NASA Astrophysics Data System (ADS)
Ozawa, H.; Hirose, K.
2010-12-01
Element partitioning between molten iron and mantle minerals was investigated to 146 GPa by a combination of laser-heated diamond-anvil cell and analytical transmission electron microscope. The chemical compositions of co-existing quenched molten iron and (Mg,Fe)SiO3 perovskite/ferropericlase were determined quantitatively with energy-dispersive X-ray spectrometry and electron energy loss spectroscopy. The results demonstrate that the oxygen solubility in liquid iron co-existing with ferropericlase decreases with pressure to 38 GPa and, whereas the pressure effect is small at higher pressures. It was also revealed that the quenched liquid iron in contact with perovskite contained substantial amounts of oxygen and silicon at the core-mantle boundary (CMB) pressure. The chemical equilibrium between perovskite, ferropericlase, and molten iron at the P-T conditions of the CMB was calculated in Mg-Fe-Si-O system from these experimental results. Note that perovskite is a predominant phase instead of post-perovskite above 3500 K at the CMB pressure. We found that molten iron should include oxygen and silicon more than required to account for the core density deficit of below 10% when co-existing with both perovskite and ferropericlase at the CMB. This suggests that the bulk outer core liquid with <10% density deficit is not in direct contact with the mantle. Dissolutions of light elements from the mantle can produce a gravitationally stratified liquid layer at the topmost outer core, which can be responsible for the low-P wave velocity layer observed there. Such layer physically separates the mantle from the bulk outer core liquid, hindering the chemical reaction between them.
The thermal evolution of Mercury's Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurriën Sebastiaan; van Westrenen, Wim
2018-01-01
We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.
Iron-magnesium alloy in the Earth's Core
NASA Astrophysics Data System (ADS)
Dubrovinskaia, N.; Dubrovinsky, L.; Abrikosov, I.
2005-12-01
Composition of the Earth's outer core is a geochemical parameter crucial for understanding the evolution and current dynamics of our planet. Since it was recognized that the liquid metallic outer core is about 10% less dense than pure iron, different elements lighter than iron, including Si, S, O, C, and H, were proposed as major or at least significantly abundant in Earth's core. However, combination of experimental results with theoretical and geochemical considerations shows that it is unlikely that any one of these elements can account for the density deficit on its own. In series of experiments in a multianvil apparatus and in electrically- and laser-heated diamond anvil cells, we demonstrate that high pressure promotes solubility of magnesium in iron and at megabar pressure range more than 10 at% of Mg can dissolve in Fe. At pressures above 95 to 100 GPa, molten iron reacts with periclase MgO forming an iron-magnesium alloy and iron oxide. Our observations suggest that magnesium can be an important light element in Earth's outer core, but it cannot account for the seismologically determined density deficit on its own.
Liquid Iron Alloys with Hydrogen at Outer Core Conditions by First Principles
NASA Astrophysics Data System (ADS)
Umemoto, K.; Hirose, K.
2015-12-01
Since the density of the outer core deduced from seismic data is about 10% lower than that of pure iron at core pressures and temperatures (P-T), it is widely believed that the outer core includes one or more light elements. Although intensive experimental and theoretical studies have been performed so far, the light element in the core has not yet been identified. Comparison of the density and sound velocity of liquid iron alloys with observations, such as the PREM, is a promising way to determine the species and quantity of light alloying component(s) in the outer core. Here we report the results of a first-principles molecular dynamics study on liquid iron alloyed with hydrogen, one of candidates of the light elements. Hydrogen had been much less studied than other candidates. However, hydrogen has been known to reduce the melting temperature of Fe-H solid [1]. Furthermore, very recently, Nomura et al. argued that the outer core may include 24 at.% H in order to be molten under relatively low temperature (< 3600 K) [2]. Since then hydrogen has attracted strong interests. We clarify the effects of hydrogen on density and sound velocity of liquid iron alloys under outer core P-T conditions. It is shown that ~1 wt% hydrogen can reproduce PREM density and sound velocity simultaneously very well. In addition, we show the presence of hydrogen rather reduces Gruneisen parameters. It indicates that, if hydrogen exists in the outer core, temperature profile of the outer core could be changed considerably from one estimated so far. [1] Sakamaki, K., E. Takahashi, Y. Nakajima, Y. Nishihara, K. Funakoshi, T. Suzuki, and Y. Fukai, Phys. Earth Planet. Inter., 174, 192-201 (2009). [2] Nomura, R., K. Hirose, K. Uesugi, Y. Ohishi, A. Tsuchiyama, A. Miyake, and Y. Ueno, Science 31, 522-525 (2014).
Chemical evolution of the Earth: Equilibrium or disequilibrium process?
NASA Technical Reports Server (NTRS)
Sato, M.
1985-01-01
To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.
Electrorefining cell with parallel electrode/concentric cylinder cathode
Gay, Eddie C.; Miller, William E.; Laidler, James J.
1997-01-01
A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.
Electrorefining cell with parallel electrode/concentric cylinder cathode
Gay, E.C.; Miller, W.E.; Laidler, J.J.
1997-07-22
A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.
Chemical Convention in the Lunar Core from Melting Experiments on the Ironsulfur System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Liu, J.; Chen, B.
2012-03-26
By reanalyzing Apollo lunar seismograms using array-processing methods, a recent study suggests that the Moon has a solid inner core and a fluid outer core, much like the Earth. The volume fraction of the lunar inner core is 38%, compared with 4% for the Earth. The pressure at the Moon's core-mantle boundary is 4.8 GPa, and that at the ICB is 5.2 GPa. The partially molten state of the lunar core provides constraints on the thermal and chemical states of the Moon: The temperature at the inner core boundary (ICB) corresponds to the liquidus of the outer core composition, andmore » the mass fraction of the solid core allows us to infer the bulk composition of the core from an estimated thermal profile. Moreover, knowledge on the extent of core solidification can be used to evaluate the role of chemical convection in the origin of early lunar core dynamo. Sulfur is considered an antifreeze component in the lunar core. Here we investigate the melting behavior of the Fe-S system at the pressure conditions of the lunar core, using the multi-anvil apparatus and synchrotron and laboratory-based analytical methods. Our goal is to understand compositionally driven convection in the lunar core and assess its role in generating an internal magnetic field in the early history of the Moon.« less
NASA Astrophysics Data System (ADS)
Jing, Z.; Wang, Y.; Kono, Y.; Yu, T.; Sakamaki, T.; Park, C.; Rivers, M. L.; Sutton, S. R.; Shen, G.
2013-12-01
Geophysical observations based on lunar seismology and laser ranging strongly suggest that the Moon's iron core is partially molten. Similar to Earth and other terrestrial planets, light elements, such as sulfur, silicon, carbon, and oxygen, are likely present in the lunar core. Determining the light element concentration in the outer core is of vital importance to the understanding of the structure, dynamics, and chemical evolution of the Moon, as well as the enigmatic history of the lunar dynamo. Among the candidate elements, sulfur is the preferred major light element in the lunar outer due to its high abundance in the parent bodies of iron meteorites, its high solubility in liquid Fe at the lunar core pressure (~5 GPa), and its strong effects on reducing the density, velocity, and freezing temperature of the core. In this study, we conducted in-situ sound velocity measurements on liquid samples of four different compositions, including pure Fe, Fe-10wt%S, Fe-20wt%S, and Fe-27wt%S, at pressure and temperature conditions up to 8 GPa and 1973 K (encompassing the entire lunar depth range), using the Kawai-type multi-anvil device at the GSECARS beamline 13-ID-D and the Paris-Edinburgh cell at HPCAT beamline 16-BM-B. Our results show that the velocity of Fe-rich liquids increases upon compression, decreases with increasing sulfur content, and is nearly independent of temperature. Compared to the seismic velocity of the outer core, our velocity data constrain the sulfur content at 4×2 wt%, indicating a significantly denser (6.4×0.4 g/cm3) and hotter (1860×60 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model also suggests a top-down solidification scenario for the evolution of the lunar core. Such an 'iron snow' process may have been an important mechanism for the growth of the inner core.
Core-melt source reduction system
Forsberg, C.W.; Beahm, E.C.; Parker, G.W.
1995-04-25
A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.
Core-melt source reduction system
Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.
1995-01-01
A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.
Use of beam deflection to control an electron beam wire deposition process
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.
NASA Astrophysics Data System (ADS)
Righter, K.; Go, B. M.; Pando, K. A.; Danielson, L.; Ross, D. K.; Rahman, Z.; Keller, L. P.
2017-04-01
Multiple lines of geochemical and geophysical evidence suggest the Moon has a small metallic core, yet the composition of the core is poorly constrained. The physical state of the core (now or in the past) depends on detailed knowledge of its composition, and unfortunately, there is little available data on relevant multicomponent systems (i.e., Fe-Ni-S-C) at lunar interior conditions. In particular, there is a dearth of phase equilibrium data to elucidate whether a specific core composition could help to explain an early lunar geodynamo and magnetic field intensities, or current solid inner core/liquid outer core states. We utilize geochemical information to estimate the Ni, S and C contents of the lunar core, and then carry out phase equilibria experiments on several possible core compositions at the pressure and temperature conditions relevant to the lunar interior. The first composition is 0.5 wt% S and 0.375 wt% C, based on S and C contents of Apollo glasses. A second composition contains 1 wt% each of S and C, and assumes that the lunar mantle experienced degassing of up to 50% of its S and C. Finally a third composition contains C as the dominant light element. Phase equilibrium experiments were completed at 1, 3 and 5 GPa, using piston cylinder and multi-anvil techniques. The first composition has a liquidus near 1550 °C and solidus near 1250 °C. The second composition has a narrower liquidus and solidus temperatures of 1400 and 1270 °C, respectively, while the third composition is molten down to 1150 °C. As the composition crystallizes, the residual liquid becomes enriched in S and C, but S enrichment is greater due to the incorporation of C (but not S) into solid metallic FeNi. Comparison of these results to thermal models for the Moon allow an evaluation of which composition is consistent with the geophysical data of an early dynamo and a currently solid inner and liquid outer core. Composition 1 has a high enough liquidus to start crystallizing early in lunar history (4.3 Ga), consistent with the possible core dynamo initiated by crystallization of a solid inner core. Composition 1 also stays partially molten throughout lunar history, and could easily explain the seismic data. Composition 2, on the other hand, can satisfy one or the other set of geophysical data, but not both and thus seems like a poor candidate for a lunar core composition. Composition 3 remains molten to temperatures that are lower than current estimates for the lunar core, thus ruling out the possibility of a C-rich (and S-poor) lunar core. The S- and C-poor core composition studied here (composition 1) is consistent with all available geochemical and geophysical data and provides a simple heat source and mechanism for a lunar core dynamo (core crystallization) that would obviate the need for other primary mechanisms such as impacts, core-mantle coupling, or unusual thermal histories.
Sound velocity of Fe-S liquids at high pressure: Implications for the Moon's molten outer core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Zhicheng; Wang, Yanbin; Kono, Yoshio
2014-07-21
Sound velocities of Fe and Fe–S liquids were determined by combining the ultrasonic measurements and synchrotron X-ray techniques under high pressure–temperature conditions from 1 to 8 GPa and 1573 K to 1973 K. Four different liquid compositions were studied including Fe, Fe–10 wt% S, Fe–20 wt% S, and Fe–27 wt% S. Our data show that the velocity of Fe-rich liquids increases upon compression and decreases with increasing sulfur content, whereas temperature has negligible effect on the velocity of Fe–S liquids. The sound velocity data were combined with ambient-pressure densities to fit the Murnaghan equation of state (EOS). Compared to themore » lunar seismic model, our velocity data constrain the sulfur content at 4±3 wt%, indicating a significantly denser (6.5±0.5 g/cm 3) and hotter (1870-70+100 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model suggests a top–down solidification scenario for the evolution of the lunar core. Such “iron snow” process may have been an important mechanism for the growth of the inner core.« less
Electromagnetic valve for controlling the flow of molten, magnetic material
Richter, T.
1998-06-16
An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.
Electromagnetic valve for controlling the flow of molten, magnetic material
Richter, Tomas
1998-01-01
An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.
Results from the Apollo passive seismic experiment
NASA Technical Reports Server (NTRS)
Lathum, G.; Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.
1974-01-01
Recent results from the Apollo seismic network suggest that primitive differentiation occurred in the outer shell of the moon to a depth of approximately 300 km; and the central region of the moon is presently molten to a radius of between 200 and 300 km. If early melting to a depth of 300 to 400 km was a consequence of accretional energy, very short accretion times are required. The best model for the zone of original differentiation appears to be a crust 40 to 80 km thick, ranging in composition from anorthositic gabbro to gabbro; overlying an ultramafic cumulate (olivine-pyroxene) about 250 km thick. The best candidate for the molten core appears to be iron or iron sulphide. A new class of seismic signals has recently been identified that may correspond to shallow moonquakes. These are rare, but much more energetic than the more numerous, deep moonquakes.
Results from the Apollo passive seismic experiment
NASA Technical Reports Server (NTRS)
Latham, G.; Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.
1977-01-01
Recent results from the Apollo Seismic Network suggest that primitive differentiation occurred in the outer shell of the moon to a depth of approximately 300 km and the central region of the moon is presently molten to a radius of between 200 and 300 km. If early melting to a depth of 300 to 400 km was a consequence of accretional energy, very short accretion times are required. It was shown that the best model for the zone of original differentiation is a crust 40 to 80 km thick, ranging in composition from anorthositic gabbro to gabbro, and overlying an ultramafic cumulate about 250 km thick. The best candidate for the molten core appears to be iron or iron sulphide. A new class of seismic signals recently were identified that may correspond to shallow moonquakes. These are rare, but much more energetic than the more numerous, deep moonquakes.
Core Formation Process and Light Elements in the Planetary Core
NASA Astrophysics Data System (ADS)
Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.
2015-12-01
Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The inner core of these planets crystallized at the center of the core and it has the relatively Si rich inner core and the S enriched outer core. Based on melting and solid-liquid partitioning, the equation of state, and sound velocity of iron-light element alloys, we examined the plausible distribution of light elements in the liquid outer and solid inner cores of the terrestrial planets.
Mercury: a final prediction for internal thermal and physical structure, prior to MESSENGER data
NASA Astrophysics Data System (ADS)
Prentice, A. J.
2008-05-01
The confirmation by the NASA MESSENGER spacecraft that Mercury has an internal magnetic field that is well described by a dipole nearly aligned with the spin axis strongly suggests that the planet may have an outer core of molten metal (S. Solomon, MESSENGER news release of 30 January 2008). The existence of an internal layer of liquid has also been invoked to explain radar measurements of the large amplitude of the longitudinal libration of Mercury relative to the value expected for a wholly solid planet (J.L. Margot et al 2007 Science 316 710). The existence of molten metal in the planet`s interior is surprising since previous numerical models for the thermal evolution of the planet, calculated on the basis of the heat released by the decay of the radioactive isotopes of U and Th, indicated that the present temperature at the edge of the metal core is only ~ 1200 K (cf. Siegfried & Solomon 1974 Icarus 23 192) . This value is well below the melting temperature Tm = 2030 K of Fe-Ni alloy at the core/mantle boundary (CMB) pressure of ~ 70 kbar. Those earlier thermal calculations were, however, based on low abundances of U and Th found in lunar samples. Prentice (2008 LPSC 2008 abs. # 1945.pdf - see URL below) has put forward a new model for the bulk chemical composition of Mercury. It is based on the idea that this planet condensed from a gas ring that was cast off by the protosolar cloud close to the planet`s present orbit. The temperature of the gas ring Tn at the moment of detachment from the cloud is 1628 K and the pressure on the mean orbit of the ring is 0.168 bar. Because Tn is so high, the condensate contains a much reduced proportion of magnesium silicates relative to metals. This is because metals have a much lower vapour pressure than those silicates. The condensate consists mostly of Fe-Ni-Cr-Co-V (mass fraction 0.671), gehlenite (0.190) and Mg-silicates (0.081). What is really important in the gas ring model of solar system origin, however, is that the abundances of U and Th in the Mercury condensate are a factor of 4.3 times those of the Earth. The UO2 mass fraction is 6.4 × 10- 8. All bulk compositional mass fractions are computed using the protosolar elemental abundance compilation of K. Lodders (2003 Ap.J. 591 1220). The cold-start thermal evolutionary model for Mercury presented in Prentice (2008) is based on the U & Th abundances given above. The temperature at the CMB rises quickly from 350 K to 1630 K in 1 byr. Further increase was then stopped since it was assumed that efficient solid state convection set in once the temperature exceeds the value 0.7 Tm, where Tm is the local melt temperature of the rock. But a creep factor Fcreep = 0.6 - 0.7 is true just for metals, not rocks. For silicates, a higher factor ~ 1 is indicated (J-P Poirier 1985 Creep of Crystals, CUP, p. 163). Adopting Fcreep = 0.9, the CMB temperature now rises to 2100 K and the outer portion of the core become molten. If a hot-start is made, corresponding to an initial fully- differentiated body with central temperature Tc = 2500 K, the present Tc is 2150 K and the outer 13.2% of the core`s mass remains molten at solar age. This layer is still cooling at its inner edge. The estimated axial moment-of-inertia factor of this new hot model for Mercury is C/MR2 = 0.330 +/- 0.003. I thank George W. Null [JPL] for much hospitality in Pasadena and Steve Morton [Monash] for technical support.
Density Measurement of Liquid FeS Under High Pressure and High Temperature
NASA Astrophysics Data System (ADS)
Yu, T.; Young, C.; Chen, J.; Baldwin, K.
2005-05-01
Sulfur is considered one of the possible light elements in the core which might be responsible for the density deficit. We studied the liquid state of sulfur in iron due to sulfur¡¦s lack of amount in the mantle; easiness to alloy with iron; and the predicted 5% ~ 10% amount of this light element in the core (Ahrens, 1979; Sherman, 1997). Restricted by the modern development of the multianvil high pressure experimental equipments, the experiments are limited at a lower pressure range (<30GPa) comparing with the outer core pressure condition. Therefore, extrapolation of data derived at low pressure range to the condition of the outer core (130-330GPa) has to be applied and may produce results which are way far from the true numbers. However, at the point while the techniques are limited, studying the physical properties of the molten FeS at relatively low pressure still provides us a better picture of the physical behaviors of the liquid outer core comparing with data derived from solid state FeS experiments. The lack of melt density data at low pressure provides another motivation for us to study the physical properties of melt. The radiography (shadowgraphy) system on Beam Line X17B2, NSLS at the Brookhaven National Laboratory is an add-on system attached to the in situ x-ray beam line setup. It includes a YAG fluorescent screen, an optical mirror, focusing-magnification lenses, and a CCD camera and/or a video camera. Before the melting temperature, the radiograph system yields a maximum 1% difference in density comparing with the data collected by the traditional x-ray diffraction method. We have successfully examined liquid FeS samples by applying this technique at the NSLS. With a sapphire (Al2O3) sphere surrounded by FeS powder. The image of the sphere was clearly shown due to the absorption coefficient difference between these two materials. The density fitting method developed by our group has produced convincing data. The preliminary results of the density measurements of molten FeS show that the derived liquid density variation for the same sample remains under 1%. This study has collected in situ high pressure and high temperature x-ray diffraction data of the FeS sample up to 4GPa and 1400°C. Combined with the derived density data, the equation of state of the liquid FeS can be constructed.
Conduit for high temperature transfer of molten semiconductor crystalline material
NASA Technical Reports Server (NTRS)
Fiegl, George (Inventor); Torbet, Walter (Inventor)
1983-01-01
A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.
Deep-Earth Equilibration between Molten Iron and Solid Silicates
NASA Astrophysics Data System (ADS)
Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.
2017-12-01
Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.
Mass Producing Targets for Nuclear Fusion
NASA Technical Reports Server (NTRS)
Wang, T. G.; Elleman, D. D.; Kendall, J. M.
1983-01-01
Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.
Melt segregation during Poiseuille flow of partially molten rocks
NASA Astrophysics Data System (ADS)
Quintanilla-Terminel, A.; Dillman, A. M.; Kohlstedt, D. L.
2015-12-01
Studies of the dynamics of partially molten regions of the Earth's mantle provide the basis necessary for understanding the chemical and physical evolution of our planet. Since we cannot directly observe processes occurring at depth, we rely on models and experiments to constrain the rheological behavior of partially molten rocks. Here, we present the results of an experimental investigation of the role of viscous anisotropy on melt segregation in partially molten rocks through Poiseuille flow experiments. Partially molten rock samples with a composition of either forsterite or anorthite plus a few percent melt were prepared from vacuum sintered powders and taken to 1200ºC at 0.1 MPa. The partially molten samples were then extruded through a channel of circular cross section under a fixed pressure gradient at 1200o to 1500oC. The melt distribution in the channel was subsequently mapped through image analyses of optical and backscattered electron microscopy images. In these experiments, melt segregates from the center toward the outer radius of the channel with the melt fraction at the outer radius increasing to twice that at the center. These results are consistent with base-state melt segregation as predicted by Takei and Holtzman (JGR, 2009), Takei and Katz (JFM, 2013) and Allwright and Katz (GJI, 2014) for sheared partially molten rocks for which viscosity is anisotropic due to the stress-induced, grain-scale alignment of melt.
Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool
Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.
2002-01-29
In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.
Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool
Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.
2002-01-29
In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.
Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core
NASA Astrophysics Data System (ADS)
Arveson, S. M.; Lee, K. K. M.
2017-12-01
The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.
Nuclear reactor melt-retention structure to mitigate direct containment heating
Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.
1991-01-01
A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.
Molten core retention assembly
Lampe, Robert F.
1976-06-22
Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.
Mercury's Interior from MESSENGER Radio Science Data
NASA Astrophysics Data System (ADS)
Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2017-12-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft provided precise radio tracking data in orbit about Mercury for more than 4 years, from March 2011 to April 2015. These geodetic measurements enable us to investigate the interior structure of the planet from the inner core to the crust. The first three years of radio data allowed us to determine the gravity field of Mercury with a resolution of 150 km in the northern hemisphere (degree and order 50 in spherical harmonics) since the periapsis was located at higher latitudes (>65˚N) and 200-500 km altitudes. The comparison of this gravity solution with Mercury's topography, which was retrieved by using over 25 million individual measurements of the Mercury Laser Altimeter (MLA), resulted in a preliminary map of the crustal thickness of the planet. However, those results were limited by the resolution of the gravity field since the topography was defined in spherical harmonics up to degree and order 125. The last year of the MESSENGER extended mission was dedicated to a low-altitude campaign, where the spacecraft periapsis was maintained at altitudes between 25 and 100 km. The radio data collected during this mission phase allowed us to significantly improve the resolution of the gravity field locally in the northern hemisphere up to degree and order 100 in spherical harmonics. We present the gravity anomalies and crustal thickness maps that lead to a better understanding on the formation and evolution of specific regions. We present our estimated orientation model, which slightly differs from the solutions that were obtained by using Earth-based radar measurements and the co-registration of MESSENGER imaging and altimetry data. These previous estimates provide a direct measurement of the surface response, whereas the orientation model from gravity is more sensitive to the inner and outer core. A discrepancy between core and surface obliquities may provide fundamental information on the status of the outer core and the presence of a solid inner core. We also present the latest solution of the tidal Love number k2 that enables us to constrain the basal temperature and rigidity of the outer molten core.
Candidate molten salt investigation for an accelerator driven subcritical core
NASA Astrophysics Data System (ADS)
Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.
2013-09-01
We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.
NASA Astrophysics Data System (ADS)
Tao, R.; Fei, Y.
2017-12-01
Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.
Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering.
Çınar, Simge; Tevis, Ian D; Chen, Jiahao; Thuo, Martin
2016-02-23
Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate ('/' = physisorbed, '-' = chemisorbed), from molten Field's metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.
High stress shallow moonquakes - Evidence for an initially totally molten moon
NASA Technical Reports Server (NTRS)
Binder, A. B.; Oberst, J.
1985-01-01
Thermoelastic stress calculations show that if the moon was initially molten only in the outer few hundred kilometers, as in the magma ocean model of the moon, the highlands crust should be aseismic. In contrast, if the moon was initially totally molten, high stress (1 to more than about 3 kbar), shallow (0 to about 6 km deep), compressional moonquakes should be occurring in the highlands crust. Calculations of the minimum stress drops made for the 28 observed shallow moonquakes suggest that 3 of them probably have stress drops in the kbar range. Thus, these very limited seismic data are consistent with the model that the moon was initially totally molten.
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Nguyen, J.; Akin, M. C.; Fatýanov, O. V.
2015-12-01
Detailed elasticity data on liquid Fe and candidate molten core alloys should offer new constraints on the under-constrained problem of Earth's core composition. Density, sound speed, and the gradient in sound speed with pressure are each potentially distinct experimental constraints and are each well-known for Earth. The gradient in sound speed, though, has not been used because sound speed depends on both T and P, such that data must be collected or reconstructed along the correct, nearly adiabatic, thermal profile. Reconstruction requires the Grüneisen γ, which is composition-dependent, and data over a large P-T space to allow extrapolation. Both static and dynamic compression methods could be used, but the conditions (140 - 330 GPa and 4000 - 6000 K) are very challenging for static methods and standard shock compression only samples the outer core P-T profile at a single P. Instead we are applying quasi-isentropic dynamic ramp compression, using pre-heating of the target and impedance of the leading edge of a graded-density impactor (GDI) to select a probable outer core isentrope. The target material is melted and raised to a point on the outer core isentrope by the initial shock, then quasi-isentropically ramped to a maximum P by increasing shock impedance of trailing GDI layers. Particle velocity is monitored by photonic doppler velocimetry (PDV) at two step thicknesses at the interface of Fe or Fe-alloy target and MgO windows. The difference in arrival time of each particle velocity at the two steps directly gives the Lagrangian sound speed vs. particle velocity, which is integrated to obtain Pand density. At the writing of this abstract, we have completed one shot of this type. We successfully heated a two-step Fe target in a Mo capsule with MgO windows to 1350 °C, maintaining sufficient alignment and reflectivity to collect PDV signal returns. We characterized the velocity correction factor for PDV observation through MgO windows, and have confirmed that MgO remains sufficiently transparent on this loading path to act as a window. Our shot used a Mg-Ta graded density impactor launched at 5.6 km/s by the Caltech two-stage light gas gun, providing continuous sampling of the sound speed of liquid Fe from 70 GPa and ~2800 K up the isentrope to 243 GPa. Analysis continues. Prepared by LLNL under Contract DE-AC52-07NA27344
Dynamics of Metamorphic Core Complexes Inferred From Modeling and Metamorphic Petrology
NASA Astrophysics Data System (ADS)
Whitney, D. L.; Rey, P.; Teyssier, C.
2008-12-01
Orogenic collapse involves extension and thinning of thick, hot, and in some cases partially molten, crust, leading to the formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. 2D numerical modeling predicts that the geometry and P-T-t history of MCC varies as a function of the presence/absence of a partially molten layer in the deep crust; the nature of heterogeneities that localize the MCC (e.g. normal fault in upper crust vs. point-like anomaly in the deep crust); and extensional strain rate. The presence of melt in particular has a significant effect on the thermal and structural history of MCC because the presence of partially molten crust or magma bodies at depth enhances upward advection of material and heat. At high extension rate (cm/year in the region of the MCC), partially molten crust crystallizes as migmatite and cools along a high geothermal gradient (35-65 C/km); material remains partially molten during ascent, forming a migmatite dome when it crystallizes at shallower crustal levels (e.g. cordierite/sillimanite stability field). At low strain rate (mm/yr in the MCC region), the partially molten crust crystallizes at high pressure (e.g. kyanite zone); this material is subsequently deformed in the solid-state along a cooler geothermal gradient (20-35 C/km) during ascent. MCC that develop during extension of partially molten crust may therefore record distinct crystallization versus exhumation histories as a function of extensional strain rate. The mineral assemblages, metamorphic reaction histories, and structures of migmatite-cored (Mc) MCC can therefore be used to interpret the dynamics of MCC formation, e.g. "fast" McMCC in the northern N American Cordillera and Aegean regions.
Thermoelastic effects across the post-perovskite transition in (Al,Fe)-bearing bridgmanite
NASA Astrophysics Data System (ADS)
Valencia-Cardona, J. J.; Shukla, G.; Sarkar, K.; Wentzcovitch, R. M. M.
2017-12-01
The post-perovskite (PPv) transition in (Al,Fe)-bearing bridgmanite has been intensively investigated by experiments and ab initio calculations. However, there are still important aspects of this transformation to be clarified from the atomistic point of view, especially because of the extreme conditions of pressure and temperature in which it takes place, P=125 GPa and T = 2500 K. Here we systematically address this question in (Al,Fe3+)-, (Fe2+)- and (Fe3+)-bearing bridgmanite using ab initio calculations. We particularly address the effect of velocity changes across this transformation in these systems. Our results are important to further understand and constrain the composition of the D" region, believed to be a thermal and/or compositional boundary layer between the solid mantle and molten outer core.
Thermal, dynamic and compositional aspects of the core-forming Earth
NASA Technical Reports Server (NTRS)
Stevenson, D. J.
1985-01-01
Core formation is the most important and singular differentiation event in the history of a terrestrial planet. It almost certainly involved the downward migration of a partially or wholly molten iron alloy through a silicate and oxide mantle, and was contemporaneous with accretion. Several important, unresolved issues which have implications for mantle and core geochemistry, the thermal history of the Earth, and the origin of geomagnetism are addressed: whether the early Earth was molten; whether core formation involved low or high pressure geochemistry, or both; early Earth mantle homogenization; whether equilibration established between core forming material and the mantle through which it migrated; and how much iron is stranded and unable to reach the core.
MELTING AND PURIFICATION OF URANIUM
Spedding, F.H.; Gray, C.F.
1958-09-16
A process is described for treating uranium ingots having inner metal portions and an outer oxide skin. The method consists in partially supporting such an ingot on the surface of a grid or pierced plate. A sufficient weight of uranium is provided so that when the mass becomes molten, the oxide skin bursts at the unsupported portions of its bottom surface, allowing molten urantum to flow through the burst skin and into a container provided below.
Apparatus for controlling molten core debris
Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA
1977-07-19
Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.
Normal Mode Derived Models of the Physical Properties of Earth's Outer Core
NASA Astrophysics Data System (ADS)
Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.
2017-12-01
Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.
Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering
Çınar, Simge; Tevis, Ian D.; Chen, Jiahao; Thuo, Martin
2016-01-01
Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity. PMID:26902483
Interfacial heat transfer in multiphase molten pools with gas injection
NASA Astrophysics Data System (ADS)
Bilbao Y Leon, Rosa Marina
1998-12-01
In the very unlikely event of a severe reactor accident involving core meltdown and pressure vessel failure, it is vital to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a safe and stable state. In this type of accident, the molten material which escapes from the reactor pressure vessel will accumulate as a molten pool in the reactor cavity below. To achieve coolability of the corium in this configuration it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. The effectiveness of this procedure depends largely on the rate of upward heat loss as well as on the formation and stability of an upper crust. In this situation the molten pool becomes a three phase mixture: the solid and liquid slurry formed by the molten pool cooled to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward considering the influence of the solid fraction in the pool and the viscosity effects, and the rate of heat loss through a solid layer. To complete this task a intermediate scale experimental test section has been designed and built at the University of Wisconsin - Madison, in which simulant materials are used to model the process of heat and mass transfer which involves the molten pool, the solid layer atop and the coolant layer above. The design includes volumetric heating, gas injection from the bottom and solids within the pool. New experimental results showing the heat transfer behavior for pools with different viscosities and various solid fractions are presented. The current results indicate a power split which favors heat transfer upward to the coolant simulant above by a 2:1 or 3:1 ratio. In addition, the power split is unaffected by the viscosity of the pool, the solid fractions in the pool and the superficial velocity.
NASA Astrophysics Data System (ADS)
Kitagaki, Toru; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro
2017-04-01
The solidification phases of molten core-concrete under the estimated molten core-concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core-concrete forms (U,Zr)O2 and (Zr,U)SiO4, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO4 requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O2 to tet-(U,Zr)O2, followed by the formation of (Zr,U)SiO4 by reaction with SiO2. Therefore, the formation of (Zr,U)SiO4 is limited under quenching conditions. Other common phases are the oxide phases, CaAl2Si2O8, SiO2, and CaSiO3, and the metallic phases of the Fe-Si and Fe-Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.
Apparatus for controlling molten core debris. [LMFBR
Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.
1977-07-19
Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.
NASA Astrophysics Data System (ADS)
Shimoyama, Yuta; Terasaki, Hidenori; Ohtani, Eiji; Urakawa, Satoru; Takubo, Yusaku; Nishida, Keisuke; Suzuki, Akio; Katayama, Yoshinori
2013-11-01
Carbon is a plausible light element candidate in the Earth’s outer core. We measured the density of liquid Fe-3.5 wt% C up to 6.8 GPa and 2200 K using an X-ray absorption method. The compression curve of liquid Fe-C was fitted using the third-order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are K0,1500K = 55.3 ± 2.5 GPa and (dK0/dP)T = 5.2 ± 1.5, and the thermal expansion coefficient is α = 0.86 ± 0.04 × 10-4 K-1. The Fe-C density abruptly increases at pressures between 4.3 and 5.5 GPa in the range of present temperatures. Compared with the results of previous density measurements of liquid Fe-C, the effect of carbon on the density of liquid Fe shows a nonideal mixing behavior. The abrupt density increase and nonideal mixing behavior are important factors in determining the light element content in the Earth’s core.
Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies
NASA Astrophysics Data System (ADS)
Irving, J. C. E.; Cottaar, S.; Lekic, V.
2016-12-01
The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk modulus, its pressure derivative, and molar mass and volume, with particular attention paid to the (inherent) trade-offs between the different coefficients. We discuss our results in terms of added uncertainty to the light element composition of the outer core and the potential existence of anomalous structure near the outer core's boundaries.
Preparation of SiC/SiO2 core-shell nanowires via molten salt mediated carbothermal reduction route
NASA Astrophysics Data System (ADS)
Zhang, Ju; Yan, Shuai; Jia, Quanli; Huang, Juntong; Lin, Liangxu; Zhang, Shaowei
2016-06-01
The growth of silicon carbide (SiC) crystal generally requires a high temperature, especially when low quality industrial wastes are used as the starting raw materials. In this work, SiC/SiO2 core-shell nanowires (NWs) were synthesized from low cost silica fume and sucrose via a molten salt mediated carbothermal reduction (CR) route. The molten salt was found to be effective in promoting the SiC growth and lowering the synthesis temperature. The resultant NWs exhibited a heterostructure composed of a 3C-SiC core of 100 nm in diameter and a 5-10 nm thick amorphous SiO2 shell layer. The photoluminescence spectrum of the achieved SiC NWs displayed a significant blue shift (a dominant luminescence at round 422 nm), which suggested that they were high quality and could be a promising candidate material for future optoelectronic applications.
Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets
NASA Technical Reports Server (NTRS)
Adams, R. B.; Alexander, R. A.; Chapman, J. M.; Fincher, S. S.; Hopkins, R. C.; Philips, A. D.; Polsgrove, T. T.; Litchford, R. J.; Patton, B. W.; Statham, G.
2003-01-01
During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.
Simulation of Fast Neutronics in an Accelerator-Driven Sub-Critical Core
NASA Astrophysics Data System (ADS)
Gwyn Rosaire, C.; Sattarov, Akhdiyor; McIntyre, Peter; Tsvetkov, Pavel
2011-10-01
Accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a technology for green nuclear power. ADSMS burns its fertile fuel to completion, it cannot melt down, and it destroys long-lived minor actinides. The ADSMS core consists of a vessel filled with a molten salt eutectic of UCl3 and NaCl. The fast neutronics of ADSMS makes possible two unique benefits: isobreeding, a steady-state equilibrium in which ^238U is bred to ^239Pu and the ^239Pu fissions, and destruction of minor actinides, in which fission of the intermediary nuclides dominates of breeding. Results of simulations of the fast neutronics in the ADSMS core will be presented.
An interconnected network of core-forming melts produced by shear deformation
Bruhn; Groebner; Kohlstedt
2000-02-24
The formation mechanism of terrestrial planetary cores is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal--mainly iron with some nickel--could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a 'magma ocean'. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (non-hydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.
NASA Astrophysics Data System (ADS)
Wang, Xian-Fei; Xiong, Shou-Mei
2012-11-01
The surface film formed on molten AZ91D magnesium alloy in an atmosphere containing SO2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The surface film primarily contained MgO and MgS and had a network structure. MgS increased the Pilling-Bedworth ratio of the film and enhanced its protective capability. The films with a few pores at the surface consisted of two layers with an outer MgO layer and an inner layer of MgO and MgS. The film without pores at the surface also contained MgS and small amounts of MgSO4 in the outer layer. Increasing the SO2 content in the atmosphere promoted film growth and the formation of the protective film was prevented with the increased temperature.
Method to produce large, uniform hollow spherical shells
Hendricks, C.D.
1983-09-26
The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.
Thermal sprayed composite melt containment tubular component and method of making same
Besser, Matthew F.; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.
2002-03-19
A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.
NASA Astrophysics Data System (ADS)
Xiong, Z.; Tsuchiya, T.
2017-12-01
Element partitioning is an important property in recording geochemical processes during the core-mantle differentiation. However, experimental measurements of element partitioning coefficients under extreme temperature and pressure condition are still challenging. Theoretical modeling is also not easy, because it requires estimation of high temperature Gibbs free energy, which is not directly accessible by the standard molecular dynamics method. We recently developed an original technique to simulate Gibbs free energy based on the thermodynamics integration method[1]. We apply it to element partitioning of geochemical intriguing trace elements between molten silicate and liquid iron such as potassium, helium and argon as starting examples. Radiogenic potassium in the core can provide energy for Earth's magnetic field, convection in the mantle and outer core[2]. However, its partitioning behavior between silicate and iron remains unclear under high pressure[3,4]. Our calculations suggest that a clear positive temperature dependence of the partitioning coefficient but an insignificant pressure effect. Unlike sulfur and silicon, oxygen dissolved in the metals considerably enhances potassium solubility. Calculated electronic structures reveal alkali-metallic feature of potassium in liquid iron, favoring oxygen with strong electron affinity. Our results suggest that 40K could serve as a potential radiogenic heat source in the outer core if oxygen is the major light element therein. We now further extend our technique to partitioning behaviors of other elements, helium and argon, to get insides into the `helium paradox' and `missing argon' problems. References [1] T. Taniuchi, and T. Tsuchiya, Phys.Rev.B. In press [2] B.A. Buffett, H.E. Huppert, J.R. Lister, and A.W. Woods, Geophys.Res.Lett. 29 (1996) 7989-8006. [3] V.R. Murthy, W. Westrenen, and Y. Fei, Nature. 426 (2003) 163-165. [4] A. Corgne, S.Keshav, Y. Fei, and W.F. McDonough, Earth.Planet.Sci.Lett. 256 (2007) 567-576
Material with core-shell structure
Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI
2011-11-15
Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.
An Interconnected Network of Core-Forming Melts Produced by Shear Deformation
NASA Technical Reports Server (NTRS)
Bruhn, D.; Groebner, N.; Kohlstedt, D. L.
2000-01-01
The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.
NASA Astrophysics Data System (ADS)
Ohtani, E.; Sakai, T.; Kondo, T.; Miyahara, M.; Terasaki, H.
2006-12-01
Recent progress of laser heating diamond anvil cell (LHDAC) techniques made it possible to achieve the conditions of pressures and temperatures exceeding the core-mantle boundary conditions, i.e., 130 GPa and 3000-3500 K, and we can now be possible to study the recovered samples from the condition of the core- mantle boundary. We used the focused ion beam (FIB) method for preparation of the recovered samples and the analytical transmission electron microscope (ATEM) for their characterization, which are the ideal tools for studying the recovered samples from mega-bar conditions. In order to clarify the structure of the bottom of the CMB region, we have conducted high pressure and temperature experiments on the reaction between metallic iron and post-perovskite which can simulate the chemical reactions at CMB. We have conducted reaction experiments between molten iron and post-perovskite at the conditions equivalent to the CMB, 139 GPa and 3000 K. Significant amounts of oxygen up to 6.3 wt. percent and silicon up to 4.0 wt. percent are dissolved in metallic iron, and the solubility of silicon and oxygen in metallic iron can readily account for 7-10 wt. percent of the core density deficit. The dissolution of silicon into molten iron in the primordial magma ocean with the depth of the deep lower mantle can account for the Mg/Si ratio of the mantle higher than that of C1-chondrite. The dihedral angle between post-perovskite and molten iron is around 67 degrees, which is larger than that of perovskite and molten iron, 51 degrees (Takafuji et al., 2004). A core signature has been reported as Re and Os isotope anomalies in the plume magmas originating from the core-mantle boundary region, and such isotopic anomalies can be easily generated by contamination of 0.5-1 wt. percent of the trapped core metal at CMB (e.g., Brandon et al., 2005). A significant disturbance is expected at CMB to form a mixing region of the mantle and core materials as was suggested by Kellogg et al. (1999), Brandon et al. (1998) and Lay et al. (1998). The mixed core materials tend to percolate back to the core in the perovskite region with the dihedral angle less than 60 degrees, whereas the dihedral angle around 67 degrees between post-perovskite and molten iron implies that a small amount of metallic iron up to 2 vol. percent (1 wt. percent) can be trapped after separation of the core materials (von Bargen and Waff, 1986) in the post-perovskite region at CMB. The core metal trapped in the post-perovskite region can produce effectively the core signature of the plume source at the base of the lower mantle.
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.
2015-12-01
Growth of an inner core has conventionally been related to core cooling blow the liquidus of iron. It is however possible that the core of the proto-Earth solidifies upon pressure increase during accretion. The lithostatic pressure in the proto-Earth increases immediately after merging each impactor, and the pressure-dependent liquidus of iron may supersede the temperature near the center resulting in a solid inner core. Assuming that Earth is formed by accreting a few dozen Moon to Mars size planetary embryos, the thermal evolution of the proto-Earth's core is investigated during accretion. The collision of an embryo heats the Earth differentially and the rotating low-viscosity, differentially heated core stratifies, creating a spherically symmetric stable and radially increasing temperature distribution. Convection occurs in the outer core while heat transfers by conduction in deeper parts. It is assumed that the iron core of an embryo pools at the bottom of partially molten mantle and thermally equilibrates with surroundings. It then descends as an iron diapir in the solid silicate mantle, while releasing its gravitational energy. Depending on its temperature when arrives at the core mantle boundary, it may spread on the core creating a hot layer or plunge into the core and descend to a neutrally buoyant level while further releasing its gravitational energy. A few dozen thermal evolution models of the core are investigates to examine effects of major parameters such as: total number of impacting embryos; partitioning of the gravitational energy released during the descent of the diaper in the mantle (between the silicate mantle and the iron diaper), and in the core (between the proto-Earth's core and that of the embryo); and gravitational energy and latent heat released due to the core solidification. All of the models predict a large solid inner core, about 1500 to 2000 km in radius, at the end of accretion.
Substrate system for spray forming
Chu, Men G.; Chernicoff, William P.
2000-01-01
A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.
Substrate system for spray forming
Chu, Men G.; Chernicoff, William P.
2002-01-01
A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.
Tryptophan 375 stabilizes the outer-domain core of gp120 for HIV vaccine immunogen design.
Hu, Duoyi; Bowder, Dane; Wei, Wenzhong; Thompson, Jesse; Wilson, Mark A; Xiang, Shi-Hua
2017-05-25
The outer-domain core of gp120 may serve as a better HIV vaccine immunogen than the full-length gp120 because of its greater stability and immunogenicity. In our previous report, we introduced two disulfide bonds to the outer-domain core of gp120 to fix its conformation into a CD4-bound state, which resulted in a significant increase in its immunogenicity when compared to the wild-type outer-domain core. In this report, to further improve the immunogenicity of the outer-domain core based immunogen, we have introduced a Tryptophan residue at gp120 amino acid sequence position 375 (375S/W). Our data from immunized guinea pigs indeed shows a striking increase in the immune response due to this stabilized core outer-domain. Therefore, we conclude that the addition of 375W to the outer-domain core of gp120 further stabilizes the structure of immunogen and increases the immunogenicity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Looking back on a half century of repeat magnetic measurements in France
NASA Astrophysics Data System (ADS)
Alexandrescu, Mioara Mandea; Gilder, Stuart; Courtillot, Vincent; Le Mouël, Jean Louis; Gilbert, Daniel
Birds do it. Bees do it. And with the discovery of lodestone over 2200 years ago, humans too could incorporate the Earth's magnetic field into their daily lives. Some of the oldest applications for tracking the magnetic field were in land and sea navigation. Magnetic field measurements quickly became an important economic factor in world trade, with documented use dating from the 11th century in China.The measurements are important in other applications as well. For example, rapid field variations are generated by solar activity and its interaction with the terrestrial environment. Large magnetic storms can disrupt satellite operation, communication systems, power transmission networks, and so forth [Campbell, 1997].Geomagnetism also provides a unique opportunity to explore the Earth's outer core, which is mostly liquid (molten) iron, where the field is generated. Field measurements can also yield valuable insights into the location of mineral deposits and aid in applications in the petroleum industry.
Molten silicate mantle during a giant impact. Speciation from vapor to supercritical state
NASA Astrophysics Data System (ADS)
Caracas, R.; Stewart, S. T.
2017-12-01
We employ large-scale first-principles molecular dynamics simulations to understand the physical and chemical behavior of the molten protolunar disk, at the atomic level. We consider the average composition of the Earth's mantle as proposed by Sun and McDonough (1995). We cover the 0.75 - 7.5 g/cm3 density range and 2000 - 10000 K temperature range. This allows us to investigate the entire disk, from the interior of the molten core to the outer regions of the vaporized disk. At high density, the liquid is highly polymerized and viscous, consistent with previous studies. At low density and low temperatures, in the 2000 to 4000 K range, we capture the nucleation of bubbles. The bubbles contain a low-density gas phase rich in individual alkaline and calc-alkaline cations and SiOx groups. When volatiles are present in the system, such molecular species are the first ones to evaporate and be present in these bubbles. We propose numerical tools to detect the liquid-vapor equilibrium. The critical curves are reached consistently regardless of the thermodynamic path we chose to obtain the low densities. We analyze the equilibrium between the gas of the bubbles and the liquid. At high temperature, we identify the supercritical region characterized by one homogeneous fluid, rich in ionic species. We show that the chemical speciation is very different from the one obtained at ambient pressure conditions. Critical curves are necessary to understand the separation and degassing of volatiles during the recovery from a giant impact. Acknowledgements: This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n°681818 - IMPACT). The ab initio simulations were performed on the GENCI supercomputers, under eDARI/CINES grants x106368.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Sean; Dewan, Leslie; Massie, Mark
This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less
34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...
34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Large longitude libration of Mercury reveals a molten core.
Margot, J L; Peale, S J; Jurgens, R F; Slade, M A; Holin, I V
2007-05-04
Observations of radar speckle patterns tied to the rotation of Mercury establish that the planet occupies a Cassini state with obliquity of 2.11 +/- 0.1 arc minutes. The measurements show that the planet exhibits librations in longitude that are forced at the 88-day orbital period, as predicted by theory. The large amplitude of the oscillations, 35.8 +/- 2 arc seconds, together with the Mariner 10 determination of the gravitational harmonic coefficient C22, indicates that the mantle of Mercury is decoupled from a core that is at least partially molten.
ALLOY COATINGS AND METHOD OF APPLYING
Eubank, L.D.; Boller, E.R.
1958-08-26
A method for providing uranium articles with a pro tective coating by a single dip coating process is presented. The uranium article is dipped into a molten zinc bath containing a small percentage of aluminum. The resultant product is a uranium article covered with a thin undercoat consisting of a uranium-aluminum alloy with a small amount of zinc, and an outer layer consisting of zinc and aluminum. The article may be used as is, or aluminum sheathing may then be bonded to the aluminum zinc outer layer.
The Magnetic Dichotomy of the Galilean Satellites Europa and Ganymede
NASA Astrophysics Data System (ADS)
Breuer, D.; Hussmann, H.; Spohn, T.
2006-12-01
A major discovery of the Galileo mission was the detection of Ganymede's self-generated magnetic field. The magnetic field also proves beyond doubt that Ganymede is fully differentiated into an iron-rich core, a silicate mantle, and an outer ice shell that most likely also contains an ocean. It is widely believed that Europa has a similar structure although the absence of a self-sustained magnetic field makes the case for a core in Europa less compelling. Since Callisto's moment-of-inertia factor suggests an undifferentiated satellite and since the absence of a magnetic of Io is best explained by tidal heating in the mantle blocking the heat flow from the core (Wienbruch and Spohn, 1995), Europa and Ganymede form a magnetic dichotomy in the Jovian system. We have used stagnant lid models of convection in the two icy satellites to calculate thermal history models with core cooling and have allowed for inner core growth through freezing. The models have stagnant lid convection or conduction in the outer ice shells (depending on material parameters), isothermal oceans, and, in the case of Ganymede, stagnant-lid convection in the ice shell underneath the ocean and above the rock mantle. For Europa the ocean interfaces with the rock mantle. We assume iron cores that start fully molten for both satellites, the radii of which were taken from Sohl et al. (2002). These models suggest that Europa has a few 100 km smaller core and thinner mantle and a substantially thinner ice shell. All but interior structure parameters equal, we find that core convection and hence dynamo action is more likely for Europa than for Ganymede. The reason are mainly the larger core and the thicker mantle. Accepting core convection in Ganymede, the question than poses itself of how to explain the absence of core convection in Europa. We find and will discuss the following possibilities: 1) Europa has no iron core. This is consistent with the observation but leaves the question why Ganymede should have fully differentiated while Europa did not. 2) A higher concentration of light elements in Europa's core. Taking Sulfur as a point in case, Europa may have more sulfur, in which case more cooling would be required to freeze the core, or may even be on the FeS rich side of the eutectic, in which case chemical convection could be less efficient in Europa. 3) Tidal heating. We find that a few times the present-day radiogenic heating rate would be required to possibly frustrate dynamo action. This much tidal heat is consistent with the models of Hussmann et al. (2002) Hussmann, H. et al., 2002. Icarus, 156, 143-151; Sohl, F. et al., 2002, Icarus, 157,104-119; Wienbruch, U. and T. Spohn, 1995, PSS, 43, 1045-1057
33 CFR 142.36 - Protective clothing.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.36 Protective clothing. Personnel in areas where there are flying particles, molten metal, radiant energy, heavy... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Protective clothing. 142.36...
33 CFR 142.36 - Protective clothing.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.36 Protective clothing. Personnel in areas where there are flying particles, molten metal, radiant energy, heavy... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Protective clothing. 142.36...
Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M
2004-10-01
To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.
NASA Astrophysics Data System (ADS)
Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.
2017-11-01
Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.
NASA Astrophysics Data System (ADS)
Sooby, Elizabeth; Adams, Marvin; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Phongikaroon, Supathorn; Pogue, Nathaniel; Sattarov, Akhdiyor; Simpson, Michael; Tripathy, Prabhat; Tsevkov, Pavel
2013-04-01
The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.
Simulation of the planetary interior differentiation processes in the laboratory.
Fei, Yingwei
2013-11-15
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.
Simulation of the Planetary Interior Differentiation Processes in the Laboratory
Fei, Yingwei
2013-01-01
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245
Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
2017-01-15
This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches andmore » time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalimullah
1994-03-01
Some special purpose heavy-water reactors (EM) are made of assemblies consisting of a number of coaxial aluminum-clad U-Al alloy fuel tubes and an outer Al sleeve surrounding the fuel tubes. The heavy water coolant flows in the annular gaps between the circular tubes. Analysis of severe accidents in such reactors requires a model for predicting the behavior of the fuel tubes as they melt and disrupt. This paper describes a detailed, mechanistic model for fuel tube heatup, melting, freezing, and molten material relocation, called MARTINS (Melting and Relocation of Tubes in Nuclear subassembly). The paper presents the modeling of themore » phenomena in MARTINS, and an application of the model to analysis of a reactivity insertion accident. Some models are being developed to compute gradual downward relocation of molten material at decay-heat power levels via candling along intact tubes, neglecting coolant vapor hydrodynamic forces on molten material. These models are inadequate for high power accident sequences involving significant hydrodynamic forces. These forces are included in MARTINS.« less
Compression behavior of Fe-Si-H alloys
NASA Astrophysics Data System (ADS)
Tagawa, S.; Ohta, K.; Hirose, K.; Ohishi, Y.
2015-12-01
Although the light elements in the Earth's core are still enigmatic, hydrogen has recently been receiving much attention. Planetary formation theory suggested that a large amount of water, much more than is in the oceans, could have been brought to the Earth during its accretion. Hydrogen is a strong siderophile element and could be incorporated into the core as a consequence of a reaction between water and molten iron in a magma ocean [Okuchi, 1997 Science]. Nevertheless, the effect of hydrogen on the property of iron is not well known so far. Here, we have experimentally examined the compression behavior of hcp Fe0.88Si0.12Hx (6.5 wt.% Si) at two different hydrogen concentrations (x = 0.7 and 0.9). Fe0.88Si0.12 foil was loaded into a diamond-anvil cell, and then liquid hydrogen was introduced to a sample chamber below 20 K. Hydrogenation occurred upon thermal annealing below 1500 K at 25-62 GPa, and hcp Fe0.88Si0.12Hx was obtained as a single phase. Unlike the Fe-H alloy, hydrogen did not fully occupy the octahedral sites even under hydrogen-saturated conditions. Two compression curves, one from 25 to 136 GPa, and the other from 62 to 128 GPa, were obtained at room temperature. While the effect of hydrogen on the compressibility of iron has been controversial in earlier experimental studies [Hirao et al., 2004 GRL; Pépin et al., 2014 PRL], our data indicate that the compressibility of Fe0.88Si0.12Hx alloy does not change with changing hydrogen content from x = 0 to 0.9. Such compression behavior observed is consistent with the recent ab initio calculations for hcp Fe-H alloys by Caracas[2015 GRL]. The extrapolation of present data to the outer core pressure and temperature range, assuming thermal expansivity is the same as that for iron and there is no density difference between solid and liquid, shows that the density of Fe0.88Si0.12H0.3 matches the PREM in the whole outer core within 1%.
The evolution of the moon and the terrestrial planets
NASA Technical Reports Server (NTRS)
Toksoez, M. N.; Johnston, D. H.
1974-01-01
The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core.
Molten salts and nuclear energy production
NASA Astrophysics Data System (ADS)
Le Brun, Christian
2007-01-01
Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.
Sprayed skin turbine component
Allen, David B
2013-06-04
Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.
Fluid-mechanic/thermal interaction of a molten material and a decomposing solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, D.W.; Lee, D.O.
1976-12-01
Bench-scale experiments of a molten material in contact with a decomposing solid were conducted to gain insight into the expected interaction of a hot, molten reactor core with a concrete base. The results indicate that either of two regimes can occur: violent agitation and splattering of the melt or a very quiescent settling of the melt when placed in contact with the solid. The two regimes appear to be governed by the interface temperature condition. A conduction heat transfer model predicts the critical interface temperature with reasonable accuracy. In addition, a film thermal resistance model correlates well with the datamore » in predicting the time for a solid skin to form on the molten material.« less
NASA Astrophysics Data System (ADS)
Deng, Liwei; Fei, Yingwei; Liu, Xi; Gong, Zizheng; Shahar, Anat
2013-08-01
High-pressure melting experiments in the Fe-S-C ternary and Fe-S-Si-C quaternary systems have been conducted in the range of 3.5-20 GPa and 920-1700 °C in the multi-anvil press. The mutual solubility, melting relations, and crystallization sequences were systematically investigated with changes of pressure, temperature and bulk composition. Five starting materials of Fe(84.69 wt%)-C(4.35 wt%)-S(7.85 wt%), Fe(84.87 wt%)-C(2.08 wt%)-S(11.41 wt%), Fe(86.36 wt%)-C(0.96 wt%)-S(10.31 wt%), Fe(85.71 wt%)-C(0.33 wt%)-S(11.86 wt%) and Fe(82.95 wt%)-C(0.66 wt%)-S(13.7 wt%)-Si(2.89 wt%) were employed. For Fe(84.69 wt%)-C(4.35 wt%)-S(7.85 wt%), the first crystallized phase is Fe3C at 5 GPa and Fe7C3 at 10-20 GPa. For Fe(84.87 wt%)-C(2.08 wt%)-S(11.41 wt%), Fe3C is the stable carbide at subsolidus temperature at 5-15 GPa. For Fe(86.36 wt%)-C(0.96 wt%)-S(10.31 wt%) and Fe(85.71 wt%)-C(0.33 wt%)-S(11.86 wt%), the first crystallized phase is metallic Fe instead of iron carbide at 5-10 GPa. The cotectic curves in Fe-S-C ternary system indicate only a small amount of C is needed to form an iron carbide solid inner core with the presence of S. Experiments on Fe(82.95 wt%)-C(0.66 wt%)-S(13.7 wt%)-Si(2.89 wt%) showed that a small amount of C does not significantly change the closure pressure of miscibility gap compared with that in Fe-S-Si system. It is observed that S preferentially partitions into molten iron while a significant amount of Si enters the solid phase with temperature decrease. Meanwhile, the C concentration in the liquid and solid iron metal changes little with temperature variations. If S, C and Si partitioning behavior between molten iron and solid iron metal with temperature remains the same under Earth's present core pressure conditions, the solid inner core should be iron dominated with dissolved Si. On the other hand, the liquid outer core will be S rich and Si poor. Moderate carbon will be evenly present in both solid and liquid cores. Based on our melting data in a multi-component system, no layered liquid core should exist in the Earth, Mars and Mercury.
LMFBR fuel assembly design for HCDA fuel dispersal
Lacko, Robert E.; Tilbrook, Roger W.
1984-01-01
A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.
A scaling and experimental approach for investigating in-vessel cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, R.E.
1997-02-01
The TMI-2 accident experienced the relocation of a large quantity of core material to the lower plenum. The TMI-2 vessel investigation project concluded that approximately 20 metric tonnes of once molten fuel material drained into the RPV lower head. As a result, the lower head wall experienced a thermal transient that has been characterized as reaching temperatures as high as 1100{degrees}C, then a cooling transient with a rate of 10 to 100{degrees}C/min. Two mechanisms have been proposed as possible explanations for this cooling behavior. One is the ingression of water through core material as a result of interconnected cracks inmore » the frozen debris and/or water ingression around the crust which is formed on internal structures (core supports and in-core instrumentation) in the lower head. The second focuses on the lack of adhesion of oxidic core debris to the RPV wall when the debris contacts the wall. Furthermore, the potential for strain of the RPV lower head when the wall is overheated could provide for a significant cooling path for water to ingress between the RPV and the frozen core material next to the wall. To examine these proposed mechanisms, a set of scaled experiments have been developed to examine the potential for cooling. These are performed in a scaled system in which the high temperature molten material is iron termite and the RPV wall is carbon steel. A termite mass of 40 kg is used and the simulated reactor vessels have water in the lower head at pressures up to 2.2 MPa. Furthermore, two different thicknesses of the vessel wall are examined with the thicker vessel having virtually no potential for material creep during the experiment and the thinner wall having the potential for substantial creep. Moreover, the experiment includes the option of having molten iron as the first material to drain into the RPV lower head or molten aluminum oxide being the only material that drains into the test configuration.« less
Praying Mantis Bending Core Breakoff and Retention Mechanism
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Lindermann, Randel A.
2011-01-01
Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale, yet is robust and versatile enough to be used for a variety of core samples. The new design consists of a set of tubes (a drill tube, an outer tube, and an inner tube) and means of sliding the inner and outer tubes axially relative to each other. Additionally, a sample tube can be housed inside the inner tube for storing the sample. The inner tube fits inside the outer tube, which fits inside the drill tube. The inner and outer tubes can move axially relative to each other. The inner tube presents two lamellae with two opposing grabbing teeth and one pushing tooth. The pushing tooth is offset axially from the grabbing teeth. The teeth can move radially and their motion is controlled by the outer tube. The outer tube presents two lamellae with radial extrusions to control the inner tube lamellae motion. In breaking the core, the mechanism creates two support points (the grabbing teeth and the bit tip) and one push point. The core is broken in bending. The grabbing teeth can also act as a core retention mechanism. The praying mantis that is disclosed herein is an active core breaking/retention mechanism that requires only one additional actuator other than the drilling actuator. It can break cores that are attached to the borehole bottom as
A strong-focusing 800 MeV cyclotron for high-current applications
NASA Astrophysics Data System (ADS)
Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.
2013-04-01
A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.
NASA Astrophysics Data System (ADS)
Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke
2017-03-01
It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr1-xNix (x = 0.12 and 0.24) and Zr0.77Cr0.23) using the electrostatic levitation technique.
Parametric study of natural circulation flow in molten salt fuel in molten salt reactor
NASA Astrophysics Data System (ADS)
Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector
2015-04-01
The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.
26. SOME CORES, SUCH AS THESE IN THE BRASS FOUNDRY ...
26. SOME CORES, SUCH AS THESE IN THE BRASS FOUNDRY CA.1950, ARE DIPPED INTO A SOLUTION PRIOR TO BEING BAKED IN THE CORE OVEN BEHIND, TO SET THE RESIN AND CREATE A STRUCTURE STRONG ENOUGH TO HOLD UP AGAINST MOLTEN METAL. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Dasgupta, Amrita; Udgaonkar, Jayant B; Das, Payel
2014-06-19
The unfolding of the SH3 domain of the PI3 kinase in aqueous urea has been studied using a synergistic experiment-simulation approach. The experimental observation of a transient wet molten globule intermediate, IU, with an unusual non-native burial of the sole Trp residue, W53, provides the benchmark for the unfolding simulations performed (eight in total, each at least 0.5 μs long). The simulations reveal that the partially unfolded IU ensemble is preceded by an early native-like molten globule intermediate ensemble I*. In the very initial stage of unfolding, dry globule conformations with the protein core filled with urea instead of water are transiently observed within the I* ensemble. Water penetration into the urea-filled core of dry globule conformations is frequently accompanied by very transient burial of W53. Later during gradual unfolding, W53 is seen to again become transiently buried in the IU ensemble for a much longer time. In the structurally heterogeneous IU ensemble, conformational flexibility of the C-terminal β-strands enables W53 burial by the formation of non-native, tertiary contacts with hydrophobic residues, which could serve to protect the protein from aggregation during unfolding.
Khan, Abdulaziz M.; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W.; Elbaz, Ayman M.; Sarathy, S. Mani; Tao, Franklin (Feng)
2017-01-01
Abstract Sodium‐based catalysts (such as Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X‐ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient‐pressure X‐ray photoelectron spectroscopy (AP‐XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800 °C, and these species are useful for various gas‐phase hydrocarbon reactions, including the selective transformation of methane to ethane. PMID:28650565
Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu; ...
2017-07-24
Sodium-based catalysts (such as Na 2 WO 4) were proposed to selectively catalyze OH radical formation from H 2O and O 2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na 2WO 4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na 2O 2 species,more » which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800°C, and these species are useful for various gasphase hydrocarbon reactions, including the selective transformation of methane to ethane.« less
Lobell, G.M.
1958-02-11
This patent is drawn to an injection molding apparatus for producing a tube closed at one end wherein the normally unsupported end of the core located in the cavity during the injection of the molten material to fill the space between the core and cavity wall, which supporting means is automatically removed from operation during the forming of the closed end of the tube. This support means is a plug extending through the end of the core into a recess in the bottom of the cavity where the closed end of the tube is to be formed. The plug is spring pressed into said recess and is forced out of the recess by a slidable bushing at the top of the cavity which is moved against the force of the spring by the molten material when it fills the uppormost open end portion of the cavity, thereby permitting the closed end of the tube to be formed.
The melting curve of iron to 250 gigapascals - A constraint on the temperature at earth's center
NASA Technical Reports Server (NTRS)
Williams, Quentin; Jeanloz, Raymond; Bass, Jay; Svendsen, Bob; Ahrens, Thomas J.
1987-01-01
The melting curve of iron, the primary constituent of earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 GPa) is 4800 + or - 200 K, whereas at the inner core-outer core boundary (330 GPa), it is 7600 + or - 500 K. A melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at earth's center are inferred. This latter value is the first experimental upper bound on the temperature at earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.
A post-Galileo view of Io's interior
Keszthelyi, L.; Jaeger, W.L.; Turtle, E.P.; Milazzo, M.; Radebaugh, J.
2004-01-01
We present a self-consistent model for the interior of Io, taking the recent Galileo data into account. In this model, Io has a completely molten core, substantially molten mantle, and a very cold lithosphere. Heat from magmatic activity can mobilize volatile compounds such as SO2 in the lithosphere, and the movement of such cryogenic fluids may be important in the formation of surface features including sapping scarps and paterae. ?? Published by Elsevier Inc.
EXPERIMENTAL MOLTEN-SALT-FUELED 30-Mw POWER REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, L.G.; Kinyon, B.W.; Lackey, M.E.
1960-03-24
A preliminary design study was made of an experimental molten-salt- fueled power reactor. The reactor considered is a single-region homogeneous burner coupled with a Loeffler steam-generating cycle. Conceptual plant layouts, basic information on the major fuel circuit components, a process flowsheet, and the nuclear characteristics of the core are presented. The design plant electrical output is 10 Mw, and the total construction cost is estimated to be approximately ,000,000. (auth)
Experimental constraints on light elements in the Earth’s outer core
Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian
2016-01-01
Earth’s outer core is liquid and dominantly composed of iron and nickel (~5–10 wt%). Its density, however, is ~8% lower than that of liquid iron, and requires the presence of a significant amount of light element(s). A good way to specify the light element(s) is a direct comparison of density and sound velocity measurements between seismological data and those of possible candidate compositions at the core conditions. We report the sound velocity measurements of a model core composition in the Fe-Ni-Si system at the outer core conditions by shock-wave experiments. Combining with the previous studies, we found that the best estimate for the outer core’s light elements is ~6 wt% Si, ~2 wt% S, and possible ~1–2.5 wt% O. This composition satisfies the requirements imposed by seismology, geochemistry, and some models of the early core formation. This finding may help us to further constrain the thermal structure of the Earth and the models of Earth’s core formation. PMID:26932596
NASA Astrophysics Data System (ADS)
Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin
2018-02-01
Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.
Functionally graded alumina-based thin film systems
Moore, John J.; Zhong, Dalong
2006-08-29
The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.
Core formation in the shergottite parent body and comparison with the earth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treiman, A.H.; Jones, J.H.; Drake, M.J.
1987-03-30
The mantle of the shergottite parent body (SPB) is depleted relative to the bulk SPB in siderophile and chalcophile elements; these elements are inferred to reside in the SPB's core. Our chemical model of these depletions rests on a physically plausible process of segregation of partially molten metal form partially molten silicates as the SPB grows and is heated above silicate and metallic solidi during accretion. Metallic and silicate phases equilibrate at low pressures as new material is accreted to the SPB surface. Later movement of the metallic phases to the planet's center is so rapid that high-pressure equilibration ismore » insignificant. Partitioning of siderophile and chalcophile elements among solid and liquid metal and silicate determines their abundances in the SPB mantle. Using partition coefficients and the SPB mantle composition determined in earlier studies, we model the abundances of Ag, Au, Co, Ga, Mo, Ni, P, Re, S, and W with free parameters being oxygen fugacity, proportion of solid metal formed, proportion of metallic liquid formed, and proportion of silicate that is molten.« less
Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction?
Walker, R.J.; Morgan, J.W.; Horan, M.F.
1995-01-01
Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D??? layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-188 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.
Physicochemical properties of kiwifruit starch.
Li, Dongxing; Zhu, Fan
2017-04-01
Three varieties of golden kiwifruit (Actinidia chinensis) (Gold3, Gold9 and Hort16A) were collected at the commercial harvesting time, and physicochemical properties of starches from core and outer pericarp were studied. Starch contents (dry weight basis) in outer pericarp and core tissues ranged from 38.6 to 51.8% and 34.6 to 40.7%, respectively. All the kiwifruit starches showed B-type polymorph. Compared to the outer pericarp starches, amylose content and enzyme susceptibility of core starches were higher, and the degree of crystallinity, granule size and gelatinization parameters of core starches were somewhat lower. This suggests different biosynthetic properties between these two starches. The enthalpy changes of gelatinization of outer pericarp starches were high (∼21J/g). Rheological properties of outer pericarp starches were compared with normal maize and potato starches showed high yield stress of flow properties. This study revealed the unique properties of kiwifruit starch among various types of starches. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hernlund, J. W.; Matsui, H.
2017-12-01
Ultralow-velocity zones (ULVZ) are increasingly illuminated by seismology, revealing surprising diversity in size, shape, and physical characteristics. The only viable hypotheses are that ULVZs are a compositionally distinct FeO-enriched dense material, which could have formed by fractional crystallization of a basal magma ocean, segregation of subducted banded iron formations, precipitation of solids from the outer core, partial melting and segregation of iron-rich melts from subducted basalts, or most likely a combination of many different processes. But many questions remain: Are ULVZ partially molten in some places, and not in others? Are ULVZ simply the thicker portions of an otherwise global thin layer, covering the entire CMB and thus blocking or moderating chemical interactions between the core and overlying mantle? Is such a layer inter-connected and able to conduct electrical currents that allow electro-magnetic coupling of core and mantle angular momentum? Are they being eroded and shrinking in size due to viscous entrainment, or is more material being added to ULVZ over time? Here we derive an advection-diffusion-like equation that governs the dynamical evolution of a chemically distinct ULVZ. Analysis of this equation shows that ULVZ should become readily swept aside by viscous mantle flows at the CMB, exposing "ordinary mantle" to the top of the core, thus inducing chemical heterogeneity that drives lateral CMB chemical reactions. These reactions are correlated with heat flux, thus maintaining large-scale pressure variations atop the core that induce cyclone-like flows centered around ULVZ and ponded subducted slabs. We suggest that turbulent diffusion across adjacent cyclone streams inside a stratified region atop the core readily accommodates lateral transport and re-distribution of components such as O and Si, in addition to heat. Our model implies that the deeper core is at least partly shielded from the influence of strong heat flux variations at the CMB which might otherwise cause problems for producing a geodynamo.
NASA Astrophysics Data System (ADS)
Horstmann, Marian; Humayun, Munir; Harries, Dennis; Langenhorst, Falko; Chabot, Nancy L.; Bischoff, Addi; Zolensky, Michael E.
2013-05-01
Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide-metal assemblage MS-166 was found highly enriched in wüstite (Fe1-xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe-sulfide and minor amounts of the outer Ni-rich portions of the originally zoned metal in MS-166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite-rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni-rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS-166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.
Si-depleted outer core inferred from sound velocity measurements of liquid Fe-Si alloys
NASA Astrophysics Data System (ADS)
Nakajima, Y.; Imada, S.; Hirose, K.; Kuwayama, Y.; Sinmyo, R.; Tateno, S.; Ozawa, H.; Tsutsui, S.; Uchiyama, H.; Baron, A. Q. R.
2016-12-01
Recent core formation models [1,2] suggested that a large amount of Si could have been incorporated into the core forming metals in the early stage of the Earth. These studies gave estimates for the Si content in the core, from 2 to 9 wt.%. In order to constrain the Si content of the outer core, we have determined the sound wave velocity of liquid Fe-Si alloys under high pressures and high temperatures. Starting materials of Fe-Si alloys with 6.5 and 9 wt.% Si were melted in a laser-heated diamond-anvil cell. The longitudinal acoustic phonon excitation of a liquid metal was measured up to 52 GPa and 3200 K by using high resolution inelastic X-ray scattering spectroscopy at beamline BL35XU [3] of the SPring-8 synchrotron facility. Our results show that silicon significantly increases the P-wave velocity of liquid Fe. Seismological observation shows that the P-wave velocity in the outer core is 3-4% faster than in pure iron. Comparing the present results with seismological observations, the silicon content of the outer core should be limited to be <2 wt.%, significantly lower than previous estimates based on the element partitioning between core forming mental and silicate magma ocean during core formation processes. This indicates that the present-day core is depleted in Si relative to the ancient core just after core formation, which agrees with the recent proposal [4] that the Si content in the outer core has been diminished by SiO2 crystallization through the core cooling history. [1] Rubie et al. (2011) Earth Planet. Sci. Lett. 301, 31-42. [2] Siebert et al. (2013) Science 339, 1194-1197. [3] Baron et al. (2000) J. Phys. Chem. Solids 61, 461-465 [4] Hirose et al. (2015) Abstract presented at AGU Fall Meeting 2015.
Gravitational Core-Mantle Coupling and the Acceleration of the Earth
NASA Technical Reports Server (NTRS)
Rubincam, David Parry; Smith, David E. (Technical Monitor)
2001-01-01
Gravitational core-mantle coupling may be the cause of the observed variable acceleration of the Earth's rotation on the 1000 year timescale. The idea is that density inhomogeneities which randomly come and go in the liquid outer core gravitationally attract density inhomogeneities in the mantle and crust, torquing the mantle and changing its rotation state. The corresponding torque by the mantle on the core may also explain the westward drift of the magnetic field of 0.2 deg per year. Gravitational core-mantle coupling would stochastically affect the rate of change of the Earth's obliquity by just a few per cent. Its contribution to polar wander would only be about 0.5% the presently observed rate. Tidal friction is slowing down the rotation of the Earth, overwhelming a smaller positive acceleration from postglacial rebound. Coupling between the liquid outer core of the Earth and the mantle has long been a suspected reason for changes in the length-of-day. The present investigation focuses on the gravitational coupling between the density anomalies in the convecting liquid outer core and those in the mantle and crust as a possible cause for the observed nonsecular acceleration on the millenial timescale. The basic idea is as follows. There are density inhomogeneities caused by blobs circulating in the outer core like the blobs in a lava lamp; thus the outer core's gravitational field is not featureless. Moreover, these blobs will form and dissipate somewhat randomly. Thus there will be a time variability to the fields. These density inhomogeneities will gravitationally attract the density anomalies in the mantle.
Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre
2014-11-04
A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).
Laminated electromagnetic pump stator core
Fanning, Alan W.
1995-01-01
A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference.
Alkali metal protective garment and composite material
Ballif, III, John L.; Yuan, Wei W.
1980-01-01
A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.
Qian, Jinghua; Garrett, Teresa A; Raetz, Christian R H
2014-03-04
There are five distinct core structures in the lipopolysaccharides of Escherichia coli and at least two in Salmonella isolates, which vary principally in the outer core oligosaccharide. Six outer core glycosyltransferases, E. coli K-12 WaaG, WaaB, and WaaO and Salmonella typhimurium WaaI, WaaJ, and WaaK, were cloned, overexpressed, and purified. A novel substrate for WaaG was isolated from ΔwaaG E. coli overexpressing the lipid A phosphatase lpxE and the lipid A late acyltransferase lpxM. The action of lpxE and lpxM in the ΔwaaG background yielded heptose2-1-dephospho Kdo2-lipid A, a 1-dephosphorylated hexa-acylated lipid A with the inner core sugars that is easily isolated by organic extraction. Using this structurally defined acceptor and commercially available sugar nucleotides, each outer core glycosyltransferases was assayed in vitro. We show that WaaG and WaaB add a glucose and galactose sequentially to heptose2-1-dephospho Kdo2-lipid A. E. coli K-12 WaaO and S. typhimurium WaaI add a galactose to the WaaG/WaaB product but can also add a galactose to the WaaG product directly without the branched core sugar added by WaaB. Both WaaI and WaaO require divalent metal ions for optimal activity; however, WaaO, unlike WaaI, can add several glucose residues to its lipid acceptor. Using the product of WaaG, WaaB, and WaaI, we show that S. typhimurium WaaJ and WaaK transfer a glucose and N-acetylglucosamine, respectively, to yield the full outer core. This is the first demonstration of the in vitro assembly of the outer core of the lipopolysaccharide using defined lipid A-oligosaccharide acceptors and sugar donors.
2015-01-01
There are five distinct core structures in the lipopolysaccharides of Escherichia coli and at least two in Salmonella isolates, which vary principally in the outer core oligosaccharide. Six outer core glycosyltransferases, E. coli K-12 WaaG, WaaB, and WaaO and Salmonella typhimurium WaaI, WaaJ, and WaaK, were cloned, overexpressed, and purified. A novel substrate for WaaG was isolated from ΔwaaG E. coli overexpressing the lipid A phosphatase lpxE and the lipid A late acyltransferase lpxM. The action of lpxE and lpxM in the ΔwaaG background yielded heptose2-1-dephospho Kdo2-lipid A, a 1-dephosphorylated hexa-acylated lipid A with the inner core sugars that is easily isolated by organic extraction. Using this structurally defined acceptor and commercially available sugar nucleotides, each outer core glycosyltransferases was assayed in vitro. We show that WaaG and WaaB add a glucose and galactose sequentially to heptose2-1-dephospho Kdo2-lipid A. E. coli K-12 WaaO and S. typhimurium WaaI add a galactose to the WaaG/WaaB product but can also add a galactose to the WaaG product directly without the branched core sugar added by WaaB. Both WaaI and WaaO require divalent metal ions for optimal activity; however, WaaO, unlike WaaI, can add several glucose residues to its lipid acceptor. Using the product of WaaG, WaaB, and WaaI, we show that S. typhimurium WaaJ and WaaK transfer a glucose and N-acetylglucosamine, respectively, to yield the full outer core. This is the first demonstration of the in vitro assembly of the outer core of the lipopolysaccharide using defined lipid A-oligosaccharide acceptors and sugar donors. PMID:24479701
Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico
Teasdale, W.E.; Pemberton, R.R.
1984-01-01
This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)
Characterization of polymer chain fractions of kiwifruit starch.
Li, Dongxing; Zhu, Fan
2018-02-01
In this report, the amylose composition and molecular structure of starches from the core and outer pericarp of 3 golden kiwifruit varieties were characterised, using enzymatic and chromatographic techniques. Starches from the core tissues of kiwifruit tend to have higher amylose contents (by ∼3-5%) and longer unit chains of both amylopectins and their φ, β-limit dextrins (LDs) than those of the outer pericarp starches. The contents of short B-chains of the φ, β-LDs of amylopectins from the outer pericarp were higher (by ∼3%) than those of φ, β-LDs of the core amylopectins. Overall, the composition and structure of starches from the outer pericarp and core tissues of a golden kiwifruit were different. This study provides a structural basis to further investigate the starch degradation in kiwifruit, which may be of importance for the storage and eating quality of the fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid
NASA Astrophysics Data System (ADS)
Bryson, James F. J.; Weiss, Benjamin P.; Harrison, Richard J.; Herrero-Albillos, Julia; Kronast, Florian
2017-08-01
The direction in which a planetary core solidifies has fundamental implications for the feasibility and nature of dynamo generation. Although Earth's core is outwardly solidifying, the cores of certain smaller planetary bodies have been proposed to inwardly solidify due to their lower central pressures. However, there have been no unambiguous observations of inwardly solidified cores or the relationship between this solidification regime and planetary magnetic activity. To address this gap, we present the results of complimentary paleomagnetic techniques applied to the matrix metal and silicate inclusions within the IVA iron meteorites. This family of meteorites has been suggested to originate from a planetary core that had its overlaying silicate mantle removed by collisions during the early solar system. This process is thought to have produced a molten ball of metal that cooled rapidly and has been proposed to have inwardly solidified. Recent thermal evolution models of such a body predict that it should have generated an intense, multipolar and time-varying dynamo field. This field could have been recorded as a remanent magnetisation in the outer, cool layers of a solid crust on the IVA parent core. We find that the different components in the IVA iron meteorites display a range of paleomagnetic fidelities, depending crucially on the cooling rate of the meteorite. In particular, silicate inclusions in the quickly cooled São João Nepomuceno meteorite are poor paleomagnetic recorders. On the other hand, the matrix metal and some silicate subsamples from the relatively slowly cooled Steinbach meteorite are far better paleomagnetic recorders and provide evidence of an intense (≳100 μT) and directionally varying (exhibiting significant changes on a timescale ≲200 kyr) magnetic field. This is the first demonstration that some iron meteorites record ancient planetary magnetic fields. Furthermore, the observed field intensity, temporal variability and dynamo lifetime are consistent with thermal evolution models of the IVA parent core. Because the acquisition of remanent magnetisation by some IVA iron meteorites require that they cooled below their Curie temperature during the period of dynamo activity, the magnetisation carried by Steinbach also provides strong evidence favouring the inward solidification of its parent core.
Takanabe, Kazuhiro; Khan, Abdulaziz M; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W; Elbaz, Ayman M; Sarathy, S Mani; Tao, Franklin Feng
2017-08-21
Sodium-based catalysts (such as Na 2 WO 4 ) were proposed to selectively catalyze OH radical formation from H 2 O and O 2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na 2 WO 4 , which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na 2 O 2 species, which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800 °C, and these species are useful for various gas-phase hydrocarbon reactions, including the selective transformation of methane to ethane. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Khan, A.; Connolly, J. A.; Pommier, A.
2013-12-01
Analysis of lunar seismic and lunar laser ranging data has yielded evidence that has been interpreted to indicate a molten zone in the lower-most mantle and/or the outer core of the Moon. Such a zone would provide strong constraints on models of the thermal evolution of the Moon. Here we invert lunar geophysical data in combination with phase-equilibrium modeling to derive information about the thermo-chemical and physical structure of the deep lunar interior. Specifically, we assess whether a molten layer is required by the geophysical data and, if so, its likely composition and physical properties (e.g., density and seismic wave speeds). The data considered are mean mass and moment of inertia, second-degree tidal Love number, and frequency-dependent electromagnetic sounding data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is indeed required to explain the geophysical data. If this dissipative region is located within the mantle, then the solidus is crossed at a depth of ~1200 km (>1600 deg C). The apparent absence of far-side deep moonquakes (DMQs) is supporting evidence for a highly dissipative layer. Inverted compositions for the partially molten layer (typically 100--200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. While the melt phase in >95 % of inverted models is neutrally buoyant at pressures of ~4.5--4.6 GPa, the melt contains less TiO2 (>~4 wt %) than the Ti-rich (~16 wt % TiO2) melts that produced a set of high-density primitive lunar magmas (~3.4 g/ccm). Melt densities computed here range from 3.3 to 3.4 g/ccm bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.
NASA Technical Reports Server (NTRS)
Kennedy, G. C.; Higgins, G. H.
1973-01-01
Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1998-01-01
The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.
NASA Technical Reports Server (NTRS)
Voorhies, C. V.
1999-01-01
The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2005-12-01
Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5-14 TW. In the absence of heat-producing elements in the core, such high heat flow rates require an inner core younger than ~1 Ga and preclude the development of significant 186Os enrichment in the outer core. Experimental studies suggest that potassium may partition into Fe-S-O liquids during core formation. Radioactive decay of potassium in the core could provide an additional heat source and reconcile geophysical evidence for high core/mantle heat flow with apparent geochemical evidence for an ancient inner core. However, high concentrations of chalcophile elements such as Cu in the mantle are inconsistent with significant segregation of a S-rich liquid during core formation, precluding K partitioning into the core by this mechanism. Furthermore, core formation scenarios that would lead to high K content in the core (e.g., core formation prior to terrestrial volatile depletion) also result in high core Pb concentrations. Core/mantle interaction would then produce strong negative correlations between 186Os/188Os and 207Pb/204Pb ratios, but such correlations are not observed. In summary, elevated 186Os/188Os ratios in some plume-derived lavas are unlikely to reflect core/mantle interaction because the inner core is too young for this isotopic signature to have developed in the outer core. Melt generation from pyroxenite or fractionation of PGEs between sulfide melts and monosulfide solid solutions provide alternative mechanisms for generating ancient mantle reservoirs with elevated Pt/Os and 186Os/188Os.
Low temperature chemical processing of graphite-clad nuclear fuels
Pierce, Robert A.
2017-10-17
A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.
NASA Astrophysics Data System (ADS)
Sooby, Elizabeth; Balachandran, Shreyas; Foley, David; Hartwig, Karl; McIntyre, Peter; Phongikaroon, Supathorn; Pogue, Nathaniel; Simpson, Michael; Tripathy, Prabhat
2011-10-01
For an accelerator-driven subcritical molten salt fission core to survive its 50+ year fuel life, the primary vessel, heat exchanger, and various internal components must be made of materials that resist corrosion and radiation damage in a high-temperature environment, (500-800 C). An experimental study of the corrosion behavior of candidate metals in contact with molten salt is being conducted at the Center for Advanced Energy Studies. Initial experiments have been run on Nb, Ta, Ni, two zirconium alloys, Hastelloy-N, and a series of steel alloys to form a base line for corrosion in both chloride and bromide salt. Metal coupons were immersed in LiCl-KCl or LiBr-KBr at 700 C in an inert-atmosphere. Salt samples were extracted on a time schedule over a 24-hr period. The samples were analyzed using inductively coupled plasma-mass spectrometry to determine concentrations of metals from corrosion. Preliminary results will be presented.
Mitarai, O.; Xiao, C.; McColl, D.; ...
2015-03-24
A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitarai, O.; Xiao, C.; McColl, D.
A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less
Farmer, M. T.; Gerardi, C.; Bremer, N.; ...
2016-10-31
The reactor accidents at Fukushima-Dai-ichi have rekindled interest in late phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area include core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) programs at Argonne National Laboratory included the conduct of large scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensionalmore » molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning, as well as the development and validation of models and codes that can be used to extrapolate the experiment results to plant conditions. This paper provides a high level overview of the key experiment results obtained during the program. Finally, a discussion is also provided that describes technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.; Gerardi, C.; Bremer, N.
The reactor accidents at Fukushima-Dai-ichi have rekindled interest in late phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area include core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) programs at Argonne National Laboratory included the conduct of large scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensionalmore » molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning, as well as the development and validation of models and codes that can be used to extrapolate the experiment results to plant conditions. This paper provides a high level overview of the key experiment results obtained during the program. Finally, a discussion is also provided that describes technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.« less
Seismic Velocity Anomalies in the Outer Core: The Final Frontier
NASA Astrophysics Data System (ADS)
Stevenson, D. J.
2008-12-01
Variation in density along outer core geoid surfaces must be very small (of order one part in a billion) since the resulting fluid motions and buoyancy fluxes would otherwise be prohibitively large for any reasonable choice of outer core viscosity. In any situation where seismic velocity variations are proportional to density variations (a generalized Birch's "law") this means that the resulting seismic travel time variations in the outer core would be unobservable. The largest lateral variations in the outer core are thus likely to arise from the distortion of geoid surfaces caused by density anomalies in the mantle or inner core. However, these do not change on decadal timescales and would be very difficult to separate from the inner core or mantle variations that cause them. Nonetheless, a recent study (Dai and Song, GRL, vol. 35, L16311, doi:10.1029/2008GL034895) provides evidence for time-variable outer core seismic velocity at the level of ten parts per million. Assuming this is real, I argue that the best candidate explanation is that all or part of the outer core is a two-phase medium consisting of a small mass fraction of small (ten or 100 micron-sized) particles of exsolving silicate material suspended in the convecting liquid. The seismic velocity of this two phase medium can vary at the desired level should the size distribution of particles vary from place to place (and with time) as one would expect in a convecting system, even though the mean density of the medium is invariant at the level of a part per billion, as required by dynamical considerations (thus invalidating Birch's "law"). The seismic velocity variation depends on the ratio of diffusion times to seismic periods, where the diffusion times are thermal or compositional for the particles or the particle spacing. This idea is not new (cf. Stevenson, JGR, 1983) but gains increased impetus from recent work on the nature of core formation and the desirability of an additional energy source for driving the geodynamo, as would arise if of order 10km of mantle underplating occurred over all of geologic time. The amount of suspended material will be tiny at any one time, illustrating the remarkable sensitivity of seismic waves to the microstructure of the medium. Consequences of this picture include some dissipation (finite Q) in the outer core and a significant frequency dependence of this effect, but precise predictions are difficult because of uncertainties in particle kinetics and convective velocities. The two-phase region may also influence radial seismic velocity profiles, particularly in the layers immediately adjacent to the boundaries (e.g., the layer just below the core-mantle boundary), an effect that has been suggested in the literature on many occasions. Even so, this explanation for lateral variability remains marginal at best, suggesting that the claimed observation is either not real or that some other explanation still awaits discovery.
Punchihewa, Chandanamali; Dai, Jixun; Carver, Megan; Yang, Danzhou
2007-01-01
Human topoisomerase I (topo I) is an essential cellular enzyme that relaxes DNA supercoiling. The 6.3 kDa C-terminal domain of topo I contains the active site tyrosine (Tyr723) but lacks enzymatic activity by itself. Activity can be fully reconstituted when the C-terminal is associated with the 56 kDa core domain. Even though several crystal structures of topo I/DNA complexes are available, crystal structures of the free topo I protein or its individual domain fragments have been difficult to obtain. In this report we analyze the human topo I C-terminal domain structure using a variety of biophysical methods. Our results indicate that this fragment protein (topo6.3) appears to be in a molten globule state. It appears to have a native-like tertiary fold that contains a large population of α-helix secondary structure and extensive surface hydrophobic regions. Topo6.3 is known to be readily activated with the association of the topo I core domain, and the molten globule state of topo6.3 is likely to be an energy-favorable conformation for the free topo I C-terminal domain protein. The structural fluctuation and plasticity may represent an efficient mechanism in the topo I functional pathway, where the flexibility aids in the complementary association with the core domain and in the formation of a fully productive topo I complex. PMID:17434318
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.
The overall objective of the current work is to carry out a scoping analysis to determine the impact of ATF on late phase accident progression; in particular, the molten core-concrete interaction portion of the sequence that occurs after the core debris fails the reactor vessel and relocates into containment. This additional study augments previous work by including kinetic effects that govern chemical reaction rates during core-concrete interaction. The specific ATF considered as part of this study is SiC-clad UO 2.
BNL program in support of LWR degraded-core accident analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsberg, T.; Greene, G.A.
1982-01-01
Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures.
Melnik, Tatiana N.; Majorina, Maria A.; Larina, Daria S.; Kashparov, Ivan A.; Samatova, Ekaterina N.; Glukhov, Anatoly S.; Melnik, Bogdan S.
2014-01-01
At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to “strengthen” the protein) can result in destabilization of the protein native state of apomyoglobin. PMID:24892675
Melnik, Tatiana N; Majorina, Maria A; Larina, Daria S; Kashparov, Ivan A; Samatova, Ekaterina N; Glukhov, Anatoly S; Melnik, Bogdan S
2014-01-01
At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to "strengthen" the protein) can result in destabilization of the protein native state of apomyoglobin.
NASA Astrophysics Data System (ADS)
Cheng, Ting; Baney, Ronald H.; Tulenko, James
2010-10-01
Silicon carbide is one of the prime candidates as a matrix material in inert matrix fuels (IMF) being designed to reduce the plutonium inventories. Since complete fission and transmutation is not practical in a single in-core run, it is necessary to separate the non-transmuted actinide materials from the silicon carbide matrix for recycling. In this work, SiC was corroded in sodium carbonate (Na 2CO 3) and potassium carbonate (K 2CO 3), to form water soluble sodium or potassium silicate. Separation of the transuranics was achieved by dissolving the SiC corrosion product in boiling water. Ceria (CeO 2), which was used as a surrogate for plutonium oxide (PuO 2), was not corroded in these molten salt environments. The molten salt depth, which is a distance between the salt/air interface to the upper surface of SiC pellets, significantly affected the rate of corrosion. The corrosion was faster in K 2CO 3 than in Na 2CO 3 molten salt at 1050 °C, when the initial molten salt depths were kept the same for both salts.
Mercury's Thermal Evolution, Dynamical Topography and Geoid
NASA Astrophysics Data System (ADS)
Ziethe, Ruth; Benkhoff, Johannes
Among the terrestrial planets Mercury is not only the smallest, but also the densest (after correction for self-compression). To explain Mercury's high density it is considered likely that the planet's mantle was removed during a giant impact event, when proto-Mercury was already differentiated into an iron core and a silicate mantle. Beside the damage to the planet's mantle the vaporization would cause a significant loss of volatile elements, leaving the remaining planet molten and dominated by extremely refractory material.Since the arrival of a spacecraft at the enigmatic planet is not to be expected before 2011 (Messenger) or 2019 (BepiColombo) we might already prepare ourselves for the upcoming results and perform tests that allow some anticipation of the measured data. The hermean mantle is modelled as an internally and bottom heated, isochemical fluid in a spherical shell. The principle of this convection model is widely accepted and is used for various models of thermal evolution of terrestrial planets, e.g., the Earth, Mars or the Moon. We are solving the hydrodynamical equations, derived from the conservation of mass, momentum and energy. A program originally written by S. Zhang is used to solve the temperature field which employs a combination of a spectral and a finite difference method. Beside the large core as a heat source 'from below' the decay of radioactive isotopes provides internal heating of the hermean mantle. The viscosity of the mantel material depends exponentially on the inverse temperature. The model results show the typical behaviour of a one-plate-planet, meaning the surface is not broken into several tectonic plates but the outside is a single rigid shell. The thermal evolution is generally charaterized by the growth of a massive lithosphere on top of the convecting mantle. The lower mantle and core cool comparatively little and stay at temperatures between 1900K and 2000K until about 2.0Ga after the simulation was started. The stagnant lid comprises roughly half the mantle after only 0.5Ga. Since the rigid lithosphere does not take part in the convection anymore, the heat coming from the interior (due to the cooling of the large core) can only be transported through the lithosphere by thermal conduction. This is a significantly less effective mechanism of heat transport than convection and hence the lithosphere forms an insulating layer. As a result, the interior is kept relatively warm.Because the mantle is relatively shallow compared to the planet's radius, and additionally the thick stagnant lid is formed relatively rapid, the convection is confined to a layer of only about 200km to 300km. Convection structures are therefore relatively small structured. The flow patterns in the early evolution show that mantle convection is characterized by numerous upwelling plumes, which are fed by the heat flow from the cooling core. These upwellings are relatively stable regarding their spatial position. As the core cools down the temperature anomalies become colder and less pronounced but not less numerous. In our calculations, a region of partial melt in the mantle forms immediately after the start of the model at a depths of roughly 220km. While in the entire lower mantle the temperature exceeds the solidus, the highest melt degrees can be found in the upwelling plumes. The partial molten region persists a significant time (up to 2.5Ga). How long the partial molten zone actually survives depends strongly on the initial conditions of the model. For instance, an outer layer with a reduced thermal conductivity would keep the lower mantle significantly warmer and a molten layer survives longer. The hot upwellings cause a surface deformation (dynamical topography) which itself causes a gravity anomaly. Due to the weak constraints of important parameters (e.g. sulfur content of the core, mantle rheology, amount and distribution of radiogenic heat sources, planetary contraction, thermal conductivity, etc) numerous models are required to understand the importance and influence of the mentioned variables. The models variety is huge and more investigations of the results on initial parameters are yet to be performed. The special interior structure of Mercury compared to the other terrestrial planets makes his thermal history very unique. Future work will cope with the thorough investigation of several parameters and their influence on the model outcome. Eventually observables like topography can be measured with spacecrafts in orbit (e.g. BepiColombo) and then allow conclusions on the interior dynamics of Mercury.
Laminated electromagnetic pump stator core
Fanning, A.W.
1995-08-08
A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.
Stevenson, D J
1981-11-06
Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data.
Concentric core optical fiber with multiple-mode signal transmission
Muhs, J.D.
1997-05-06
A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.
Concentric core optical fiber with multiple-mode signal transmission
Muhs, Jeffrey D.
1997-01-01
A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.
2014-12-01
Paleointensity measurements of Archean rocks reveal a strong geodynamo at ~3.45 Ga, while excess nitrogen content of lunar soil samples implies no geodynamo at ~3.9 Ga. Here I propose that initiation of a strong geodynamo is delayed due to accretion style of Earth, involving collision and merging of a few dozen Moon to Mars size planetary embryos. Two accretion scenarios consisting of 25 and 50 embryos are investigated. The collision of an embryo heats the proto-Earth's core differentially and the rotating low-viscosity core stably stratifies, creating a spherically symmetric and radially increasing temperature distribution. Convection starts in the outer core after each impact but is destroyed by the next impact. The iron core of an impacting embryo descends in the mantle and merges to the proto-Earth's core. Both adiabatic and non-adiabatic merging cases are studied. A major part of the gravitational energy released due to core merging is used to lift up the upper portion of the core to emplace the impactor core material at the neutrally buoyant level in the proto-Earth's core. The remaining energy is converted to heat. In the adiabatic case the merging embryo's core retains all of the remaining energy, while in the non-adiabatic merging 50% of the remaining energy is shared with the outer part of the proto-Earth's core where the embryo's core descends. The two merging models result in significantly different temperature distributions in the core at the end of accretion. After the accretion, the convecting shell in the outer core grows monotonically and generates geodynamo gradually. It takes about 50-100 Myr for the convecting shell to generate a strong dipole field at the surface, 50,000 to 100,000 nT, in the presence of a large stably stratified liquid inner core when the convecting outer core thickness exceeds about one half the radius of the Earth's core.
Viscous dissipation of energy at the stage of accumulation of the Earth
NASA Astrophysics Data System (ADS)
Yurie Khachay, Professor; Olga Hachay, Professor; Antipin, Alexandr
2017-04-01
In the papers [1,2] it is published the differentiation model of the proto planet cloud during the accumulation of the Earth's group planets. In [2] it was shown that the energy released during the decay of short-lived radioactive elements in the small size more than 50 km, it is enough that the temperature inside of the protoplanet becomes larger than the temperature of iron melting. It provides a realization of the matter differentiation process and convection development inside the inner envelopes. With increasing of the Earth, the forming region of the outer core remains in a molten state, although the power and viscosity of the layer changed. In [3] it is shown that during the sequence of growth changes of accumulated protoplanets, the main contribution of heat is provided first by radioactive sources, and then heated from above by converting the kinetic energy during the growing impact inside the Earth, and finally heated from below. That provides three types of driving mechanisms of convection: internal heat sources; heated top; heated from bottom and chemical-thermal convection. At all stages of proto Earth's development the convective heat-mass transfer becomes a most significant factor in the dynamics of the planet. However, the heat release due to friction in the viscous liquid of the outer core up to now was not still considered, or it was considered only for the formed planetary envelopes with a constant radius. In this paper we present the first results of thermal evolution numerical modeling of 3D spherical segment for a protoplanet with increasing radius and accounting random falling of bodies and particles. To describe the planetary accumulation Safronov equation is used [4]. For the quantitative account of the released heat by viscous friction a system of hydro dynamic equations for a viscous liquid is used. The obtained results show that the heat input due to viscous friction heat release at the early stage of planetary accumulation was very significant. That influence is defined by a set of factors. It was changed the width of the formed outer core. It was changed the distribution of the temperature and hydrostatic pressure inside the core and reciprocally the viscosity of the matter. It had been changed the orbit parameters of the system Earth-Moon. The received results depend from the parameters, the values of which are known with large degree of uncertainty. They have to be specified during next researchers. This work was supported by grant RFBRI №16-05-00540 References. 1. V.Anfilogov,Y. Khachay ,2005, Possible variant of matter differentiation on the initial stage of Earth's forming //DAN, 2005, V. 403, № 6, p. 803-806. 2.V.Anfilogov,Y.Khachay ,2015, Some Aspects of the Solar System Formation. Springer Briefs of the Earth Sciences. -75p 3.Khachay Yu.V., Hachay O.A. Heat production by the viscous dissipation of energy at the stage of accumulation of the Earth. Geophysical Research AbstractsVol. 18, EGU2016-2825, 2016 4. Khachay Yu. Realization of thermal Convection into the initial Earth's Core on the Stage of planetary Accumulation // Geophysical Research Abstracts, Vol. 17, EGU2015-2211, 2015.
Voyager: The grandest tour. The mission to the outer planets
NASA Astrophysics Data System (ADS)
1991-04-01
A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.
Voyager: The grandest tour. The mission to the outer planets
NASA Technical Reports Server (NTRS)
1991-01-01
A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.
Selenium semiconductor core optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.
2015-02-15
Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less
The truth about laser fiber diameters.
Kronenberg, Peter; Traxer, Olivier
2014-12-01
To measure the various diameters of laser fibers from various manufacturers and compare them with the advertised diameter. Fourteen different unused laser fibers from 6 leading manufacturers with advertised diameters of 200, 270, 272, 273, 365, and 400 μm were measured by light microscopy. The outer diameter (including the fiber coating, cladding, and core), cladding diameter (including the cladding and the fiber core), and core diameter were measured. Industry representatives of the manufacturers were interviewed about the diameter of their fibers. For all fibers, the outer and cladding diameters differed significantly from the advertised diameter (P <.00001). The outer diameter, which is of most practical relevance for urologists, exhibited a median increase of 87.3% (range, 50.7%-116.7%). The outer, cladding, and core diameters of fibers with equivalent advertised diameters differed by up to 180, 100, and 78 μm, respectively. Some 200-μm fibers had larger outer diameters than the 270- to 273-μm fibers. All packaging material and all laser fibers lacked clear and precise fiber diameter information labels. Of 12 representatives interviewed, 8, 3, and 1 considered the advertised diameter to be the outer, the cladding, and the core diameter, respectively. Representatives within the same company frequently gave different answers. This study suggests that, at present, there is a lack of uniformity between laser fiber manufacturers, and most of the information conveyed to urologists regarding laser fiber diameter may be incorrect. Because fibers larger than the advertised laser fibers are known to influence key interventional parameters, this misinformation can have surgical repercussions. Copyright © 2014 Elsevier Inc. All rights reserved.
BNL severe-accident sequence experiments and analysis program. [PWR; BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, G.A.; Ginsberg, T.; Tutu, N.K.
1983-01-01
In the analysis of degraded core accidents, the two major sources of pressure loading on light water reactor containments are: steam generation from core debris-water thermal interactions; and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described.
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...
2017-07-10
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
NASA Technical Reports Server (NTRS)
Stevenson, D. J.
1981-01-01
Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my; Cioncolini, Andrea; Iacovides, Hector
The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software calledmore » FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.« less
High-gradient compact linear accelerator
Carder, B.M.
1998-05-26
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.
High-gradient compact linear accelerator
Carder, Bruce M.
1998-01-01
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.
Thermal Evolution of Earth's Mantle During the Accretion
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Roberts, J. H.
2017-12-01
Earth is likely formed by accreting Moon to Mars size embryos. The impact heating by an embryo melts the embryo and the upper mantle of the Earth beneath the impact site. The iron core of the embryo sinks and merges with the core of the Earth, while the mantle of the embryo mixes with the upper mantle of the Earth, producing a buoyant molten/partially molten magma pond. Strong but localized mantle dynamics results in fast lithostatic adjustment that pours out a huge amount of molten and partially molten magma which spread on the Earth, and together with impact ejecta creates a globe encircling magma ocean. The lithostatic adjustment diminishes as the magma ocean becomes globe encircling within 104 to 105 yr. The major part of the thermal evolution of Earth's mantle after an impact takes place in the presence of a thick and hot magma ocean, which hampers heat loss from the mantle and suppresses global mantle dynamics. Because the impact velocity of an embryo increases as the Earth grows, a given magma ocean is hotter than the previous ones. We investigated this scenario using 25 Moon to Mars size embryos. Due to random geographic impact sites we considered vertical impacts since no information is available about the impact angles. This may over estimate the impact heating by a factor of 1.4 with respect to the most probable impact angle of 45o. The thermal structure of the Earth at the end of accretion is layered, aside from the localized magma ponds that are distributed randomly due to the random geographic impact sites. We also take into account the impact heating of the solid lower mantle, the heating of the lower mantle by the gravitational energy released through sinking of an embryo's core. We then follow the thermal evolution of the mantle of a growing Earth using a 3D convection model. The Earth grows due to merging of the impactor iron core with the Earth's core, and the accumulating magma ocean on the surface. The growth enhances the lithostatic pressure in the Earth that in turn increase the temperature by compression. Each overlying magma ocean hampers global convection beneath, and the mean temperature gradient at the end of accretion is less steep than the adiabatic gradient, indicating that mantle convection during accretion is mainly localized [JHR1]Is this range because there are multiple models with different numbers of embryos?yes
Amprazi, Maria; Kotsifaki, Dina; Providaki, Mary; Kapetaniou, Evangelia G.; Fellas, Georgios; Kyriazidis, Ioannis; Pérez, Javier; Kokkinidis, Michael
2014-01-01
The dimeric Repressor of Primer (Rop) protein, a widely used model system for the study of coiled-coil 4-α-helical bundles, is characterized by a remarkable structural plasticity. Loop region mutations lead to a wide range of topologies, folding states, and altered physicochemical properties. A protein-folding study of Rop and several loop variants has identified specific residues and sequences that are linked to the observed structural plasticity. Apart from the native state, native-like and molten-globule states have been identified; these states are sensitive to reducing agents due to the formation of nonnative disulfide bridges. Pro residues in the loop are critical for the establishment of new topologies and molten globule states; their effects, however, can be in part compensated by Gly residues. The extreme plasticity in the assembly of 4-α-helical bundles reflects the capacity of the Rop sequence to combine a specific set of hydrophobic residues into strikingly different hydrophobic cores. These cores include highly hydrated ones that are consistent with the formation of interchain, nonnative disulfide bridges and the establishment of molten globules. Potential applications of this structural plasticity are among others in the engineering of bio-inspired materials. PMID:25024213
Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment
NASA Astrophysics Data System (ADS)
Mohammadi Zahrani, E.; Alfantazi, A. M.
2013-10-01
Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu
Sodium-based catalysts (such as Na 2 WO 4) were proposed to selectively catalyze OH radical formation from H 2O and O 2 at high temperatures. This reaction may proceed on molten salt state surfaces owing to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na 2WO 4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometry, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na 2O 2 species,more » which were hypothesized to be responsible for the formation of OH radicals, have been identified on the outer surfaces at temperatures of ≥800°C, and these species are useful for various gasphase hydrocarbon reactions, including the selective transformation of methane to ethane.« less
LC and ferromagnetic resonance in soft/hard magnetic microwires
NASA Astrophysics Data System (ADS)
Tian, Bin; Vazquez, Manuel
2015-12-01
The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.
2016-01-01
Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358
Transient state kinetic investigation of ferritin iron release
NASA Astrophysics Data System (ADS)
Ciasca, G.; Papi, M.; Chiarpotto, M.; Rodio, M.; Campi, G.; Rossi, C.; De Sole, P.; Bianconi, A.
2012-02-01
Increased iron concentration in tissues appears to be a factor in the genesis and development of inflammatory and degenerative diseases. By means of real-time small angle x-ray scattering measurements, we studied the kinetics of iron release from the ferritin inorganic core as a function of time and distance from the iron core centre. Accordingly, the iron release process follows a three step model: (i) a defect nucleation in the outer part of the mineral core, (ii) the diffusion of the reducing agent towards the inner part of the core, and (iii) the erosion of the core from the inner to the outer part.
NASA Technical Reports Server (NTRS)
Myrick, Thomas M. (Inventor)
2003-01-01
A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.
Combination pipe-rupture mitigator and in-vessel core catcher. [LMFBR
Tilbrook, R.W.; Markowski, F.J.
1982-03-09
A device is described which mitigates against the effects of a failed coolant loop in a nuclear reactor by restricting the outflow of coolant from the reactor through the failed loop and by retaining any particulated debris from a molten core which may result from coolant loss or other cause. The device reduces the reverse pressure drop through the failed loop by limiting the access of coolant in the reactor to the inlet of the failed loop. The device also spreads any particulated core debris over a large area to promote cooling.
Combination pipe rupture mitigator and in-vessel core catcher
Tilbrook, Roger W.; Markowski, Franz J.
1983-01-01
A device which mitigates against the effects of a failed coolant loop in a nuclear reactor by restricting the outflow of coolant from the reactor through the failed loop and by retaining any particulated debris from a molten core which may result from coolant loss or other cause. The device reduces the reverse pressure drop through the failed loop by limiting the access of coolant in the reactor to the inlet of the failed loop. The device also spreads any particulated core debris over a large area to promote cooling.
Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades
NASA Technical Reports Server (NTRS)
Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)
2014-01-01
Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.
NASA Astrophysics Data System (ADS)
Yu, W.; Wen, L.; Niu, F.
2002-05-01
We have extensively collected PKP waveforms around the PKP caustic distance range (141o - 147o) recorded in several dense regional arrays and the Global Seismic Network covering from 1990 to 2000. PKP observations at this distance range (141o - 147o) are usually purposely avoided in travel time analyses, because of the interference of various PKP branches. The observations there, however, will be extremely useful for constraining the seismic structures at both the top of the inner core and the bottom of the outer core. Moreover, because PKIKP phases sample a depth range of 100 km - 170 km below the inner-core boundary at this distant range, their observations fill the sampling depth gap between the PKiKP-PKIKP observations at the smaller distances and the PKPbc-PKIKP phases at the larger distances. Before the PKP caustics (141o - 145o), the diffracted PKP phases near the B caustics (PKPBdiff) and PKiKP phases are discernible in the long-period seismograms, and their differential travel times and waveforms could be used to constrain seismic structures at the bottom of the outer core and/or at the base of the mantle. The observed long-period PKiKP-PKPBdiff waveforms exhibit a hemispheric difference between those sampling the "eastern" and "western" hemispheres, with those sampling the "western" hemisphere showing larger time separations between the two phases. These observations can be explained by models with P velocity gradients of 0.0806 (km/s)/ 200 km for the "western" hemisphere and 0.114 (km/s)/200 km for the "eastern" hemisphere at the bottom of the outer core. Alternatively, these observations can also be explained by models with different velocity structures at the bottom 200 km of the mantle with P velocity variations in an order of 3 percent with respect to PREM. Broadband PKP observations after the PKP caustics (145o - 147o), on the other hand, provide high-quality constraints on the seismic structures at both the top of the inner core and the bottom of the outer core, as PKPbc phases can be used as excellent reference phases. We explore seismic models in both the bottom of the outer core and the top of the inner core, which can consistently explain the seismic observations at the caustic distance range (141o - 147o) and the PKiKP-PKIKP observations at the closer distances (Niu and Wen, Nature, 410, 1081-1084, 2001, Wen and Niu, JGR, submitted).
Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor
NASA Astrophysics Data System (ADS)
Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.
2014-04-01
The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.
Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath
NASA Astrophysics Data System (ADS)
Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia
2017-04-01
Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.
Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio
2004-11-01
Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.
Experimental and Theoretical Investigations on Viscosity of Fe-Ni-C Liquids at High Pressures
NASA Astrophysics Data System (ADS)
Chen, B.; Lai, X.; Wang, J.; Zhu, F.; Liu, J.; Kono, Y.
2016-12-01
Understanding and modeling of Earth's core processes such as geodynamo and heat flow via convection in liquid outer cores hinges on the viscosity of candidate liquid iron alloys under core conditions. Viscosity estimates from various methods of the metallic liquid of the outer core, however, span up to 12 orders of magnitude. Due to experimental challenges, viscosity measurements of iron liquids alloyed with lighter elements are scarce and conducted at conditions far below those expected for the outer core. In this study, we adopt a synergistic approach by integrating experiments at experimentally-achievable conditions with computations up to core conditions. We performed viscosity measurements based on the modified Stokes' floating sphere viscometry method for the Fe-Ni-C liquids at high pressures in a Paris-Edinburgh press at Sector 16 of the Advanced Photon Source, Argonne National Laboratory. Our results show that the addition of 3-5 wt.% carbon to iron-nickel liquids has negligible effect on its viscosity at pressures lower than 5 GPa. The viscosity of the Fe-Ni-C liquids, however, becomes notably higher and increases by a factor of 3 at 5-8 GPa. Similarly, our first-principles molecular dynamics calculations up to Earth's core pressures show a viscosity change in Fe-Ni-C liquids at 5 GPa. The significant change in the viscosity is likely due to a liquid structural transition of the Fe-Ni-C liquids as revealed by our X-ray diffraction measurements and first-principles molecular dynamics calculations. The observed correlation between structure and physical properties of liquids permit stringent benchmark test of the computational liquid models and contribute to a more comprehensive understanding of liquid properties under high pressures. The interplay between experiments and first-principles based modeling is shown to be a practical and effective methodology for studying liquid properties under outer core conditions that are difficult to reach with the current static high-pressure capabilities. The new viscosity data from experiments and computations would provide new insights into the internal dynamics of the outer core.
Encapsulation of high temperature molten salts
Oxley, James D.; Mathur, Anoop Kumar
2017-05-16
The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.
Electromagnetic pump stator core
Fanning, A.W.; Olich, E.E.; Dahl, L.R.
1995-01-17
A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter. 21 figures.
Electromagnetic pump stator core
Fanning, Alan W.; Olich, Eugene E.; Dahl, Leslie R.
1995-01-01
A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter.
Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Chao, Benjamin F.; Fang, Ming
2004-01-01
The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.
NASA Technical Reports Server (NTRS)
Gheen, Darrell
2007-01-01
A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and, hence, with the frictional drag acting on the outer sleeve. As the wire cuts toward the center of the core, the inner sleeve rotates farther with respect to the outer sleeve. Once the wire has cut to the center of the core, the tool and the core can be removed from the hole. The proper choice of cutting wire depends on the properties of the core material. For a sufficiently soft core material, a nonmetallic monofilament can be used. For a rubber-like core material, a metal wire can be used. For a harder core material, it is necessary to use an abrasive wire, and the efficiency of the tool can be increased greatly by vacuuming away the particles generated during cutting. For a core material that can readily be melted or otherwise cut by use of heat, it could be preferable to use an electrically heated cutting wire. In such a case, electric current can be supplied to the cutting wire, from an electrically isolated source, via rotating contact rings mounted on the sleeves.
Origin and Constraints on Ilmenite-rich Partial Melt in the Lunar Lower Mantle
NASA Astrophysics Data System (ADS)
Mallik, A.; Fuqua, H.; Bremner, P. M.; Panovska, S.; Diamond, M. R.; Lock, S. J.; Nishikawa, Y.; Jiménez-Pérez, H.; Shahar, A.; Panero, W. R.; Lognonne, P. H.; Faul, U.
2015-12-01
Existence of a partially molten layer at the lunar core-mantle boundary has been proposed to explain the lack of observed far-side deep moonquakes, the observation of reflected seismic phases from deep moonquakes, and the dissipation of tidal energy within the lunar interior [1,2]. However, subsequent models explored the possibility that dissipation due to elevated temperatures alone can explain the observed dissipation factor (Q) and tidal love numbers [3]. Using thermo-chemical and dynamic modeling (including models of the early lunar mantle convection), we explore the hypothesis that an ilmenite-rich layer forms below crustal anorthosite during lunar magma ocean crystallization and may sink to the base of the mantle to create a partial melt layer at the lunar core-mantle boundary. Self-consistent physical parameters (including gravity, pressure, density, VP and Vs) are forward calculated for a well-mixed mantle with uniform bulk composition versus a mantle with preserved mineralogical stratigraphy from lunar magma ocean crystallization. These parameters are compared against observed mass, moment of inertia, real and imaginary parts of the Love numbers, and seismic travel times to further limit the acceptable models for the Moon. We have performed a multi-step grid search with over twenty thousand forward calculations varying thicknesses of chemically/mineralogically distinct layers within the Moon to evaluate if a partially molten layer at the base of the lunar mantle is well-constrained by the observed data. Furthermore, dynamic mantle modeling was employed on the best-fit model versions to determine the survivability of a partially molten layer at the core-mantle boundary. This work was originally initiated at the CIDER 2014 program. [1] Weber et al. (2011). Science 331(6015), 309-12. [2] Khan et al. (2014). JGR 119. [3] Nimmo et al. (2012). JGR 117, 1-11.
NASA Astrophysics Data System (ADS)
Trent, M. C.; Goods, S. H.; Bradshaw, R. W.
2016-05-01
Stainless steel samples machined from SA-312 TP316 and SA-213 TP347H pipe were exposed to a molten nitrate salt environment at 600°C (1112°F) for up to 3000 hours in order to generate corrosion rates for use in concentrated solar power (CSP) facilities. Descaled weight loss measurements were made at 1000, 2000, and 3000 hours, with optical and scanning electron microscopy being performed on samples at the longest exposure time. The 316 and 347H alloys exhibited metal losses of 4.4 and 4.8 um respectively at 3000 hours. A linear fit to the data sets yielded annualized metal loss rates of 8.4 and 8.8 um/yr. The oxides were relatively uniform in thickness and multilayered. The inner layer consisted of a (Fe, Cr)-spinel with appreciable amounts of Mn while the outer layer was an oxide composed of only Fe. No pitting, intergranular attack, or other localized attack was found, despite the presence of a sensitized microstructure in both alloys and chloride impurity in the salt mixture. The observations presented here indicate that the two alloys perform quite comparably with respect to molten salt-induced corrosion and in that regard; either would be expected to perform satisfactorily in the intended application.
Terrestrial magma ocean and core segregation in the earth
NASA Technical Reports Server (NTRS)
Ohtani, Eiji; Yurimoto, Naoyoshi
1992-01-01
According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower mantle conditions in the first stage, and subsequent downwards separation of the ultrabasic liquid (and magnesiowustite) and flotation of Mg-perovskite in the lower mantle.
NASA Technical Reports Server (NTRS)
Hein, L. A.; Myers, W. N. (Inventor)
1976-01-01
An apparatus is described for converting thermal energy such as solar energy into mechanical motion for driving fluid pumps and similar equipment. The thermal motor comprises an inner concentric cylinder carried by a stationary core member. The core member has a cylindrical disc plate fixed adjacent to a lower portion and extending radially from it. An outer concentric cylinder rotatably carried on the disc plate defining a space between the inner and outer concentric cylinders. A spiral tubular member encircles the inner concentric cylinder and is contained within the space between the inner and outer cylinders. One portion is connected to the inner concentric cylinder and a second portion connected to the outer concentric cylinder. A heated fluid is conveyed through the tubular member and is periodically cooled causing the tubular member to expand and contract. This causes the outer concentric cylinder to reciprocally rotate on the base plate accordingly. The reciprocating motion of the outer concentric cylinder is then utilized to drive a pump member in a pump chamber.
Composition of the low seismic velocity E' layer at the top of Earth's core
NASA Astrophysics Data System (ADS)
Badro, J.; Brodholt, J. P.
2017-12-01
Evidence for a layer (E') at the top of the outer core has been available since the '90s and while different studies suggest slightly different velocity contrasts and thicknesses, the common observation is that the layer has lower velocities than the bulk outer core (PREM). Although there are no direct measurements on the density of this layer, dynamic stability requires it to be less dense than the bulk outer core under those same pressure and temperature conditions. Using ab initio simulations on Fe-Ni-S-C-O-Si liquids we constrain the origin and composition of the low-velocity layer E' at the top of Earth's outer core. We find that increasing the concentration of any light-element always increases velocity and so a low-velocity and low-density layer (for stability) cannot be made by simply increasing light element concentration. This rules out barodiffusion or upwards sedimentation of a light phase for its origin. However, exchanging elements can—depending on the elements exchanged—produce such a layer. We evaluate three possibilities. Firstly, crystallization of a light phase from a core containing more than one light element may make such a layer, but only if the crystalizing phase is very Fe-rich, which is at odds with available phase diagrams at CMB conditions. Secondly, the E' layer may result from incomplete mixing of an early Earth core with a late impactor, depending on the light element compositions of the impactor and Earth's core, but such a primordial stratification is neither supported by dynamical models of the core nor thermodynamic models of core merger after the giant impact. The last and most plausible scenario is core-mantle chemical interaction; using thermodynamic models for metal-silicate partitioning of silicon and oxygen at CMB conditions, we show that a reaction between the core and an FeO-rich basal magma ocean can enrich the core in oxygen while depleting it in silicon, in relative amounts that produce a light and slow layer consistent with seismological observations.
Compact Hybrid Laser Rod and Laser System
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor)
2017-01-01
A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.
Study on a New Combination Method and High Efficiency Outer Rotor Type Permanent Magnet Motors
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Kitamura, Masashi; Motegi, Yasuaki; Andoh, Takashi; Ochiai, Makoto; Abukawa, Toshimi
The segment stator core, high space factor coil, and high efficiency magnet are indispensable technologies in the development of compact and a high efficiency motors. But adoption of the segment stator core and high space factor coil has not progressed in the field of outer rotor type motors, for the reason that the inner components cannot be laser welded together. Therefore, we have examined a segment stator core combination technology for the purposes of getting a large increase in efficiency and realizing miniaturization. We have also developed a characteristic estimation method which provides the most suitable performance for segment stator core motors.
Teleseismic Array Studies of Earth's Core-Mantle Boundary
NASA Astrophysics Data System (ADS)
Alexandrakis, Catherine
2011-12-01
The core mantle boundary (CMB) is an inaccessible and complex region, knowledge of which is vital to our understanding of many Earth processes. Above it is the heterogeneous lower-mantle. Below the boundary is the outer-core, composed of liquid iron, and/or nickel and some lighter elements. Elucidation of how these two distinct layers interact may enable researchers to better understand the geodynamo, global tectonics, and overall Earth history. One parameter that can be used to study structure and limit potential chemical compositions is seismic-wave velocity. Current global-velocity models have significant uncertainties in the 200 km above and below the CMB. In this thesis, these regions are studied using three methods. The upper outer core is studied using two seismic array methods. First, a modified vespa, or slant-stack method is applied to seismic observations at broadband seismic arrays, and at large, dense groups of broadband seismic stations dubbed 'virtual' arrays. Observations of core-refracted teleseismic waves, such as SmKS, are used to extract relative arrivaltimes. As with previous studies, lower -mantle heterogeneities influence the extracted arrivaltimes, giving significant scatter. To remove raypath effects, a new method was developed, called Empirical Transfer Functions (ETFs). When applied to SmKS waves, this method effectively isolates arrivaltime perturbations caused by outer core velocities. By removing raypath effects, the signals can be stacked further reducing scatter. The results of this work were published as a new 1D outer-core model, called AE09. This model describes a well-mixed outer core. Two array methods are used to detect lower mantle heterogeneities, in particular Ultra-Low Velocity Zones (ULVZs). The ETF method and beam forming are used to isolate a weak P-wave that diffracts along the CMB. While neither the ETF method nor beam forming could adequately image the low-amplitude phase, beam forms of two events indicate precursors to the SKS and SKKS phase, which may be ULVZ indicators. Finally, cross-correlated observed and modelled beams indicate a tendency towards a ULVZ-like lower mantle in the study region.
Topography at the inner core boundary
NASA Astrophysics Data System (ADS)
Lasbleis, M.; Forquenot, Q.; Deguen, R.
2017-12-01
Topography at the inner core boundary has been proposed to explain surprising seismic observations of some regional studies. Such observations are still debatted, and numerical values of possible inner core topography have been proposed ranging from no topography to "inner core mountains" (10km heigth over lengthscales of 20km, as in Dai et al. 2012). The inner core boundary is a peculiar boundary, as it is the place where the iron alloy constituting the core freezes. The existence of a significant topography on such a boundary is possible, but unlikely. At thermodynamic equilibrium, no topography is expected, as any material above the equilibrium radius would have melted and any below would have freezed. However, mechanical forcing may push the system out of equilibrium. Dynamical topography could be forced by convective flows in the inner core or by outer core heterogeneities. A topography induced by outer core convection would be short-lived when compared to geodynamical processes in the bulk of the inner core (τ ≈ 10-100 Myears), but long-lived compared to observations. Here, we would like to give a geodynamical perspective over inner core topography. We constrain plausible amplitude of inner core topography, and discuss the implications for seismic observations. We consider topography created by viscous flows in the bulk of the inner core and by variations of growth rate on regional lengthscale due to outer core convection. This approach allows us to consider both internal and external forcings on the topography. We treat topography forcings as stochastic processes, and calculate the probability of observing a given topography. Based on preliminary results, the high values for observed topography can not be interpreted as a normal behavior of core dynamics. If confirmed, the regions are likely to be anomalous and originated from outliers in the distribution of stochastic processes.
On the consequences of strong stable stratification at the top of earth's outer core
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy
1990-01-01
The consequences of strong stable stratification at the top of the earth's fluid outer core are considered, concentrating on the generation of the geomagnetic secular variation. It is assumed that the core near the core-mantle boundary is both strongly stably stratified and free of Lorentz forces: it is found that this set of assumptions severely limits the class of possible motions, none of which is compatible with the geomagnetic secular variation. Relaxing either assumption is adequate: tangentially geostrophic flows are consistent with the secular variation if the assumption that the core is strongly stably stratified is relaxed (while retaining the assumption that Lorentz forces are negligible); purely toroidal flows may explain the secular variation if Lorentz forces are included.
Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core
NASA Astrophysics Data System (ADS)
Fischer, Rebecca A.; Campbell, Andrew J.; Caracas, Razvan; Reaman, Daniel M.; Dera, Przymyslaw; Prakapenka, Vitali B.
2012-12-01
The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure-temperature properties and behavior of an iron-silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe-16 wt%Si to 140 GPa, finding a conversion from the D03 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, if it consists solely of Fe-Si alloy, and that the eutectic composition in the Fe-Si system is less than 16 wt% silicon at core-mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe-Ni-Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core-mantle boundary. We have also performed first-principles calculations of the equations of state of Fe3Si with the D03 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.
CORE SHAPES AND ORIENTATIONS OF CORE-SÉRSIC GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au
2015-01-01
The inner and outer shapes and orientations of core-Sérsic galaxies may hold important clues to their formation and evolution. We have therefore measured the central and outer ellipticities and position angles for a sample of 24 core-Sérsic galaxies using archival Hubble Space Telescope (HST) images and data. By selecting galaxies with core-Sérsic break radii R{sub b} —a measure of the size of their partially depleted core—that are ≳ 0.''2, we find that the ellipticities and position angles are quite robust against HST seeing. For the bulk of the galaxies, there is a good agreement between the ellipticities and position anglesmore » at the break radii and the average outer ellipticities and position angles determined over R {sub e}/2 < R < R {sub e}, where R {sub e} is the spheroids' effective half light radius. However there are some interesting differences. We find a median ''inner'' ellipticity at R{sub b} of ε{sub med} = 0.13 ± 0.01, rounder than the median ellipticity of the ''outer'' regions ε{sub med} = 0.20 ± 0.01, which is thought to reflect the influence of the central supermassive black hole at small radii. In addition, for the first time we find a trend, albeit weak (2σ significance), such that galaxies with larger (stellar deficit-to-supermassive black hole) mass ratios—thought to be a measure of the number of major dry merger events—tend to have rounder inner and outer isophotes, suggesting a connection between the galaxy shapes and their merger histories. We show that this finding is not simply reflecting the well known result that more luminous galaxies are rounder, but it is no doubt related.« less
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2010-01-12
A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
The Effect of Inner Core Translation on Outer Core Flow and the Geomagnetic Field
NASA Astrophysics Data System (ADS)
Mound, J. E.; Davies, C. J.; Silva, L.
2015-12-01
Bulk translation of the inner core has been proposed to explain quasi-hemispheric patterns of seismic heterogeneity. Such a translation would result in differential melting and freezing at the inner core boundary (ICB) and hence a heterogeneous pattern of buoyancy flux that could influence convection in the outer core. This heterogeneous flux at the ICB will tend to promote upwelling on the trailing hemisphere, where enhanced inner core growth results in increased latent heat and light element release, and inhibit upwelling on the leading hemisphere, where melting of the inner core occurs. If this difference in convective driving between the two hemispheres propagated across the thickness of the outer core, then flows near the surface of the core could be linked to the ICB heterogeneity and result in a hemispheric imbalance in the geomagnetic field. We have investigated the influence of such ICB boundary conditions on core flows and magnetic field structure in numerical geodynamo models and analysed the resultant hemispheric imbalance relative to the hemispheric structure in models constructed from observations of Earth's field. Inner core translation at rates consistent with estimates for the Earth produce a strong hemispheric bias in the field, one that should be readily apparent in averages of the field over tens of thousands of years. Current models of the field over the Holocene may be able to rule out the most extreme ICB forcing scenarios, but more information on the dynamic structure of the field over these time scales will be needed to adequately test all cases.
The Initial Physical Conditions of Kepler-36 b and c
NASA Astrophysics Data System (ADS)
Owen, James E.; Morton, Timothy. D.
2016-03-01
The Kepler-36 planetary system consists of two exoplanets at similar separations (0.115 and 0.128 au), which have dramatically different densities. The inner planet has a density consistent with an Earth-like composition, while the outer planet is extremely low density, such that it must contain a voluminous H/He envelope. Such a density difference would pose a problem for any formation mechanism if their current densities were representative of their composition at formation. However, both planets are at close enough separations to have undergone significant evaporation in the past. We constrain the core mass, core composition, initial envelope mass, and initial cooling time of each planet using evaporation models conditioned on their present-day masses and radii, as inferred from Kepler photometry and transit timing analysis. The inner planet is consistent with being an evaporatively stripped core, while the outer planet has retained some of its initial envelope due to its higher core mass. Therefore, both planets could have had a similar formation pathway, with the inner planet having an initial envelope-mass fraction of ≲10% and core mass of ˜4.4 M⊕, while the outer had an initial envelope-mass fraction of the order of 15%-30% and core mass ˜7.3 M⊕. Finally, our results indicate that the outer planet had a long (≳30 Myr) initial cooling time, much longer than would naively be predicted from simple timescale arguments. The long initial cooling time could be evidence for a dramatic early cooling episode such as the recently proposed “boil-off” process.
GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp
2014-12-20
Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less
Lateral restraint assembly for reactor core
Gorholt, Wilhelm; Luci, Raymond K.
1986-01-01
A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.
Conceptual design study for heat exhaust management in the ARC fusion pilot plant
NASA Astrophysics Data System (ADS)
Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.
2017-10-01
The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''
Differential Rotation within the Earth's Outer Core
NASA Technical Reports Server (NTRS)
Hide, R.; Boggs, D. H.; Dickey, J. O.
1998-01-01
Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).
Stratification of earth's outermost core inferred from SmKS array data
NASA Astrophysics Data System (ADS)
Kaneshima, Satoshi; Matsuzawa, Takanori
2015-12-01
S mKS arrivals recorded by large-scale broadband seismometer arrays are analyzed to investigate the depth profile of P wave speed ( V p ) in the outermost core. The V p structure of the upper 700 km of the outer core has been determined using S mKS waves of Fiji-Tonga events recorded at stations in Europe. According to a recent outer core model (KHOMC), the V p value is 0.45 % slower at the core mantle boundary (CMB) than produced by the Preliminary Reference Earth Model (PREM), and the slow anomaly gradually diminishes to insignificant values at ˜300 km below the CMB. In this study, after verifying these KHOMC features, we show that the differential travel times measured for S mKS waves that are recorded by other large-scale arrays sampling laterally different regions are well matched by KHOMC. We also show that KHOMC precisely fits the observed relative slowness values between S2KS, S3KS, and S4KS (S mKS waves with m= 2, 3, and 4). Based on these observations, we conclude that S mKS predominantly reflect the outer core structure. Then we evaluate biases of secondary importance which may be caused by mantle heterogeneity. The KHOMC V p profile can be characterized by a significant difference in the radial V p gradient between the shallower 300 km and the deeper part of the upper 700 km of the core. The shallower part has a V p gradient of -0.0018 s -1, which is steeper by 0.0001 s -1 when compared to the deeper core presented by PREM. The steeper V p gradient anomaly of the uppermost core corresponds to a radial variation in the pressure derivative of the bulk modulus, K '= d K/ d P. The K ' value is 3.7, which is larger by about 0.2 than that of the deeper core. The radial variation in K ' is too large to have a purely thermal origin, according to recent ab initio calculations on liquid iron alloys, and thus requires a thick and compositionally stratified layering at the outermost outer core.
Thermal Equation of State of Iron: Constraint on the Density Deficit of Earth's Core
NASA Astrophysics Data System (ADS)
Fei, Y.; Murphy, C. A.; Shibazaki, Y.; Huang, H.
2013-12-01
The seismically inferred densities of Earth's solid inner core and the liquid outer core are smaller than the measured densities of solid hcp-iron and liquid iron, respectively. The inner core density deficit is significantly smaller than the outer core density deficit, implying different amounts and/or identities of light-elements incorporated in the inner and outer cores. Accurate measurements of the thermal equation-of-state of iron over a wide pressure and temperature range are required to precisely quantify the core density deficits, which are essential for developing a quantitative composition model for the core. The challenge has been evaluating the experimental uncertainties related to the choice of pressure scales and the sample environment, such as hydrostaticity at multi-megabar pressures and extreme temperatures. We have conducted high-pressure experiments on iron in MgO, NaCl, and Ne pressure media and obtained in-situ X-ray diffraction data up to 200 GPa at room temperature. Using inter-calibrated pressure scales including the MgO, NaCl, Ne, and Pt scales, we have produced a consistent compression curve of hcp-Fe at room temperature. We have also performed laser-heated diamond-anvil cell experiments on both Fe and Pt in a Ne pressure medium. The experiment was designed to quantitatively compare the thermal expansion of Fe and Pt in the same sample environment using Ne as the pressure medium. The thermal expansion data of hcp-Fe at high pressure were derived based on the thermal equation of state of Pt. Using the 300-K isothermal compression curve of iron derived from our static experiments as a constraint, we have developed a thermal equation of state of hcp-Fe that is consistent with the static P-V-T data of iron and also reproduces the shock wave Hugoniot data for pure iron. The thermodynamic model, based on both static and dynamic data, is further used to calculate the density and bulk sound velocity of liquid iron. Our results define the solid inner core and liquid outer core density deficits, which can serve as the basis for any core composition models.
Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.
1989-01-01
An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.
Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.
1989-11-21
An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.
Scanning electron microscope study of Apollo 15 green glass
NASA Technical Reports Server (NTRS)
Mckay, D. S.; Clanton, U. S.; Ladle, G.
1973-01-01
Apollo 15 green glass droplets and related forms show a variety of low velocity impact features which occurred at the time of formation of the droplets. Composite forms, which consist of a crystallized core on which mounds of glass adhere, indicate a sequence of core formation and crystallization, followed by impact of molten droplets. The complicated and time dependent texture and morphology of the green glass forms are best explained by formation in a volcanic lava fountain rather than by meteorite impact.
Formation of Mesosiderites: Fragmentation and Reaccretion of a Large Differentiated Asteroid
NASA Technical Reports Server (NTRS)
Scott, Edward R. D.; Haack, Henning; Love, Stanley G.
2001-01-01
We propose that these stony-iron meteorites formed when a 50-150 km diameter projectile disrupted a 200-400 km diameter asteroid with a molten core. Several mineralogical features of mesosiderites need reinterpreting if our model is correct. Additional information is contained in the original extended abstract.
The candle-using public should be made aware that the core of candle wicks may contain lead. Used as a stiffening agent to keep the wick out of the molten wax, lead can be emitted as particulate to the air and then deposited on indoor surfaces. To define the problem, 100 sets of ...
Xiong, GuanNan; Zhang, YunHui; Duan, YongHong; Cai, ChuanYang; Wang, Xin; Li, JingYa; Tao, Shu; Liu, WenXin
2017-08-01
Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094
Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less
Heat transfer of molten metal layers in severe accidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Seung Kai; Walton, A.; Yang, Zhilin
1997-12-01
In some scenarios of severe accidents of light water reactors, a layer of molten metal from internal structural components of the pressure vessel is predicted to occur on top of a ceramic core debris in the lower head. The layer transfers the heat generated in the ceramic pool to the side wall of the vessel, causing the latter to melt. This problem has been investigated by Theofanous et al. for the advanced light water reactor AP600 in the context of the accident management strategy of ex-vessel cooling, and the conclusion was drawn that the melting does not seriously compromise themore » integrity of the pressure vessel.« less
Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit
2014-01-01
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158
Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten
2014-01-01
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.
Fuel injection device and method
Carlson, L.W.
1983-12-21
A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.
Fuel injection device and method
Carlson, Larry W.
1986-01-01
A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.
Fuel injection device and method
Carlson, Larry W.
1986-02-04
A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.
Drilling into Magma: Experiences at Kīlauea Iki Lava Lake, Hawaii
NASA Astrophysics Data System (ADS)
Helz, R. L.
2017-12-01
Several historic lava lakes (1959 Kīlauea Iki, 1963 Alae, and 1965 Makaopuhi) were drilled in the 20th century, and molten core recovered from them. Kīlauea Iki lava lake, the most extensively studied, was drilled in 1960-62, 1967, 1965, 1976, 1979, 1981 and 1988. A total of 1400 m feet of core was recovered, about 210 m of which was partially molten. The melt fraction varied from near zero to 40-45% by volume, with higher fractions in glassy ooze from below the crust/melt interface. Most of the 1960-1979 drill holes terminated in pre-existing melt-rich internal differentiates; the later (1981, 1988) drill holes were mostly stopped arbitrarily. When melt was reached and the string backed off to wireline the last interval of core, black glassy ooze immediately moved up the borehole. Repeated re-entry and ooze recovery never exhausted the melt-rich sources. The first deep hole that did not hit melt was KI79-1, which was stopped at 62.2 m after recovering 12 m of molten mush. Here the uncased drill hole backfilled not with black glassy ooze but with olivine-rich, partly crystalline mush. The first redrilled core (recovered between 50.8 and 53.9 m), which moved up over a period of 16 days after termination of the original hole, underwent extensive separation of melt from crystals as it flowed upward. After this interval was pulled, drilling resumed with the bottom of the hole at 52.9 m, and uniform olivine-rich mush was recovered from 52.9-54.25 m. Drilling resumed once more at 52.9 m and a further 3 m of ooze recovered. The bit reached a depth of 55.4 m when the core barrel was full, suggesting that the crystal-rich mush was rising into the core barrel spontaneously during drilling. The three cores recovered in reentering KI79-1 show the effect of unloading the confining pressure on mush layers, with melt moving toward the low-pressure area (the bottom of the hole) relative to crystals. All of the crystal-rich mushes are more melt-rich than the original core, with elevated TiO2, K2O and P2O5 levels at the same bulk MgO content. Grain-to-grain contacts were progressively eroded in the melt-inflated mushes, so that the mushes had no internal cohesion. Although their melt contents never reached 50% by volume, they were extremely mobile, rising into the drill hole in minutes rather than the days required for the initial backfilling of the hole.
Thermal barriers for compartments
Kreutzer, Cory J.; Lustbader, Jason A.
2017-10-17
An aspect of the present disclosure is a thermal barrier that includes a core layer having a first surface, a second surface, and a first edge, and a first outer layer that includes a third surface and a second edge, where the third surface substantially contacts the first surface, the core layer is configured to minimize conductive heat transfer through the barrier, and the first outer layer is configured to maximize reflection of light away from the barrier.
A seismologically consistent compositional model of Earth's core.
Badro, James; Côté, Alexander S; Brodholt, John P
2014-05-27
Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.
A seismologically consistent compositional model of Earth’s core
Badro, James; Côté, Alexander S.; Brodholt, John P.
2014-01-01
Earth’s core is less dense than iron, and therefore it must contain “light elements,” such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe–Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle. PMID:24821817
Pole-phase modulated toroidal winding for an induction machine
Miller, John Michael; Ostovic, Vlado
1999-11-02
A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.
METHOD AND APPARATUS FOR EARTH PENETRATION
Adams, W.M.
1963-12-24
A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)
Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere
NASA Astrophysics Data System (ADS)
Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph
2015-04-01
Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.
Mathematical modelling of convective processes in a weld pool under electric arc surfacing
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.
2017-01-01
The authors develop the mathematical model of convective processes in a molten pool under electric arc surfacing with flux-cored wire. The model is based on the ideas of how convective flows appear due to temperature gradient and action of electromagnetic forces. Influence of alloying elements in the molten metal was modeled as a non-linear dependence of surface tension upon temperature. Surface tension and its temperature coefficient were calculated according to the electron density functional method with consideration to asymmetric electron distribution at the interface “molten metal / shielding gas”. Simultaneous solution of Navier-Stokes and Maxwell equations according to finite elements method with consideration to the moving heat source at the interface showed that there is a multi-vortex structure in the molten metal. This structure gives rise to a downward heat flux which, at the stage of heating, moves from the centre of the pool and stirs it full width. At the cooling stage this flux moves towards the centre of the pool and a single vortex is formed near the symmetry centre. This flux penetration is ∼ 10 mm. Formation of the downward heat flux is determined by sign reversal of the temperature coefficient of surface tension due to the presence of alloying elements.
NASA Astrophysics Data System (ADS)
Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M.; Lu, Ming-Chang; Chueh, Yu-Lun
2014-04-01
We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiOx core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiOx core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiOx core-shell NPs during cyclic heating processes. The latent heat of ~29 J g-1 for Sn/SiOx core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g-1 K-1 for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiOx core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiOx core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiOx core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiOx core-shell NPs during cyclic heating processes. The latent heat of ~29 J g-1 for Sn/SiOx core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g-1 K-1 for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiOx core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants. Electronic supplementary information (ESI) available: Detailed experimental results are included for the following: SEM images of the HITEC molten salt with and without a mixture of Sn/SiOx core-shell NPs; statistical diameter distribution of pure Sn and Sn/SiOx core-shell NPs; the HAADF image and EDS linescan profile of a Sn/SiOx core-shell NP; XRD analysis for Sn NPs annealing at different heating temperatures; the XRD spectra of Sn/SiOx core-shell NPs before and after RTA for the shell protection test. See DOI: 10.1039/c3nr06810b
Menke, J.R.
1963-06-11
This patent relates to a reactor having a core which comprises an inner active region and an outer active region, each region separately having a k effective less than one and a k infinity greater than one. The inner and outer regions in combination have a k effective at least equal to one and each region contributes substantially to the k effective of the reactor core. The inner region has a low moderator to fuel ratio such that the majority of fissions occurring therein are induced by neutrons having energies greater than thermal. The outer region has a high moderator to fuel ratio such that the majority of fissions occurring therein are induced by thermal neutrons. (AEC)
Physical and Electronic Isolation of Carbon Nanotube Conductors
NASA Technical Reports Server (NTRS)
OKeeffe, James; Biegel, Bryan (Technical Monitor)
2001-01-01
Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.
Constraining Mercury's interior structure with geodesy data and its present thermal state
NASA Astrophysics Data System (ADS)
Rivoldini, Attilio; Van Hoolst, Tim; Noack, Lena
2015-04-01
Recent measurements of Mercury's spin state and gravitational field supplemented by the assumption that the planet's core is made of iron and sulfur give strong constraints on its interior structure. In particular, they allow a precise determination of Mercury's core size and average mantle density. Present geodesy data do, however, almost not constrain the size of the inner core. Interior structure models with a fully molten liquid core as well as models with an inner core almost as large as the core agree with the observations. Additionally, the observed internally generated magnetic field of Mercury does not preclude the absence of an inner core, since remelting of iron snow inside the core could produce a sufficient buoyancy flux to drive magnetic field generation by compositional convection. Although sulfur is ubiquitously invoked as being the principal candidate light element in terrestrial planet's cores its abundance in the core depends on the redox conditions during planetary formation. Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, substantial amounts of other light elements like for example silicon and carbon could be present together with sulfur inside Mercury's core. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions, silicon partitions almost equally well between solid and liquid iron whereas a few percent of carbon can partition into solid iron. Therefore, compared to a pure iron-sulfur core, if silicon and carbon are present in the core the density jump at the inner-core outer-core boundary could be smaller and induce a large enough change in the inner-core flattening to alter Mercury's libration amplitude. Moreover, the presence of carbon together with sulfur further reduces the core solidus temperature, potentially delaying the onset of inner core formation. Finally, if both silicon and sulfur are present in sufficient quantities a thin layer much enriched in sulfur and depleted in silicon could form at the top of the core as a consequence of a large immiscibility region in liquid Fe-S-Si at Mercury's core conditions. The present radius of an inner core depends mainly on Mercury's thermal state and concentration of light elements inside the core. Because of the secular cooling of the planet, at a time in Mercury's evolution the temperature inside the core drops below the core liquidus temperature somewhere in the core, which can lead to the formation of an inner core and to the global contraction of the planet. The amount of contraction depends mainly on the temperature decrease, on the thermal expansion of the materials inside the planet, on the volume of crystallized iron-rich core liquid, and on the volume of crystallized crust. In this study we use geodesy data (88 day libration amplitude, polar moment of inertia, and tidal Love number), the recent estimate about the radial contraction of Mercury, and thermo-chemical evolution calculations taking into account the formation of the crust, a growing inner core, and modeling the formation of iron-rich snow in the core in order to improve our knowledge about Mercury's inner core radius and thermal state. Since data from remote sensing of Mercury's surface indicate that Mercury formed under reducing conditions we consider models that have sulfur, silicon, and carbon as light elements inside their core.
Changes in divertor conditions in response to changing core density with RMPs
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...
2017-06-07
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
Changes in divertor conditions in response to changing core density with RMPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Rebecca A; Campbell, Andrew J; Caracas, Razvan
2016-07-29
The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure–temperature properties and behavior of an iron–silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe–16 wt%Si to 140 GPa, finding a conversion from the D0 3 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, ifmore » it consists solely of Fe–Si alloy, and that the eutectic composition in the Fe–Si system is less than 16 wt% silicon at core–mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe–Ni–Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core–mantle boundary. We have also performed first-principles calculations of the equations of state of Fe 3Si with the D0 3 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.« less
Earth's Fiercely Cooling Core - 24 TW
NASA Astrophysics Data System (ADS)
Morgan, Jason P.; Vannucchi, Paola
2014-05-01
Earth's mantle and core are convecting planetary heat engines. The mantle convects to lose heat from slow cooling, internal radioactivity, and core heatflow across its base. Its convection generates plate tectonics, volcanism, and the loss of ~35 TW of mantle heat through Earth's surface. The core convects to lose heat from slow cooling, small amounts of internal radioactivity, and the freezing-induced growth of a compositionally denser inner core. Core convection produces the geodynamo generating Earth's geomagnetic field. The geodynamo was thought to be powered by ~4 TW of heatloss across the core-mantle boundary, a rate sustainable (cf. Gubbins et al., 2003; Nimmo, 2007) by freezing a compositionally denser inner core over the ~3 Ga that Earth is known to have had a strong geomagnetic field (cf. Tarduno, 2007). However, recent determinations of the outer core's thermal conductivity(Pozzo et al., 2012; Gomi et al., 2013) indicate that >15 TW of power should conduct down its adiabat. Conducted power is unavailable to drive thermal convection, implying that the geodynamo needs a long-lived >17 TW power source. Core cooling was thought too weak for this, based on estimates for the Clapeyron Slope for high-pressure freezing of an idealized pure-iron core. Here we show that the ~500-1000 kg/m3 seismically-inferred jump in density between the liquid outer core and solid inner core allows us to directly infer the core-freezing Clapeyron Slope for the outer core's actual composition which contains ~8±2% lighter elements (S,Si,O,Al, H,…) mixed into a Fe-Ni alloy. A PREM-like 600 kg/m3 - based Clapeyron Slope implies there has been ~774K of core cooling during the freezing and growth of the inner core, releasing ~24 TW of power during the past ~3 Ga. If so, core cooling can easily power Earth's long-lived geodynamo. Another major implication of ~24 TW heatflow across the core-mantle boundary is that the present-day mantle is strongly 'bottom-heated', and diapiric mantle plumes should dominate deep mantle upwelling.
Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest.
Pruyn, Michele L; Gartner, Barbara L; Harmon, Mark E
2002-02-01
Our primary objective was to present and test a new technique for in vitro estimation of respiration of cores taken from old trees to determine respiratory trends in sapwood. Our secondary objective was to quantify effects of tree age and stem position on respiratory potential (rate of CO2 production of woody tissue under standardized laboratory conditions). We extracted cores from one to four vertical positions in boles of +200-, +50- and +15-year-old Pinus ponderosa Dougl. ex Laws. trees. Cores were divided into five segments corresponding to radial depths of inner bark; outer, middle and inner sapwood; and heartwood. Data suggested that core segment CO2 production was an indicator of its respiratory activity, and that potential artifacts caused by wounding and extraction were minimal. On a dry mass basis, respiratory potential of inner bark was 3-15 times greater than that of sapwood at all heights for all ages (P < 0.0001). Within sapwood at all heights and in all ages of trees, outer sapwood had a 30-60% higher respiratory potential than middle or inner sapwood (P < 0.005). Heartwood had only 2-10% of the respiratory potential of outer sapwood. For all ages of trees, sapwood rings produced in the same calendar year released over 50% more CO2 at treetops than at bases (P < 0.0001). When scaled to the whole-tree level on a sapwood volume basis, sapwood of younger trees had higher respiratory potential than sapwood of older trees. In contrast, the trend was reversed when using the outer-bark surface area of stems as a basis for comparing respiratory potential. The differences observed in respiratory potential calculated on a core dry mass, sapwood volume, or outer-bark surface area basis clearly demonstrate that the resulting trends within and among trees are determined by the way in which the data are expressed. Although these data are based on core segments rather than in vivo measurements, we conclude that the relative differences are probably valid even if the absolute differences are not.
Gas turbine blade with intra-span snubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrill, Gary B.; Mayer, Clinton
2014-07-29
A gas turbine blade (10) including a hollow mid-span snubber (16). The snubber is affixed to the airfoil portion (14) of the blade by a fastener (20) passing through an opening (24) cast into the surface (22) of the blade. The opening is defined during an investment casting process by a ceramic pedestal (38) which is positioned between a ceramic core (32) and a surrounding ceramic casting shell (48). The pedestal provides mechanical support for the ceramic core during both wax and molten metal injection steps of the investment casting process.
Annular core liquid-salt cooled reactor with multiple fuel and blanket zones
Peterson, Per F.
2013-05-14
A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.
Cosmochemical Estimates of Mantle Composition
NASA Astrophysics Data System (ADS)
Palme, H.; O'Neill, H. St. C.
2003-12-01
In 1794 the German physicist Chladni published a small book in which he suggested the extraterrestrial origin of meteorites. The response was skepticism and disbelief. Only after additional witnessed falls of meteorites did scientists begin to consider Chladni's hypothesis seriously. The first chemical analyses of meteorites were published by the English chemist Howard in 1802, and shortly afterwards by Klaproth, a professor of chemistry in Berlin. These early investigations led to the important conclusion that meteorites contained the same elements that were known from analyses of terrestrial rocks. By the year 1850, 18 elements had been identified in meteorites: carbon, oxygen, sodium, magnesium, aluminum, silicon, phosphorous, sulfur, potassium, calcium, titanium, chromium, manganese, iron, cobalt, nickel, copper, and tin (Burke, 1986). A popular hypothesis, which arose after the discovery of the first asteroid Ceres on January 1, 1801 by Piazzi, held that meteorites came from a single disrupted planet between Mars and Jupiter. In 1847 the French geologist Boisse (1810-1896) proposed an elaborate model that attempted to account for all known types of meteorites from a single planet. He envisioned a planet with layers in sequence of decreasing densities from the center to the surface. The core of the planet consisted of metallic iron surrounded by a mixed iron-olivine zone. The region overlying the core contained material similar to stony meteorites with ferromagnesian silicates and disseminated grains of metal gradually extending into shallower layers with aluminous silicates and less iron. The uppermost layer consisted of metal-free stony meteorites, i.e., eucrites or meteoritic basalts. About 20 years later, Daubrée (1814-1896) carried out experiments by melting and cooling meteorites. On the basis of his results, he came to similar conclusions as Boisse, namely that meteorites come from a single, differentiated planet with a metal core, a silicate mantle, and a crust. Both Daubrée and Boisse also expected that the Earth was composed of a similar sequence of concentric layers (see Burke, 1986; Marvin, 1996).At the beginning of the twentieth century Harkins at the University of Chicago thought that meteorites would provide a better estimate for the bulk composition of the Earth than the terrestrial rocks collected at the surface as we have only access to the "mere skin" of the Earth. Harkins made an attempt to reconstruct the composition of the hypothetical meteorite planet by compiling compositional data for 125 stony and 318 iron meteorites, and mixing the two components in ratios based on the observed falls of stones and irons. The results confirmed his prediction that elements with even atomic numbers are more abundant and therefore more stable than those with odd atomic numbers and he concluded that the elemental abundances in the bulk meteorite planet are determined by nucleosynthetic processes. For his meteorite planet Harkins calculated Mg/Si, Al/Si, and Fe/Si atomic ratios of 0.86, 0.079, and 0.83, very closely resembling corresponding ratios of the average solar system based on presently known element abundances in the Sun and in CI-meteorites (see Burke, 1986).If the Earth were similar compositionally to the meteorite planet, it should have a similarly high iron content, which requires that the major fraction of iron is concentrated in the interior of the Earth. The presence of a central metallic core to the Earth was suggested by Wiechert in 1897. The existence of the core was firmly established using the study of seismic wave propagation by Oldham in 1906 with the outer boundary of the core accurately located at a depth of 2,900km by Beno Gutenberg in 1913. In 1926 the fluidity of the outer core was finally accepted. The high density of the core and the high abundance of iron and nickel in meteorites led very early to the suggestion that iron and nickel are the dominant elements in the Earth's core (Brush, 1980; see Chapter 2.15).Goldschmidt (1922) introduced his zoned Earth model. Seven years later he published details ( Goldschmidt, 1929). Goldschmidt thought that the Earth was initially completely molten and separated on cooling into three immiscible liquids, leading on solidification to the final configuration of a core of FeNi which was overlain by a sulfide liquid, covered by an outer shell of silicates. Outgassing during melting and crystallization produced the atmosphere. During differentiation elements would partition into the various layers according to their geochemical character. Goldschmidt distinguished four groups of elements: siderophile elements preferring the metal phase, chalcophile elements preferentially partitioning into sulfide, lithophile elements remaining in the silicate shell, and atmophile elements concentrating into the atmosphere. The geochemical character of each element was derived from its abundance in the corresponding phases of meteorites.At about the same time astronomers began to extract compositional data from absorption line spectroscopy of the solar photosphere, and in a review article, Russell (1941) concluded: "The average composition of meteorites differs from that of the earth's crust significantly, but not very greatly. Iron and magnesium are more abundant and nickel and sulfur rise from subordinate positions to places in the list of the first ten. Silicon, aluminum, and the alkali metals, especially potassium, lose what the others gain." And Russell continued: "The composition of the earth as a whole is probably much more similar to the meteorites than that of its `crust&'." Russell concludes this paragraph by a statement on the composition of the core: "The known properties of the central core are entirely consistent with the assumption that it is composed of molten iron - though not enough to prove it. The generally accepted belief that it is composed of nickel-iron is based on the ubiquitous appearance of this alloy in metallic meteorites," and, we should add, also on the abundances of iron and nickel in the Sun.Despite the vast amount of additional chemical data on terrestrial and meteoritic samples and despite significant improvements in the accuracy of solar abundances, the basic picture as outlined by Russell has not changed. In the following sections we will demonstrate the validity of Russell's assumption and describe some refinements in the estimate of the composition of the Earth and the relationship to meteorites and the Sun.
Nonlinear core deflection in injection molding
NASA Astrophysics Data System (ADS)
Poungthong, P.; Giacomin, A. J.; Saengow, C.; Kolitawong, C.; Liao, H.-C.; Tseng, S.-C.
2018-05-01
Injection molding of thin slender parts is often complicated by core deflection. This deflection is caused by molten plastics race tracking through the slit between the core and the rigid cavity wall. The pressure of this liquid exerts a lateral force of the slender core causing the core to bend, and this bending is governed by a nonlinear fifth order ordinary differential equation for the deflection that is not directly in the position along the core. Here we subject this differential equation to 6 sets of boundary conditions, corresponding to 6 commercial core constraints. For each such set of boundary conditions, we develop an explicit approximate analytical solution, including both a linear term and a nonlinear term. By comparison with finite difference solutions, we find our new analytical solutions to be accurate. We then use these solutions to derive explicit analytical approximations for maximum deflections and for the core position of these maximum deflections. Our experiments on the base-gated free-tip boundary condition agree closely with our new explicit approximate analytical solution.
NASA Astrophysics Data System (ADS)
Adam, J. M.-C.; Ibourichène, A.; Romanowicz, B.
2018-02-01
We measured more than three thousand differential travel-times and amplitude ratios of PKPBC , PKPBC-diff , PKPAB and PKPDF phases in the epicentral distance range [149°-171°], from high quality records of globally distributed broadband stations. In particular, this is the largest collection of differential measurements of PKPBC-diff compared to PKPDF , extending by ∼ 10 ° the epicentral distance range in which the diffracted PKPBC phase has been observed globally. We used forward modelling of waveforms using the Direct Solution Method combined with a grid-search approach to explore attenuation and P-velocity structure in the vicinity of the inner core boundary (ICB) that can explain our observations. We find that, in order to simultaneously explain differential travel times and amplitude ratios of PKPBC , PKPBC-diff with respect to PKPDF out to distances of 165 ° , while fitting PKPAB /PKPDF within measurement errors, it is necessary to introduce a ∼ 450km zone of reduced bulk quality factor (Qκ ∼ 600) at the base of the outer core, while Qκ is close to 200 in a layer ∼ 150km thick at the top of the inner core. Concurrently, the P-velocity in the last 100 km of the outer-core is on average about 0.5 % slower than in the reference model AK 135 , while it is about 0.5 % faster in the top 150 km of the inner-core, resulting in a P-velocity jump at the inner core boundary slightly higher than in model AK 135 . However, this model underpredicts PKPBC-diff /PKPDF amplitude ratios at distances larger than 165 ° . Reducing Qκ even further in the last 100 km of the outer-core (down to Qκ = 50) provides a good fit to these data but it is not compatible with measurements of PKiKP/PKPDF amplitude ratios in the distance range 120-140°. We also considered a previously assembled global collection of "M phase" data. The M phase is a large energy in the coda of the PKPBC and PKPBC-diff that is not predicted by current 1 D reference seismic models, but most likely originates at the base of the outer-core. Our preferred model predicts the presence of an M phase, but significantly underestimates its amplitude. In order to explain the large amplitude of the M-phase and that of PKPBC-diff at distances larger than 165 ° without significantly affecting PKiKP amplitudes, it seems necessary to invoke a process that would produce strong scattering for diffracted phases in the immediate vicinity of the ICB, on the outer core side. Clusters of solid particles suspended in the fluid core or topography of the ICB are possible candidates that should be explored further.
Geothermometry of Kilauea Iki lava lake, Hawaii
Helz, R.T.; Thornber, C.R.
1987-01-01
Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ??8-10?? C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975-1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa. ?? 1987 Springer-Verlag.
Geothermometry of Kilauea Iki lava lake, Hawaii
NASA Astrophysics Data System (ADS)
Helz, Rosalind Tuthill; Thornber, Carl R.
1987-10-01
Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ±8-10° C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975 1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa.
A laboratory model for solidification of Earth's core
NASA Astrophysics Data System (ADS)
Bergman, Michael I.; Macleod-Silberstein, Marget; Haskel, Michael; Chandler, Benjamin; Akpan, Nsikan
2005-11-01
To better understand the influence of rotating convection in the outer core on the solidification of the inner core we have constructed a laboratory model for solidification of Earth's core. The model consists of a 15 cm radius hemispherical acrylic tank concentric with a 5 cm radius hemispherical aluminum heat exchanger that serves as the incipient inner core onto which we freeze ice from salt water. Long exposure photographs of neutrally buoyant particles in illuminated planes suggest reduction of flow parallel to the rotation axis. Thermistors in the tank near the heat exchanger show that in experiments with rotation the temperature near the pole is lower than near the equator, unlike for control experiments without rotation or with a polymer that increases the fluid viscosity. The photographs and thermistors suggest that our observation that ice grows faster near the pole than near the equator for experiments with rotation is a result of colder water not readily convecting away from the pole. Because of the reversal of the thermal gradient, we expect faster equatorial solidification in the Earth's core. Such anisotropy in solidification has been suggested as a cause of inner core elastic (and attenuation) anisotropy, though the plausibility of this suggestion will depend on the core Nusselt number and the slope of the liquidus, and the effects of post-solidification deformation. Previous experiments on hexagonal close-packed alloys such as sea ice and zinc-tin have shown that fluid flow in the melt can result in a solidification texture transverse to the solidification direction, with the texture depending on the nature of the flow. A comparison of the visualized flow and the texture of columnar ice crystals in thin sections from these experiments confirms flow-induced transverse textures. This suggests that the convective pattern at the base of the outer core is recorded in the texture of the inner core, and that outer core convection might contribute to the complexity in the seismically inferred pattern of anisotropy in the Earth's inner core.
Spencer, J.E.
1999-01-01
In the common type of industrial continuous casting, partially molten metal is extruded from a vessel through a shaped orifice called a mold in which the metal assumes the cross-sectional form of the mold as it cools and solidifies. Continuous casting can be sustained as long as molten metal is supplied and thermal conditions are maintained. I propose that a similar process produced parallel sets of grooves in three geologic settings, as follows: (1) corrugated metamorphic core complexes where mylonized mid-crustal rocks were exhumed by movement along low-angle normal faults known as detachment faults; (2) corrugated submarine surfaces where ultramafic and mafic rocks were exhumed by normal faulting within oceanic spreading centers; and (3) striated magma extrusions exemplified by the famous grooved outcrops at the Inca fortress of Sacsayhuaman in Peru. In each case, rocks inferred to have overlain the corrugated surface during corrugation genesis molded and shaped a plastic to partially molten rock mass as it was extruded from a moderate- to high-temperature reservoir.
JAERI R & D on accelerator-based transmutation under OMEGA program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takizuka, T.; Nishida, T.; Mizumoto, M.
1995-10-01
The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts alsomore » as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.« less
Equation of state fits to the lower mantle and outer core
NASA Technical Reports Server (NTRS)
Butler, R.; Anderson, D. L.
1978-01-01
The lower mantle and outer core are subjected to tests for homogeneity and adiabaticity. An earth model is used which is based on the inversion of body waves and Q-corrected normal-mode data. Homogeneous regions are found at radii between 5125 and 4825 km, 4600 and 3850 km, and 3200 and 2200 km. The lower mantle and outer core are inhomogeneous on the whole and are only homogeneous in the above local regions. Finite-strain and atomistic equations of state are fit to the homogeneous regions. The apparent convergence of the finite-strain relations is examined to judge their applicability to a given region. In some cases the observed pressure derivatives of the elastic moduli are used as additional constraints. The effect of minor deviations from adiabaticity on the extrapolations is also considered. An ensemble of zero-pressure values of the density and seismic velocities are found for these regions. The range of extrapolated values from these several approaches provides a measure of uncertainties involved.
Kaun, T.D.; Eshman, P.F.
1980-05-09
A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.
Stixrude, Lars
2014-04-28
We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.
NASA Astrophysics Data System (ADS)
Brandon, Alan D.; Walker, Richard J.; Puchtel, Igor S.; Becker, Harry; Humayun, Munir; Revillon, Sidonie
2003-02-01
The presence of coupled enrichments in 186Os/ 188Os and 187Os/ 188Os in some mantle-derived materials reflects long-term elevation of Pt/Os and Re/Os relative to the primitive upper mantle. New Os data for the 89 Ma Gorgona Island, Colombia komatiites indicate that these lavas are also variably enriched in 186Os and 187Os, with 186Os/ 188Os ranging between 0.1198397±22 and 0.1198470±38, and with γOs correspondingly ranging from +0.15 to +4.4. These data define a linear trend that converges with the previously reported linear trend generated from data for modern Hawaiian picritic lavas and a sample from the ca. 251 Ma Siberian plume, to a common component with a 186Os/ 188Os of approximately 0.119870 and γOs of +17.5. The convergence of these data to this Os isotopic composition may imply a single ubiquitous source in the Earth's interior that mixes with a variety of different mantle compositions distinguished by variations in γOs. The 187Os- and 186Os-enriched component may have been generated via early crystallization of the solid inner core and consequent increases in Pt/Os and Re/Os in the liquid outer core, with time leading to suprachondritic 186Os/ 188Os and γOs in the outer core. The presence of Os from the outer core in certain portions of the mantle would require a mechanism that could transfer Os from the outer core to the lower mantle, and thence to the surface. If this is the process that generated the isotopic enrichments in the mantle sources of these plume-derived systems, then the current understanding of solid metal-liquid metal partitioning of Pt, Re and Os requires that crystallization of the inner core began prior to 3.5 Ga. Thus, the Os isotopic data reported here provide a new source of data to better constrain the timing of inner core formation, complementing magnetic field paleo-intensity measurements as data sources that constrain models based on secular cooling of the Earth.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2006-10-01
The possibility that some mantle plumes may carry a geochemical signature of core/mantle interaction has rightly generated considerable interest and attention in recent years. Correlated 186Os- 187Os enrichments in some plume-derived lavas (Hawaii, Gorgona, Kostomuksha) have been interpreted as deriving from an outer core with elevated Pt/Os and Re/Os ratios due to the solidification of the Earth's inner core (c.f., [A.D. Brandon, R.J. Walker, The debate over core-mantle interaction, Earth Planet. Sci. Lett. 232 (2005) 211-225.] and references therein). Conclusive identification of a "core signal" in plume-derived lavas would profoundly influence our understanding of mantle convection and evolution. This paper reevaluates the Os-isotope evidence for core/mantle interaction by examining other geochemical constraints on core/mantle interaction, geophysical constraints on the thermal evolution of the outer core, and geochemical and cosmochemical constraints on the abundance of heat-producing elements in the core. Additional study of metal/silicate and sulfide/silicate partitioning of K, Pb, and other trace elements is needed to more tightly constrain the likely starting composition of the Earth's core. However, available data suggest that the observed 186Os enrichments in Hawaiian and other plume-derived lavas are unlikely to derive from core/mantle interaction. 1) Core/mantle interaction sufficient to produce the observed 186Os enrichments would likely have significant effects on other tracers such as Pb- and W-isotopes that are not observed. 2) Significant partitioning of K or other heat-producing elements into the core would produce a "core depletion" pattern in the Silicate Earth very different from that observed. 3) In the absence of heat-producing elements in the core, core/mantle heat flow of ˜ 6-15 TW estimated from several independent geophysical constraints suggests an inner core age (< ˜ 2.5 Ga) too young for the outer core to have developed a significant 186Os enrichment. Core/mantle thermal and chemical interaction remains an important problem that warrants future research. However, Os-isotopes may have only limited utility in this area due to the relatively young age of the Earth's inner core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, G.E.; Bell, F.R.
1963-06-26
A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Adam; Pati, Soobhankar
2012-03-11
Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat andmore » mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.« less
Seismological evidence for a localized mushy zone at the Earth's inner core boundary.
Tian, Dongdong; Wen, Lianxing
2017-08-01
Although existence of a mushy zone in the Earth's inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth's inner core boundary, here we present seismic evidence for a localized 4-8 km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a localized mushy zone is found to be surrounded by a sharp inner core boundary nearby. These seismic results suggest that, in the current thermo-compositional state of the Earth's core, the outer core composition is close to eutectic in most regions resulting in a sharp inner core boundary, but deviation from the eutectic composition exists in some localized regions resulting in a mushy zone with a thickness of 4-8 km.The existence of a mushy zone in the Earth's inner core has been suggested, but has remained unproven. Here, the authors have discovered a 4-8 km thick mushy zone at the inner core boundary beneath the Okhotsk Sea, indicating that there may be more localized mushy zones at the inner core boundary.
Direct printing of miniscule aluminum alloy droplets and 3D structures by StarJet technology
NASA Astrophysics Data System (ADS)
Gerdes, B.; Zengerle, R.; Koltay, P.; Riegger, L.
2018-07-01
Drop-on demand printing of molten metal droplets could be used for prototyping 3D objects as a promising alternative to laser melting technologies. However, to date, only few printheads have been investigated for this purpose, and they used only a limited range of materials. The pneumatically actuated StarJet technology enables the direct and non-contact printing of molten metal microdroplets from metal melts at high temperatures. StarJet printheads utilize nozzle chips featuring a star-shaped orifice geometry that leads to formation of droplets inside the nozzle with high precision. In this paper, we present a novel StarJet printhead for printing aluminum (Al) alloys featuring a hybrid design with a ceramic reservoir for the molten metal and an outer shell fabricated from stainless steel. The micro machined nozzle chip is made from silicon carbide (SiC). This printhead can be operated at up to 950 °C, and is capable of printing high melting point metals like Al alloys in standard laboratory conditions. In this work, an aluminum–silicon alloy that features 12% silicon (AlSi12) is printed. The printhead, nozzle, and peripheral actuation system are optimized for stable generation of AlSi12 droplets with high monodispersity, low angular deviation, and miniaturized droplet diameters. As a result, a stable drop-on-demand printing of droplets exhibiting diameters of d droplet = 702 µm ± 1% is demonstrated at 5 Hz with a low angular deviation of 0.3°, when a nozzle chip with 500 µm orifice diameter is used. Furthermore, AlSi12 droplets featuring d droplet = 176 µm ± 7% are printed when using a nozzle chip with an orifice diameter of 130 µm. Moreover, we present directly printed objects from molten Al alloy droplets, such as high aspect ratio, free-standing walls (aspect ratio 12:1), and directly printed, flexible springs, to demonstrate the principle of 3D printing with molten metal droplets.
Analysis of lunar regolith thermal energy storage
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
1991-01-01
The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period.
Severe accident modeling of a PWR core with different cladding materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S. C.; Henry, R. E.; Paik, C. Y.
2012-07-01
The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCSmore » rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)« less
Mobility of partially molten crust, heat and mass transfer, and the stabilization of continents
NASA Astrophysics Data System (ADS)
Teyssier, Christian; Whitney, Donna L.; Rey, Patrice F.
2017-04-01
The core of orogens typically consists of migmatite terrains and associated crustal-derived granite bodies (typically leucogranite) that represent former partially molten crust. Metamorphic investigations indicate that migmatites crystallize at low pressure (cordierite stability) but also contain inclusions of refractory material (mafic, aluminous) that preserve evidence of crystallization at high pressure (HP), including HP granulite and eclogite (1.0-1.5 GPa), and in some cases ultrahigh pressure (2.5-3.0 GPa) when the continental crust was subducted (i.e. Norwegian Caledonides). These observations indicate that the partially molten crust originates in the deep crust or at mantle depths, traverses the entire orogenic crust, and crystallizes at shallow depth, in some cases at the near-surface ( 2 km depth) based on low-T thermochronology. Metamorphic assemblages generally show that this nearly isothermal decompression is rapid based on disequilibrium textures (symplectites). Therefore, the mobility of partially molten crust results in one of the most significant heat and mass transfer mechanisms in orogens. Field relations also indicate that emplacement of partially molten crust is the youngest major event in orogeny, and tectonic activity essentially ceases after the partially molten crust is exhumed. This suggests that flow and emplacement of partially molten crust stabilize the orogenic crust and signal the end of orogeny. Numerical modeling (open source software Underworld; Moresi et al., 2007, PEPI 163) provides useful insight into the mechanisms of exhumation of partially molten crust. For example, extension of thickened crust with T-dependent viscosity shows that extension of the shallow crust initially drives the mobility of the lowest viscosity crust (T>700°C), which begins to flow in a channel toward the zone of extension. This convergent flow generates channel collision and the formation of a double-dome of foliation (two subdomes separated by a steep high strain zone). In turn, the rapid exhumation of low-viscosity deep crust within and between the two subdomes enhances localization of extension in the shallow crust; the positive feedback between exhumation of low-viscosity crust and localization of shallow crust extension explains the exhuming power of migmatite domes, the rapid isothermal decompression of dome rocks (order of 1.0-1.5 GPa), and the crystallization of melt at shallow depth followed by rapid cooling. Modeling results indicate that the mobility of low-viscosity (partially molten) crust is a major process for transferring heat and mass during the late stages of orogeny.
The ab initio simulation of the Earth's core.
Alfè, D; Gillan, M J; Vocadlo, L; Brodholt, J; Price, G D
2002-06-15
The Earth has a liquid outer and solid inner core. It is predominantly composed of Fe, alloyed with small amounts of light elements, such as S, O and Si. The detailed chemical and thermal structure of the core is poorly constrained, and it is difficult to perform experiments to establish the properties of core-forming phases at the pressures (ca. 300 GPa) and temperatures (ca. 5000-6000 K) to be found in the core. Here we present some major advances that have been made in using quantum mechanical methods to simulate the high-P/T properties of Fe alloys, which have been made possible by recent developments in high-performance computing. Specifically, we outline how we have calculated the Gibbs free energies of the crystalline and liquid forms of Fe alloys, and so conclude that the inner core of the Earth is composed of hexagonal close packed Fe containing ca. 8.5% S (or Si) and 0.2% O in equilibrium at 5600 K at the boundary between the inner and outer cores with a liquid Fe containing ca. 10% S (or Si) and 8% O.
Fluid flow near the surface of earth's outer core
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy; Jackson, Andrew
1991-01-01
This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.
Array analyses of SmKS waves and the stratification of Earth's outermost core
NASA Astrophysics Data System (ADS)
Kaneshima, Satoshi
2018-03-01
We perform array analyses of SmKS waves in order to investigate the Vp structure of the Earth's outermost core. For earthquakes recorded by broadband seismometer networks in the world, we measure differential travel times between S3KS and S2KS, between S4KS and S3KS, and between S5KS and S3KS by array techniques. The differential times are well fit by a Vp model of the Earth's outermost core, KHOMC (Kaneshima and Helffrich, 2013). Differential slownesses of S4KS and S2KS relative to S2KS are also measured for the highest quality data. The measured slownesses, with unique sensitivity to the outer core 200-400 km below the CMB, are matched by KHOMC. These observations consolidate the evidence for the presence at the top of the outer core of a layer that has a distinctively steeper Vp gradient than the bulk of the outer core. We invert new SmKS differential time data set by a tau-p method and attempt to refine the Vp profile of KHOMC. The essential features of KHOMC are preserved after the model refinement. However, the newly estimated layer thickness is nearly 450 km, which is thicker than that of KHOMC. The Vp anomalies relative to PREM for the depths 400-800 km below the CMB are less than 0.03 km/s, consistent with the degree of agreement between different Vp models for the depth range.
Has Earth's Plate Tectonics Led to Rapid Core Cooling?
NASA Astrophysics Data System (ADS)
de Montserrat Navarro, A.; Morgan, J. P.; Vannucchi, P.; Connolly, J. A.
2016-12-01
Earth's mantle and core are convecting planetary heat engines. The mantle convects to lose heat from secular cooling, internal radioactivity, and core heatflow across its base. Its convection generates plate tectonics, volcanism, and the loss of 35 TW of mantle heat through Earth's surface. The core convects to lose heat from secular cooling, small amounts of internal radioactivity, and the freezing-induced growth of a compositionally denser inner core. Until recently, the geodynamo was thought to be powered by 4 TW of heatloss across the core-mantle boundary. More recent determinations of the outer core's thermal conductivity (Pozzo et al., 2012; Gomi et al., 2013) would imply that >15 TW of power should conduct down its adiabat. Secular core cooling has been previously thought to be too slow for this, based on estimates for the Clapeyron Slope for high-pressure freezing of an idealized pure-iron core (cf. Nimmo, 2007). The 500-1000 kg m-3 seismically-inferred jump in density between the liquid outer core and solid inner core allows a direct estimate of the Clapeyron Slope for the outer core's actual composition which contains 0.08±0.02 lighter elements (S,Si,O,Al, H,…) mixed into a Fe-Ni alloy. A PREM-like 600 kg m-3 density jump yields a Clapeyron Slope for which there has been 774K of core cooling during the freezing and growth of the inner core, cooling that has been releasing an average of 21 TW of power during the past 3 Ga. If so, core cooling could easily have powered Earth's long-lived geodynamo. Another implication is that the present-day mantle is strongly `bottom-heated', and diapiric mantle plumes should dominate deep mantle upwelling. This mode of core and mantle convection is consistent with slow, 37.5K/Ga secular cooling of Earth's mantle linked to more rapid secular cooling of the core (cf. Morgan, Rüpke, and White, 2016). Efficient plate subduction, hence plate tectonics, is a key ingredient for such rapid secular core cooling.We also show how a more complete thermodynamic version of Birch's accretional energy calculation predicts that accretion with FeNi-sinking-linked differentiation between an Earth-like mantle and core would naturally generate a core that, post-accretion, was both hotter than overlying mantle and 1000K hotter than today.
Jiang, Huaidong; Xu, Rui; Chen, Chien-Chun; Yang, Wenge; Fan, Jiadong; Tao, Xutang; Song, Changyong; Kohmura, Yoshiki; Xiao, Tiqiao; Wang, Yong; Fei, Yingwei; Ishikawa, Tetsuya; Mao, Wendy L; Miao, Jianwei
2013-05-17
We report quantitative 3D coherent x-ray diffraction imaging of a molten Fe-rich alloy and crystalline olivine sample, synthesized at 6 GPa and 1800 °C, with nanoscale resolution. The 3D mass density map is determined and the 3D distribution of the Fe-rich and Fe-S phases in the olivine-Fe-S sample is observed. Our results indicate that the Fe-rich melt exhibits varied 3D shapes and sizes in the olivine matrix. This work has potential for not only improving our understanding of the complex interactions between Fe-rich core-forming melts and mantle silicate phases but also paves the way for quantitative 3D imaging of materials at nanoscale resolution under extreme pressures and temperatures.
NASA Astrophysics Data System (ADS)
Zhao, Ziwen; Cheng, Xueli; He, Ting; Xue, Fei; Zhang, Wei; Chen, Na; Wen, Jianxiang; Zeng, Xianglong; Wang, Tingyun
2017-09-01
Effect of controlling recrystallization from the melt (1000 °C) on the residual stress and structural properties of a Ge core fiber via molten core drawing (MCD) method is investigated. Ge core fibers is investigated using Raman spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Compared with the as-drawn Ge fiber, the Raman peak of the recrystallized Ge fiber shift from 300 cm-1 to 300.6 cm-1 and full width at half maximum (FWHM) decreased from 5.36 cm-1 to 4.48 cm-1. The Ge crystal grains which sizes are of 200-600 nm were formed during the process of recrystallization; the XRD peak of (1 1 1) plane is observed after recrystallization. These results show that controlling recrystallization allows the release of the thermal stress, and improvement of the crystal quality of Ge core.
Method of Fault Detection and Rerouting
NASA Technical Reports Server (NTRS)
Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Lewis, Mark E. (Inventor)
2013-01-01
A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.
Comparison of secondary flows and boundary-layer accumulations in several turbine nozzles
NASA Technical Reports Server (NTRS)
Kofskey, Milton G; Allen, Hubert W; Herzig, Howard Z
1953-01-01
An investigation was made of losses and secondary flows in three different turbine nozzle configurations in annular cascade. Appreciable outer shroud loss cores (passage vortices) were found to exist at the discharge of blades which had thickened suction surface boundary layers near the outer shroud. Blade designs having thinner boundary layers did not show such outer shroud loss cores, but indicated greater inward radial flow of low momentum air, in the wake loss is to this extent an indication of the presence or absence of radial flow. The blade wake was a combination of profile loss and low momentum air from the outer shroud, and the magnitude of the wake loss is to this extent an indication of the presence or absence of radial flow. At a high Mach number, shock-boundary-layer thickening on the blade suction surfaces provided an additional radial flow path for low momentum air, which resulted in large inner shroud loss regions accompanied by large deviations from design values of discharge angle. (author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, B I; Tyshkunova, E S; Kondorskiy, A D
2015-12-31
Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on themore » type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon – exciton interaction in the systems under study are revealed. (nanophotonics)« less
Coring device with a improved core sleeve and anti-gripping collar with a collective core catcher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Story, A.L.; Filshtinsky, M.
1986-01-28
This patent describes an improved coring apparatus used in combination with a coring bit and drill string. This device consists of: an outer driving structure adapted to be connected at one end to the coring bit for cutting a core in a borehole, and at the other end to the lower end of the drill string in telescoping and co-rotatable manner therewith; an inner barrel disposed within the outer driving structure and including a lower end portion adjacent to the bit; first means supporting the inner barrel in spaced relationship to the outer driving structure while permitting rotation of themore » driving structure with respect to the inner barrel; a woven metal mesh sleeve mounted in surrounding relation on at least a portion of the exterior surface of the inner barrel; second means, connected to a free end of the sleeve opposite the leading portion of the sleeve, for maintaining the portion of the sleeve which surrounds the inner barrel in compression and to maintain an inside diameter greater than the outside diameter of the inner barrel of the portion of the sleeve surrounding the inner barrel while the portion of the sleeve positioned inside the inner barrel being in tension to grip and compress a core received within the sleeve and having an outside diameter less than the inside diameter of the inner barrel when in tension, wherein the second means is also for engaging the core when the means is drawn into the inner barrel, and third means positioned within the inner barrel and connected to the leading portion of the sleeve to draw the sleeve within the inner barrel and to apply tension to the portion of the sleeve within the barrel to encase and grip the core as it is cut.« less
The chemical composition of the cores of the terrestrial planets and the moon
NASA Technical Reports Server (NTRS)
Kuskov, O. L.; Khitarov, N. I.
1977-01-01
Using models of the quasi-chemical theory of solutions, the activity coefficients of silicon are calculated in the melts Fe-Si, Ni-Si, and Fe-Ni-Si. The calculated free energies of solution of liquid nickel and silicon in liquid iron in the interval 0 to 1400 kbar and 1500 to 4000 K, shows that Fe-Ni-Si alloy is stable under the conditions of the outer core of the earth and the cores of the terrestrial planets. The oxidation-reduction conditions are studied, and the fugacity of oxygen in the mantles of the planets and at the core-mantle boundary are calculated. The mechanism of reduction of silicon is analyzed over a broad interval of p and T. The interaction between the matter of the core and mantle is studied, resulting in the extraction of silicon from the mantle and its solution in the material of the core. It is concluded that silicon can enter into the composition of the outer core of the earth and Venus, but probably does not enter into the composition of the cores of Mercury, Mars, and the moon, if in fact the latter possesses one.
NASA Technical Reports Server (NTRS)
Weber, Renee C.
2013-01-01
A variety of geophysical measurements made from Earth, from spacecraft in orbit around the Moon, and by astronauts on the lunar surface allow us to probe beyond the lunar surface to learn about its interior. Similarly to the Earth, the Moon is thought to consist of a distinct crust, mantle, and core. The crust is globally asymmetric in thickness, the mantle is largely homogeneous, and the core is probably layered, with evidence for molten material. This chapter will review a range of methods used to infer the Moon's internal structure, and briefly discuss the implications for the Moon's formation and evolution.
Electrically operated magnetic switch designed to display reduced leakage inductance
Cook, Edward G.
1994-01-01
An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together.
NASA Astrophysics Data System (ADS)
Egbers, C.
The'GeoFlow' is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluid Mechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field simi- lar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment re- quires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth`s liquid core the experiment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heat- ing the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number.
NASA Astrophysics Data System (ADS)
Cruz, Anna P. S.; Barbosa, Catia F.; Ayres-Neto, Arthur; Munayco, Pablo; Scorzelli, Rosa B.; Amorim, Nívea Santos; Albuquerque, Ana L. S.; Seoane, José C. S.
2018-02-01
In order to investigate the chemical and magnetic characteristics of sediments of the western boundary upwelling system of Southwest Atlantic we analyzed magnetic susceptibility, grain size distribution, total organic carbon, heavy mineral abundance, Fe associated with Mössbauer spectra, and Fe and Mn of pore water to evaluate the deposition patterns of sediments. Four box-cores were collected along a cross-shelf transect. Brazil Current and coastal plume exert a primary control at the inner and outer shelf cores, which exhibited similar depositional patterns characterized by a high abundance of heavy minerals (mean 0.21% and 0.08%, respectively) and very fine sand, whereas middle shelf cores presented low abundances of heavy minerals (mean 0.03%) and medium silt. The inner shelf was dominated by sub-angular grains, while in middle and outer shelf cores well-rounded grains were found. The increasing Fe3+:Fe2+ ratio from the inner to the outer shelf reflects farther distance to the sediment source. The outer shelf presented well-rounded minerals, indicating abrasive processes as a result of transport by the Brazil Current from the source areas. In the middle shelf, cold-water intrusion of the South Atlantic Central Water contributes to the primary productivity, resulting in higher deposition of fine sediment and organic carbon accumulation. The high input of organic carbon and the decreased grain size are indicative of changes in the hydrodynamics and primary productivity fueled by the western boundary upwelling system, which promotes loss of magnetization due to the induction of diagenesis of iron oxide minerals.
Ultrafast Hydration Dynamics and Coupled Water-Protein Fluctuations in Apomyoglobin
NASA Astrophysics Data System (ADS)
Yang, Yi; Zhang, Luyuan; Wang, Lijuan; Zhong, Dongping
2009-06-01
Protein hydration dynamics are of fundamental importance to its structure and function. Here, we characterize the global solvation dynamics and anisotropy dynamics around the apomyoglobin surface in different conformational states (native and molten globule) by measuring the Stokes shift and anisotropy decay of tryptophan with femtosecond-resolved fluorescence upconversion. With site-directed mutagenesis, we designed sixteen mutants with one tryptophan in each, and placed the probe at a desirable position ranging from buried in the protein core to fully solvent-exposed on the protein surface. In all protein sites studied, two distinct solvation relaxations (1-8 ps and 20-200 ps) were observed, reflecting the initial collective water relaxation and subsequent hydrogen-bond network restructuring, respectively, and both are strongly correlated with protein's local structures and chemical properties. The hydration dynamics of the mutants in molten globule state are faster than those observed in native state, indicating that the protein becomes more flexible and less structured when its conformation is converted from fully-folded native state to partially-folded molten globule state. Complementary, fluorescence anisotropy dynamics of all mutants in native state show an increasing trend of wobbling times (40-260 ps) when the location of the probe is changed from a loop, to a lateral helix, and then, to the compact protein core. Such an increase in wobbling times is related to the local protein structural rigidity, which relates the interaction of water with side chains. The ultrafast hydration dynamics and related side-chain motion around the protein surface unravel the coupled water-protein fluctuations on the picosecond time scales and indicate that the local protein motions are slaved by hydrating water fluctuations.
Torsional Oscillations of the Earths's Core
NASA Technical Reports Server (NTRS)
Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.
1997-01-01
Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.
Core Formation and Evolution of Asteroid 4 Vesta
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Mittlefehldt, David W.
2014-01-01
The howardites, eucrites, and diogenites (HEDs) are a suite of related meteorite types that formed by igneous and impact processes on the same parent body. Multiple lines of evidence, including infrared spectroscopy of the asteroid belt and the petrology and geochemistry of the HEDs, suggest that the asteroid 4 Vesta is the parent body for the HEDs. Observations by NASA's Dawn spacecraft mission strongly support the conclusion that the HEDs are from Vesta. The abundances of the moderately siderophile elements Ni, Co, Mo, W, and P in eucrites require that most or all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. These observations place important constraints on the mode and timescale of core formation on Vesta. Possible core formation mechanisms include porous flow, which potentially could occur prior to initiation of silicate melting, and metallic rain in a largely molten silicate magma ocean. Once the core forms, convection within the core could possible sustain a magnetic dynamo for a period of time. We consider each process in turn.
Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun
2014-05-07
We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.
The Effects of Earth's Outer Core's Viscosity on Geodynamo Models
NASA Astrophysics Data System (ADS)
Dong, C.; Jiao, L.; Zhang, H.
2017-12-01
Geodynamo process is controlled by mathematic equations and input parameters. To study effects of parameters on geodynamo system, MoSST model has been used to simulate geodynamo outputs under different outer core's viscosity ν. With spanning ν for nearly three orders when other parameters fixed, we studied the variation of each physical field and its typical length scale. We find that variation of ν affects the velocity field intensely. The magnetic field almost decreases monotonically with increasing of ν, while the variation is no larger than 30%. The temperature perturbation increases monotonically with ν, but by a very small magnitude (6%). The averaged velocity field (u) of the liquid core increases with ν as a simple fitted scaling relation: u∝ν0.49. The phenomenon that u increases with ν is essentially that increasing of ν breaks the Taylor-Proudman constraint and drops the critical Rayleigh number, and thus u increases under the same thermal driving force. Forces balance is analyzed and balance mode shifts with variation of ν. When compared with former studies of scaling laws, this study supports the conclusion that in a certain parameter range, the magnetic field strength doesn't vary much with the viscosity, but opposes to the assumption that the velocity field has nothing to do with the outer core viscosity.
Complementary high performance sensing of gases and liquids using silver nanotube
NASA Astrophysics Data System (ADS)
Isro, Suhandoko D.; Iskandar, Alexander A.; Tjia, May-On
2017-11-01
A study on refractive index sensing using a silver nanotube is carried out to investigate the relative advantages of sensing gaseous and liquid samples outside the tube (outer sensing) and inside the core (inner sensing). The geometrical and material parameters of the nanotube are varied to explore the favorable sensing performances covering the range of refractive indices between 1.1 and 1.5. It is shown that the performances at the three sensing points considered are consistently improved with decreased shell thickness and core radius in both sensing modes. While the performance is also monotonously and drastically enhanced with decreased counter permittivity in inner sensing, the similarly large variations in the outer sensing mode are less than strictly consistent. The study further shows that the most favorable FOM values are attained by both sensing modes with 2.5 nm Ag shell thickness and 27.5 nm core radius of the nanotube, whereas the most favorable counter permittivities are different for the two modes. Remarkably, the trend of increasing FOM for samples of lower refractive indices in outer sensing is entirely reversed in inner sensing with roughly the same level of performances. Thus, the core/shell structure of the silver nanotube offers the complementary high performance sensing of gases and liquids using the two sensing modes with appropriately chosen system parameters.
Sayell, E.H.
1973-10-23
A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)
Probing the Structure near the Top of the Earth's Outer Core Using SmKS Traveltimes
NASA Astrophysics Data System (ADS)
Tang, V. C.; Zhao, L.; Hung, S.
2013-12-01
The Earth's solid inner core is composed of heavy Fe and Ni with a fraction of light elements such as O, S, Si. These light elements were expelled from the inner core during its formation and rise up through the outer core as the result of buoyancy, but their existence is still a mystery. Some authors have presented seismological evidence for lowered wave speed beneath the core-mantle boundary (CMB) relative to PREM, suggesting light elements there, but counter argument also exists. In this study, we use traveltime measurements from recorded and modeled SmKS waves to investigate the effect of the velocity under the CMB on the differential traveltimes between SKKS and S3KS waves (TS3KS-TSKKS). Due to the long propagation distance and interference with neighboring phases, the arrival times of SKKS and S3KS waves are difficult to define accurately in the records. Therefore in our analysis we measure both the observed and model-predicted differential traveltime TS3KS-TSKKS by cross-correlating the waveform of Hilbert-transformed S3KS with that of SKKS. We use synthetic seismograms calculated by the Direct-Solution Method (DSM) in a suite of 1D models with different structural profiles under the CMB to examine the existence of a zone of lowered velocity at the top of the outer core. We are conducting a systematic investigation using waveforms available at IRIS from globally distributed large deep earthquakes. Results from events we have processed so far indicate that the velocity under the CMB is slightly slower than that in PREM.
Electrophoretic manipulation of multiple-emulsion droplets
NASA Astrophysics Data System (ADS)
Schoeler, Andreas M.; Josephides, Dimitris N.; Chaurasia, Ankur S.; Sajjadi, Shahriar; Mesquida, Patrick
2014-02-01
Electrophoretic manipulation of multiple-emulsion oil-in-water-in-oil (O/W)/O and water-in-oil-in-water-in-oil (W/O/W)/O core-shell droplets is shown. It was found that the electrophoretic mobility of the droplets is determined solely by the outer water shell, regardless of size or composition of the inner droplets. It was observed that the surface charge of the outer water shell can be changed and the polarity can be reversed through contact with a biased electrode in a similar way as with simple W/O droplets. Furthermore, addition of the anionic surfactant, sodium dodecyl sulfate to the outer water shell reverses the initial polarity and hence, electrophoretic mobility of the core-shell droplets before contact with an electrode. The results have practical implications for the manipulation of oil droplets in a continuous oil phase.
Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2014-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.
Method for manufacturing an electrochemical cell
Kaun, Thomas D.; Eshman, Paul F.
1982-01-01
A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.
NASA Astrophysics Data System (ADS)
Zhang, Nan; Dygert, Nick; Liang, Yan; Parmentier, E. M.
2017-07-01
Lunar cumulate mantle overturn and the subsequent upwelling of overturned mantle cumulates provide a potential framework for understanding the first-order thermochemical evolution of the Moon. Upwelling of ilmenite-bearing cumulates (IBCs) after the overturn has a dominant influence on the dynamics and long-term thermal evolution of the lunar mantle. An important parameter determining the stability and convective behavior of the IBC is its viscosity, which was recently constrained through rock deformation experiments. To examine the effect of IBC viscosity on the upwelling of overturned lunar cumulate mantle, here we conduct three-dimensional mantle convection models with an evolving core superposed by an IBC-rich layer, which resulted from mantle overturn after magma ocean solidification. Our modeling shows that a reduction of mantle viscosity by 1 order of magnitude, due to the presence of ilmenite, can dramatically change convective planform and long-term lunar mantle evolution. Our model results suggest a relatively stable partially molten IBC layer that has surrounded the lunar core to the present day.
Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne
2014-01-01
In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.
Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne
2014-01-01
In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations – a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described. PMID:24690768
Phase separation of metal-added corium and its effect on a steam explosion
NASA Astrophysics Data System (ADS)
Min, B. T.; Kim, J. H.; Hong, S. W.; Hong, S. H.; Park, I. K.; Song, J. H.; Kim, H. D.
2008-07-01
To simulate a relocation of molten core material and its interaction phenomenon with water during a severe accident in a nuclear reactor, a typical corium of UO 2/ZrO 2/Zr/Stainless steel mixed at a 62 wt%, 15 wt%, 12 wt% and 11 wt%, respectively, was melted and then cooled down to become a solidified ingot. It was shown that the molten corium was separated into two layers, of which the upper layer was oxide mixtures and the lower layer was metal alloys. The upper layer was UO 2 and ZrO 2 and the lower layer mostly consisted of metal mixtures such as uranium, zirconium and stainless steel. Iron content varied with the positions and about a half of it existed as an alloy such as Fe 2U. Uranium metal was produced by reduction of UO 2 by zirconium metal. The average densities of the upper oxide layer and the lower metal layer were 8.802 and 9.411 g/cm 3, respectively. In another test, metal-added molten corium was poured into water and it showed that a steam explosion could occur by applying an external trigger.
He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming
2016-12-15
The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.
Fazili, Naveed Ahmad; Bhat, Waseem Feeroze; Naeem, Aabgeena
2014-03-01
Physiological conditions corresponding to oxidative stress deplete the level of enzyme glyoxalase, facilitating a hike in the serum concentration of glyoxal. Simulating an elevated in vivo level of glyoxal, we tested (50%, v/v) concentration of glyoxal to interact with HEWL. Initially, docking study revealed that glyoxal binds in the hydrophobic core of the enzyme. The interaction between the dialdehyde (glyoxal) and the enzyme (HEWL) followed a three step transition involving pre-molten and molten globule states formed on days 7 and 15 of incubation respectively, which were characterised by an increase in the ANS fluorescence intensity compared to the native state. These molten globule states upon further incubation on day 20 resulted in the formation of aggregates which were characterised by an increase in ThT fluorescence intensity, red shift in Congo red absorbance, negative ellipticity peak at 217 nm in the far-UV CD and the loss of signals at 284, 290 and 294 nm in the near-UV CD spectra. Finally, TEM confirmed the authenticity of lysozyme fibril formation by displaying rod like fibrillar structure. Copyright © 2013 Elsevier B.V. All rights reserved.
Multi-modality nanoparticles having optically responsive shape
Chen, Fanqing; Bouchard, Louis-Serge
2015-05-19
In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.
Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis
Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu
2004-07-13
A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.
Remediation: DOE funding cut shakes MMT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stringer, J.
1996-10-30
Molten Metal Technologies (MMT; Waltham, MA) announced last week that its 1993-97 R&D contract with the Department of Energy (DOE) would provide $12 million less next year than had been projected. The company was struck an additional blow when its stock plummeted more than 50% in three days on the news. MMT says that with tightened resources it will refocus attention on two core areas: chemical and radioactive wastes. The company says construction on some of its projects will be delayed, but an MMT unit that employs a molten metal bath to destroy wastes at a Hoechst plant at Baymore » City, TX and a planned unit at Celanese Mexicana`s Coatzacoalcos, Veracruz plant will go ahead. Those projects are slated to be completed by the end of 1997 and 1999, respectively.« less
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2011-06-14
A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
Permanent-magnet switched-flux machine
Trzynadlowski, Andrzej M.; Qin, Ling
2012-02-21
A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattrick Calderoni
2010-09-01
Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactormore » that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.« less
Preparations to ship the TMI-2 damaged reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, R.C.; Quinn, G.J.
1985-11-01
The March 1979 accident at Three Mile Island Unit 2 (TMI-2) resulted in a severely damaged core. Entries into that core using various tools and inspection devices have shown a significant void, large amounts of rubble, partially intact fuel assemblies, and some resolidified molten materials. The removal and disposition of that core has been of considerable public, regulatory, and governmental interest for some time. In a contractual agreement between General Public Utility Nuclear (GPUN) and the US Department of Energy (DOE), DOE has agreed to accept the TMI-2 core for interim storage at the Idaho National Engineering Laboratory (INEL), conductmore » research on fuel and materials of the core, and eventually dispose of the core either by processing or internment at the national repository. GPUN has removed various samples of material from the core and was scheduled to begin extensive defueling operations in September 1985. EG and G Idaho, Inc. (EG and G), acting on behalf of DOE, is responsible for transporting, receiving, examining, and storing the TMI-2 core. This paper addresses the preparations to ship the core to INEL, which is scheduled to commence in March 1986.« less
The rotational shear in pre-collapse cores of massive stars
NASA Astrophysics Data System (ADS)
Zilberman, Noa; Gilkis, Avishai; Soker, Noam
2018-02-01
We evolve stellar models to study the rotational profiles of the pre-explosion cores of single massive stars that are progenitors of core collapse supernovae (CCSNe), and find large rotational shear above the iron core that might play an important role in the jet feedback explosion mechanism by amplifying magnetic fields before and after collapse. Initial masses of 15 and 30 M⊙ and various values of the initial rotation velocity are considered, as well as a reduced mass-loss rate along the evolution and the effect of core-envelope coupling through magnetic fields. We find that the rotation profiles just before core collapse differ between models, but share the following properties. (1) There are narrow zones of very large rotational shear adjacent to convective zones. (2) The rotation rate of the inner core is slower than required to form a Keplerian accretion disc. (3) The outer part of the core and the envelope have non-negligible specific angular momentum compared to the last stable orbit around a black hole (BH). Our results suggest the feasibility of magnetic field amplification which might aid a jet-driven explosion leaving behind a neutron star. Alternatively, if the inner core fails in exploding the star, an accretion disc from the outer parts of the core might form and lead to a jet-driven CCSN which leaves behind a BH.
Melting-induced stratification above the Earth's inner core due to convective translation.
Alboussière, Thierry; Deguen, Renaud; Melzani, Mickaël
2010-08-05
In addition to its global North-South anisotropy, there are two other enigmatic seismological observations related to the Earth's inner core: asymmetry between its eastern and western hemispheres and the presence of a layer of reduced seismic velocity at the base of the outer core. This 250-km-thick layer has been interpreted as a stably stratified region of reduced composition in light elements. Here we show that this layer can be generated by simultaneous crystallization and melting at the surface of the inner core, and that a translational mode of thermal convection in the inner core can produce enough melting and crystallization on each hemisphere respectively for the dense layer to develop. The dynamical model we propose introduces a clear asymmetry between a melting and a crystallizing hemisphere which forms a basis for also explaining the East-West asymmetry. The present translation rate is found to be typically 100 million years for the inner core to be entirely renewed, which is one to two orders of magnitude faster than the growth rate of the inner core's radius. The resulting strong asymmetry of buoyancy flux caused by light elements is anticipated to have an impact on the dynamics of the outer core and on the geodynamo.
Rapid-quench axially staged combustor
Feitelberg, Alan S.; Schmidt, Mark Christopher; Goebel, Steven George
1999-01-01
A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.
NASA Technical Reports Server (NTRS)
Ober, Daniel M.; Horwitz, J. L.
1998-01-01
We present initial results on the modeling of the circulation of plasmaspheric-origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X= -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes.
Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Jaradat, Safwan Qasim Mohammad
Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.
Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core
Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C.; Silva, S. Ravi P.; Rümmeli, Mark H.; Pichler, Thomas
2013-01-01
Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries. PMID:23670649
Hot-corrosion of AISI 1020 steel in a molten NaCl/Na2SO4 eutectic at 700°C
NASA Astrophysics Data System (ADS)
Badaruddin, Mohammad; Risano, Ahmad Yudi Eka; Wardono, Herry; Asmi, Dwi
2017-01-01
Hot-corrosion behavior and morphological development of AISI 1020 steel with 2 mg cm-2 mixtures of various NaCl/Na2SO4 ratios at 700°C were investigated by means of weight gain measurements, Optical Microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The weight gain kinetics of the steel with mixtures of salt deposits display a rapid growth rates, compared with the weight gain kinetics of AISI 1020 steel without salt deposit in dry air oxidation, and follow a steady-state parabolic law for 49 h. Chloridation and sulfidation produced by a molten NaCl/Na2SO4 on the steel induced hot-corrosion mechanism attack, and are responsible for the formation of thicker scale. The most severe corrosion takes place with the 70 wt.% NaCl mixtures in Na2SO4. The typical Fe2O3 whisker growth in outer part scale was attributed to the FeCl3 volatilization. The formation of FeS in the innermost scale is more pronounced as the content of Na2SO4 in the mixture is increased.
Method for preparing a sodium/sulfur cell
Weiner, Steven A.
1978-01-01
A method for preparing a sodium/sulfur cell comprising (A) inserting a solid sodium slug, adapted to be connected to an external circuit, into the anodic reaction zone of a cell subassembly maintained within an inert atmosphere, said cell subassembly comprising a cell container and a tubular cation-permeable barrier disposed within said container such that a first reaction zone is located within cation-permeable barrier and a second reaction zone is located between the outer surface of said cation-permeable barrier and the inner surface of said container, one of said reaction zones being said anodic reaction zone and the other of said reaction zone being a cathodic reaction zone containing a precast composite cathodic reactant comprising a sulfur impregnated porous conductive material connected to said cation permeable barrier and adapted to be connected to said external circuit; and (B) providing closure means for said subassembly and sealing the same to said subassembly at a temperature less than about 100.degree. C. The method of the invention overcomes deficiencies of the prior art methods by allowing preparation of a sodium/sulfur cell without the use of molten reactants and the fill spouts which are required when the cell is filled with molten reactants.
One-Dimensional Thermal Violence Cook-Off Test
NASA Astrophysics Data System (ADS)
Cook, Malcolm; Stennett, Christopher; University of Cranfield, Shrivenham, Swindon, SN6 8LA Team; AWE plc, Aldermaston, Reading Bershire, RG7 4PR, UK Team
2017-06-01
The One-Dimensional Thermal Violence (ODTV) test is designed to quantify and rank the violence of HE charges when heated to elevated temperatures. The test design consists of a central spherical explosive pellet encased in two aluminium barrel shaped halves, fitted with a copper sealing ring, encased by two aluminium locking rings placed over them from either end. The outer surface of the capsule is heated uniformly by placing in a pre-heated molten solder bath. This allows the time-to-explosion to be recorded for different initial bath temperatures. The ODTV capsule can hold samples up to 30mm in diameter. Diagnostics include both thermocouples and Photon Dopler Velocimetry (PDV). A series of live firings have been carried out on a range of bespoke HMX/HTPB explosives. These include HMX/HTPB mix ratios of 95/5, 92/8, 90/10, 88/12 and 85/15. These tests showed that the ODTV capsule had sufficient confinement and size that it could capture the spectrum of events expected from these formulations. It has been demonstrated that the deformation of the heater cup (that houses the molten solder) can be used as an additional violence metric along with the fragmentation and PDV wall velocities of the aluminium ODTV capsule.
An Accelerated Method for Testing Soldering Tendency of Core Pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Qingyou; Xu, Hanbing; Ried, Paul
2010-01-01
An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations has been used to simulate the die casting conditions such as high pressure and high impingement speed of molten metal on the pin. Soldering tendency of steels and coated pins has been examined. The results indicate that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to 30-60 times. Coating significantly reduces the soldering tendency of the core pins.
Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2012-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.
Ultra high performance connectors for power transmission applications
Wang, Jy-An; Ren, Fei; Lee, Dominic F; Jiang, Hao
2014-03-04
Disclosed are several examples of an apparatus for connecting the free ends of two electrical power transmission lines having conductor strands disposed around a central, reinforcing core. The examples include an inner sleeve having a body defining an inner bore passing through an axially-extending, central axis, an outer rim surface disposed radially outward from the central bore, and one or more axially-extending grooves penetrating the body at the outer rim surface. Also included is an outer splice having a tubular shaped body with a bore passing coaxially through the central axis, the bore defining an inner rim surface for accepting the inner sleeve. The inner bore of the inner sleeve accepts the reinforcement cores of the two conductors, and the grooves accept the conductor strands in an overlapping configuration so that a majority of the electrical current flows between the overlapped conductor strands when the conductors are transmitting electrical current.
A Large Solid Inner Core at Mercury
NASA Astrophysics Data System (ADS)
Genova, A.; Goossens, S.; Mazarico, E.; Lemoine, F. G.; Neumann, G. A.; Kuang, W.; Sabaka, T. J.; Smith, D. E.; Zuber, M. T.
2018-05-01
New measurements of the polar moments of inertia of the whole planet and of the outer layers (crust+mantle), and simulations of Mercury’s magnetic field dynamo suggest the presence of a solid inner core with a Ric 0.3-0.5 Roc.
Iron isotopic fractionation between silicate mantle and metallic core at high pressure
Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y.; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E.; Hu, Justin Y.; Lin, Jung-Fu
2017-01-01
The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure–temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0–0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation. PMID:28216664
Electrically operated magnetic switch designed to display reduced leakage inductance
Cook, E.G.
1994-05-10
An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together. 10 figures.
NASA Technical Reports Server (NTRS)
Williams, Quentin; Jeanloz, Raymond
1990-01-01
The melting temperatures of FeS-troilite and of a 10-wt-pct sulfur iron alloy have been measured to pressures of 120 and 90 GPa, respectively. The results document that FeS melts at a temperature of 4100 (+ or - 300) K at the pressure of the core-mantle boundary. Eutecticlike behavior persists in the iron-sulfur system to the highest pressures of measurements, in marked contrast to the solid-solutionlike behavior observed at high pressures in the iron-iron oxide system. Iron with 10-wt-pct sulfur melts at a similar temperature as FeS at core-mantle boundary conditions. If the sole alloying elements of iron within the core are sulfur and oxygen and the outer core is entirely liquid, the minimum temperature at the top of the outer core is 4900 (+ or - 400) K. Calculations of mantle geotherms dictate that there must be a temperature increase of between 1000 and 2000 K across thermal boundary layers within the mantle. If D-double-prime is compositionally stratified, it could accommodate the bulk of this temperature jump.
The Density Jump at the Inner Core Boundary in the Eastern and Western Hemispheres
NASA Astrophysics Data System (ADS)
Krasnoshchekov, D. N.; Ovtchinnikov, V. M.
2018-02-01
The results of analysis of more than 1300 new PKiKP/PcP amplitude ratios measured in Southeast Asia and South America at the epicentral distances of 3.2°-35.2° are presented. The density jump in the Eastern Hemisphere of the Earth's inner core (IC) is 0.3 g/cm3, and it is 0.9 g/cm3 in the Western one. Taking the large discrepancy in the obtained estimates into consideration, maintenance of such large lateral variations in the mosaic properties of the IC reflecting surface requires considerable variations in the thermodynamic parameters (mostly temperature) of the inner-outer core transition. However, if the observed asymmetry in the density jump distribution is of a global character, the data presented support the translation model of the IC dynamics. This model implies IC crystallization in the Western Hemisphere and melting in the Eastern one, not vice versa, as suggested by another geodynamic model based on thermochemical convection in the outer core and the thermal balance of the core-mantle system.
Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH)
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan
2017-11-01
In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.
Geochemical Constraints on Core-Mantle Interaction from Fe/Mn Ratios
NASA Astrophysics Data System (ADS)
Humayun, M.; Qin, L.
2003-12-01
The greater density of liquid iron alloy, and its immiscibility with silicate, maintains the physical separation of the core from the mantle. There are no a priori reasons, however, why the Earth's mantle should be chemically isolated from the core. Osmium isotopic variations in mantle plumes have been interpreted in terms of interaction between outer core and the source regions of deep mantle plumes. If chemical transport occurs across the core-mantle boundary its mechanism remains to be established. The Os isotope evidence has also been interpreted as the signatures of subducted Mn-sediments, which are known to have relatively high Pt/Os. In the mantle, Fe occurs mainly as the divalent ferrous ion, and Mn occurs solely as a divalent ion, and both behave in a geochemically coherent manner because of similarity in ionic charge and radius. Thus, the Fe/Mn ratio is a planetary constant insensitive to processes of mantle differentiation by partial melting. Two processes may perturb the ambient mantle Fe/Mn of 60: a) the subduction of Mn-sediments should decrease the Fe/Mn ratio in plume sources, while b) chemical transport from the outer core may increase the Fe/Mn ratio. The differentiation of the liquid outer core to form the solid inner core may increase abundances of the light element constituents (FeS, FeO, etc.) to the point of exsolution from the core at the CMB. The exact rate of this process is determined by the rate of inner core growth. Two end-member models include 1) inner core formation mainly prior to 3.5 Ga with heat release dominated by radioactive sources, or 2) inner core formation occurring mainly in the last 1.5 Ga with heat release dominated by latent heat. This latter model would imply large fluxes of Fe into the sources of modern mantle plumes. Existing Fe/Mn data for Gorgona and Hawaiian samples place limits on both these processes. We describe a new procedure for the precise determination of the Fe/Mn ratio in magmatic rocks by ICP-MS. This high-resolution study of the Fe/Mn of mantle-derived samples offers a new set of chemical constraints on the rates of inner core differentiation and the viability of Os isotope interpretations.
Jacob, Shery; Nair, Anroop B; Patil, Pandurang N
2010-01-01
An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997
Wax Reinforces Honeycomb During Machining
NASA Technical Reports Server (NTRS)
Towell, Timothy W.; Fahringer, David T.; Vasquez, Peter; Scheidegger, Alan P.
1995-01-01
Method of machining on conventional metal lathe devised for precise cutting of axisymmetric contours on honeycomb cores made of composite (matrix/fiber) materials. Wax filling reinforces honeycomb walls against bending and tearing while honeycomb being contoured on lathe. Innovative method of machining on lathe involves preparation in which honeycomb is placed in appropriate fixture and the fixture is then filled with molten water-soluble wax. Number of different commercial waxes have been tried.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, D.H.; Thresh, H.R.
1980-06-24
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.
Scintillator reflective layer coextrusion
Yun, Jae-Chul; Para, Adam
2001-01-01
A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.
Bedini, Emiliano; Cirillo, Luigi; Parrilli, Michelangelo
2012-02-15
The synthesis of β-Gal-(1→3)-α-GalNAc-(1→3)-β-GalNAc allyl trisaccharide as the outer core fragment of Burkholderia cepacia pv. vietnamiensis lipooligosaccharide was accomplished through a concise, optimized, multi-step synthesis, having as key steps three glycosylations, that were in-depth studied performing them under several conditions. The target trisaccharide was designed with an allyl aglycone in order to open a future access to the conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against this Burkholderia pathogen. Copyright © 2011 Elsevier Ltd. All rights reserved.
High-Pressure Geophysical Properties of Fcc Phase FeHX
NASA Astrophysics Data System (ADS)
Thompson, E. C.; Davis, A. H.; Bi, W.; Zhao, J.; Alp, E. E.; Zhang, D.; Greenberg, E.; Prakapenka, V. B.; Campbell, A. J.
2018-01-01
Face centered cubic (fcc) FeHX was synthesized at pressures of 18-68 GPa and temperatures exceeding 1,500 K. Thermally quenched samples were evaluated using synchrotron X-ray diffraction (XRD) and nuclear resonant inelastic X-ray scattering (NRIXS) to determine sample composition and sound velocities to 82 GPa. To aid in the interpretation of nonideal (X ≠ 1) stoichiometries, two equations of state for fcc FeHX were developed, combining an empirical equation of state for iron with two distinct synthetic compression curves for interstitial hydrogen. Matching the density deficit of the Earth's core using these equations of state requires 0.8-1.1 wt % hydrogen at the core-mantle boundary and 0.2-0.3 wt % hydrogen at the interface of the inner and outer cores. Furthermore, a comparison of Preliminary Reference Earth Model (PREM) to a Birch's law extrapolation of our experimental results suggests that an iron alloy containing ˜0.8-1.3 wt % hydrogen could reproduce both the density and compressional velocity (VP) of the Earth's outer core.
NASA Technical Reports Server (NTRS)
Wahr, J. M.; Sasao, T.
1981-01-01
The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.
Thick-shell nanocrystal quantum dots
Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM
2011-05-03
Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code
NASA Astrophysics Data System (ADS)
Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian
2017-07-01
FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. S. Chang
2007-09-01
The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.« less
NASA Astrophysics Data System (ADS)
Maurel, C.; Bryson, J. F. J.; Weiss, B. P.; Scholl, A.
2016-12-01
The identification of dozens of petrologically diverse chondritic and achondritic meteoritic groups indicates that a diversity of planetesimals formed in the early solar system. It is commonly thought that planetesimals formed as either unmelted or else fully differentiated bodies, implying that chondrites and achondrites cannot have originated on a single body. However, it has been suggested that partially melted bodies with chondritic crusts and achondritic interiors may also have formed. This alternative proposal is supported by the recent identification of post-accretional remanent magnetization in CV, H chondrites, and also possibly in CM chondrites, which has been interpreted as possible evidence for a core dynamo on their parent bodies. Other piece of evidence suggesting the existence of partially differentiated bodies is the existence of the silicate-bearing IIE iron meteorites. The IIEs are composed of a Fe-Ni alloy matrix containing a mixture of chondritic, primitive achondritic, and chondritic silicate inclusions that likely formed on a single parent body. Therefore, IIEs may sample all three putative layers of a layered, partially differentiated body. On the other hand, the siderophile element compositions of the matrix metal demonstrate that it is not the product of fractional crystallization of a molten core. This suggests that the matrix metal is derived from isolated reservoirs of metal in the mantle and/or crust. It is unknown whether a large-scale metallic core, not represented by known meteorite samples, also formed on the same parent planetesimal. We can search for evidence of a molten, advecting core by assessing whether IIE irons contain remanent magnetization produced by a core dynamo. With this goal, we studied the paleomagnetism of a cloudy zone (CZ) interface in the Fe-Ni matrix of the IIE iron Colomera using X-ray photoelectron emission microscopy (XPEEM). Our initial results suggest that a steady, intense magnetic field was present during the gradual formation of the CZ. This may indicate the existence of an advecting core on the IIE parent body, which would support the hypothesis of a partially differentiated structure. We are continuing to test this conclusion with further XPEEM measurements on Colomera and other IIE irons.
NASA Astrophysics Data System (ADS)
Maurel, C.; Bryson, J. F. J.; Weiss, B. P.; Scholl, A.
2017-12-01
The identification of dozens of petrologically diverse chondritic and achondritic meteoritic groups indicates that a diversity of planetesimals formed in the early solar system. It is commonly thought that planetesimals formed as either unmelted or else fully differentiated bodies, implying that chondrites and achondrites cannot have originated on a single body. However, it has been suggested that partially melted bodies with chondritic crusts and achondritic interiors may also have formed. This alternative proposal is supported by the recent identification of post-accretional remanent magnetization in CV, H chondrites, and also possibly in CM chondrites, which has been interpreted as possible evidence for a core dynamo on their parent bodies. Other piece of evidence suggesting the existence of partially differentiated bodies is the existence of the silicate-bearing IIE iron meteorites. The IIEs are composed of a Fe-Ni alloy matrix containing a mixture of chondritic, primitive achondritic, and chondritic silicate inclusions that likely formed on a single parent body. Therefore, IIEs may sample all three putative layers of a layered, partially differentiated body. On the other hand, the siderophile element compositions of the matrix metal demonstrate that it is not the product of fractional crystallization of a molten core. This suggests that the matrix metal is derived from isolated reservoirs of metal in the mantle and/or crust. It is unknown whether a large-scale metallic core, not represented by known meteorite samples, also formed on the same parent planetesimal. We can search for evidence of a molten, advecting core by assessing whether IIE irons contain remanent magnetization produced by a core dynamo. With this goal, we studied the paleomagnetism of a cloudy zone (CZ) interface in the Fe-Ni matrix of the IIE iron Colomera using X-ray photoelectron emission microscopy (XPEEM). Our initial results suggest that a steady, intense magnetic field was present during the gradual formation of the CZ. This may indicate the existence of an advecting core on the IIE parent body, which would support the hypothesis of a partially differentiated structure. We are continuing to test this conclusion with further XPEEM measurements on Colomera and other IIE irons.
A sharp and flat section of the core-mantle boundary
Vidale, J.E.; Benz, H.M.
1992-01-01
THE transition zone between the Earth's core and mantle plays an important role as a boundary layer for mantle and core convection1. This zone conducts a large amount of heat from the core to the mantle, and contains at least one thermal boundary layer2,3; the proximity of reactive silicates and molten iron leads to the possibility of zones of intermediate composition4. Here we investigate one region of the core-mantle boundary using seismic waves that are converted from shear to compressional waves by reflection at the boundary. The use of this phase (known as ScP), the large number of receiving stations, and the large aperture of our array all provide higher resolution than has previously been possible5-7. For the 350-km-long section of the core-mantle boundary under the northeast Pacific sampled by the reflections, the local boundary topography has an amplitude of less than 500 m, no sharp radial gradients exist in the 400 km above the boundary, and the mantle-lo-core transition occurs over less than 1 km. The simplicity of the structure near and above the core-mantle boundary argues against chemical heterogeneity at the base of the mantle in this location.
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.
Rozé, Mathieu; Ung, Bora; Mazhorova, Anna; Walther, Markus; Skorobogatiy, Maksim
2011-05-09
In this work we report two designs of subwavelength fibers packaged for practical terahertz wave guiding. We describe fabrication, modeling and characterization of microstructured polymer fibers featuring a subwavelength-size core suspended in the middle of a large porous outer cladding. This design allows convenient handling of the subwavelength fibers without distorting their modal profile. Additionally, the air-tight porous cladding serves as a natural enclosure for the fiber core, thus avoiding the need for a bulky external enclosure for humidity-purged atmosphere. Fibers of 5 mm and 3 mm in outer diameters with a 150 µm suspended solid core and a 900 µm suspended porous core respectively, were obtained by utilizing a combination of drilling and stacking techniques. Characterization of the fiber optical properties and the subwavelength imaging of the guided modes were performed using a terahertz near-field microscopy setup. Near-field imaging of the modal profiles at the fiber output confirmed the effectively single-mode behavior of such waveguides. The suspended core fibers exhibit transmission from 0.10 THz to 0.27 THz (larger core), and from 0.25 THz to 0.51 THz (smaller core). Due to the large fraction of power that is guided in the holey cladding, fiber propagation losses as low as 0.02 cm(-1) are demonstrated specifically for the small core fiber. Low-loss guidance combined with the core isolated from environmental perturbations make these all-dielectric fibers suitable for practical terahertz imaging and sensing applications. © 2011 Optical Society of America
Sulfur in Earth's Mantle and Its Behavior During Core Formation
NASA Technical Reports Server (NTRS)
Chabot, Nancy L.; Righter,Kevin
2006-01-01
The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.
Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
Adzic, Radoslav; Zhang, Junliang
2010-04-27
The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.
A core handling device for the Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Gwynne, Owen
1989-01-01
A core handling device for use on Mars is being designed. To provide a context for the design study, it was assumed that a Mars Rover/Sample Return (MRSR) Mission would have the following characteristics: a year or more in length; visits by the rover to 50 or more sites; 100 or more meter-long cores being drilled by the rover; and the capability of returning about 5 kg of Mars regolith to Earth. These characteristics lead to the belief that in order to bring back a variegated set of samples that can address the range of scientific objetives for a MRSR mission to Mars there needs to be considerable analysis done on board the rover. Furthermore, the discrepancy between the amount of sample gathered and the amount to be returned suggests that there needs to be some method of choosing the optimal set of samples. This type of analysis will require pristine material-unaltered by the drilling process. Since the core drill thermally and mechanically alters the outer diameter (about 10 pct) of the core sample, this outer area cannot be used. The primary function of the core handling device is to extract subsamples from the core and to position these subsamples, and the core itself if needed, with respect to the various analytical instruments that can be used to perform these analyses.
A model for osmium isotopic evolution of metallic solids at the core-mantle boundary
NASA Astrophysics Data System (ADS)
Humayun, Munir
2011-03-01
Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of both Os isotope correlations, Os-W isotope systematics, and Fe/Mn evidence for core-mantle interaction over the entire Hawaiian source.
Geophysical sensing experiments on Kilauea Iki lava lake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermance, J.F.; Forsyth, D.W.; Colp, J.L.
1979-12-01
The Hawaiian lava lake in the Kilauea Iki pit crater, resulting from the 1959 summit eruption of Kilauea volcano, has served as a natural laboratory for the continuing study of the petrology, rheology, and thermal history of ponded molten basalt flows in the field environment. During 1975 and 1976, a series of electromagnetic and seismic experiments were coordinated in an attempt to define the in-situ geophysical properties and the configuration of the molten lava core as closely as possible. Drilling and geophysical experiments in 1976 suggested that the solidified crust of the lava lake had a cool, resistive surface layer,more » undersaturated with water to a depth of 5 meters. A warm, wet layer containing appreciable water and/or steam was essentially isothermal (100/sup 0/C) to 33 meters. From 33 to 45 meters the temperature climbed rapidly (from 100/sup 0/ to 1070/sup 0/C) until a thin plexus of molten sills was encountered, interbedded with solid layers. Below this (50 meters) was apparently a layer having the highest temperature, lowest viscosity, and lowest density of olivine phenocrysts. At 70 meters, a transition zone to a crystalline mush was indicated, and finally (between 80 and 95 meters), solid basalt extended down to the preflow surface at a depth of 115 to 120 meters.« less
Axial flow positive displacement worm gas generator
NASA Technical Reports Server (NTRS)
Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor); Murrow, Kurt David (Inventor)
2010-01-01
An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.
Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core
NASA Astrophysics Data System (ADS)
Adams, M. M.; Stone, D.; Lathrop, D. P.
2014-12-01
Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
Recent and more complex thermal models of Mercury and the terrestrial planets are discussed or noted. These models isolate a particular aspect of the planet's thermal history in an attempt to understand that parameter. Among these topics are thermal conductivity, convection, radiogenic sources of heat, other heat sources, and the problem of the molten core and regenerative dynamo.
Hosono, Eiji; Wang, Yonggang; Kida, Noriyuki; Enomoto, Masaya; Kojima, Norimichi; Okubo, Masashi; Matsuda, Hirofumi; Saito, Yoshiyasu; Kudo, Tetsuichi; Honma, Itaru; Zhou, Haoshen
2010-01-01
A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.
Convective overshooting in the evolution of very massive stars
NASA Technical Reports Server (NTRS)
Stothers, R.; Chin, C.-W.
1981-01-01
Possible convective overshooting in stars of 30-120 solar masses are considered, including a merger between the convective core and the intermediate zone, and penetration by the outer convection zone into the hydrogen-shell region when the star is a supergiant. Convective mixing between the core and inner envelopes is found to lead to a brief renewal of hydrogen burning in the core, and a moderate widening of the main sequence bond in the H-R diagram. Deep penetration by the outer convection zone is found to force the star out of the red supergiant configuration and into a configuration near the main sequence. This would account for the apparent spread of the uppermost part of the main sequence and the concentration of luminous supergiants towards earlier spectral types. In addition, heavy mass loss need not be assumed to achieve the points of agreement, and are tentatively considered unimportant from an evolutionary point of view.
Modeling of rapid shutdown in the DIII-D tokamak by core deposition of high-Z material
Izzo, Valerie A.; Parks, Paul B.
2017-06-22
MHD modeling of shell-pellet injection for disruption mitigation is carried out under the assumption of idealized delivery of the radiating payload to the core, neglecting the physics of shell ablation. The shell pellet method is designed to produce an inside-out thermal quench in which core thermal heat is radiated while outer flux surfaces remain intact, protecting the divertor from large conducted heat loads. In the simulation, good outer surfaces remain until the thermal quench is nearly complete, and a high radiated energy fraction is achieved. As a result, when the outermost surfaces are destroyed, runaway electron test orbits indicate thatmore » the rate of runaway electron loss is very fast compared with prior massive gas injection simulations, which is attributed to the very different current profile evolution that occurs with central cooling.« less
Motion of the Mantle in the Translational Modes of the Earth and Mercury
NASA Technical Reports Server (NTRS)
Grinfeld, Pavel; Wisdom, Jack
2005-01-01
Slichter modes refer to the translational motion of the inner core with respect to the outer core and the mantle. The polar Slichter mode is the motion of the inner core along the axis of rotation. Busse presented an analysis of the polar mode which yielded an expression for its period. Busse's analysis included the assumption that the mantle was stationary. This approximation is valid for planets with small inner cores, such as the Earth whose inner core is about 1/60 of the total planet mass. On the other hand, many believe that Mercury's core may be enormous. If so, the motion of the mantle should be expected to produce a significant effect. We present a formal framework for including the motion of the mantle in the analysis of the translational motion of the inner core. We analyze the effect of the motion of the mantle on the Slichter modes for a non-rotating planet with an inner core of arbitrary size. We omit the effects of viscosity in the outer core, magnetic effects, and solid tides. Our approach is perturbative and is based on a linearization of Euler's equations for the motion of the fluid and Newton's second law for the motion of the inner core. We find an analytical expression for the period of the Slichter mode. Our result agrees with Busse's in the limiting case of small inner core. We present the unexpected result that even for Mercury the motion of the mantle does not significantly change the period of oscillation.
Preparation of Geophysical Fluid Flow Experiments ( GeoFlow ) in the Fluid Science Laboratory on ISS
NASA Astrophysics Data System (ADS)
Egbers, C.
The ,,GeoFlow" is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluidmechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field similar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment requires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth's liquid core the exp eriment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heating the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number. Results of preparatory experiments and numerical simulation of the space experiment will be presented. Funding from DLR under grant 50 WM 0122 is greatfully ackwnoledged.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, Don H.; Thresh, Henry R.
1982-01-01
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.
Europa's differentiated internal structure: inferences from four Galileo encounters.
Anderson, J D; Schubert, G; Jacobson, R A; Lau, E L; Moore, W B; Sjogren, W L
1998-09-25
Radio Doppler data from four encounters of the Galileo spacecraft with the jovian moon Europa have been used to refine models of Europa's interior. Europa is most likely differentiated into a metallic core surrounded by a rock mantle and a water ice-liquid outer shell, but the data cannot eliminate the possibility of a uniform mixture of dense silicate and metal beneath the water ice-liquid shell. The size of a metallic core is uncertain because of its unknown composition, but it could be as large as about 50 percent of Europa's radius. The thickness of Europa's outer shell of water ice-liquid must lie in the range of about 80 to 170 kilometers.
FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu
We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less
Secular changes of LOD associated with a growth of the inner core
NASA Astrophysics Data System (ADS)
Denis, C.; Rybicki, K. R.; Varga, P.
2006-05-01
From recent estimates of the age of the inner core based on the theory of thermal evolution of the core, we estimate that nowadays the growth of the inner core may perhaps contribute to the observed overall secular increase of LOD caused mainly by tidal friction (i.e., 1.72 ms per century) by a relative decrease of 2 to 7 μs per century. Another, albeit much less plausible, hypothesis is that crystallization of the inner core does not produce any change of LOD, but makes the inner core rotate differentially with respect to the outer core and mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas W. Akers; Edwin A. Harvego
2012-08-01
This paper presents the results of a study to evaluate the feasibility of remotely detecting and quantifying fuel relocation from the core to the lower head, and to regions outside the reactor vessel primary containment of the Fukushima 1-3 reactors. The goals of this study were to determine measurement conditions and requirements, and to perform initial radiation transport sensitivity analyses for several potential measurement locations inside the reactor building. The radiation transport sensitivity analyses were performed based on reactor design information for boiling water reactors (BWRs) similar to the Fukushima reactors, ORIGEN2 analyses of 3-cycle BWR fuel inventories, and datamore » on previously molten fuel characteristics from TMI- 2. A 100 kg mass of previously molten fuel material located on the lower head of the reactor vessel was chosen as a fuel interrogation sensitivity target. Two measurement locations were chosen for the transport analyses, one inside the drywell and one outside the concrete biological shield surrounding the drywell. Results of these initial radiation transport analyses indicate that the 100 kg of previously molten fuel material may be detectable at the measurement location inside the drywell, but that it is highly unlikely that any amount of fuel material inside the RPV will be detectable from a location outside the concrete biological shield surrounding the drywell. Three additional fuel relocation scenarios were also analyzed to assess detection sensitivity for varying amount of relocated material in the lower head of the reactor vessel, in the control rods perpendicular to the detector system, and on the lower head of the drywell. Results of these analyses along with an assessment of background radiation effects and a discussion of measurement issues, such as the detector/collimator design, are included in the paper.« less
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2014-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.
NASA Astrophysics Data System (ADS)
Penny, Samantha J.; Conselice, Christopher J.; de Rijcke, Sven; Held, Enrico V.; Gallagher, John S.; O'Connell, Robert W.
2011-01-01
We present the results of a Hubble Space Telescope (HST) study of dwarf galaxies in the outer regions of the nearby rich Perseus cluster, down to MV=-12, and compare these with the dwarf population in the cluster core from our previous HST imaging. In this paper, we examine how properties such as the colour-magnitude relation, structure and morphology are affected by environment for the lowest mass galaxies. Dwarf galaxies are excellent tracers of the effects of environment due to their low masses, allowing us to derive their environmentally based evolution, which is more subtle in more massive galaxies. We identify 11 dwarf elliptical (dE) and dwarf spheroidal (dSph) galaxies in the outer regions of Perseus, all of which are previously unstudied. We measure the (V-I)0 colours of our newly discovered dEs, and find that these dwarfs lie on the same red sequence as those in the cluster core. The morphologies of these dwarfs are examined by quantifying their light distributions using concentration, asymmetry and clumpiness (CAS) parameters, and we find that dEs in the cluster outskirts are on average more disturbed than those in the core, with = 0.13 ± 0.09 and = 0.18 ± 0.08, compared to = 0.02 ± 0.04, = 0.01 ± 0.07 for those in the core. Based on these results, we infer that these objects are `transition dwarfs', likely in the process of transforming from late-type to early-type galaxies as they infall into the cluster, with their colours transforming before their structures. When we compare the number counts for both the core and outer regions of the cluster, we find that below MV=-12, the counts in the outer regions of the cluster exceed those in the core. This is evidence that in the very dense region of the cluster, dwarfs are unable to survive unless they are sufficiently massive to prevent their disruption by the cluster potential and interactions with other galaxies. Based on observations made with the NASA/ESA HST, obtained (from the Data Archive) at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10201 and GO-10789
Rollo, Benjamin N.; Zhang, Dongcheng; Simkin, Johanna E.; Menheniott, Trevelyan R.; Newgreen, Donald F.
2015-01-01
The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca 2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates. This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface. PMID:26064478
A study of the required Rayleigh number to sustain dynamo with various inner core radius
NASA Astrophysics Data System (ADS)
Nishida, Y.; Katoh, Y.; Matsui, H.; Kumamoto, A.
2017-12-01
It is widely accepted that the geomagnetic field is sustained by thermal and compositional driven convections of a liquid iron alloy in the outer core. The generation process of the geomagnetic field has been studied by a number of MHD dynamo simulations. Recent studies of the ratio of the Earth's core evolution suggest that the inner solid core radius ri to the outer liquid core radius ro changed from ri/ro = 0 to 0.35 during the last one billion years. There are some studies of dynamo in the early Earth with smaller inner core than the present. Heimpel et al. (2005) revealed the Rayleigh number Ra of the onset of dynamo process as a function of ri/ro from simulation, while paleomagnetic observation shows that the geomagnetic field has been sustained for 3.5 billion years. While Heimpel and Evans (2013) studied dynamo processes taking into account the thermal history of the Earth's interior, there were few cases corresponding to the early Earth. Driscoll (2016) performed a series of dynamo based on a thermal evolution model. Despite a number of dynamo simulations, dynamo process occurring in the interior of the early Earth has not been fully understood because the magnetic Prandtl numbers in these simulations are much larger than that for the actual outer core.In the present study, we performed thermally driven dynamo simulations with different aspect ratio ri/ro = 0.15, 0.25 and 0.35 to evaluate the critical Ra for the thermal convection and required Ra to maintain the dynamo. For this purpose, we performed simulations with various Ra and fixed the other control parameters such as the Ekman, Prandtl, and magnetic Prandtl numbers. For the initial condition and boundary conditions, we followed the dynamo benchmark case 1 by Christensen et al. (2001). The results show that the critical Ra increases with the smaller aspect ratio ri/ro. It is confirmed that larger amplitude of buoyancy is required in the smaller inner core to maintain dynamo.
Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes
NASA Astrophysics Data System (ADS)
Lythgoe, K.; Deuss, A. F.
2017-12-01
The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.
Nuclear reactor internals alignment configuration
Gilmore, Charles B [Greensburg, PA; Singleton, Norman R [Murrysville, PA
2009-11-10
An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uto, N.; Niwa, H.; Ieda, Y.
1996-08-01
Passive prevention of core disruptive accidents (CDAs) is desired in terms of enhancement of safety for future fast breeder reactors. In addition, mitigation of CDA`s consequences should be required because mitigation measures have a potential of applying to all accidents, while prevention measures are prepared for specific accident initiators. In this paper, the Intra-Subassembly-equipped Self-Actuated Shutdown System (IS-SASS) , which is considered effective on passive prevention and mitigation of CDAs, is described. The IS-SASS is introduced in a fuel subassembly and consists of absorber materials at the top of the active core and an inner duct through which molten fuelmore » can be excluded out of the core. The determination of the appropriate number of the IS-SASS units, their arrangement in the core and their suitable structure are found to be suited to prevention and mitigation of CDAs for liquid metal-cooled large fast breeder reactors.« less
Li, Hongmei; Song, Qiushi; Xu, Qian; Chen, Ying; Xu, Liang; Man, Tiannan
2017-11-01
An NbC-Fe composite powder was synthesized from an Nb₂O₅/Fe/C mixture by electrochemical reduction and subsequent carbonization in molten CaCl₂-NaCl. The composite has a core-shell structure, in which NbC acts as the cores distributing in the Fe matrix. A strong bonding between NbC and Fe is benefit from the core-shell structure. The sintering and electrochemical reduction processes were investigated to probe the mechanism for the reactions. The results show that NbC particles about several nanometers were embraced by the Fe shell to form a composite about 100 nm in size. This featured structure can feasibly improve the wettability and sinterability of NbC as well as the uniform distribution of the carbide in the cast steel. By adding the composite into steel in the casting process, the grain size of the casted steel was markedly deceased from 1 mm to 500 μm on average, favoring the hardening of the casted steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, G.S.
2008-07-15
The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core th and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.381 mm and the same U-235 enrichment (19.7 wt%) can be used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.5 mil) to 0.343 mm (13.5 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, 0.8g of a burnable absorber, Boron-10, was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores. (author)« less
Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system
NASA Technical Reports Server (NTRS)
Grozav, A. D.; Konopko, L. A.; Leporda, N. I.
1990-01-01
The preparation of high-T(sub c) superconducting long composite wires by short-time tinning of the metal wires in a molten Bi-Pb-Sr-Ca-Cu-O compound is discussed. The application of this method to the high-T(sub c) materials is tested, possibly for the first time. The initial materials used for this experiment were ceramic samples with nominal composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) and T(sub c) = 80 K prepared by the ordinary solid-state reaction, and industrial copper wires from 100 to 400 microns in diameter and from 0.5 to 1 m long. The continuously moving wires were let through a small molten zone (approximately 100 cubic mm). The Bi-based high-T(sub c) ceramics in a molten state is a viscous liquid and it has a strongly pronounced ability to spread on metal wire surfaces. The maximum draw rate of the Cu-wire, at which a dense covering is still possible, corresponds to the time of direct contact of wire surfaces and liquid ceramics for less than 0.1 s. A high-rate draw of the wire permits a decrease in the reaction of the oxide melt and Cu-wire. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing.
Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)
1999-01-01
A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.
NASA Astrophysics Data System (ADS)
de Jong, B. H.
2007-12-01
Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to those observed on the Earth's surface and are mimicked by lows under the oceans and highs under the altiplanos. Careful and area selective S wave core mantle ellipsometry might be able to discern these core-mantle topographic variations. As such this process demonstrates the validity of the Gaia hypothesis enunciated by Baas Becking(1931) that no ecological niche on our planet is closed off from other niches "nothing in the world is single".
NASA Astrophysics Data System (ADS)
Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian
2014-07-01
The shock Hugoniot of an Fe-9 wt %Ni-10 wt %Si system as a model of the Earth's core has been measured up to ~280 GPa using a two-stage light-gas gun. The samples had an average density of 6.853 (±0.036) g/cm3. The relationship between shock velocity (Us) and particle velocity (up) can be described by Us (km/s) = 3.95 (±0.15) + 1.53 (±0.05) up (km/s). The calculated Hugoniot temperatures and the melting curve indicate that the model composition melts above a shock pressure of ~168 GPa, which is significantly lower than the shock-melting pressure of iron (~225 GPa). A comparison of the pressure-density (P-ρ) profiles between the model composition and the preliminary reference Earth model gives a silicon content close to 10 wt %, necessary to compensate the density deficit in the Earth's outer core from seismological observations, if silicon is present as a major light element in the Fe-Ni core system.
Some anticipated contributions to core fluid dynamics from the GRM
NASA Technical Reports Server (NTRS)
Vanvorhies, C.
1985-01-01
It is broadly maintained that the secular variation (SV) of the large scale geomagnetic field contains information on the fluid dynamics of Earth's electrically conducting outer core. The electromagnetic theory appropriate to a simple Earth model has recently been combined with reduced geomagnetic data in order to extract some of this information and ascertain its significance. The simple Earth model consists of a rigid, electrically insulating mantle surrounding a spherical, inviscid, and perfectly conducting liquid outer core. This model was tested against seismology by using truncated spherical harmonic models of the observed geomagnetic field to locate Earth's core-mantle boundary, CMB. Further electromagnetic theory has been developed and applied to the problem of estimating the horizontal fluid motion just beneath CMB. Of particular geophysical interest are the hypotheses that these motions: (1) include appreciable surface divergence indicative of vertical motion at depth, and (2) are steady for time intervals of a decade or more. In addition to the extended testing of the basic Earth model, the proposed GRM provides a unique opportunity to test these dynamical hypotheses.
Interstellar and Cometary Dust
NASA Technical Reports Server (NTRS)
Mathis, John S.
1997-01-01
'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral/carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.
Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1977-01-01
Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.
Interaction of the Disordered Yersinia Effector Protein YopE with Its Cognate Chaperone SycE
2009-01-01
structures of YopECBD were molten globules with a hydrophobic core. Molecular dynamics (MD) simulations indi- cated that the structure remained compact at...ensembles of unfolded conformations of the Yersinia effector YopE using REMD simulations and docked them to the chaper- one SycE using a multistep protein...disordered state but transitions into an ordered state upon binding to its cognate chaperone (7). The dynamics of the disordered effector protein and
Viscosity of the earth's core.
NASA Technical Reports Server (NTRS)
Gans, R. F.
1972-01-01
Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.
An early geodynamo driven by exsolution of mantle components from Earth’s core
Badro, James; Siebert, Julien; Nimmo, Francis
2016-01-01
Terrestrial core formation occurred in the early molten Earth by gravitational segregation of immiscible metal and silicate melts, stripping iron-loving elements from the silicate mantle to the metallic core1–3, and leaving rock-loving components behind. Here we performed experiments showing that at high enough temperature, Earth’s major rock-loving component, magnesium oxide, can also dissolve in core-forming metallic melts. Our data clearly point to a dissolution reaction, and are in agreement with recent DFT calculations4. Using core formation models5, we further show that a high-temperature event during Earth’s accretion (such as the Moon-forming giant impact6) can contribute significant amounts of magnesium to the early core. As it subsequently cools, the ensuing exsolution7 of buoyant magnesium oxide generates a substantial amount of gravitational energy. This energy is comparable to if not significantly higher than that produced by inner core solidification8 — the primary driver of the Earth’s current magnetic field9–11. Since the inner core is too young12 to explain the existence of an ancient field prior to ~1 billion years, our results solve the conundrum posed by the recent paleomagnetic observation13 of an ancient field at least 3.45 Gyr old. PMID:27437583
NASA Astrophysics Data System (ADS)
Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.
2013-10-01
In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.
Core Composition and the Magnetic Field of Mercury
NASA Astrophysics Data System (ADS)
Spohn, T.; Breuer, D.
2005-05-01
The density of Mercury suggests a core of approximately 1800 km radius and a mantle of approximately 600 km thickness. Convection in the mantle is often claimed to be capable of freezing the core over the lifetime of the solar system if the core is nearly pure iron. The thermal history calculations of Stevenson et al. (1983) and Schubert et al. (1988) suggest that about 5 weight-% sulphur are required to lower the core liquidus sufficiently to prevent complete freezing of the core and maintain a significant fluid outer core shell. Other candidates for a light alloying element require similarly large concentrations. The requirement of a significant concentration of volatile elements in the core is likely to be at variance with cosmochemical arguments for a mostly refractory, volatile poor composition of the planet. We have re-addressed the question of the freezing of Mercury's core using parameterized convection models based on the stagnant lid theory of planetary mantle convection. We have compared these results to earlier calculations (Conzelmann and Spohn, 1999) of Hermian mantle convection using a finite-amplitude convection code. We find consistently that the stagnant lid tends to thermally insulate the deep interior and we find mantle and core temperatures significantly larger than those calculated by Stevenson et al. (1983) and Schubert et al. (1988). As a consequence we find fluid outer core shells for reasonable mantle rheology parameters even for compositions with as little as 0.1 weight-% sulphur. Stevenson, D.J., T. Spohn, and G. Schubert. Icarus, 54, 466, 1983. Schubert, G. M.N. Ross, D.J. Stevenson, and T. Spohn, in Mercury, F. Vilas, C.R. Chapman and M.S. Matthews, eds., p.429, 1988. Conzelmann, V. and T. Spohn, Bull. Am. Astr. Soc., 31, 1102, 1999.
Constraints on Mercury's Core-Mantle Boundary Region
NASA Astrophysics Data System (ADS)
Hauck, S. A., II; Chabot, N. L.; Sun, P.; Jing, Z.; Johnson, C. L.; Margot, J. L.; Padovan, S.; Peale, S. J.; Phillips, R. J.; Solomon, S. C.
2014-12-01
Understanding the boundary between a planet's metallic core and silicate mantle is important for constraining processes that dominate on either side of this boundary. Geophysical measurements of the planet Mercury by the MESSENGER spacecraft have provided evidence of a core larger than earlier, less-constrained estimates. Further, these results, taken in concert with measurements of the elemental composition of the surface by MESSENGER, have led to the suggestion that the uppermost layer of the outer core may be highly enriched in sulfur, and the top of the core may consist of a solid sulfide layer. The low iron and relatively large sulfur contents of the surface indicate highly reducing conditions during planet formation, placing constraints on the potential composition of Mercury's core. Recent metal-silicate partitioning experiments have developed new limits on the amount of sulfur and silicon that may partition into the core as a function of sulfur abundance at the surface. Models for the planet's internal structure constrained by the current best estimates of the bulk density, normalized polar moment of inertia, and fraction of the polar moment of inertia of the solid layer that extends from the surface to the top of the liquid outer core provide an important view of the layering and bulk composition of Mercury. By combining the results of these internal structure models with the experimental relationship between core and mantle composition we place new limits on core composition and structure. Further, imposing measured compositional constraints on the miscibility of iron-sulfur-silicon alloys yields important limits on the presence or absence of an immiscible sulfur-rich liquid layer or a solid sulfide layer at the top of the core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haga, Takafumi; Doi, Akihiro; Murata, Yasuhiro
2015-07-01
We report multifrequency phase-referenced observations of the nearby radio galaxy NGC 4261, which has prominent two-sided jets, using the Very Long Baseline Array at 1.4–43 GHz. We measured radio core positions showing observing frequency dependences (known as “core shift”) in both approaching jets and counterjets. The limit of the core position as the frequency approaches infinity, which suggests a jet base, is separated by 82 ± 16 μas upstream in projection, corresponding to (310 ± 60)R{sub s} (R{sub s}: Schwarzschild radius) as a deprojected distance, from the 43 GHz core in the approaching jet. In addition, the innermost component atmore » the counterjet side appeared to approach the same position at infinity of the frequency, indicating that cores on both sides are approaching the same position, suggesting a spatial coincidence with the central engine. Applying a phase-referencing technique, we also obtained spectral index maps, which indicate that emission from the counterjet is affected by free–free absorption (FFA). The result of the core shift profile on the counterjet also requires FFA because the core positions at 5–15 GHz cannot be explained by a simple core shift model based on synchrotron self-absorption (SSA). Our result is apparently consistent with the SSA core shift with an additional disk-like absorber over the counterjet side. Core shift and opacity profiles at the counterjet side suggest a two-component accretion: a radiatively inefficient accretion flow at the inner region and a truncated thin disk in the outer region. We proposed a possible solution about density and temperature profiles in the outer disk on the basis of the radio observation.« less
Contaminant trap for gas-insulated apparatus
Adcock, James L.; Pace, Marshall O.; Christophorou, Loucas G.
1984-01-01
A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.
Multiple Experimental Efforts to Understand the Structure and Dynamics of Earth's Core
NASA Astrophysics Data System (ADS)
Fei, Y.; Han, L.; Bennett, N.; Hou, M.; Kuwayama, Y.; Huang, H.
2014-12-01
It requires integration of data from different types of high-pressure experiments to understand the structure and dynamics of Earth's core. In particular, measurements of physical properties and element partitioning in systems relevant to the core provide complementary data to narrow down the range of possible core compositions. We have performed both static and dynamic compression experiments and combined results from these with literature data to establish a reliable thermal equation of state of iron. This allows us to precisely determine the density deficit in the solid inner core. The combination of density and sound velocity measurements for both solid and liquid iron and its alloys provide tight constraints on the density deficit in the liquid outer core and the amount of sulphur required to match the geophysical observations. We then conducted element-partitioning experiments between solid and liquid iron in both multi-anvil apparatus and the laser-heated diamond-anvil cell to determine the sulphur, silicon, and oxygen partitioning between the liquid outer core and solid inner core. We present newly developed high-pressure experimental and nano-scale analytical techniques that allow us to simulate the conditions of the inner core boundary (ICB) and analyze the chemical compositions of coexisting phases in the recovered samples. We have established protocols to obtain high-quality partitioning data in the laser-heating diamond-anvil cell combined with FIB/SEM crossbeam technology. The partitioning data obtained up to at least 200 GPa provide additional criteria to explain the observed density and velocity jumps at the ICB.
Casting Apparatus Including A Gas Driven Molten Metal Injector And Method
Trudel, David R.; Meyer, Thomas N.; Kinosz, Michael J.; Arnaud, Guy; Bigler, Nicolas
2003-06-17
The filtering molten metal injector system includes a holder furnace, a casting mold supported above the holder furnace, and at least one molten metal injector supported from a bottom side of the casting mold. The holder furnace contains a supply of molten metal. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The molten metal injector projects into the holder furnace. The molten metal injector includes a cylinder defining a piston cavity housing a reciprocating piston for pumping the molten metal upward from the holder furnace to the mold cavity. The cylinder and piston are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder or the piston includes a molten metal intake for receiving the molten metal into the piston cavity when the holder furnace contains molten metal. A conduit connects the piston cavity to the mold cavity. A molten metal filter is located in the conduit for filtering the molten metal passing through the conduit during the reciprocating movement of the piston. The molten metal intake may be a valve connected to the cylinder, a gap formed between the piston and an open end of the cylinder, an aperture defined in the sidewall of the cylinder, or a ball check valve incorporated into the piston. A second molten metal filter preferably covers the molten metal intake to the injector.
Gas core reactors for actinide transmutation and breeder applications
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1978-01-01
This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.
Misra, Rajeev
2012-01-01
In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems—Gram-negative bacteria, mitochondria and chloroplasts—research on bacterial and mitochondrial systems has so far led the way in dissecting the β-barrel OMP assembly pathways. Many exciting discoveries have been made, including the identification of β-barrel OMP assembly machineries in bacteria and mitochondria, and potentially the core assembly component in chloroplasts. The atomic structures of all five components of the bacterial β-barrel assembly machinery (BAM) complex, except the β-barrel domain of the core BamA protein, have been solved. Structures reveal that these proteins contain domains/motifs known to facilitate protein-protein interactions, which are at the heart of the assembly pathways. While structural information has been valuable, most of our current understanding of the β-barrel OMP assembly pathways has come from genetic, molecular biology, and biochemical analyses. This paper provides a comparative account of the β-barrel OMP assembly pathways in Gram-negative bacteria, mitochondria, and chloroplasts. PMID:27335668
Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.
UF6 breeder reactor power plants for electric power generation
NASA Technical Reports Server (NTRS)
Rust, J. H.; Clement, J. D.; Hohl, F.
1976-01-01
The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.
Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator
NASA Technical Reports Server (NTRS)
Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)
2014-01-01
A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.
Converting ceria polyhedral nanoparticles into single-crystal nanospheres.
Feng, Xiangdong; Sayle, Dean C; Wang, Zhong Lin; Paras, M Sharon; Santora, Brian; Sutorik, Anthony C; Sayle, Thi X T; Yang, Yi; Ding, Yong; Wang, Xudong; Her, Yie-Shein
2006-06-09
Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.
Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation
Li, Wei; Yang, Daoyuan; Liu, Xinhong
2018-01-01
A large-scale production of necklace-like SiC/SiO2 heterojunctions was obtained by a molten salt-mediated chemical vapor reaction technique without a metallic catalyst or flowing gas. The effect of the firing temperature on the evolution of the phase composition, microstructure, and morphology of the SiC/SiO2 heterojunctions was studied. The necklace-like SiC/SiO2 nanochains, several centimeters in length, were composed of SiC/SiO2 core-shell chains and amorphous SiO2 beans. The morphologies of the as-prepared products could be tuned by adjusting the firing temperature. In fact, the diameter of the SiO2 beans decreased, whereas the diameter of the SiC fibers and the thickness of the SiO2 shell increased as the temperature increased. The growth mechanism of the necklace-like structure was controlled by the vapor-solid growth procedure and the modulation procedure via a molten salt-mediated chemical vapor reaction process. PMID:29748482
Protein targeting and integration signal for the chloroplastic outer envelope membrane.
Li, H M; Chen, L J
1996-01-01
Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...
2014-12-09
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
2014-01-01
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959
Evolutionary status of the pre-protostellar core L1498
NASA Technical Reports Server (NTRS)
Kuiper, T. B.; Langer, W. D.; Velusamy, T.; Levin, S. M. (Principal Investigator)
1996-01-01
L1498 is a classic example of a dense cold pre-protostellar core. To study the evolutionary status, the structure, dynamics, and chemical properties of this core we have obtained high spatial and high spectral resolution observations of molecules tracing densities of 10(3)-10(5) cm-3. We observed CCS, NH3, C3H2, and HC7N with NASA's DSN 70 m antennas. We also present large-scale maps of C18O and 13CO observed with the AT&T 7 m antenna. For the high spatial resolution maps of selected regions within the core we used the VLA for CCS at 22 GHz, and the Owens Valley Radio Observatory (OVRO) MMA for CCS at 94 GHz and CS (2-1). The 22 GHz CCS emission marks a high-density [n(H2) > 10(4) cm -3] core, which is elongated with a major axis along the SE-NW direction. NH3 and C3H2 emissions are located inside the boundary of the CCS emission. C18O emission traces a lower density gas extending beyond the CCS boundary. Along the major axis of the dense core, CCS, NH3 and C3H2 emission show evidence of limb brightening. The observations are consistent with a chemically differentiated onion-shell structure for the L1498 core, with NH3 in the inner and CCS in the outer parts of the core. The high angular resolution (9"-12") spectral line maps obtained by combining NASA Goldstone 70 m and VLA data resolve the CCS 22 GHz emission in the southeast and northwest boundaries into arclike enhancements, supporting the picture that CCS emission originates in a shell outside the NH3 emitting region. Interferometric maps of CCS at 94 GHz and CS at 98 GHz show that their emitting regions contain several small-scale dense condensations. We suggest that the differences between the CCS, CS, C3H2, and NH3 emission are caused by a time-dependent effect as the core evolves slowly. We interpret the chemical and physical properties of L1498 in terms of a quasi-static (or slowly contracting) dense core in which the outer envelope is still growing. The growth rate of the core is determined by the density increase in the CCS shell resulting from the accretion of the outer low-density gas traced by C18O. We conclude that L1498 could become unstable to rapid collapse to form a protostar in less than 5 x 10(6) yr.
Noe, Gregory B.
2011-01-01
A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.
Numerical study on the thermo-chemically driven Geodynamo
NASA Astrophysics Data System (ADS)
Trümper, Tobias; Hansen, Ulrich
2014-05-01
In our numerical study we consider magneto-convection in the Earth's outer core driven by buoyancy induced by heterogeneities both in the thermal and the chemical field. The outer core is thus treated as a self-gravitating, rotating, spherical shell with unstable thermal and chemical gradients across its radius. The thermal gradient is maintained by secular cooling of the core and the release of latent heat at the inner core freezing front. Simultaneously, the concentration of the light constituents of the liquid phase increases at the inner core boundary since only a smaller fraction of the light elements can be incorporated during solidification. Thus, the inner core boundary constitutes a source of compositional buoyancy. The molecular diffusivities of the driving agents differ by some orders of magnitude so that a double-diffusive model is employed in order to study the flow dynamics of this system. We investigate the influence of different thermo-chemical driving scenarios on the structure of the flow and the internal magnetic field. A constant ratio of the diffusivities (Le=10) and a constant Ekman number (Ek=10-4) are adopted. Apart from testing different driving scenarios, the double-diffusive approach also allows to implement distinct boundary conditions on temperature and composition. Isochemical and fixed chemical flux boundary conditions are implemented in order to investigate their respective influence on the flow and magnetic field generation.
Molten metal injector system and method
Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy
2003-04-01
Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.
Iliyasu, U; Ibrahim, Y V; Umar, Sadiq; Agbo, S A; Jibrin, Y
2017-05-01
Investigation of reactivity variation due to flooding of the irradiation channels of Nigeria Research Reactor (NIRR-1) a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria using the MCNP code for High Enrich Uranium (HEU) and Low Enrich Uranium (LEU) core has been simulated in this present study. In this work, the excess reactivity worth of flooding HEU core for 1 inner, 2 inner, 3 inner, 4 inner and all inner are 0.318mk, 0.577mk, 0.318mk, 1.204mk and 1.503mk respectively, and outer irradiation channels are 0.119mk, 0.169mk, 0.348mk, 0.438mk and 0.418mk respectively, the highest excess reactivity result from flooding both inner and outer irradiation channels is 2.04mk (±1.72×10 -7 ), the excess reactivity for LEU core was 0.299mk, 0.568mk, 0.896mk, 1.195mk and 1.524mk in the inner irradiation channels, and the outer irradiation channels are 0.129mk, 0.189mk, 0.219mk, 0.269mk and 0.548mk where the highest excess reactivity was 1.942mk (±1.64×10 -7 ) resulting from flooding inner and outer irradiation channels. The reactivity induced by flooding of the irradiation channels of NIRR-1 with water is within design safety limit enshrined in Safety Analysis Report of NIRR-1. The results also compare well with literature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magnetic braking of stellar cores in red giants and supergiants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch
2014-10-01
Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less
Uranus and Neptune: Refugees from the Jupiter-Saturn zone?
NASA Astrophysics Data System (ADS)
Thommes, E. W.; Duncan, M. J.; Levison, H. F.
1999-09-01
Plantesimal accretion models of planet formation have been quite successful at reproducing the terrestrial region of the Solar System. However, in the outer Solar System these models run into problems, and it becomes very difficult to grow bodies to the current mass of the ``ice giants," Uranus and Neptune. Here we present an alternative scenario to in-situ formation of the ice giants. In addition to the Jupiter and Saturn solid cores, several more bodies of mass ~ 10 MEarth or more are likely to have formed in the region between 4 and 10 AU. As Jupiter's core, and perhaps Saturn's, accreted nebular gas, the other nearby bodies must have been scattered outward. Dynamical friction with the trans-Saturnian part of the planetesimal disk would have acted to decouple these ``failed cores" from their scatterer, and to circularize their orbits. Numerical simulations presented here show that systems very similar to our outer Solar System (including Uranus, Neptune, the Kuiper belt, and the scattered disk) are a natural product of this process.
A preliminary examination of differential decomposition patterns in mass graves.
Troutman, Lauren; Moffatt, Colin; Simmons, Tal
2014-05-01
Five pairs of mass graves, each containing carcasses of 21 rabbits, were used to examine differential decomposition at four locations within the burial: surface, deep, mid-outer, and core. Every 100 accumulated degree days (ADD), a pair of graves was exhumed, and total body score (TBS) and internal carcass temperature of each rabbit were recorded. Decomposition did not differ for core- and deep-positioned carcasses (p = 0.13); differences were significant (p < 0.001) for all other location comparisons. Decomposition occurred fastest in shallow carcasses, followed by mid-outer carcasses; deep and core carcasses decomposed slowest and at rates not significantly different from one another. Adipocere formation was minimal and confined to deep carcasses. Carcass location within the mass grave significantly influenced internal carcass temperature (p < 0.001); a mean internal temperature difference of ca. 1°C existed between deep and shallow carcasses (30 cm apart). Effects of mass compactness and oxygenation require further investigation. © 2013 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Zhu, W.; Gaetani, G. A.; Fusseis, F.
2009-12-01
Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle. Estimates for the permeability of partially molten rock require 3D melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along triple junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have obtained the first high quality non-destructive imaging of 3D melt distribution in olivine-basalt aggregates. Textually equilibrated partially molten samples consisting of magnesian olivine plus 2, 5, 10, or 20% primitive basalt were synthesized at 1.5 GPa and 1350°C in experiments lasting 264-336 hours. Microtomographic images of melt distribution were obtained on cylindrical cores, 1 mm in diameter, at a spatial resolution of 1 micron. Textual information such as melt channel size, dihedral angle and channel connectivity was then quantified using AVIZO and MATLAB. Our results indicate that as melt fraction decreases, melt becomes increasingly distributed along 3 grain junctions, in agreement with theoretical predictions. We do not find significant amounts of melt along grain boundaries at low melt fractions. We found that the true dihedral angle ranges from 50 to 70°, in agreements with results using 2D microcopy. Comparison between the samples provides a quantitative characterization of how melt fraction affects melt distribution including connectivity. The geometrical data have been incorporated into our network model to obtain macroscale transport properties for partially molten dunite. Results from this tomographic study thus provide constraints on rates of melt migration and melt extraction within the partially molten regions beneath ocean ridges. Fig 1. Melt channels in an olivine-basalt sample with 10 vol% melt.
Partition Coefficients at High Pressure and Temperature
NASA Astrophysics Data System (ADS)
Righter, K.; Drake, M. J.
2003-12-01
Differentiation of terrestrial planets includes separation of a metallic core and possible later fractionation of mineral phases within either a solid or molten mantle (Figure 1). Lithophile and siderophile elements can be used to understand these two different physical processes, and ascertain whether they operated in the early Earth. The distribution of elements in planets can be understood by measuring the partition coefficient, D (ratio of concentrations of an element in different phases (minerals, metals, or melts)). (14K)Figure 1. Schematic cross-section through the Earth, showing: (a) an early magma ocean stage and (b) a later cool and differentiated stage. The siderophile elements (iron-loving) encompass over 30 elements and are defined as those elements for which D(metal/silicate)>1, and are useful for deciphering the details of core formation. This group of elements is commonly broken up into several subclasses, including the slightly siderophile elements (1
NASA Astrophysics Data System (ADS)
Chapelle, F. H.
2003-12-01
Differentiation of terrestrial planets includes separation of a metallic core and possible later fractionation of mineral phases within either a solid or molten mantle (Figure 1). Lithophile and siderophile elements can be used to understand these two different physical processes, and ascertain whether they operated in the early Earth. The distribution of elements in planets can be understood by measuring the partition coefficient, D (ratio of concentrations of an element in different phases (minerals, metals, or melts)). (14K)Figure 1. Schematic cross-section through the Earth, showing: (a) an early magma ocean stage and (b) a later cool and differentiated stage. The siderophile elements (iron-loving) encompass over 30 elements and are defined as those elements for which D(metal/silicate)>1, and are useful for deciphering the details of core formation. This group of elements is commonly broken up into several subclasses, including the slightly siderophile elements (1
Ueda, S; Hata, T; Asakura, S; Yamaguchi, H; Kotani, M; Ueda, Y
1994-01-01
A novel controlled drug release system. Time-Controlled Explosion System (TES) has been developed. TES has a four-layered spherical structure, which consists of core, drug, swelling agent and water insoluble polymer membrane. TES is characterized by a rapid drug release with a precisely programmed lag time; i.e. expansion of the swelling agent by water penetrating through the outer membrane, destruction of the membrane by stress due to swelling force and subsequent rapid drug release. For establishing the concept and development strategy, TES was designed using metoprolol and polystyrene balls (size: 3.2 mm in diameter) as a model drug and core particles. Among the polymers screened, low-substituted hydroxypropylcellulose (L-HPC) and ethylcellulose (EC) were selected for a swelling agent and an outer water insoluble membrane, respectively. The release profiles of metoprolol from the system were not affected by the pH of the dissolution media. Lag time was controlled by the thickness of the outer EC membrane; thus, a combination of TES particles possessing different lag times could offer any desired release profile of the model compound, metoprolol.
NASA Astrophysics Data System (ADS)
Fornelli, A.; Langone, A.; Micheletti, F.; Pascazio, A.; Piccarreta, G.
2014-03-01
The recognition of the coeval growth of zircon, orthopyroxene and garnet domains formed during the same metamorphic cycle has been attempted with detailed microanalyses coupled with textural analyses. A coronitic garnet-bearing granulite from the lower crust of Calabria has been considered. U-Pb zircon data and zircon, garnet and orthopyroxene chemistries, at different textural sites, on a thin section of the considered granulite have been used to test possible equilibrium and better constrain the geological significance of the U-Pb ages related to zircon separates from other rocks of the same structural level. The garnet is very rich in REE and is characterised by a decrease in HREE from core to outer core and an increase in the margin. Zircons show core-overgrowth structures showing different chemistries, likely reflecting episodic metamorphic new growth. Zircon grains in matrix, corona around garnet and within the inner rim of garnet, are decidedly poorer in HREE up to Ho than garnet interior. Orthopyroxene in matrix and corona is homogeneously poor in REE. Thus, the outer core of garnet and the analysed zircon grains grew or equilibrated in a REE depleted system due to the former growth of garnet core. Zircon ages ranging from 357 to 333 Ma have been determined in the matrix, whereas ages 327-320 Ma and around 300 Ma have been determined, respectively, on cores and overgrowths of zircons from matrix, corona and inner rim of garnet. The calculated DREEzrn/grt and DREEopx/grt are largely different from the equilibrium values of literature due to strong depletion up to Ho in zircon and orthopyroxene with respect to garnet. On the other hand, the literature data show large variability. In the case study, (1) the D zrn/grt values define positive and linear trends from Gd to Lu as many examples from literature do and the values from Er to Lu approach the experimental results at about 900 °C in the combination zircon dated from 339 to 305 Ma with garnet outer core, and (2) D opx/grt values define positive trends reaching values considered as suggestive of equilibrium from Er to Lu only with respect to the outer core of garnet. The presence of a zircon core dated 320 Ma in the inner rim of garnet suggests that it, as well as those dated at 325-320 Ma in the other textural sites and, probably, those dated at 339-336 Ma showing depletion of HREE, grew after the garnet core, which sequestered a lot of HREE and earlier than the HREE rich margin of garnet. The quite uniform REE contents in orthopyroxene from matrix and corona and the low and uniform contents of HREE in the zircon overgrowths dated at about 300 Ma allow to think that homogenisation occurred during or after the corona formation around this age. The domains dated around 325-320 Ma would approximate the stages of decompression, whereas the metamorphic peak probably occurred earlier than 339 Ma.
HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR
Hammond, R.P.; Wykoff, W.R.; Busey, H.M.
1960-06-14
A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.
Properties of iron alloys under the Earth's core conditions
NASA Astrophysics Data System (ADS)
Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann
2014-05-01
The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.
Ziaco, Marcello; De Castro, Cristina; Silipo, Alba; Corsaro, Maria Michela; Molinaro, Antonio; Iadonisi, Alfonso; Lanzetta, Rosa; Parrilli, Michelangelo; Bedini, Emiliano
2015-02-11
The first synthesis of the outer core fragment of Burkholderia multivorans lipooligosaccharide [β-D-Glc-(1→3)-α-D-GalNAc-(1→3)-β-D-GalNAc-(1→3)-L-Rha] as α-allyl tetrasaccharide was accomplished. The glycosylations involving GalNAc units were studied in depth testing them under several conditions. This allowed the building of both the α- and the β-configured glycosidic bonds by employing the same GalNAc glycosyl donor, thus considerably shortening the total number of synthetic steps. The target tetrasaccharide was synthesized with an allyl aglycone to allow its future conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against the Burkholderia cepacia pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brittle Materials Design, High Temperature Gas Turbine
1981-03-01
slides and core pins which formed the outer diameter and the hollow struts. Inner inserts were used to form the inside surface of the nose cone...ceramic component development. Figure 1 illustrates this by showing, in turn, ready removal in the test cell of a ceramic regenerator core , combusior...objective. This Executive Summary briefly reviews the highlights of the program. VII ■■■ *»W*w»«»^il»^.3«£*a;-^ -,Al^».t, „ . Regenerator Core Removal
The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars
NASA Astrophysics Data System (ADS)
Tsuno, Kyusei; Frost, Daniel J.; Rubie, David C.
2011-03-01
Constraints on the partitioning of oxygen between silicates, oxides, and metallic liquids are important for determining the amount of oxygen that may have entered the cores of terrestrial planets and to identify likely reactions at the core-mantle boundary. Several previous studies have examined oxygen partitioning between liquid Fe metal and ferropericlase, however, the cores of terrestrial planets also contain nickel and most likely sulphur. We have performed experiments to examine the effects of both nickel and sulphur on the partitioning of oxygen between ferropericlase and liquid Fe alloy up to pressures of 24.5 GPa in the temperature range 2430-2750 K using a multianvil press. The results show that at a fixed oxygen fugacity the proportion of oxygen that partitions into liquid metal will decrease by approximately 1-2 mol% on the addition of 10-20 mol% nickel to the liquid. The addition of around 30 mol% sulphur will, on the other hand, increase the metal oxygen content by approximately 10 mol%. Experiments to examine the combined effects of both nickel and sulphur, show a decrease in the effect of nickel on oxygen partitioning as the sulphur content of the metal increases. We expand an existing thermodynamic model for the partitioning of oxygen at high pressures and temperatures to include the effects of nickel and sulphur by fitting these experimental data, with further constraints provided by existing phase equilibria studies at similar conditions in the Fe-S and Fe-O-S systems. Plausible terrestrial core sulphur contents have little effect on oxygen partitioning. When our model is extrapolated to conditions of the present day terrestrial core-mantle boundary, the presence of nickel is found to lower the oxygen content of the outer core that is in equilibrium with the expected mantle ferropericlase FeO content, by approximately 1 weight %, in comparison to nickel free calculations. In agreement with nickel-free experiments, this implies that the Earth's outer core is undersaturated in oxygen with respect to plausible mantle FeO contents, which will result in either the depletion of FeO from the base of the mantle or cause the development of an outer core layer that is enriched in oxygen. The oxygen content of the more sulphur-rich Martian core would be in the range 2-4 wt.% if it is in equilibrium with the FeO-rich Martian mantle.
NASA Astrophysics Data System (ADS)
Matsumoto, K.; Yamada, R.; Kikuchi, F.; Kamata, S.; Ishihara, Y.; Iwata, T.; Hanada, H.; Sasaki, S.
2014-12-01
We tried to constrain lunar internal structure by combining the Apollo seismic travel time data and selenodetic data including those from GRAIL and LLR. We used a seven-layer model consisting of crust, upper mantle, middle mantle, lower mantle, low-velocity layer (LVL), fluid outer core and solid inner core. The model is constrained by the following observations; three selenodetic data of mass, mean moment of inertia, tidal Love number k2 from [1], and Apollo seismic travel time data from [2]. Markov Chain Monte Carlo method is used to infer the model parameters. We collected 140 million samples from 10 chains. Viscosity is not taken into account in this calculation. Mean crustal thickness of 46 ± 4 km is estimated by fitting a normal distribution curve to the posterior distribution, which is to be compared with the previous estimate of 34 - 43 km [3]. Major part of crustal densities is sampled between 2500 and 2600 kg/m3, which is consistent with the value of 2550 kg/m3 reported by [3]. In general, seismic wave velocities in the mantle are consistent with the previous estimates [4][5]. The ranges of size and density of the outer core which satisfy the observation are relatively wide and it is difficult to tightly constrain them. Strong correlation between outer core size and LVL thickness is observed. The smaller outer core should be accompanied by thick LVL and vice versa. When we take into account the upper bound of the fluid core size of 400 km which is predicted by magnetic observation [6], the thickness of the LVL is at least about 100 km. The S-wave velocity within this low-velocity layer is estimated to be less than about 3 km/s. The effect of low viscosity [7] may change the estimate of the S-wave velocity in the LVL. The inner core radius is expected to be smaller than 280 km. The lunar displacement Love number is predicted to be h2= 0.0423 ± 0.0004. References [1] Williams et al. (2014), JGR, doi:10.1002/2013JE004559 [2] Lognonne et al. (2003), EPSL, 211, 27-44 [3] Wieczorek et al. (2012), Science, doi:10.1126/science.1231530 [4] Weber et al. (2011), Science, 331, 309-312, doi:10.1126/science.1199375 [5] Garcia et al. (2011), PEPI, doi:10.1016/j.pepi.2011.06.015 [6] Shimizu et al. (2013), Icarus, doi:10.1016/j.icarus.2012.10.029 [7] Harada et al. (2014), Nature geoscience, doi:10.1038/NGEO2211
In situ determination of binary alloy melt compositions in the LHDAC by X- Radiography
NASA Astrophysics Data System (ADS)
Lord, O. T.; Walter, M. J.; Walker, D.; Clark, S. M.
2008-12-01
Constraining the light element in Earth's molten outer core requires an understanding of the melting phase relations in iron-light element binary systems. For example, it is critical to determine the composition of liquids at binary eutectics. Typically such measurements are carried out after the sample has been quenched in temperature and pressure. Such 'cook and look' methods possibly suffer from systematic errors introduced by exsolution of the light element from the melt on quench and error in the reintegration of the liquid composition [1]. Here, we present a novel method for the determination of melt compositions in iron-light element binary systems in situ in the LHDAC at simultaneous high-pressure, high-temperature conditions. Samples consist of a light element bearing compound, such as FeO, surrounded by a pure iron ring, forming a donut ~100 μm in diameter and ~15 μm thick. The donuts are loaded into stainless steel gaskets in the DAC, sandwiched between discs fabricated from sol-gel deposited nanocrystalline Al2O3 with similar dimensions to the donut. Pressure is monitored by ruby fluorescence during compression. The sample is heated at the boundary between the iron and light element compound using two 100 W IR lasers in a double-sided configuration at beamline 12.2.2 at the Advanced Light Source. Temperature is measured by spectroradiometry. Before, during and after melting, X-radiographic images of the sample are taken by shining a defocused beam of synchrotron X-rays through the sample and onto a CdWO4 phosphor. The visible light from the phosphor is then focused onto a high resolution CCD, where absorption contrast images are recorded. The absorption of the molten region is then determined, and it's composition calculated by linear interpolation between the absorption of the two solid end members. As a test of the reliability of the method we measured the Fe-FeS eutectic to 20 GPa and our results are in good agreement with previous studies that are based on various ex situ techniques. We measured the eutectic composition between Fe and Fe3C up to 44 GPa, and found that the carbon content of the eutectic drops rapidly above about 10 GPa, dropping to less that 1 wt% by 44 GPa. This result is generally consistent with the thermodynamic calculations of Wood [2]. Experiments on the Fe-FeSi eutectic yielded an increase in the Si content of the eutectic to 35 GPa, consistent with data from large volume press experiments [3] Notably, melting experiments at 35-43 GPa and ~2500 K on a boundary between Fe and FeO failed to yield evidence of a melt with a composition distinguishable from pure iron. However, an experiment at 12 GPa and 2700 K between Fe and FeO(OH) did yield a melt with a composition intermediate between the two end members. This suggests that O solubility in the Fe-O eutectic melt is low at mid-mantle pressures, but that H may dissolve into the melt by itself or in combination with O. [1] Walker, D., 2005. Core-Mantle chemical issues. Canad. Min., 43, 1553-1564 [2] Wood, B. J., 1993. Carbon in the core. Earth Planet Sci. Lett., 117, 593-607 [3] Kuwayama, Y. & Hirose, K., 2004. Phase relations in the system Fe-FeSi at 21 GPa. Am. Min., 89, 273-276.
Highly birefringent suspended-core photonic microcells for refractive-index sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057; Jin, Wa
2014-08-11
An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.
Effect of annealing temperature on the stress and structural properties of Ge core fibre
NASA Astrophysics Data System (ADS)
Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun
2017-09-01
Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. S. Chang; M. A. Lillo; R. G. Ambrosek
2008-06-01
The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis was performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff versus effective full power days (EFPDs) between the HEU and the LEU cores. The MCNP ATR 1/8th core model was used to optimize the U 235 loading in the LEU core, such that the differences in K-eff and heat flux profiles between the HEU and LEU cores were minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the ATR reference HEU case study. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, the proposed LEU (U-10Mo) core conversion case with nominal fuel meat thickness of 0.330 mm (13 mil) and U-235 enrichment of 19.7 wt% is used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.0 mil) to 0.330 mm (13.0 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). A 0.8g of Boron-10, a burnable absorber, was added in the inner and outer plates to reduce the initial excess reactivity, and the peak to average ratio of the inner/outer heat flux more effectively. Because the B-10 (n,a) reaction will produce Helium-4 (He-4), which might degrade the LEU foil type fuel performance, an alternative absorber option is proposed. The proposed LEU case study will have 6.918 g of Cadmium (Cd) mixed with the LEU at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19) as a burnable absorber to achieve peak to average ratios similar to those for the ATR reference HEU case study.« less
Development work for a borax internal core-catcher for a gas-cooled fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donne, M.D.; Dorner, S.; Schumacher, G.
1978-07-01
Preliminary thermal calculations show that a corecatcher, which is able to cope with the complete meltdown of the core and blankets of a 1000-MW(electric) gas-cooled fast reactor, appears to be feasible. This core-catcher is based on borax (Na/sub 2/B/sub 4/O/sub 7/) dissolving the oxide fuel and the fission products occurring in oxide form. The borax is contained in steel boxes forming a 2.2-m-thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel (PCRV), just underneath the reactor core. After a complete meltdown accident, the fission products, in oxide form, are dispersed in the pool formedmore » by the liquid borax. The metallic fission products are contained in the steel lying below the borax pool and in contact with the water-cooled PCRV liner. The volumetric power density of the molten core is conveniently reduced as it is dissolved in the borax, and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system.« less
The Effect of Surface Topography on the Nonlinear Dynamics of Rossby Waves
NASA Technical Reports Server (NTRS)
Abarzhi, S. I.; Desjardins, O.; Pitsch, H.
2003-01-01
Boussinesq convection in rotating systems attracts a sustained attention of the fluid dynamics community, because it has intricate non-linear dynamics (Cross & Hohenberg 1993) and plays an important role in geophysical and astrophysical applications, such as the motion of the liquid outer core of Earth, the Red Spot in Jupiter, the giant cells in the Sun etc. (Alridge et al. 1990). A fundamental distinction between the real geo- and astrophysical problems and the idealized laboratory studies is that natural systems are inhomogeneous (Alridge et al. 1990). Heterogeneities modulate the flow and influence significantly the dynamics of convective patterns (Alridge et al. 1990; Hide 1971). The effect of modulations on pattern formation and transition to turbulence in Boussinesq convection is far from being completely understood (Cross & Hohenberg 1993; Aranson & Kramer 2002). It is generally accepted that in the liquid outer core of the Earth the transport of the angular momentum and internal heat occurs via thermal Rossby waves (Zhang et al. 2001; Kuang & Bloxham 1999). These waves been visualized in laboratory experiments in rotating liquid-filled spheres and concentric spherical shells (Zhang et al. 2001; Kuang & Bloxham 1999). The basic dynamical features of Rossby waves have been reproduced in a cylindrical annulus, a system much simpler than the spherical ones (Busse & Or 1986; Or & Busse 1987). For convection in a cylindrical annulus, the fluid motion is two-dimensional, and gravity is replaced by a centrifugal force, (Busse & Or 1986; Or & Busse 1987). Hide (1971) has suggested that the momentum and heat transport in the core might be influenced significantly by so-called bumps, which are heterogeneities on the mantle-core boundary. To model the effect of surface topography on the transport of momentum and energy in the liquid outer core of the Earth, Bell & Soward (1996), Herrmann & Busse (1998) and Westerburg & Busse (2001) have studied the nonlinear dynamics of thermal Rossby waves in a cylindrical annulus with azimuthally modulated height.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2017-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.
Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant
Ma, Bing; Reynolds, C. Michael; Raetz, Christian R. H.
2008-01-01
The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42°C. 32Pi and [35S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42°C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42°C, consistent with a role for LptA in shuttling LPS across the periplasm. PMID:18768814
Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant.
Ma, Bing; Reynolds, C Michael; Raetz, Christian R H
2008-09-16
The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42 degrees C. (32)P(i) and [(35)S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42 degrees C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42 degrees C, consistent with a role for LptA in shuttling LPS across the periplasm.
Brandt, H.L.
1962-02-20
A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)
NASA Technical Reports Server (NTRS)
Clayton, R. N.; Macpherson, G. J.; Hutcheon, I. D.; Davis, A. M.; Grossman, L.; Mayeda, T. K.; Molini-Velsko, C.; Allen, J. M.; El Goresy, A.
1984-01-01
Two forsterite-, fassaite-, spinel-rich inclusions in Allende which share common mineralogy and texture with three previously described inclusions are described. These inclusions were at least partially molten at temperatures over 1400 C, and their crystallization sequence was spinel, olivine, fassaite, and Mg-rich melilite. At least some of them experienced partial volatilization of MgO and SiO2 from their outer margins. At least one of the inclusions is highly enriched in MgO relative to CaO and Al2O3 compared to Allende coarse-grained inclusions, although it is just as strongly enriched in refractory trace elements as the latter, relative to C1 chondrites. Two of the objects are FUN inclusions on the basis of their oxygen, magnesium, and silicon isotopic compositions.
Mielke, Howard W; Gonzales, Christopher R; Powell, Eric T; Mielke, Paul W
2017-05-01
Anthropogenic re-distribution of lead (Pb) principally through its use in gasoline additives and lead-based paints have transformed the urban exposome. This unique study tracks urban-scale soil Pb (SPb) and blood Pb (BPb) responses of children living in public and private communities in New Orleans before and ten years after Hurricane Katrina (29 August 2005). To compare and evaluate associations of pre- and ten years post-Katrina SPb and children's BPb on public and private residential census tracts in the core and outer areas of New Orleans, and to examine correlations between SPb and nine other soil metals. The Louisiana Healthy Housing and Childhood Lead Poisoning Prevention Program BPb (µg/dL) data from pre- (2000-2005) and post-Katrina (2010-2015) for ≤6-year-old children. Data from public and adjacent private residential census tracts within core and outer areas are stratified from a database that includes 916 and 922 SPb and 13,379 and 4830 BPb results, respectively, from pre- and post-Katrina New Orleans. Statistical analyses utilize Multi-Response Permutation Procedure and Spearman's Rho Correlation. Pre- to Post-Katrina median SPb decreases in public and private core census tracts were from 285 to 55mg/kg and 710-291mg/kg, respectively. In public and private outer census tracts the median SPb decreased from 109 to 56mg/kg and 88-55mg/kg. Children's BPb percent ≥5µg/dL on public and private core areas pre-Katrina was 63.2% and 67.5%, and declined post-Katrina to 7.6% and 20.2%, respectively. BPb decreases also occurred in outer areas. Soil Pb is strongly correlated with other metals. Post-Katrina re-building of public housing plus landscaping amends the exposome and reduces children's BPb. Most importantly, Hurricane Katrina revealed that decreasing the toxicants in the soil exposome is an effective intervention for decreasing children's BPb. Copyright © 2017 Elsevier Inc. All rights reserved.
Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins
NASA Astrophysics Data System (ADS)
Sakhuja, Amit; Brevick, Jerald R.
2004-06-01
In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.
Malkus, W V
1968-04-19
I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.
Method of manufacturing lightweight thermo-barrier material
NASA Technical Reports Server (NTRS)
Blair, Winford (Inventor)
1987-01-01
A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.
High temperature, flexible, fiber-preform seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)
1992-01-01
A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.
Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation
Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan
2013-01-01
Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402
Brynsvold, Glen V.; Snyder, Jr., Harold J.
1976-06-22
An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.
Vaghefi, Ehsan; Walker, Kerry; Pontre, Beau P; Jacobs, Marc D; Donaldson, Paul J
2012-06-01
It has been proposed that in the absence of blood supply, the ocular lens operates an internal microcirculation system that delivers nutrients to internalized fiber cells faster and more efficiently than would occur by passive diffusion alone. To visualize the extracellular space solute fluxes potentially generated by this system, bovine lenses were organ cultured in artificial aqueous humor (AAH) for 4 h in the presence or absence of two gadolinium-based contrast agents, ionic Gd(3+), or a chelated form of Gd(3+), Gd-diethylenetriamine penta-acetic acid (Gd-DTPA; mol mass = 590 Da). Contrast reagent penetration into the lens core was monitored in real time using inversion recovery-spin echo (IR-SE) magnetic resonance imaging (MRI), while steady-state accumulation of [Gd-DTPA](-2) was also determined by calculating T1 values. After incubation, lenses were fixed and cryosectioned, and sections were labeled with the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal microscopy using standard and reflectance imaging modalities to visualize the fluorescent WGA label and gadolinium reagents, respectively. Real-time IR-SE MRI showed rapid penetration of Gd(3+) into the outer cortex of the lens and a subsequent bloom of signal in the core. These two areas of signal were separated by an area in the inner cortex that limited entry of Gd(3+). Similar results were obtained for Gd-DTPA, but the penetration of the larger negatively charged molecule into the core could only be detected by calculating T1 values. The presence of Gd-DTPA in the extracellular space of the outer cortex and core, but its apparent absence from the inner cortex was confirmed using reflectance imaging of equatorial sections. In axial sections, Gd-DTPA was associated with the sutures, suggesting these structures provide a pathway from the surface, across the inner cortex barrier to the lens core. Our studies have revealed inner and outer boundaries of a zone within which a narrowing of the extracellular space restricts solute diffusion and acts to direct fluxes into the lens core via the sutures.
A method of measuring a molten metal liquid pool volume
Garcia, G.V.; Carlson, N.M., Donaldson, A.D.
1990-12-12
A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.
Properties of iron under core conditions
NASA Astrophysics Data System (ADS)
Brown, J. M.
2003-04-01
Underlying an understanding of the geodynamo and evolution of the core is knowledge of the physical and chemical properties of iron and iron mixtures under high pressure and temperature conditions. Key properties include the viscosity of the fluid outer core, thermal diffusivity, equations-of-state, elastic properties of solid phases, and phase equilibria for iron and iron-dominated mixtures. As is expected for work that continues to tax technological and intellectual limits, controversy has followed both experimental and theoretical progress in this field. However, estimates for the melting temperature of the inner core show convergence and the equation-of-state for iron as determined in independent experiments and theories are in remarkable accord. Furthermore, although the structure and elastic properties of the solid inner-core phase remains uncertain, theoretical and experimental underpinnings are better understood and substantial progress is likely in the near future. This talk will focus on an identification of properties that are reasonably well known and those that merit further detailed study. In particular, both theoretical and experimental (static and shock wave) determinations of the density of iron under extreme conditions are in agreement at the 1% or better level. The behavior of the Gruneisen parameter (which determines the geothermal gradient and controls much of the outer core heat flux) is constrained by experiment and theory under core conditions for both solid and liquid phases. Recent experiments and theory are suggestive of structure or structures other than the high-pressure hexagonal close-packed (HCP) phase. Various theories and experiments for the elasticity of HCP iron remain in poor accord. Uncontroversial constraints on core chemistry will likely never be possible. However, reasonable bounds are possible on the basis of seismic profiles, geochemical arguments, and determinations of sound velocities and densities at high pressure and temperature.
Presumption of large-scale heterogeneity at the top of the outer core basal layer
NASA Astrophysics Data System (ADS)
Souriau, Annie
2015-04-01
A layer of reduced P-velocity gradient with thickness of about 100-200 km has been identified at the base of the liquid core from seismological methods. It has been interpreted as a dense layer resulting from partial re-melting of the inner core, which is depleted in light elements with respect to the liquid core during freezing. In an attempt to specify where freezing and re-melting occur, the structure of this basal layer is investigated with the seismological core phase PKPbc which has its turning point in the lower third of the outer core. The large PKPbc data set of the EHB catalog distributed by the International Seismological Centre is analyzed. In order to compensate for the uneven distribution of the data and to minimize the influence of mantle heterogeneities, the travel time anomalies are binned inside equal area and equal azimuth sectors sampling the base of the liquid core at different depths. Most of the observed variations in the binned travel time residuals are not significant according to their confidence level. The only features which could be significant are a large patch with a velocity increase of about 0.5% located at the top of the basal layer beneath the eastern hemisphere, and the complementary velocity decrease beneath the western hemisphere and the South pole. This observation suggests that some freezing or re-melting processes occur at the top of the basal layer with a hemispherical dissymmetry. If confirmed, it may give strong constraints on the fate of the light elements during the freezing and re-melting process and on their interaction with the basal layer and the overlying liquid core.
Numerical simulation of axisymmetric valve operation for different outer cone angle
NASA Astrophysics Data System (ADS)
Smyk, Emil
One of the method of flow separation control is application of axisymmetric valve. It is composed of nozzle with core. Normally the main flow is attached to inner cone and flow by preferential collector to primary flow pipe. If through control nozzle starts flow jet (control jet) the main flow is switched to annular secondary collector. In both situation the main flow is deflected to inner or outer cone (placed at the outlet of the valve's nozzle) by Coanda effect. The paper deals with the numerical simulation of this axisymetric annular nozzle with integrated synthetic jet actuator. The aim of the work is influence examination of outer cone angle on deflection on main stream.
Glacigenic landforms and sediments of the Western Irish Shelf
NASA Astrophysics Data System (ADS)
McCarron, Stephen; Monteys, Xavier; Toms, Lee
2013-04-01
Vibrocoring of possible glacigenic landforms identified from high resolution bathymetric coverage of the Irish Shelf by the Irish National Seabed Survey (INSS) has provided several clusters of short (<3m) cores that, due to a regional post-glacial erosional event, comprise last glacial age stratigraphies. In addition, new shallow seismic data and sedimentological information from across the Western Irish Shelf provide new insights into aspects of the nature, timing and pattern of shelf occupation by grounded lobate extensions of the last Irish Ice Sheet. Restricted chronological control of deglacial sequences in several cores indicates that northern parts of the western mid-shelf (south of a prominent outer Donegal Bay ridge) were ice free by ~24 ka B.P., and that ice had also probably retreated from outer shelf positions (as far west as the Porcupine Bank) at or before this time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp
Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion.more » Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.« less
An upper bound on the radius of a highly electrically conducting lunar core
NASA Technical Reports Server (NTRS)
Hobbs, B. A.; Hood, L. L.; Herbert, F.; Sonett, C. P.
1983-01-01
Parker's (1980) nonlinear inverse theory for the electromagnetic sounding problem is converted to a form suitable for analysis of lunar day-side transfer function data by: (1) transforming the solution in plane geometry to that in spherical geometry; and (2) transforming the theoretical lunar transfer function in the dipole limit to an apparent resistivity function. The theory is applied to the revised lunar transfer function data set of Hood et al. (1982), which extends in frequency from 10 to the -5th to 10 to the -3rd Hz. On the assumption that an iron-rich lunar core, whether molten or solid, can be represented by a perfect conductor at the minimum sampled frequency, an upper bound of 435 km on the maximum radius of such a core is calculated. This bound is somewhat larger than values of 360-375 km previously estimated from the same data set via forward model calculations because the prior work did not consider all possible mantle conductivity functions.
Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility
Pak, A.; Divol, L.; Gregori, G.; ...
2013-05-20
Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less
Staufenberg, Gerrit; Graupner, Nina; Müssig, Jörg
2015-08-20
The babassu nut is the fruit of the babassu palm Orbignya speciosa. The combination of hardness and impact strength is difficult to acquire for artificial materials, making the babassu nut a promising source for biomimetic inspiration. Unnotched Charpy impact tests, Shore D hardness tests and scanning electron microscopy were used for mechanical and microscopical analysis of the pericarp. Four major principles were found for a biomimetic approach: a hard core ((1); endocarp) is embedded in a soft outer layer of high impact strength ((2); epicarp) and is reinforced with fibres of variable fineness (3), some of which are oriented radial to the core (4). Biomimetic fibre-reinforced composites were produced using abstracted mechanisms of the babassu nut based on regenerated cellulose fibres (lyocell, L) with two different fineness values as reinforcement embedded in a polylactide (PLA) core matrix and polypropylene (PP) based outer layers. The biomimetic fibre composite reaches a significantly higher impact strength that is 1.6 times higher than the reference sample produced from a PLA/PP/L-blend. At the same time the hardness is slightly increased compared to PP/L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, J.; Wan, Weigang; Chen, Yang
2014-11-15
The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error.more » Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.« less
Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS
Brown, C. S.; Zhang, Hongbin
2016-05-24
Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less
Spectroscopic and theoretical constraints on the differentiation of planetesimals
NASA Astrophysics Data System (ADS)
Moskovitz, Nicholas A.
The differentiation of small proto-planetary bodies into metallic cores, silicate mantles and basaltic crusts was a common occurrence in the first few million years of Solar System history. In this thesis, observational and theoretical methods are employed to investigate this process. Particular focus is given to the basaltic, crustal remnants of those differentiated parent bodies. A visible-wavelength spectroscopic survey was designed and performed to constrain the population of basaltic asteroids in the Main Belt. The results of this survey were used to provide statistical constraints on the orbital and size-frequency distributions of these objects. These distributions imply that basaltic material is rare in the Main Belt (particularly beyond the 3:1 mean motion resonance at 2.5 AU), however relic fragments of crust from multiple differentiated parent bodies are likely present. To provide insight on the mineralogical diversity of basaltic asteroids in the Main Belt, we performed a series of near-infrared spectroscopic observations. We find that V-type asteroids in the inner belt have spectroscopic properties consistent with an origin from a single parent body, most likely the asteroid Vesta. Spectroscopic differences (namely band area ratio) between these asteroids and basaltic meteorites here on Earth are best explained by space weathering of the asteroid surfaces. We also report the discovery of unusual spectral properties for asteroid 10537 (1991 RY16), a V-type asteroid in the outer Main Belt that has an ambiguous mineralogical interpretation. We conclude this thesis with a theoretical investigation of the relevant stages in the process of differentiation. We show that if partial silicate melting occurs within the interior of a planetesimal then both core and crust formation could have happened on sub-million year (Myr) time scales. However, it is shown that the high temperatures necessary to facilitate these processes may have been affected by the migration of molten silicates within these planetesimals and by chemical interactions between liquid water and silicate rock. Finally, a 1-dimensional model of heat conduction is used to explore whether differentiation would have occurred for planetesimals across a range of sizes (4-250 km) and times of accretion (0-3 Myr).
Fast torsional waves and strong magnetic field within the Earth's core.
Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre
2010-05-06
The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n
Evidence for a high temperature differentiation in a molten earth: A preliminary appraisal
NASA Technical Reports Server (NTRS)
Murthy, V. Rama
1992-01-01
If the earth were molten during its later stages of accretion as indicated by the present understanding of planetary accretion process, the differentiation that led to the formation of the core and mantle must have occurred at high temperatures in the range of 3000-5000 K because of the effect of pressure on the temperature of melting in the interior of the earth. This calls into question the use of low-temperature laboratory measurements of partition coefficients of trace elements to make inferences about earth accretion and differentiation. The low temperature partition coefficients cannot be directly applied to high temperature fractionations because partition coefficients refer to an equilibrium specific to a temperature for a given reaction, and must change in some proportion to exp 1/RT. There are no laboratory data on partition coefficients at the high temperatures relevant to differentiation in the interior of the earth, and an attempt to estimate high temperature distribution coefficients of siderophile elements was made by considering the chemical potential of a given element at equilibrium and how this potential changes with temperature, under some specific assumptions.
FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS
Flint, O.
1961-01-10
Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.
X-33 Tank Failure During Autoclave Fabrication
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Munafo, Paul (Technical Monitor)
2001-01-01
The composite liquid hydrogen tank (tank #1 of 2) for the X-33 flight vehicle is made up of four lobes that have a sandwich construction, bonded to a frame of longerons. Lobes 1 and 4 showed local disbonds to the longerons they were bonded to. The 'bad' areas were cut away and patched with new material. The new material was cured by placing the entire tank in a heated autoclave with no pressure. Upon removal from the autoclave, it was noted that lobe 1 had severe skin/core disbonds on the inner and outer skins. The skins on this lobe were cracked as well. The core was disbonded from the inner skin across the entire acreage, except for spots around the lobe perimeter. The outer skin was separated from the core in a region near the center of the lobe. Lobe 1 was removed from the tank on January 13, 1999. Bolts were placed through the lobe to hold it together and the cuts on the inner skin were not continuous, but 'tabs' were left for final cutting and removal. Upon closer inspection of the disbonded basesheet, it was noted that there was a lack of filleting into the honeycomb core. Good fillets are critical to bond strength.
Liu, Airong; Zhang, Wei-xian
2014-09-21
An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.
The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1)more » resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-2 experiment, which was conducted on August 24, 2004. Test specifications for CCI-2 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % Limestone/Common Sand (LCS) concrete, with a specially designed two-dimensional LCS concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The report begins by providing a summary description of the CCI-2 test apparatus and operating procedures, followed by presentation of the thermal-hydraulic results. Detailed posttest debris examination results will be provided in a subsequent publication. Observations drawn within this report regarding the overall cavity erosion behavior may be subject to revision once the posttest examinations are completed, since these examinations will fully reveal the final cavity shape.« less
Chemical Sensors Based on Optical Ring Resonators
NASA Technical Reports Server (NTRS)
Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander
2005-01-01
Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res
The early Earth -- A perspective on the Archean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, W.B.
1993-04-01
Dominant models of Archean tectonics and magmatism involve plate-tectonic mechanisms. Common tenets of geochemistry (e.g., model ages) and petrology visualize a cold-accreted Earth in which primitive mantle gradually fractionated to produce crust during and since Archean time. These popular assumptions appear to be incompatible with cosmologic and planetologic evidence and with Archean geology. All current quantitative and semiquantitative theories agree that the Earth was largely or entirely melted (likely superheated) by giant impacts, including the Mars-size impact which splashed out the Moon, and by separation of the core. The Earth at [approximately]4.5 Ga was a violently convecting anhydrous molten ball.more » Both this history and solar-system position indicate the bulk Earth to be more refractory than chondrite. The outer part of whatever sold shell developed was repeatedly recycled by impacts before 3.9 Ga. Water and CO[sub 2] were added by impactors after the Moon-forming event; the mantle is not a source of primordial volatiles, but rather is a sink that has depleted the hydrosphere. Voluminous liquidus ultramafic lava (komatiite) indicates that much Archean upper mantle was above its solidus. Only komatiitic and basaltic magma entered Archean crust from the mantle. Variably hydrous contamination, secondary melting, and fractionation in the crust produced intermediate and felsic melts. Magmatism was concurrent over vast tracts. Within at least the small sample of Archean crust that has not been recycled into the mantle, heat loss was primarily by voluminous, dispersed magmatism, not, as in the modern Earth, primarily through spreading windows through the crust. Only in Proterozoic time did plate-tectonic mechanisms become prevalent.« less
NASA Astrophysics Data System (ADS)
Ortt, D.; Chen, S. S.
2007-12-01
The interaction of the environmental water vapor distribution around a tropical cyclone (TC), rainbands, and inner- core dynamics can affect hurricane structure and intensity change, which is not well understood. Although previous studies have addressed various aspects of this problem, a full three way interaction and its implications for hurricane intensity change has not been documented. Using data collected during the Hurricane Rainband and Intensity Experiment (RAINEX) in Hurricanes Katrina and Rita, the three way interaction of the environment moisture, rainbands, and inner-core dynamics can be evaluated. The TRMM TMI total precipitable water (PW) data with 1/4 degree horizontal resolution, TRMM TMI rainrate data with a 4 km horizontal resolution and the GPS dropsondes with a ½ second temporal resolution are used to characterize the environmental moisture. The high resolution model output from the real-time MM5 forecasts of Hurricanes Katrina and Rita are used to investigate the complex interactions in both storms. The model forecasts were made using a vortex-following nested grid with horizontal resolutions of 15, 5, and 1.67km, respectively. There were 28 vertical sigma levels. The Goddard microphysics scheme was used. The TRMM PW and the GPS dropsonde data show strong moisture gradients in the outer rainband region in Rita with a dry outer environment, which may contribute to the development of outer rainbands with a high circularity. It created a secondary ring of potential vorticity (PV). In addition, the vortex Rossby waves (VRW) propagating radialy outward from the eyewall were unable to propagate beyond the secondary ring of PV. The combination of these VRW and the environmental water vapor distribution may play a role in enhancing the rainbands that developed into a secondary eyewall, which leads to a temporary weakening of the hurricane. In contrast, Katrina had a relative weak moisture gradient surrounding the storm. There were not persistent outer rainbands with high circularity, which may explain the different evolution in Katrina compared with Rita.
New Experimental Results on the Interaction of Molten Corium with Reactor Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechta, S.V.; Khabensky, V.B.; Granovsky, V.S.
In order to justify the concept of in-vessel core melt retention, it is necessary to understand the thermal and physico-chemical phenomena. Especially the interaction of the molten pool with the reactor vessel during outside cooling needs to be understood. These phenomena are very complex, in particular, where interactions with the oxidic melt are concerned. In the early stages of the retention process, the oxidic corium and the vessel steel interact under the conditions of low oxygen potential in the melt. These conditions can be simulated by a molten corium having the composition UO{sub 2}/ZrO{sub 2}/Zr, where the degree of Zr-oxidationmore » is in the range between 30 % (C-30) and 100 % (C-100). Corresponding experiments with prototypic melts at low oxygen potentials are being performed in the ISTC METCOR project 2. phase. These are: - MC 5 of corium composition 71w%UO{sub 2}-29w%ZrO{sub 2} (C-100) in neutral atmosphere (argon), - MC 6 of corium composition 76w%UO{sub 2}-9w%ZrO{sub 2}-15w%Zr (C{approx}30), also in argon. In test MC 5, the interaction of molten C-100 corium with a water-cooled steel specimen was studied for the following maximum temperatures at the specimen surface: 1075 deg. C, 1180 deg. C, 1315 deg. C and 1435 deg. C. The total duration of the experiment was {approx} 36 hours. The MC 5 test serves as a reference test for determining the characteristics of the interaction between oxidic melt and steel specimen under the conditions of minimum chemical interaction potential. To investigate the effect of substoichiometry, test No 6 was then performed with sub-oxidized molten corium C{approx}30. The maximum surface temperature of the cooled steel specimen was held at {approx} 1400 deg. C. The test duration was {approx} 10 hours. The ablation phenomena were found to differ significantly from those observed both in the reference test, as well as in former tests with oxidized melts, as they involved the formation of a low-melting metallic phase at the interface which contains iron, zirconium and uranium. The paper summarizes the results of the experiments and of the performed posttest analysis for tests MC 5 and MC 6. (authors)« less
Fabrication and Characterization of Miniaturized Thermocouples
NASA Astrophysics Data System (ADS)
Munzel, Marco; Peinke, Joachim; Kittel, Achim
2002-11-01
The measurement of thermal fluctuations is important for discovering transport features of a passive scalar in fluids. We present a thermal sensor based on a miniaturized thermocouple. Its coaxial setup results from the fabrication as a micropipette normally used in neurobiology. The glass micropipettes contain a core of gold, antimony, or resistance wire and are coated with platinum. The core material is inserted as molten metal or wire and thinned during the fabrication process. The achieved tip diameters are 1μm and less which enhance the spatial and temporal resolution significantly. Because of its chemically inert coating, these sensors are applicative for detecting temperature fluctuations in large variety of liquids and gases. In addition, such thermocouples are intrinsically suitable for applications in scanning probe microscopy. The characterization of these sensors and first results from turbulent free-jet measurements are presented.
Correlative Microscopy of Neutron-Irradiated Materials
Briggs, Samuel A.; Sridharan, Kumar; Field, Kevin G.
2016-12-31
A nuclear reactor core is a highly demanding environment that presents several unique challenges for materials performance. Materials in modern light water reactor (LWR) cores must survive several decades in high-temperature (300-350°C) aqueous corrosion conditions while being subject to large amounts of high-energy neutron irradiation. Next-generation reactor designs seek to use more corrosive coolants (e.g., molten salts) and even greater temperatures and neutron doses. The high amounts of disorder and unique crystallographic defects and microchemical segregation effects induced by radiation inevitably lead to property degradation of materials. Thus, maintaining structural integrity and safety margins over the course of the reactor'smore » service life thus necessitates the ability to understand and predict these degradation phenomena in order to develop new, radiation-tolerant materials that can maintain the required performance in these extreme conditions.« less
Casting Apparatus Including A Gas Driven Molten Metal Injector And Method
Meyer, Thomas N.
2004-06-01
The casting apparatus (50) includes a holding vessel (10) for containing a supply of molten metal (12) and a casting mold (52) located above the holding vessel (10) and having a casting cavity (54). A molten metal injector (14) extends into the holding vessel (10) and is at least partially immersed in the molten metal (12) in the holding vessel (10). The molten metal injector (14) is in fluid communication with the casting cavity (54). The molten metal injector (14) has an injector body (16) defining an inlet opening (24) for receiving molten metal into the injector body (16). A gas pressurization source (38) is in fluid communication with the injector body (16) for cyclically pressurizing the injector body (16) and inducing molten metal to flow from the injector body (16) to the casting cavity (54). An inlet valve (42) is located in the inlet opening (24) in the injector body (16) for filling molten metal into the injector body (16). The inlet valve (42) is configured to prevent outflow of molten metal from the injector body (16) during pressurization and permit inflow of molten metal into the injector body (16) after pressurization. The inlet valve (42) has an inlet valve actuator (44) located above the surface of the supply of molten metal (12) and is operatively connected to the inlet valve (42) for operating the inlet valve (42) between open and closed positions.
NASA Astrophysics Data System (ADS)
Vocadlo, L.; Martorell, B.; Brodholt, J. P.; Wood, I. G.
2014-12-01
Seismically determined S-wave velocities in the Earth's inner core are observed to be much lower (10-30%) than those generally inferred from mineral physics. This is a remarkably large discrepancy - mineralogical models for the mantle and the outer core match the observed velocities to around 1%. In no other large volume of the Earth does such a difference exist. There have been a number of arguments put forward over the years to account for the difference, but none have been universally accepted and our inability to explain the seismic velocities of the inner core remains an uncomfortable truth. Here, we present results from ab initio molecular dynamics calculations performed at 360 GPa and core temperatures on hcp and fcc iron, and on fcc-Fe alloyed with nickel and hcp-Fe alloyed with silicon. The calculated shear modulus, and therefore seismic velocities, of pure hcp-Fe reduces dramatically just prior to melting, providing an elegant explanation for the observed velocities. Calculations on fcc-Fe show no such strong reduction in VS, with a transformation to an hcp-type structure prior to melting; addition of 6.5 atm% and 13 atm% Ni to fcc-Fe raises the temperature of this transition. When silicon is added to hcp-Fe, the pre-melting behaviour is found to be very similar to that of pure hcp-Fe with a strong nonlinear shear weakening just before melting and a corresponding reduction in VS. Because temperatures range from T/Tm = 1 at the inner-outer core boundary to T/Tm ≈ 0.99 at the centre, this strong nonlinear effect on VS should occur in the inner core, providing a compelling explanation for the low VS observed.
Osmium Isotope Compositions of Komatiite Sources Through Time
NASA Astrophysics Data System (ADS)
Walker, R. J.
2001-12-01
Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os value of only +1.2 and a 186Os/188Os enrichment relative to the contemporary upper mantle of only +13 ppm. Greater isotopic enrichments could have been achieved by 2.7 Ga if either the inner core comprised >2.8% of the mass of the core by 2.7 Ga, or if Re and Os solid metal-liquid metal D's for core crystallization were greater that those applied in the initial calculation.
Armor systems including coated core materials
Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID
2012-07-31
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Armor systems including coated core materials
Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M
2013-10-08
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Method and apparatus for atomization and spraying of molten metals
Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.
1990-01-01
A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.
Method and apparatus for atomization and spraying of molten metals
Hobson, D.O.; Alexeff, I.; Sikka, V.K.
1988-07-19
A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.
The Evolution of the Earth's Magnetic Field.
ERIC Educational Resources Information Center
Bloxham, Jeremy; Gubbins, David
1989-01-01
Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)
Molten salt oxidation of organic hazardous waste with high salt content.
Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian
2018-02-01
Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.
Process Development and Micro-Machining of MARBLE Foam-Cored Rexolite Hemi-Shell Ablator Capsules
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William; ...
2016-06-30
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
Steeghs, Liana; van Vliet, Sandra J; Uronen-Hansson, Heli; van Mourik, Andries; Engering, Anneke; Sanchez-Hernandez, Martha; Klein, Nigel; Callard, Robin; van Putten, Jos P M; van der Ley, Peter; van Kooyk, Yvette; van de Winkel, Jan G J
2006-02-01
Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor. Activation of DC-SIGN with this novel oligosaccharide ligand skewed T-cell responses driven by DC towards T helper type 1 activity. Thus, the use of lgtB LPS may provide a powerful instrument to selectively induce the desired arm of the immune response and potentially increase vaccine efficacy.
Gravity Field and Internal Structure of Mercury from MESSENGER
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc;
2012-01-01
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR
Holl, R.J.; Klecker, R.W.; Graham, C.B.
1962-05-15
A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)
Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator
NASA Astrophysics Data System (ADS)
Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad
2011-03-01
In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.
Gravity field and internal structure of Mercury from MESSENGER.
Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H
2012-04-13
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Method of measuring a liquid pool volume
Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.
1991-03-19
A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.
Method of measuring a liquid pool volume
Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.
1991-01-01
A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.
On the Role of Dissolved Gases in the Atmosphere Retention of Low-mass Low-density Planets
NASA Astrophysics Data System (ADS)
Chachan, Yayaati; Stevenson, David J.
2018-02-01
Low-mass low-density planets discovered by Kepler in the super-Earth mass regime typically have large radii for their inferred masses, implying the presence of H2–He atmospheres. These planets are vulnerable to atmospheric mass loss due to heating by the parent star’s XUV flux. Models coupling atmospheric mass loss with thermal evolution predicted a bimodal distribution of planetary radii, which has gained observational support. However, a key component that has been ignored in previous studies is the dissolution of these gases into the molten core of rock and iron that constitute most of their mass. Such planets have high temperatures (>2000 K) and pressures (∼kbars) at the core-envelope boundary, ensuring a molten surface and a subsurface reservoir of hydrogen that can be 5–10 times larger than the atmosphere. This study bridges this gap by coupling the thermal evolution of the planet and the mass loss of the atmosphere with the thermodynamic equilibrium between the dissolved H2 and the atmospheric H2 (Henry’s law). Dissolution in the interior allows a planet to build a larger hydrogen repository during the planet formation stage. We show that the dissolved hydrogen outgasses to buffer atmospheric mass loss. The slow cooling of the planet also leads to outgassing because solubility decreases with decreasing temperature. Dissolution of hydrogen in the interior therefore increases the atmosphere retention ability of super-Earths. The study highlights the importance of including the temperature- and pressure-dependent solubility of gases in magma oceans and coupling outgassing to planetary evolution models.
OECD 2-D Core Concrete Interaction (CCI) tests : CCI-2 test plan, Rev. 0 January 31, 2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.
The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1)more » resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. The first of these two tests, CCI-1, was conducted on December 19, 2003. This test investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % calcined siliceous concrete, with a specially designed two-dimensional siliceous concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The second of these two planned tests, CCI-2, will be conducted with a nearly identical test facility and experiment boundary conditions, but with a Limestone/Common Sand (LCS) concrete test section to investigate the effect of concrete type on the two-dimensional core-concrete interaction and debris cooling behavior. The objective of this report is to provide the overall test plan for CCI-2 to enable pretest calculations to be carried out. The report begins by providing a summary description of the CCI-2 test apparatus, followed by a description of the planned test operating procedure. Overall specifications for CCI-2 are provided in Table 1-1.« less
NASA Astrophysics Data System (ADS)
Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David
2016-04-01
Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is planar and no channels develop. However, if the melt migration velocity exceeds ˜5 μm/s the reaction layer locally protrudes into the partially molten rock forming finger-like melt-rich channels. The morphology and spacing of the channels depends on the initial melt fraction. With 20 vol% melt, multiple and voluminous channels with an elliptical core formed of pure melt develop. At lower melt contents, fewer and thinner channels develop. Our experiments demonstrate that melt-rock reactions can lead to melt channelization in mantle lithologies. The morphology of the channels seems to depend on the initial permeability perturbations present in the starting material. The observed lithological transformations are in broad agreement with natural observations. However, the resulting channels lack the tabular anastomozing shapes which are likely caused by shear deformation in nature. Therefore, both reaction-driven as well as stress-driven melt segregation have to interact in nature to form the observed dunite channels. Szymczak, P., and A. J. C. Ladd (2014), Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix, J. Fluid Mech., 738, 591-630. Pec, M., B. K. Holtzman, M. Zimmerman, and D. L. Kohlstedt (2015), Reaction infiltration instabilities in experiments on partially molten mantle rocks, Geology, 43(7), 575-578, doi:10.1130/G36611.1.
Song, Hong-Tao; Zhang, Qian; Jiang, Peng; Guo, Tao; Chen, Da-Wei; He, Zhong-Gui
2006-09-01
To prepare a sustained-release formulation of traditional Chinese medicine compound recipe by adopting time-controlled release techniques. Shuxiong tablets were chosen as model drug. The prescription and technique of core tablets were formulated with selecting disintegrating time and swelling volume of core tablets in water as index. The time-controlled release tablets were prepared by adopting press-coated techniques, using PEG6000, HCO and EVA as coating materials. The influences of compositions, preparation process and dissolution conditions in vitro on the lag time (T(lag)) of drug release were investigated. The composition of core tablets was as follow: 30% of drug, 50% MCC and 20% CMS-Na. The T(lag) of time-controlled release tablets was altered remarkably by PEG6000 content of the outer layer, the amount of outer layer and hardness of tablet. The viscosity of dissolution media and basket rotation had less influence on the T(lag) but more on rate of drug release. The core tablets pressed with the optimized composition had preferable swelling and disintegrating properties. The shuxiong sustained-release formulations which contained core tablet and two kinds of time-controlled release tablets with 3 h and 6 h of T(lag) could release drug successively at 0 h, 3 h and 6 h in vitro. The technique made it possible that various components with extremely different physicochemical properties in these preparations could release synchronously.
NASA Astrophysics Data System (ADS)
Park, Y.-R.; Kim, G.-Y.
2009-04-01
The small body, ca. 1.3 by 1.6km, of a hot-air ballon shape hornblende gabbro - diorite Complex, in Gowoonri, Hwacheon, Korea consists of marginal diorite and central hornblende gabbro. The volumetrically dominant hornblende gabbro in the core of the Complex shows a zoned distribution with three layers distinguished by different dominant mafic mineral phases. From the margin toward the core of the hornblende gabbro body, the domintant mafic minerals change from amphibole phenocryst of nearly rounded shape in cross section with pyroxene pseudomorph through prismatic shape of amphibole to polycrystalline biotite aggregates. Systematic variations in geochemical characteristics among three distinct zones of hornblende gabbro body are also observed. From the outer zone toward the core, major oxides such as MnO, MgO, and CaO show a decreasing tendency, whereas total FeO/(total FeO + MgO) value shows an increasing tendency. Concentrations of trace elements also show systematic variations. Where incompatible elements such as Ba and Th increase, compatible elements like Cr and Sc decrease from the margin toward the core. The zonal distribution divided by change in dominant mafic mineral phase from pyroxene through amphibole to biotite, and systematic compositional changes in both major and trace elements from the outer zone toward the core of the hornblende gabbro body suggest that an inward crystallization mechanism played a major role in the formation of the hornblende gabbro in Guwoonri, Hwacheon, Korea.
The inner core thermodynamics of the tropical cyclone boundary layer
NASA Astrophysics Data System (ADS)
Williams, Gabriel J.
2016-10-01
Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.
Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-03-20
Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.
An informative solution to a seismological inverse problem.
Gilbert, F; Dziewonski, A; Brune, J
1973-05-01
Preliminary results are presented that infer that 2 sec should be added to the tabular values for P phases and 4 sec to the tabular values for S phases of seismic travel times. From seismic evidence, the radius of the inner core of the Earth is 1229-1250 km; the radius of the outer core is 3482-3485 km. Data are presented relating resolving power with error of measurement for the Earth's mantle.
Banded electromagnetic stator core
Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.
1994-01-01
A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.
Banded electromagnetic stator core
Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.
1996-01-01
A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.
Hernáez, Bruno; Guerra, Milagros; Salas, María L.
2016-01-01
African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717
Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots
Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.
1987-09-04
After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.
Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles
NASA Astrophysics Data System (ADS)
Lindhoud, Saskia; Stuart, Martien A. Cohen; Norde, Willem; Leermakers, Frans A. M.
2009-11-01
Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using Flory-Huggins χ parameters. The strong qualitative comparison with experimental data proves that the Flory-Huggins approach is reasonable. The free energy of insertion of a proteinlike molecule into the micelle is nonmonotonic: there is (i) a small repulsion when the protein is inside the corona; the height of the insertion barrier is determined by the local osmotic pressure and the elastic deformation of the core, (ii) a local minimum occurs when the protein molecule is at the core-corona interface; the depth (a few kBT ’s) is related to the interfacial tension at the core-corona interface and (iii) a steep repulsion (several kBT ) when part of the protein molecule is dragged into the core. Hence, the protein molecules reside preferentially at the core-corona interface and the absorption as well as the release of the protein molecules has annealed rather than quenched characteristics. Upon an increase of the ionic strength it is possible to reach a critical micellization ionic (CMI) strength. With increasing ionic strength the aggregation numbers decrease strongly and only few proteins remain associated with the micelles near the CMI.
Model for the formation of the earth's core
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCammon, C.A.; Ringwood, A.E.; Jackson, I.
1983-02-15
The recent discovery of a phase transformation in Fe/sub 0.94/O by Jeanloz and Ahrens has allowed a more detailed development of a model for core formation involving oxygen as the principal light alloying element in the core. It is predicted, based on calculations, that an increasing pressure in the system FeO-MgO will result in a gradual exsolution of an almost pure high-pressure phase FeO(hpp), leaving an iron-depleted (Fe,Mg)O rocksalt (B1) phase. We also predict that FeO(hhp) will form a low-melting point alloy with Fe at high temperature and high pressure. On the basis of our interpretations, we have constructed amore » model for core segregation. Assuming the earth to have accreted from the primordial solar nebula as a relatively homogeneous mixture of metallic iron and silicate-oxide phases, core segregation involving oxygen would commence at a depth where pressure is sufficiently high to cause exsolution of FeO(hpp) from the rocksalt phase, and temperature is sufficiently high to allow formation of an Fe-FeO(hpp) melt. A gravitational instability arises, leading to vertical differentiation of the earth as molten blobs of the metal sink downwards to form the core and the residual depleted silicate material coalesces to form large bodies which rise diapirically upwards to form the mantle.« less
Visualizing Earth's Core-Mantle Interactions using Nanoscale X-ray Tomography
NASA Astrophysics Data System (ADS)
Mao, W. L.; Wang, J.; Yang, W.; Hayter, J.; Pianetta, P.; Zhang, L.; Fei, Y.; Mao, H.; Hustoft, J. W.; Kohlstedt, D. L.
2010-12-01
Early-stage, core-mantle differentiation and core formation represent a pivotal geological event which defined the major geochemical signatures. However current hypotheses of the potential mechanism for core-mantle separation and interaction need more experimental input which has been awaiting technological breakthroughs. Nanoscale x-ray computed tomography (nanoXCT) within a laser-heated diamond anvil cell has exciting potential as a powerful 3D petrographic probe for non-destructive, nanoscale (<40nm) resolution of multiple minerals and amorphous phases (including melts) which are synthesized under the high pressure-temperature conditions found deep within the Earth and planetary interiors. Results from high pressure-temperature experiments which illustrate the potential for this technique will be presented. By extending measurements of the texture, shape, porosity, tortuosity, dihedral angle, and other characteristics of molten Fe-rich alloys in relation to silicates and oxides, along with the fracture systems of rocks under deformation by high pressure-temperature conditions, potential mechanisms of core formation can be tested. NanoXCT can also be used to investigate grain shape, intergrowth, orientation, and foliation -- as well as mineral chemistry and crystallography at core-mantle boundary conditions -- to understand whether shape-preferred orientation is a primary source of the observed seismic anisotropy in Earth’s D” layer and to determine the textures and shapes of the melt pockets and channels which would form putative partial melt which may exist in ultralow velocity zones.
Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents
NASA Astrophysics Data System (ADS)
Yamaji, Akifumi; Li, Xin
2016-08-01
Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.
Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core
NASA Astrophysics Data System (ADS)
Kendall, Jordan D.; Melosh, H. J.
2016-08-01
The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.
Voltage THD Improvement for an Outer Rotor Permanent Magnet Synchronous Machine
NASA Astrophysics Data System (ADS)
de la Cruz, Javier; Ramirez, Juan M.; Leyva, Luis
2013-08-01
This article deals with the design of an outer rotor Permanent Magnet Synchronous Machines (PMSM) driven by wind turbines. The Voltage Total Harmonic Distortion (VTHD) is especially addressed, under design parameters' handling, i.e., the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length and the core steel class. Seventy-six cases are simulated and the results provide information useful for designing this kind of machines. The study is conducted on a 5 kW PMSM.
NEUTRONIC REACTOR FUEL ELEMENT
Shackleford, M.H.
1958-12-16
A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.
METHOD AND APPARATUS FOR PRODUCING POWER
Wollan, E.O.
1961-06-27
A neutronic reactor comprising two discrete zones; namely, an inner zone containing fissionable material and an outer zone containing fertile material is described. The inner zone is operated at a low temperature and is cooled by pressurized water. The outer zone is operated at a substantially higher temperature and is cooled by steam flashed from the inner zone. The reactor is particularly advantageous in that it produces high temperature steam; yet the materials of construction in the core (inner zone) are not restricted to materials capable of withstanding high temperature operation.
Internal loading of an inhomogeneous compressible Earth with phase boundaries
NASA Technical Reports Server (NTRS)
Defraigne, P.; Dehant, V.; Wahr, J. M.
1996-01-01
The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.
Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques
Phomsakha, Vongvilay; Chang, Robert S. F.; Djeu, Nicholas I.
1997-03-04
An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.
Thermal interaction of the core and the mantle and long-term behavior of the geomagnetic field
NASA Technical Reports Server (NTRS)
Jones, G. M.
1977-01-01
The effects of temperature changes at the earth's core-mantle boundary on the velocity field of the core are analyzed. It is assumed that the geomagnetic field is maintained by thermal convection in the outer core. A model for the thermal interaction of the core and the mantle is presented which is consistent with current views on the presence of heat sources in the core and the properties of the lower mantle. Significant long-term variations in the frequency of geomagnetic reversals may be the result of fluctuating temperatures at the core-mantle boundary, caused by intermittent convection in the lower mantle. The thermal structure of the lower mantle region D double prime, extending from 2700 to 2900 km in depth, constitutes an important test of this hypothesis and offers a means of deciding whether the geomagnetic dynamo is thermally driven.
DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James; Bayless, Paul; Strydom, Gerhard
A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density,more » annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.« less
New iodide-based molten salt systems for high temperature molten salt batteries
NASA Astrophysics Data System (ADS)
Fujiwara, Syozo; Kato, Fumio; Watanabe, Syouichiro; Inaba, Minoru; Tasaka, Akimasa
Novel multi-component molten salt systems containing iodides, LiF-LiBr-LiI, LiF-NaBr-LiI, and LiF-LiCl-LiBr-LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (∼3 S cm -1 at 500 °C) than conventional LiCl-KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.
Theoretical surface core-level shifts for Be(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feibelman, P.J.
1994-05-15
Core-ionization potentials (CIP's) are computed for Be(0001). Three core features are observed in corresponding photoelectron spectra, with CIP's shifted relative to the bulk core level by [minus]0.825, [minus]0.570, and [minus]0.265 eV. The computed CIP shifts for the outer and subsurface layers, [minus]0.60 and [minus]0.29 eV, respectively, agree with the latter two of these. It is surmised that the [minus]0.825-eV shift is associated with a surface defect. The negative signs of the Be(0001) surface core-level shifts do not fit into the thermochemical picture widely used to explain CIP shifts. The reason is that a core-ionized Be atom is too small tomore » bond effectively to the remainder of the unrelaxed Be lattice.« less
Lateral temperature variations at the core-mantle boundary deduced from the magnetic field
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy; Jackson, Andrew
1990-01-01
Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Sean Campbell; Ao, Tommy; Davis, Jean-Paul
The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of themore » core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Antonio; Oweis, Salah; Chagnon, Guy
An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow coremore » also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.« less
Effect of Ni on Fe FeS phase relations at high pressure and high temperature
NASA Astrophysics Data System (ADS)
Zhang, Li; Fei, Yingwei
2008-04-01
A series of melting experiments in the Fe-rich portion of the Fe-Ni-S system have been conducted at 19-23 GPa and 800-1100 °C. The solubility of S in the Fe-Ni solid alloy and the eutectic melting in the Fe-Ni-S system were determined as a function of Ni content. The maximum S solubility in the Fe-Ni alloy is 2.7 wt.% at 20 GPa and the eutectic temperature. The eutectic melting temperature in the Fe-Ni(5wt.%)-S system is ~ 1000 °C lower than the melting point of pure Fe at 20 GPa. We also found that Ni can substitute Fe in the Fe 3S structure to form (Fe,Ni) 3S solid solutions up to at least a Fe/Ni atomic ratio of 0.5. Similar to melting behavior in the Fe-FeS system, the eutectic melting relations in the Fe-Ni-S system could produce inner and outer cores with the right light element balance to account for the density difference between the solid inner core and the liquid outer core.
Results from core-edge experiments in high Power, high performance plasmas on DIII-D
Petrie, T. W.; Fenstermacher, M. E.; Holcomb, C. T.; ...
2016-12-24
Here, significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND) hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q ⊥ P) ∝ [P SOL x I P] 0.92 for P SOL = 8-19 MW and I P = 1.0–1.4 MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-Dmore » plasmas may be problematical at high power and H98 (≥ 1.5) due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q ⊥ P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot”) but also that heating near the slot opening is a significant source for impurity contamination of the core.« less
Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.
2007-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.
Extraterrestrial platinum group nuggets in deep-sea sediments
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Bates, B. A.; Wheelock, M. M.
1984-01-01
A previously unrecognized property of iron cosmic spheres is reported. The most common spheres larger than 300 microns do not, in fact, contain FeNi metal cores, but instead contain a micrometer-sized nugget composed almost entirely of platinum group elements. These elements appear to have been concentrated by the oxidation of molten meteoritic metal during atmospheric entry. This process is critically dependent on the relative abundance of oxygen in the atmosphere, and the first appearance of the nuggets in the geological record may provide a marker indicating when the oxygen abundance attained half of its present level.
Electrochemical cell having an alkali-metal-nitrate electrode
Roche, M.F.; Preto, S.K.
1982-06-04
A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.
Coated Metal Articles and Method of Making
Boller, Ernest R.; Eubank, Lowell D.
2004-07-06
The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.
Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element
1990-06-01
long fuel elements, arranged to form a core , were analyzed for an up-power transient from 0 MWt to approximately 18 MWt. The simple model significantly...VARIATIONS IN FUEL ELEMENT GEOMETRY ............. 60 4.4 VARIATIONS IN THE MANNER OF TRANSIENT CONTROL ..... 62 4.5 CORE REPRESENTATION BY MULTIPLE FUEL ...the HTGR , however, the PBR packs small fuel particles between inner and outer retention elements, designated as frits. The PBR is appropriate for a
Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor
NASA Technical Reports Server (NTRS)
Mayo, W.; Lantz, E.
1973-01-01
A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.
Banded electromagnetic stator core
Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.
1996-06-11
A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.
Banded electromagnetic stator core
Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.
1994-04-05
A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.
Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre
NASA Astrophysics Data System (ADS)
Yan, Ziyu; Ge, Xuyang; Guo, Bingyao
2017-12-01
In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.
Outer magnetospheric fluctuations and pulsar timing noise
NASA Technical Reports Server (NTRS)
Cheng, K. S.
1987-01-01
The Cheng, Ho, and Ruderman (1986) outer-magnetosphere gap model was used to investigate the stability of Crab-type outer magnetosphere gaps for pulsars having the parameter (Omega-square B) similar to that of the Crab pulsar. The Lamb, Pines, and Shaham (1978) fluctuating magnetosphere noise model was applied to the Crab pulsar to examine the type of the equation of state that best describes the structure of the neutron star. The noise model was also applied to other pulsars, and the theoretical results were compared with observational data. The results of the comparison are consistent with the stiff equation of state, as suggested by the vortex creep model of the neutron star interior. The timing-noise observations also contribute to the evidence for the existence of superfluid in the core of the neutron star.
POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.
Yang, Yi-Yan; Shi, Meng; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge
2003-03-07
The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.
THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N., E-mail: cockcroft@physics.mcmaster.ca, E-mail: harris@physics.mcmaster.ca, E-mail: ferguson@roe.ac.uk
2011-04-01
We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color,more » and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.« less
The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster?
NASA Astrophysics Data System (ADS)
Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N.; Huxor, Avon; Ibata, Rodrigo; Irwin, Mike J.; McConnachie, Alan W.; Woodley, Kristin A.; Chapman, Scott C.; Lewis, Geraint F.; Puzia, Thomas H.
2011-04-01
We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg2. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc <= r <= 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' ≈ 19.9, (g' - i') ≈ 0.6, concentration parameter c ≈ 1.0, a core radius rc ≈ 3.5 pc, and a half-light radius rh ≈ 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.