.
Science-Technology-Society or Technology-Society-Science? Insights from an Ancient Technology
ERIC Educational Resources Information Center
Lee, Yeung Chung
2010-01-01
Current approaches to science-technology-society (STS) education focus primarily on the controversial socio-scientific issues that arise from the application of science in modern technology. This paper argues for an interdisciplinary approach to STS education that embraces science, technology, history, and social and cultural studies. By employing…
Chirality transfer technique between liquid crystal microdroplets using microfluidic systems
NASA Astrophysics Data System (ADS)
Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun
2018-02-01
Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.
Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems
Teuscher, Joël; Brauer, Jan C.; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E.
2017-01-01
Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here. PMID:29308415
Smart Payload Development for High Data Rate Instrument Systems
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Norton, Charles D.
2007-01-01
This slide presentation reviews the development of smart payloads instruments systems with high data rates. On-board computation has become a bottleneck for advanced science instrument and engineering capabilities. In order to improve the computation capability on board, smart payloads have been proposed. A smart payload is a Localized instrument, that can offload the flight processor of extensive computing cycles, simplify the interfaces, and minimize the dependency of the instrument on the flight system. This has been proposed for the Mars mission, Mars Atmospheric Trace Molecule Spectroscopy (MATMOS). The design of this system is discussed; the features of the Virtex-4, are discussed, and the technical approach is reviewed. The proposed Hybrid Field Programmable Gate Array (FPGA) technology has been shown to deliver breakthrough performance by tightly coupling hardware and software. Smart Payload designs for instruments such as MATMOS can meet science data return requirements with more competitive use of available on-board resources and can provide algorithm acceleration in hardware leading to implementation of better (more advanced) algorithms in on-board systems for improved science data return
The uses of radiotracers in the life sciences
NASA Astrophysics Data System (ADS)
Ruth, Thomas J.
2009-01-01
Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.
When technology, science and culture meet: insights from ancient Chinese technology
NASA Astrophysics Data System (ADS)
Lee, Yeung Chung
2017-10-01
This paper draws together two important agendas in science education. The first is making science education more inclusive such that students from non-Western or indigenous cultures can benefit from culturally relevant curricula. The second is integrating technology into the curriculum under the umbrella of Science-Technology-Society (STS) education to embrace the social aspects of science, with technology serving as a bridge. The advancement of the first agenda is hindered by the pursuance by both Western and non-Western societies of narrow cultural and practical goals without considering the development of science and technology from a cross-cultural perspective. The second agenda is limited by the misconception that technology is applied science, leading to the exclusion from STS discussions of pre-science or indigenous technologies developed by non-Western cultures. Through selected case studies of the evolution of Chinese traditional technologies and their interaction with science, this paper offers a perspective from the Far East, and argues for situating culturally responsive science education in broader historical and cross-cultural contexts to acknowledge the multi-cultural contributions to science and technology. A form of cross-cultural STS education is advanced, encompassing the cultural basis of technological developments, technology diffusion, interactions of traditional technology with science, and the potential development of traditional or indigenous technologies. This approach provides a bridge between the existing universal science education paradigm promoted in the West and the different forms of multi-cultural education advocated by indigenous science educators. To translate theory into practice, a conceptual framework is proposed in which the essential transdisciplinary knowledge base, curricular goals, and pedagogical approaches are embedded.
NASA Astrophysics Data System (ADS)
Thubagere, Anupama J.; Thachuk, Chris; Berleant, Joseph; Johnson, Robert F.; Ardelean, Diana A.; Cherry, Kevin M.; Qian, Lulu
2017-02-01
Biochemical circuits made of rationally designed DNA molecules are proofs of concept for embedding control within complex molecular environments. They hold promise for transforming the current technologies in chemistry, biology, medicine and material science by introducing programmable and responsive behaviour to diverse molecular systems. As the transformative power of a technology depends on its accessibility, two main challenges are an automated design process and simple experimental procedures. Here we demonstrate the use of circuit design software, combined with the use of unpurified strands and simplified experimental procedures, for creating a complex DNA strand displacement circuit that consists of 78 distinct species. We develop a systematic procedure for overcoming the challenges involved in using unpurified DNA strands. We also develop a model that takes synthesis errors into consideration and semi-quantitatively reproduces the experimental data. Our methods now enable even novice researchers to successfully design and construct complex DNA strand displacement circuits.
2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor.
Bartesaghi, Alberto; Merk, Alan; Banerjee, Soojay; Matthies, Doreen; Wu, Xiongwu; Milne, Jacqueline L S; Subramaniam, Sriram
2015-06-05
Cryo-electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli β-galactosidase and the cell-permeant inhibitor phenylethyl β-D-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM. Copyright © 2015, American Association for the Advancement of Science.
Science and Technology Teachers' Views of Primary School Science and Technology Curriculum
ERIC Educational Resources Information Center
Yildiz-Duban, Nil
2013-01-01
This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…
76 FR 70781 - President's Council of Advisors on Science and Technology
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... understandings from the domains of science, technology, and innovation may bear on the policy choices before the President. PCAST is administered by the Office of Science and Technology Policy (OSTP). PCAST is co-chaired...
76 FR 70779 - President's Council of Advisors on Science and Technology
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... understandings from the domains of science, technology, and innovation may bear on the policy choices before the President. PCAST is administered by the Office of Science and Technology Policy (OSTP). PCAST is co-chaired...
76 FR 75919 - President's Council of Advisors on Science and Technology Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology Meeting AGENCY: Office of Science and Technology Policy. ACTION: Notice of meeting. SUMMARY: This notice... understandings from the domains of science, technology, and innovation may bear on the policy choices before the...
76 FR 62871 - President's Council of Advisors on Science and Technology Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology Meeting AGENCY: Office of Science and Technology Policy. ACTION: Notice of meeting. SUMMARY: This notice... Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr. John P. Holdren, Assistant to...
76 FR 70780 - President's Council of Advisors on Science and Technology
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... domains of science, technology, and innovation may bear on the policy choices before the President. PCAST is administered by the Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr...
76 FR 72224 - President's Council of Advisors on Science and Technology Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology Meeting AGENCY: Office of Science and Technology Policy. ACTION: Notice of meeting. SUMMARY: This notice... domains of science, technology, and innovation may bear on the policy choices before the President. PCAST...
Cassini's Grand Finale Overview
NASA Astrophysics Data System (ADS)
Spilker, L. J.
2017-12-01
After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini sent back its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Cassini's final phase covered roughly ten months and ended with the first time exploration of the region between the rings and planet. In late 2016 Cassini transitioned to a series of 20 Ring Grazing orbits with peripases just outside Saturn's F ring, providing close flybys of tiny ring moons, including Pan, Daphnis and Atlas, and high-resolution views of Saturn's A and F rings. A final Titan flyby in late April 2017 propelled Cassini across Saturn's main rings and into its Grand Finale orbits. Comprised of 22 orbits, Cassini repeatedly dove between Saturn's innermost rings and upper atmosphere to answer fundamental questions unattainable earlier in the mission. The last orbit turned the spacecraft into the first Saturn atmosphere probe. The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet. Science highlights and new mysteries collected in the Grand Finale orbits will be discussed. The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.
NASA Astrophysics Data System (ADS)
Schaumann, G. E.; Jaeger, F.; Bayer, J. V.
2009-04-01
NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non-destructive way. Recent studies investigated wetting and swelling processes in soil samples, as well as the formation of microbial biofilms in soil the formation. This contribution gives an overview of current applications and the potential of NMR relaxometry in soil science with special emphasis on proton NMR relaxometry. References Bird, N.R.A., Preston, A.R., Randall, E.W., Whalley, W.R. & Whitmore, A.P. 2005. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance. 56, 135-143. Bryar, T.R. & Knight, R.J. 2002. Sensitivity of Nuclear Magnetic Resonance Relaxation Measurements to Changing Soil Redox Conditions. Geophysical Research Letters, 29, 50/1-50/4. Conte, P., Spaccini, R. & Piccolo, A. 2006. Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic acid. Analytical and Bioanalytical Chemistry, 386, 382-390. Gunasekara, A.S., Simpson, M.I. & Xing, B. 2003. Identification and characterization of sorption domains in soil organic matter using strucuturally modified humic acids. Environmental Science & Technology, 37, 852-858. Jaeger, F., Grohmann, E., Boeckelmann, U. & Schaumann, G.E. 2006. Microbial effects on 1H NMR Relaxometry in soil samples and glass bead reactors. In Humic Substances - Linking Structure to Functions. Proceedings of the 13th Meeting of the International Humic Substances Societyin Karlsruhe eds. F.H. Frimmel & G. Abbt-Braun), pp. 929-932. Universität Karlsruhe, Karlsruhe. Hurraß, J. & Schaumann, G.E. 2007. Hydration kinetics of wettable and water repellent soil samples. Soil Science Society of America Journal, 71, 280-288. Jaeger, F., Grohmann, E. & Schaumann, G.E. 2006. 1H NMR Relaxometry in natural humous soil samples: Insights in microbial effects on relaxation time distributions. Plant and Soil, 280, 209-222. Jaeger, F., Rudolph, N., Lang, F. & Schaumann, G.E. 2008. Effects of soil solution's constituents on proton NMR relaxometry of soil samples. Soil Science Society of America Journal, 72, 1694-1707. Jaeger, F., Bowe, S. & Schaumann, G.E. in preparation. Evaluation of 1H NMR relaxometry for the assessment of pore size distribution in soil samples. European Journal of Soil Science. Jähnert, S., Vaca Chavez, F., Schaumann, G.E., Schreiber, A., Schönhoff, M. & Findenegg, G.H. 2008. Melting and freezing of water in cylindrical silica nanopores. Physical Chemistry Chemical Physics, 39, 6039-6051. Schaumann, G.E., Hurraß, J., Müller, M. & Rotard, W. 2004. Swelling of organic matter in soil and peat samples: insights from proton relaxation, water absorption and PAH extraction. In Humic Substances: Nature's Most Versatile Materials eds. E.A. Ghabbour & G. Davies), pp. 101-117. Taylor and Francis, Inc., New York. Schaumann, G.E., Hobley, E., Hurraß, J. & Rotard, W. 2005. H-NMR Relaxometry to monitor wetting and swelling kinetics in high organic matter soils. Plant and Soil, 275, 1-20. Schaumann, G.E. & Bertmer, M. 2008. Do water molecules bridge soil organic matter molecule segments? European Journal of Soil Science, 59, 423-429. Todoruk, T.R., Langford, C.H. & Kantzas, A. 2003. Pore-Scale Redistribution of Water during Wetting of Air-Dried Soils As Studied by Low-Field NMR Relaxometry. Environmental Science and Technology, 37, 2707-2713. Todoruk, T.R., Litvina, M., Kantzas, A. & Langford, C.H. 2003. Low-Field NMR Relaxometry: A Study of Interactions of Water with Water-Repellant Soils. Environmental Science and Technology, 37, 2878-2882. Van As, H. & van Dusschoten, D. 1997. NMR methods for imaging of transport processes in micro-porous systems. Geoderma, 80, 389-403. Van As, H. & Lens, P. 2001. Use of 1H NMR to study transport processes in porous biosystems. Journal of Industrial Microbiology & Biotechnology, 26, 43-52.
2004-02-01
National Science and Technology Council Committee on Technology Subcommittee on Nanoscale Science, Engineering , and Technology National...18 About the Nanoscale Science, Engineering , and Technology Subcommittee The Nanoscale Science, Engineering , and Technology (NSET) Subcommittee is the...workshop was to examine trends and opportunities in nanoscale science and engineering as applied to electronic, photonic, and magnetic technologies
Early convergence research and education supported by the National Science Foundation.
Bainbridge, William Sims
2004-05-01
The following pages describe research grants awarded by the National Science Foundation that illustrate how different fields of science and technology can converge in order to increase human potential. Technological convergence involves the unification of the sciences of Nanotechnology, Biotechnology, Information Technology, and new technologies based on Cognitive Science (NBIC). Because it supports research across all major branches of science and technology, including the social and behavioral sciences, the NSF has been a focus of discussions about converging technologies to enhance human capabilities and serve human needs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... 13226. PCAST makes policy recommendations in the many areas where understanding of science, technology... people. PCAST is administered by the Office of Science and Technology Policy (OSTP). PCAST is co-chaired...
Nonlinear functional for solvation in Density Functional Theory
NASA Astrophysics Data System (ADS)
Gunceler, Deniz; Sundararaman, Ravishankar; Schwarz, Kathleen; Letchworth-Weaver, Kendra; Arias, T. A.
2013-03-01
Density functional calculations of molecules and surfaces in a liquid can accelerate the development of many technologies ranging from solar energy harvesting to lithium batteries. Such studies require the development of robust functionals describing the liquid. Polarizable continuum models (PCM's) have been applied to some solvated systems; but they do not sufficiently capture solvation effects to describe highly polar systems like surfaces of ionic solids. In this work, we present a nonlinear fluid functional within the framework of Joint Density Functional Theory. The fluid is treated not as a linear dielectric, but as a distribution of dipoles that responds to the solute, which we describe starting from the exact free energy functional for point dipoles. We also show PCM's can be recovered as the linear limit of our functional. Our description is of similar computational cost to PCM's, and captures complex solvation effects like dielectric saturation without requiring new fit parameters. For polar and nonpolar molecules, it achieves millihartree level agreement with experimental solvation energies. Furthermore, our functional now makes it possible to investigate chemistry on the surface of lithium battery materials, which PCM's predict to be unstable. Supported as part of the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001086
Technology Integration in a Science Classroom: Preservice Teachers' Perceptions
NASA Astrophysics Data System (ADS)
Rehmat, Abeera P.; Bailey, Janelle M.
2014-12-01
The challenge of preparing students for the information age has prompted administrators to increase technology in the public schools. Yet despite the increased availability of technology in schools, few teachers are integrating technology for instructional purposes. Preservice teachers must be equipped with adequate content knowledge of technology to create an advantageous learning experience in science classrooms. To understand preservice teachers' conceptions of technology integration, this research study explored 15 elementary science methods students' definitions of technology and their attitudes toward incorporating technology into their teaching. The phenomenological study took place in a science methods course that was based on a constructivist approach to teaching and learning science through science activities and class discussions, with an emphasis on a teacher beliefs framework. Data were collected throughout the semester, including an open-ended pre/post-technology integration survey, lesson plans, and reflections on activities conducted throughout the course. Through a qualitative analysis, we identified improvements in students' technology definitions, increased technology incorporation into science lesson plans, and favorable attitudes toward technology integration in science teaching after instruction. This research project demonstrates that positive changes in beliefs and behaviors relating to technology integration in science instruction among preservice teachers are possible through explicit instruction.
NASA Astrophysics Data System (ADS)
Romine, William L.; Sadler, Troy D.; Wulff, Eric P.
2017-10-01
We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of affect express their interest and attitudes toward science and technology and gender differences in how students express their affect. We found that affect in science and technology comprises a main dimension, science interest, and four peripheral dimensions: interest in careers in science and technology, attitudes toward science, and interest in attending science class. Of these, careers in science and technology carry the highest affective demand. While males showed higher levels of personal and situational interest in science, a greater interest in careers in science and technology was the biggest contributor to males' higher affect toward science and technology. We argue that whether the MAST is used as a measure of a single construct or multiple subconstructs depends upon specific research or evaluation goals; however, both uses of the MAST yield measures which produce valid inferences for student affect.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-30
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of Panel Session. Public input is requested... Sciences 2009 report: ``Strengthening Forensic Science in the United States: A Path Forward'' ( http://www...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... understandings from the domains of science, technology, and innovation may bear on the policy choices before the President. PCAST is administered by the Office of Science and Technology Policy (OSTP). PCAST is co-chaired...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... science, technology, and innovation may bear on the policy choices before the President. PCAST is administered by the Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr. John P. Holdren...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology; Notice of Meeting: Open Regional Meeting of the President's Council of Advisors on Science and Technology... Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr. John P. Holdren, Assistant to...
NASA Astrophysics Data System (ADS)
McNall, Rebecca Lee
This study explored how 10 beginning secondary science teachers who had completed the newly revised technology-integrated science teacher education program at the University of Virginia used educational technology in their science instruction during the induction year. Nine of the beginning teachers taught in Virginia or Maryland high schools, while one taught overseas in an international school. Participants taught biology, earth science, chemistry, physics, or general science. A revised version of the Technology Usage and Needs of Science Teachers survey (Pedersen & Yerrick, 2000) was administered to all 10 participants in early fall 2002 and late spring 2003 to assess their confidence using educational technology tools in teaching science. Follow-up interviews were conducted with all participants subsequent to survey administration to explore their views toward educational technology as an instructional tool, their use of educational technology in science instruction, and factors influencing their use. In addition, four participants were purposefully selected to characterize participants' instructional use of educational technology and to increase the likelihood of observing its use. Selection criteria of this subgroup included factors summarized from the research literature: (a) high confidence using educational technology, (b) strong intent to use educational technology instructionally, (c) access to technology tools, and (d) collegial or technology support. Survey responses were analyzed using descriptive statistics, and interview and classroom observation data were analyzed using analytic induction methods developed by Erickson (1986). Analysis of survey responses indicated that participants were confident using educational technology tools in science instruction and were most confident using word processing, spreadsheets, PowerPoint, and telecommunications applications. Classroom observations and interview responses indicated that participants used educational technology to provide visual representations of science concepts, support authentic science explorations and inquiry, and create real-world connections to science content. Limited access to educational technology resources, unfamiliarity with the curriculum, and limited time were factors limiting their use. While participants used educational technology less than they had originally intended, they continued to believe educational technology was a potentially powerful tool for teaching science and planned to continue to explore ways of incorporating it in their science instruction.
75 FR 18516 - Homeland Security Science and Technology Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... Technology Advisory Committee AGENCY: Science and Technology Directorate, DHS. ACTION: Committee Management; notice of closed Federal Advisory Committee meeting SUMMARY: The Homeland Security Science and Technology.... DATES: The Homeland Security Science and Technology Advisory Committee will meet April 20, 2010 from 8...
Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research.
Aquino-Jarquin, Guillermo
2017-12-15
MicroRNAs (miRNA) are small, noncoding RNA molecules with a master role in the regulation of important tasks in different critical processes of cancer pathogenesis. Because there are different miRNAs implicated in all the stages of cancer, for example, functioning as oncogenes, this makes these small molecules suitable targets for cancer diagnosis and therapy. RNA-mediated interference has been one major approach for sequence-specific regulation of gene expression in eukaryotic organisms. Recently, the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system, first identified in bacteria and archaea as an adaptive immune response to invading genetic material, has been explored as a sequence-specific molecular tool for editing genomic sequences for basic research in life sciences and for therapeutic purposes. There is growing evidence that small noncoding RNAs, including miRNAs, can be targeted by the CRISPR/Cas9 system despite their lacking an open reading frame to evaluate functional loss. Thus, CRISPR/Cas9 technology represents a novel gene-editing strategy with compelling robustness, specificity, and stability for the modification of miRNA expression. Here, I summarize key features of current knowledge of genomic editing by CRISPR/Cas9 technology as a feasible strategy for globally interrogating miRNA gene function and miRNA-based therapeutic intervention. Alternative emerging strategies for nonviral delivery of CRISPR/Cas9 core components into human cells in a clinical context are also analyzed critically. Cancer Res; 77(24); 6812-7. ©2017 AACR . ©2017 American Association for Cancer Research.
ERIC Educational Resources Information Center
Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.
2015-01-01
In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…
Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław
2013-01-01
Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes.
Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser
NASA Astrophysics Data System (ADS)
Liu, Meng; Li, Heng; Luo, Ai-Ping; Cui, Hu; Xu, Wen-Cheng; Luo, Zhi-Chao
2018-03-01
Ultrafast fiber lasers have been demonstrated to be great platforms for the investigation of soliton dynamics. The soliton molecules, as one of the most fascinating nonlinear phenomena, have been a hot topic in the field of nonlinear optics in recent years. Herein, we experimentally observed the real-time evolving behavior of soliton molecule in an ultrafast fiber laser by using the dispersive Fourier transformation technology. Several types of evolving soliton molecules were obtained in our experiments, such as soliton molecules with monotonically or chaotically evolving phase, flipping and hopping phase. These results would be helpful to the communities interested in soliton nonlinear dynamics as well as ultrafast laser technologies.
SCIENCE AND TECHNOLOGY AS DEVELOPMENT FACTORS.
ERIC Educational Resources Information Center
LENGYEL, PETER
PROCEEDINGS FROM A MEETING OF UNESCO'S ADVISORY COUNCIL TO ITS OFFICE OF ECONOMIC ANALYSIS AND ITS DIVISION OF SCIENCE POLICY ARE REPORTED. THE CENTRAL THEME OF THE CONFERENCE IS SCIENCE AND TECHNOLOGY IN ECONOMIC DEVELOPMENT. AN INTRODUCTORY PAPER DEALS WITH RESOURCES IN SCIENCE AND TECHNOLOGY, THE INFLUENCE OF SCIENCE AND TECHNOLOGY ON…
Qualitative and quantitative mass spectrometry imaging of drugs and metabolites.
Lietz, Christopher B; Gemperline, Erin; Li, Lingjun
2013-07-01
Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique. Copyright © 2013 Elsevier B.V. All rights reserved.
Qualitative and quantitative mass spectrometry imaging of drugs and metabolites
Lietz, Christopher B.; Gemperline, Erin; Li, Lingjun
2013-01-01
Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique. PMID:23603211
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shastry, Tejas
Representing the Argonne-Northwestern Solar Energy Research (ANSER) Center, this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of ANSER is to revolutionize our understanding of molecules, materials and methods necessary tomore » create dramatically more efficient technologies for solar fuels and electricity production.« less
Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules.
Xu, Liang; Zhang, Shuai; Li, Pengfei
2015-12-21
In the context of modular and rapid construction of molecular diversity and complexity for applications in organic synthesis, biomedical and materials sciences, a generally useful strategy has emerged based on boron-selective chemical transformations. In the last decade, these types of reactions have evolved from proof-of-concept to some advanced applications in the efficient preparation of complex natural products and even automated precise manufacturing on the molecular level. These advances have shown the great potential of boron-selective reactions in simplifying synthetic design and experimental operations, and should inspire new developments in related chemical and technological areas. This tutorial review will highlight the original contributions and representative advances in this emerging field.
The Other Double Helix--The Fascinating Chemistry of Starch
NASA Astrophysics Data System (ADS)
Hancock, Robert D.; Tarbet, Bryon J.
2000-08-01
Current textbooks deal only briefly with the chemistry of starch. A short review with 21 references is presented, describing the structure of starch and indicating the double helix structure of A-type and B-type starch. The structure of the starch granule is examined, pointing out the existence of growth rings of alternating crystalline and noncrystalline starch, with growing amylopectin molecules extending from the hilum (point of origin) to the surface of the starch granule. The swelling of starch granules in water, above the gelatinization temperature of about 60 °C, is discussed. The process of gelatinization involves unraveling of the starch helix and a manyfold increase in volume of the starch granule as water is imbibed and bound to the unraveled starch polymer by hydrogen bonding. Baking bread or pastries causes unraveling of the starch helix, and the process by which these products become stale corresponds primarily to the re-forming of the starch helix. The importance of this phenomenon in food science is discussed. The absorption of nonpolar linear molecules such as I2, or linear nonpolar portions of molecules such as n-butanol or fats and phospholipids, by the C-type helix of starch is examined. The way in which starch is structurally modified to retard staling is discussed in relation to food technology.
Science-Technology Coupling: The Case of Mathematical Logic and Computer Science.
ERIC Educational Resources Information Center
Wagner-Dobler, Roland
1997-01-01
In the history of science, there have often been periods of sudden rapprochements between pure science and technology-oriented branches of science. Mathematical logic as pure science and computer science as technology-oriented science have experienced such a rapprochement, which is studied in this article in a bibliometric manner. (Author)
Re/Thinking the Nature of Technology in Science Classrooms
ERIC Educational Resources Information Center
Kim, Mijung; Roth, Wolff-Michael
2016-01-01
With increasing technological changes and needs in society, technology and engineering education has received much attention in school science. Yet, technology traditionally has been subordinated to science or simply taken as the application of science. This position has resulted in a limited understanding of teaching technological and engineering…
77 FR 67808 - President's Council of Advisors on Science and Technology (PCAST)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-14
... where understandings from the domains of science, technology, and innovation may bear on the policy... Science and Technology, and, Director, Office of Science and Technology Policy, Executive Office of the... update on its study of the Networking and Information Technology Research and Development (NITRD) program...
Gender, Science, and Technology: A Selected Annotated Bibliography.
ERIC Educational Resources Information Center
Eldredge, Mary; And Others
1990-01-01
Presents 196 annotated listings of works on science, technology, and gender, under 9 headings: Biography and History; Women Scientists; Science Education; Feminists Look at Science and Technology; Effects of Technology on Women; Medicine and Reproductive Technologies in Women's Lives; Women and Evolution; Women and Agriculture; and Gender,…
Earth Science Geostationary Platform Technology
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)
1989-01-01
The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.
Wu, Zining; Graybill, Todd L; Zeng, Xin; Platchek, Michael; Zhang, Jean; Bodmer, Vera Q; Wisnoski, David D; Deng, Jianghe; Coppo, Frank T; Yao, Gang; Tamburino, Alex; Scavello, Genaro; Franklin, G Joseph; Mataruse, Sibongile; Bedard, Katie L; Ding, Yun; Chai, Jing; Summerfield, Jennifer; Centrella, Paolo A; Messer, Jeffrey A; Pope, Andrew J; Israel, David I
2015-12-14
DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell.
Selin, Cynthia; Rawlings, Kelly Campbell; de Ridder-Vignone, Kathryn; Sadowski, Jathan; Altamirano Allende, Carlo; Gano, Gretchen; Davies, Sarah R; Guston, David H
2017-08-01
Public engagement with science and technology is now widely used in science policy and communication. Touted as a means of enhancing democratic discussion of science and technology, analysis of public engagement with science and technology has shown that it is often weakly tied to scientific governance. In this article, we suggest that the notion of capacity building might be a way of reframing the democratic potential of public engagement with science and technology activities. Drawing on literatures from public policy and administration, we outline how public engagement with science and technology might build citizen capacity, before using the notion of capacity building to develop five principles for the design of public engagement with science and technology. We demonstrate the use of these principles through a discussion of the development and realization of the pilot for a large-scale public engagement with science and technology activity, the Futurescape City Tours, which was carried out in Arizona in 2012.
Science, technology, and society: a cross-disciplinary perspective. [15 papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiegel-Roesing, I.; de Solla Price, D.
1977-01-01
Fifteen chapters (17 contributors from 9 disciplines and 6 different countries) look at the critical interdisciplinary questions that make up the spectrum of contemporary academic, policymaking, and social concern over scientific and technological development in today and tomorrow's world. The contents are: The Study of Science, Technology, and Society (SSTS): Recent Trends and Future Challenges, I. Spiegel-Rosing; Science Policy Studies and the Development of Science Policy, Jean-Jacques Salomon; Criticisms of Science, J. R. Ravetz; Sociology of the Scientific Research Community, M. J. Mulkay; Changing Perspectives in the Social History of Science, Roy MacLeod; Conditions of Technical Development, E. Layton; Economicsmore » of Research and Development, C. Freeman; Psychology of Science, R. Fisch; Models for the Development of Science, Gernot Bohme; Scientists, Technologists, and Political Power, Sanford A. Lakoff; Technology and Public Policy, D. Nelkin; Science, Technology, and Military Policy, Harvey M. Sapolsky; Science, Technology, and Foreign Policy, Brigette Schroeder-Gudehus; Science, Technology, and the International System, Eugene B. Skolnikoff; and Science Policy and Developing Countries, Ziauddin Sardar and Dawud G. Rosser-Owen. (MCW)« less
Intelligent chiral sensing based on supramolecular and interfacial concepts.
Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P
2010-01-01
Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology....gov/ostp/pcast . PCAST makes policy recommendations in the many areas where understanding of science... people. PCAST is administered by the Office of Science and Technology Policy (OSTP). PCAST is co-chaired...
75 FR 22635 - President's Council of Advisors on Science and Technology; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY President's Council of Advisors on Science and Technology... forming policy that works for the American people. PCAST is administered by the Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr. John P. Holdren, Assistant to the President for Science...
Single-Molecule Electrical Random Resequencing of DNA and RNA
NASA Astrophysics Data System (ADS)
Ohshiro, Takahito; Matsubara, Kazuki; Tsutsui, Makusu; Furuhashi, Masayuki; Taniguchi, Masateru; Kawai, Tomoji
2012-07-01
Two paradigm shifts in DNA sequencing technologies--from bulk to single molecules and from optical to electrical detection--are expected to realize label-free, low-cost DNA sequencing that does not require PCR amplification. It will lead to development of high-throughput third-generation sequencing technologies for personalized medicine. Although nanopore devices have been proposed as third-generation DNA-sequencing devices, a significant milestone in these technologies has been attained by demonstrating a novel technique for resequencing DNA using electrical signals. Here we report single-molecule electrical resequencing of DNA and RNA using a hybrid method of identifying single-base molecules via tunneling currents and random sequencing. Our method reads sequences of nine types of DNA oligomers. The complete sequence of 5'-UGAGGUA-3' from the let-7 microRNA family was also identified by creating a composite of overlapping fragment sequences, which was randomly determined using tunneling current conducted by single-base molecules as they passed between a pair of nanoelectrodes.
ERIC Educational Resources Information Center
Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret
2016-01-01
The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…
Attomole-level Genomics with Single-molecule Direct DNA, cDNA and RNA Sequencing Technologies.
Ozsolak, Fatih
2016-01-01
With the introduction of next-generation sequencing (NGS) technologies in 2005, the domination of microarrays in genomics quickly came to an end due to NGS's superior technical performance and cost advantages. By enabling genetic analysis capabilities that were not possible previously, NGS technologies have started to play an integral role in all areas of biomedical research. This chapter outlines the low-quantity DNA and cDNA sequencing capabilities and applications developed with the Helicos single molecule DNA sequencing technology.
JPRS Report, Science & Technology, USSR: Science & Technology Policy.
1987-07-07
fully reflect the end results of scientific and technical progress. The formation of the unified fund for the development of science and technology ...209058 JPRS-UST-87-009 7 JULY 1987 /ffifr FOREIGN BROADCAST INFORMATION SERVICE JPRS Repor Science & Technology USSR: Science... Technology Policy 19980715 121 REPRODUCED BY U.S. DEPARTMENTOF COMMERCE NATIONAL TECHNICAL •^ INFORMATIONSERVICE A rf *r*lQ ürjA T Tw» SPRINGFIELD, VA
FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)
NASA Astrophysics Data System (ADS)
Das, A. K.
2010-01-01
The Twentieth Century has been a defining period for Plasma Science and Technology. The state of ionized matter, so named by Irving Langmuir in the early part of twentieth century, has now evolved in to a multidisciplinary area with scientists and engineers from various specializations working together to exploit the unique properties of the plasma medium. There have been great improvements in the basic understanding of plasmas as a many body system bound by complex collective Coulomb interactions of charges, atoms, molecules, free radicals and photons. Simultaneously, many advanced plasma based technologies are increasingly being implemented for industrial and societal use. The emergence of the multination collaborative project International Thermonuclear Experimental Reactor (ITER) project has provided the much needed boost to the researchers working on thermonuclear fusion plasmas. In addition, the other plasma applications like MHD converters, hydrogen generation, advanced materials (synthesis, processing and surface modification), environment (waste beneficiation, air and water pollution management), nanotechnology (synthesis, deposition and etching), light production, heating etc are actively being pursued in governmental and industrial sectors. For India, plasma science and technology has traditionally remained an important area of research. It was nearly a century earlier that the Saha ionization relation pioneered the way to interpret experimental data from a vast range of near equilibrium plasmas. Today, Indian research contributions and technology demonstration capabilities encompass thermonuclear fusion devices, nonlinear plasma phenomena, plasma accelerators, beam plasma interactions, dusty and nonneutral plasmas, industrial plasmas and plasma processing of materials, nano synthesis and structuring, astrophysical and space plasmas etc. India's participation in the ITER programme is now reflected in increased interest in the research and development efforts on Tokamak technology and physics of magnetized fusion plasmas. Our industries have already adopted a large number of plasma processes related to manufacturing, lighting and surface engineering. Indian universities and National Institutes have successfully taken up research projects and building of demonstration equipment that are being used in strategic as well as other industrial applications. In addition, and more importantly, plasma science has triggered research and development effort in many related areas like power supplies, specialized instrumentation and controls, magnets, diagnostics and monitoring, lasers, electron beams, vacuum systems, thermal engineering, material science, fluid dynamics, molecular and nano engineering, molecular chemistry etc. In short, plasma science and technology in India has reached a stage of maturity that can be harnessed for industrial and societal use. The expertise and core competence developed over the years need to be sustained through interactions among researchers as well as nurturing of new research efforts. The Annual Plasma Symposiums have eminently worked towards achievement of that purpose. Like all years, Plasma - 2008 is built around the entire national effort in this field with a special focus on 'Plasmas in Nuclear Fuel Cycle (PANFC)'. The program includes several plenary lectures, invited talks and contributed papers. The manuscripts have been peer reviewed and compiled in the form of Conference Proceedings. I am sure that the online proceedings will be useful and serve as a valuable reference material for active researchers in this field. I would like to take this opportunity to gratefully acknowledge the help and guidance of the National Advisory Committee Chaired by Professor P K Kaw, Director, Institute of Plasma Research, Gandhinagar during the organization of this symposium. My sincere thanks to Dr S Banerjee, Director, Bhabha Atomic Research Center, an acknowledged expert in the field of Materials Science and Technology, for delivering the key note address to set the tenor of the symposium. I would also like to thank the Plasma Science Society of India (PSSI) for agreeing to hold this important event at BARC. Thanks are due to Dr L M Gantayet, Director, BTDG, BARC and chairman, Scientific Program Committee and all my colleagues in the Symposium Organizing Committee who have made this symposium possible. Finally, our thanks to all the Funding agencies, Board of Research in Nuclear Science, Department of Science and Technology, The Board of Fusion Research, and all industrial exhibitor and sponsors for their unstinted support and encouragement. Dr A K Das Chairman, Organizing Committee Bhabha Atomic Research Center, Mumbai
Biostimulants in Plant Science: A Global Perspective.
Yakhin, Oleg I; Lubyanov, Aleksandr A; Yakhin, Ildus A; Brown, Patrick H
2016-01-01
This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as "a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds." The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a "mode of action" for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate.
Biostimulants in Plant Science: A Global Perspective
Yakhin, Oleg I.; Lubyanov, Aleksandr A.; Yakhin, Ildus A.; Brown, Patrick H.
2017-01-01
This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as “a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds.” The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a “mode of action” for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate. PMID:28184225
[Biophysics of single molecules].
Serdiuk, I N; Deriusheva, E I
2011-01-01
The modern methods of research of biological molecules whose application led to the development of a new field of science, biophysics of single molecules, are reviewed. The measurement of the characteristics of single molecules enables one to reveal their individual features, and it is just for this reason that much more information can be obtained from one molecule than from the entire ensample of molecules. The high sensitivity of the methods considered in detail makes it possible to come close to the solution of the basic problem of practical importance, namely, the determination of the nucleotide sequence of a single DNA molecule.
Future lab-on-a-chip technologies for interrogating individual molecules.
Craighead, Harold
2006-07-27
Advances in technology have allowed chemical sampling with high spatial resolution and the manipulation and measurement of individual molecules. Adaptation of these approaches to lab-on-a-chip formats is providing a new class of research tools for the investigation of biochemistry and life processes.
Future Directions in Medical Physics: Models, Technology, and Translation to Medicine
NASA Astrophysics Data System (ADS)
Siewerdsen, Jeffrey
The application of physics in medicine has been integral to major advances in diagnostic and therapeutic medicine. Two primary areas represent the mainstay of medical physics research in the last century: in radiation therapy, physicists have propelled advances in conformal radiation treatment and high-precision image guidance; and in diagnostic imaging, physicists have advanced an arsenal of multi-modality imaging that includes CT, MRI, ultrasound, and PET as indispensible tools for noninvasive screening, diagnosis, and assessment of treatment response. In addition to their role in building such technologically rich fields of medicine, physicists have also become integral to daily clinical practice in these areas. The future suggests new opportunities for multi-disciplinary research bridging physics, biology, engineering, and computer science, and collaboration in medical physics carries a strong capacity for identification of significant clinical needs, access to clinical data, and translation of technologies to clinical studies. In radiation therapy, for example, the extraction of knowledge from large datasets on treatment delivery, image-based phenotypes, genomic profile, and treatment outcome will require innovation in computational modeling and connection with medical physics for the curation of large datasets. Similarly in imaging physics, the demand for new imaging technology capable of measuring physical and biological processes over orders of magnitude in scale (from molecules to whole organ systems) and exploiting new contrast mechanisms for greater sensitivity to molecular agents and subtle functional / morphological change will benefit from multi-disciplinary collaboration in physics, biology, and engineering. Also in surgery and interventional radiology, where needs for increased precision and patient safety meet constraints in cost and workflow, development of new technologies for imaging, image registration, and robotic assistance can leverage collaboration in physics, biomedical engineering, and computer science. In each area, there is major opportunity for multi-disciplinary collaboration with medical physics to accelerate the translation of such technologies to clinical use. Research supported by the National Institutes of Health, Siemens Healthcare, and Carestream Health.
Accurate quantification of hydration number for polyethylene glycol molecules
NASA Astrophysics Data System (ADS)
Guo, Wei; Zhao, Lishan; Gao, Xin; Cao, Zexian; Wang, Qiang
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11474325 and 11290161) and the Knowledge Innovation Project of Chinese Academy of Sciences on Water Science Research (Grant No. KJZD-EW-M03).
Technology for Science: Overview of the Project.
ERIC Educational Resources Information Center
Crismond, David; And Others
Technology for Science is a National Science Foundation funded program that is developing and testing curriculum units for teacher materials built around a series of design-oriented science problems called "challenges," mainly for ninth-grade general and physical science classes. Technology for science challenges have a clear connection…
ERIC Educational Resources Information Center
Romine, William; Sadler, Troy D.; Presley, Morgan; Klosterman, Michelle L.
2014-01-01
This study presents the systematic development, validation, and use of a new instrument for measuring student interest in science and technology. The Student Interest in Technology and Science (SITS) survey is composed of 5 sub-sections assessing the following dimensions: interest in learning science, using technology to learn science, science…
Tailored semiconductors for high-harmonic optoelectronics.
Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu; Villeneuve, D M; Ropers, Claus; Corkum, P B
2017-07-21
The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua
2015-05-01
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).
NASA Astrophysics Data System (ADS)
Shuang, Chen; Tie, Su; Yao-Bang, Zheng; Li, Chen; Ting-Xu, Liu; Ren-Bing, Li; Fu-Rong, Yang
2016-06-01
The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF (laser-induced fluorescence) in flame. The detailed physical models of spectral absorption lineshape broadening, collisional transition and quenching at elevated pressure are built. The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation, which include collisional quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Based on these, some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure. These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338) and the Fund from the Science and Technology on Scramjet Key Laboratory, China (Grant No. STSKFKT2013004).
Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules
NASA Astrophysics Data System (ADS)
Veetil, Aneesh T.; Chakraborty, Kasturi; Xiao, Kangni; Minter, Myles R.; Sisodia, Sangram S.; Krishnan, Yamuna
2017-12-01
Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.
Controlled release of molecular components of dendrimer/bioactive complexes
Segalman, Daniel J.; Wallace, J. Shield
1998-01-01
A method for releasing molecules (guest molecules) from the matrix formed by the structure of another molecule (host molecule) in a controllable manner has been invented. This method has many applications in science and industry. In addition, applications based on such molecular systems may revolutionize significant areas of medicine, in particular the treatment of cancer and of viral infection. Similar effects can also be obtained by controlled fragmentation of a source molecule, where the molecular fragments form the active principle.
Controlled release of molecular components of dendrimer/bioactive complexes
Segalman, D.J.; Wallace, J.S.
1998-08-18
A method for releasing molecules (guest molecules) from the matrix formed by the structure of another molecule (host molecule) in a controllable manner has been invented. This method has many applications in science and industry. In addition, applications based on such molecular systems may revolutionize significant areas of medicine, in particular the treatment of cancer and of viral infection. Similar effects can also be obtained by controlled fragmentation of a source molecule, where the molecular fragments form the active principle. 13 figs.
Thinking again about science in technology.
Alexander, Jennifer Karns
2012-09-01
How to characterize the relationship between science and technology has been a sensitive issue for historians of technology. This essay uses a recent and controversial piece by Paul Forman as a springboard for reexamining the concept of applied science and asks whether "applied science" remains a useful term. Scholars have often taken "applied science" to mean the subordination of technological knowledge to scientific knowledge-and thus the subordination of history of technology to history of science. This essay argues that the historical moment for sensitivity on the subject of applied science has passed, that even in instances where technology can accurately be described as subordinate to science it need not follow that its history is subordinate, and that the concept can be useful in addressing issues in the history and contemporary practice of engineering education.
ERIC Educational Resources Information Center
Dias, Mary Beatrice
2011-01-01
This research contributes to efforts in assessment studies related to science and technology interventions. The work presented in this thesis focuses on understanding the effects of policies that influence science and technology interventions, and determining the impact of science and technology interventions themselves. Chapter 1 explores how…
Application of data mining in science and technology management information system based on WebGIS
NASA Astrophysics Data System (ADS)
Wu, Xiaofang; Xu, Zhiyong; Bao, Shitai; Chen, Feixiang
2009-10-01
With the rapid development of science and technology and the quick increase of information, a great deal of data is accumulated in the management department of science and technology. Usually, many knowledge and rules are contained and concealed in the data. Therefore, how to excavate and use the knowledge fully is very important in the management of science and technology. It will help to examine and approve the project of science and technology more scientifically and make the achievement transformed as the realistic productive forces easier. Therefore, the data mine technology will be researched and applied to the science and technology management information system to find and excavate the knowledge in the paper. According to analyzing the disadvantages of traditional science and technology management information system, the database technology, data mining and web geographic information systems (WebGIS) technology will be introduced to develop and construct the science and technology management information system based on WebGIS. The key problems are researched in detail such as data mining and statistical analysis. What's more, the prototype system is developed and validated based on the project data of National Natural Science Foundation Committee. The spatial data mining is done from the axis of time, space and other factors. Then the variety of knowledge and rules will be excavated by using data mining technology, which helps to provide an effective support for decisionmaking.
Sandia National Labs: Manufacturing Science and Technology
Additional Resources R&D Projects Current Partnerships Creating Partnerships Welcome to the Manufacturing Science and Technology home page Manufacturing Science and Technology Showcase The Manufacturing Science & Technology Center develops and applies advanced manufacturing processes for realization of
MSTD 2007 Publications and Patents
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W E
2008-04-01
The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less
The Mona Lisa of modern science.
Kemp, Martin
2003-01-23
No molecule in the history of science has reached the iconic status of the double helix of DNA. Its image has been imprinted on all aspects of society, from science, art, music, cinema, architecture and advertising. This review of the Mona Lisa of science examines the evolution of its form at the hands of both science and art.
NASA Astrophysics Data System (ADS)
Novak, Elena; Wisdom, Sonya
2018-05-01
3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.
Formation and dissociation of dust molecules in dusty plasma
NASA Astrophysics Data System (ADS)
Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng
2016-09-01
Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.
[Toward a national system on science and technology].
Cilento-Sarli, A
1994-01-01
This essay discuss the integration of a National System on Science and Technology (SINACYT), supported with resources arising from a National Found for Science and Technology (FONACYT), and whose leader entity should be the Institute of the National Found for Science and Technology (INFONACYT) to substitute CONICIT.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0026] Science and Technology Directorate; Submission for Review; Information Collection Request for the Department of Homeland Security Science and Technology Directorate First Responders Community of Practice AGENCY: Science and Technology Directorate, DHS...
77 FR 10736 - President's Council of Advisors on Science and Technology (PCAST)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-23
... an overview of the Department of Agriculture's science, technology, and innovation activities, and... DEPARTMENT OF ENERGY President's Council of Advisors on Science and Technology (PCAST) AGENCY... Science and Technology (PCAST), and describes the functions of the Council. Notice of this meeting is...
Technology and Reform-Based Science Education
ERIC Educational Resources Information Center
Dani, Danielle E.; Koenig, Kathleen M.
2008-01-01
Current reforms in science education call for the integration of digital technologies into science teaching, advocating that students learn science content and processes through technology. In this article, we provide practical examples, situated within the literature, of how digital technologies can be used to support the development and…
Properties of immobile hydrogen confined in microporous carbon
Bahadur, Jitendra; Bhabha Atomic Research Centre; Contescu, Cristian I.; ...
2017-03-06
The mobility of H2 confined in microporous carbon was studied as a function of temperature and pressure using inelastic neutron scattering, and the translational and rotational motion of H2 molecules has been probed. At low loading, rotation of H2 molecules adsorbed in the smallest carbon pores (~6 ) is severely hindered, suggesting that the interaction between H2 and the host matrix is anisotropic. At higher loading, H2 molecules behave as nearly free rotor, implying lower anisotropic interactions with adsorption sites. At supercritical temperatures where bulk H2 is a gas, the inelastic spectrum of confined H2 provides evidence of a significantmore » fraction of immobile, solid-like hydrogen. The onset temperature for molecular mobility depends strongly on the loaded amount. The fraction of immobile molecules increases with pressure and attains a plateau at high pressures. Surprisingly, immobile H2 is present even at temperatures as high as ~110 K. This research at ORNL s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. CIC and NCG acknowledge support from the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy.« less
ERIC Educational Resources Information Center
Kruse, Jerrid W.; Wilcox, Jesse L.
2013-01-01
Just as science education is too often limited to the acquisition of facts, technology education is too often limited to proficient use of technology. Neither of these goals fully realize a robust definition of science and technology literacy. To achieve greater science and technology literacy, students must understand the natures of both science…
Science and Technology Pocket Data Book.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Div. of Science Resources Studies.
This pocket guide contains a collection of graphed data, available in 1994, on science and technology funding patterns within the United States, public attitudes toward science and technology, and international trends in science and technology. Sections contain: (1) national research and development (R&D) funding patterns; (2) academic R&D…
77 FR 74837 - President's Council of Advisors on Science and Technology (PCAST)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-18
... DEPARTMENT OF ENERGY President's Council of Advisors on Science and Technology (PCAST) AGENCY... Advisors on Science and Technology (PCAST), and describes the functions of the Council. Notice of this...: The President's Council of Advisors on Science and Technology (PCAST) is an advisory group of the...
Preservice Science Teachers' Views on Science-Technology-Society
ERIC Educational Resources Information Center
Dikmentepe, Emel; Yakar, Zeha
2016-01-01
The aim of this study is to investigate the views of pre-service science teachers on Science-Technology-Society (STS). In the research, a descriptive research method was used and data were collected using the Views on Science-Technology-Society (VOSTS) Questionnaire. In general, the results of this study revealed that pre-service science teachers…
Democratizing science and technology education: Perspectives from the philosophy of education
NASA Astrophysics Data System (ADS)
Pierce, Clayton Todd
This study examines conceptualizations of science and technology and their relation to ideas of democratic education in the history of philosophy of education. My genealogical analysis begins by tracing the anti-democratic emergence of ideas and values of science and technology that have evolved through ancient and modern periods within the philosophy of education and continue to shape the ways science and technology are understood and treated in educational settings. From my critical engagement with Plato's Republic and Rousseau's Emile, I argue that anti-democratic structures and values have been embedded in philosophy of education through Plato's educational theory of techne and Rousseau's pedagogical theory that involves science and technology as important educational force. Following this theme, I analyze the work of John Dewey and Herbert Marcuse and their shared project for democratizing science and technology through education. Through a critical comparison of both theorists' models, I suggest that each provides positive legacies for philosophy of education to draw upon in rethinking the intersection of science, technology, and education: a strong model for understanding public problems associated with a highly technological and scientific society and a reconstructive framework for values and sensibilities that demands a new value relationship to be developed between humans and science and technology. Finally, I situate my critique and assessment of this history in the philosophy of education within the current science and technology education reform movement in the United States. I claim that the official models of science and technological literacy and inquiry, as constructed by the National Academy of Sciences and a host of governmental policies, shape science and technology education with a decidedly neo-liberal focus and purpose. In response to this anti-democratic movement I offer an alternative position that utilizes a counter-epistemology to the dominant model that currently exists in science education standards and suggest that this is a project that philosophy of education must be involved while also conscious of its past.
Quantum control of the normal modes of benzene with ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Sauer, Petra; Dou, Yusheng; Torralva, Ben; Allen, Roland
2005-03-01
Remarkable innovations in laser technology have made it possible to create laser pulses with ultrashort durations (below 100 femtoseconds) and ultrahigh intensities (above 1 terawatt per cm^2). To understand the behavior of complex molecules and materials in this new regime of physics, chemistry, biology, and materials science requires innovative techniques which complement experiment and standard theory, and which can treat situations in which conventional approximations like the Born- Oppenheimer approximation, the Franck-Condon principle, and Fermi's golden rule are no longer valid. In this talk we describe a method that we are developing, semiclassical electron-radiation-ion dyanmics (SERID), which can be used to perform simulations of the coupled dynamics of electrons and nuclei in an intense radiation field. We have employed this technique in studying the normal modes of benzene, and the possibility of controlling these modes by optimizing the laser pulses that are applied to the molecule. Animations will be shown of particular normal modes, including the breathing and beating modes, illustrating their symmetries and other properties, and of the photodissociation of benzene when the laser pulse exceeds a threshold intensity.
Measurement of radon and xenon binding to a cryptophane molecular host
Jacobson, David R.; Khan, Najat S.; Collé, Ronald; Fitzgerald, Ryan; Laureano-Pérez, Lizbeth; Bai, Yubin; Dmochowski, Ivan J.
2011-01-01
Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon (195Rn–229Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane–xenon association constant, Ka = 42,000 ± 2,000 M-1 at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane–radon association constant Ka = 49,000 ± 12,000 M-1 at 293 K. PMID:21690357
Wischke, Christian; Behl, Marc; Lendlein, Andreas
2013-09-01
Shape-memory polymers (SMPs) have gained interest for temporary drug-release systems that should be anchored in the body by self-sufficient active movements of the polymeric matrix. Based on the so far published scientific literature, this review highlights three aspects that require particular attention when combining SMPs with drug molecules: i) the defined polymer morphology as required for the shape-memory function, ii) the strong effects that processing conditions such as drug-loading methodologies can have on the drug-release pattern from SMPs, and iii) the independent control of drug release and degradation by their timely separation. The combination of SMPs with a drug-release functionality leads to multifunctional carriers that are an interesting technology for pharmaceutical sciences and can be further expanded by new materials such as thermoplastic SMPs or temperature-memory polymers. Experimental studies should include relevant molecules as (model) drugs and provide a thermomechanical characterization also in an aqueous environment, report on the potential effect of drug type and loading levels on the shape-memory functionality, and explore the potential correlation of polymer degradation and drug release.
SMD Technology Development Story for NASA Annual Technology report
NASA Technical Reports Server (NTRS)
Seablom, Michael S.
2017-01-01
The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.
New Prominence for Science and Technology.
ERIC Educational Resources Information Center
Issues in Science and Technology, 1998
1998-01-01
States that science and technology research reached a new level of exposure in the U.S. government in 1997, particularly environmental science, cloning, international cooperation on the International Space Station, and information technologies. Lawmakers introduced research legislation and the House Science Committee launched a science policy…
2017 Science and Technology Jamboree
2017-12-08
NASA Marshall Space Flight Center’s Science and Technology Office held its 11th annual Science and Technology Jamboree Dec. 8 at Marshall Activities Building 4316. A poster session with around 60 poster presentations highlighted current science and technology topics and the innovative projects underway across the center. Here, Debra Needham, right, talks with coworker Sabrina Savage about one of the presentations. Both Needham and Savage are scientists in the Heliophysics & Planetary Science Branch of the Science Research and Projects Division.
Technology Needs for the Next Generation of NASA Science Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.
2013-01-01
In-Space propulsion technologies relevant to Mars presentation is for the 14.03 Emerging Technologies for Mars Exploration panel. The talk will address propulsion technology needs for future Mars science missions, and will address electric propulsion, Earth entry vehicles, light weight propellant tanks, and the Mars ascent vehicle. The second panel presentation is Technology Needs for the Next Generation of NASA Science Missions. This talk is for 14.02 Technology Needs for the Next Generation of NASA Science Missions panel. The talk will summarize the technology needs identified in the NAC's Planetary Science Decadal Survey, and will set the stage for the talks for the 4 other panelist.
Center for Nanoscale Science and Technology
National Institute of Standards and Technology Data Gateway
NIST Center for Nanoscale Science and Technology (Program website, free access) Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.
An experimental toolbox for the generation of cold and ultracold polar molecules
NASA Astrophysics Data System (ADS)
Zeppenfeld, Martin; Gantner, Thomas; Glöckner, Rosa; Ibrügger, Martin; Koller, Manuel; Prehn, Alexander; Wu, Xing; Chervenkov, Sotir; Rempe, Gerhard
2017-01-01
Cold and ultracold molecules enable fascinating applications in quantum science. We present our toolbox of techniques to generate the required molecule ensembles, including buffergas cooling, centrifuge deceleration and optoelectrical Sisyphus cooling. We obtain excellent control over both the motional and internal molecular degrees of freedom, allowing us to aim at various applications.
National Transportation Science and Technology Strategy.
DOT National Transportation Integrated Search
1999-04-01
The National Science and Technology Council (NSTC) Committee on Technology, Subcommittee on Transportation Research and Development (R&D), has created a National Transportation Science and Technology Strategy that builds on the earlier strategy publi...
Herwadkar, Anushree; Banga, Ajay K
2012-03-01
A large number of biopharmaceuticals and other macromolecules are being developed for therapeutic applications. Conventional oral delivery is not always possible due to first-pass metabolism and degradation in the GI tract. Parenteral delivery is invasive and has poor patient compliance. Transdermal delivery provides one attractive route of administration. Transdermal administration can achieve the continuous and non-invasive delivery of drugs. However, passive transdermal delivery is restricted to small lipophilic molecules. Active physical-enhancement technologies are being investigated to increase the scope of transdermal delivery to hydrophilic molecules and macromolecules. Recent developments in transdermal technologies, such as microporation, iontophoresis and sonophoresis can enable therapeutic delivery of many drug molecules, biopharmaceuticals, cosmeceuticals and vaccines. This review provides an update of recent developments in transdermal delivery focusing on physical-enhancement technologies.
Report on the 18th International Conference on X-ray and Inner-Shell Processes (X99).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemmell, D. S.; Physics
2000-01-01
The 18th conference of the series served as a forum for discussing fundamental issues in the field of x-ray and inner-shell processes and their application in various disciplines of science and technology. Special emphasis was given to the opportunities offered by modern synchrotron x-ray sources. The program included plenary talks, progress reports and poster presentations relating to new developments in the field of x-ray and inner-shell processes. The range of topics included: X-ray interactions with atoms, molecules, clusters, surfaces and solids; Decay processes for inner-shell vacancies; X-ray absorption and emission spectroscopy - Photoionization processes; Phenomena associated with highly charged ionsmore » and collisions with energetic particles; Electron-spin and -momentum spectroscopy; X-ray scattering and spectroscopy in the study of magnetic systems; Applications in materials science, biology, geosciences, and other disciplines; Elastic and inelastic x-ray scattering processes in atoms and molecules; Threshold phenomena (post-collision interaction, resonant Raman processes, etc.); Nuclear absorption and scattering of x-rays; 'Fourth-generation' x-ray sources; Processes exploiting the polarization and coherence properties of x-ray beams; Developments in experimental techniques (x-ray optics, temporal techniques, detectors); Microscopy, spectromicroscopy, and various imaging techniques; Non-linear processes and x-ray lasers; Ionization and excitation induced by charged particles and by x-rays; and Exotic atoms (including 'hollow' atoms and atoms that contain 'exotic' particles).« less
Educational technology usage and needs of science education in Turkey
NASA Astrophysics Data System (ADS)
Turkmen, Hakan
The purpose of this study was to examine Turkish science teachers and pre-service teachers' attitudes towards the use of technological tools in their science lessons in Turkish colleges of education in the assist of Turkish government projects, and how science education teachers, who have earned a science education degree from western countries, influence the use technology in Turkish higher education. The research method employed were quantitative data sources, including a technology background questionnaire, which is cross-sectional design, and qualitative historical research data sources. The study analyzed the data under a cross-section or between subjects' method with four factors: Turkish science teachers; Turkish pre-service science teachers; Turkish science teachers who have earned science degrees from western universities; and Turkish graduate students whose majors are in science education in U.S. It was anticipated that an analysis of variance (ANOVA) would be used to analyze data and "level 0.05" was established. Major findings of the study include: (1) Science education faculty members who have earned science education degrees from western countries have a positive effect on the use of technological tools in science courses in Turkish higher education. (2) Science education faculty members who have earned science degrees from Turkish universities have a limited knowledge on the use of technological tools in science courses in Turkish higher education. (3) Science education graduate students who have been studying in science education in western countries have positive attitudes for the use of technological tools in science courses have potential to impact Turkish higher education, when they return to Turkey. (4) Most Turkish pre-service teachers know very little about effective use of technology in education. Gender differences are apparent and females consistently indicated that they knew less and hence may not integrate technological tools in their teaching. (5) Turkish pre-service or new teachers are exposed to teacher educators that do not sufficiently model the appropriate use of computers for instructional purposes, either in courses or in field experiences. The technology that is used focuses more on older and simpler instructional applications of computer technology (e.g., computer assisted instruction, word processing) and older educational technologies (e.g., overhead projectors, calculators, slides). (6) Faculty rank in general, made little vis-a-vis technology use in knowledge. Integrating technology into teaching and learning in Turkish education is a slow, time-consuming process that requires substantial levels of support and encouragement and requires patience and understanding. In light of efforts by the Turkish government, Turkish faculty members who earned their degrees from western universities, and graduate students earning degrees from American universities will be leaders on the long road to change.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Presented are nine working papers prepared for the National Science Foundation as one means of assisting the Office of Science and Technology Policy in preparing the administration's "Annual Science and Technology Report to the Congress, 1982." The papers explore aspects of three broad themes central to the administration's science and…
Popularisation of Science and Technology Education: Some Case Studies from Africa.
ERIC Educational Resources Information Center
Savage, Mike, Ed.; Naidoo, Prem, Ed.
Science and technology, and science and technology education, play an important role in the development of a country's economy, environment, social relations, and other sectors. African countries recognize this role and many have committed considerable resources to the development of science and technology and their educational systems. In African…
3 CFR 101.7 - Office of Science and Technology Policy.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 3 The President 1 2011-01-01 2011-01-01 false Office of Science and Technology Policy. 101.7... THE ADMINISTRATIVE PROCEDURES ACT § 101.7 Office of Science and Technology Policy. Freedom of Information regulations for the Office of Science and Technology Policy appear at 32 CFR part 2402. [55 FR...
3 CFR 101.7 - Office of Science and Technology Policy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 3 The President 1 2013-01-01 2013-01-01 false Office of Science and Technology Policy. 101.7... THE ADMINISTRATIVE PROCEDURES ACT § 101.7 Office of Science and Technology Policy. Freedom of Information regulations for the Office of Science and Technology Policy appear at 32 CFR part 2402. [55 FR...
3 CFR 101.7 - Office of Science and Technology Policy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 3 The President 1 2014-01-01 2014-01-01 false Office of Science and Technology Policy. 101.7... THE ADMINISTRATIVE PROCEDURES ACT § 101.7 Office of Science and Technology Policy. Freedom of Information regulations for the Office of Science and Technology Policy appear at 32 CFR part 2402. [55 FR...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Partially Closed Meeting of the President's Council of..., Office of Science and Technology Policy. ACTION: Public notice. SUMMARY: This notice sets forth the... Office of Science and Technology Policy (OSTP). PCAST is co-chaired by Dr. John P. Holdren, Assistant to...
3 CFR 101.7 - Office of Science and Technology Policy.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 3 The President 1 2012-01-01 2012-01-01 false Office of Science and Technology Policy. 101.7... THE ADMINISTRATIVE PROCEDURES ACT § 101.7 Office of Science and Technology Policy. Freedom of Information regulations for the Office of Science and Technology Policy appear at 32 CFR part 2402. [55 FR...
When Technology, Science and Culture Meet: Insights from Ancient Chinese Technology
ERIC Educational Resources Information Center
Lee, Yeung Chung
2018-01-01
This paper draws together two important agendas in science education. The first is making science education more inclusive such that students from non-Western or indigenous cultures can benefit from culturally relevant curricula. The second is integrating technology into the curriculum under the umbrella of Science-Technology-Society (STS)…
How to Change Students' Images of Science and Technology
ERIC Educational Resources Information Center
Scherz, Zahava; Oren, Miri
2006-01-01
This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, "Investigation into Science and Technology" (IST), designed to introduce students to science and technology in the "real life."…
3 CFR 101.7 - Office of Science and Technology Policy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 3 The President 1 2010-01-01 2010-01-01 false Office of Science and Technology Policy. 101.7... THE ADMINISTRATIVE PROCEDURES ACT § 101.7 Office of Science and Technology Policy. Freedom of Information regulations for the Office of Science and Technology Policy appear at 32 CFR part 2402. [55 FR...
The Philosophy of Science and Technology in China: Political and Ideological Influences
NASA Astrophysics Data System (ADS)
Guo, Yuanlin
2014-09-01
In China, the philosophy of science and technology (PST) is derived from "Dialectics of Nature" (DN), which is based on Engels' unfinished book Dialektik der Natur. DN as a political ideology provides political guidance for scientists and engineers. Therefore, since 1981, "Introduction to Dialectics of Nature" (IDN) has been an obligatory course for master's degree students who study natural science or technology. In 1987, DN was renamed PST by the Chinese government in order to communicate and do research. The IDN teachers constitute most of the scholars who research PST. Nowadays, in China, PST includes philosophy of nature, philosophy of science, philosophy of technology, sociology of science, sociology of technology, "science, technology and society," history of science, history of technology, management of science, and management of technology due to having too many IDN teachers. In fact, it is neither a branch of philosophy, nor a subject. The number of the IDN teachers has been increasing since 1981, which makes PST a miscellaneous collection of many branches or subjects. Finally, PST is facing two new challenges: the reduction of IDN and academic corruption.
Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.
Lupton, John M
2010-04-18
pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.
Low-bias negative differential conductance controlled by electrode separation
NASA Astrophysics Data System (ADS)
Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang
2016-12-01
The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006).
Ninth Graders' Learning Interests, Life Experiences and Attitudes Towards Science & Technology
NASA Astrophysics Data System (ADS)
Chang, Shu-Nu; Yeung, Yau-Yuen; Cheng, May Hung
2009-10-01
Students' learning interests and attitudes toward science have both been studied for decades. However, the connection between them with students' life experiences about science and technology has not been addressed much. The purpose of this study is to investigate students' learning interests and life experiences about science and technology, and also their attitudes toward technology. A total of 942 urban ninth graders in Taiwan were invited to participate in this study. A Likert scale questionnaire, which was developed from an international project, ROSE, was adapted to collect students' ideas. The results indicated that boys showed higher learning interests in sustainability issues and scientific topics than girls. However, girls recalled more life experiences about science and technology in life than boys. The data also presented high values of Pearson correlation about learning interests and life experiences related to science and technology, and in the perspective on attitudes towards technology. Ways to promote girls' learning interests about science and technology and the implications of teaching and research are discussed as well.
Blueprints for green biotech: development and application of standards for plant synthetic biology.
Patron, Nicola J
2016-06-15
Synthetic biology aims to apply engineering principles to the design and modification of biological systems and to the construction of biological parts and devices. The ability to programme cells by providing new instructions written in DNA is a foundational technology of the field. Large-scale de novo DNA synthesis has accelerated synthetic biology by offering custom-made molecules at ever decreasing costs. However, for large fragments and for experiments in which libraries of DNA sequences are assembled in different combinations, assembly in the laboratory is still desirable. Biological assembly standards allow DNA parts, even those from multiple laboratories and experiments, to be assembled together using the same reagents and protocols. The adoption of such standards for plant synthetic biology has been cohesive for the plant science community, facilitating the application of genome editing technologies to plant systems and streamlining progress in large-scale, multi-laboratory bioengineering projects. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
NASA Astrophysics Data System (ADS)
Wu, Xiaofang; Jiang, Liushi
2011-02-01
Usually in the traditional science and technology information system, the only text and table form are used to manage the data, and the mathematic statistics method is applied to analyze the data. It lacks for the spatial analysis and management of data. Therefore, GIS technology is introduced to visualize and analyze the information data on science and technology industry. Firstly, by using the developed platform-microsoft visual studio 2005 and ArcGIS Engine, the information visualization system on science and technology industry based on GIS is built up, which implements various functions, such as data storage and management, inquiry, statistics, chart analysis, thematic map representation. It can show the change of science and technology information from the space and time axis intuitively. Then, the data of science and technology in Guangdong province are taken as experimental data and are applied to the system. And by considering the factors of humanities, geography and economics so on, the situation and change tendency of science and technology information of different regions are analyzed and researched, and the corresponding suggestion and method are brought forward in order to provide the auxiliary support for development of science and technology industry in Guangdong province.
Science, Math, and Technology. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Science, Math and Technology is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) science (with activities on observation, comparisons, and the scientific method); (2) technology (examining simple machines, electricity, magnetism, waves and forces); (3) mathematics (addressing skill…
Educational technologies in health sciences libraries: teaching technology skills.
Hurst, Emily J
2014-01-01
As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?
Educational Technologies in Health Science Libraries: Teaching Technology Skills
Hurst, Emily J.
2014-01-01
As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting? PMID:24528269
78 FR 14101 - Homeland Security Science and Technology Advisory Committee (HSSTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... Technology Advisory Committee (HSSTAC) AGENCY: Science and Technology Directorate, DHS. ACTION: Committee... Technology Advisory Committee (HSSTAC) will meet on March 21, 2013 in Washington, DC The meeting will be open... the Department of Homeland Security (DHS), Science and Technology Directorate, 1120 Vermont Avenue NW...
Neri, Dario; Lerner, Richard A
2018-06-20
The discovery of organic ligands that bind specifically to proteins is a central problem in chemistry, biology, and the biomedical sciences. The encoding of individual organic molecules with distinctive DNA tags, serving as amplifiable identification bar codes, allows the construction and screening of combinatorial libraries of unprecedented size, thus facilitating the discovery of ligands to many different protein targets. Fundamentally, one links powers of genetics and chemical synthesis. After the initial description of DNA-encoded chemical libraries in 1992, several experimental embodiments of the technology have been reduced to practice. This review provides a historical account of important milestones in the development of DNA-encoded chemical libraries, a survey of relevant ongoing research activities, and a glimpse into the future.
Diffusion of anthracene derivatives on Cu(111) studied by STM and DFT
NASA Astrophysics Data System (ADS)
Wyrick, Jonathan; Bartels, Ludwig; Einstein, Theodore
2014-03-01
Substituted anthracenes have drawn attention due to their ability to diffuse uniaxially on a Cu(111) surface. We compare anthracene to three of its derivatives whose 9,10 hydrogens are replaced by elements of the chalcogen group that act as linkers binding the molecules to a Cu(111) substrate. DFT calculations shed light on STM imaging and diffusion studies on the three substituted species. We present an analysis of the DFT results in which energetic contributions to the diffusion barriers are partitioned among the Kohn-Sham orbitals, allowing us to make assignments as to how each orbital affects diffusion for each species and draw comparisons between them. Present address: Center for Nanoscale Science and Technology, NIST, Gaithersburg, MD.
ERIC Educational Resources Information Center
Campbell, Todd; Abd-Hamid, Nor Hashidah
2013-01-01
This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b)…
ERIC Educational Resources Information Center
Kelani, Raphael R.; Gado, Issaou
2018-01-01
Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…
Teaching Science, Technology and Society. Developing Science and Technology Series.
ERIC Educational Resources Information Center
Solomon, Joan
Science and technology are often presented and taught as two separate essences. When this is done, students as well as teachers are forced to attempt to develop the appropriate linkages. This book is one of a series designed to help teachers develop their science and technological education in ways that are both satisfying to themselves and…
Science and Technology Concepts in a Design and Technology Project: A Pilot Study.
ERIC Educational Resources Information Center
Levinson, Ralph; Murphy, Patricia; McCormick, Robert
1997-01-01
This pilot study of a project involving the design and making of a moisture sensor indicated that science knowledge developed through science lessons could not be used in technology lessons. This is argued to be because knowledge is constructed in the various contexts and hence not generalizable. Implications for science and technology teaching…
ERIC Educational Resources Information Center
Guzey, S. Selcen; Roehrig, Gillian H.
2009-01-01
This study examines the development of technology, pedagogy, and content knowledge (TPACK) in four in-service secondary science teachers as they participated in a professional development program focusing on technology integration into K-12 classrooms to support science as inquiry teaching. In the program, probeware, mind-mapping tools (CMaps),…
Code of Federal Regulations, 2011 CFR
2011-01-01
... Council of Advisors on Science and Technology 13539 Order 13539 Presidential Documents Executive Orders Executive Order 13539 of April 21, 2010 EO 13539 President's Council of Advisors on Science and Technology... America, and in order to establish an advisory council on science, technology, and innovation, it is...
ERIC Educational Resources Information Center
Executive Office of the President, 2012
2012-01-01
The America COMPETES Reauthorization Act of 2013 directs the Office of Science and Technology Policy (OSTP) to create an interagency committee under the National Science and Technology Council (NSTC) to develop a 5-year Federal science, technology, engineering, and mathematics (STEM) education strategic plan that includes: (1) annual and long-term…
2006-04-20
Disruptive Technologies • Army Approach to Disruptive Technologies and Transition Mr. Dennis Schmidt, Director, Science & Technology Integration, Office of...the Assistant Secretary of the Army for Research and Technology • Navy Approach to Disruptive Technologies and Transition Mr. Lewis DeSandre, Program...Manager, ONR 351 • Air Force Approach to Disruptive Technologies and Transition Colonel Mark Stephen, Associate Deputy Assistant Secretary (Science
7th Annual Science and Engineering Technology Conference/DoD Technology Exposition Volume 1
2006-04-20
Disruptive Technologies • Army Approach to Disruptive Technologies and Transition Mr. Dennis Schmidt, Director, Science & Technology Integration, Office of...the Assistant Secretary of the Army for Research and Technology • Navy Approach to Disruptive Technologies and Transition Mr. Lewis DeSandre, Program...Manager, ONR 351 • Air Force Approach to Disruptive Technologies and Transition Colonel Mark Stephen, Associate Deputy Assistant Secretary (Science
75 FR 39955 - Homeland Security Science and Technology Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... Technology Advisory Committee AGENCY: Science and Technology Directorate, DHS. ACTION: Committee Management... Technology Advisory Committee (HSSTAC) will meet July 20-21, 2010 at 4075 Wilson Blvd., Liberty Conference... Homeland Security Science and Technology Advisory Committee meeting will be open to the public on July 20th...
75 FR 2555 - Homeland Security Science and Technology Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... Technology Advisory Committee AGENCY: Science and Technology Directorate, DHS. ACTION: Committee management... Technology Advisory Committee will meet January 26-28, 2010, at the Department of Homeland Security, 1120... Science and Technology Advisory Committee will meet January 26, 2010, from 9 a.m. to 5 p.m., January 27...
The Virtual Museum of Minerals and Molecules: Molecular Visualization in a Virtual Hands-On Museum
ERIC Educational Resources Information Center
Barak, Phillip; Nater, Edward A.
2005-01-01
The Virtual Museum of Minerals and Molecules (VMMM) is a web-based resource presenting interactive, 3-D, research-grade molecular models of more than 150 minerals and molecules of interest to chemical, earth, plant, and environmental sciences. User interactivity with the 3-D display allows models to be rotated, zoomed, and specific regions of…
The technology-science relationship: Some curriculum implications
NASA Astrophysics Data System (ADS)
Gardner, Paul L.
1990-01-01
Technology encompasses the goods and services which people make and provide to meet human needs, and the processes and systems used for their development and delivery. Although technology and science are related, a distinction can be made between their purposes and outcomes. This paper considers four possible approaches to teaching students about the relationship between technology and science. A technology-as-illustration approach treats technology as if it were applied science; artefacts are presented to illustrate scientific principles. A cognitive-motivational approach also treats technology as applied science, but presents technology early in the instructional sequence in order to promote student interest and understanding. In an artefact approach, learners study artefacts as systems in order to understand the scientific principles which explain their workings. Finally, a technology-as-process approach emphasises the role of technological capability; in this approach, scientific concepts do not have privileged status as a basis for selecting curriculum content.
SLAC All Access: Atomic, Molecular and Optical Science Instrument
Bozek, John
2018-02-13
John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.
Selection rules for electric multipole transition of triatomic molecule in scattering experiments
NASA Astrophysics Data System (ADS)
Tian, Hong-Chun; Xu, Long-Quan; Zhu, Lin-Fan
2018-04-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant No. U1732133), and the Science Fund from Chinese Academy of Sciences (Grant No. 11320101003).
Science and Technology Policymaking: A Primer
2009-01-27
survey of developed nations. 4 U.S. Constitution, Article I, Section 8, Clause 8. 5 Jeffrey K. Stine, A History of Science Policy in the United States... History of Science Policy in the United States, 1940-1985 , Report for the House Committee on Science and Technology Task Force on Science Policy...Jeffrey K. Stine, A History of Science Policy in the United States, 1940-1985 , Report for the House Committee on Science and Technology Task Force on
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
These hearings consist of testimony by and the prepared statement of George A. Keyworth II (science advisor to President Reagan and director of the Office of Science and Technology Policy) on the Reagan administration's overall science policy in the proposed research and development (R&D) budget for fiscal year 1985. A major focus is on the…
Mexico's Program for Science and Technology, 1978 to 1982.
ERIC Educational Resources Information Center
Flores, Edmundo
1979-01-01
Describes briefly the National Council for Science and Technology (CONACYT) of Mexico, and outlines Mexico's Program for Science and Technology which includes 2,489 projects in basic and applied sciences at a cost of $260 million from 1978 to 1982. (HM)
Probe DNA-Cisplatin Interaction with Solid-State Nanopores
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration
2014-03-01
Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.
NASA Astrophysics Data System (ADS)
Miyahara, Yuji; Kobayashi, Hisatoshi; Chen, Guoping; Kikuchi, Masanori
2010-02-01
In biomedical fields, various materials are used for different purposes such as therapy, diagnostics and drugs. Some of them come into direct contact with blood and tissues in the human body, while many others are used in advanced medical equipment. Without these materials, current advances in medicine would never be achieved. Even in the 21st century, we still face the challenge of incurable or intractable diseases such as cancer, as well as the emergence of new infectious diseases. Global action is necessary to deal with these issues. Recent developments in nanoscience and nanotechnology have provided new strategies for material design that are based on the structural control of atoms and molecules. These strategies have revolutionized the field of advanced functional materials. Their combination with the enormous amount of knowledge in molecular and cellular biology accumulated over the last few decades has lead to the conception of new medical technologies. These technologies are represented in cell therapy, drug targeting and regenerative medicine, and are being widely and intensively investigated for realization at an industrial scale. In order to find solutions to remaining issues in life science, it is necessary to accelerate the fusion between nano- and biotechnologies and to promote research and development in these interdisciplinary fields. In this context, National Institute for Materials Science (NIMS)—one of the leading research institutes in the field of materials science—held a series of symposia in the week of 21-24 July 2009, 'NIMS Week 2009' and 'Nanobio-materials and technologies: breakthrough for future medicine', that aimed to present advances in medical fields from the perspective of materials science and technologies. During NIMS Week, various activities were carried out, including perspective reviews and invited lectures by international leading researchers in the 'nanobio' field, in addition to four organized sessions and related satellite symposia. Professor Kazunori Kataoka of the University of Tokyo received the NIMS Award 2009 for his outstanding research achievements and contributions to developing functional nanodevices for drug and gene delivery. This focus issue includes his review article 'Multifunctional nanoassemblies of block copolymers for future cancer therapy'. Eleven other plenary and invited speakers from NIMS Week 2009 have contributed review articles that may have great impact on research and development in nanobiomaterials and technologies Research in the nanobio field requires multi-disciplinary collaboration between specialists in biology, medicine, chemistry, physics, electronics, material engineering and other areas. We believe that this focus issue contains useful information for these researchers and provides an outline of breakthroughs for future medicine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Memorandum for the Director of the Office of Science and Technology Policy By the authority vested in me as... Director of the Office of Science and Technology Policy is authorized and directed to publish this... 3 The President 1 2011-01-01 2011-01-01 false Designation of the National Science and Technology...
3 CFR - Designation of Officers of the Office of Science and Technology Policy To Act as Director
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5, 2009 Designation of Officers of the Office of Science and Technology Policy To Act as Director Memorandum for the Director of the Office of Science and Technology Policy By the authority vested in me as... Science and Technology Policy (OSTP), in the order listed, shall act as and perform the functions and...
Science, Technology & Requirements Forum
2012-10-01
Science, Technology & Requirements Forum COL Barry K. Williams Assistant Commandant US Army Engineer School Engineer Warriors leading to...2012 4. TITLE AND SUBTITLE Science, Technology & Requirements Forum 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...unlimited 13. SUPPLEMENTARY NOTES Presented at the 2012 Science, Technology & Requirements Forum held 17-18 October in Fort Leonard Wood, MO. 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
Presidential Science Adviser Dr. George Keyworth, Director of the Office of Science and Technology Policy, gave his annual (1985) report on US Science and Technology posture at a hearing of the Committee on Science and Technology of the US House of Representatives (99th Congress) on 5 Feb. 1985. He spoke of critical choices in three areas, i.e., how to reduce nuclear weapons, thereby to enhance the national security, how to ensure US technological superiority in the face of rapidly growing international competition, and how to accomplish the foregoing while reducing government deficits. US government support for Research and Development willmore » total $60 billion this year, $20 billion of which are for non-defense programs, and $8 billion for basic research. He emphasized the importance of the latter to the nation's economic wellbeing, and the need to make every research dollar count in the face of rising costs and soaring deficits. Dr. Keyworth urges aggressive US efforts to maintain its world leadership in science and technology.« less
NASA Astrophysics Data System (ADS)
Kim, Hanna
2011-12-01
This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).
Photonics and microarray technology
NASA Astrophysics Data System (ADS)
Skovsen, E.; Duroux, M.; Neves-Petersen, M. T.; Duroux, L.; Petersen, S. B.
2007-05-01
Photonic induced immobilization of biosensor molecules is a novel technology that results in spatially oriented and spatially localized covalent coupling of a large variety of biomolecules onto thiol reactive surfaces, e.g. thiolated glass, quartz, gold or silicon. The reaction mechanism behind the reported new technology involves light-induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids resulting in the formation of reactive molecules that will form covalent bonds with thiol reactive surfaces. This new technology has the potential of replacing present micro dispensing arraying technologies, where the size of the individual sensor spots are limited by the size of the dispensed droplets. Using light-induced immobilization the spatial resolution is defined by the area of the sensor surface that is illuminated by UV light and not by the physical size of the dispensed droplets of sensor molecules. This new technology allows for dense packing of different biomolecules on a surface, allowing the creation of multi-potent functionalized materials, such as biosensors with micrometer sized individual sensor spots. Thus, we have developed the necessary technology for preparing large protein arrays of enzymes and fragments of antibodies, with micrometer resolution, without the need for liquid micro dispensing.
NASA Astrophysics Data System (ADS)
Scheffler, Matthias; Schneider, Wolf-Dieter
2008-12-01
Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K Iori, K Sakamoto, H Narita, A Kimura, M Taniguchi, S Qiao, K Hasegawa, K Shimada, H Namatame and S Blügel Activated associative desorption of C + O → CO from Ru(001) induced by femtosecond laser pulses S Wagner, H Öström, A Kaebe, M Krenz, M Wolf, A C Luntz and C Frischkorn Surface structure of Sn-doped In2O3 (111) thin films by STM Erie H Morales, Yunbin He, Mykola Vinnichenko, Bernard Delley and Ulrike Diebold Coulomb oscillations in three-layer graphene nanostructures J Güttinger, C Stampfer, F Molitor, D Graf, T Ihn and K Ensslin Adsorption processes of hydrogen molecules on SiC(001), Si(001) and C(001) surfaces Xiangyang Peng, Peter Krüger and Johannes Pollmann Fermi surface nesting in several transition metal dichalcogenides D S Inosov, V B Zabolotnyy, D V Evtushinsky, A A Kordyuk, B Büchner, R Follath, H Berger and S V Borisenko Probing molecule-surface interactions through ultra-fast adsorbate dynamics: propane/Pt(111) A P Jardine, H Hedgeland, D Ward, Y Xiaoqing, W Allison, J Ellis and G Alexandrowicz A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy R Temirov, S Soubatch, O Neucheva, A C Lassise and F S Tautz
ERIC Educational Resources Information Center
Hechter, Richard; Vermette, Laurie Anne
2014-01-01
This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…
ERIC Educational Resources Information Center
Lee, Yeung Chung; Kwok, Ping Wai
2017-01-01
This paper examines the feasibility of using historical case studies to contextualise the learning of the nature of science and technology in a biology lesson. Through exploring the historical development of vaccine technology, students were expected to understand the complexity of the relationships between technology and science beyond the…
Report explores Congress' science policy
NASA Astrophysics Data System (ADS)
Jones, Richard
Scientists interested in understanding how Congress develops science policy would find it useful to read a recent report by the Carnegie Commission on Science, Technology, and Government. “Science, Technology and Congress: Analysis and Advice from the Congressional Support Agencies” contains revealing insights about the often hard-pressed system that Congress uses to analyze science and technology issues.“Congress is on the front line of many battles over the directions of science and technology,” says the 70-page report. “The quality of congressional decisions on these issues often depends on the quality and usefulness of information and analysis made available to Congress.” The report describes the overwhelming amount of information received by members of Congress, few of whom have “substantial training or experience” in science and technology. Making this information understandable and useful is the role of the Office of Technology Assessment, the Congressional Research Service, the General Accounting Office, and the Congressional Budget Office.
Dynamic development of public attitudes towards science policymaking.
Okamura, Keisuke
2016-05-01
Understanding the heterogeneity of mechanisms that form public attitudes towards science and technology policymaking is essential to the establishment of an effective public engagement platform. Using the 2011 public opinion survey data from Japan (n = 6,136), I divided the general public into three categories: the Attentive public, who are willing to actively engage with science and technology policymaking dialogue; the Interested public, who have moderate interest in science and technology but rely on experts for policy decisions; and the Residual public, who have minimal interest in science and technology. On the basis of the results of multivariate regression analysis, I have identified several key predispositions towards science and technology and other socio-demographic characteristics that influence the shift of individuals from one category of the general public to another. The findings provide a foundation for understanding how to induce more accountable, evidence-based science and technology policymaking. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji
2015-08-27
The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOHmore » bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in liquid water via their strong nonlinear couplings with the intramolecular OH stretching and HOH bending vibrations. S.S.X. acknowledges the support of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The calculation was carried out using the computing resources at the Research Center for Computational Science in Okazaki, Japan.« less
Spanish Secondary-School Science Teachers' Beliefs about Science-Technology-Society (STS) Issues
ERIC Educational Resources Information Center
Vazquez-Alonso, Angel; Garcia-Carmona, Antonio; Manassero-Mas, Maria Antonia; Bennassar-Roig, Antoni
2013-01-01
This study analyzes the beliefs about science-technology-society, and other Nature of Science (NOS) themes, of a large sample (613) of Spanish pre- and in-service secondary education teachers through their responses to 30 items of the Questionnaire of Opinions on Science, Technology and Society. The data were processed by means of a multiple…
NASA Astrophysics Data System (ADS)
Rajbanshi, Roshani
With access to technology and expectation by the mainstream, the use of technology in the classroom has become essential these days. However, the problem in science education is that with classrooms filled with technological equipment, the teaching style is didactic, and teachers employ traditional teacher-centered methods in the classroom. In addition, results of international assessments indicate that students' science learning needs to be improved. The purpose of this study is to analyze and document the lived experience of middle-school science teachers and their use of technology in personal, professional lives as well as in their classroom and to describe the phenomenon of middle-school science teachers' technological beliefs for integration of digital devices or technology as an instructional delivery tool, knowledge construction tool and learning tool. For this study, technology is defined as digital devices such as computer, laptops, digital camera, iPad that are used in the science classroom as an instructional delivery tool, as a learning tool, and as a knowledge construction tool. Constructivism is the lens, the theoretical framework that guides this qualitative phenomenological research. Observation, interview, personal journal, photo elicitation, and journal reflection are used as methods of data collection. Data was analyzed based on a constructivist theoretical framework to construct knowledge and draw conclusion. MAXQDA, a qualitative analysis software, was also used to analyze the data. The findings indicate that middle-school science teachers use technology in various ways to engage and motivate students in science learning; however, there are multiple factors that influence teachers' technology use in the class. In conclusion, teacher, students, and technology are the three sides of the triangle where technology acts as the third side or the bridge to connect teachers' content knowledge to students through the tool with which students are familiar. Keywords: Teachers' belief, science and technology, knowledge construction.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science... INFORMATION CONTACT: Dr. Michael New, Planetary Science Division, National Aeronautics and Space...
78 FR 17219 - Homeland Security Science and Technology Advisory Committee Meeting Cancellation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2013-0014] Homeland Security Science and...: Notice of Cancellation of the Federal Advisory Committee Meeting for Homeland Security Science and Technology Advisory Committee (HSSTAC). SUMMARY: The meeting of the Homeland Security Science and Technology...
The first 'molecular disease': a story of Linus Pauling, the intellectual patron.
Gormley, Melinda
2007-06-01
In November 1949, chemist Linus Pauling and three colleagues published an article on sickle-cell anemia, a study that opened up new and exciting possibilities for research into such 'molecular diseases'. Even before this celebrated publication appeared in Science, Pauling foresaw its potential benefits and announced it as a medical breakthrough: '... our structural chemistry and understanding of molecules is getting to the point where it should be of assistance in converting medicine into a real science' [Guiles, R. (1949) Discovery of blood disease called key to cancer research. The Detroit Times 13 Sep 1949, Newspaper Clippings 1949n.18, Pauling Papers.]. Their discovery--that this debilitating disorder was caused by an abnormal form of hemoglobin--was borne out of a rich mix of expertise, from Pauling's remarkable intuition to the careful experimental chemistry of his student Harvey A. Itano. It also relied upon technological innovation: a custom-made electrophoresis machine housed at the California Institute of Technology was the perfect tool to reveal fundamental chemical differences between normal and abnormal forms of hemoglobin. Not only did this work establish a new way of looking at inherited diseases, it also stimulated the mass production of the electrophoresis machine as an essential investigative and diagnostic tool. A close inspection of this case study illustrates just how Pauling ran his laboratory and helps to explain how one man could achieve so much over his lifetime.
Prospects of nanoparticle-DNA binding and its implications in medical biotechnology.
An, Hongjie; Jin, Bo
2012-01-01
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle-DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle-DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle-DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle-DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology. Copyright © 2012 Elsevier Inc. All rights reserved.
Physics Problems Based on Up-to-Date Science and Technology.
NASA Astrophysics Data System (ADS)
Folan, Lorcan M.; Tsifrinovich, Vladimir I.
2007-03-01
We observe a huge chasm between up-to-date science and undergraduate education. The result of this chasm is that current student interest in undergraduate science is low. Consequently, students who are graduating from college are often unable to take advantage of the many opportunities offered by science and technology. Cutting edge science and technology frequently use the methods learned in undergraduate courses, but up-to-date applications are not normally used as examples or for problems in undergraduate courses. There are many physics problems which contain information about the latest achievements in science and technology. But typically, the level of these problems is too advanced for undergraduates. We created physics problems for undergraduate science and engineering students, which are based on the latest achievements in science and technology. These problems have been successfully used in our courses at the Polytechnic University in New York. We believe that university faculty may suggest such problems in order to provide information about the frontiers of science and technological, demonstrate the importance of undergraduate physics in solving contemporary problems and raise the interest of talented students in science. From the other side, our approach may be considered an indirect way for advertising advanced technologies, which undergraduate students and, even more important, future college graduates could use in their working lives.
Science and Technology Policymaking: A Primer
2008-04-22
the federal government CRS-2 4 U.S. Constitution, Article I, Section 8, Clause 8. 5 Jeffrey K. Stine, A History of Science Policy in the United States...Stine, A History of Science Policy in the United States, 1940-1985 , Report for the House Committee on Science and Technology Task Force on Science...K. Stine, A History of Science Policy in the United States, 1940-1985 , Report for the House Committee on Science and Technology Task Force on
NASA Astrophysics Data System (ADS)
Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.
2015-10-01
While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional instruction, sits in opposition to most recent standards documents in science education that call for student involvement in evidence-based sense-making activities. Many see technology as a potentially powerful resource that is reshaping society and has the potential to do the same in science classrooms. To consider the promise of technology in science classrooms, this research investigated the impact of a professional development project focused on enhancing teacher and student learning by using information and communication technologies (ICTs) for engaging students in reformed-based instruction. More specifically, these findings revealed positive teacher outcomes with respect to reformed-based and technology-supported instruction and increased ICT and new literacies skills. When considering students, the findings revealed positive outcomes with respect to ICT and new literacies skills and student achievement in science.
2015 Science Mission Directorate Technology Highlights
NASA Technical Reports Server (NTRS)
Seablom, Michael S.
2016-01-01
The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.
Laboratory simulation to support the search for organic molecules at the surface of Mars
NASA Astrophysics Data System (ADS)
Poch, Olivier; Szopa, Cyril; Coll, Patrice; Jaber, Maguy; Georgelin, Thomas; Lambert, Jean-Francois; Stalport, Fabien
The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars’ exploration. Understanding the chemical evolution of organic molecules under current Martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? Here we present results of laboratory investigations dedicated to monitor qualitative and quantitative evolutions of several organic molecules under simulated Martian surface ultraviolet incident light, mean ground temperature and pressure, using the Mars Organic Molecules Irradiation and Evolution setup (1) . For each organic molecule studied, the nature of the evolution products (solid or gaseous) and the kinetic parameters (extrapolated half-life at Mars, quantum yields) were experimentally determined. The results show that when exposed to UV radiation, specific organic molecules lead to the formation of solid residues, probably of macromolecular nature, which could reach long term stability. On the other hand, the study of the evolution of molecules in presence of nontronite, a clay mineral detected at the surface of Mars, highlights a strong protective effect of the clay reducing dissociation rates for some molecules, whereas a possible catalytic effect is tentatively observed for one studied molecule. These results are essential to support the analyses performed in situ during the past, current and future exploration missions. Moreover, the experimentally determined kinetic parameters provide new inputs for numerical modeling of current reservoirs of organic molecules on Mars. (1) O. Poch et al., Planetary and Space Science 85, 188-197, http://dx.doi.org/10.1016/j.pss.2013.06.013
Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology
NASA Technical Reports Server (NTRS)
1991-01-01
Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
The House Committee on Science and Technology, Subcommittee on Science, Research and Technology, sponsored an American Association for the Advancement of Science seminar (July 28, 1981) and 6 days of hearings (September 9-17, 1981) on "The Human Factor in Innovation and Productivity." These hearings were designed to increase knowledge…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.
This document contains the text of three days of hearings before the United States House of Representatives Subcommittee on Science, Research, and Technology. The hearings were held to consider the role of science and engineering in world competitiveness, particularly with regard to the United States' nonmetric posture in a metric world. Testimony…
Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.
Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi
2017-07-01
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
ERIC Educational Resources Information Center
Marks, Gary H., Ed.
The primary purpose of the 1994 Mathematics/Science Education and Technology Symposium was to help foster the exchange of information related to the research, development, and applications of learning and teaching using information technology in mathematics and science educations. The theme "Emerging Issues and Trends" was identified to…
ERIC Educational Resources Information Center
Teich, Albert H., Ed.; Thornton, Ray, Ed.
Recognizing that science and technology (S/T) have become increasingly relevant to important public policy issues, Congress has mandated the periodic preparation of a "Five Year Outlook for Science and Technology" to help U.S. policymakers anticipate and deal with these issues more effectively. This book, the result of a study conducted by the…
JPRS Report, Science & Technology, USSR: Science & Technology Policy
1990-05-31
SERVICE SPRINGFIELD, VA. 22161 DTTC QUALITY INSPECTED t Science & Technology USSR: Science & Technology Policy JPRS-UST-90-006 CONTENTS 31 May...64 Uzbek Central Committee Examines S& T Cadre Problem [PRAVDA VOSTOKA, 27Feb 90] 65 Miscellaneous Scientists Comment on Compensation, Contract...Expositions POISK Commentary on February S& T Conference [V. Oshchenko, Ye. Ponarina; POISK, 22-28 Feb 90] 77 Conference Sets Policy for Future S& T
Advanced Information Technology Investments at the NASA Earth Science Technology Office
NASA Astrophysics Data System (ADS)
Clune, T.; Seablom, M. S.; Moe, K.
2012-12-01
The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground-based systems, increase the accessibility and utility of science data, and to enable new observation measurements and information products. We will discuss the ESTO investment strategy for information technology development, the methods used to assess stakeholder needs and technology advancements, and technology partnerships to enhance the infusion for the resulting technology. We also describe specific investments and their potential impact on enabling NASA missions and scientific discovery. [1] "Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey", 2012: National Academies Press, http://www.nap.edu/catalog.php?record_id=13405 [2] "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space", 2010: NASA Tech Memo, http://science.nasa.gov/media/medialibrary/2010/07/01/Climate_Architecture_Final.pdf
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Expediting Transition of Government Performed and Sponsored Aeronautics Research and Development AGENCY: National Science and Technology Council, Office of Science and Technology Policy. ACTION: Notice of request for public comment. SUMMARY: The National Science...
A case for Sandia investment in complex adaptive systems science and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin
2012-05-01
This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase ourmore » impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research and Development program; and in the long run, inculcate an awareness at the Department of Energy of the importance of supporting complex adaptive systems science through its Office of Science.« less
[The principle and application of the single-molecule real-time sequencing technology].
Yanhu, Liu; Lu, Wang; Li, Yu
2015-03-01
Last decade witnessed the explosive development of the third-generation sequencing strategy, including single-molecule real-time sequencing (SMRT), true single-molecule sequencing (tSMSTM) and the single-molecule nanopore DNA sequencing. In this review, we summarize the principle, performance and application of the SMRT sequencing technology. Compared with the traditional Sanger method and the next-generation sequencing (NGS) technologies, the SMRT approach has several advantages, including long read length, high speed, PCR-free and the capability of direct detection of epigenetic modifications. However, the disadvantage of its low accuracy, most of which resulted from insertions and deletions, is also notable. So, the raw sequence data need to be corrected before assembly. Up to now, the SMRT is a good fit for applications in the de novo genomic sequencing and the high-quality assemblies of small genomes. In the future, it is expected to play an important role in epigenetics, transcriptomic sequencing, and assemblies of large genomes.
Homburg, Ernst
2008-01-01
The present paper traces the evolution of writing national-oriented histories of science and technology of the Netherlands. Several episodes are distinguished. A first wave of national histories of science and technology was written during the first decades of the 19th century. These histories had a wide scope, which included science, technology, the humanities and the arts. A second wave, which lasted from about 1865 to 1900, was strongly connected to the rise of the scientific professions. Its focus was on the sciences perse, and on the Dutch "Golden Age" of the 17th century. A third wave occurred during and shortly after the Second World War. Its focus was mainly on the "Second Golden Age" of Dutch science (1870-1910), and its major audience were young boys that were to be recruited to the sciences. The second part of the paper discusses the growing influence of "contextualization" in both the history of science and the history of technology from about 1975 onwards. As a result, local factors often received more attention in historical studies of science and technology than national influences. In 1985, Klaas van Berkel undertook a bold attempt to write a new synthesis of the history of Dutch science, but his approach was too strongly influenced by the three previous waves of national histories. From 1989 to 2003 two projects on the national history of technology resulted in 13 volumes on Dutch technology between 1800 and 1970. New research was initiated, and the issue of "national styles" in the development of technology received ample attention. In his conclusions the author points to lessons to be learned from economic history and the history of art, and he concludes with a plea for more historiographical discussion in the history of science and technology.
Technology and Science Education: Starting Points, Research Programs, and Trends.
ERIC Educational Resources Information Center
Linn, Marcia C.
2003-01-01
Explores technology in science education in five paths: (1) science texts and lectures; (2) science discussions and collaboration; (3) data collection and representation; (4) science visualization; and (5) science simulation and modeling. (Contains 92 references.) (Author/SOE)
Blakskjaer, Peter; Heitner, Tara; Hansen, Nils Jakob Vest
2015-06-01
DNA-encoded small-molecule library (DEL) technology allows vast drug-like small molecule libraries to be efficiently synthesized in a combinatorial fashion and screened in a single tube method for binding, with an assay readout empowered by advances in next generation sequencing technology. This approach has increasingly been applied as a viable technology for the identification of small-molecule modulators to protein targets and as precursors to drugs in the past decade. Several strategies for producing and for screening DELs have been devised by both academic and industrial institutions. This review highlights some of the most significant and recent strategies along with important results. A special focus on the production of high fidelity DEL technologies with the ability to eliminate screening noise and false positives is included: using a DNA junction called the Yoctoreactor, building blocks (BBs) are spatially confined at the center of the junction facilitating both the chemical reaction between BBs and encoding of the synthetic route. A screening method, known as binder trap enrichment, permits DELs to be screened robustly in a homogeneous manner delivering clean data sets and potent hits for even the most challenging targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Duroux, M.; Duroux, L.; Neves-Petersen, M. T.; Skovsen, E.; Petersen, S. B.
2007-07-01
We demonstrate that ultraviolet light can be used to make sterically oriented covalent immobilization of a large variety of protein molecules onto either thiolated quartz, gold or silicon. The reaction mechanism behind the reported new technology involves light-induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol reactive surfaces. In general, the protein molecules retain their function. The size of the immobilization spot is limited to the focal point of illumination being as small as a few micrometers. This new technology allows for dense packing of different bio-molecules on a surface, allowing the creation of multi-potent functionalised new materials, such as nano-biosensors. We have developed the necessary technology for preparing large protein arrays of enzymes and fragments of monoclonal antibodies. Dedicated image processing software has been developed for making quality assessment of the protein arrays. This novel technology is ideal to couple drugs and other bio-molecules to nanoparticles which can be used as carriers into cells for therapeutic purposes.
ERIC Educational Resources Information Center
Mandizha, George
The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide is a four-part unit…
ERIC Educational Resources Information Center
Mandizha, George
The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be used in…
Science Education in Egypt and Other Arab Countries in Africa and West Asia.
ERIC Educational Resources Information Center
Hassan, Farkhonda
1997-01-01
Examines science education in Egypt and the Arab states, focusing on the status of science and technology at the pre-university level and higher education, the science and technology structural component in the higher education system, student enrollment at the B.S. level, distribution of B.S degrees by sex, science and technology graduates, M.S.…
ERIC Educational Resources Information Center
National Science Foundation. Washington, DC. Div. of Information Science and Technology.
This volume contains the reports of three working groups which were convened separately over a 3-year period at the request of the Advisory Committee for the Division of Information Science and Technology of the National Science Foundation to obtain the opinion of experts concerning research opportunities and trends in information science and…
An Investigation of Science and Technology Teachers' Views on the 5th Grade Science Course
ERIC Educational Resources Information Center
Dasdemir, Ikramettin
2014-01-01
This study was conducted to explore the science and technology teachers' views on the implementation of 5th grade science course. Open-ended questions were used as a data collection tool. The study sample consisted of 28 science and technology teachers working in Erzurum in 2012-2013 education year. The data gathered were analysed via content…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
The eight working papers presented in this compendium were prepared for the National Science Foundation (NSF) as one means to assist the Office of Science and Technology Policy with preparation of the Administration's Annual Science and Technology Report to the Congress, 1981. They focus on specific aspects of three central themes directly related…
Current biodefense vaccine programs and challenges.
Wolfe, Daniel N; Florence, William; Bryant, Paula
2013-07-01
The Defense Threat Reduction Agency's Joint Science and Technology Office manages the Chemical and Biological Defense Program's Science and Technology portfolio. The Joint Science and Technology Office's mission is to invest in transformational ideas, innovative people and actionable technology development for Chemical and Biological Defense solutions, with the primary goal to deliver Science and Technology products and capabilities to the warfighter and civilian population that outpace the threat. This commentary focuses on one thrust area within this mission: the Vaccine program of the Joint Science and Technology Office's Translational Medical Division. Here, we will describe candidate vaccines currently in the S&T pipeline, enabling technologies that should facilitate advanced development of these candidates into FDA licensed vaccines, and how the ever-changing biological threat landscape impacts the future of biodefense vaccines.
Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms
NASA Astrophysics Data System (ADS)
Aldegunde, Jesus; Hutson, Jeremy M.
2018-04-01
Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.
Ardui, Simon; Ameur, Adam; Vermeesch, Joris R; Hestand, Matthew S
2018-01-01
Abstract Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio's single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing. PMID:29401301
Is Computer Science Compatible with Technological Literacy?
ERIC Educational Resources Information Center
Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.
2018-01-01
Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…
77 FR 38277 - President's Council of Advisors on Science and Technology Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... DEPARTMENT OF ENERGY President's Council of Advisors on Science and Technology Meeting AGENCY... Technology (PCAST), and describes the functions of the Council. Notice of this meeting is required under the... basis. SUPPLEMENTARY INFORMATION: The President's Council of Advisors on Science and Technology (PCAST...
32 CFR 2400.20 - Systematic review for declassification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... request. (c) Office of Science and Technology Policy Responsibility. The Director, OSTP, shall: (1) Issue... of Science and Technology Policy shall be bound by the special procedures for systematic review of...
32 CFR 2400.20 - Systematic review for declassification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... request. (c) Office of Science and Technology Policy Responsibility. The Director, OSTP, shall: (1) Issue... of Science and Technology Policy shall be bound by the special procedures for systematic review of...
32 CFR 2400.21 - Mandatory review for declassification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... Office of Science and Technology Policy to locate it with a reasonable amount of effort. (b) Requests should be addressed to: Executive Director, Office of Science and Technology Policy, Executive Office of...
32 CFR 2400.20 - Systematic review for declassification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... request. (c) Office of Science and Technology Policy Responsibility. The Director, OSTP, shall: (1) Issue... of Science and Technology Policy shall be bound by the special procedures for systematic review of...
32 CFR 2400.21 - Mandatory review for declassification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... Office of Science and Technology Policy to locate it with a reasonable amount of effort. (b) Requests should be addressed to: Executive Director, Office of Science and Technology Policy, Executive Office of...
32 CFR 2400.21 - Mandatory review for declassification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... Office of Science and Technology Policy to locate it with a reasonable amount of effort. (b) Requests should be addressed to: Executive Director, Office of Science and Technology Policy, Executive Office of...
32 CFR 2400.20 - Systematic review for declassification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... request. (c) Office of Science and Technology Policy Responsibility. The Director, OSTP, shall: (1) Issue... of Science and Technology Policy shall be bound by the special procedures for systematic review of...
32 CFR 2400.20 - Systematic review for declassification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... request. (c) Office of Science and Technology Policy Responsibility. The Director, OSTP, shall: (1) Issue... of Science and Technology Policy shall be bound by the special procedures for systematic review of...
32 CFR 2400.21 - Mandatory review for declassification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... Office of Science and Technology Policy to locate it with a reasonable amount of effort. (b) Requests should be addressed to: Executive Director, Office of Science and Technology Policy, Executive Office of...
32 CFR 2400.21 - Mandatory review for declassification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION... Office of Science and Technology Policy to locate it with a reasonable amount of effort. (b) Requests should be addressed to: Executive Director, Office of Science and Technology Policy, Executive Office of...
78 FR 68040 - President's Council of Advisors on Science and Technology Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... provide updates on its studies of education information technology and cyber- security. Additional... DEPARTMENT OF ENERGY President's Council of Advisors on Science and Technology Meeting AGENCY... Science and Technology (PCAST), and describes the functions of the Council. Notice of this meeting is...
NASA Astrophysics Data System (ADS)
Arbi, Y. R.; Sumarmin, R.; Putri, D. H.
2018-04-01
The problem in the science learning process is the application of the scientific approach takes a long time in order to provide conceptual understanding to the students, there is no teaching materials that can measure students reasoning and thinking ability, and the assessment has not measured students reasoning and literacy skills.The effort can be done is to develop science technology society module indue science literacy assessment. The purpose of the research was to produce a module oriented society indue science science technology literacy assessment. The research is development research using Plomp model, consist of preliminary, prototyping, and assessment phase. Data collect by questionnare and documantion. The result there is science technology society module indue science literacy assessment is very valid.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... biomedical and life sciences research; and subject matter experts who voluntarily consent to be included in a... 1974; Science & Technology Directorate-001 Research, Development, Test, and Evaluation Records System.../Science and Technology Directorate-001 Research, Development, Test, and Evaluation System of Records...
Scientific and Technological Progress: Problems for the West.
ERIC Educational Resources Information Center
de Rose, Francois
1978-01-01
Discusses the impact of science and technology on major social problems confronting the Western world. Topics include pollution and ecology, military impact, computer science, and the benefits of science and technology. (Author/MA)
7 CFR 91.9 - How to make an application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Science and Technology laboratory where the service is provided, or by contacting the Technical Services Branch Chief at Science and Technology Headquarters, Washington, DC. A list of the Science and Technology...
7 CFR 91.9 - How to make an application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Science and Technology laboratory where the service is provided, or by contacting the Technical Services Branch Chief at Science and Technology Headquarters, Washington, DC. A list of the Science and Technology...
7 CFR 91.9 - How to make an application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Science and Technology laboratory where the service is provided, or by contacting the Technical Services Branch Chief at Science and Technology Headquarters, Washington, DC. A list of the Science and Technology...
7 CFR 91.9 - How to make an application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Science and Technology laboratory where the service is provided, or by contacting the Technical Services Branch Chief at Science and Technology Headquarters, Washington, DC. A list of the Science and Technology...
7 CFR 91.9 - How to make an application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Science and Technology laboratory where the service is provided, or by contacting the Technical Services Branch Chief at Science and Technology Headquarters, Washington, DC. A list of the Science and Technology...
ERIC Educational Resources Information Center
Harlen, Wynne, Comp.
A conference on science and technology and future human needs was attended by over 300 science educators from 64 countries. Educators with particular interest in primary science and technology education extended their stay for an additional seminar. This report highlights the events of that seminar. Contents include: (1) recent and on-going work…
A semantic web ontology for small molecules and their biological targets.
Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A
2010-05-24
A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.
Dynamics of light-field control of molecular dissociation at the few-cycle limit.
Tong, X M; Lin, C D
2007-03-23
We studied the laser-molecule interaction dynamics that leads to the asymmetric D+ ion ejection in the dissociative ionization of D2 molecules observed recently in Kling et al. [Science 312, 246 (2006)10.1126/science.1126259]. By changing the carrier-envelope phase, we showed that the asymmetry is a consequence of manipulating the initial ionization and the rescattering of the electrons within one optical cycle of the laser. The result illustrates the feasibility of coherent control of reaction dynamics at the attosecond time scale.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France).
The conclusions reached by commissions established by the Conference on the Application of Science and Technology to the Development of Asia, convened by UNESCO in 1968, are presented after brief descriptions of the present status of applied science and technology in 19 Asian countries. One commission studied social, economic, and cultural factors…
ERIC Educational Resources Information Center
Gimba, R. W.; Hassan, A. M.; Yaki, A. A; Chado, A. M.
2018-01-01
It has been observed that students shy away from the study of Science and Technology even though Science and Technology occupies a central position in the development of the nation. This shows the negative attitude and poor performance of students in Science and Technology. This has prompted the research into teachers and students' perceptions of…
ERIC Educational Resources Information Center
Karakuyu, Yunus
2011-01-01
The purpose of this study is to determine the thoughts of primary science and technology teachers, primary class teachers, pre-service primary class teachers and pre-service primary science and technology teachers' about concept maps. This scale applied the use of basic and random method on the chosen 125 4th and 5th grade primary class teachers…
ERIC Educational Resources Information Center
Executive Office of the President, 2011
2011-01-01
The National Science and Technology Council (NSTC) Committee on STEM Education (CoSTEM) coordinates Federal programs and activities in support of STEM (science, technology, engineering and mathematics) education pursuant to the requirements of Sec. 101 of the America COMPETES (Creating Opportunities to Meaningfully Promote Excellence in Technology…
Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)
2013-08-29
educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology
77 FR 51790 - President's Council of Advisors on Science and Technology (PCAST)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... policy choices before the President. PCAST is co-chaired by Dr. John P. Holdren, Assistant to the President for Science and Technology, and Director, Office of Science and Technology Policy, Executive... update on its study of the Networking and Information Technology Research and Development (NITRD) program...
Semantic Web technologies for the big data in life sciences.
Wu, Hongyan; Yamaguchi, Atsuko
2014-08-01
The life sciences field is entering an era of big data with the breakthroughs of science and technology. More and more big data-related projects and activities are being performed in the world. Life sciences data generated by new technologies are continuing to grow in not only size but also variety and complexity, with great speed. To ensure that big data has a major influence in the life sciences, comprehensive data analysis across multiple data sources and even across disciplines is indispensable. The increasing volume of data and the heterogeneous, complex varieties of data are two principal issues mainly discussed in life science informatics. The ever-evolving next-generation Web, characterized as the Semantic Web, is an extension of the current Web, aiming to provide information for not only humans but also computers to semantically process large-scale data. The paper presents a survey of big data in life sciences, big data related projects and Semantic Web technologies. The paper introduces the main Semantic Web technologies and their current situation, and provides a detailed analysis of how Semantic Web technologies address the heterogeneous variety of life sciences big data. The paper helps to understand the role of Semantic Web technologies in the big data era and how they provide a promising solution for the big data in life sciences.
Wang, Hsiu-Yun; Stocker, Joel F; Fu, Daiwie
2012-02-01
Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS) perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian) approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society. Copyright © 2011. Published by Elsevier B.V.
32 CFR 2400.22 - Freedom of Information Act and Privacy Act requests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY... Act requests. The Office of Science and Technology Policy shall process requests for declassification...
32 CFR 2400.22 - Freedom of Information Act and Privacy Act requests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY... Act requests. The Office of Science and Technology Policy shall process requests for declassification...
32 CFR 2400.22 - Freedom of Information Act and Privacy Act requests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY... Act requests. The Office of Science and Technology Policy shall process requests for declassification...
32 CFR 2400.22 - Freedom of Information Act and Privacy Act requests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY... Act requests. The Office of Science and Technology Policy shall process requests for declassification...
32 CFR 2400.22 - Freedom of Information Act and Privacy Act requests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY... Act requests. The Office of Science and Technology Policy shall process requests for declassification...
Protein folding: the optically induced electronic excitations model
NASA Astrophysics Data System (ADS)
Jeknić-Dugić, J.
2009-07-01
The large-molecules conformational transitions problem (the 'protein folding problem') is an open issue of vivid current science research work of fundamental importance for a number of modern science disciplines as well as for nanotechnology. Here, we elaborate the recently proposed quantum-decoherence-based approach to the issue. First, we emphasize a need for detecting the elementary quantum mechanical processes (whose combinations may give a proper description of the realistic experimental situations) and then we design such a model. As distinct from the standard approach that deals with the conformation system, we investigate the optically induced transitions in the molecule electrons system that, in effect, may give rise to a conformation change in the molecule. Our conclusion is that such a model may describe the comparatively slow conformational transitions.
ERIC Educational Resources Information Center
Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.
2015-01-01
While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional…
Meeting the Technology Portion of the Science and Technology Goal of Quality Education.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.
One of the goals of quality education in Pennsylvania is to help every student acquire knowledge, understanding, and appreciation of science and technology. This publication, which focuses on the technology component of this goal, is an initial effort by a team of scientists and science educators to define technology as it should be presented in…
NASA Astrophysics Data System (ADS)
Chen, Jie; Huang, Pu-Man; Han, Xiao-Biao; Pan, Zheng-Zhou; Zhong, Chang-Ming; Liang, Jie-Zhi; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun
2017-06-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 61574173), the National Key Research and Development Program, China (Grant No. 2016YFB0400105), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the International Science and Technology Collaboration Program of Guangzhou City, China (Grant No. 2016201604030055), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), Guangdong Provincial Natural Science Foundation, China (Grant No. 2015A030312011), the Science & Technology Plan of Guangdong Province, China (Grant Nos. 2015B090903062, 2015B010132007, and 2015B010129010), the Science and Technology Plan of Guangzhou, China (Grant No. 201508010048), the Science and Technology Plan of Foshan, China (Grant No. 201603130003), Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505009), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17), the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University (Grant No. 20167612042080001).
ERIC Educational Resources Information Center
Brown, Tom; Rushton, Greg; Bencomo, Marie
2008-01-01
As part of the SMATHematics Project: The Wonder of Science, The Power of Mathematics--a collaborative partnership between Kennesaw State University and two local school districts, fifth graders had the opportunity to puzzle out chemical formulas of propane, methanol, and other important molecules. In addition, they explored properties that…
Science Student Teachers and Educational Technology: Experience, Intentions, and Value
ERIC Educational Resources Information Center
Efe, Rifat
2011-01-01
The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…
Framing Risk: Audience and Reader Factors.
ERIC Educational Resources Information Center
Hornig, Susanna
1992-01-01
Finds that lay readers respond to the risk implicit in news stories involving science and technology along four factors: (1) the proposition that science and technology are expensive and risky; (2) the idea that science and technology can have negative effects; (3) concerns associated with control and dependency; and (4) fear that science and…
ERIC Educational Resources Information Center
Jimoyiannis, Athanassios
2010-01-01
This paper reports on the design and the implementation of the Technological Pedagogical Science Knowledge (TPASK), a new model for science teachers professional development built on an integrated framework determined by the Technological Pedagogical Content Knowledge (TPACK) model and the authentic learning approach. The TPASK curriculum…
ERIC Educational Resources Information Center
Kulo, Violet; Bodzin, Alec
2013-01-01
Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Partially Closed Meeting of the President's Council of... is tentatively scheduled to hear presentations on space policy and science, technology, [[Page 35852... forming policy that works for the American people. PCAST is administered by the Office of Science and...
Science Education in Asia and the Pacific.
ERIC Educational Resources Information Center
Cahill, Bruce, Ed.
1984-01-01
This bulletin presents reports on science and technology education in the countries of the Asia and Pacific region. The first section is composed of an introduction which defines science and technology and how it is dealt with both within and outside the formal education system. It also summarizes the highlights of science and technology education…
Unified View of Science and Technology for Education: Technoscience and Technoscience Education
ERIC Educational Resources Information Center
Tala, Suvi
2009-01-01
Science and technology education, both as distinct and integrated subjects, relies on a traditional conception of science and technology as quite different and separated enterprises. A closer look at the scientific progress, however, reveals the traditional view as being one-sided. This study scrutinises the unification of science and technology…
The Reconstruction and Analysis of Gene Regulatory Networks.
Zheng, Guangyong; Huang, Tao
2018-01-01
In post-genomic era, an important task is to explore the function of individual biological molecules (i.e., gene, noncoding RNA, protein, metabolite) and their organization in living cells. For this end, gene regulatory networks (GRNs) are constructed to show relationship between biological molecules, in which the vertices of network denote biological molecules and the edges of network present connection between nodes (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). Biologists can understand not only the function of biological molecules but also the organization of components of living cells through interpreting the GRNs, since a gene regulatory network is a comprehensively physiological map of living cells and reflects influence of genetic and epigenetic factors (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). In this paper, we will review the inference methods of GRN reconstruction and analysis approaches of network structure. As a powerful tool for studying complex diseases and biological processes, the applications of the network method in pathway analysis and disease gene identification will be introduced.
Organic synthesis toward small-molecule probes and drugs
Schreiber, Stuart L.
2011-01-01
“Organic synthesis” is a compound-creating activity often focused on biologically active small molecules. This special issue of PNAS explores innovations and trends in the field that are enabling the synthesis of new types of small-molecule probes and drugs. This perspective article frames the research described in the special issue but also explores how these modern capabilities can both foster a new and more extensive view of basic research in the academy and promote the linkage of life-science research to the discovery of novel types of small-molecule therapeutics [Schreiber SL (2009) Chem Bio Chem 10:26–29]. This new view of basic research aims to bridge the chasm between basic scientific discoveries in life sciences and new drugs that treat the root cause of human disease—recently referred to as the “valley of death” for drug discovery. This perspective article describes new roles that modern organic chemistry will need to play in overcoming this challenge. PMID:21464328
Atoms and Molecules: Do They Have a Place in Primary Science?
ERIC Educational Resources Information Center
Lee, Kam-Wah Lucille; Tan, Swee-Ngin
2004-01-01
In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... National Institutes of Health (NIH) Office of Biotechnology Activities, Office of Science Policy (NIH/OBA... in the life sciences, such as directed molecular evolution and viral reverse genetics, has the... synthetic biology), and (2) a recommendation from the National Science Advisory Board for Biosecurity (NSABB...
Excited Negative Ions and Molecules and Negative Ion Production
1992-01-01
theoretically to have negative electron affinities, analogous to the rare gases. Then, Froese Fischer et al.I found theoretically that Ca- exists...AD-A247 017 Final Report - January 1992 EXCITED NEGATIVE IONS AND MOLECULES AND NEGATIVE ION PRODUCTION OTIC James R. Peterson, Senior Staff...Vice President 92-05594Physical Sciences Division1111111111II fuii 1111 ii 92 3 ’ Final Report . January 1992 EXCITED NEGATIVE IONS AND MOLECULES AND
Magnetoassociation of KRb Feshbach molecules
NASA Astrophysics Data System (ADS)
Cumby, Tyler; Perreault, John; Shewmon, Ruth; Jin, Deborah
2010-03-01
I will discuss experiments in which we study the creation of ^40K^87Rb Feshbach molecules via magnetoassociation. We measure the molecule number as a function of the magnetic-field sweep rate through the interspecies Feshbach resonance and explore the dependence of association on the initial atom gas conditions. This study of the Feshbach molecule creation process may be relevant to the production of ultracold polar molecules, where magnetoassociated Feshbach molecules can be a crucial first step [1].[4pt] [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science, 2008, 322, 231- 235.
Magnetoassociation of KRb Feshbach molecules
NASA Astrophysics Data System (ADS)
Cumby, Tyler; Perreault, John; Shewmon, Ruth; Jin, Deborah
2010-03-01
I will discuss experiments in which we study the creation of ^40K^87Rb Feshbach molecules via magnetoassociation. We measure the molecule number as a function of the magnetic-field sweep rate through the interspecies Feshbach resonance and explore the dependence of association on the initial atom gas conditions. This study of the Feshbach molecule creation process may be relevant to the production of ultracold polar molecules, where magnetoassociated Feshbach molecules can be a crucial first step [1].[4pt] [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science, 2008, 322, 231-235.
[Industry of traditional Chinese patent medicine science and technology development and review].
Lu, Jianwei; Wang, Fang; Yan, Dongmei; Luo, Yun; Yang, Ming
2012-01-01
"Fifteen" since, our country Chinese traditional medicine industry science and technology has made remarkable achievements. In this paper, the development of science and technology policy, Chinese medicine industry, platform construction and other aspects were analyzed, showing 10 years of Chinese traditional medicine industry development of science and technology innovation achievement and development, and on the current development of traditional Chinese medicine industry facing the main tasks and guarantee measures are analyzed.
ERIC Educational Resources Information Center
Töman, Ögr. Gör. Ufuk; Ergen, Yusuf
2014-01-01
Today's World is in period of rapid development of science and technology. There is science and technology education that not based on rote, practical on the basis of development in science and technology. Misconceptions are a major obstacle in order to take the desired efficiency. Because concepts that learned wrong obstacle attainment of right…
ERIC Educational Resources Information Center
US House of Representatives, 2010
2010-01-01
The America COMPETES (Creating Opportunities to Meaningfully Promote Excellence in Technology, Education, and Science) Reauthorization Act of 2010 documented here is divided into the following titles: (1) Office of Science and Technology Policy (Coordination of Federal STEM [science, technology, engineering, and mathematics] education;…
The beauty of chemistry in the words of writers and in the hands of scientists.
Venturi, Margherita; Marchi, Enrico; Balzani, Vincenzo
2012-01-01
Chemistry is a central science because all the processes that sustain life are based on chemical reactions, and all things that we use in everyday life are natural or artificial chemical compounds. Chemistry is also a fantastic world populated by an unbelievable number of nanometric objects called molecules, the smallest entities that have distinct shapes, sizes, and properties. Molecules are the words of matter. Indeed, most of the other sciences have been permeated by the concepts of chemistry and the language of molecules. Like words, molecules contain specific pieces of information that are revealed when they interact with one another or when they are stimulated by photons or electrons. In the hands of chemists, molecules, particularly when they are suitably combined or assembled to create supramolecular systems, can play a variety of functions, even more complex and more clever than those invented by nature. The wonderful world of chemistry has inspired scientists not only to prepare new molecules or investigate new chemical processes, but also to create masterpieces. Some nice stories based on chemical concepts (1) show that there cannot be borders on the Earth, (2) underline that there is a tight connection among all forms of matter, and (3) emphasize the irreplaceable role of sunlight.
In Brief: Funding authorized for U.S. science and technology education
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2007-08-01
The ``America Creating Opportunities to Meaningfully Promote Excellence in Technology, Education, and Science Act,'' a bill that authorizes $33.6 billion for science, technology, engineering, and math education, was signed into law by U.S President George W. Bush on 9 August. The bill, sponsored by the U.S. House Science and Technology Committee, will distribute these funds to programs supported by the federal government over the next three fiscal years. Aimed at strengthening teacher preparedness in primary and secondary schools, equipping high school students for technologically oriented jobs, and enhancing higher-level academic research programs, the bill sets the budgets at the National Institute of Standards and Technology, the National Science Foundation, and the Department of Energy on a path toward doubling within the next decade. For more information, see http://science.house.gov/legislation/leg_highlights_detail.aspx?NewsID=1938.
NASA Astrophysics Data System (ADS)
Qiong, Wu; Yali, Wang
2018-05-01
With the proposal of the "Belt and Road Initiatives for Science and Technology Innovation" in May 2017, science and technology resources show great value in many areas along the Belt and Road. It is necessary to correctly describe the status and analyze utilization efficiency of science and technology resources in a region, then scientific suggestions for improvement can be put forward.This article choose Guangdong province and Jiangsu province as comparative objects,which are important areas along the Belt and Road.After collecting data from 2002 to 2013, this paper analyze the efficiency of input and output in sci-tech in these two provinces by using Data Envelopment Analysis. Problems in utilization of science and technology resources and suggestions are put forward in this paper. This article aims to offer great reference for improving the utilization of science and technology resources along the Belt and Road.
Nanocrystals Technology for Pharmaceutical Science.
Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng
2018-05-17
Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skidmore, Cary Bradford; Preston, Daniel N.
These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.
NASA Technical Reports Server (NTRS)
2004-01-01
Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.
Development and implications of technology in reform-based physics laboratories
NASA Astrophysics Data System (ADS)
Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung
2012-12-01
Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.
Johnson Space Center Research and Technology 1997 Annual Report
NASA Technical Reports Server (NTRS)
1998-01-01
This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.
1996 Laboratory directed research and development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.
Once a physicist: Lydia Harriss
NASA Astrophysics Data System (ADS)
2018-01-01
Lydia Harriss is head of physical sciences at the UK's Parliamentary Office of Science and Technology, which provides independent advice on science, technology and social science topics to MPs and peers.
METABOLOMICS IN MEDICAL SCIENCES--TRENDS, CHALLENGES AND PERSPECTIVES.
Klupczyńska, Agnieszka; Dereziński, Paweł; Kokot, Zenon J
2015-01-01
Metabolomics is the latest of the "omic" technologies that involves comprehensive analysis of small molecule metabolites of an organism or a specific biological sample. Metabolomics provides an insight into the cell status and describes an actual health condition of organisms. Analysis of metabolome offers a unique opportunity to study the influence of genetic variation, disease, applied treatment or diet on endogenous metabolic state of organisms. There are many areas that might benefit from metabolomic research. In the article some applications of this novel "omic" technology in the field of medical sciences are presented. One of the most popular aims of metabolomic studies is biomarker discovery. Despite using the state-of-art analytical techniques along with advanced bioinformatic tools, metabolomic experiments encounter numerous difficulties and pitfalls. Challenges that researchers in the field of analysis of metabolome have to face include i.a., technical limitations, bioinformatic challenges and integration with other "omic" sciences. One of the grand challenges for studies in the field of metabolomics is to tackle the problem of data analysis, which is probably the most time consuming stage of metabolomic workflow and requires close collaboration between analysts, clinicians and experts in chemometric analysis. Implementation of metabolomics into clinical practice will be dependent on establishment of standardized protocols in analytical performance and data analysis and development of fit-for-purpose biomarker method validation. Metabolomics allows to achieve a sophisticated level of information about biological systems and opens up new perspectives in many fields of medicine, especially in oncology. Apart from its extensive cognitive significance, metabolomics manifests also a practical importance as it may lead to design of new non-invasive, sensitive and specific diagnostic techniques and development of new therapies.
Evaluating experimental molecular physics studies of radiation damage in DNA*
NASA Astrophysics Data System (ADS)
Śmiałek, Małgorzata A.
2016-11-01
The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.
Fan, Shi-Qi; Li, Sen; Liu, Jin-Ling; Yang, Jiao; Hu, Chao; Zhu, Jun-Ping; Xiao, Xiao-Qin; Liu, Wen-Long; He, Fu-Yuan
2017-01-01
The molecular connectivity index was adopted to explore the characteristics of supramolecular imprinting template of herbs distributed to liver meridian, in order to provide scientific basis for traditional Chinese medicines(TCMs) distributed to liver meridian. In this paper, with "12th five-year plan" national planning textbooks Science of Traditional Chinese Medicine and Chemistry of Traditional Chinese Medicine as the blueprint, literatures and TCMSP sub-databases in TCM pharmacology of northwest science and technology university of agriculture and forestry were retrieved to collect and summarize active constituents of TCM distributed to liver meridian, and calculate the molecular connectivity index. The average molecular connectivity index of ingredients distributed to liver meridian was 9.47, which was close to flavonoid glycosides' (9.17±2.11) and terpenes (9.30±3.62). Therefore, it is inferred that template molecule of liver meridian is similar to physicochemical property of flavonoid glycosides and terpenes, which could be best matched with imprinting template of liver meridian. Copyright© by the Chinese Pharmaceutical Association.
Primary School Students' Views about Science, Technology and Engineering
ERIC Educational Resources Information Center
Pekmez, Esin
2018-01-01
Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…
ERIC Educational Resources Information Center
Scarborough, Jule Dee
2004-01-01
This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…
ERIC Educational Resources Information Center
Leddy, Mark H.
2010-01-01
Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…
Examining iPod Use by Texas Agricultural Science and Technology Teachers
ERIC Educational Resources Information Center
Murphrey, Theresa Pesl; Miller, Kimberly A.; Roberts, T. Grady
2009-01-01
The purpose of this study was to establish baseline data regarding the adoption of iPods and similar technologies by agricultural science and technology teachers. The population consisted of all agricultural science and technology teachers in Texas. A sample of 310 was randomly drawn from the population. Study findings reveal that while…
ERIC Educational Resources Information Center
Van Eijck, Michiel; Claxton, Nicholas Xumthoult
2009-01-01
Educators repeatedly underscore the intimate relationship between science and technology. This is problematic because technology, far from being "applied science," presupposes a unique epistemology (techno-epistemology). A focus on the role of science in technology overshadows this unique way of knowing and hence limits technology…
Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.
2010-01-01
We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.
Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.
2011-01-01
We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.
Stereodynamics of the reactions: F + H2/HD/HT→FH + H/D/T
NASA Astrophysics Data System (ADS)
Chi, Xiao-Lin; Zhao, Jin-Feng; Zhang, Yong-Jia; Ma, Feng-Cai; Li, Yong-Qing
2015-05-01
Among many kinds of ways to study the properties of atom and molecule collision, the quasi-classical trajectory (QCT) method is an effective one to investigate the molecular reaction dynamics. QCT calculations have been carried out to investigate the stereodynamics of the reactions F + H2/HD/HT→FH + H/D/T, which proceed on the lowest-lying electronic states of the FH2 system based on the potential energy surface (PES) of the 12A’ FH2 ground state. Although the QCT method cannot describe all quantum effects in the process of the reaction, it has unique advantages when facing a three-atoms system or complicated polyatomic systems. Differential cross sections (DCSs) and three angle distribution functions P(θr), P(ϕr), P(θr, ϕr) on the PES at the collision of 2.74 kcal/mol have been investigated. The isotope effect becomes more obvious with the reagent molecule H2 turning into HD and HT. P(θr, ϕr), as the joint probability density function of both polar angles θr and ϕr, can reflect the properties of three-dimensional dynamic more intuitively. Project supported by the National Natural Science Foundation of China (Grant No. 11474141), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Grant No. 2014-1685), the Scientific Research Foundation for the Doctor of Liaoning University, the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil, and the China Postdoctoral Science Foundation (Grant No. 2014M550158).
1992-06-25
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs and provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In this photograph, astronaut Carl Meade is reviewing the manual to activate the Generic Bioprocessing Apparatus (GBA) inside the Spacelab module. The GBA for the USML-1 mission was a multipurpose facility that could help us answer important questions about the relationship between gravity and biology. This unique facility allowed scientists to study biological processes in samples ranging from molecules to small organisms. For example, scientists would examine how collagen, a protein substance found in cornective tissue, bones, and cartilage, forms fibers. In microgravity, it might be possible to alter collagen fiber assembly so that this material could be used more effectively as artificial skin, blood vessels, and other parts of the body. The USML-1 was managed by the Marshall Space Flight Center and waslaunched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.
NASA Technical Reports Server (NTRS)
1992-01-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs and provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In this photograph, astronaut Carl Meade is reviewing the manual to activate the Generic Bioprocessing Apparatus (GBA) inside the Spacelab module. The GBA for the USML-1 mission was a multipurpose facility that could help us answer important questions about the relationship between gravity and biology. This unique facility allowed scientists to study biological processes in samples ranging from molecules to small organisms. For example, scientists would examine how collagen, a protein substance found in cornective tissue, bones, and cartilage, forms fibers. In microgravity, it might be possible to alter collagen fiber assembly so that this material could be used more effectively as artificial skin, blood vessels, and other parts of the body. The USML-1 was managed by the Marshall Space Flight Center and waslaunched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.
First-principles investigations of proton generation in α-quartz
NASA Astrophysics Data System (ADS)
Yue, Yunliang; Song, Yu; Zuo, Xu
2018-03-01
Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-principles calculations have been applied to explore the defects and their reactions associated with the proton release in α-quartz, the well-known crystalline isomer of amorphous silica. When a high concentration of molecular hydrogen (H2) is present, the proton generation can be enhanced by cracking the H2 molecules at the positively charged oxygen vacancies in dimer configuration. If the concentration of molecular hydrogen is low, the proton generation mainly depends on the proton dissociation of the doubly-hydrogenated defects. In particular, a fully passivated {E}2^{\\prime } center can dissociate to release a proton barrierlessly by structure relaxation once trapping a hole. This research provides a microscopic insight into the proton release in silicon dioxide, the critical step associated with the interface-trap formation under radiation in microelectronic devices. Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105), CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501), the National Natural Science Foundation China (Grant No. NSFC 11404300), and the National Basic Research Program of China (Grant No. 2011CB606405).
Ab Initio ONIOM-Molecular Dynamics (MD) Study on the Deamination Reaction by Cytidine Deaminase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako
2007-08-23
We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket ofmore » the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determing step is the release of the NH3 molecule. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.« less
ERIC Educational Resources Information Center
National Academy of Sciences, Washington, DC.
In response to the President's Office of Science and Technology Policy request to identify promising areas for U.S. research investment in science and technology, this report contains briefings by outstanding researchers in several fields of science. This volume is the fifth in a series of briefings which are used to anticipate important new…
ERIC Educational Resources Information Center
Robinson, Michael; Tibanyendera, Basil; Seltzer-Kelly, Debbie
2007-01-01
This article reports the effects of a science, technology, and society (STS) teaching approach on the knowledge and attitudes of preservice science and mathematics teachers in Uganda toward global science and technology-based problems and/or threats. The responses of a baseline or control group (N = 50) and an experimental group (N = 50) to five…
NASA Astrophysics Data System (ADS)
Mishima, Kenji; Yamashita, Koichi
2011-03-01
We theoretically and numerically investigated a new type of analytically solvable laser-driven systems inspired by electron-injection dynamics in dye-sensitized solar cells. The simple analytical expressions were found to be useful for understanding the difference between dye excitation and direct photo-injection occurring between dye molecule and semiconductor nanoparticles. More importantly, we propose a method for discriminating experimentally dye excitation and direct photo-injection by using time-dependent fluorescence. We found that dye excitation shows no significant quantum beat whereas the direct photo-injection shows a significant quantum beat. This work was supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) ``Development of Organic Photovoltaics toward a Low-Carbon Society,'' Cabinet Office, Japan.
Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szanyi, János; Kwak, Ja Hun
2015-09-01
In situ transmission infrared spectroscopy was used to investigate the photo-oxidation of acetone on a commercial, oxidized TiO2 (P25) powder catalyst under UV irradiation at ambient temperature, in the absence and presence of gas phase O2. The photochemistry of a number of organic molecules (1-butanone, methanol and acetic acid,) under the same conditions was also studied in order to identify reaction intermediates and products formed in the photo-oxidation of acetone. Under anaerobic conditions (in the absence of gas phase oxygen) limited extent of photo-oxidation of acetone took place on the oxidized TiO2 sample. In the presence of O2 in themore » gas phase, however, acetone was completely converted to acetates and formates, and ultimately CO2. The initial step in the sequence of photo-induced reactions is the ejection of a methyl radical, resulting in the formation of surface acetates (from the acetyl group) and formates (from the methyl radicals). Acetate ions are also converted to formates, that, in turn, photo-oxidized to CO2. Under the experimental conditions applied the accumulation of carbonates and bicarbonates were observed on the TiO2 surface as the photo-oxidation of acetone proceeded (this was also observed during the course of photo-oxidation of all the other organics studied here). When the initial radical ejection step produced hydrocarbons containing more than one C atoms (as in the case in 2-butanone and mesytil oxide), the formation of aldehydes on the catalyst surface was also observed as a result of secondary reactions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. JHK also acknowledges the support of this work by the 2014 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). The authors thank M.A. Henderson for the fruitful discussions on the photo-oxidation of organic molecules on TiO2.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.44 Custodians...
32 CFR 2400.40 - Responsibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.40 Responsibility...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.44 Custodians...
32 CFR 2400.40 - Responsibility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.40 Responsibility...
32 CFR 2400.40 - Responsibility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.40 Responsibility...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.44 Custodians...
32 CFR 2400.40 - Responsibility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.40 Responsibility...
32 CFR 2400.40 - Responsibility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.40 Responsibility...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.44 Custodians...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.44 Custodians...
The President’s Office of Science and Technology Policy: Issues for Congress
2008-11-10
www.ostp.gov/galleries/default-file/OSTP%20org%20charts%2010-15-08.pdf]. This report will provide an overview of the history of science and technology...Greenwood Press, 1997). 6 Jeffrey K. Stine, A History of Science Policy in the United States, 1940-1985, Report for the House Committee on Science and...Jeffrey K. Stine, A History of Science Policy in the United States, 1940-1985, Report for the House Committee on Science and Technology Task Force on
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.
This document contains prepared remarks and testimony of the hearings before the subcommittee on science, research and technology regarding the oversight of the National Science Foundation (NSF) particularly the status of science education in the United States. The document includes the testimony and prepared statements of: (1) Hon. Sherwood…
2013-04-22
Director of Strategic Communications and Senior Science and Technology Policy Analyst, Office of Science and Technology Policy, Executive Office of the President, Rick Weiss, left, “Big Bang Theory” co-creator Bill Prady, center, and NASA Mars Curiosity Landing mission controller, Bobak "Mohawk Guy" Ferdowsi talk during the White House Science Fair held at the White House, April 22, 2013. The science fair celebrated student winners of a broad range of science, technology, engineering and math (STEM) competitions from across the country. Photo Credit: (NASA/Bill Ingalls)
The National Space Science and Technology Center (NSSTC)
NASA Technical Reports Server (NTRS)
2003-01-01
The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.
The National Space Science and Technology Center (NSSTC)
NASA Technical Reports Server (NTRS)
2002-01-01
The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.
Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los Laboratory Delivering science and technology to protect our nation and promote world stability Science &
Turkish Pre-Service Science Teachers' Views on Science-Technology-Society Issues
ERIC Educational Resources Information Center
Yalvac, Bugrahan; Tekkaya, Ceren; Cakiroglu, Jale; Kahyaoglu, Elvan
2007-01-01
The international science education community recognises the role of pre-service science teachers' views about the interdependence of Science, Technology, and Society (STS) in achieving scientific literacy for all. To this end, pre-service science teachers' STS views signal the strengths and the weaknesses of science education reform movements.…
Science & Technology: A New Alliance.
ERIC Educational Resources Information Center
Lux, Donald G.
Understandings and cooperation must be improved between researchers in pure science and applied science, and in this case, industrial arts. Technology has crept into science but is seldom an organized part of the science curriculum. Few science teachers have contact with engineers or technologists, while industrial arts teachers typically have…
IN MEMORIAM In memoriam of Vladilen Letokhov (1939-2009)
NASA Astrophysics Data System (ADS)
Balykin, Victor
2011-01-01
On 21 March 2009 Professor Vladilen Letokhov passed away in Troitsk near Moscow. Letokhov was an outstanding scientist in laser physics and laser spectroscopy. He was born on 10 November 1939 in the small Siberian town of Taishet, not far from Lake Baikal. After graduating from the Moscow Institute of Physics and Technology (MIPT) in 1963, he attended the Physical Institute of the USSR Academy of Sciences. He did his postgraduate studies under the supervision of Nobel laureate Nicolay Basov. In 1969 he defended his PhD thesis on the theory of laser pulse generation and amplification, and a year later he received a second doctor of science degree in quantum radiophysics. In 1970 Vladilen went to the new Institute of Spectroscopy at the USSR Academy of Sciences in Troitsk. He became the deputy director for research and organized the department of laser spectroscopy, which he headed until his last days. Letokhov was also a faculty member at the MIPT, where he served as a professor of physics from 1972 to his death and as head of the chair of quantum optics from 1986 to 1998. Letokhov's scientific interests included various areas of laser physics, spectroscopy, chemistry, and biomedicine. His most important contributions, however, were in the field of laser spectroscopy. He was the first to realize selective detection of atoms and molecules by multiphoton resonant ionization, which made it possible to develop methods of ultrasensitive analysis. To him belonged the discovery of nonresonance feedback in random lasers. Letokhov was also among the first to achieve laser spectroscopy with sub-wavelength spatial resolution. With his collaborators, he suggested and developed methods of laser control of atomic motion, resulting in the creation of atom traps based on gradient forces. His group carried out the first experiments on cooling, collimation, and reflection of atom beams by laser radiation. Letokhov made decisive contributions to the development of methods of selective laser chemistry, including isotope-selective multiphoton dissociation of molecules by IR laser radiation and vibrationally mediated photochemistry. He developed several effective schemes of laser isotope separation and the first commercial plant for laser isotope separation was created in 1998. Letokhov and his coworkers performed groundbreaking experiments in laser mass spectroscopy of organic molecules, and they also developed methods of picosecond and femtosecond nonlinear laser spectroscopy for the investigation and control of ultrafast processes in condensed media. In recent years Letokhov was engaged in research on laser effects in stellar atmospheres, which he predicted at the beginning of his career. The scientific results obtained by Letokhov and his coworkers were widely recognized. For his efforts, he was awarded the 1978 Lenin Prize, the 1998 Quantum Electronics Prize of the European Physical Society, the 2001 Rozhdestvensky Prize of the Russian Academy of Sciences, and the 2002 State Prize of the Russian Federation. For many years Letokhov was involved in the publishing of international scientific journals. Among the publications he edited were Laser Science and Technology and the Journal of Nonlinear Optics. He also served on the editorial boards of the Journal of Experimental and Theoretical Physics, Chemical Physics Letters, Applied Physics B, and others. He was an author on more than 850 research papers, including 15 monographs. Letokhov was a self-made man who, beginning in his school years, persistently used every possibility to broaden his educational and cultural knowledge. Although he was devoted to science and gave it considerable time, he also was deeply interested in literature, music, art, and history. He was an exceptionally interesting conversationalist and a man of great erudition. He is sadly missed by his many colleagues and friends. Letokhov photo
Anderson, Misti Ault; Giordano, James
2013-04-23
The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life. In light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine - as profession and practice - can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting architectonics of the global social milieu. We assert that current trends in science, technology, medicine, and global politics dictate that these skills will be necessary to responsibly guide ethically sound employment of science, technology, and engineering advancements in medicine so as to enable more competent and humanitarian practice within an increasingly pluralistic world culture.
Relative Sizes of Organic Molecules
NASA Technical Reports Server (NTRS)
2000-01-01
This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Science Indicators 1982. An Analysis of the State of U.S. Science, Engineering, and Technology.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. National Science Board.
This document analyzes science and technology activities in the United States and their relationships to the efforts of other major industrialized countries. Major areas addressed in the seven chapters are: (1) international science and technology (considering national investments in research and development--R&D, outputs of R&D,…
ERIC Educational Resources Information Center
Hickman, Faith M.; And Others
The Science/Technology/Society (STS) theme describes a contemporary trend in education which focuses on the teaching of issues such as air quality, nuclear power, land use, and water resources but justification for including STS in the high school core curriculum has a precedence based on historical connections among science, technology, and…
The Rationale for a Teaching Innovation about the Interrelationship between Science and Technology
ERIC Educational Resources Information Center
Hadjilouca, R.; Constantinou, C. P.; Papadouris, N.
2011-01-01
This paper refers to the development of a teaching innovation for the nature of science (NOS), for students aged 11-15, which specifically focuses on the interrelationship between science and technology. The development of the teaching and learning materials relied on inputs from three sources: the history and philosophy of science and technology,…
ERIC Educational Resources Information Center
Cetin, Ali; Balta, Nuri
2017-01-01
This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…
ERIC Educational Resources Information Center
Stevenson, Heidi J.
2014-01-01
The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…
ERIC Educational Resources Information Center
Canbazoglu Bilici, Sedef; Guzey, S. Selcen; Yamak, Havva
2016-01-01
Background: Technological pedagogical content knowledge (TPACK) is critical for effective teaching with technology. However, generally science teacher education programs do not help pre-service teachers develop TPACK. Purpose: The purpose of this study was to assess pre-service science teachers' TPACK over a semester-long Science Methods. Sample:…
Science & Technology Ideas for the Under 8s. SATIS.
ERIC Educational Resources Information Center
Stringer, John, Ed.
Ever since the publication of the age 8-14 materials by the Science and Technology in Society (SATIS) Project of the Association for Science Education (ASE), teachers have been looking for a similar resource for younger children. This book of units is a first step to answering that request. In the SATIS project, science and technology have always…
China Report, Science and Technology.
1987-05-19
EAST ASIA yellow NEAR EAST § SOUTH ASIA...blue LATIN AMERICA pink WEST EUROPE ivory AFRICA (SUB-SAHARA) tan SCIENCE $ TECHNOLOGY gray WORLDWIDES...SCIENCE S TECHNOLOGY series: CHINA (CST) CHINA/ENERGY (CEN) EUROPE f, LATIN AMERICA (ELS) USSR: COMPUTERS (UCC) USSR: EARTH SCIENCES (UES...common cold, fever, acute and chronic bronchitis, asthma associated with bronchitis, emphysema with coughing and asthma , lymphangiitis, pharyngitis
ERIC Educational Resources Information Center
Kumar, David Devraj
2017-01-01
This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…
Protein Knockdown Technology: Application of Ubiquitin Ligase to Cancer Therapy.
Ohoka, Nobumichi; Shibata, Norihito; Hattori, Takayuki; Naito, Mikihiko
2016-01-01
Selective degradation of pathogenic proteins by small molecules in cells is a novel approach for development of therapeutic agents against various diseases, including cancer. We and others have developed a protein knockdown technology with a series of hybrid small compounds, called SNIPERs (Specific and Nongenetic IAP-dependent Protein ERasers); and peptidic chimeric molecules, called PROTACs (proteolysis-targeting chimeric molecules), which induce selective degradation of target proteins via the ubiquitin-proteasome pathway. These compounds include two different ligands connected by a linker; one is a ligand for a ubiquitin ligase and the other is a ligand for the target protein, which are expected to crosslink these proteins in cells. Theoretically, any cytosolic protein can be targeted for degradation by this technology. To date, several SNIPERs and PROTACs against various oncogenic proteins have been developed, which specifically induce polyubiquitylation and proteasomal degradation of the oncogenic proteins, resulting in cell death, growth arrest, or impaired migration of cancer cells. Thus, this protein knockdown technology has a great potential for cancer therapy.
NASA Laser Remote Sensing Technology Needs for Earth Science in the Next Decade and Beyond
NASA Technical Reports Server (NTRS)
Trait, David M.; Neff, Jon M.; Valinia, Azita
2007-01-01
In late 2005 the NASA Earth Science Technology Office convened a working group to review decadal-term technology needs for Earth science active optical remote sensing objectives. The outcome from this effort is intended to guide future NASA investments in laser remote sensing technologies. This paper summarizes the working group findings and places them in context with the conclusions of the National Research Council assessment of Earth science needs, completed in 2007.
NASA Astrophysics Data System (ADS)
Moshammer, R.; Ullrich, J.
2009-07-01
Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is investigated bridging the gap from atoms and molecules to solids introduced to intense FEL radiation. Beyond the basic interest in many-particle dynamics in finite systems, these studies are of enormous practical relevance for upcoming research at X-ray FELs. Here, realizing the dream of coherent imaging of the structure of single bio-molecules in the gas phase with atomic resolution is critically dependent on ultra-fast dynamics initiated by the pulse. In other words, it is reduced to the simple question of whether the molecule is first imaged and then destroyed or vice versa! During the preparation of this Editorial, the first lasing at the Stanford Linac Coherent Light Source (LCLS) was achieved at a photon energy of about 8 keV - a further milestone in this exciting revolution in the science related to light.
NASA Astrophysics Data System (ADS)
Lee, Hyunju; Longhurst, Max; Campbell, Todd
2017-07-01
This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their applications in science inquiry pedagogy. Three self-reporting teacher instruments were used alongside their student achievement scores on the end-of-year state-science-test. The teacher self-reporting measures investigated technological literacy, ICT capabilities, and pedagogical beliefs about science inquiry pedagogy. Data were collected every year, and descriptive statistics, t-tests, and Pearson's correlations were used for analysis. We found teachers' technological skills and ICT capabilities increasing over time with significant gains each year. Additionally, teachers' pedagogical beliefs changed to become more science inquiry oriented over time; however, the gains were not significant until after the second year of TPD. Comparisons of teacher learning and belief measures with student achievement revealed that the students' performance was correlated to teachers' pedagogical beliefs about science inquiry, but not to their technological skills nor to their ICT capabilities. This research suggests that pedagogical considerations should be foregrounded in TPD and that this may require more longitudinal TPD to ensure that technology integration in science instruction is consequential to student learning.
NASA Astrophysics Data System (ADS)
Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Xu, Xu-Rong; Yuan, Guang-Cai; Li, Jing; Sun, Qin-Jun; Wang, Ying
2009-11-01
In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17 × 10-2 m2/(V · s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 °C for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00 × 10-2 cm2/(V · s).
Applications of Fluorogens with Rotor Structures in Solar Cells.
Ong, Kok-Haw; Liu, Bin
2017-05-29
Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.
7 CFR 90.2 - General terms defined.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the Science and Technology program of the Agricultural Marketing Service agency, or any officer or... be delegated, to act. Laboratories. Science and Technology laboratories performing the official analyses described in this subchapter. Program. The Science and Technology (S&T) program of the...
7 CFR 90.2 - General terms defined.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the Science and Technology program of the Agricultural Marketing Service agency, or any officer or... be delegated, to act. Laboratories. Science and Technology laboratories performing the official analyses described in this subchapter. Program. The Science and Technology (S&T) program of the...
7 CFR 90.2 - General terms defined.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the Science and Technology program of the Agricultural Marketing Service agency, or any officer or... be delegated, to act. Laboratories. Science and Technology laboratories performing the official analyses described in this subchapter. Program. The Science and Technology (S&T) program of the...
32 CFR 2400.42 - Security Officer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.42 Security...
32 CFR 2400.3 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM General Provisions § 2400.3 Applicability. This Regulation governs the Office of Science and Technology Policy...
32 CFR 2400.42 - Security Officer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.42 Security...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Safeguarding.... (c) The Director, Office of Science and Technology Policy may create special access programs to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Safeguarding.... (c) The Director, Office of Science and Technology Policy may create special access programs to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Safeguarding.... (c) The Director, Office of Science and Technology Policy may create special access programs to...
32 CFR 2400.3 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM General Provisions § 2400.3 Applicability. This Regulation governs the Office of Science and Technology Policy...
32 CFR 2400.3 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM General Provisions § 2400.3 Applicability. This Regulation governs the Office of Science and Technology Policy...
32 CFR 2400.3 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM General Provisions § 2400.3 Applicability. This Regulation governs the Office of Science and Technology Policy...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Safeguarding.... (c) The Director, Office of Science and Technology Policy may create special access programs to...
32 CFR 2400.42 - Security Officer.
Code of Federal Regulations, 2014 CFR
2014-07-01
... National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.42 Security...
32 CFR 2400.42 - Security Officer.
Code of Federal Regulations, 2013 CFR
2013-07-01
... National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.42 Security...
32 CFR 2400.3 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM General Provisions § 2400.3 Applicability. This Regulation governs the Office of Science and Technology Policy...
32 CFR 2400.42 - Security Officer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Office of Science and Technology Policy Information Security Program Management § 2400.42 Security...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Safeguarding.... (c) The Director, Office of Science and Technology Policy may create special access programs to...
Science and Technology in a Conserving Society.
ERIC Educational Resources Information Center
Press, Frank
1979-01-01
The science and technology advisor to the President of the United States presents the challenges facing Americans today in the fields of science and technology. The major topics focused on are people and development, agriculture, biomass and bioconversion, and regulation. (SA)
Receivers Gather Data for Climate, Weather Prediction
NASA Technical Reports Server (NTRS)
2012-01-01
Signals from global positioning system (GPS) satellites are now being used for more than just location and navigation information. By looking at the radio waves from GPS satellites, a technology developed at NASA s Jet Propulsion Laboratory (JPL) not only precisely calculates its position, but can also use a technique known as radio occultation to help scientists study the Earth s atmosphere and gravity field to improve weather forecasts, monitor climate change, and enhance space weather research. The University Corporation for Atmospheric Research (UCAR), a nonprofit group of universities in Boulder, Colorado, compares radio occultation to the appearance of a pencil when viewed though a glass of water. The water molecules change the path of visible light waves so that the pencil appears bent, just like molecules in the air bend GPS radio signals as they pass through (or are occulted by) the atmosphere. Through measurements of the amount of bending in the signals, scientists can construct detailed images of the ionosphere (the energetic upper part of the atmosphere) and also gather information about atmospheric density, pressure, temperature, and moisture. Once collected, this data can be input into weather forecasting and climate models for weather prediction and climate studies. Traditionally, such information is obtained through the use of weather balloons. In 1998, JPL started developing a new class of GPS space science receivers, called Black Jack, that could take precise measurements of how GPS signals are distorted or delayed along their way to the receiver. By 2006, the first demonstration of a GPS radio occultation constellation was launched through a collaboration among Taiwan s National Science Council and National Space Organization, the U.S. National Science Foundation, NASA, the National Oceanic and Atmospheric Administration (NOAA), and other Federal entities. Called the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), JPL was responsible for designing COSMIC s primary instrument - based on its revolutionary Black Jack receiver.
Science Teaching Orientations and Technology-Enhanced Tools for Student Learning
NASA Astrophysics Data System (ADS)
Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.
2013-10-01
This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced science instruction shaped by national standards documents. The research is focused on identifying teacher orientations and use of technology-enhanced tools prior to or unaffected by PD. The primary data sources for this study are drawn from learning journals and classroom observations. Qualitative methods were used to analyze learning journals, while descriptive statistics were used from classroom observations to further explore and triangulate the emergent qualitative findings. Two teacher orientation teacher profiles were developed to reveal the emergent teacher orientation dimensions and technology-enhanced tool categories found: "more traditional teacher orientation profile" and "toward a reformed-based teacher orientation profile." Both profiles were founded on "knowledge of" beliefs about the goals and purposes for science education, while neither profile revealed sophisticated beliefs about the nature of science. The "traditional" profile revealed more teacher-centered beliefs about science teaching and learning, and the "towards reformed-based" profile revealed student-centered beliefs. Finally, only technology-enhanced tools supportive of collaborative construction of science knowledge were found connected to the "towards reformed-based" profile. This research is concluded with a proposed "reformed-based teacher orientation profile" as a future target for science teaching and learning with technology-enhanced tools in a science literacy framework.
6 CFR 25.6 - Procedures for designation of qualified anti-terrorism technologies.
Code of Federal Regulations, 2013 CFR
2013-01-01
....safetyact.gov and by mail upon request sent to: Directorate of Science and Technology, SAFETY Act/room 4320...://www.safetyact.gov and by mail by written request sent to: Directorate of Science and Technology....safetyact.gov and by mail upon request sent to: Directorate of Science and Technology, SAFETY Act/room 4320...
NASA Astrophysics Data System (ADS)
Primack, Joel
2016-03-01
For more than 40 years the APS has worked to improve governmental decision-making, mainly through the Congressional Science and Technology Fellowship program and through occasional studies of important science and technology issues. How productive have these been? How can the APS and other professional societies more effectively combat anti-science propaganda and help the public develop better-informed views about science and technology? How can individual scientists communicate scientific concepts in a more understandable and engaging way? How can we encourage young scientists and students to participate in creating a scientifically responsible future?
Basic Research Needs for Carbon Capture: Beyond 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alivisatos, Paul; Buchanan, Michelle
2010-03-04
This report is based on a SC/FE workshop on Carbon Capture: Beyond 2020, held March 4–5, 2010, to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The problem of thermodynamically efficient and scalable carbon capture stands as one of the greatest challenges for modern energy researchers. The vast majority of US and global energy use derives from fossil fuels, the combustion of which results in the emission of carbon dioxide into the atmosphere. These anthropogenic emissionsmore » are now altering the climate. Although many alternatives to combustion are being considered, the fact is that combustion will remain a principal component of the global energy system for decades to come. Today’s carbon capture technologies are expensive and cumbersome and energy intensive. If scientists could develop practical and cost-effective methods to capture carbon, those methods would at once alter the future of the largest industry in the world and provide a technical solution to one of the most vexing problems facing humanity. The carbon capture problem is a true grand challenge for today’s scientists. Postcombustion CO2 capture requires major new developments in disciplines spanning fundamental theoretical and experimental physical chemistry, materials design and synthesis, and chemical engineering. To start with, the CO2 molecule itself is thermodynamically stable and binding to it requires a distortion of the molecule away from its linear and symmetric arrangement. This binding of the gas molecule cannot be too strong, however; the sheer quantity of CO2 that must be captured ultimately dictates that the capture medium must be recycled over and over. Hence the CO2 once bound, must be released with relatively little energy input. Further, the CO2 must be rapidly and selectively pulled out of a mixture that contains many other gaseous components. The related processes of precombustion capture and oxycombustion pose similar challenges. It is this nexus of high-speed capture with high selectivity and minimal energy loss that makes this a true grand challenge problem, far beyond any of today’s artificial molecular manipulation technologies, and one whose solution will drive the advancement of molecular science to a new level of sophistication. We have only to look to nature, where such chemical separations are performed routinely, to imagine what may be achieved. The hemoglobin molecule transports oxygen in the blood rapidly and selectively and releases it with minimal energy penalty. Despite our improved understanding of how this biological system works, we have yet to engineer a molecular capture system that uses the fundamental cooperativity process that lies at the heart of the functionality of hemoglobin. While such biological examples provide inspiration, we also note that newly developed theoretical and computational capabilities; the synthesis of new molecules, materials, and membranes; and the remarkable advances in characterization techniques enabled by the Department of Energy’s measurement facilities all create a favorable environment for a major new basic research push to solve the carbon capture problem within the next decade. The Department of Energy has established a comprehensive strategy to meet the nation’s needs in the carbon capture arena. This framework has been developed following a series of workshops that have engaged all the critical stakeholder communities. The strategy that has emerged is based upon a tiered approach, with Fossil Energy taking the lead in a series of applied research programs that will test and extend our current systems. ARPA-E (Advanced Research Projects Agency–Energy) is supporting potential breakthroughs based upon innovative proposals to rapidly harness today’s technical capabilities in ways not previously considered. These needs and plans have been well summarized in the report from a recent workshop—Carbon Capture 2020, held in October 5 and 6, 2009—focused on near-term strategies for carbon capture improvements (http://www.netl.doe.gov/publications/ proceedings/09/CC2020/pdfs/Richards_Summary.pdf ). Yet the fact remains that when the carbon capture problem is looked at closely, we see today’s technologies fall far short of making carbon capture an economically viable process. This situation reinforces the need for a parallel, intensive use-inspired basic research effort to address the problem. This was the overwhelming conclusion of a recent workshop—Carbon Capture: Beyond 2020, held March 4 and 5, 2010—and is the subject of the present report. To prepare for the second workshop, an in-depth assessment of current technologies for carbon capture was conducted; the result of this study was a factual document, Technology and Applied R&D Needs for Carbon Capture: Beyond 2020. This document, which was prepared by experts in current carbon capture processes, also summarized the technological gaps or bottlenecks that limit currently available carbon capture technologies. The report considered the separation processes needed for all three CO2 emission reduction strategies—postcombustion, precombustion, and oxycombustion—and assessed three primary separation technologies based on liquid absorption, membranes, and solid adsorption. The workshop “Carbon Capture: Beyond 2020” convened approximately 80 attendees from universities, national laboratories, and industry to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The workshop began with a plenary session including speakers who summarized the extent of the carbon capture challenge, the various current approaches, and the limitations of these technologies. Workshop attendees were then given the charge to identify high-priority basic research directions that could provide revolutionary new concepts to form the basis for separation technologies in 2020 and beyond. The participants were divided into three major panels corresponding to different approaches for separating gases to reduce carbon emissions—liquid absorption, solid adsorption, and membrane separations. Two other panels were instructed to attend each of these three technology panels to assess crosscutting issues relevant to characterization and computation. At the end of the workshop, a final plenary session was convened to summarize the most critical research needs identified by the workshop attendees in each of the three major technical panels and from the two cross-cutting panels. The reports of the three technical panels included a set of high level Priority Research Directions meant to serve as inspiration to researchers in multiple disciplines—materials science, chemistry, biology, computational science, engineering, and others—to address the huge scientific challenges facing this nation and the world as we seek technologies for large-scale carbon capture beyond 2020. These Priority Research Directions were clustered around three main areas, all tightly coupled: Understand and control the dynamic atomic-level and molecular-level interactions of the targeted species with the separation media. Discover and design new materials that incorporate designed structures and functionalities tuned for optimum separation properties. Tailor capture/release processes with alternative driving forces, taking advantage of a new generation of materials. In each of the technical panels, the participants identified two major crosscutting research themes. The first was the development of new analytical tools that can characterize materials structure and molecular processes across broad spatial and temporal scales and under realistic conditions that mimic those encountered in actual separation processes. Such tools are needed to examine interfaces and thin films at the atomic and molecular levels, achieving an atomic/molecular-scale understanding of gas–host structures, kinetics, and dynamics, and understanding and control of nanoscale synthesis in multiple dimensions. A second major crosscutting theme was the development of new computational tools for theory, modeling, and simulation of separation processes. Computational techniques can be used to elucidate mechanisms responsible for observed separations, predict new desired features for advanced separations materials, and guide future experiments, thus complementing synthesis and characterization efforts. These two crosscut areas underscored the fact that the challenge for future carbon capture technologies will be met only with multidisciplinary teams of scientists and engineers. In addition, it was noted that success in this fundamental research area must be closely coupled with successful applied research to ensure the continuing assessment and maturation of new technologies as they undergo scale-up and deployment. Carbon capture is a very rich scientific problem, replete with opportunity for basic researchers to advance the frontiers of science as they engage on one of the most important technical challenges of our times. This workshop report outlines an ambitious agenda for addressing the very difficult problem of carbon capture by creating foundational new basic science. This new science will in turn pave the way for many additional advances across a broad range of scientific disciplines and technology sectors.« less
A new window on the cosmos: The Stratospheric Observatory for Infrared Astronomy (SOFIA)
NASA Astrophysics Data System (ADS)
Gehrz, R. D.; Becklin, E. E.; de Pater, I.; Lester, D. F.; Roellig, T. L.; Woodward, C. E.
2009-08-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German Project to develop and operate a gyrostabilized 2.5-m telescope in a Boeing 747-SP. This observatory will allow astronomical observations from 0.3 μm to sub-millimeter wavelengths at stratospheric altitudes as high as 45,000 ft where the atmosphere is not only cloud-free, but largely transparent at infrared wavelengths. The dynamics and chemistry of interstellar matter, and the details of embedded star formation will be key science goals. In addition, SOFIA's unique portability will enable large-telescope observations at sites required to observe transient phenomena and location specific events. SOFIA will offer the convenient accessibility of a ground-based telescope for servicing, maintenance, and regular technology upgrades, yet will also have many of the performance advantages of a space-based telescope. Initially, SOFIA will fly with nine first-generation focal plane instruments that include broad-band imagers, moderate resolution spectrographs that will resolve broad features from dust and large molecules, and high resolution spectrometers capable of studying the chemistry and detailed kinematics of molecular and atomic gas. First science flights will begin in 2010, leading to a full operations schedule of about 120 8-10 h flights per year by 2014. The next call for instrument development that can respond to scientifically exciting new technologies will be issued in 2010. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community with cutting edge focal plane technology. We summarize the operational characteristics of the first-generation instruments and give specific examples of the types of fundamental scientific studies these instruments are expected to make.
Technology assessment or technology harassment: The attacks on science and technology
NASA Technical Reports Server (NTRS)
Green, L., Jr.
1972-01-01
The manner in which technology is being assessed by various groups and individuals is discussed. Attacks on science and technology (specifically military uses and funding), and the disillusionment of the public with the lack of relevance of science to the public interest and with the infallible wisdom of scientists are described. The effects of the fear of environmental pollution are emphasized. It is concluded that the important issues of science, technology, and public policy will require a pluralistic definition of the public interest by open adversary proceedings. It is also felt that the danger is not that new technology will receive inadequate assessment for possible deleterious secondary effects, but that harassment by an overemotional political process may prevent its coming to fruition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence R. Sita
Ferrocene-based molecular components for nanoelectronics offer a number of distinct advantages relative to all carbon frameworks due to metal-centered molecular states that should be closer in energy to the Fermi levels of the metal electrodes in metal / molecule / metal heterojunctions. Given this, the overall goal of the project was to investigate the conduction physics of a variety of proposed ferrocene diode / transistor designs in order to address the fundamental question; can electron transport within nm-length scale structures be modulated in a controlled fashion? During the funded period, substantial progress towards achieving this goal was made by surmountingmore » a number of scientific and technical obstacles. More specifically, a concise and general synthetic route to several mono- and diferrocene dithiols and monothiols was achieved that now allows for the directed and controlled assembly of a variety of metal / molecule /metal test structures for the single molecule conductance measurements and the fabrication of self-assembled monolayers (SAMs) on Au(111) that are amenable to quantitative electrochemical characterization of electron-transfer rates. Most importantly, by using an electromigrated test structure, reproducible I/V data for one of the ferrocene dithiol molecules have been collected which exhibit surprisingly high conductance. Exceptional agreement of this result with theory serves to substantiate the original hypothesis that metal-centered states within a molecular bridge can indeed serve to establish higher conductance relative to all-organic molecular bridges. Overall, the successful demonstration of the ability of ferrocene-molecular frameworks to serve as exceptional molecular conductors will play an important role in the continued evolution in design of molecular components for nanoelectronic devices, which in turn, will have a positive impact on the science and potential technologies associated with these systems.« less
Beyond Our Boundaries: Research and Technology
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.
Science & Technology Review September 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duoss, Eric B.; Kotta, Paul R.; Meissner, Caryn N.
This is the September 2017 edition of the LLNL, Science and Technology Review. At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.