Sample records for moltox oxygen process

  1. Methane Post-Processing for Oxygen Loop Closure

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abney, Morgan B.; Miller, Lee

    2016-01-01

    State-of-the-art United States Atmospheric Revitalization carbon dioxide (CO2) reduction is based on the Sabatier reaction process, which recovers approximately 50% of the oxygen (O2) from crew metabolic CO2. Oxygen recovery from carbon dioxide is constrained by the limited availability of reactant hydrogen. Post-processing of methane to recover hydrogen with the Umpqua Research Company Plasma Pyrolysis Assembly (PPA) has the potential to further close the Atmospheric Revitalization oxygen loop. The PPA decomposes methane into hydrogen and hydrocarbons, predominantly acetylene, and a small amount of solid carbon. The hydrogen must then be purified before it can be recycled for additional oxygen recovery. Long duration testing and evaluation of a four crew-member sized PPA and a discussion of hydrogen recycling system architectures are presented.

  2. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C. [Wilmington, DE; Baker, Richard W. [Palo Alto, CA

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  3. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  4. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C.

    1984-01-01

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  5. Oxygen production on the Lunar materials processing frontier

    NASA Technical Reports Server (NTRS)

    Altenberg, Barbara H.

    1992-01-01

    During the pre-conceptual design phase of an initial lunar oxygen processing facility, it is essential to identify and compare the available processes and evaluate them in order to ensure the success of such an endeavor. The focus of this paper is to provide an overview of materials processing to produce lunar oxygen as one part of a given scenario of a developing lunar occupation. More than twenty-five techniques to produce oxygen from lunar materials have been identified. While it is important to continue research on any feasible method, not all methods can be implemented at the initial lunar facility. Hence, it is necessary during the pre-conceptual design phase to evaluate all methods and determine the leading processes for initial focus. Researchers have developed techniques for evaluating the numerous proposed methods in order to suggest which processes would be best to go to the Moon first. As one section in this paper, the recent evaluation procedures that have been presented in the literature are compared and contrasted. In general, the production methods for lunar oxygen fall into four categories: thermochemical, reactive solvent, pyrolytic, and electrochemical. Examples from two of the four categories are described, operating characteristics are contrasted, and terrestrial analogs are presented when possible. In addition to producing oxygen for use as a propellant and for life support, valuable co-products can be derived from some of the processes. This information is also highlighted in the description of a given process.

  6. Oxygen production processes on the Moon: An overview

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Carrier, W. David, III

    1991-01-01

    The production of oxygen on the Moon utilizing indigenous material is paramount to a successful lunar colonization. Several processes were put forth to accomplish this. The lunar liquid oxygen (LLOX) generation schemes which have received the most study to date are those involving: (1) the reduction of ilmenite (FeTiO3) by H2, C, CO, CH4, CO-Cl2 plasma; (2) magma electrolysis, both unadulterated and fluoride-fluxed, and (3) several others, including carbo-chlorination, HF acid leaching, fluorine extraction, magma oxidation, and vapor pyrolysis. The H2 reduction of ilmenite and magma electrolysis processes have received the most study to date. At this stage of development, they both appear feasible schemes with various pros and cons. However, all processes should be addressed at least at the onset of the considerations. It is ultimatley the energy requirements of the entire process, including the acquisition of feedstock, which will determine the mode of oxygen productions. There is an obvious need for considerably more experimentation and study. Some of these requisite studies are in progress, and several of the most studied and feasible processes for winning oxygen from lunar materials are reviewed.

  7. Sub-ppb Oxygen Contaminant Detection in Semi-Conductor Processing

    NASA Technical Reports Server (NTRS)

    Man, K. F.

    1995-01-01

    Gaseous contaminants such as oxygen, water vapor, nitrogen and hydrocarbons are often present in the processing environment in semiconductor device fabrication and in containerless materials processing. The contaminants arise as a result of outgassing from hot surfaces or they may be part of the impurities in commercial ultra-high purity gases. Among these gaseous contaminants, oxygen is the most reactive and, therefore, has the most adverse effects on the end product. There has been an intense effort at the Jet Propulsion Laboratory to develop different types of oxygen sorbents to reduce oxygen concentration in a microgravity processing environment to sub-ppb (parts-per-billion) levels. Higher concentrations can lead to rapid surface oxide formation, hence reducing the quality of semiconductor devices. If the concentration of oxygen in a processing chamber at 1000oC is in the ppb level, it will only take approximately 10 seconds for an oxide layer to form on the surface of a sample. The interaction of oxygen with the water surface can lead to the formation of localized defects in semi-conductor devices, hence decreasing the manufacturing yield. For example, efficient production of 64 Mb RAM chips requires contaminations below ppb levels. This paper describes a technique for measuring trace quantities of oxygen contaminants by recording the monoatomic negative ions, O-, using mass spectrometry. The O- formation from the e--O2 interaction utilizes the electron dissociative attachment method that is greatly enhanced at the resonant energy (6.8 eV). The device combines a small gridded electron ionizer with a compact mass spectrometer. The concentrations of oxygen have been measured using the method of standard additions by diluting O2 in N2. The lowest detection limit obtained was 1.2 kHz (O- count rate) at a concentration of 10-10, corresponding to 0.1 ppb.

  8. Process for conversion of lignin to reformulated, partially oxygenated gasoline

    DOEpatents

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    2001-01-09

    A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes. In the second stage of the process, the depolymerized lignin product is subjected to an exhaustive etherification reaction, optionally followed by a partial ring hydrogenation reaction, to produce a reformulated, partially oxygenated/etherified gasoline product, which includes a mixture of substituted phenyl/methyl ethers, cycloalkyl methyl ethers, C.sub.7 -C.sub.10 alkylbenzenes, C.sub.6 -C.sub.10 branched and multibranched paraffins, and alkylated and polyalkylated cycloalkanes.

  9. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2016-02-01

    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  10. A modified sulfate process to lunar oxygen

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.

  11. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian J.

    2016-08-30

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  12. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim [Minnetonka, MN; Aristidou, Aristos [Maple Grove, MN; Rush, Brian [Minneapolis, MN

    2011-05-10

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  13. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Hoek, Van; Pim, Aristidou [Minnetonka, MN; Aristos, Rush [Maple Grove, MN; Brian, [Minneapolis, MN

    2007-06-19

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  14. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian

    2014-09-09

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  15. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  16. Processing lunar soils for oxygen and other materials

    NASA Technical Reports Server (NTRS)

    Knudsen, Christian W.; Gibson, Michael A.

    1992-01-01

    Two types of lunar materials are excellent candidates for lunar oxygen production: ilmenite and silicates such as anorthite. Both are lunar surface minable, occurring in soils, breccias, and basalts. Because silicates are considerably more abundant than ilmenite, they may be preferred as source materials. Depending on the processing method chosen for oxygen production and the feedstock material, various useful metals and bulk materials can be produced as byproducts. Available processing techniques include hydrogen reduction of ilmenite and electrochemical and chemical reductions of silicates. Processes in these categories are generally in preliminary development stages and need significant research and development support to carry them to practical deployment, particularly as a lunar-based operation. The goal of beginning lunar processing operations by 2010 requires that planning and research and development emphasize the simplest processing schemes. However, more complex schemes that now appear to present difficult technical challenges may offer more valuable metal byproducts later. While they require more time and effort to perfect, the more complex or difficult schemes may provide important processing and product improvements with which to extend and elaborate the initial lunar processing facilities. A balanced R&D program should take this into account. The following topics are discussed: (1) ilmenite--semi-continuous process; (2) ilmenite--continuous fluid-bed reduction; (3) utilization of spent ilmenite to produce bulk materials; (4) silicates--electrochemical reduction; and (5) silicates--chemical reduction.

  17. Overview of Research for Lunar Oxygen Processing at Carbotek Development Laboratories

    NASA Astrophysics Data System (ADS)

    Ortego, J. D., Jr.; Sorge, L. L.; Guo-Murray, M.; Gibson, M. A.; Knudsen, C. W.

    1997-01-01

    Oxygen production from indigenous lunar material is considered an enabling technology for future solar system exploration. Lunar derived oxygen provides many lunar base program enhancements. A great mass benefit can be derived when Earth return propellant oxidizer is not manifested for transit vehicles traveling to the moon. This results in substantial cost savings to the overall space transportation infrastructure. In addition, lunar produced oxygen can be used to supplement life support systems. Finally, many of the lunar oxygen processes under development produce by-products which are excellent construction materials, rich in iron and titanium, for shielding habitats and lunar surface equipment from cosmic radiation and more lethal solar flares. As a result of the apparent benefits of lunar derived oxygen, NASA has funded research for the development of promising techniques since the mid- 1980's in order for the technology to be available for lunar return missions. Carbotek, with funding and technical assistance f om NASA Johnson Space Center and the Shimizu Corporation, Space Systems Division, has been developing oxygen producing technology since 1984. This paper describes past and future work by Carbotek on two processes, hydrogen reduction of ilmenite and magma electrolysis.

  18. Processing of metal and oxygen from lunar deposits

    NASA Technical Reports Server (NTRS)

    Acton, Constance F.

    1992-01-01

    On the moon, some whole rocks may be ores for abundant elements, such as oxygen, but beneficiation will be important if metallic elements are sought from raw lunar dirt. In the extraction process, a beneficiated metallic ore, such as an oxide, sulfide, carbonate, or silicate mineral, is converted to reduced metal. A variety of plausible processing technologies, which includes recovery of meteoritic iron, and processing of lunar ilmenite, are described in this report.

  19. The oxycoal process with cryogenic oxygen supply.

    PubMed

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  20. The oxycoal process with cryogenic oxygen supply

    NASA Astrophysics Data System (ADS)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  1. Nanoparticulate-catalyzed oxygen transfer processes

    DOEpatents

    Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  2. Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?

    NASA Astrophysics Data System (ADS)

    Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.

    2016-02-01

    The Peruvian upwelling region shows pronounced near-surface submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting these processes. In this study the role of submesoscale processes for the ventilation of the near-coastal oxygen minimum zone off Peru is investigated. We use satellite based sea surface temperature measurements and multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) outputs are analysed. At the beginning of our observational survey a previously upwelled, productive and highly oxygenated water body is found in the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found in the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of Lagrangian numerical floats in several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The floats trajectories support our interpretation that the subduction of previously upwelled water occurs in filaments off Peru. We find that 40 - 60 % of the floats seeded in the newly upwelled water is subducted within a time period of 5 days. This hightlights the importance of this process in ventilating the oxycline off Peru.

  3. Fundamental understanding of distracted oxygen delignification efficiency by dissolved lignin during biorefinery process of eucalyptus.

    PubMed

    Zhao, Huifang; Li, Jing; Zhang, Xuejin

    2018-06-01

    In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Automation and control of off-planet oxygen production processes

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Suitor, J. W.; Schooley, L. S.; Cellier, F. E.

    1990-01-01

    This paper addresses several aspects of the automation and control of off-planet production processes. First, a general approach to process automation and control is discussed from the viewpoint of translating human process control procedures into automated procedures. Second, the control issues for the automation and control of off-planet oxygen processes are discussed. Sensors, instruments, and components are defined and discussed in the context of off-planet applications, and the need for 'smart' components is clearly established.

  5. Methane Post-Processing and Hydrogen Separation for Spacecraft Oxygen Loop Closure

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abeny, Morgan B.; Wall, Terry; Miller, Lee A.; Wheeler, Richard R., Jr.

    2017-01-01

    State-of-the-art life support oxygen recovery technology on the International Space Station is based on the Sabatier reaction where only about half of the oxygen required for the crew is recovered from metabolic carbon dioxide (CO2). The Sabatier reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by both the limited availability of reactant hydrogen from water electrolysis and Sabatier methane (CH4) being vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover this hydrogen has the potential to substantially increase oxygen recovery and thus dramatically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. A purification system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of acetylene removal systems and PPA system architectures are presented and discussed.

  6. Oxygen-producing inert anodes for SOM process

    DOEpatents

    Pal, Uday B

    2014-02-25

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  7. Fluorophore-based sensor for oxygen radicals in processing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu; Sabat, Grzegorz

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye thatmore » is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.« less

  8. Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Xu, Guang; Liang, Wei-cheng; He, Bei; Zhou, Ming-xing

    2018-02-01

    The oxidizing behavior of Si-containing steel was investigated in an O2 and N2 binary-component gas with oxygen contents ranging between 0.5vol% and 4.0vol% under anisothermal-oxidation conditions. A simultaneous thermal analyzer was employed to simulate the heating process of Si-containing steel in industrial reheating furnaces. The oxidation gas mixtures were introduced from the commencement of heating. The results show that the oxidizing rate remains constant in the isothermal holding process at high temperatures; therefore, the mass change versus time presents a linear law. A linear relation also exists between the oxidizing rate and the oxygen content. Using the linear regression equation, the oxidation rate at different oxygen contents can be predicted. In addition, the relationship between the total mass gain and the oxygen content is linear; thus, the total mass gain at oxygen contents between 0.5vol%-4.0vol% can be determined. These results enrich the theoretical studies of the oxidation process in Si-containing steels.

  9. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  10. Chlorination processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.

    1989-01-01

    The use of chlorine to extract, reclaim, and purify metals has attractive possibilities for extraterrestrial processing of local planetary resources. While a complete cyclic process has been proposed for the recovery of metallurgically significant metals and oxygen, herein the chlorination step of the cycle is examined. An experimental apparatus for reacting refractory materials, such as ilmenite, in a microwave induced plasma is being built. Complex equilibria calculations reveal that stable refractory materials can, under the influence of a plasma, undergo chlorination and yield oxygen as a by-product. These issues and the potential advantages for plasma processing in space are reviewed. Also presented is a discussion of the complex equilibria program used in the analysis.

  11. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reactionmore » wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5« less

  12. Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.

    PubMed

    2017-11-17

    A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen

  13. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.

    2015-04-01

    The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.

  14. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana Shelf

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.

    2014-10-01

    The Louisiana shelf in the northern Gulf of Mexico receives large amounts of freshwater and nutrients from the Mississippi/Atchafalaya River system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year except near the mouths of the Mississippi and Atchafalaya Rivers where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink while the well-developed pycnocline isolates autotrophic surface waters from the heterotrophic and hypoxic waters below. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e. primary production and water column respiration). In this experiment below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.

  15. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.

    PubMed

    Wandt, Johannes; Jakes, Peter; Granwehr, Josef; Gasteiger, Hubert A; Eichel, Rüdiger-A

    2016-06-06

    Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modeling the Oxygen Cycle in the Equatorial Pacific: Regulation of Physical and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Wang, X.; Murtugudde, R. G.; Zhang, D.

    2016-12-01

    Photosynthesis and respiration are important processes in all ecosystems on the Earth, in which carbon and oxygen are the two main elements. However, the oxygen cycle has received much less attention (relative to the carbon cycle) despite its big role in the earth system. Oxygen is a sensitive indicator of physical and biogeochemical processes in the ocean thus a key parameter for understanding the ocean's ecosystem and biogeochemistry. The Oxygen-Minimum-Zone (OMZ), often seen below 200 m, is a profound feature in the world oceans. There has been evidence of OMZ expansion over the past few decades in the tropical oceans. Climate models project that there would be a continued decline in dissolved oxygen (DO) and an expansion of the tropical OMZs under future warming conditions, which is of great concern because of the implications for marine organisms. We employ a validated three-dimensional model that simulates physical transport (circulation and vertical mixing), biological processes (O2 production and consumption) and ocean-atmosphere O2 exchange to quantify various sources and sinks of DO over 1980-2015. We show how we use observational data to improve our model simulation. Then we assess the spatial and temporal variability in simulated DO in the tropical Pacific Ocean, and explore the impacts of physical and biogeochemical processes on the DO dynamics, with a focus on the MOZ. Our analyses indicate that DO in the OMZ has a positive relationship with the 13ºC isotherm depth and a negative relationship with the concentration of dissolved organic material.

  17. Evolution of Structural and Electrical Properties of Oxygen-Deficient VO2 under Low Temperature Heating Process.

    PubMed

    Zhang, Jiasong; Zhao, Zhengjing; Li, Jingbo; Jin, Haibo; Rehman, Fida; Chen, Pengwan; Jiang, Yijie; Chen, Chunxu; Cao, Maosheng; Zhao, Yongjie

    2017-08-16

    Structural stability and functional performances of vanadium dioxide (VO 2 ) are strongly influenced by oxygen vacancies. However, the mechanism of metal-insulator transition (MIT) influenced by defects is still under debate. Here, we study the evolution of structure and electrical property of oxygen-deficient VO 2 by a low temperature annealing process (LTP) based on a truss-structured VO 2 nanonet. The oxygenation process of the oxygen-deficient VO 2 is greatly prolonged, which enables us to probe the gradual change of properties of the oxygen-deficient VO 2 . A continuous lattice reduction is observed during LTP. No recrystallization and structural collapse of the VO 2 nanonet can be found after LTP. The valence-band X-ray photoelectron spectroscopy (XPS) measurements indicate that the oxygen deficiency strongly affects the energy level of the valence band edge. Correspondingly, the resistance changes of the VO 2 films from 1 to 4.5 orders of magnitude are achieved by LTP. The effect of oxygen vacancy on the electric field driven MIT is investigated. The threshold value of voltage triggering the MIT decreases with increasing the oxygen vacancy concentration. This work demonstrates a novel and effective way to control the content of oxygen vacancies in VO 2 and the obvious impact of oxygen vacancy on MIT, facilitating further research on the role of oxygen vacancy in structure and MIT of VO 2 , which is important for the deep understanding of MIT and exploiting innovative functional application of VO 2 .

  18. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    NASA Astrophysics Data System (ADS)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  19. The influence of oxygen additions on argon-shielded gas metal arc welding processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, P.G.; Murphy, A.B.; Szekely, J.

    1995-02-01

    It has been observed experimentally that small additions of oxygen to the argon shielding gas affect the general operation of GMAW processes. By theoretically modeling the arc column, it is shown that the addition of 2 to 5% oxygen to argon has an insignificant effect on the arc characteristics. This corresponds to the minor changes in the thermophysical transport and thermodynamic properties caused by the oxygen addition. Therefore, it is concluded that the addition of oxygen to the argon shielding gas mainly affects the anode and the cathode regions. From the literature, it was found that the formation of oxidesmore » initiates arcing at the cathode and decreases the movement of the cathode spots. These oxides can also improve the wetting conditions at the workpiece and the electrode. Finally, oxygen is found to affect the surface tension gradient and thereby the convective flow of liquid metal in the weld pool.« less

  20. Coal Combustion Behavior in New Ironmaking Process of Top Gas Recycling Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenfeng; Xue, Qingguo; Tang, Huiqing; Wang, Guang; Wang, Jingsong

    2017-10-01

    The top gas recycling oxygen blast furnace (TGR-OBF) is a new ironmaking process which can significantly reduce the coke ratio and emissions of carbon dioxide. To better understand the coal combustion characteristics in the TGR-OBF, a three dimensional model was developed to simulate the lance-blowpipe-tuyere-raceway of a TGR-OBF. The combustion characteristics of pulverized coal in TGR-OBF were investigated. Furthermore, the effects of oxygen concentration and temperature were also analyzed. The simulation results show that the coal burnout increased by 16.23% compared to that of the TBF. The oxygen content has an obvious effect on the burnout. At 70% oxygen content, the coal burnout is only 21.64%, with a decrease of 50.14% compared to that of TBF. Moreover, the effect of oxygen temperature is also very obvious.

  1. Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu

    2018-04-01

    A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.

  2. Process for the conversion of lower alcohols to higher branched oxygenates

    DOEpatents

    Barger, Paul T.

    1996-01-01

    A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  3. Process for the conversion of lower alcohols to higher branched oxygenates

    DOEpatents

    Barger, P.T.

    1996-09-24

    A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  4. Evaluation of microbial globin promoters for oxygen-limited processes using Escherichia coli.

    PubMed

    Lara, Alvaro R; Jaén, Karim E; Sigala, Juan-Carlos; Regestein, Lars; Büchs, Jochen

    2017-01-01

    Oxygen-responsive promoters can be useful for synthetic biology applications, however, information on their characteristics is still limited. Here, we characterized a group of heterologous microaerobic globin promoters in Escherichia coli . Globin promoters from Bacillus subtilis , Campylobacter jejuni , Deinococcus radiodurans , Streptomyces coelicolor , Salmonella typhi and Vitreoscilla stercoraria were used to express the FMN-binding fluorescent protein (FbFP), which is a non-oxygen dependent marker. FbFP fluorescence was monitored online in cultures at maximum oxygen transfer capacities (OTR max ) of 7 and 11 mmol L -1  h -1 . Different FbFP fluorescence intensities were observed and the OTR max affected the induction level and specific fluorescence emission rate (the product of the specific fluorescence intensity multiplied by the specific growth rate) of all promoters. The promoter from S. typhi displayed the highest fluorescence emission yields (the quotient of the fluorescence intensity divided by the scattered light intensity at every time-point) and rate, and together with the promoters from D. radiodurans and S. coelicolor , the highest induction ratios. These results show the potential of diverse heterologous globin promoters for oxygen-limited processes using E. coli .

  5. Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?

    NASA Astrophysics Data System (ADS)

    Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.

    2016-08-01

    The Peruvian upwelling system encompasses the most intense and shallowest oxygen minimum zone (OMZ) in the ocean. This system shows pronounced submesoscale activity like filaments and fronts. We carried out glider-based observations off Peru during austral summer 2013 to investigate whether submesoscale frontal processes ventilate the Peruvian OMZ. We present observational evidence for the subduction of highly oxygenated surface water in a submesoscale cold filament. The subduction event ventilates the oxycline but does not reach OMZ core waters. In a regional submesoscale-permitting model we study the pathways of newly upwelled water. About 50% of upwelled virtual floats are subducted below the mixed layer within 5 days emphasizing a hitherto unrecognized importance of subduction for the ventilation of the Peruvian oxycline.

  6. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster Ovary (CHO) Cells With and Without Metabolic Activation. Test Article: Dimethylamine-2-2ethyl azide (DMAZ)

    DTIC Science & Technology

    2008-07-26

    cultures at each concentration level were treated for 3 hours in serum-free medium containing phenobarbital !B-naphthoflavone-induced rat liver S-9...Research Laboratories and it consisted of phenobarbital -S,6-Benzoflavone (phenobarbitallB-naphthoflavone) -induced rat liver homogenate (S-9 fraction...Content: 4. Inducing Agent: S. Storage Condition: 6. Expiration Date: Moltox 2147 31.0 mg/rnL Phenobarbital -S,6-Benzoflavone < -70°C April

  7. The role of oxygen in the photostimulation luminescence process of europium doped potassium chloride

    PubMed Central

    Xiao, Zhiyan; Mazur, Thomas R.; Driewer, Joseph P.; Li, H. Harold

    2015-01-01

    A recent suggestion that europium doped potassium chloride (KCl:Eu2+) has the potential to significantly advance the state-of-the-art in radiation therapy dosimetry has generated a renewed interest in a classic storage phosphor material. The purposes of this work are to investigate the role of oxygen in the photostimulation luminescence (PSL) process and to determine if both increased PSL yield and improved temporal stability could be realized in KCl:Eu2+ by incorporating oxygen in the material fabrication process. Regardless of synthesis atmosphere, air or pure nitrogen, PSL amplitude shows a maximum at 1.0 mol % Eu. Depending on europium concentration, dosimeters fabricated in air exhibit stronger PSL by a factor of 2 to 4 compared to those made in N2. There is no change in PSL stimulation spectrum while noticeable shifts in both photoluminescence and PSL emission spectra are observed for air versus nitrogen. Almost all charge-storage centers are spatially correlated, suggesting oxygen’s stabilization role in the PSL process. However, oxygen alone does not improve material’s temporal stability in the first few hours post irradiation at room temperature, probably because a significant portion of radiation-induced holes are stored in the Vk centers which are mobile. PMID:25897274

  8. CONTINUOUS PROCESS FOR PREPARING URANIUM HEXAFLUORIDE FROM URANIUM TETRAFLUORIDE AND OXYGEN

    DOEpatents

    Adams, J.B.; Bresee, J.C.; Ferris, L.M.

    1961-11-21

    A process for preparing UF/sub 6/ by reacting UF/sub 4/ and oxygen is described. The UF/sub 4/ and oxygen are continuously introduced into a fluidized bed of UO/sub 2/F/sub 2/ at a temperature of 600 to 900 deg C. The concentration of UF/sub 4/ in the bed is maintained below 25 weight per cent in order to avoid sintering and intermediate compound formation. By-product U0/sub 2/F/sub 2/ is continuously removed from the top of the bed recycled. In an alternative embodiment heat is supplied to the reaction bed by burning carbon monoxide in the bed. The product UF/sub 6/ is filtered to remove entrained particles and is recovered in cold traps and chemical traps. (AEC)

  9. Oxygen Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Jensen, Marlene M.; Contreras, Sergio; Revsbech, Niels Peter; Lam, Phyllis; Günter, Marcel; LaRoche, Julie; Lavik, Gaute; Kuypers, Marcel M. M.

    2011-01-01

    Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ∼0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3 − reduction in 15N-labeling experiments with varying O2 concentrations (0–25 µmol L−1) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters. Based on our O2 assays we estimate the upper limit for anammox to be ∼20 µmol L−1. In contrast, NH3 oxidation to NO2 − and NO3 − reduction to NO2 − as the main NH4 + and NO2 − sources for anammox were only moderately affected by changing O2 concentrations. Intriguingly, aerobic NH3 oxidation was active at non-detectable concentrations of O2, while anaerobic NO3 − reduction was fully active up to at least 25 µmol L−1 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3 − reduction. With anammox bacteria in the marine environment being active at O2 levels ∼20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling. PMID:22216239

  10. Platinum Partitioning at Low Oxygen Fugacity: Implications for Core Formation Processes

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Lanziroti, A.; Newville, M.

    2016-01-01

    Highly siderophile elements (HSE = Au, Re, and the Pt-group elements) are tracers of silicate / metal interactions during planetary processes. Since most core-formation models involve some state of equilibrium between liquid silicate and liquid metal, understanding the partioning of highly siderophile elements (HSE) between silicate and metallic melts is a key issue for models of core / mantle equilibria and for core formation scenarios. However, partitioning models for HSE are still inaccurate due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variable like temperature, pressure, and oxygen fugacity. In this abstract, we describe a self-consistent set of experiments aimed at determining the valence of platinum, one of the HSE, in silicate melts. This is a key information required to parameterize the evolution of platinum partitioning with oxygen fugacity.

  11. A Test of Carbon and Oxygen Stable Isotope Ratio Process Models in Tree Rings.

    NASA Astrophysics Data System (ADS)

    Roden, J. S.; Farquhar, G. D.

    2008-12-01

    Stable isotopes ratios of carbon and oxygen in tree ring cellulose have been used to infer environmental change. Process-based models have been developed to clarify the potential of historic tree ring records for meaningful paleoclimatic reconstructions. However, isotopic variation can be influenced by multiple environmental factors making simplistic interpretations problematic. Recently, the dual isotope approach, where the variation in one stable isotope ratio (e.g. oxygen) is used to constrain the interpretation of variation in another (e.g. carbon), has been shown to have the potential to de-convolute isotopic analysis. However, this approach requires further testing to determine its applicability for paleo-reconstructions using tree-ring time series. We present a study where the information needed to parameterize mechanistic models for both carbon and oxygen stable isotope ratios were collected in controlled environment chambers for two species (Pinus radiata and Eucalyptus globulus). The seedlings were exposed to treatments designed to modify leaf temperature, transpiration rates, stomatal conductance and photosynthetic capacity. Both species were grown for over 100 days under two humidity regimes that differed by 20%. Stomatal conductance was significantly different between species and for seedlings under drought conditions but not between other treatments or humidity regimes. The treatments produced large differences in transpiration rate and photosynthesis. Treatments that effected photosynthetic rates but not stomatal conductance influenced carbon isotope discrimination more than those that influenced primarily conductance. The various treatments produced a range in oxygen isotope ratios of 7 ‰. Process models predicted greater oxygen isotope enrichment in tree ring cellulose than observed. The oxygen isotope ratios of bulk leaf water were reasonably well predicted by current steady-state models. However, the fractional difference between models that

  12. Intrinsic and metal-doped gallium oxide based high-temperature oxygen sensors for combustion processes

    NASA Astrophysics Data System (ADS)

    Rubio, Ernesto Javier

    Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3

  13. Process for selection of oxygen-tolerant algal mutants that produce H{sub 2}

    DOEpatents

    Ghirardi, M.L.; Seibert, M.

    1999-02-16

    A process for selection of oxygen-tolerant, H{sub 2}-producing algal mutant cells comprises: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautotrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas and (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light; (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H{sub 2}-producing mutants. 5 figs.

  14. Process for selection of Oxygen-tolerant algal mutants that produce H.sub.2

    DOEpatents

    Ghirardi, Maria L.; Seibert, Michael

    1999-01-01

    A process for selection of oxygen-tolerant, H.sub.2 -producing algal mutant cells comprising: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas; (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light. (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H.sub.2 -producing mutants.

  15. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  16. Test for Chemical Induction of Chromosome Aberrations in Cultured Chinese Hamster Ovary (CHO) Cells with and without Metabolic Activation, Test Article: 3-Nitro-1,2,4-Triazol-5-one (NTO)

    DTIC Science & Technology

    2008-10-30

    it consisted of phenobarbital -5,6-Benzoflavone (phenobarbitallB-naphthoflavone) -induced rat liver homogenate (S-9 fraction) and the cofactor pool...5. Storage Condition: 6. Expiration Date: Moltox 2059 32.1 mglmL (Lot No.: 2059) Phenobarbital -5,6-Benzoflavone <-70°C September 7,2008 (Lot...mL PREPARATION DATE: September 7. 2006 EXPIRATION DATE: September 7. 2008 BUllFER: O.lS4MKCl INDUCING AGENT(s): Phenobarbital • 5,6·Benzoflavone

  17. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  18. Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Cowie, Gregory L.; Levin, Lisa A.

    2009-03-01

    Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OMZ (˜150-1300 m), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin of the Arabian Sea. Hydrologic, sediment, and faunal characterizations were combined with in-situ and shipboard experiments to quantify and compare biogeochemical processes and fluxes, OM burial efficiency, and the contributions of benthic communities, across the OMZ. In this introductory paper, we briefly review previous related work in the Arabian Sea, building the rationale for integrative biogeochemical and ecological process studies. This is followed by a summary of individual volume contributions and a brief synthesis of results. Five primary stations were studied, at 140, 300, 940, 1200 and 1850 m water depth, with sampling in March-May (intermonsoon) and August-October (late-to-postmonsoon) 2003. Taken together, the contributed papers demonstrate distinct cross-margin gradients, not only in oxygenation and sediment OM content, but in benthic community structure and function, including microbial processes, the extent of bioturbation, and faunal roles in C cycling. Hydrographic studies demonstrated changes in the intensity and extent of the OMZ during the SW monsoon, with a shoaling of the upper OMZ boundary that engulfed the previously oxygenated 140-m site. Oxygen profiling and microbial process rate determinations demonstrated dramatic differences in oxygen penetration and consumption across the margin, and in the relative importance of anaerobic processes, but surprisingly little seasonal change. A broad maximum in sediment OM content occurred on

  19. Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes.

    PubMed

    Rosso, Diego; Lothman, Sarah E; Jeung, Matthew K; Pitt, Paul; Gellner, W James; Stone, Alan L; Howard, Don

    2011-11-15

    Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis. This was operated independently in parallel to an existing full-scale activated sludge process. Both processes achieved the same percent removal of COD and ammonia, despite the double oxygen demand on the IFAS reactors. In order to prevent kinetic limitations associated with DO diffusional gradients through the IFAS biofilm, this systems was operated at an elevated dissolved oxygen concentration, in line with the manufacturer's recommendation. Also, to avoid media coalescence on the reactor surface and promote biofilm contact with the substrate, high mixing requirements are specified. Therefore, the air flux in the IFAS reactors was much higher than that of the parallel activated sludge reactors. However, the standardized oxygen transfer efficiency in process water was almost same for both processes. In theory, when the oxygen transfer efficiency is the same, the air used per unit load removed should be the same. However, due to the high DO and mixing requirements, the IFAS reactors were characterized by elevated air flux and air use per unit load treated. This directly reflected in the relative energy footprint for aeration, which in this case was much higher for the IFAS system than activated sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Fabrication and processing of next-generation oxygen carrier materials for chemical looping combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadarajah, Arunan

    Among numerous methods of controlling the global warming effect, Chemical Looping Combustion is known to be the most viable option currently. A key factor to a successful chemical looping process is the presence of highly effective oxygen carriers that enable fuel combustion by going through oxidation and reduction in the presence of air and fuel respectively. In this study, CaMnO 3-δ was used as the base material and doped on the A-site (Sr or La) and B-site (Fe, Ti, Zn and Al) by 10 mol % of dopants. Solid state reaction followed by mechanical extrusion (optimized paste formula) was usedmore » as the preparation method A series of novel doped perovskite-type oxygen carrier particles (Ca xLa (Or Sa) 1-x Mn 1-yByO 3-δ (B-site = Fe, Ti, Al, or Zr)) were synthesized by the proposed extrusion formula. The produced samples were characterized with XRD, SEM, BET and TGA techniques. According to the results obtained from TGA analysis, the oxygen capacity of the samples ranged between 1.2 for CLMZ and 1.75 for CSMF. Reactivity and oxygen uncoupling behaviors of the prepared samples were also evaluated using a fluidized bed chemical looping reactor using methane as the fuel at four different temperatures (800, 850, 900, 950 °C). All of the oxygen carriers showed oxygen uncoupling behavior and they were able to capture and release oxygen. Mass-based conversion of the perovskites was calculated and temperature increase proved to increase the mass-based conversion rate in all of the samples under study. Gas yield was calculated at 950 °C as well, and results showed that CLMZ, CM and CSMF showed 100% gas yields and CLMF and CSMZ showed approximately 85% yield in fluidized bed reactor, which is a high and acceptable quantity. Based on extended reactor tests the modified calcium manganese perovskite structures (CSMF) can be a good candidate for future pilot tests.« less

  1. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.

    PubMed

    Bedard, Jeremy; Hong, Do-Young; Bhan, Aditya

    2013-08-07

    Co-processing of formic acid or carbon dioxide with CH4 (FA/CH4 = 0.01-0.03 and CO2/CH4 = 0.01-0.03) on Mo/H-ZSM-5 catalysts at 950 K with the prospect of kinetically coupling dehydrogenation and deoxygenation cycles results instead in a two-zone, staged bed reactor configuration consisting of upstream oxygenate/CH4 reforming and downstream CH4 dehydroaromatization. The addition of an oxygenate co-feed (oxygenate/CH4 = 0.01-0.03) causes oxidation of the active molybdenum carbide catalyst while producing CO and H2 until completely converted. Forward rates of C6H6 synthesis are unaffected by the introduction of an oxygenate co-feed after rigorously accounting for the thermodynamic reversibility caused by the H2 produced in oxygenate reforming reactions and the fraction of the active catalyst deemed unavailable for CH4 DHA. All effects of co-processing oxygenates with CH4 can be construed in terms of an approach to equilibrium.

  2. An aeration control strategy for oxidation ditch processes based on online oxygen requirement estimation.

    PubMed

    Zhan, J X; Ikehata, M; Mayuzumi, M; Koizumi, E; Kawaguchi, Y; Hashimoto, T

    2013-01-01

    A feedforward-feedback aeration control strategy based on online oxygen requirements (OR) estimation is proposed for oxidation ditch (OD) processes, and it is further developed for intermittent aeration OD processes, which are the most popular type in Japan. For calculating OR, concentrations of influent biochemical oxygen demand (BOD) and total Kjeldahl nitrogen (TKN) are estimated online by the measurement of suspended solids (SS) and sometimes TKN is estimated by NH4-N. Mixed liquor suspended solids (MLSS) and temperature are used to estimate the required oxygen for endogenous respiration. A straightforward parameter named aeration coefficient, Ka, is introduced as the only parameter that can be tuned automatically by feedback control or manually by the operators. Simulation with an activated sludge model was performed in comparison to fixed-interval aeration and satisfying result of OR control strategy was obtained. The OR control strategy has been implemented at seven full-scale OD plants and improvements in nitrogen removal are obtained in all these plants. Among them, the results obtained in Yumoto wastewater treatment plant were presented, in which continuous aeration was applied previously. After implementing intermittent OR control, the total nitrogen concentration was reduced from more than 5 mg/L to under 2 mg/L, and the electricity consumption was reduced by 61.2% for aeration or 21.5% for the whole plant.

  3. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    NASA Astrophysics Data System (ADS)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  4. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    PubMed

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  5. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1)more » mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  6. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration

    PubMed Central

    Avenhaus, Ulrike; Cabeza, Ricardo A.; Liese, Rebecca; Lingner, Annika; Dittert, Klaus; Salinas-Riester, Gabriela; Pommerenke, Claudia; Schulze, Joachim

    2016-01-01

    Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be

  7. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration.

    PubMed

    Avenhaus, Ulrike; Cabeza, Ricardo A; Liese, Rebecca; Lingner, Annika; Dittert, Klaus; Salinas-Riester, Gabriela; Pommerenke, Claudia; Schulze, Joachim

    2015-01-01

    Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be

  8. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process.

    PubMed

    Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J

    2011-01-01

    A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.

  9. Biomanufacturing process analytical technology (PAT) application for downstream processing: Using dissolved oxygen as an indicator of product quality for a protein refolding reaction.

    PubMed

    Pizarro, Shelly A; Dinges, Rachel; Adams, Rachel; Sanchez, Ailen; Winter, Charles

    2009-10-01

    Process analytical technology (PAT) is an initiative from the US FDA combining analytical and statistical tools to improve manufacturing operations and ensure regulatory compliance. This work describes the use of a continuous monitoring system for a protein refolding reaction to provide consistency in product quality and process performance across batches. A small-scale bioreactor (3 L) is used to understand the impact of aeration for refolding recombinant human vascular endothelial growth factor (rhVEGF) in a reducing environment. A reverse-phase HPLC assay is used to assess product quality. The goal in understanding the oxygen needs of the reaction and its impact to quality, is to make a product that is efficiently refolded to its native and active form with minimum oxidative degradation from batch to batch. Because this refolding process is heavily dependent on oxygen, the % dissolved oxygen (DO) profile is explored as a PAT tool to regulate process performance at commercial manufacturing scale. A dynamic gassing out approach using constant mass transfer (k(L)a) is used for scale-up of the aeration parameters to manufacturing scale tanks (2,000 L, 15,000 L). The resulting DO profiles of the refolding reaction show similar trends across scales and these are analyzed using rpHPLC. The desired product quality attributes are then achieved through alternating air and nitrogen sparging triggered by changes in the monitored DO profile. This approach mitigates the impact of differences in equipment or feedstock components between runs, and is directly inline with the key goal of PAT to "actively manage process variability using a knowledge-based approach." (c) 2009 Wiley Periodicals, Inc.

  10. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  11. Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes

    NASA Astrophysics Data System (ADS)

    Li, Zhaoyang; Kuang, Shibo; Yu, Aibing; Gao, Jianjun; Qi, Yuanhong; Yan, Dingliu; Li, Yuntao; Mao, Xiaoming

    2018-04-01

    Oxygen blast furnace (OBF) ironmaking process has the potential to realize "zero carbon footprint" production, but suffers from the "thermal shortage" problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.

  12. Oxygen cycling in the northern Benguela Upwelling System: Modelling oxygen sources and sinks

    NASA Astrophysics Data System (ADS)

    Schmidt, Martin; Eggert, Anja

    2016-12-01

    This paper elucidates the oxygen dynamics in the northern Benguela Upwelling System by means of process oriented, numerical modelling. Owing to the complex physical-biological interaction in this system, a coupled hydrodynamic-biogeochemical model is required to grasp the various aspects of the oxygen dynamics. We used high-resolution atmospheric fields derived from observations to force our model, available since 1999. The model results represent a 15 years, consistent data set of realistic hydrographic and ecosystem variables, including oxygen distribution patterns. After a concise description of the main aspects of the model, we use the model data to analyse the components contributing to the oxygen dynamics, namely, the ocean circulation, the exchange between ocean and atmosphere as well as the local biogeochemical oxygen cycling in the system. We thoroughly validate the model with available field observations and remote sensing data. The strengths of coastal upwelling, which controls the nutrient supply to the euphotic zone, as well as the poleward undercurrent that carries oxygen and nutrients to the shelf in the northern Benguela Upwelling System are well reproduced in the model. Among the biological oxygen sinks, mineralisation in the sediment, respiration of zooplankton and nitrification in the water column are important. We also found that vertical migration of zooplankton in response to the oxygen conditions provides a regulating feedback, which may prevent a complete deoxygenation of suboxic waters. As long as oxygen or nitrate are available in the bottom waters, the activities of chemolithoautotrophic sulphur bacteria on the sediment surface keep the redoxcline within the sediment and prevent the release of hydrogen sulphide into the water column. By horizontal integration of the simulated ocean-atmosphere oxygen flux, it can be shown that the Kunene upwelling cell between 16 ° S and 18 ° S is a boundary between the equatorial ocean, characterise by

  13. Reactive Oxygen Species (ROS): Beneficial Companions of Plants’ Developmental Processes

    PubMed Central

    Singh, Rachana; Singh, Samiksha; Parihar, Parul; Mishra, Rohit K.; Tripathi, Durgesh K.; Singh, Vijay P.; Chauhan, Devendra K.; Prasad, Sheo M.

    2016-01-01

    Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known. PMID:27729914

  14. Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2008-10-01

    SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types

  15. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  16. BENTHIC AND WATER COLUMN PROCESSES IN A SUBTROPICAL ESTUARY: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Murrell, M.C., J.D. Hagy, J.G. Campbell and J.M. Caffrey. In press. Benthic and Water Column Processes in a Subtropical Estuary: Effects of Light on Oxygen Fluxes (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 ...

  17. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO2

    PubMed Central

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-01-01

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO2 powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO2 films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO2 up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO2. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model. PMID:28773351

  18. Continuous process for singlet oxygenation of hydrophobic substrates in microemulsion using a pervaporation membrane.

    PubMed

    Caron, Laurent; Nardello, Véronique; Mugge, José; Hoving, Erik; Alsters, Paul L; Aubry, Jean-Marie

    2005-02-15

    Chemically generated singlet oxygen (1O2, 1Deltag) is able to oxidize a great deal of hydrophobic substrates from molybdate-catalyzed hydrogen peroxide decomposition, provided a suitable reaction medium such as a microemulsion system is used. However, high substrate concentrations or poorly reactive organics require large amounts of H2O2 that generate high amounts of water and thus destabilize the system. We report results obtained on combining dark singlet oxygenation of hydrophobic substrates in microemulsions with a pervaporation membrane process. To avoid composition alterations after addition of H2O2 during the peroxidation, the reaction mixture circulates through a ceramic membrane module that enables a partial and selective dewatering of the microemulsion. Optimization phase diagrams of sodium molybdate/water/alcohol/anionic surfactant/organic solvent have been elaborated to maximize the catalyst concentration and therefore the reaction rate. The membrane selectivity towards the mixture constituents has been investigated showing that a high retention is observed for the catalyst, for organic solvents and hydrophobic substrates, but not for n-propanol (cosurfactant) and water. The efficiency of such a process is illustrated with the peroxidation of a poorly reactive substrate, viz., beta-pinene.

  19. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.

    PubMed

    Cao, Ruiguo; Walter, Eric D; Xu, Wu; Nasybulin, Eduard N; Bhattacharya, Priyanka; Bowden, Mark E; Engelhard, Mark H; Zhang, Ji-Guang

    2014-09-01

    A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2(˙-)) as an intermediate in the ORR during the discharge process, while no O2(˙-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  1. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  2. Investigation of the relevant kinetic processes in the initial stage of a double-arcing instability in oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Mancinelli, B.; Prevosto, L.; Chamorro, J. C.; Minotti, F. O.; Kelly, H.

    2018-05-01

    A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ˜107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ˜109 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B3Σu-) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.

  3. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream inmore » a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW

  4. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading

    DOE PAGES

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; ...

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  5. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  6. Oxygen Sensing Based on the Yellowing of Newspaper.

    PubMed

    Yu, Jingjing; Qin, Xingcai; Xian, Xiaojun; Tao, Nongjian

    2018-01-26

    Newspaper is known to turn yellow over time. We show here that this yellowing process is sensitive to oxygen when exposed to UV light, leading to oxygen sensing. Oxygen sensing is critical to many applications, including industrial process control and breath analysis, but the existing oxygen sensors have limitations, especially for breath analysis that operates at 100% humidity. The UV irradiation also triggers fluorescence emission from newspaper, and the fluorescence intensity depends on oxygen concentration, providing an additional oxygen sensing method. Newspaper is stable in ambient air, and reactive to oxygen only with UV activation, which overcomes the instability issue of a typical colorimetric sensor in ambient air. The newspaper oxygen sensor works in 100% relative humidity air, containing various interferents. These unique properties of newspaper promise low cost and reliable oxygen sensing applications.

  7. Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®.

    PubMed

    Morales, N; Val del Río, A; Vázquez-Padín, J R; Gutiérrez, R; Fernández-González, R; Icaran, P; Rogalla, F; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-01-01

    The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.

  8. [How did the earth's oxygen atmosphere originate?].

    PubMed

    Schäfer, G

    2004-09-01

    The planet earth did not carry an oxygen atmosphere from the beginning. Though oxygen could arise from radiation mediated water splitting, these processes were not efficient enough to create a global gas atmosphere. Oxygen in the latter is a product of the photosynthetic activity of early green organisms. Only after biological mass-formation of oxygen the UV-protective ozone layer could develop, then enabeling life to move from water onto land. This took billions of years. The basics of the processes of biological oxygen liberation and utilization are described in the following as well as the importance of their steady state equilibrium. Also a hint is given to oxygen as a toxic compound though being a chemical prerequisite for aerobic life on earth.

  9. Oxygen-reducing catalyst layer

    DOEpatents

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  10. How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Strudwick, Xanthe; Short, Robert D.; Ogawa, Kotaro; Hatta, Akimitsu; Furuta, Hiroshi; Gaur, Nishtha; Hong, Sung-Ha; Cowin, Allison J.; Fukuhara, Hideo; Inoue, Keiji; Ito, Masafumi; Charles, Christine; Boswell, Roderick W.; Bradley, James W.; Graves, David B.; Szili, Endre J.

    2016-11-01

    The effect of oxidation, oxygenation, and de-oxygenation arising from He gas jet and He plasma jet treatments on the viability of skin cells cultured in vitro has been investigated. He gas jet treatment de-oxygenated cell culture medium in a process referred to as "sparging." He plasma jet treatments oxidized, as well as oxygenated or de-oxygenated cell culture medium depending on the dissolved oxygen concentration at the time of treatment. He gas and plasma jets were shown to have beneficial or deleterious effects on skin cells depending on the concentration of dissolved oxygen and other oxidative molecules at the time of treatment. Different combinations of treatments with He gas and plasma jets can be used to modulate the concentrations of dissolved oxygen and other oxidative molecules to influence cell viability. This study highlights the importance of a priori knowledge of the concentration of dissolved oxygen at the time of plasma jet treatment, given the potential for significant impact on the biological or medical outcome. Monitoring and controlling the dynamic changes in dissolved oxygen is essential in order to develop effective strategies for the use of cold atmospheric plasma jets in biology and medicine.

  11. Comparison of oxygen transfer parameters and oxygen demands in bioreactors operated at low and high dissolved oxygen levels.

    PubMed

    Mines, Richard O; Callier, Matthew C; Drabek, Benjamin J; Butler, André J

    2017-03-21

    The proper design of aeration systems for bioreactors is critical since it can represent up to 50% of the operational and capital cost at water reclamation facilities. Transferring the actual amount of oxygen needed to meet the oxygen demand of the wastewater requires α- and β-factors, which are used for calculating the actual oxygen transfer rate (AOTR) under process conditions based on the standard oxygen transfer rate (SOTR). The SOTR is measured in tap water at 20°C, 1 atmospheric pressure, and 0 mg L -1 of dissolved oxygen (DO). In this investigation, two 11.4-L bench-scale completely mixed activated process (CMAS) reactors were operated at various solid retention times (SRTs) to ascertain the relationship between the α-factor and SRT, and between the β-factor and SRT. The second goal was to determine if actual oxygen uptake rates (AOURs) are equal to calculated oxygen uptake rates (COURs) based on mass balances. Each reactor was supplied with 0.84 L m -1 of air resulting in SOTRs of 14.3 and 11.5 g O 2 d -1 for Reactor 1 (R-1) and Reactor 2 (R-2), respectively. The estimated theoretical oxygen demands of the synthetic feed to R-1 and R-2 were 6.3 and 21.9 g O 2 d -1 , respectively. R-2 was primarily operated under a dissolved oxygen (DO) limitation and high nitrogen loading to determine if nitrification would be inhibited from a nitrite buildup and if this would impact the α-factor. Nitrite accumulated in R-2 at DO concentrations ranging from 0.50 to 7.35 mg L -1 and at free ammonia (FA) concentrations ranging from 1.34 to 7.19 mg L -1 . Nonsteady-state reaeration tests performed on the effluent from each reactor and on tap water indicated that the α-factor increased as SRT increased. A simple statistical analysis (paired t-test) between AOURs and COURs indicated that there was a statistically significant difference at 0.05 level of significance for both reactors. The ex situ BOD bottle method for estimating AOUR appears to be invalid in

  12. Singlet oxygen-induced photodegradation of the polymers and dyes in optical sensing materials and the effect of stabilizers on these processes.

    PubMed

    Enko, Barbara; Borisov, Sergey M; Regensburger, Johannes; Bäumler, Wolfgang; Gescheidt, Georg; Klimant, Ingo

    2013-09-12

    A comprehensive study of photodegradation processes in optical sensing materials caused by photosensitized singlet oxygen in different polymers is presented. The stabilities of the polymers are accessed in the oxygen consumption measurements performed with help of optical oxygen sensors. Polystyrene and poly(phenylsilesquioxane) are found to be the most stable among the polymers investigated, whereas poly(2,6-dimethyl-p-phenylene oxide) and particularly poly(methyl methacrylate) and their derivatives show the fastest oxygen consumption. The effect of the stabilizers (singlet oxygen quenchers) on the oxygen consumption rates, the photostability of the sensitizer, and the total photon emission (TPE) by singlet oxygen is studied. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was found to significantly reduce both the TPE and the oxygen consumption rates, indicating its role as a physical quencher of singlet oxygen. The addition of DABCO also significantly improved the photostability of the sensitizer. The N-alkylated derivative of DABCO and DABCO covalently grafted to the polystyrene backbone are prepared in an attempt to overcome the volatility and water solubility of the quencher. These derivatives as well as other tertiary amines investigated were found to be inefficient as stabilizing agents, and some of them even negatively affected the oxygen consumption rates.

  13. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    PubMed

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  14. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOEpatents

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  15. Oxygen production by pyrolysis of lunar regolith

    NASA Technical Reports Server (NTRS)

    Senior, Constance L.

    1991-01-01

    Oxygen was identified as the most important product of initial lunar materials processing efforts. A source of oxygen on the Moon provides an alternative to the costly transport of propellant to the Moon or to low earth orbit. Pyrolysis, or vapor-phase reduction, involves heating a feedstock to temperatures sufficient to decompose the constituent metal oxides and release oxygen. The process relies on the vaporization of metal oxides in the form of reduced suboxides or atomic species. The reduced species must then be condensed without re-oxidizing, yielding oxygen in the gas phase. The feasibility of obtaining oxygen from common lunar minerals was demonstrated using solar furnace experiments. These results are discussed together with chemical equilibrium models which were extended to include the multicomponent oxides used in experiments. For the first time, both experiments and theoretical models dealt with the complex oxides that make up potential lunar feedstocks. Two major conclusions are drawn from this preliminary work. First, unbeneficiated regolith is a suitable feedstock for pyrolysis. Second, the process can operate at moderate temperatures, circa 2000 K, which could be supplied by direct solar or electrical energy. In addition to these advantages in choice of feedstock and energy source, the pyrolysis process requires no chemicals or reagents, making it an attractive process for lunar oxygen production.

  16. Oxygen microprofile in the prepared sediments and its implication for the sediment oxygen consuming process in a heavily polluted river of China.

    PubMed

    Wang, Chao; Zhai, Wanying; Shan, Baoqing

    2016-05-01

    Dissolved oxygen (DO) microprofiles of prepared sediments from 24 sampling sites in the Fuyang River were measured using a gold amalgam microelectrode in this study. The measured microprofiles can be divided into four types. In type I profiles, DO kept constant in the overlying water and decreased smoothly in the pore water; in type II profile, DO showed fluctuation in the pore water; in type III profiles, DO showed peak in the SWI; in type IV profiles, DO decreased obviously in the overlying water. Type I profiles indicated the absence of benthic organisms and thus the degradation of the sediment habitat. Type II and III profiles indicated the activity of benthic animal and epipelic algae, which is common in the healthy aquatic sediment. Type IV profiles indicated that the excessive accumulation of pollutants in the sediment and thus the serious sediment pollution. There are nine sites showing type I profile, three sites showing type II profile, nine sites showing type III profile, and three sites showing type IV profile in the Fuyang River. The dominance of type I and appearance of type IV indicated that sediment oxygen consumption processes in the Fuyang River were strongly influenced by the sediment pollutants release and the vanish of benthic organisms. The pharmacy, metallurgy, and curriery industries may contribute to the sediment deterioration and thus to the occurrence of type I and type IV oxygen profiles in the Fuyang River.

  17. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  18. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    PubMed

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  19. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    NASA Astrophysics Data System (ADS)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  20. Removing oxygen from a solvent extractant in an uranium recovery process

    DOEpatents

    Hurst, Fred J.; Brown, Gilbert M.; Posey, Franz A.

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds.

  1. Synthesis of {111} Facet-Exposed MgO with Surface Oxygen Vacancies for Reactive Oxygen Species Generation in the Dark.

    PubMed

    Hao, Ying-Juan; Liu, Bing; Tian, Li-Gang; Li, Fa-Tang; Ren, Jie; Liu, Shao-Jia; Liu, Ying; Zhao, Jun; Wang, Xiao-Jing

    2017-04-12

    Seeking a simple and moderate route to generate reactive oxygen species (ROS) for antibiosis is of great interest and challenge. This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O 2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation. These ROS were confirmed by electron paramagnetic resonance, in situ Raman, and scavenger experiments. Furthermore, heat plays a crucial role for the electron transfer process to accelerate the formation of ·O 2 - , which is verified by temperature kinetic experiments of nitro blue tetrazolium reduction in the dark. Therefore, the presence of oxygen vacancy can be considered as an intensification of the activation process. The designed MgO is acquired in one step via constructing a reduction atmosphere during the combustion reaction process, which has an ability similar to that of noble metal Pd to activate molecular oxygen and can be used as an effective bacteriocide in the dark.

  2. Fuel and oxygen addition for metal smelting or refining process

    DOEpatents

    Schlichting, M.R.

    1994-11-22

    A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figs.

  3. Fuel and oxygen addition for metal smelting or refining process

    DOEpatents

    Schlichting, Mark R.

    1994-01-01

    A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

  4. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  5. Low Temperature Soda-Oxygen Pulping of Bagasse.

    PubMed

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  6. Effect of oxygen content of Nd-Fe-B sintered magnet on grain boundary diffusion process of DyH2 dip-coating

    NASA Astrophysics Data System (ADS)

    Bae, Kyoung-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk

    2015-11-01

    We investigated the effect of oxygen content on the microstructural and magnetic properties of a DyH2 dip-coated Nd-Fe-B sintered magnet. When the magnet had a low oxygen content (1500 ppm), the volume and size of the rare-earth-rich oxide (Nd-Dy-O) phase was reduced, and a uniform and continuous thin Nd-rich grain boundary phase (GBP) was well developed. The grain boundary diffusion depth of Dy increased from 200 to 350 μm with decreasing oxygen content from ˜3000 to 1500 ppm. The coercivity of the low-oxygen magnet increased from 19.98 to 23.59 kOe after grain boundary diffusion process (GBDP) while the remanence reduction was minimized. The formation of an fcc-NdOx Nd-rich phase in the high-oxygen magnet hindered the formation of a Nd-rich triple-junction phase and GBP. In contrast, a metallic dhcp-Nd phase, which was closely related to coercivity enhancement after GBDP, was formed in the low-oxygen magnet.

  7. Holographic monitoring of spatial distributions of singlet oxygen in water

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  8. Cold plasma processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.; Bullard, D.; Ortega, R.

    1990-01-01

    The utilization of a cold plasma in chlorination processing is described. Essential equipment and instruments were received, the experimental apparatus assembled and tested, and preliminary experiments conducted. The results of the latter lend support to the original hypothesis: a cold plasma can both significantly enhance and bias chemical reactions. In two separate experiments, a cold plasma was used to reduce TiCl4 vapor and chlorinate ilmenite. The latter, reacted in an argon-chlorine plasma, yielded oxygen. The former experiment reveals that chlorine can be recovered as HCl vapor from metal chlorides in a hydrogen plasma. Furthermore, the success of the hydrogen experiments has lead to an analysis of the feasibility of direct hydrogen reduction of metal oxides in a cold plasma. That process would produce water vapor and numerous metal by-products.

  9. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    PubMed

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  10. Oxygen production System Models for Lunar ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.

  11. Oxygen--a limiting factor for brain recovery.

    PubMed

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  12. Novel nanostructured oxygen sensor

    NASA Astrophysics Data System (ADS)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate

  13. Oxygen Extraction from Minerals

    NASA Technical Reports Server (NTRS)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  14. Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)

    2000-01-01

    The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.

  15. Importance of Extracellular Processes in the Oxygen Enhancement of Radiation Lethality.

    DTIC Science & Technology

    1982-03-08

    radical oxygen toxicity superoxide dismutases methyl viologen hydroxyl radical pyocyanine o. Lactobacillus plantarum manganese Streptococcus sanguis gene...Against Oxygen Toxicity in Lactobacillus plantarum . F. S. Archibald and I. Fridovich. Superoxide Dismutases: Detoxication of a Free Radical. H. M. Hassan...S. Archibald and I. Fridovich 7 Investigations of the State of the Manganese in Lactobacillus plantarum . F. S. Archibald and I. Fridovich Superoxide

  16. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  17. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria

    PubMed Central

    Maisch, Tim; Baier, Jürgen; Franz, Barbara; Maier, Max; Landthaler, Michael; Szeimies, Rolf-Markus; Bäumler, Wolfgang

    2007-01-01

    New antibacterial strategies are required in view of the increasing resistance of bacteria to antibiotics. One promising technique involves the photodynamic inactivation of bacteria. Upon exposure to light, a photosensitizer in bacteria can generate singlet oxygen, which oxidizes proteins or lipids, leading to bacteria death. To elucidate the oxidative processes that occur during killing of bacteria, Staphylococcus aureus was incubated with a standard photosensitizer, and the generation and decay of singlet oxygen was detected directly by its luminescence at 1,270 nm. At low bacterial concentrations, the time-resolved luminescence of singlet oxygen showed a decay time of 6 ± 2 μs, which is an intermediate time for singlet oxygen decay in phospholipids of membranes (14 ± 2 μs) and in the surrounding water (3.5 ± 0.5 μs). Obviously, at low bacterial concentrations, singlet oxygen had sufficient access to water outside of S. aureus by diffusion. Thus, singlet oxygen seems to be generated in the outer cell wall areas or in adjacent cytoplasmic membranes of S. aureus. In addition, the detection of singlet oxygen luminescence can be used as a sensor of intracellular oxygen concentration. When singlet oxygen luminescence was measured at higher bacterial concentrations, the decay time increased significantly, up to ≈40 μs, because of oxygen depletion at these concentrations. This observation is an important indicator that oxygen supply is a crucial factor in the efficacy of photodynamic inactivation of bacteria, and will be of particular significance should this approach be used against multiresistant bacteria. PMID:17431036

  18. Triple oxygen isotope data characterize oxidation processes that produce sulfate on Earth (and Mars?)

    NASA Astrophysics Data System (ADS)

    Christensen, J.; Kohl, I.; Coleman, M. L.

    2011-12-01

    The Rio Tinto, a river in southwest Spain, has a long history of acid, iron and sulfate rich water resulting primarily from the oxidation of pyrite (ferrous iron sulfide). Its geochemistry and extremophile microbiology make it an exciting and ideal mars-analogue research site, as relatively recent discoveries have shown Mars to be rich in sulfates believed to have formed in an acidic environment. Current models for the oxidation pathways of pyrite sulfur to sulfate, and the microbial influences on those pathways are incomplete. Traditionally, studies have only focused on d18O as a tracer for the oxygen sources in sulfate and determination of the oxidation pathways. The d18O method has always been fraught with uncertainty due to isotope fractionation during oxygen incorporation from the two dominant sources, atmospheric oxygen and water. A relatively new method utilizing 17O measures the relationship between d17O/d18O. The average relationship has been defined as the Terrestrial Fractionation Line, with a slope of 0.52. Deviations from this relationship are represented as Cap delta 17O, the difference of delta 17O from the expected value. Cap17O values are useful because they depend only on the relationship between d17O/d18O, which remains constant during mass dependent fractionation. During O2 generation from solid BaSO4, some fractionation can occur due to incomplete oxygen yield. This can produce uncertainties in d17O and d18O, but Cap17O is dependent only on the d17O/d18O ratio and is therefore not affected. The relationship mentioned above between d17O/d18O (slope=0.52) is an average for terrestrial materials and it is becoming increasingly clear that process specific slopes can be defined. This offers an exciting opportunity to characterize potential biomarkers on Mars. If a biologically specific slope could be determined, then its signature will be preserved through subsequent mass dependent fractionation processes. Our approach is to use Río Tinto field and

  19. Low-Flammability PTFE for High-Oxygen Environments

    NASA Technical Reports Server (NTRS)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  20. An Investigation into the Effects of Process Conditions on the Tribological Performance of Pack Carburized Titanium with Limited Oxygen Diffusion

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Sun, Y.

    2018-04-01

    In the present study, a new pack carburization technique for titanium has been investigated. The aim of this treatment is to produce a titanium carbide/oxycarbide layer atop of an extended oxygen diffusion zone [α-Ti(O)]. The effects of treatment temperature and pack composition have been investigated in order to determine the optimal conditions required to grant the best tribological response. The resulting structural features were investigated with particular interest in the carbon and oxygen concentrations across the samples cross section. The optimization showed that a temperature of 925 °C with a pack composition of 1 part carbon to 1 part energizer produced surface capable of withstanding a contact pressure of ≈ 1.5 GPa for 1 h. The process resulted in TiC surface structure which offers enhanced hardness (2100 HV) and generates a low friction coefficient (μ ≈ 0.2) when in dry sliding contact with an alumina (Al2O3) ball. The process also produced an extended oxygen diffusion zone that helps to improve the load bearing capacity of the substrate.

  1. Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process.

    PubMed

    Hoseini, Mohammad; Nabizadeh, Ramin; Nazmara, Shahrokh; Safari, Gholam Hossein

    2013-12-20

    The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 μg/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions.

  2. Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process

    PubMed Central

    2013-01-01

    Background The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. Methods To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 μg/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. Conclusions The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions. PMID:24359702

  3. The onsite manufacture of propellant oxygen from lunar resources

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.; Beegle, Robert L., Jr.; Guter, Gerald A.; Miller, Frederick E.; Rothenberg, Michael

    1992-01-01

    The Aerojet carbothermal process for the manufacture of oxygen from lunar materials has three essential steps: the reduction of silicate with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form hydrogen and oxygen. The reactions and the overall process are shown. It is shown with laboratory experimentation that the carbothermal process is feasible. Natural silicates can be reduced with carbon or methane. The important products are carbon monoxide, metal, and slag. The carbon monoxide can be completely reduced to form methane and water. The water can be electrolyzed to produce hydrogen and oxygen. A preliminary engineering study shows that the operation of plants using this process for the manufacture of propellant oxygen has a large economic advantage when the cost of the plant and its operation is compared to the cost of delivering oxygen from Earth.

  4. Metered oxygen supply aids treatment of domestic sewage

    NASA Technical Reports Server (NTRS)

    Weliky, N.; Hooper, T. J.; Silverman, H. P.

    1972-01-01

    Microbiological fixed-bed process was developed in which supplementary oxygen required by microbial species is supplied by electrochemical device. Rate of addition of oxygen to waste treatment process is controlled to maintain aerobic metabolism and prevent anaerobic metabolisms which produce odorous or toxic products.

  5. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, J. D.; Malone, C. P.; Johnson, P. V.; Kanik, I.

    2014-12-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of oxygen-containing molecules plays a significant role in the dynamics of planetary atmospheres (Earth, Mars, Europa, Io, Enceladus) and cometary bodies (Hale-Bopp). The electron-impact excitation channels to O(1S) and O(1D) are important for determining energy partitioning and dynamics. To reliably model natural phenomena and interpret observational data, the accurate determination of underlying collision processes (cross sections, dissociation dynamics) through fundamental experimental studies is essential. The detection of metastable species in laboratory experiments requires a novel approach. Typical radiative de-excitation detection techniques cannot be performed due to the long-lived nature of excited species, and conventional particle detectors are insensitive to the low internal energies O(1S) and O(1D). We have recently constructed an apparatus to detect and characterize metastable oxygen production by electron impact using the "rare gas conversion technique." Recent results will be presented, including absolute excitation functions for target gases O2, CO, CO2, and N2O. This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Financial support through NASA's OPR, PATM, and MFRP programs, as well as the NASA Postdoctoral Program (NPP) are gratefully acknowledged.

  6. Exploring the Diffusion of Molecular Oxygen in the Red Fluorescent Protein mCherry Using Explicit Oxygen Molecular Dynamics Simulations

    PubMed Central

    Regmi, Chola K.; Bhandari, Yuba R.; Gerstman, Bernard S.; Chapagain, Prem P.

    2013-01-01

    The development of fluorescent proteins (FPs) has revolutionized cell biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for tagging and tracking cellular processes in vivo. Determining oxygen diffusion pathways in FPs can be important for improving photostability and for understanding maturation of the chromophore. We use molecular dynamics (MD) calculations to investigate the diffusion of molecular oxygen in one of the most useful monomeric RFPs, mCherry. We describe a pathway that allows oxygen molecules to enter from the solvent and travel through the protein barrel to the chromophore. We calculate the free-energy of an oxygen molecule at points along the path. The pathway contains several oxygen hosting pockets, which are identified by the amino acid residues that form the pocket. We also investigate an RFP variant known to be significantly less photostable than mCherry and find much easier oxygen access in this variant. The results provide a better understanding of the mechanism of molecular oxygen access into the fully folded mCherry protein barrel and provide insight into the photobleaching process in these proteins. PMID:23363049

  7. Evaluation of a Stirling Solar Dynamic System for Lunar Oxygen Production

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Wong, Wayne A.

    2006-01-01

    An evaluation of a solar concentrator-based system for producing oxygen from the lunar regolith was performed. The system utilizes a solar concentrator mirror to provide thermal energy for the oxygen production process as well as thermal energy to power a Stirling heat engine for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The oxygen production method utilized in the analysis was the hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process rate effected the oxygen production rate.

  8. Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer.

    PubMed

    Yun, Eun-Tae; Lee, Jeong Hoon; Kim, Jaesung; Park, Hee-Deung; Lee, Jaesang

    2018-06-01

    Select persulfate activation processes were demonstrated to initiate oxidation not reliant on sulfate radicals, although the underlying mechanism has yet to be identified. This study explored singlet oxygenation and mediated electron transfer as plausible nonradical mechanisms for organic degradation by carbon nanotube (CNT)-activated peroxymonosulfate (PMS). The degradation of furfuryl alcohol (FFA) as a singlet oxygen ( 1 O 2 ) indicator and the kinetic retardation of FFA oxidation in the presence of l-histidine and azide as 1 O 2 quenchers apparently supported a role of 1 O 2 in the CNT/PMS system. However, the 1 O 2 scavenging effect was ascribed to a rapid PMS depletion by l-histidine and azide. A comparison of CNT/PMS and photoexcited Rose Bengal (RB) excluded the possibility of singlet oxygenation during heterogeneous persulfate activation. In contrast to the case of excited RB, solvent exchange (H 2 O to D 2 O) did not enhance FFA degradation by CNT/PMS and the pH- and substrate-dependent reactivity of CNT/PMS did not reflect the selective nature of 1 O 2 . Alternatively, concomitant PMS reduction and trichlorophenol oxidation were achieved when PMS and trichlorophenol were physically separated in two chambers using a conductive vertically aligned CNT membrane. This result suggested that CNT-mediated electron transfer from organics to persulfate was primarily responsible for the nonradical degradative route.

  9. Oxygen extraction from lunar soil by fluorination

    NASA Technical Reports Server (NTRS)

    Seboldt, W.; Lingner, S.; Hoernes, S.; Grimmeisen, W.

    1991-01-01

    Mining and processing of lunar material could possibly lead to more cost-efficient scenarios for permanent presence of man in space and on the Moon. Production of oxygen for use as propellant seems especially important. Different candidate processes for oxygen-extraction from lunar soil were proposed, of which the reduction of ilmenite by hydrogen was studied most. This process, however, needs the concentration of ilmenite from lunar regolith to a large extent and releases oxygen only with low efficiency. Another possibility - the fluorination method - which works with lunar bulk material as feedstock is discussed. Liberation of oxygen from silicate or oxide materials by fluorination methods has been applied in geoscience since the early sixties. The fact that even at moderate temperatures 98 to 100 percent yields can be attained, suggests that fluorination of lunar regolith could be an effective way of propellant production. Lunar soil contains about 50 percent oxygen by weight which is gained nearly completely through this process as O2 gas. The second-most element Si is liberated as gaseous SiF4. It could be used for production of Si-metal and fluorine-recycling. All other main elements of lunar soil will be converted into solid fluorides which also can be used for metal-production and fluorine-recycling. Preliminary results of small scale experiments with different materials are discussed, giving information on specific oxygen-yields and amounts of by-products as functions of temperature. These experiments were performed with an already existing fluorine extraction and collection device at the University of Bonn, normally used for determination of oxygen-isotopic abundances. Optimum conditions, especially concerning energy consumption, are investigated. Extrapolation of the experimental results to large industrial-type plants on the Moon is tried and seems to be promising at first sight. The recycling of the fluorine is, however, crucial for the process. It

  10. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, J. D.; Malone, C. P.; Kanik, I.; Johnson, P. V.

    2013-12-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S → 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is incident on a cryogenically cooled rare gas matrix, where excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.

  11. Visualization of oxygen transfer across the air-water interface using a fluorescence oxygen visualization method.

    PubMed

    Lee, Minhee

    2002-04-01

    Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.

  12. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    NASA Astrophysics Data System (ADS)

    Graupner, Robert Kurt

    Gettering of impurities with oxygen precipitates is widely used during the fabrication of semiconductors to improve the performance and yield of the devices. Since the effectiveness of the gettering process is largely dependent on the initial interstitial oxygen concentration, accurate measurements of this parameter are of considerable importance. Measurements of interstitial oxygen following thermal cycles are required for development of semiconductor fabrication processes and for research into the mechanisms of oxygen precipitate nucleation and growth. Efforts by industrial associations have led to the development of standard procedures for the measurement of interstitial oxygen in wafers. However practical oxygen measurements often do not satisfy the requirements of such standard procedures. An additional difficulty arises when the silicon wafer has a low resitivity (high dopant concentration). In such cases the infrared light used for the measurement is severely attenuated by the electrons of holes introduced by the dopant. Since such wafers are the substrates used for the production of widely used epitaxial wafers, this measurement problem is economically important. Alternative methods such as Secondary Ion Mass Spectroscopy or Gas Fusion Analysis have been developed to measure oxygen in these cases. However, neither of these methods is capable of distinguishing interstitial oxygen from precipitated oxygen as required for precipitation studies. In addition to the commercial interest in heavily doped silicon substrates, they are also of interest for research into the role of point defects in nucleation and precipitation processes. Despite considerable research effort, there is still disagreement concerning the type of point defect and its role in semiconductor processes. Studies of changes in the interstitial oxygen concentration of heavily doped and lightly doped silicon wafers could help clarify the role of point defects in oxygen nucleation and precipitation

  13. Effect of oxygen on dislocation multiplication in silicon crystals

    NASA Astrophysics Data System (ADS)

    Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi

    2018-03-01

    This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.

  14. Ceramic oxygen transport membrane array reactor and reforming method

    DOEpatents

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  15. Quantification of the oxygen uptake rate in a dissolved oxygen controlled oscillating jet-driven microbioreactor.

    PubMed

    Kirk, Timothy V; Marques, Marco Pc; Radhakrishnan, Anand N Pallipurath; Szita, Nicolas

    2016-03-01

    Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and k L a values of ∼170 h -1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 g dcw L -1 . Oxygen uptake rates of ∼34 mmol L -1 h -1 were achieved. The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    PubMed

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  17. Experimental evaluation of the ignition process of carbon monoxide and oxygen in a rocket engine

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.

    1996-01-01

    Carbon monoxide and oxygen ignition boundaries were determined in a spark torch igniter as a function of propellant inlet temperatures. The oxygen temperature was varied from ambient to -258 F, and the carbon monoxide temperature was varied from ambient to -241 F. With the oxygen and carbon monoxide at -253 F and -219 F, respectively, they successfully ignited between mixture ratios of 2.42 and 3.10. Analysis of the results indicated that the lower ignition boundary was more sensitive to oxygen temperature than to carbon monoxide temperature. Another series of tests was performed in a small simulated rocket engine with oxygen at -197 F and carbon monoxide at -193 F. An oxygen/hydrogen flame was used to initiate combustion of the oxygen and carbon monoxide. Tests performed at the optimum operating mixture ratio of 0.55 obtained steady-state combustion in every test.

  18. Micro-oxygenation of red wine: techniques, applications, and outcomes.

    PubMed

    Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R

    2011-02-01

    Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.

  19. Structural characterization of lignin in the process of cooking of cornstalk with solid alkali and active oxygen.

    PubMed

    Yang, Qiulin; Shi, Jianbin; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Xie, Tujun; Liu, Ying

    2012-05-09

    A novel, efficient, and environmentally friendly technology is used in cornstalk cooking, active oxygen (O₂ and H₂O₂) cooking with solid alkali (MgO). After the cooking, the milled wood lignin in the raw material and pulp and the water-soluble and insoluble lignin in the yellow liquor were all characterized by attenuated total reflectance Fourier transform infrared spectroscopy and two-dimensional heteronuclear single-quantum coherence NMR. The results showed that the cooking procedure with solid alkali and active oxygen had a high selectivity for delignification, which could remove 85.5% of the lignin from the raw material. The syringyl (S/S'/S') units could be dissolved preferentially because of their high reactivity, and a novel guaiacyl unit with a carbonyl group (G') was generated in the cooking process. Moreover, during the cooking, the β-O-4' (A/A'/A″) structures as the main side-chain linkages in all the lignins could be partly broken and the β-O-4' (A') with a ring-conjugated structure was readily attacked by oxygen, whereas the H unit and β-5' and β-β' structures were found to stay stable without characteristic reaction.

  20. Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Harris, Chris; Chadwick, Jane P.; Gertisser, Ralf; Schwarzkopf, Lothar M.; Borisova, Anastassia Y.; Bindeman, Ilya N.; Sumarti, Sri; Preece, Katie

    2013-07-01

    Indonesian volcano Merapi is one of the most hazardous volcanoes on the planet and is characterised by periods of active dome growth and intermittent explosive events. Merapi currently degasses continuously through high temperature fumaroles and erupts basaltic-andesite dome lavas and associated block-and-ash-flows that carry a large range of magmatic, coarsely crystalline plutonic, and meta-sedimentary inclusions. These inclusions are useful in order to evaluate magmatic processes that act within Merapi's plumbing system, and to help an assessment of which phenomena could trigger explosive eruptions. With the aid of petrological, textural, and oxygen isotope analysis we record a range of processes during crustal magma storage and transport, including mafic recharge, magma mixing, crystal fractionation, and country rock assimilation. Notably, abundant calc-silicate inclusions (true xenoliths) and elevated δ18O values in feldspar phenocrysts from 1994, 1998, 2006, and 2010 Merapi lavas suggest addition of limestone and calc-silicate materials to the Merapi magmas. Together with high δ13C values in fumarole gas, crustal additions to mantle and slab-derived magma and volatile sources are likely a steady state process at Merapi. This late crustal input could well represent an eruption trigger due to sudden over-pressurisation of the shallowest parts of the magma storage system independently of magmatic recharge and crystal fractionation. Limited seismic precursors may be associated with this type of eruption trigger, offering a potential explanation for the sometimes erratic behaviour of Merapi during volcanic crises.

  1. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    PubMed

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  2. In-Situ Formation of Cobalt-Phosphate Oxygen-Evolving Complex-Anchored Reduced Graphene Oxide Nanosheets for Oxygen Reduction Reaction

    PubMed Central

    Zhao, Zhi-Gang; Zhang, Jing; Yuan, Yinyin; Lv, Hong; Tian, Yuyu; Wu, Dan; Li, Qing-Wen

    2013-01-01

    Oxygen conversion process between O2 and H2O by means of electrochemistry or photochemistry has lately received a great deal of attention. Cobalt-phosphate (Co-Pi) catalyst is a new type of cost-effective artificial oxygen-evolving complex (OEC) with amorphous features during photosynthesis. However, can such Co-Pi OEC also act as oxygen reduction reaction (ORR) catalyst in electrochemical processes? The question remains unanswered. Here for the first time we demonstrate that Co-Pi OEC does be rather active for the ORR. Particularly, Co-Pi OEC anchoring on reduced graphite oxide (rGO) nanosheet is shown to possess dramatically improved electrocatalytic activities. Differing from the generally accepted role of rGO as an “electron reservoir”, we suggest that rGO serves as “peroxide cleaner” in enhancing the electrocatalytic behaviors. The present study may bridge the gap between photochemistry and electrochemistry towards oxygen conversion. PMID:23877331

  3. Test Would Quantify Combustion Oxygen From Different Sources

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.

    1993-01-01

    Proposed isotope-enrichment scheme enables determination of contributions of dual sources of oxygen for combustion. Liquid oxygen or other artificial stream enriched with O(18) to about 1 percent by weight. Combustion products analyzed by mass spectrometer to measure relative abundances of H2O(18) and H2O(16). From relative abundances of water products measured, one computes relative contribution of oxygen extracted from stream compared to other source of oxygen in combustion process. Used to determine contributions of natural oxygen in air and liquid oxygen supplied in separate stream mixed with air or sent directly into combustion chamber.

  4. Experimental Simulation of Turbine-Exhaust Oxygen Recovery

    NASA Technical Reports Server (NTRS)

    Clark, Jim A.; Branch, Ryan W.

    2004-01-01

    In some liquid-propellant rocket engines, the liquid-oxygen boost pump is driven by a turbine that is powered by high-pressure gaseous oxygen. Once it exits the turbine, this gaseous oxygen can be salvaged by injecting it into the subcooled liquid oxygen exiting the boost pump. If the main LOX pump is to function correctly under these circumstances, complete condensation of the gaseous oxygen must quickly follow its injection into the boost-pump discharge. The current investigation uses steam and water in a simple rig that allows the condensation process to be visualized and quantified. This paper offers dimensionless-parameter correlations of the data and trends observed.

  5. Oxygen detection using evanescent fields

    DOEpatents

    Duan, Yixiang [Los Alamos, NM; Cao, Weenqing [Los Alamos, NM

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  6. Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Seibel, B.

    2016-02-01

    Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.

  7. Sorbent-based Oxygen Production for Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Vijay

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less

  8. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, Jeffrey; Johnson, Paul; Kanik, Isik; Malone, Charles

    2014-05-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S --> 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is produced through electron impact, and is incident on a cryogenically cooled rare gas matrix. The excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.

  9. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  10. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, Ian C.; Baker, Richard W.

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  11. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    DOEpatents

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  12. Assessment of Performance of the Industrial Process of Bulk Vacuum Packaging of Raw Meat with Nondestructive Optical Oxygen Sensing Systems.

    PubMed

    Kelly, Caroline A; Cruz-Romero, Malco; Kerry, Joseph P; Papkovsky, Dmitri P

    2018-05-02

    The commercially-available optical oxygen-sensing system Optech-O₂ Platinum was applied to nondestructively assess the in situ performance of bulk, vacuum-packaged raw beef in three ~300 kg containers. Twenty sensors were attached to the inner surface of the standard bin-contained laminate bag (10 on the front and back sides), such that after filling with meat and sealing under vacuum, the sensors were accessible for optical interrogation with the external reader device. After filling and sealing each bag, the sensors were measured repetitively and nondestructively over a 15-day storage period at 1 °C, thus tracking residual oxygen distribution in the bag and changes during storage. The sensors revealed a number of unidentified meat quality and processing issues, and helped to improve the packaging process by pouring flakes of dry ice into the bag. Sensor utility in mapping the distribution of residual O₂ in sealed bulk containers and optimising and improving the packaging process, including handling and storage of bulk vacuum-packaged meat bins, was evident.

  13. Decoupling the influence of biological and physical processes on the dissolved oxygen in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian

    2015-01-01

    is instructive and essential to decouple the effects of biological and physical processes on the dissolved oxygen condition, in order to understand their contribution to the interannual variability of hypoxia in Chesapeake Bay since the 1980s. A conceptual bottom DO budget model is applied, using the vertical exchange time scale (VET) to quantify the physical condition and net oxygen consumption rate to quantify biological activities. By combining observed DO data and modeled VET values along the main stem of the Chesapeake Bay, the monthly net bottom DO consumption rate was estimated for 1985-2012. The DO budget model results show that the interannual variations of physical conditions accounts for 88.8% of the interannual variations of observed DO. The high similarity between the VET spatial pattern and the observed DO suggests that physical processes play a key role in regulating the DO condition. Model results also show that long-term VET has a slight increase in summer, but no statistically significant trend is found. Correlations among southerly wind strength, North Atlantic Oscillation index, and VET demonstrate that the physical condition in the Chesapeake Bay is highly controlled by the large-scale climate variation. The relationship is most significant during the summer, when the southerly wind dominates throughout the Chesapeake Bay. The seasonal pattern of the averaged net bottom DO consumption rate (B'20) along the main stem coincides with that of the chlorophyll-a concentration. A significant correlation between nutrient loading and B'20 suggests that the biological processes in April-May are most sensitive to the nutrient loading.

  14. The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study

    NASA Astrophysics Data System (ADS)

    Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe

    2017-04-01

    Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water

  15. Dissolved oxygen: Chapter 6

    USGS Publications Warehouse

    Senn, David; Downing-Kunz, Maureen; Novick, Emily

    2016-01-01

    Dissolved oxygen (DO) concentration serves as an important indicator of estuarine habitat condition, because all aquatic macro-organisms require some minimum DO level to survive and prosper. The instantaneous DO concentration, measured at a specific location in the water column, results from a balance between multiple processes that add or remove oxygen (Figure 6.1): primary production produces O2; aerobic respiration in the water column and sediments consumes O2; abiotic or microbially-mediated biogeochemical reactions utilize O2 as an oxidant (e.g., oxidation of ammonium, sulfide, and ferrous iron); O2 exchange occurs across the air:water interface in response to under- or oversaturated DO concentrations in the water column; and water currents and turbulent mixing transport DO into and out of zones in the water column. If the oxygen loss rate exceeds the oxygen production or input rate, DO concentration decreases. When DO losses exceed production or input over a prolonged enough period of time, hypoxia ((<2-3 mg/L) or anoxia can develop. Persistent hypoxia or anoxia causes stress or death in aquatic organism populations, or for organisms that can escape a hypoxic or anoxic area, the loss of habitat. In addition, sulfide, which is toxic to aquatic organisms and causes odor problems, escapes from sediments under low oxygen conditions. Low dissolved oxygen is a common aquatic ecosystem response to elevated organic

  16. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  17. Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Liu, Baochang; Penjweini, Rozhin

    2015-03-01

    An appropriate expression for the oxygen supply rate (Γs) is required for the macroscopic modeling of the complex mechanisms of photodynamic therapy (PDT). It is unrealistic to model the actual heterogeneous tumor microvascular networks coupled with the PDT processes because of the large computational requirement. In this study, a theoretical microscopic model based on uniformly distributed Krogh cylinders is used to calculate Γs=g (1-[O]/[]0) that can replace the complex modeling of blood vasculature while maintaining a reasonable resemblance to reality; g is the maximum oxygen supply rate and [O]/[]0 is the volume-average tissue oxygen concentration normalized to its value prior to PDT. The model incorporates kinetic equations of oxygen diffusion and convection within capillaries and oxygen saturation from oxyhemoglobin. Oxygen supply to the tissue is via diffusion from the uniformly distributed blood vessels. Oxygen can also diffuse along the radius and the longitudinal axis of the cylinder within tissue. The relations of Γs to [3O2]/] are examined for a biologically reasonable range of the physiological parameters for the microvasculature and several light fluence rates (ϕ). The results show a linear relationship between Γs and [3O2]/], independent of ϕ and photochemical parameters; the obtained g ranges from 0.4 to 1390 μM/s.

  18. Multiple stable oxygen isotopic studies of atmospheric sulfate: A new quantitative way to understand sulfate formation processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Charles Chi-Woo

    2000-11-01

    Sulfate is an important trace species in the Earth's atmosphere because of its roles in numerous atmospheric processes. In addition to its inherent light-scattering properties, sulfate can serve as cloud condensation nucleus (CCN), affecting cloud formation as well as microphysical properties of clouds. Consequently, atmospheric sulfate species influence the global radiative energy balance. Sulfate is known to increase acidity of rainwater with negative consequences in both natural and urban environments. In addition, aerosol sulfate (<=2.5 μm) is respirable and poses a threat to human health as a potential carrier of toxic pollutants through the respiratory tract. Despite intense investigative effort, uncertainty regarding the relative significance of gas and aqueous phase oxidation pathways still remains. Acquisition of such information is important because the lifetime and transport of S(IV) species and sulfate aerosols are influenced by the oxidative pathways. In addition, sulfate formation processes affect the aerosol size distribution, which ultimately influences radiative properties of atmospheric aerosols. Therefore, the budgetary information of the sulfur cycle, as well as the radiative effects of sulfate on global climate variation, can be attained from better quantitative understanding of in situ sulfate formation processes in the atmosphere. Multiple stable oxygen isotopic studies of atmospheric sulfate are presented as a new tool to better comprehend the atmospheric sulfate formation processes. Coupled with isotopic studies, 35S radioactivity measurements have been utilized to assess contribution of sulfate from high altitude air masses. Atmospheric sulfate (aerosols and rainwater) samples have been collected from diverse environments. Laboratory experiments of gas and aqueous phase S(IV) oxidation by various oxidants, as well as biomass burning experiments, have also been conducted. The main isotopic results from these studies are as follows: (1

  19. Oxygen in acute and chronic wound healing.

    PubMed

    Schreml, S; Szeimies, R M; Prantl, L; Karrer, S; Landthaler, M; Babilas, P

    2010-08-01

    Oxygen is a prerequisite for successful wound healing due to the increased demand for reparative processes such as cell proliferation, bacterial defence, angiogenesis and collagen synthesis. Even though the role of oxygen in wound healing is not yet completely understood, many experimental and clinical observations have shown wound healing to be impaired under hypoxia. This article provides an overview on the role of oxygen in wound healing and chronic wound pathogenesis, a brief insight into systemic and topical oxygen treatment, and a discussion of the role of wound tissue oximetry. Thus, the aim is to improve the understanding of the role of oxygen in wound healing and to advance our management of wound patients.

  20. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made...

  1. ISRU System Model Tool: From Excavation to Oxygen Production

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Linne, Diane L.

    2007-01-01

    In the late 80's, conceptual designs for an in situ oxygen production plant were documented in a study by Eagle Engineering [1]. In the "Summary of Findings" of this study, it is clearly pointed out that: "reported process mass and power estimates lack a consistent basis to allow comparison." The study goes on to say: "A study to produce a set of process mass, power, and volume requirements on a consistent basis is recommended." Today, approximately twenty years later, as humans plan to return to the moon and venture beyond, the need for flexible up-to-date models of the oxygen extraction production process has become even more clear. Multiple processes for the production of oxygen from lunar regolith are being investigated by NASA, academia, and industry. Three processes that have shown technical merit are molten regolith electrolysis, hydrogen reduction, and carbothermal reduction. These processes have been selected by NASA as the basis for the development of the ISRU System Model Tool (ISMT). In working to develop up-to-date system models for these processes NASA hopes to accomplish the following: (1) help in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the excavation and oxygen production processes, and (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters. Also, as confidence and high fidelity is achieved with each component's model, new techniques and processes can be introduced and analyzed at a fraction of the cost of traditional hardware development and test approaches. A first generation ISRU System Model Tool has been used to provide inputs to the Lunar Architecture Team studies.

  2. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    ]. Combined with a mechanical compressor, a Solid Electrolyte Oxygen Separator (SEOS) should be capable of producing ABO grade oxygen at pressures >2400 psia, on the space station. Feasibility tests using a SEOS integrated with a mechanical compressor identified an unexpected contaminant in the oxygen: water vapour was found in the oxygen product, sometimes at concentrations higher than 40 ppm (the ABO limit for water vapour is 7 ppm). If solid electrolyte membranes are really "infinitely selective" to oxygen as they are reported to be, where did the water come from? If water is getting into the oxygen, what other contaminants might get into the oxygen? Microscopic analyses of wafers, welds, and oxygen delivery tubes were performed in an attempt to find the source of the water vapour contamination. Hot and cold pressure decay tests were performed. Measurements of water vapour as a function of O2 delivery rate, O2 delivery pressure, and process air humidity levels were the most instructive in finding the source of water contamination (Fig 3). Water contamination was directly affected by oxygen delivery rate (doubling the oxygen production rate cut the water level in half). Water was affected by process air humidity levels and delivery pressure in a way that indicates the water was diffusing into the oxygen delivery system.

  3. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  4. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  5. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  6. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  7. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  8. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  9. Drivers of summer oxygen depletion in the central North Sea

    NASA Astrophysics Data System (ADS)

    Queste, B. Y.; Fernand, L.; Jickells, T. D.; Heywood, K. J.; Hind, A. J.

    2015-06-01

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of CTD, dissolved oxygen concentrations, backscatter and fluorescence during a three day deployment. The high temporal resolution observations revealed occasional small scale events that supply oxygenated water into the bottom layer at a rate of 2±1 μmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5±1 μmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8±0.3 μmol dm-3 day-1 indicating a localised or short-lived increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localised depocentres and rapid remineralisation of resuspensded organic matter. The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.

  10. Drivers of summer oxygen depletion in the central North Sea

    NASA Astrophysics Data System (ADS)

    Queste, Bastien Y.; Fernand, Liam; Jickells, Timothy D.; Heywood, Karen J.; Hind, Andrew J.

    2016-02-01

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≍ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high-resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of conductivity, temperature, and depth (CTD), dissolved oxygen concentrations, backscatter, and fluorescence during a 3-day deployment.The high temporal resolution observations revealed occasional small-scale events (< 200 m or 6 h) that supply oxygenated water to the bottom layer at a rate of 2 ± 1 µmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5 ± 1 µmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8 ± 0.3 µmol dm-3 day-1, indicating a localized or short-lived (< 200 m or 6 h) increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localized depocentres and rapid remineralization of resuspended organic matter.The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date

  11. Retinal oxygen distribution and the role of neuroglobin.

    PubMed

    Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M

    2016-07-01

    The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.

  12. Characterization of Endogenous and Reduced Promoters for Oxygen-Limited Processes Using Escherichia coli.

    PubMed

    Lara, Alvaro R; Jaén, Karim E; Sigala, Juan-Carlos; Mühlmann, Martina; Regestein, Lars; Büchs, Jochen

    2017-02-17

    Oxygen limitation can be used as a simple environmental inducer for the expression of target genes. However, there is scarce information on the characteristics of microaerobic promoters potentially useful for cell engineering and synthetic biology applications. Here, we characterized the Vitreoscilla hemoglobin promoter (P vgb ) and a set of microaerobic endogenous promoters in Escherichia coli. Oxygen-limited cultures at different maximum oxygen transfer rates were carried out. The FMN-binding fluorescent protein (FbFP), which is a nonoxygen dependent marker protein, was used as a reporter. Fluorescence and fluorescence emission rates under oxygen-limited conditions were the highest when FbFP was under transcriptional control of P adhE , P pfl and P vgb . The lengths of the E. coli endogenous promoters were shortened by 60%, maintaining their key regulatory elements. This resulted in improved promoter activity in most cases, particularly for P adhE , P pfl and P narK . Selected promoters were also evaluated using an engineered E. coli strain expressing Vitreoscilla hemoglobin (VHb). The presence of the VHb resulted in a better repression using these promoters under aerobic conditions, and increased the specific growth and fluorescence emission rates under oxygen-limited conditions. These results are useful for the selection of promoters for specific applications and for the design of modified artificial promoters.

  13. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE PAGES

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less

  14. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    The triple isotopes of oxygen (Δ17O' = δ17O'-0.528 × δ18O' using logarithmic deltas) can trace the oxygen sources of sulfate produced during sulfide oxidation, an important biogeochemical process on Earth's surface and possibly also on Mars [1]. δ18OSO4 compositions are determined by the isotopic selectivity of the mechanism(s) responsible for their changes, and the δ18O value of the reactants (O2 vs. H2O). The relative proportional importance and contribution of each of those sources and mechanisms, as well as their associated isotopic fractionations, are not well understood. We are investigating the use of Δ 17O as a quantitative and qualitative tracer for the different processes and oxygen sources involved in sulfate production. Δ17O signatures are distinct fingerprints of these reservoirs, independent of fractionation factors that can be ambiguous. We conducted controlled abiotic and biotic (Acidithiobacillus ferrooxidans, A.f.) laboratory experiments in which water was spiked with 18O, allowing us to quantify the sources of sulfate oxygen and therefore the processes attending sulfate formation. Results of this Δ17O tracer study show that A.f. microbes initiate pyrite S-oxidation within hours of exposure, and that sulfate is produced from ~90% atmospheric oxygen. This initial lag-phase (< 3 days) is characterized by subtle and multiple changes in oxygen source and contribution that is likely due to the adjustment of the microbial metabolism from S to Fe2+-oxidation. A more detailed understanding of the microbial mechanisms and behavior in the initial lag-phase will aid in the understanding of the ecological conditions required for microbial populations to establish and survive. An exponential phase of growth, facilitated by microbial Fe2+-oxidation, follows. The source of sulfate rapidly switches to abiotic sulfide oxidation during exponential growth and the source of oxygen switches from atmospheric O2 to nearly ~100% water. Pending acquisition of

  15. Additively Manufactured Metals in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan

    2015-01-01

    Metals produced by additive manufacturing methods, such as Powder Bed Fusion Technology, are now mature enough to be considered for qualification in human spaceflight oxygen systems. The mechanical properties of metals produced through AM processes are being systematically studied. However, it is unknown whether AM metals in oxygen applications may present an increased risk of flammability or ignition as compared to wrought metals of the same metallurgical composition due to increased porosity. Per NASA-STD-6001B materials to be used in oxygen system applications shall be based on flammability and combustion test data, followed by a flammability assessment. Without systematic flammability and ignition testing in oxygen there is no credible method for NASA to accurately evaluate the risk of using AM metals in oxygen systems.

  16. Extraction processes for the production of aluminum, titanium, iron, magnesium, and oxygen and nonterrestrial sources

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Choudary, U. V.; Erstfeld, T. E.; Williams, R. J.; Chang, Y. A.

    1979-01-01

    The suitability of existing terrestrial extractive metallurgical processes for the production of Al, Ti, Fe, Mg, and O2 from nonterrestrial resources is examined from both thermodynamic and kinetic points of view. Carbochlorination of lunar anorthite concentrate in conjunction with Alcoa electrolysis process for Al; carbochlorination of lunar ilmenite concentrate followed by Ca reduction of TiO2; and subsequent reduction of Fe2O3 by H2 for Ti and Fe, respectively, are suggested. Silicothermic reduction of olivine concentrate was found to be attractive for the extraction of Mg becaue of the technological knowhow of the process. Aluminothermic reduction of olivine is the other possible alternative for the production of magnesium. The large quantities of carbon monoxide generated in the metal extraction processes can be used to recover carbon and oxygen by a combination of the following methods: (1) simple disproportionation of CO,(2) methanation of CO and electrolysis of H2O, and (3) solid-state electrolysis of gas mixtures containing CO, CO2, and H2O. The research needed for the adoption of earth-based extraction processes for lunar and asteroidal minerals is outlined.

  17. Mobil cuts the alcohol out of oxygenate production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, A.

    1992-04-15

    Mobil Corp. has unveiled a new etherification technology that can produce fuel oxygenated based only on olefinic refinery streams and water. The process has the potential to allow refiners to produce oxygenates without having to rely on an external supply of alcohols such as methanol or ethanol. Mobil has developed the technology around a new oxygenate, disopropyl ether (DIPE), based on propylene. However, the process has also been tested using mixed propylene/C{sub 4} and straight C{sub 4} streams, says Michael J. McNally, manager of Mobil`s Motor Gasoline Group (Paulsboro, NJ), producing ethers analogous to methyl tert-butyl ether (MTBE).

  18. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOEpatents

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  19. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOEpatents

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  20. A long term glider study of shelf sea oxygen dynamics

    NASA Astrophysics Data System (ADS)

    Williams, Charlotte; Palmer, Matthew; Mahaffey, Claire; Davis, Clare

    2017-04-01

    Oxygen is involved in most biogeochemical processes in the ocean, and dissolved oxygen (DO) is a well-established indicator for biological activity via the estimate of apparent oxygen utilisation (AOU). In the deep waters of the open ocean, the AOU provides a valuable insight into the ocean's biological carbon pump. However, in the physically dynamic and highly productive shallow shelf seas, interpretation of the oxygen distribution and the magnitude of AOU is complex. Physical processes, such as diapycnal mixing, entrainment and horizontal advection act to ventilate waters below the thermocline and thus increase oxygen and decrease AOU. In contrast, biological remineralisation of organic material below the thermocline will consume oxygen and increase AOU. We aim to address the following: 1. Does AOU change seasonally in a shelf sea in response to seasonal changes in productivity? 2. How important is turbulence in redistributing oxygen in a shelf sea? Using 9 months of high-resolution data from >20 glider deployments in the seasonally stratified NW European Shelf Sea we identify and quantify the physical and biological processes that control the DO distribution and magnitude of AOU in shelf seas. A 200km transect between the shelf edge and the central Celtic Sea (CCS) was repeated between November 2014 and August 2015, thus capturing key periods in the seasonal cycling in shelf seas, specifically the onset of stratification, the spring bloom, stratified summer period and breakdown of stratification. The gliders collected data for DO, temperature, salinity, chlorophyll fluorescence, CDOM, backscatter and turbulence. In addition, direct measurements of turbulent dissipation from the Ocean Microstructure Glider deployed during the campaign provided estimates of mixing at CCS and the shelf break, allowing accurate quantification of the vertical fluxes of oxygen. We find that oxygen decreases ubiquitously across the shelf as soon as stratification takes hold, though BML

  1. Fast Oxidation Processes in a Naturally Reduced Aquifer Zone Caused by Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Jemison, N. E.; Williams, K. H.; Hobson, C.; Bush, R. P.

    2014-12-01

    The occurrence of naturally reduced zones is quite common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. The naturally reduced zones are heterogeneously dispersed in such aquifers and are characterized by high concentrations of organic carbon and reduced phases, including iron sulfides and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases that are found in association with these natural reducing zones, although there is little understanding of the relative importance of various potential oxidants. Three field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO wherein groundwater associated with naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in these field systems if supplied to the naturally reduced zones. Small concentrations of nitrate were also observed in the previously nitrate-free groundwater, and Fe(II) decreased to the detection limit. These results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS) rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table, and seasonal variations

  2. Human Factors Process Task Analysis: Liquid Oxygen Pump Acceptance Test Procedure at the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.

  3. Process optimization involving critical evaluation of oxygen transfer, oxygen uptake and nitrogen limitation for enhanced biomass and lipid production by oleaginous yeast for biofuel application.

    PubMed

    Chopra, Jayita; Sen, Ramkrishna

    2018-04-20

    Lipid accumulation in oleaginous yeast is generally induced by nitrogen starvation, while oxygen saturation can influence biomass growth. Systematic shake flask studies that help in identifying the right nitrogen source and relate its uptake kinetics to lipid biosynthesis under varying oxygen saturation conditions are very essential for addressing the bioprocessing-related issues, which are envisaged to occur in the fermenter scale production. In the present study, lipid bioaccumulation by P. guilliermondii at varying C:N ratios and oxygen transfer conditions (assessed in terms of k L a) was investigated in shake flasks using a pre-optimized N-source and a two-stage inoculum formulated in a hybrid medium. A maximum lipid concentration of 10.8 ± 0.5 g L -1 was obtained in shake flask study at the optimal condition with an initial C:N and k L a of 60:1 and 0.6 min -1 , respectively, at a biomass specific growth rate of 0.11 h -1 . Translating these optimal shake flask conditions to a 3.7 L stirred tank reactor resulted in biomass and lipid concentrations of 16.74 ± 0.8 and 8 ± 0.4 g L -1 . The fatty acid methyl ester (FAME) profile of lipids obtained by gas chromatography was found to be suitable for biodiesel application. We strongly believe that the rationalistic approach-based design of experiments adopted in the study would help in achieving high cell density with improved lipid accumulation and also minimize the efforts towards process optimization during bioreactor level operations, consequently reducing the research and development-associated costs.

  4. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  5. Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila

    PubMed Central

    Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María

    2010-01-01

    The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147

  6. A Survey of Alternative Oxygen Production Technologies

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.; Parrish, Clyde F.; Buttner, William J.; Surma, Jan M.; Delgado, H. (Technical Monitor)

    2000-01-01

    Utilization of the Martian atmosphere for the production of fuel and oxygen has been extensively studied. The baseline fuel production process is a Sabatier reactor, which produces methane and water from carbon dioxide and hydrogen. The oxygen produced from the electrolysis of the water is only half of that needed for methane-based rocket propellant, and additional oxygen is needed for breathing air, fuel cells and other energy sources. Zirconia electrolysis cells for the direct reduction of CO2 are being developed as an alternative means of producing oxygen, but present many challenges for a large-scale oxygen production system. The very high operating temperatures and fragile nature of the cells coupled with fairly high operating voltages leave room for improvement. This paper will survey alternative oxygen production technologies, present data on operating characteristics, materials of construction, and some preliminary laboratory results on attempts to implement each.

  7. Extraction of Oxygen from the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    England, C.

    2004-01-01

    A mechanical process was designed for direct extraction of molecular oxygen from the martian atmosphere based on liquefaction of the majority component, CO2, followed by separation of the lower-boiling components. The atmospheric gases are compressed from about 0.007 bar to 13 bar and then cooled to liquefy most of the CO2. The uncondensed gases are further compressed to 30 bar or more, and then cooled again to recover water as ice and to remove much of the remaining CO2. The final gaseous products consisting mostly of nitrogen, oxygen, and carbon monoxide are liquefied and purified by cryogenic distillation. The liquefied CO2 is expanded back to the low-pressure atmosphere with the addition of heat to recover a majority of the compression energy and to produce the needed mechanical work. Energy for the process is needed primarily as heat to drive the CO2-based expansion power system. When properly configured, the extraction process can be a net producer of electricity. The conceptual design, termed 'MARRS' for Mars Atmosphere Resource Recovery System, was based on the NASA/JSC Mars Reference Mission (MRM) requirement for oxygen. This mission requires both liquid oxygen for propellant, and gaseous oxygen as a component of air for the mission crew. With single redundancy both for propellant and crew air, the oxygen requirement for the MRM is estimated at 5.8 kg/hr. The process thermal power needed is about 120 kW, which can be provided at 300-500 C. A lower-cost nuclear reactor made largely of stainless steel could serve as the heat source. The chief development needed for MARRS is an efficient atmospheric compression technology, all other steps being derived from conventional chemical engineering separations. The conceptual design describes an exceptionally low-mass compression system that can be made from ultra-lightweight and deployable structures. This system adapts to the rapidly changing martian environment to supply the atmospheric resource to MARRS at

  8. Sterilization by oxygen plasma

    NASA Astrophysics Data System (ADS)

    Moreira, Adir José; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Zambon, Luis da Silva; da Silva, Mônica Valero; Verdonck, Patrick Bernard

    2004-07-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  9. Cryptic oxygen cycling in anoxic marine zones

    PubMed Central

    Padilla, Cory C.; Stewart, Frank J.; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter

    2017-01-01

    Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30–50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling. PMID:28716941

  10. Cryptic oxygen cycling in anoxic marine zones.

    PubMed

    Garcia-Robledo, Emilio; Padilla, Cory C; Aldunate, Montserrat; Stewart, Frank J; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter

    2017-08-01

    Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O 2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O 2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O 2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O 2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling.

  11. Workshop on Oxygen in the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  12. Microbial oceanography of anoxic oxygen minimum zones.

    PubMed

    Ulloa, Osvaldo; Canfield, Donald E; DeLong, Edward F; Letelier, Ricardo M; Stewart, Frank J

    2012-10-02

    Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N(2)) and nitrous oxide (N(2)O) gases. Anaerobic microbial processes, including the two pathways of N(2) production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.

  13. Microbial oceanography of anoxic oxygen minimum zones

    PubMed Central

    Ulloa, Osvaldo; Canfield, Donald E.; DeLong, Edward F.; Letelier, Ricardo M.; Stewart, Frank J.

    2012-01-01

    Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N2) and nitrous oxide (N2O) gases. Anaerobic microbial processes, including the two pathways of N2 production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two “end points” represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future. PMID:22967509

  14. Methods for separating oxygen from oxygen-containing gases

    DOEpatents

    Mackay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  15. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  16. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.

    PubMed

    Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico

    2008-10-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.

  17. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  18. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.

  19. Imaging of gaseous oxygen through DFB laser illumination

    NASA Astrophysics Data System (ADS)

    Cocola, L.; Fedel, M.; Tondello, G.; Poletto, L.

    2016-05-01

    A Tunable Diode Laser Absorption Spectroscopy setup with Wavelength Modulation has been used together with a synchronous sampling imaging sensor to obtain two-dimensional transmission-mode images of oxygen content. Modulated laser light from a 760nm DFB source has been used to illuminate a scene from the back while image frames were acquired with a high dynamic range camera. Thanks to synchronous timing between the imaging device and laser light modulation, the traditional lock-in approach used in Wavelength Modulation Spectroscopy was replaced by image processing techniques, and many scanning periods were averaged together to allow resolution of small intensity variation over the already weak absorption signals from oxygen absorption band. After proper binning and filtering, the time-domain waveform obtained from each pixel in a set of frames representing the wavelength scan was used as the single detector signal in a traditional TDLAS-WMS setup, and so processed through a software defined digital lock-in demodulation and a second harmonic signal fitting routine. In this way the WMS artifacts of a gas absorption feature were obtained from each pixel together with intensity normalization parameter, allowing a reconstruction of oxygen distribution in a two-dimensional scene regardless from broadband transmitted intensity. As a first demonstration of the effectiveness of this setup, oxygen absorption images of similar containers filled with either oxygen or nitrogen were acquired and processed.

  20. Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide

    NASA Astrophysics Data System (ADS)

    Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.

    2018-03-01

    The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).

  1. Design of a lunar oxygen production plant

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  2. Oxygen Mass Transport in Stented Coronary Arteries.

    PubMed

    Murphy, Eoin A; Dunne, Adrian S; Martin, David M; Boyle, Fergal J

    2016-02-01

    Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.

  3. Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.

    PubMed

    Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P

    2014-12-01

    This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. eMolTox: prediction of molecular toxicity with confidence.

    PubMed

    Ji, Changge; Svensson, Fredrik; Zoufir, Azedine; Bender, Andreas

    2018-03-07

    In this work we present eMolTox, a web server for the prediction of potential toxicity associated with a given molecule. 174 toxicology-related in vitro/vivo experimental datasets were used for model construction and Mondrian conformal prediction was used to estimate the confidence of the resulting predictions. Toxic substructure analysis is also implemented in eMolTox. eMolTox predicts and displays a wealth of information of potential molecular toxicities for safety analysis in drug development. The eMolTox Server is freely available for use on the web at http://xundrug.cn/moltox. chicago.ji@gmail.com or ab454@cam.ac.uk. Supplementary data are available at Bioinformatics online.

  5. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Tao, Jinhui

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more thanmore » those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.« less

  6. Plant-mediated Sediment Oxygenation in Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, K.

    2016-02-01

    Belowground sediment oxygenation by wetland plants is an important mechanism controlling many microbial processes and chemical fluxes in coastal wetlands. Although transport of oxygen via the arenthyma tissue and subsequent oxygen loss across root surfaces is well-documented for Spartina grasses, only few studies have measured the oxygenation of sediment surrounding roots and rhizomes. In this study, the degree of sediment oxygenation in Spartina anglica rhizospheres was assessed in situ using a novel multifiber optode system inserting 100 oxygen sensing fiber optodes directly into the rhizosphere. Two closely located, but morphologically different, S. anglica populations growing in permeable sandy sediment and tidal flat deposit, respectively, were investigated. No oxygen was detected inside the rhizospheres at any depth in either location indicating that plant-mediated sediment oxygenation in S. anglica had a limited impact on the bulk anoxic sediment. This was substantiated by planar optode studies showing that sediment oxygenation was confined to the immediate vicinity of the root tips of adventitious root and root hairs stretching only up to 1.5mm away from the roots surface in permeable sandy sediment and 0.4mm in tidal flat deposit, which had a substantially higher oxygen demand. This contrasts previous studies estimating that more than half of the S. anglica rhizosphere volume may be oxygenated, and thereby suggests a high variability in the degree of sediment oxygenation among different S. anglica populations. Furthermore, there may be a significant difference in the degree of sediment oxygenation among different Spartina species; our recent in situ investigation of oxygen profiles in a Spartina alterniflora-dominated marsh suggested that oxygen leakage here may keep the bulk sediment at low oxygen concentration ranging from 0.5-4μM.

  7. Oxygen separation from air using zirconia solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.

    1988-01-01

    Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.

  8. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Oxygen Compatibility Assessment of Components and Systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel; Sparks, Kyle

    2010-01-01

    Fire hazards are inherent in oxygen systems and a storied history of fires in rocket engine propulsion components exists. To detect and mitigate these fire hazards requires careful, detailed, and thorough analyses applied during the design process. The oxygen compatibility assessment (OCA) process designed by NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) can be used to determine the presence of fire hazards in oxygen systems and the likelihood of a fire. This process may be used as both a design guide and during the approval process to ensure proper design features and material selection. The procedure for performing an OCA is a structured step-by-step process to determine the most severe operating conditions; assess the flammability of the system materials at the use conditions; evaluate the presence and efficacy of ignition mechanisms; assess the potential for a fire to breach the system; and determine the reaction effect (the potential loss of life, mission, and system functionality as the result of a fire). This process should be performed for each component in a system. The results of each component assessment, and the overall system assessment, should be recorded in a report that can be used in the short term to communicate hazards and their mitigation and to aid in system/component development and, in the long term, to solve anomalies that occur during engine testing and operation.

  10. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco

    2016-07-01

    Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring

  11. Particulate Formation from a Copper Oxide-Based Oxygen ...

    EPA Pesticide Factsheets

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicron particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to oxygen carriers without redox reactions. The generation rate for particulates < 10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles. As a result, it is important to collect and reprocess small particles generated from chemical looping processes to reduce oxygen carrier loss. The redox reactions associated with chemical looping combustion play an important role in particle attrition in the fluidized bed. Reaction-induced local stresses, due to the r

  12. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  13. Artist's concept of oxygen tanks of the Apollo 14 spacecraft

    NASA Image and Video Library

    1971-01-12

    S71-16745 (January 1971) --- An artist's concept illustrating a cutaway view of one of the three oxygen tanks of the Apollo 14 spacecraft. This is the new Apollo oxygen tank design, developed since the Apollo 13 oxygen tank explosion. Apollo 14 has three oxygen tanks redesigned to eliminate ignition sources, minimize the use of combustible materials, and simplify the fabrication process. The third tank has been added to the Apollo 14 Service Module, located in the SM's sector one, apart from the pair of oxygen tanks in sector four. Arrows point out various features of the oxygen tank.

  14. The structural features of hemicelluloses dissolved out at different cooking stages of active oxygen cooking process.

    PubMed

    Shi, Jianbin; Yang, Qiulin; Lin, Lu

    2014-04-15

    This work described the morphologic changes of corn stalk and the structural characterization of its hemicelluloses dissolved in yellow liquor at different cooking stages. The results showed that active oxygen cooking process was an efficient method to depolymerize the corn stalk into cellulose, hemicelluloses, and lignin as a pretreatment of biomass conversion. This cooking process can also be divided into three phases: bulk delignification, extended delignification, and residual delignification. During the heating-up period 57.67% of hemicelluloses and 62.31% of lignin were removed from the raw material. However, only 15% of hemicelluloses and 23.21% of lignin were removed during at temperature' period. The hemicelluloses from the corn stalk and yellow liquor were composed of (1→4)-β-D-xylopyranose backbones substituted with α-l-arabinofuranosyl, 4-O-methyl-α-D-glucuronic acid, and some methoxyl residues. The backbones of hemicelluloses were gradually cleaved during the cooking process. The acetyl groups substituted with xylopyranosyl residues were completely cleaved during the cooking process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of hydraulic retention time on ABR tail water treatment by contact oxidation process under low oxygen condition

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolong; Shi, Chunhong; Wang, Zhenbao; Jiang, Kai

    2018-02-01

    Biological contact oxidation process of low dissolved oxygen was applied to the treatment of ABR tail water, which were pretreatment effluent for Island sewage. The reactor was built and filled with polyurethane suspension filler as carrier for biofilm growth in laboratory. The dissolved oxygen in the reactor is kept at 1.3-1.8mg/L to distinguish between traditional method which is 2.5-3.5mg/L. Influence of hydraulic retention time(HRT) on ABR tail water treatment by the process was studied. Results show that the system has good effect on removal of COD and TN under this condition. When HRT is among 4h to 12h, the removal rate of COD can be maintained at 80-90%.From period 1 to period 3, the removal rate of NH4 +N and TN at the end of each period can be recovered to a higher level, and the average removal rate after stabilization is 99% and 67% respectively which can come up to first grade of the national standard GB18918-2002. It is remarkable that when HRT is 4h, the removal rate of NH4 +-N and TN showed a significant decrease trend, the concentration of effluent was 14.79mg/L and 19.5mg/L, respectively.

  16. Anomalous C-V response correlated to relaxation processes in TiO{sub 2} thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahouli, A., E-mail: kahouli.kader@yahoo.fr; University Grenoble Alpes, G2Elab, F-38000 Grenoble; Marichy, C.

    2015-04-21

    Capacitance-voltage (C–V) and capacitance-frequency (C–f) measurements are performed on atomic layer deposited TiO{sub 2} thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C–V anomalous) is observed in the C–V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C–V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO{sub 2} interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trapmore » level of 0.60–0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 °C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti{sup 3+} ions. Both the C–V anomalous and relaxation processes in TiO{sub 2} arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions.« less

  17. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  18. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improvesmore » the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of

  19. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic

  20. Oxygen as a critical determinant of bone fracture healing-a multiscale model.

    PubMed

    Carlier, Aurélie; Geris, Liesbet; van Gastel, Nick; Carmeliet, Geert; Van Oosterwyck, Hans

    2015-01-21

    A timely restoration of the ruptured blood vessel network in order to deliver oxygen and nutrients to the fracture zone is crucial for successful bone healing. Indeed, oxygen plays a key role in the aerobic metabolism of cells, in the activity of a myriad of enzymes as well as in the regulation of several (angiogenic) genes. In this paper, a previously developed model of bone fracture healing is further improved with a detailed description of the influence of oxygen on various cellular processes that occur during bone fracture healing. Oxygen ranges of the cell-specific oxygen-dependent processes were established based on the state-of-the art experimental knowledge through a rigorous literature study. The newly developed oxygen model is compared with previously published experimental and in silico results. An extensive sensitivity analysis was also performed on the newly introduced oxygen thresholds, indicating the robustness of the oxygen model. Finally, the oxygen model was applied to the challenging clinical case of a critical sized defect (3mm) where it predicted the formation of a fracture non-union. Further model analyses showed that the harsh hypoxic conditions in the central region of the callus resulted in cell death and disrupted bone healing thereby indicating the importance of a timely vascularization for the successful healing of a large bone defect. In conclusion, this work demonstrates that the oxygen model is a powerful tool to further unravel the complex spatiotemporal interplay of oxygen delivery, diffusion and consumption with the several healing steps, each occurring at distinct, optimal oxygen tensions during the bone repair process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Comparative TEA for Indirect Liquefaction Pathways to Distillate-Range Fuels via Oxygenated Intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediatesmore » have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.« less

  2. Singlet oxygen detection in biological systems: Uses and limitations.

    PubMed

    Koh, Eugene; Fluhr, Robert

    2016-07-02

    The study of singlet oxygen in biological systems is challenging in many ways. Singlet oxygen is a relatively unstable ephemeral molecule, and its properties make it highly reactive with many biomolecules, making it difficult to quantify accurately. Several methods have been developed to study this elusive molecule, but most studies thus far have focused on those conditions that produce relatively large amounts of singlet oxygen. However, the need for more sensitive methods is required as one begins to explore the levels of singlet oxygen required in signaling and regulatory processes. Here we discuss the various methods used in the study of singlet oxygen, and outline their uses and limitations.

  3. Oxygen from the lunar soil by molten silicate electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1992-01-01

    Accepting that oxygen, rather than gigantic gems or gold, is likely to make the Moon's Klondike, the extraction of oxygen from the lunar soil by molten silicate electrolysis has chosen to be investigated. Process theory and proposed lunar factory are addressed.

  4. On-site manufacture of propellant oxygen from lunar resources

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.

    1992-01-01

    The Aerojet Carbothermal Process for the manufacture of oxygen from lunar resources has three essential steps: the reduction of silicate with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form oxygen and hydrogen. This cyclic process does not depend upon the presence of water or water precursors in the lunar materials; it will produce oxygen from silicates regardless of their precise composition and fine structure. Research on the first step of the process was initiated by determining some of the operating conditions required to reduce igneous rock with carbon and silicon carbide. The initial phase of research on the second step is completed; quantitative conversion of carbon monoxide and hydrogen to methane and water was achieved with a nickel-on-kieselguhr catalyst. The equipment used in and the results obtained from these process studies are reported in detail.

  5. Influence of oxygen on growth of carbon thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Prabhat; Gupta, Mukul; Phase, D. M.; Stahn, Jochen

    2018-04-01

    In this work we studied the influence of oxygen gas on growth of carbon thin films in a magnetron sputtering process. X-ray absorption spectroscopy (XAS), x-ray and neutron reflectivity techniques were used to probe carbon thin films deposited with and without oxygen at room temperature. XAS in particularly x-ray absorption near edge spectroscopy (XANES) is powerful technique to identify the nature of hybridization of carbon atoms with other elements. In a XANES pattern, presence of C=O and C-O bonds is generally observed in spite of the fact that oxygen has not been deliberately included in the growth process. In order to confirm the presence of such features, we introduced a small amount of oxygen at 1% during the growth of carbon thin films. Though such additions do not affect the number density as observed by x-ray and neutron reflectivity, they severally affect the C K-edge spectra as evidenced by an enhancement in carbon-oxygen hybridization. Observed results are helpful in analyzing the C K-edge spectra more confidently.

  6. Biological Oxygen Productivity Over The Last Glacial Termination From Triple Oxygen Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Blunier, T.; Bender, M. L.; Hendricks, M. B.

    The atmospheric oxygen isotope signature of O2 is linked to the oxygen signature of seawater through photosynthesis and respiration. Fractionation during these pro- cesses is mass dependent affecting 17O about half as much as 18O. A mass indepen- dent fractionation process takes place during isotope exchange between O2 and CO2 in the stratosphere (Thiemens, 1999; Luz et al., 1999). The magnitude of the mass- independent anomaly in the triple isotope composition of O2 depends on relative rates of biological O2 cycling and photochemical reactions in the stratosphere. Variations of this anomaly thus allows us to estimate changes of mass dependent O2 production by photosynthesis versus mass independent O2-CO2 exchange in the stratosphere. We reconstruct total oxygen productivity for the past from 17O and 18O measure- ments of O2 trapped in ice cores. With a box model we estimate that the total biogenic productivity was only 76-83 % of today for the glacial and was probably still lower than today during the glacial-interglacial transition and the early Holocene. In principle we can calculate the oxygen flux from the ocean biosphere if we know the oxygen flux from the land biosphere. Calculated ocean production is very sensitive to the estimate of land biosphere production. The latter term remains uncertain, however, and we can presently only constrain glacial ocean production to 88 to 140 % of the present value.

  7. Oxygen and Oxygen Toxicity: The Birth of Concepts

    PubMed Central

    Zhu, Hong; Traore, Kassim; Santo, Arben; Trush, Michael A.; Li, Y. Robert

    2018-01-01

    Molecular dioxygen (O2) is an essential element of aerobic life, yet incomplete reduction or excitation of O2 during aerobic metabolisms generates diverse oxygen-containing reactive species, commonly known as reactive oxygen species (ROS). On the one hand, ROS pose a serious threat to aerobic organisms via inducing oxidative damage to cellular constituents. On the other hand, these reactive species, when their generation is under homeostatic control, also play important physiological roles (e.g., constituting an important component of immunity and participating in redox signaling). This article defines oxygen and the key facts about oxygen, and discusses the relationship between oxygen and the emergence of early animals on Earth. The article then describes the discovery of oxygen by three historical figures and examines the birth of the concepts of oxygen toxicity and the underlying free radical mechanisms. The article ends with a brief introduction to the emerging field of ROS-mediated redox signaling and physiological responses. PMID:29707642

  8. Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient

    NASA Astrophysics Data System (ADS)

    Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.

    2017-03-01

    ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.

  9. A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos

    NASA Astrophysics Data System (ADS)

    Greig, S. M.; Sear, D. A.; Carling, P. A.

    2007-01-01

    Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process-based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses.Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface-subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright

  10. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  11. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    PubMed

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  12. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  13. Low Oxygen and Ocean Acidification on the Vancouver Island Shelf

    NASA Astrophysics Data System (ADS)

    Bianucci, L.; Denman, K.

    2008-12-01

    In the recent years hypoxic events have been observed along the west coast of North America (off Oregon and California). Although a common cause of coastal hypoxia is usually anthropogenic eutrophication, in these upwelling regions the advection of oxygen-depleted waters from offshore is a key mechanism. Moreover, the high productivity typical of these margins generates a large flux of sinking particular organic matter. The remineralization of this matter below the euphotic zone produces an elevated consumption of oxygen. When concentrations become lower than certain threshold, hypoxia leads to a major change in the ecosystem and the affected areas are called 'dead zones'. Furthermore, the two processes that drive oxygen levels down (physical upwelling and biological demand) also increase dissolved inorganic carbon in the shelf, which leads to a pH reduction. Ocean acidification and hypoxia can severely affect ecosystems, and the links between these phenomena have not been explored. This presentation will discuss a model study of the carbon and oxygen coupling on the Vancouver Island shelf, with focus on the connection between acidification and hypoxia. Moreover, the role of biology versus physics will be investigated. This region comprises the northern end of the wind-driven upwelling margin off western North America, where low oxygen events have not been extensively studied. However, the proximity to an Oxygen Minimum Zone offshore and the observed decline of oxygen in the Northeast Pacific turns this shelf into a potential candidate to suffer from low-oxygen events. The model used is the Regional Ocean Modeling System (ROMS) in a quasi-2D configuration of the shelf (across-shore section with uniform properties alongshore). The biogeochemical model has carbon, oxygen, and nitrogen as state variables, and includes cycling of dissolved organic matter. Carbon and oxygen cycles are coupled through ecosystem processes such as photosynthesis and remineralization, while

  14. Oxygen Production from Lunar Regolith using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Paley, Mark Steven; Karr, Laurel J.; Curreri, Peter

    2009-01-01

    The objective of this work and future follow-on work is to develop a safe, efficient, and recyclable method for oxygen and/or metals extraction from lunar regolith, in support of establishing a manned lunar outpost. The approach is to solubilize the oxides that comprise lunar regolith in media consisting of ionic liquids (ILs) and/or their mixtures at temperatures at or below 300 C. Once in solution, electrolysis can either be performed in-situ to generate oxygen at the anode and hydrogen and/or metals (silicon, iron, aluminum, titanium, etc.) at the cathode. Alternatively, the water that is generated during the solubilization process can be distilled out and condensed into a separate IL and then electrolysized to produce hydrogen and oxygen. In the case of lunar regolith, this method could theoretically produce 44g oxygen per 100g of regolith. The oxygen can be used for human life support and/or as an oxidizer for rocket fuels, and the metals can be used as raw materials for construction and/or device fabrication. Moreover, the hydrogen produced can be used to re-generate the acidic medium, which can then be used to process additional regolith, thereby making the materials recyclable and limiting upmass requirements. An important advantage of IL acid systems is that they are much "greener" and safer than conventional materials used for regolith processing such as sulfuric or hydrochloric acids. They have very low vapor pressures, which means that they contain virtually no toxic and/or flammable volatile content, they are relatively non-corrosive, and they can exhibit good stability in harsh environments (extreme temperatures, hard vacuum, etc.). Furthermore, regolith processing can be achieved at lower temperatures than other processes such as molten oxide electrolysis or hydrogen reduction, thereby reducing initial power requirements. Six ILs have been synthesized and tested for their capability to dissolve lunar simulant, and for electrochemical and thermal

  15. Recovery of a Charred Painting Using Atomic Oxygen Treatment

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.

    1999-01-01

    A noncontact method is described which uses atomic oxygen to remove soot and char from the surface of a painting. The atomic oxygen was generated by the dissociation of oxygen in low pressure air using radio frequency energy. The treatment, which is an oxidation process, allows control of the amount of material to be removed. The effectiveness of char removal from half of a fire-damaged oil painting was studied using reflected light measurements from selected areas of the painting and by visual and photographic observation. The atomic oxygen was able to effectively remove char and soot from the treated half of the painting. The remaining loosely bound pigment was lightly sprayed with a mist to replace the binder and then varnish was reapplied. Caution should he used when treating an untested paint medium using atomic oxygen. A representative edge or corner should he tested first in order to determine if the process would be safe for the pigments present. As more testing occurs, a greater knowledge base will be developed as to what types of paints and varnishes can or cannot be treated using this technique. With the proper precautions, atomic oxygen treatment does appear to be a technique with great potential for allowing very charred, previously unrestorable art to be salvaged.

  16. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.

    PubMed

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X

    2013-08-01

    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Taurus Littrow Pyroclastic Deposit-An Optimum Feedstock for Lunar Oxygen

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2014-01-01

    Future human habitation of the Moon will likely require the use of locally derived materials because of the high cost of transportation from Earth. Oxygen, extracted from oxides and silicates, is a potentially abundant lunar resource vital for life support and spacecraft propulsion. The anticipated costs of supplying all oxygen needs for a lunar base from Earth are high enough to warrant serious study of oxygen production from local resources. Over 20 different processes have been proposed for oxygen production on the Moon. Among the simplest and best studied of these processes is the reduction of oxides in lunar minerals and glass using hydrogen gas. Oxygen can be extracted from lunar soils and pyroclastic glass beads by exposing the samples to flowing hydrogen at subsolidus temperatures (approx. 1050 C). Total oxygen yield is directly correlated to the sample's abundance of FeO, but is not correlated to the abundance of any other oxide. Oxygen is extracted predominantly from FeO, with lesser contributions from TiO2 and SiO2. Oxygen yield is independent of soil maturity. All major FeO-bearing phases contribute oxygen, with extraction from ilmenite and glass significantly more efficient than from olivine and pyroxene. This study demonstrates that the optimum location for a lunar resources demonstration mission can be identified, and that the oxygen yield can be predicted, using a combination of high-resolution imaging and thermal-infrared data. A mission to Taurus Littrow will encounter a deposit at least 10 m in depth with few landing hazards, a uniform composition, and a predicted oxygen yield of approximately 3 wt. %, among the highest values on the Moon.

  18. Singlet oxygen detection in biological systems: Uses and limitations

    PubMed Central

    Koh, Eugene; Fluhr, Robert

    2016-01-01

    ABSTRACT The study of singlet oxygen in biological systems is challenging in many ways. Singlet oxygen is a relatively unstable ephemeral molecule, and its properties make it highly reactive with many biomolecules, making it difficult to quantify accurately. Several methods have been developed to study this elusive molecule, but most studies thus far have focused on those conditions that produce relatively large amounts of singlet oxygen. However, the need for more sensitive methods is required as one begins to explore the levels of singlet oxygen required in signaling and regulatory processes. Here we discuss the various methods used in the study of singlet oxygen, and outline their uses and limitations. PMID:27231787

  19. [Several indicators of tissue oxygen during modeling of extravehicular activity of man].

    PubMed

    Lan'shina, O E; Loginov, V A; Akinfiev, A V; Kovalenko, E A

    1995-01-01

    Investigations of tissue oxygen indices during simulation of extravehicular activity (EVA) of cosmonauts demonstrated that breathing pure oxygen at approximately 280 mmHg elevates oxygen tension in capillary blood, and capillary-tissue gradient during physical work. Physical work alone stimulates tissue oxygenation due to, apparently, intensification of the processes of oxidative phosphorylation. The observed shifts in oxygen status reverse significantly within the first 5 min after completion of the experiment.

  20. 1. LOOKING NORTH AT THE BASIC OXYGEN STEELMAKING PLANT. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING NORTH AT THE BASIC OXYGEN STEELMAKING PLANT. THE FLUX HANDLING BUILDING IS ON THE RIGHT, THE MOULD CONDITIONING BUILDING IS IN THE CENTER, THE BASIC OXYGEN PROCESS (BOP) SHOP IS IN THE CENTER BACKGROUND, AND OPEN HEARTH No. 2 BUILDING IS ON THE LEFT. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. The Presence of Oxygen in Wound Healing.

    PubMed

    Kimmel, Howard M; Grant, Anthony; Ditata, James

    2016-08-01

    Oxygen must be tightly governed in all phases of wound healing to produce viable granulation tissue. This idea of tight regulation has yet to be disputed; however, the role of oxygen at the cellular and molecular levels still is not fully understood as it pertains to its place in healing wounds. In an attempt to better understand the dynamics of oxygen on living tissue and its potential role as a therapy in wound healing, a substantial literature review of the role of oxygen in wound healing was performed and the following key points were extrapolated: 1) During energy metabolism, oxygen is needed for mitochondrial cytochrome oxidase as it produces high-energy phosphates that are needed for many cellular functions, 2) oxygen is also involved in the hydroxylation of proline and lysine into procollagen, which leads to collagen maturation, 3) in angiogenesis, hypoxia is required to start the process of wound healing, but it has been shown that if oxygen is administered it can accelerate and sustain vessel growth, 4) the antimicrobial action of oxygen occurs when nicotinamide adenine dinucleotide phosphate (NADPH)-linked oxygenase acts as a catalyst for the production of reactive oxygen species (ROS), a superoxide ion which kills bacteria, and 5) the level of evidence is moderate for the use of hyperbaric oxygen therapy (HBOT) for diabetic foot ulcers, crush injuries, and soft-tissue infections. The authors hypothesized that HBOT would be beneficial to arterial insufficiency wounds and other ailments, but at this time further study is needed before HBOT would be indicated.

  2. Oxygen and diverse nutrients influence the water kefir fermentation process.

    PubMed

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Pilot Plant Makes Oxygen Difluoride

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F.; Lawton, Emil A.

    1989-01-01

    Pilot plant makes oxygen difluoride highly-energetic, space-storable oxidizer not made commercially. Designed to handle reactants, product, and byproduct, most of which highly reactive, corrosive, and toxic. Oxygen difluoride evolves continuously from reactor containing potassium hydroxide in water at 10 degree C. Collection tanks alternated; one filled while other drained to storage cylinder. Excess OF2 and F2 dissipated in combustion of charcoal in burn barrel. Toxic byproduct, potassium fluoride, reacted with calcium hydroxide to form nontoxic calcium fluoride and to regenerate potassium hydroxide. Equipment processes toxic, difficult-to-make substance efficiently and safely.

  4. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].

    PubMed

    Fang, Wei; Zeng, Shu-Guang; Gao, Wen-Feng

    2015-04-01

    To prepare and characterize a nano-scale fibrous hydrophilic poly-L-lactic acid/ Bioglass (PLLA/BG) composite membrane and evaluate its biocompatibility as a composite membrane for guiding bone regeneration (GBR). PLLA/BG-guided bone regeneration membrane was treated by oxygen plasma to improved its hydrophilicity. The growth of MG-63 osteoblasts on the membrane was observed using Hoechst fluorescence staining, and the biocompatibility of the membrane was evaluated by calculating the cells adhesion rate and proliferation rate. Osteogenesis of MG-63 cells was assessed by detecting alkaline phosphatase (ALP), and the formation of calcified nodules and cell morphology changes were observed using scanning electron microscope (SEM). The cell adhesion rates of PLLA/BG-guided bone regeneration membrane treated with oxygen plasma were (30.570±0.96)%, (47.27±0.78)%, and (66.78±0.69)% at 1, 3, and 6 h, respectively, significantly higher than those on PLLA membrane and untreated PLLA/BG membrane (P<0.01). The cell proliferation rates on the 3 membranes increased with time, but highest on oxygen plasma-treated PLLA/BG membrane (P<0.01). Hoechst fluorescence staining revealed that oxygen plasma treatment of the PLLA/BG membrane promoted cell adhesion. The membranes with Bioglass promoted the matrix secretion of the osteoblasts. Under SEM, the formation of calcified nodules and spindle-shaped cell morphology were observed on oxygen plasma-treated PLLA/BG membrane. Oxygen plasma-treated PLLA/BG composite membrane has good biocompatibility and can promote adhesion, proliferation and osteogenesis of the osteoblasts.

  5. Relaxation Process of Photoexcited meso-Naphthylporphyrins while Interacting with DNA and Singlet Oxygen Generation.

    PubMed

    Hirakawa, Kazutaka; Taguchi, Makoto; Okazaki, Shigetoshi

    2015-10-15

    Electron donor-connecting cationic porphyrins meso-(1-naphthyl)-tris(N-methyl-p-pyridinio)porphyrin (1-NapTMPyP) and meso-(2-naphthyl)-tris(N-methyl-p-pyridinio)porphyrin (2-NapTMPyP) were designed and synthesized. DFT calculations speculate that the photoexcited states of 1- and 2-NapTMPyPs can be deactivated via intramolecular electron transfer from the naphthyl moiety to the porphyrin moiety. However, the quenching effect through the intramolecular electron transfer is insufficient, possibly due to the orthogonal position of the electron donor and the porphyrin ring and the relatively small driving force: Gibbs energies are 0.11 and 0.07 eV for 1- and 2-NapTMPyPs, respectively. It was speculated that more than 0.3 eV of the driving force is required to realize effective electron transfer in similar electron-donor connecting porphyrin systems. These porphyrins aggregated around the DNA strand, accelerating the deactivation of their excited singlet state and decreasing their photosensitized singlet oxygen-generating activities. In the presence of a sufficiently large concentration of DNA, these porphyrins can bind to a DNA strand stably, leading to an increased fluorescence quantum yield and lifetime. Singlet oxygen generation was also suppressed by the aggregation of porphyrins around DNA. Although the quantum yield of singlet oxygen generation was recovered in the presence of sufficient DNA, the singlet oxygen generated by DNA-binding porphyrins was significantly smaller than that without DNA. These results suggest that DNA-binding drugs limit the generation of photosensitized singlet oxygen by quenching the DNA strand.

  6. Method for making oxygen-reducing catalyst layers

    DOEpatents

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; O'Neill, David G.

    2010-06-22

    Methods are provided for making oxygen-reducing catalyst layers, which include simultaneous or sequential stops of physical vapor depositing an oxygen-reducing catalytic material onto a substrate, the catalytic material comprising a transition metal that is substantially free of platinum; and thermally treating the catalytic material. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  7. Regulatory Effect of Low-Intensity Optical Radiation on Oxygenation of Blood Irradiated In Vivo and Metabolic Processes

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.

    2016-03-01

    For three series of blood samples, we have studied the effect of therapeutic doses of low-intensity optical radiation (LOR) on oxygenation parameters of blood irradiated in vivo, and also on the levels of some metabolites: lactate, glucose, cholesterol. The quality of blood oxygenation was assessed using three parameters: the partial pressure of oxygen pVO2, the oxygen saturation of hemoglobin SVO2, and the oxygen level in arterial and venous blood, varying under the influence of low-intensity optical radiation due to photodissociation of hemoglobin/ligand complexes. We have established that during photohemotherapy (PHT), including extracorporeal, supravascular, and intravenous blood irradiation, positive changes occur in the oxygenation parameters and the metabolite levels, while after the courses of PHT have been completed, the individual changes in such parameters in individual patients were both positive and negative. The regulatory effect of PHT was apparent in the tendency toward a decrease in high initial values and an increase in low initial values both for the oxygenation parameters and for the metabolites; but at the doses recommended for use, PHT had a regulatory but still not a normalizing effect.

  8. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    PubMed

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  10. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under thismore » five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  11. Atomic Oxygen Cleaning of Unpainted Plaster Sculptures

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.

    2017-01-01

    Atomic oxygen erosion of polymers has been found to be a threat to spacecraft in low Earth orbit. As a result ground facilities have been developed to identify coatings to protect polymers such as used for solar array blankets. As a result of extensive laboratory testing, it was discovered that soot and other organic contamination on paintings could be readily removed by atomic oxygen interactions with minimal damage to the artwork. No method, other than dusting, has been found to be effective in the cleaning of unpainted plaster sculptures This presentation discusses the atomic oxygen interaction processes and how effective they are for cleaning soot damaged unpainted plaster sculptures.

  12. A high performance biometric signal and image processing method to reveal blood perfusion towards 3D oxygen saturation mapping

    NASA Astrophysics Data System (ADS)

    Imms, Ryan; Hu, Sijung; Azorin-Peris, Vicente; Trico, Michaël.; Summers, Ron

    2014-03-01

    Non-contact imaging photoplethysmography (PPG) is a recent development in the field of physiological data acquisition, currently undergoing a large amount of research to characterize and define the range of its capabilities. Contact-based PPG techniques have been broadly used in clinical scenarios for a number of years to obtain direct information about the degree of oxygen saturation for patients. With the advent of imaging techniques, there is strong potential to enable access to additional information such as multi-dimensional blood perfusion and saturation mapping. The further development of effective opto-physiological monitoring techniques is dependent upon novel modelling techniques coupled with improved sensor design and effective signal processing methodologies. The biometric signal and imaging processing platform (bSIPP) provides a comprehensive set of features for extraction and analysis of recorded iPPG data, enabling direct comparison with other biomedical diagnostic tools such as ECG and EEG. Additionally, utilizing information about the nature of tissue structure has enabled the generation of an engineering model describing the behaviour of light during its travel through the biological tissue. This enables the estimation of the relative oxygen saturation and blood perfusion in different layers of the tissue to be calculated, which has the potential to be a useful diagnostic tool.

  13. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  14. On optima: the case of myoglobin-facilitated oxygen diffusion.

    PubMed

    Wittenberg, Jonathan B

    2007-08-15

    The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.

  15. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  16. Oxygen-Concentrating Cell

    NASA Technical Reports Server (NTRS)

    Buehler, K.

    1986-01-01

    High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.

  17. Oxygen-induced recombination centers in as-grown Czochralski silicon crystals

    NASA Technical Reports Server (NTRS)

    Nauka, K.; Gatos, H. C.; Lagowski, J.

    1983-01-01

    Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.

  18. Lunar production of oxygen by electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1991-01-01

    Two approaches to prepare oxygen from lunar resources by direct electrolysis are discussed. Silicates can be melted or dissolved in a fused salt and electrolyzed with oxygen evolved at the anode. Direct melting and electrolysis is potentially a very simple process, but high temperatures of 1400-1500 C are required, which aggravates materials problems. Operating temperatures can be lowered to about 1000 C by employing a molten salt flux. In this case, however, losses of electrolyte components must be avoided. Experimentation on both approaches is progressing.

  19. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  20. Isotopic Composition of Oxygen in Lunar Zircons

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  1. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    PubMed

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  2. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    PubMed Central

    Faußer, Anna C.; Dušek, Jiří; Čížková, Hana; Kazda, Marian

    2016-01-01

    Wetland plants actively provide oxygen for aerobic processes in submerged tissues and the rhizosphere. The novel concomitant assessment of diurnal dynamics of oxygen and carbon dioxide concentrations under field conditions tests the whole-system interactions in plant-internal gas exchange and regulation. Oxygen concentrations ([O2]) were monitored in-situ in central culm and rhizome pith cavities of common reed (Phragmites australis) using optical oxygen sensors. The corresponding carbon dioxide concentrations ([CO2]) were assessed via gas samples from the culms. Highly dynamic diurnal courses of [O2] were recorded, which started at 6.5–13 % in the morning, increased rapidly up to 22 % during midday and declined exponentially during the night. Internal [CO2] were high in the morning (1.55–17.5 %) and decreased (0.04–0.94 %) during the rapid increase of [O2] in the culms. The observed negative correlations between [O2] and [CO2] particularly describe the below ground relationship between plant-mediated oxygen supply and oxygen use by respiration and biogeochemical processes in the rhizosphere. Furthermore, the nocturnal declining slopes of [O2] in culms and rhizomes indicated a down-regulation of the demand for oxygen in the complete below ground plant-associated system. These findings emphasize the need for measurements of plant-internal gas exchange processes under field conditions because it considers the complex interactions in the oxic-anoxic interface. PMID:27207278

  3. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    PubMed

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  4. A prototype of an electric-discharge gas flow oxygen-iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    NASA Astrophysics Data System (ADS)

    Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.

    2017-03-01

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O2: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as 100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to 220-230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen-iodine laser based on a slab cryogenic RF discharge.

  5. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    DOE PAGES

    Wang, Ping; Means, Nicholas; Shekhawat, Dushyant; ...

    2015-09-24

    Chemical-looping technology is one of the promising CO 2 capture technologies. It generates a CO 2 enriched flue gas, which will greatly benefit CO 2 capture, utilization or sequestration. Both chemical-looping combustion (CLC) and chemical-looping gasification (CLG) have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter) and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coalmore » may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA) has been widely used for the development of oxygen carriers (e.g., oxide reactivity). Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU). The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.« less

  6. Electrochemical cell for obtaining oxygen from carbon dioxide atmospheres

    NASA Technical Reports Server (NTRS)

    Hooker, M. W.; Rast, H. E.; Rogers, D. K.

    1989-01-01

    For manned missions to Mars to become a reality, an efficient and reliable means of obtaining oxygen from the carbon dioxide-rich atmosphere will be required. Otherwise, the high cost of transporting the oxygen needed to sustain the astronauts will severely restrict the expedition to the martian surface. Recently, the use of electrochemical devices has been explored as a means of obtaining oxygen from the carbon dioxide-rich atmosphere. In these devices, oxygen ions diffuse through solid oxide membranes, thus, separating oxygen from the other gases presented. This phenomenon has only recently been explored as a means of obtaining large quantities of oxygen from toxic atmospheres, although first observed by Walter nernst in 1899. Nernst observed that stabilized zirconia will conduct oxygen ions when an electrical potential is applied across metallic electrodes applied to the ceramic membrane. Diatomic oxygen molecules are dissociated at the positive electrode/electrolyte interface. The oxygen ions enter the ceramic body due to the ion density gradient which is produced by the electrical potential across the electrolytic membrane. Once the ions have diffused through the membrane, they reform diatomic oxygen molecules at the anode. The separation of oxygen from carbon dioxide is achieved by the combination of thermal and electrochemical processes. The thermal decomposition of carbon dioxide (at 1000 C) results in the production of carbon monoxide and oxygen by the reaction.

  7. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    DOEpatents

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  8. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  9. Thermodynamic model of Mars Oxygen ISRU Experiment (MOXIE)

    NASA Astrophysics Data System (ADS)

    Meyen, Forrest E.; Hecht, Michael H.; Hoffman, Jeffrey A.; MOXIE Team

    2016-12-01

    As humankind expands its footprint in the solar system, it is increasingly important to make use of the resources already in our solar system to make these missions economically feasible and sustainable. In-Situ Resource Utilization (ISRU), the science of using resources at a destination to support exploration missions, unlocks potential destinations by significantly reducing the amount of resources that need to be launched from Earth. Carbon dioxide is an example of an in-situ resource that comprises 96% of the Martian atmosphere and can be used as a source of oxygen for propellant and life support systems. The Mars Oxygen ISRU Experiment (MOXIE) is a payload being developed for NASA's upcoming Mars 2020 rover. MOXIE will produce oxygen from the Martian atmosphere using solid oxide electrolysis (SOXE). MOXIE is on the order of magnitude of a 1% scale model of an oxygen processing plant that might enable a human expedition to Mars in the 2030s through the production of the oxygen needed for the propellant of a Mars ascent vehicle. MOXIE is essentially an energy conversion system that draws energy from the Mars 2020 rover's radioisotope thermoelectric generator and ultimately converts it to stored energy in oxygen and carbon monoxide molecules. A thermodynamic model of this novel system is used to understand this process in order to derive operating parameters for the experiment. This paper specifically describes the model of the SOXE component. Assumptions and idealizations are addressed, including 1D and 2D simplifications. Operating points are discussed as well as impacts of flow rates and production.

  10. Oxygen and the evolution of metabolic pathways

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1986-01-01

    While a considerable amount of evidence has been accumulated about the history of oxygen on this planet, little is known about the relative amounts to which primitive cells might have been exposed. One clue may be found in the metabolic pathways of extant microorganisms. While eucaryotes are principally aerobic organisms, a number are capable of anaerobic growth by fermentation. One such eucaryotic microorganism, Saccharomyces cerevisiae, will grow in the complete absence of oxygen when supplemented with unsaturated fatty acid and sterol. Oxygen-requiring enzymes are involved in the synthesis of both of these compounds. Studies have demonstrated that the oxidative desaturation of palmitic acid and the conversion of squalene to sterols occur in the range of 10-(3) to 10(-2) PAL. Thus, if the oxygen requirements of these enzymatic processes are an indication, eucaryotes might be more primitive than anticipated from the microfossil record. Results of studies on the oxygen requirements for sterol and unsaturated fatty acid synthesis in a more primitive procaryotic system are also discussed.

  11. A flexible transcutaneous oxygen sensor using polymer membranes.

    PubMed

    Kudo, Hiroyuki; Iguchi, Shigehito; Yamada, Takua; Kawase, Tatsuya; Saito, Hirokazu; Otsuka, Kimio; Mitsubayashi, Kohji

    2007-02-01

    A wearable and flexible oxygen sensor for transcutaneous blood gas monitoring was fabricated and tested. The sensor has a laminar film-like structure, which was fabricated by pouching KCl electrolyte solution by both non-permeable (metal weldable) sheet and gas-permeable membrane with Pt- and Ag/AgCl-electrodes patterned using microfabrication process. The electrolyte solution was fixed only by heat-sealing the edges of the weldable membranes without any chemical adhesives. The wearable oxygen sensor (thickness: 84 mum) was applied to the electrochemical measurement with a constant potential of -600 mV vs. Ag/AgCl, thus obtaining the calibration range to dissolved oxygen (DO) from 0.0 to 7.0 mg/l with a correlation coefficient of 0.998 and the quick response time (53.4 s to 90% of a steady-state current), which operate similarly to a commercially available oxygen electrode. The sensor was also utilized to transcutaneous oxygen monitoring for healthy human subject. The sensing region of the wearable oxygen sensor was attached onto the forearm-skin surface of the subject inhaling various concentrations of oxygen. As a result of physiological application, the output current was varied from -6.2 microA to -7.8 microA within 2 min when the concentration of inhaling oxygen was changed from atmospheric air to 60% oxygen. Thus, the transcutaneous oxygen was successfully monitored without any inconveniences such as skin inflammation, etc.

  12. Guide for Oxygen Compatibility Assessments on Oxygen Components and Systems

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Shoffstall, Michael S.; Stoltzfus, Joel M.

    2007-01-01

    Understanding and preventing fire hazards is necessary when designing, maintaining, and operating oxygen systems. Ignition risks can be minimized by controlling heat sources and using materials that will not ignite or will not support burning in the end-use environment. Because certain materials are more susceptible to ignition in oxygen-enriched environments, a compatibility assessment should be performed before the component is introduced into an oxygen system. This document provides an overview of oxygen fire hazards and procedures that are consistent with the latest versions of American Society for Testing and Materials (ASTM) Standards G63 (1999) and G94 (2005) to address fire hazards associated with oxygen systems. This document supersedes the previous edition, NASA Technical Memorandum 104823, Guide for Oxygen Hazards Analyses on Components and Systems (1996). The step-by-step oxygen compatibility assessment method described herein (see Section 4) enables oxygen-system designers, system engineers, and facility managers to determine areas of concern with respect to oxygen compatibility and, ultimately, prevent damage to a system or injury to personnel.

  13. Producing liquid oxygen in the classroom

    NASA Astrophysics Data System (ADS)

    Williams, David; Warden, Nicole; Wharton, Barry

    2016-09-01

    A number of organisations have provided instructions on how to produce small quantities of liquid oxygen in the classroom using liquid nitrogen and a copper condensation coil (Lister 1995 Classic Chemistry Demonstrations (London: Royal Society of Chemistry) pp 61-2, French and Hibbert 2010 Phys. Educ. 45 221-2). The method presented below describes a process which is believed to be safer as it contains the oxygen during production and produces a controllable amount of the liquid. The method also has the advantage that it can be conducted using cheap and easily available materials.

  14. Solid oxide fuel cell cathode with oxygen-reducing layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis

    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous filmmore » or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.« less

  15. Processing of dry-cured ham in a reduced-oxygen atmosphere: effects on physicochemical and microbiological parameters and mite growth.

    PubMed

    Sánchez-Molinero, F; García-Regueiro, J A; Arnau, J

    2010-03-01

    The effects of a reduced-oxygen atmosphere (ROA) ([O(2)]<4.5%) during part or the whole of dry-cured ham processing on microbiological and physico-chemical parameters and mite growth were investigated in two independent experiments. In Experiment 1, six hams were processed in ROA and six in air for 275 days; in Experiment 2, where lower RH was used, six hams were processed in ROA for 289 days, six for 214 days in air+75 days in ROA, and six in air for 289 days. Microbiological analyses during the process and physicochemical analyses in final products were carried out. The use of ROA during the whole process increased the L* colour parameter in the subcutaneous fat and proteolysis index and decreased b* in the external part of the subcutaneous fat and cholesterol oxide concentration. The use of ROA combined with low RH retarded microbial growth and prevented mite growth. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Atomic oxygen durability of solar concentrator materials for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.

    1990-01-01

    The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.

  17. System Modeling of Lunar Oxygen Production: Mass and Power Requirements

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J.; Freeh, Joshua E.; Linne, Diane L.; Faykus, Eric W.; Gallo, Christopher A.; Green, Robert D.

    2007-01-01

    A systems analysis tool for estimating the mass and power requirements for a lunar oxygen production facility is introduced. The individual modeling components involve the chemical processing and cryogenic storage subsystems needed to process a beneficiated regolith stream into liquid oxygen via ilmenite reduction. The power can be supplied from one of six different fission reactor-converter systems. A baseline system analysis, capable of producing 15 metric tons of oxygen per annum, is presented. The influence of reactor-converter choice was seen to have a small but measurable impact on the system configuration and performance. Finally, the mission concept of operations can have a substantial impact upon individual component size and power requirements.

  18. Modelling nitrite dynamics and associated feedback processes in the Benguela oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Mashifane, T. B.; Vichi, M.; Waldron, H. N.; Machu, E.; Garçonc, V.

    2016-08-01

    Understanding nitrite dynamics in oxygen minimum zones (OMZs) is a challenge as it represents an intermediary nitrogen species with a short turnover time. Nitrite is also reduced to nitrogen in OMZs, preventing its accumulation. This creates difficulties in detecting nitrite with colorimetric methods as concentrations may occur below detection limits in some regions. Nitrite concentrations are key to understanding intermediate nitrogen processes and their implication for nitrogen loss in OMZs. A coupled physical-biogeochemical model is applied in the Benguela OMZ to study nitrite dynamics and its associated feedback processes. Simulated results show occurrence of primary and secondary nitrite maxima in the Benguela shelf waters. The primary nitrite maxima in the Benguela are attributed to nitrification and nitrate assimilation as they occur in association with the nitracline. Secondary nitrite maxima accumulate in the Angola-Benguela Front (ABF) OMZ and are attributed to denitrification. The secondary nitrite maxima are consumed by anaerobic ammonium oxidation (anammox) off Walvis Bay. Nitrite maxima are restricted to the shelf off Walvis Bay and advected offshore in the ABF region. Interchanges between the poleward South Atlantic Central Water (SACW) and the equatorward, well-aerated Eastern South Atlantic Central Water (ESACW) drive the seasonality of nitrogen processes in the Benguela. Subsequent nitrite reduction in the Benguela OMZ leads to nitrous oxide production, with high concentrations occurring in the ABF region as a result of nitrification and denitrification. Off Walvis Bay, nitrous oxide production is low since nitrite is consumed by anammox. Nitrous oxide production occurs in thermocline, intermediate and deeper water masses in the ABF region. High N fluxes in the Benguela are attributed to nitrification as compared to anammox and denitrification. Results from this study demonstrate the role of intermediate nitrogen species in nitrogen feedback

  19. The Antitumor Effect of Singlet Oxygen.

    PubMed

    Bauer, Georg

    2016-11-01

    Tumor cells are protected against intercellular apoptosis-inducing signaling through expression of membrane-associated catalase and superoxide dismutase. Exogenous singlet oxygen derived from activated photosensitizers or from cold atmospheric plasma causes local inactivation of protective catalase which is followed by the generation of secondary extracellular singlet oxygen. This process is specific for tumor cells and is driven by a complex interaction between H 2 O 2 and peroxynitrite. Secondary singlet oxygen has the potential for autoamplification of its generation, resulting in optimal inactivation of protective catalase and reactivation of intercellular apoptosis-inducing signaling. An increase in the endogenous NO concentration also causes inactivation of catalase and autoamplificatory generation of secondary singlet oxygen. This principle is essential for the antitumor activity of secondary plant products, such as cyanidins and other inhibitors of NO dioxygenase. It seems that the action of the established chemotherapeutic taxol and the recently established antitumor effect of certain azoles are based on the same principles. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt

    USGS Publications Warehouse

    Gerlach, T.M.

    1993-01-01

    Volcanic gases collected during episode 1 of the Puu Oo eruption along the east rift zone of Kilauea Volcano, Hawaii, have uniform C-O-H-S-Cl-F compositions that are sharply depleted in CO2. The CO2-poor gases are typical of Type II volcanic gases (gerlach and Graeber, 1985) and were emitted from evolved magma stored for a prolonged period of time in the east rift zone after releasing CO2-rich gases during an earlier period of temporary residence in the summit magma chamber. The samples are remarkably free of contamination by atmospheric gases and meteoric water. Thermodynamic evaluation of the analytical data shows that the episode 1 gases have equilibrium compositions appropriate for temperatures between 935 and 1032??C. Open- and closed-system equilibrium models of species distributions for the episode 1 gases show unequivocally that coexisting lavas buffered the gas oxygen fugacities during cooling. These models indicate that the fO2 buffering process occurs by transfer of oxygen from the major species in the gas phase (H2O, CO2, SO2) to the lava during cooling and that the transfer of oxygen also controls the fugacities of several minor and trace species (H2, CO, H2S, S2, Cl2, F2), in addition to O2 during cooling. Gas/lava exchanges of other components are apparently insignificant and exert little influence, compared to oxygen exchange, during cooling. Oxygen transfer during cooling is variable, presumably reflecting short-term fluctuations in gas flow rates. Higher flow rates restrict the time available for gas/lava oxygen transfer and result in gases with higher equilibrium temperatures. Lower flow rates favor fO2-constrained equilibration by oxygen transfer down to lower temperatures. Thus, the chemical equilibrium preserved in these gases is a heterogeneous equilibrium constrained by oxygen fugacity, and the equilibrium temperatures implied by the compositions of the gases reflect the temperatures at which gas/lava oxygen exchange ceased. This conclusion

  1. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    PubMed

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Hyperbaric oxygen therapy and preconditioning for ischemic and hemorrhagic stroke.

    PubMed

    Hu, Sheng-Li; Feng, Hua; Xi, Guo-Hua

    2016-01-01

    To date, the therapeutic methods for ischemic and hemorrhagic stroke are still limited. The lack of oxygen supply is critical for brain injury following stroke. Hyperbaric oxygen (HBO), an approach through a process in which patients breathe in 100% pure oxygen at over 101 kPa, has been shown to facilitate oxygen delivery and increase oxygen supply. Hence, HBO possesses the potentials to produce beneficial effects on stroke. Actually, accumulated basic and clinical evidences have demonstrated that HBO therapy and preconditioning could induce neuroprotective functions via different mechanisms. Nevertheless, the lack of clinical translational study limits the application of HBO. More translational studies and clinical trials are needed in the future to develop effective HBO protocols.

  3. Electrochemical Cell for Obtaining Oxygen from Carbon Dioxide Atmospheres

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew; Rast, H. Edward; Rogers, Darren K.; Borja, Luis; Clark, Kevin; Fleming, Kimberly; Mcgurren, Michael; Oldaker, Tom; Sweet, Nanette

    1989-01-01

    To support human life on the Martian surface, an electrochemical device will be required to obtain oxygen from the carbon dioxide rich atmosphere. The electrolyte employed in such a device must be constructed from extremely thin, dense membranes to efficiently acquire the oxygen necessary to support life. A forming process used industrially in the production of multilayer capacitors and electronic substrates was adapted to form the thin membranes required. The process, known as the tape casting, involves the suspension consisting of solvents and binders. The suspension is passed under a blade, resulting in the production of ceramic membranes between 0.1 and 0.5 mm thick. Once fired, the stabilized zirconia membranes were assembled into the cell design by employing a zirconium phosphate solution as the sealing agent. The resulting ceramic-to-ceramic seals were found to be structurally sound and gas-tight. Furthermore, by using a zirconia-based solution to assemble the cell, the problem of a thermal expansion mismatch was alleviated. By adopting an industrial forming process to produce thin membranes, an electrochemical cell for obtaining oxygen from carbon dioxide was produced. The proposed cell design is unique in that it does not require a complicated manifold system for separating the various gases present in this process, nor does it require a series of complex electrical connections. Thus, the device can reliably obtain the vital oxygen supply from the toxic carbon dioxide atmosphere.

  4. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.

    PubMed

    Seibel, Brad A

    2011-01-15

    The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.

  5. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    DTIC Science & Technology

    2017-08-01

    AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER

  6. Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2014-01-01

    To investigate the inactivation process of Penicillium digitatum spores through neutral oxygen species, the spores were treated with an atmospheric-pressure oxygen radical source and observed in-situ using a fluorescent confocal-laser microscope. The treated spores were stained with two fluorescent dyes, 1,1‧-dioctadecyl-3,3,Y,3‧-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as the cell membranes in the spores treated with the oxygen radical source were stained with DiI without a major morphological change of the membranes. DPPP staining revealed that the organelles were oxidized by the oxygen radical treatment. These results suggest that neutral oxygen species, especially atomic oxygen, induce a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles through the penetration of reactive oxygen species into the cell.

  7. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  8. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo.

    PubMed

    Broxmeyer, Hal E; O'Leary, Heather A; Huang, Xinxin; Mantel, Charlie

    2015-07-01

    Hematopoietic stem (HSCs) and progenitor (HPCs) cells reside in a hypoxic (lowered oxygen tension) environment, in vivo. We review literature on growth of HSCs and HPCs under hypoxic and normoxic (ambient air) conditions with a focus on our recent work demonstrating the detrimental effects of collecting and processing cells in ambient air through a phenomenon termed extra physiologic oxygen shock/stress (EPHOSS), and we describe means to counteract EPHOSS for enhanced collection of HSCs. Collection and processing of bone marrow and cord blood cells in ambient air cause rapid differentiation and loss of HSCs, with increases in HPCs. This apparently irreversible EPHOSS phenomenon results from increased mitochondrial reactive oxygen species, mediated by a p53-cyclophilin D-mitochondrial permeability transition pore axis, and involves hypoxia inducing factor-1α and micro-RNA 210. EPHOSS can be mitigated by collecting and processing cells in lowered (3%) oxygen, or in ambient air in the presence of, cyclosporine A which effects the mitochondrial permeability transition pore, resulting in increased HSC collections. Our recent findings may be advantageous for HSC collection for hematopoietic cell transplantation, and likely for enhanced collection of other stem cell types. EPHOSS should be considered when ex-vivo cell analysis is utilized for personalized medicine, as metabolism of cells and their response to targeted drug treatment ex vivo may not mimic what occurs in vivo.

  9. ASRDI oxygen technology survey, Volume 7: Characteristics of metals that influence system safety

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1974-01-01

    A literature survey and analysis of the material and process factors affecting the safety of metals in oxygen systems is presented. In addition, the practices of those who specify, build, or use oxygen systems relative to the previous is summarized. Alloys based on iron, copper, nickel, and aluminum were investigated representing the bulk of metals found in oxygen systems. Safety-related characteristics of other miscellaneous metals are summarized. It was found that factors affecting the safety of metals in oxygen systems exit in all phases of the evolutionary process, from smelting and mill techniques through end-production fabrication. The safety of a given metal in an oxygen system was determined to be influenced by the particular service requirement. The metal characteristics should favorably influence fulfillment of these requirements. Thus, no singular metal or alloy could be classified as safest for all types of oxygen service.

  10. Non-invasive MRI measurements of venous oxygenation, oxygen extraction fraction and oxygen consumption in neonates.

    PubMed

    De Vis, J B; Petersen, E T; Alderliesten, T; Groenendaal, F; de Vries, L S; van Bel, F; Benders, M J N L; Hendrikse, J

    2014-07-15

    Brain oxygen consumption reflects neuronal activity and can therefore be used to investigate brain development or neuronal injury in neonates. In this paper we present the first results of a non-invasive MRI method to evaluate whole brain oxygen consumption in neonates. For this study 51 neonates were included. The T1 and T2 of blood in the sagittal sinus were fitted using the 'T2 prepared tissue relaxation inversion recovery' pulse sequence (T2-TRIR). From the T1 and the T2 of blood, the venous oxygenation and the oxygen extraction fraction (OEF) were calculated. The cerebral metabolic rate of oxygen (CMRO2) was the resultant of the venous oxygenation and arterial spin labeling whole brain cerebral blood flow (CBF) measurements. Venous oxygenation was 59±14% (mean±sd), OEF was 40±14%, CBF was 14±5ml/100g/min and CMRO2 was 30±12μmol/100g/min. The OEF in preterms at term-equivalent age was higher than in the preterms and in the infants with hypoxic-ischemic encephalopathy (p<0.01). The OEF, CBF and CMRO2 increased (p<0.01, <0.05 and <0.01, respectively) with postnatal age. We presented an MRI technique to evaluate whole-brain oxygen consumption in neonates non-invasively. The measured values are in line with reference values found by invasive measurement techniques. Preterms and infants with HIE demonstrated significant lower oxygen extraction fraction than the preterms at term-equivalent age. This could be due to decreased neuronal activity as a reflection of brain development or as a result of tissue damage, increased cerebral blood flow due to immature or impaired autoregulation, or could be caused by differences in postnatal age. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. British Thoracic Society quality standards for home oxygen use in adults

    PubMed Central

    Suntharalingam, Jay; Wilkinson, Tom; Annandale, Joseph; Davey, Claire; Fielding, Rhea; Freeman, Daryl; Gibbons, Michael; Hardinge, Maxine; Hippolyte, Sabrine; Knowles, Vikki; Lee, Cassandra; MacNee, William; Pollington, Jacqueline; Vora, Vandana; Watts, Trefor; Wijesinghe, Meme

    2017-01-01

    Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for home oxygen provision in the UK, together with measurable markers of good practice. Quality statements are based on the British Thoracic Society (BTS) Guideline for Home Oxygen Use in Adults. Methods Development of BTS Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 10 quality statements have been developed, each describing a key marker of high-quality, cost-effective care for home oxygen use, and each statement is supported by quality measures that aim to improve the structure, process and outcomes of healthcare. Discussion BTS Quality Standards for home oxygen use in adults form a key part of the range of supporting materials that the society produces to assist in the dissemination and implementation of a guideline’s recommendations. PMID:29018527

  12. Comparative analysis of polychlorinated biphenyl decomposition processes in air or argon (+oxygen) thermal plasma.

    PubMed

    Kostic, Z G; Stefanovic, P L; Pavlović, P B

    2000-07-10

    Thermal plasmas may solve one of the biggest toxic waste disposal problems. The disposal of polychlorinated biphenyls (PCBs) is a long standing problem which will get worse in the coming years, when 180000 tons of PCB-containing wastes are expected to accumulate in Europe (Hot ions break down toxic chemicals, New Scientist, 16 April 1987, p. 24.). The combustion of PCBs in ordinary incinerators (at temperature T approximately 1100 K, as measured near the inner wall of the combustion chamber (European Parliament and Council Directive on Incineration of Waste (COM/99/330), Europe energy, 543, Sept. 17, 1999, 1-23.)) can cause more problems than it solves, because highly toxic dioxins and dibenzofurans are formed if the combustion temperature is too low (T<1400 K). The paper presents a thermodynamic consideration and comparative analysis of PCB decomposition processes in air or argon (+oxygen) thermal plasmas.

  13. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  14. Oxygen and wound care: a review of current therapeutic modalities and future direction.

    PubMed

    Howard, Michael A; Asmis, Reto; Evans, Karen Kim; Mustoe, Thomas A

    2013-01-01

    While the importance of oxygen to the wound healing process is well accepted, research and technological advances continue in this field and efforts are ongoing to further utilize oxygen as a therapeutic modality. In this paper, the authors briefly review the role of oxygen in wound healing and discuss the distinct mechanism of action as well as the advantages and disadvantages of the three major oxygen-based therapies currently in clinical use (Hyperbaric Oxygen and Topical Oxygen and Continuous Diffusion of Oxygen), as well as review the existing literature regarding these distinct therapeutic modalities. © 2013 by the Wound Healing Society.

  15. Method for producing oxygen from lunar materials

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    1993-01-01

    This invention is related to producing oxygen from lunar or Martian materials, particularly from lunar ilmenite in situ. The process includes producing a slurry of the minerals and hot sulfuric acid, the acid and minerals reacting to form sulfates of the metal. Water is added to the slurry to dissolve the minerals into an aqueous solution, the first aqueous solution is separated from unreacted minerals from the slurry, and the aqueous solution is electrolyzed to produce the metal and oxygen.

  16. Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.

    PubMed

    Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi

    2017-09-26

    Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.

  17. Passivation Behavior of Fe-Based Amorphous Coatings Prepared by High-Velocity Air/Oxygen Fuel Processes

    NASA Astrophysics Data System (ADS)

    Ma, H. R.; Li, J. W.; Chang, C. T.; Wang, X. M.; Li, R. W.

    2017-12-01

    Corrosion resistance and passivation behavior of Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings prepared by the activated combustion high-velocity air fuel (AC-HVAF) and high-velocity oxygen fuel (HVOF) processes have been studied in detail by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, cathodic polarization and Mott-Schottky approach. The AC-HVAF coating shows higher corrosion resistance than the HVOF coating in 3.5 wt.% NaCl solution, as evidenced by its lower corrosion current density and passive current density. It is found that the superior corrosion resistance of the AC-HVAF coating is attributed to the enhanced formation of a dense passive film with less defective structure, higher pitting resistance and passivity stability, as well as stronger repassivity.

  18. Singlet molecular oxygen generated by biological hydroperoxides.

    PubMed

    Miyamoto, Sayuri; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-10-05

    The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  20. STS-84 oxygen generator for Mir installation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the SPACEHAB Payload Processing Facility, McDonnell Douglas- SPACEHAB technicians prepare a Russian-made oxygen generator for flight in a SPACEHAB Double Module. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  1. STS-84 oxygen generator for Mir installation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    McDonnell Douglas-SPACEHAB technicians oversee the move of a Russian-made oxygen generator to a SPACEHAB Double Module, at rear, in the SPACEHAB Payload Processing Facility. In foreground, from left, are Marc Tuttle, Dan Porter and Mike Vawter. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff.

  2. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.

    PubMed

    Okubo, Masashi; Yamada, Atsuo

    2017-10-25

    Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.

  3. Spatiotemporal Oxygen Sensing Using Dual Emissive Boron Dye–Polylactide Nanofibers

    PubMed Central

    2015-01-01

    Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye–polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing. PMID:25426706

  4. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals

    PubMed Central

    Olafsdottir, Olof Birna; Eliasdottir, Thorunn Scheving; Kristjansdottir, Jona Valgerdur; Hardarson, Sveinn Hakon; Stefánsson, Einar

    2015-01-01

    Purpose To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals. Methods Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1). Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min) and then again room air (10 minutes recovery). Results Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001) and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001). The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001). The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001) and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001). Conclusions Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye. PMID:26042732

  5. [Phospholipids under combined ozone-oxygen administration].

    PubMed

    Müller-Tyl, E; Hernuss, P; Salzer, H; Reisinger, L; Washüttl, J; Wurst, F

    1975-01-01

    The parenterally application of oxygen-ozone gas mixture gives good resultats in the treatment of various deseases. Ozone seems to influence the metabolic process of fat, so it was of interest to analyse this influence especially to phospholipids. 40 women with gynaecological cancer got 10 ml oxygen-ozone gas mixture with a content of 450 gamma ozone into the cubital vene. Venous blood was removed before and 10 minutes after application and the level of lecithin, lysolecithin, cephalin and spingomyelin was determined by the method of Randerath. A decrease of all four substances was obvious, although all values remained in normal range.

  6. Oxygen toxicity.

    PubMed

    Stogner, S W; Payne, D K

    1992-12-01

    The objective of this article is to provide an overview of the biochemistry of oxygen metabolism, including the formation of free radicals and the role of endogenous antioxidants. Pathophysiologic correlates underlying the clinical manifestations of oxygen toxicity are reviewed and management strategies are outlined. References from basic science and clinical journals were selected from the authors' files and from a search of a computerized database of the biomedical literature. Articles selected for review included both historical and current literature concerning the biochemistry and pathophysiology of oxygen toxicity in animals and humans. The benefits of oxygen therapy have been known for many years; however, its potential toxicity has not been recognized until the last two decades. The lungs, the eyes, and, under certain conditions, the central nervous system are the organs most affected by prolonged exposure to hyperoxic environments. Free radical formation during cellular metabolism under hyperoxic conditions is recognized as the biochemical basis of oxygen injury to cells and organs. Endogenous antioxidants are a primary means of detoxifying reactive oxygen species and preventing hyperoxia-induced cellular damage. When this defense fails or is overwhelmed by the excessive production of hyperoxia-induced free-radical species, distinctive morphologic changes occur at the cellular level. The amount of hyperoxia required to cause cellular damage and the time course of these changes vary from species to species and from individual to individual within the same species. Age, nutritional status, presence of underlying diseases, and certain drugs may influence the development of oxygen toxicity. There is currently no reliably effective drug for preventing or delaying the development of oxygen toxicity in humans. Use of the lowest effective oxygen concentration, the avoidance of certain drugs, and attention to nutritional and metabolic factors remain the best means

  7. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  8. Microvascular oxygen consumption during sickle cell pain crisis.

    PubMed

    Rowley, Carol A; Ikeda, Allison K; Seidel, Miles; Anaebere, Tiffany C; Antalek, Matthew D; Seamon, Catherine; Conrey, Anna K; Mendelsohn, Laurel; Nichols, James; Gorbach, Alexander M; Kato, Gregory J; Ackerman, Hans

    2014-05-15

    Sickle cell disease is an inherited blood disorder characterized by chronic hemolytic anemia and episodic vaso-occlusive pain crises. Vaso-occlusion occurs when deoxygenated hemoglobin S polymerizes and erythrocytes sickle and adhere in the microvasculature, a process dependent on the concentration of hemoglobin S and the rate of deoxygenation, among other factors. We measured oxygen consumption in the thenar eminence during brachial artery occlusion in sickle cell patients and healthy individuals. Microvascular oxygen consumption was greater in sickle cell patients than in healthy individuals (median [interquartile range]; sickle cell: 0.91 [0.75-1.07] vs healthy: 0.75 [0.62-0.94] -ΔHbO2/min, P < .05) and was elevated further during acute pain crisis (crisis: 1.10 [0.78-1.30] vs recovered: 0.88 [0.76-1.03] -ΔHbO2/min, P < .05). Increased microvascular oxygen consumption during pain crisis could affect the local oxygen saturation of hemoglobin when oxygen delivery is limiting. Identifying the mechanisms of elevated oxygen consumption during pain crisis might lead to the development of new therapeutic interventions. This trial was registered at www.clinicaltrials.gov as #NCT01568710.

  9. Catalytic biomass pyrolysis process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  10. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  11. The significance of oxygen during contact lens wear.

    PubMed

    Papas, Eric B

    2014-12-01

    In order to establish the relevance of oxygen to contemporary contact lens practice, a review of the literature was conducted. The results indicate that there are a number of processes occurring in the normal healthy eye where oxygen is required and which are potentially affected by the presence of a contact lens. These activities appear to take place at all corneal levels, as well as at the limbus. Evidence from laboratory, clinical and modelling studies indicates that what constitutes normal oxygenation (normoxia) depends on, among other things, the physiological system under consideration, corneal location and the state of eye closure. This diversity is reflected in the wide range of minimum lens oxygen transmissibility (Dk/t) requirements that are present in a literature. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  12. Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts

    NASA Astrophysics Data System (ADS)

    Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming

    2017-12-01

    A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.

  13. A mechanistic investigation of the oxygen fixation hypothesis and oxygen enhancement ratio.

    PubMed

    Grimes, David Robert; Partridge, Mike

    2015-12-04

    The presence of oxygen in tumours has substantial impact on treatment outcome; relative to anoxic regions, well-oxygenated cells respond better to radiotherapy by a factor 2.5-3. This increased radio-response is known as the oxygen enhancement ratio. The oxygen effect is most commonly explained by the oxygen fixation hypothesis, which postulates that radical-induced DNA damage can be permanently 'fixed' by molecular oxygen, rendering DNA damage irreparable. While this oxygen effect is important in both existing therapy and for future modalities such a radiation dose-painting, the majority of existing mathematical models for oxygen enhancement are empirical rather than based on the underlying physics and radiochemistry. Here we propose a model of oxygen-enhanced damage from physical first principles, investigating factors that might influence the cell kill. This is fitted to a range of experimental oxygen curves from literature and shown to describe them well, yielding a single robust term for oxygen interaction obtained. The model also reveals a small thermal dependency exists but that this is unlikely to be exploitable.

  14. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury.

    PubMed

    Rosenthal, Guy; Hemphill, J Claude; Sorani, Marco; Martin, Christine; Morabito, Diane; Obrist, Walter D; Manley, Geoffrey T

    2008-06-01

    Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. Prospective observational study. Level I trauma center. Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. None. P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.

  15. Research on oxygen recovery systems for use in space capsules

    NASA Technical Reports Server (NTRS)

    Selman, J. R.; Steunenberg, R. K.; Cairns, E. J.

    1973-01-01

    An improved electrochemical process was investigated for the recovery of oxygen from the atmospheres of manned space capsules. The objective of the proposed system is to recover the oxygen from CO2 with high efficiency and to recover the additional amount of oxygen from water that is required to provide a total oxygen makeup stream of about 2.0 lb/man-day. The carbon from the CO2 must be converted into a readily disposable or usable form. The results are given of initial experiments with a porous stainless steel cathode in a LiCl-KCl electrolyte with small additions of oxide, carbonate, and hydroxide.

  16. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  17. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    PubMed

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.

  18. On the subduction of oxygenated surface water in submesoscale cold filaments off Peru.

    NASA Astrophysics Data System (ADS)

    Thomsen, Soeren; Kanzow, Torsten; Colas, Francois; Echevin, Vincent; Krahmann, Gerd

    2015-04-01

    The Peruvian upwelling regime is characterized by pronounced submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting submesoscale processes. In this study the role of submesoscale processes for both the ventilation of the near-coastal oxygen minimum zone off Peru and the physical-biogeochemical coupling at these scales is investigated. For our study we use satellite based sea surface temperature measurements in combination with multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) are analysed. At the beginning of our observations a previously upwelled, productive and highly oxygenated body of water is found within the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found within the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of passive tracers and Lagrangian floats within several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The simulated temporal evolution of the tracers and floats support our interpretation that the subduction of previously upwelled water indeed occurs within cold filaments off Peru. Filaments are common features within eastern boundary upwelling systems, which all encompass large oxygen minimum zones. However, most state of-the-art large and regional scale physical

  19. Origin of oxygen in sulfate during pyrite oxidation with water and dissolved oxygen: an in situ horizontal attenuated total reflectance infrared spectroscopy isotope study.

    PubMed

    Usher, Courtney R; Cleveland, Curtis A; Strongin, Daniel R; Schoonen, Martin A

    2004-11-01

    FeS2 (pyrite) is known to react with water and dissolved molecular oxygen to form sulfate and iron oxyhydroxides. This process plays a large role in the environmentally damaging phenomenon known as acid mine drainage. An outstanding scientific issue has been whether the oxygen in the sulfate and oxyhydroxide product was derived from water and/or dissolved oxygen. By monitoring the reaction in situ with horizontal attenuated total reflectance infrared spectroscopy, it was found that when using 18O isotopically substituted water, the majority of the infrared absorbance due to sulfate product red-shifted approximately 70 cm(-1) relative to the absorbance of sulfate using H(2)16O as a reactant. Bands corresponding to the iron oxyhydroxide product did not shift. These results indicate water as the primary source of oxygen in the sulfate product, while the oxygen atoms in the iron oxyhydroxide product are obtained from dissolved molecular oxygen.

  20. Production and use of metals and oxygen for lunar propulsion

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.; Groth, Mary F.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  1. Triple oxygen isotope composition of photosynthetic oxygen

    NASA Astrophysics Data System (ADS)

    van der Meer, Anne; Kaiser, Jan

    2013-04-01

    The measurement of biological production rates is essential for our understanding how marine ecosystems are sustained and how much CO2 is taken up through aquatic photosynthesis. Traditional techniques to measure marine production are laborious and subject to systematic errors. A biogeochemical approach based on triple oxygen isotope measurements in dissolved oxygen (O2) has been developed over the last few years, which allows the derivation of gross productivity integrated over the depth of the mixed layer and the time-scale of O2 gas exchange (Luz and Barkan, 2000). This approach exploits the relative 17O/16O and 18O/16O isotope ratio differences of dissolved O2 compared to atmospheric O2 to work out the rate of biological production. Two parameters are key for this calculation: the isotopic composition of dissolved O2 in equilibrium with air and the isotopic composition of photosynthetic oxygen. Recently, a controversy has emerged in the literature over these parameters (Kaiser, 2011) and one of the goals of this research is to provide additional data to resolve this controversy. In order to obtain more information on the isotopic signature of biological oxygen, laboratory experiments have been conducted to determine the isotopic composition of oxygen produced by different phytoplankton cultures.

  2. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy.

    PubMed

    McMonnies, Charles

    This review examines the role of oxidative stress in damage to cells of the trabecular meshwork and associated impaired aqueous drainage as well as damage to retinal ganglion cells and associated visual field losses. Consideration is given to the interaction between vascular and mechanical explanations for pathological changes in glaucoma. For example, elevated intraocular pressure (IOP) forces may contribute to ischaemia but there is increasing evidence that altered blood flow in a wider sense is also involved. Both vascular and mechanical theories are involved through fluctuations in intraocular pressure and dysregulation of blood flow. Retinal function is very sensitive to changes in haemoglobin oxygen concentration and the associated variations in the production of reactive oxygen species. Reperfusion injury and production of reactive oxygen species occurs when IOP is elevated or blood pressure is low and beyond the capacity for blood flow autoregulation to maintain appropriate oxygen concentration. Activities such as those associated with postural changes, muscular effort, eye wiping and rubbing which cause IOP fluctuation, may have significant vascular, mechanical, reperfusion and oxidative stress consequences. Hyperbaric oxygen therapy exposes the eye to increased oxygen concentration and the risk of oxidative damage in susceptible individuals. However, oxygen concentration in aqueous humour, and the risk of damage to trabecular meshwork cells may be greater if hyperbaric oxygen is delivered by a hood which exposes the anterior ocular surface to higher than normal oxygen levels. Oronasal mask delivery of hyperbaric oxygen therapy appears to be indicated in these cases. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  3. Evolution of Metallicity in Vanadium Dioxide by Creation of Oxygen Vacancies

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zuo, Fan; Wan, Chenghao; Dutta, Aveek; Kim, Jongbum; Rensberg, Jura; Nawrodt, Ronny; Park, Helen Hejin; Larrabee, Thomas J.; Guan, Xiaofei; Zhou, You; Prokes, S. M.; Ronning, Carsten; Shalaev, Vladimir M.; Boltasseva, Alexandra; Kats, Mikhail A.; Ramanathan, Shriram

    2017-03-01

    Tuning of the electronic state of correlated materials is key to their eventual use in advanced electronics and photonics. The prototypical correlated oxide (VO2 ) is insulating at room temperature and transforms to a metallic state when heated to 67 °C (340 K). We report the emergence of a metallic state that is preserved down to 1.8 K by annealing thin films of VO2 at an ultralow oxygen partial pressure (PO2˜10-24 atm ). The films can be reverted back to their original state by annealing in oxygen, and this process can be iterated multiple times. The metallic phase created by oxygen deficiency has a tetragonal rutile structure and contains a large number of oxygen vacancies far beyond the solubility at equilibrium (greater than approximately 50 times). The oxygen starvation reduces the oxidation state of vanadium from V4 + to V3 + and leads to the metallization. The extent of resistance reduction (concurrent with tuning of optical properties) can be controlled by the time-temperature envelope of the annealing conditions since the process is diffusionally driven. This experimental platform, which can extensively tune oxygen vacancies in correlated oxides, provides an approach to study emergent phases and defect-mediated adaptive electronic and structural phase boundary crossovers.

  4. Nitrogen transformation of reclaimed wastewater in a pipeline by oxygen injection.

    PubMed

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2009-06-01

    A study of oxygen injection was performed in a completely filled gravity pipe, which is part of the South Tenerife reclaimed wastewater reuse scheme (Spain), in order to inhibit the appearance of anaerobic conditions by a nitrification-denitrification process. The pipe was 0.6 m in diameter and 62 km long and made of cast iron with a concrete inner coating, A high-pressure oxygen injection system was installed at 16 km from the pipe inlet, where severe anaerobic conditions appear. Experiments on oxygen injection were carried out with three different concentrations (7, 15 and 30 mg l(-1) O2). In all experiments, oxygen dissolved properly after injection, and no gas escapes were detected during water transportation. Most oxygen was consumed in the nitrification process, due to the low COD/NH4-N ratio, leading to a maximum production of oxidized nitrogen compounds of 7.5 mg l(-1) NO(x)-N with the 30 mg l(-1) O2 dose. Nitrification occured with nitrite accumulation, attributed to the presence of free ammonia within the range 1.2-1.4 mg l(-). Once the oxygen had been consumed, an apparent half-order denitrification took place, with limitation of biodegradable organic matter. The anoxic conditions led to a complete inhibition of sulphide generation.

  5. Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen.

    PubMed

    Miyamoto, Sayuri; Nantes, Iseli L; Faria, Priscila A; Cunha, Daniela; Ronsein, Graziella E; Medeiros, Marisa H G; Di Mascio, Paolo

    2012-10-01

    The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O(2)((1)Δ(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [(18)O(2)((1)Δ(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).

  6. Method for obtaining oxygen from lunar or similar soil

    NASA Technical Reports Server (NTRS)

    Downs, W. R. (Inventor)

    1973-01-01

    Recovery of oxygen from soil containing metal oxides such as alumina, silica, calcia, magnesia, and ilmenite wherein the material containing the oxides is placed in a vessel and reacted with fluorine to provide oxygen and metal fluorides. The oxygen produced from the reaction is recovered and stored, after further purifying processes, and the metal fluorides are further reacted with potassium vapor to provide potassium fluoride and free metals. The potassium fluoride is than subjected to electrolysis whereby the potassium and fluorine are separated and are recycled for further use in the system. Valuable free metals are recovered for other uses.

  7. COPD and air travel: oxygen equipment and preflight titration of supplemental oxygen.

    PubMed

    Akerø, Aina; Edvardsen, Anne; Christensen, Carl C; Owe, Jan O; Ryg, Morten; Skjønsberg, Ole H

    2011-07-01

    Patients with COPD may need supplemental oxygen during air travel to avoid development of severe hypoxemia. The current study evaluated whether the hypoxia-altitude simulation test (HAST), in which patients breathe 15.1% oxygen simulating aircraft conditions, can be used to establish the optimal dose of supplemental oxygen. Also, the various types of oxygen-delivery equipment allowed for air travel were compared. In a randomized crossover trial, 16 patients with COPD were exposed to alveolar hypoxia: in a hypobaric chamber (HC) at 2,438 m (8,000 ft) and with a HAST. During both tests, supplemental oxygen was given by nasal cannula (NC) with (1) continuous flow, (2) an oxygen-conserving device, and (3) a portable oxygen concentrator (POC). PaO(2) kPa (mm Hg) while in the HC and during the HAST with supplemental oxygen at 2 L/min (pulse setting 2) on devices 1 to 3 was (1) 8.6 ± 1.0 (65 ± 8) vs 12.5 ± 2.4 (94 ± 18) (P < .001), (2) 8.6 ± 1.6 (64 ± 12) vs 9.7 ± 1.5 (73 ± 11) (P < .001), and (3) 7.7 ± 0.9 (58 ± 7) vs 8.2 ± 1.1 (62 ± 8) (P= .003), respectively. The HAST may be used to identify patients needing supplemental oxygen during air travel. However, oxygen titration using an NC during a HAST causes accumulation of oxygen within the facemask and underestimates the oxygen dose required. When comparing the various types of oxygen-delivery equipment in an HC at 2,438 m (8,000 ft), compressed gaseous oxygen with continuous flow or with an oxygen-conserving device resulted in the same PaO(2), whereas a POC showed significantly lower PaO(2) values. ClinicalTrials.gov; No.: Identifier: NCT01019538; URL: clinicaltrials.gov.

  8. Osmotic phenomena in application for hyperbaric oxygen treatment.

    PubMed

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  9. A porous media theory for characterization of membrane blood oxygenation devices

    NASA Astrophysics Data System (ADS)

    Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira

    2013-07-01

    A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.

  10. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  11. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating

    DOE PAGES

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; ...

    2017-06-29

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  12. Oxygen scrubbing and sensing in plant growth chambers using solid oxide electrolyzers

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; MacElroy, Robert D.

    1997-01-01

    The maintenance of optimal levels of oxygen in the gaseous environment of a plant growth chamber during light and dark periods is an essential criterion for the correct growth of plants. The use of solid oxide electrolyzers to control the oxygen levels by removing the excess gaseous oxygen during periods of illumination and full-scale photosynthesis is described. A part of the oxygen removed can be stored and supplied back to the plants during dark periods. The excess oxygen can be used by the crew. The electrolizer can be additionally used in its open circuit mode, to sense the oxygen concentrations in the plant chamber. The solid oxide electrolysis process is described.

  13. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.

    PubMed

    Bucci, Enrico

    2009-06-01

    Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.

  14. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  15. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    PubMed

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  16. Review of Membrane Oxygen Enrichment for Efficient Combustion

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Oxygen enrichment from air is a simple way of increasing the efficiency of combustion process, as in oxy-combustion. Oxy-combustion has become one of the most attracting combustion technologies because of its potential to address both pollutant reduction and CO2 capture. In oxy-combustion, the fuel and recycled flue gas are combusted with oxygen enriched air (OEA). By using OEA, many benefits can be obtained, such as increasing available heat, improving ignition characteristics, flue gas reduction, increasing productivity, energy efficiency, turndown ratio, and flame stability. Membrane-based gas separation for OEA production becomes an attractive technology over the conventional technology due to the some advantages, including low capital cost, low energy consumption, compact size, and modularity. A single pass through membrane usually can enrich O2 concentration in the air up to 35% and a 50% concentration can be achieved with a double pass of membrane. The use of OEA in the combustion process eliminates the presence of nitrogen in the flue gas. Hence, the flue gas is mainly composed of CO2 and condensable water that can be easily separated. This paper gives an overview of oxy-combustion with membrane technology for oxygen enrichment process. Special attention is given to OEA production and the effect of OEA to the efficiency of combustion.

  17. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  18. Defining hazards of supplemental oxygen therapy in neonatology using the FMEA tool.

    PubMed

    van der Eijk, Anne Catherine; Rook, Denise; Dankelman, Jenny; Smit, Bert Johan

    2013-01-01

    To prospectively evaluate hazards in the process of supplemental oxygen therapy in very preterm infants hospitalized in a Dutch NICU. A Failure Mode and Effects Analysis (FMEA) was conducted by a multidisciplinary team. This team identified, evaluated, and prioritized hazards of supplemental oxygen therapy in preterm infants. After accrediting "hazard scores" for each step in this process, recommendations were formulated for the main hazards. Performing the FMEA took seven meetings of 2 hours. The top 10 hazards could all be categorized into three main topics: incorrect adjustment of the fraction of inspired oxygen (FiO2), incorrect alarm limits for SpO2, and incorrect pulse-oximetry alarm limits on patient monitors for temporary use. The FMEA culminated in recommendations in both educational and technical directions. These included suggestions for (changes in) protocols on alarm limits and manual FiO2 adjustments, education of NICU staff on hazards of supplemental oxygen, and technical improvements in respiratory devices and patient monitors. The FMEA prioritized flaws in the process of supplemental oxygen therapy in very preterm infants. Thanks to the structured approach of the analysis by a multidisciplinary team, several recommendations were made. These recommendations are currently implemented in the study's center.

  19. Post‐mortem oxygen isotope exchange within cultured diatom silica

    PubMed Central

    Sloane, Hilary J.; Rickaby, Rosalind E.M.; Cox, Eileen J.; Leng, Melanie J.

    2017-01-01

    Rationale Potential post‐mortem alteration to the oxygen isotope composition of biogenic silica is critical to the validity of palaeoclimate reconstructions based on oxygen isotope ratios (δ18O values) from sedimentary silica. We calculate the degree of oxygen isotope alteration within freshly cultured diatom biogenic silica in response to heating and storing in the laboratory. Methods The experiments used freshly cultured diatom silica. Silica samples were either stored in water or dried at temperatures between 20 °C and 80 °C. The mass of affected oxygen and the associated silica‐water isotope fractionation during alteration were calculated by conducting parallel experiments using endmember waters with δ18O values of −6.3 to −5.9 ‰ and −36.3 to −35.0 ‰. Dehydroxylation and subsequent oxygen liberation were achieved by stepwise fluorination with BrF5. The 18O/16O ratios were measured using a ThermoFinnigan MAT 253 isotope ratio mass spectrometer. Results Significant alterations in silica δ18O values were observed, most notably an increase in the δ18O values following drying at 40–80 °C. Storage in water for 7 days between 20 and 80 °C also led to significant alteration in δ18O values. Mass balance calculations suggest that the amount of affected oxygen is positively correlated with temperature. The estimated oxygen isotope fractionation during alteration is an inverse function of temperature, consistent with the extrapolation of models for high‐temperature silica‐water oxygen isotope fractionation. Conclusions Routinely used preparatory methods may impart significant alterations to the δ18O values of biogenic silica, particularly when dealing with modern cultured or field‐collected material. The significance of such processes within natural aquatic environments is uncertain; however, there is potential that similar processes also affect sedimentary diatoms, with implications for the interpretation of biogenic silica‐hosted δ18O

  20. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO 2.5-σ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qinghua; He, Xu; Shi, Jinan

    Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less

  1. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO 2.5-σ

    DOE PAGES

    Zhang, Qinghua; He, Xu; Shi, Jinan; ...

    2017-07-24

    Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less

  2. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation

    DOE PAGES

    Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; ...

    2016-02-24

    Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, we developed a method to imprint a periodic micropattern of oxygen on the surface of GDP and used it to fabricate a flat sample for empirical testing.

  3. Fuzzy logic assisted control of inspired oxygen in ventilated newborn infants.

    PubMed Central

    Sun, Y.; Kohane, I.; Stark, A. R.

    1994-01-01

    The control of oxygen delivery to mechanically ventilated newborn infants is a time intensive process that must balance adequate tissue oxygenation against possible toxic effects of oxygen exposure. Investigation in computer assisted control of mechanical ventilation is increasing, although very few studies involve newborn infants. We have implemented a fuzzy controller for the adjustment of inspired oxygen concentration (FIO2) in ventilated newborns. The controller utilizes rules produced by neonatologists, and operates in real-time. A clinical trial of this controller is currently taking place in the neonatal intensive care unit (NICU) of Children's Hospital, Boston, MA. PMID:7950026

  4. Oxygen sensing and signaling.

    PubMed

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  5. Study of Oxygen Diffusion in Reduced LiNbO3 Crystals

    NASA Astrophysics Data System (ADS)

    Yatsenko, A. V.; Pritulenko, A. S.; Yagupov, S. V.; Sugak, D. Yu.; Sol'skii, I. M.

    2018-03-01

    Using the method of impedance spectroscopy and optical density measurements, the diffusion of oxygen in single crystals of lithium niobate of the congruent composition after the reductive thermochemical processing is studied. The parameters describing the diffusion of oxygen in the temperature range 493-693 K are established.

  6. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    NASA Astrophysics Data System (ADS)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-04-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  7. Methodology for the assessment of oxygen as an energy carrier

    NASA Astrophysics Data System (ADS)

    Yang, Ming Wei

    Due to the energy intensity of the oxygen generating process, the electric power grid would benefit if the oxygen generating process was consumed electric power only during low demand periods. Thus, the question to be addressed in this study is whether oxygen production and/or usage can be modified to achieve energy storage and/or transmission objectives at lower cost. The specific benefit to grid would be a leveling, over time, of the demand profile and thus would require less installation capacity. In order to track the availability of electricity, a compressed air storage unit is installed between the cryogenic distillation section and the main air compressor of air separation unit. A profit maximizing scheme for sizing storage inventory and related equipments is developed. The optimum scheme is capable of market responsiveness. Profits of steel maker, oxy-combustion, and IGCC plants with storage facilities can be higher than those plants without storage facilities, especially, at high-price market. Price tracking feature of air storage integration will certainly increase profit margins of the plants. The integration may push oxy-combustion and integrated gasification combined cycle process into economic viability. Since oxygen is used in consumer sites, it may generate at remote locations and transport to the place needed. Energy losses and costs analysis of oxygen transportation is conducted for various applications. Energy consumptions of large capacity and long distance GOX and LOX pipelines are lower than small capacity pipelines. However, transportation losses and costs of GOX and LOX pipelines are still higher than electricity transmission.

  8. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.

  9. Nitrogen and Oxygen Photochemistry following SL9

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Allen, Mark; Gladstone, G. Randall

    1995-01-01

    The collision of Shoemaker Levy 9 (SL9) with Jupiter caused many new molecular species to be deposited in the Jovian stratosphere. We use a photochemical model to follow the evolution of the impact derived species. Our results regarding the nitrogen and oxygen compounds are presented here. NH3 photolysis initiates the nitrogen photochemistry. Much of the nitrogen ends up in N2, nitrogen-sulfur compounds, and HCN, but NH3 and nitriles such as C2H3CN may also exist in observable quantities for a year or so after the impacts. Oxygen species survive for a long time in the Jovian stratosphere. The only major oxygen containing compounds that exhibit dramatic changes in the lower stratosphere in the first year following the impacts are SO, SO2, and OCS - H2O, CO2, and CO are comparatively stable. We discuss the important photochemical processes operating on the nitrogen and oxygen species in the Jovian stratosphere, make prediction concerning the temporal variation of the major species, and identify molecules that might act as good tracers for atmospheric dynamics.

  10. STS-84 oxygen generator for Mir installation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    McDonnell Douglas-SPACEHAB technicians strap in place a Russian- made oxygen generator on the floor of a SPACEHAB Double Module, being prepared for flight in the SPACEHAB Payload Processing Facility. From left, are Mark Halavin and Marc Tuttle. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  11. STS-84 oxygen generator for Mir installation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    McDonnell Douglas-SPACEHAB technicians oversee the move of a Russian-made oxygen generator to a SPACEHAB Double Module, at rear, in the SPACEHAB Payload Processing Facility. With faces visible in center foreground, from left, are Mark Halavin and Marc Tuttle; Mike Vawter is at far right. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  12. High oxygen facilitates wound induction of suberin polyphenolics in kiwifruit.

    PubMed

    Wei, Xiaopeng; Mao, Linchun; Han, Xueyuan; Lu, Wenjing; Xie, Dandan; Ren, Xingchen; Zhao, Yuying

    2018-04-01

    Rapid wound healing would be critical for successful long-term storage of fruits and vegetables. However, there was no direct evidence for the requirement and efficiency of oxygen in the fruit wound-healing process. This study was conducted to investigate the role of oxygen in wound-induced suberization by analyzing melanin, suberin polyphenolics (SPPs) and related enzymes in half-cut kiwifruits exposed to 100%, 50%, 21% and 0% oxygen. By 3 days after wounding, the wound surface of kiwifruit in high (50 and 100%) oxygen appeared as a continuous layer of melanin and SPPs underneath, which effectively prevent excessive water vapor loss from the fruit halves. In contrast, melanin and SPPs deposition in the wound surface in 0% oxygen was significantly reduced, with high water vapor loss. Rapid decrease of soluble phenolic acids (caffeic, p-coumaric, ferulic acids) was coupled with the increase of bound ferulic acid (coniferyl diacetate) especially in high oxygen by 9 days after wounding. Meanwhile, high oxygen enhanced peroxidase, catalase, phenylalanine ammonia-lyase, and polyphenol oxidase activities. Oxygen is required for wound-induced melanin and SPPs formation, and high oxygen is effective in promoting wound suberization in postharvest kiwifruit. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers install the liquid oxygen feedline for the 17-inch disconnect on orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers install the liquid oxygen feedline for the 17-inch disconnect on orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  14. Image-based modelling of skeletal muscle oxygenation

    PubMed Central

    Clough, G. F.

    2017-01-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo. Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange. PMID:28202595

  15. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  16. A Survey of Alternative Oxygen Production Technologies

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.; Parrish, Clyde F.; Buttner, William J.; Surma, Jan M.; Delgado, H. (Technical Monitor)

    2001-01-01

    Utilization of the Martian atmosphere for the production of fuel and oxygen has been extensively studied. The baseline fuel production process is a Sabatier reactor, which produces methane and water from carbon dioxide and hydrogen. The oxygen produced from the electrolysis of the water is only half of that needed for methane-based rocket propellant, and additional oxygen is needed for breathing air, fuel cells and other energy sources. Zirconia electrolysis cells for the direct reduction of CO2 arc being developed as an alternative means of producing oxygen, but present many challenges for a large-scale oxygen production system. The very high operating temperatures and fragile nature of the cells coupled with fairly high operating voltages leave room for improvement. This paper will survey alternative oxygen production technologies, present data on operating characteristics, materials of construction, and some preliminary laboratory results on attempts to implement each. Our goal is to significantly improve upon the characteristics of proposed zirconia cells for oxygen production. To achieve that goal we are looking at electrolytic systems that operate at significantly lower temperatures, preferably below 31C to allow the incorporation of liquid CO2 in the electrolyte. Our preliminary results indicate that such a system will have much higher current densities and have simpler cathode construction than a porous gas feed electrode system. Such a system could be achieved based on nonaqueous electrolytes or ionic liquids. We are focusing our research on the anode reaction that will produce oxygen from a product generated at the cathode using CO2 as the feed. Operation at low temperatures also will open up the full range of polymer and metal materials, allowing a more robust system design to withstand the rigors of flight, landing, and long term unattended operation on the surface of Mars.

  17. Hyperbaric Oxygen Therapy

    MedlinePlus

    ... therapy session. What you can expect During hyperbaric oxygen therapy Hyperbaric oxygen therapy typically is performed as ... the therapy unit throughout your treatment. After hyperbaric oxygen therapy You may feel somewhat tired or hungry ...

  18. Oxygen Uptake. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Wooley, John F.

    Biological waste treatment in the activated sludge process is based on the ability of microorganisms to use dissolved oxygen in breaking down soluble organic substances. The oxygen uptake test is a means of measuring the respiration rate of microorganisms in this process. Designed for individuals who have completed National Pollutant Discharge…

  19. The 2010 Field Demonstration of the Solar Carbothermal Reduction of Regolith to Produce Oxygen

    NASA Technical Reports Server (NTRS)

    Gustafson, R. J.; White, B. C.; Fidler, M. J.; Muscatello, Anthony C.

    2010-01-01

    The Moon and other space exploration destinations are comprised of a variety of oxygen-bearing minerals, providing a virtually unlimited quantity of raw material which can be processed to produce oxygen. One attractive method to extract oxygen from the regolith is the carbothermal reduction process, which is not sensitive to variations in the mineral composition of the regolith. It also creates other valuable resources within the processed regolith, such as iron and silicon metals. Using funding from NASA, ORBITEC recently built and tested the Carbothermal Regolith Reduction Module to process lunar regolith simulants using concentrated solar energy. This paper summarizes the experimental test results obtained during a demonstration of the system at a lunar analog test site on the Mauna Kea volcano on Hawaii in February 2010.

  20. Providing oxygen to children in hospitals: a realist review

    PubMed Central

    Tosif, Shidan; Gray, Amy; Qazi, Shamim; Campbell, Harry; Peel, David; McPake, Barbara; Duke, Trevor

    2017-01-01

    Abstract Objective To identify and describe interventions to improve oxygen therapy in hospitals in low-resource settings, and to determine the factors that contribute to success and failure in different contexts. Methods Using realist review methods, we scanned the literature and contacted experts in the field to identify possible mechanistic theories of how interventions to improve oxygen therapy systems might work. Then we systematically searched online databases for evaluations of improved oxygen systems in hospitals in low- or middle-income countries. We extracted data on the effectiveness, processes and underlying theory of selected projects, and used these data to test the candidate theories and identify the features of successful projects. Findings We included 20 improved oxygen therapy projects (45 papers) from 15 countries. These used various approaches to improving oxygen therapy, and reported clinical, quality of care and technical outcomes. Four effectiveness studies demonstrated positive clinical outcomes for childhood pneumonia, with large variation between programmes and hospitals. We identified factors that help or hinder success, and proposed a practical framework depicting the key requirements for hospitals to effectively provide oxygen therapy to children. To improve clinical outcomes, oxygen improvement programmes must achieve good access to oxygen and good use of oxygen, which should be facilitated by a broad quality improvement capacity, by a strong managerial and policy support and multidisciplinary teamwork. Conclusion Our findings can inform practitioners and policy-makers about how to improve oxygen therapy in low-resource settings, and may be relevant for other interventions involving the introduction of health technologies. PMID:28479624

  1. The production of oxygen and metal from lunar regolith

    NASA Astrophysics Data System (ADS)

    Schwandt, Carsten; Hamilton, James A.; Fray, Derek J.; Crawford, Ian A.

    2012-12-01

    The present article summarises the various methods that have been, and still are, explored for the production of oxygen from lunar materials. These include the classical concepts based on chemical reduction with hydrogen or methane, vapour phase pyrolysis, sulphuric acid treatment, and molten oxide electrolysis. Our main focus in this paper is on a novel approach developed at the University of Cambridge that employs molten salt electrochemistry to achieve the combined winning of oxygen and metal from solid lunar materials of varying composition. This makes the Cambridge process attractive because it will work equally well in mare as in highland regions. We also discuss the implications of the recent apparent discovery of water ice at the poles of the Moon and conclude that, even if this discovery is confirmed, it will nevertheless be desirable to provide oxygen at non-polar localities, and the Cambridge process is a strong candidate for achieving this.

  2. Oxygen transfer in a full-depth biological aerated filter.

    PubMed

    Stenstrom, Michael K; Rosso, Diego; Melcer, Henryk; Appleton, Ron; Occiano, Victor; Langworthy, Alan; Wong, Pete

    2008-07-01

    The City of San Diego, California, evaluated the performance capabilities of biological aerated filters (BAFs) at the Point Loma Wastewater Treatment Plant. The City conducted a 1-year pilot-plant evaluation of BAF technology supplied by two BAF manufacturers. This paper reports on the first independent oxygen-transfer test of BAFs at full depth using the offgas method. The tests showed process-water oxygen-transfer efficiencies of 1.6 to 5.8%/m (0.5 to 1.8%/ft) and 3.9 to 7.9%/m (1.2 to 2.4%/ft) for the two different pilot plants, at their nominal design conditions. Mass balances using chemical oxygen demand and dissolved organic carbon corroborated the transfer rates. Rates are higher than expected from fine-pore diffusers for similar process conditions and depths and clean-water conditions for the same column and are mostly attributed to extended bubble retention time resulting from interactions with the media and biofilm.

  3. Influence of oxygen on the carbide formation on tungsten

    NASA Astrophysics Data System (ADS)

    Luthin, J.; Linsmeier, Ch.

    2001-03-01

    As a first wall material in nuclear fusion devices, tungsten will interact with carbon and oxygen from the plasma. In this study, we report on the process of thermally induced carbide formation of thin carbon films on polycrystalline tungsten and the influence of oxygen on this process. All investigations are performed using X-ray photoelectron spectroscopy (XPS). Carbon films are supplied through electron beam evaporation of graphite. The carbidization process, monitored during increased substrate temperature, can be divided into four phases. In phase I disordered carbon converts into graphite-like carbon. In phase II significant diffusion and the reaction to W 2C is observed, followed by phase III which is dominated by the presence of W 2C and the beginning reaction to WC. Finally in phase IV only WC is present, but the total carbon amount has strongly decreased. Different mechanisms of oxygen influence on the carbide formation are proposed and measurements of the reaction of carbon on tungsten with intermediate oxide layers are presented in detail. A WO 2+ x intermediate layer completely inhibits the carbide formation, while a WO 2 layer leads to WC formation at temperatures above 1270 K.

  4. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  5. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  6. Singlet oxygen generation in gas discharge for oxygen-iodine laser pumping

    NASA Astrophysics Data System (ADS)

    Lopaev, D. V.; Braginsky, O. V.; Klopovsky, K. S.; Kovalev, A. S.; Mankelevich, Yu. A.; Popov, N. A.; Rakhimov, A. T.; Rakhimova, T. V.; Vasilieva, A. N.

    2004-09-01

    The possibility of development of effective discharged singlet oxygen (SO) generator (DSOG) for oxygen-iodine laser (OIL) is studied in detail. Researches of kinetics of oxygen atoms and oxygen molecules in the lowest metastable singlet states have been carried out in the different discharges and its afterglow (DC discharges, E-beam controlled discharge and RF discharges) in both CW and pulsed mode in a wide range of conditions (pressures, gas mixtures, energy deposits etc.). The models developed for all the discharges have allowed us to analyze SO generation and loss mechanisms and to find out the key-parameters controlling the highest SO yield. It is shown that in addition to spatial plasma uniformity at low E/N and high specific energy deposit per oxygen molecule, DSOG must be oxygen atom free to avoid fast three-body quenching of SO by atomic oxygen with increasing pressure and thereby to provide pressure scaling (in tens Torrs) for applying to real OIL systems.

  7. Oxygen consumption along bed forms under losing and gaining streamflow conditions

    NASA Astrophysics Data System (ADS)

    De Falco, Natalie; Arnon, Shai; Boano, Fulvio

    2016-04-01

    Recent studies have demonstrated that bed forms are the most significant geomorphological structure that drives hyporheic exchange and biogeochemical processes in stream networks. Other studies also demonstrated that due to the hyporheic flow patterns within bed form, biogeochemical processes do not occur uniformly along and within the bed forms. The objective of this work was to systematically evaluate how losing or gaining flow conditions affect oxygen consumption by biofilm along sandy bed forms. We measured the effects of losing and gaining flow conditions on oxygen consumption by combining modeling and experiments in a novel laboratory flume system that enable the control of losing and gaining fluxes. Oxygen consumption was measured after growing a benthic biofilm fed with Sodium Benzoate (as a carbon source) and measuring the distribution of oxygen in the streambed with microelectrodes. The experimental results were analyzed using a novel code that calculates vertical profiles of reaction rates in the presence of hyporheic water fluxes. These experimental observations and modeling revealed that oxygen distribution varied along the bed forms. The zone of oxygen consumption (i.e. depth of penetration) was the largest at the upstream side of the bed form and the smallest in the lee side (at the lowest part of the bed form), regardless of the flow conditions. Also, the zone of oxygen consumption was the largest under losing conditions, the smallest under gaining conditions, and in-between under neutral conditions. The distribution of oxygen consumption rates determined with our new model will be also discussed. Our preliminary results enable us to show the importance of the coupling between flow conditions and oxygen consumption along bed forms and are expected to improve our understanding of nutrient cycling in streams.

  8. An Improved Approach for Analyzing the Oxygen Compatibility of Solvents and other Oxygen-Flammable Materials for Use in Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Harper, Susan A.; Juarez, Alfredo; Peralta, Stephen F.; Stoltzfus, Joel; Arpin, Christina Pina; Beeson, Harold D.

    2016-01-01

    Solvents used to clean oxygen system components must be assessed for oxygen compatibility, as incompatible residue or fluid inadvertently left behind within an oxygen system can pose a flammability risk. The most recent approach focused on solvent ignition susceptibility to assess the flammability risk associated with these materials. Previous evaluations included Ambient Pressure Liquid Oxygen (LOX) Mechanical Impact Testing (ASTM G86) and Autogenous Ignition Temperature (AIT) Testing (ASTM G72). The goal in this approach was to identify a solvent material that was not flammable in oxygen. As environmental policies restrict the available options of acceptable solvents, it has proven difficult to identify one that is not flammable in oxygen. A more rigorous oxygen compatibility approach is needed in an effort to select a new solvent for NASA applications. NASA White Sands Test Facility proposed an approach that acknowledges oxygen flammability, yet selects solvent materials based on their relative oxygen compatibility ranking, similar to that described in ASTM G63-99. Solvents are selected based on their ranking with respect to minimal ignition susceptibility, damage and propagation potential, as well as their relative ranking when compared with other solvent materials that are successfully used in oxygen systems. Test methods used in this approach included ASTM G86 (Ambient Pressure LOX Mechanical Impact Testing and Pressurized Gaseous Oxygen (GOX) Mechanical Impact Testing), ASTM G72 (AIT Testing), and ASTM D240 (Heat of Combustion (HOC) Testing). Only four solvents were tested through the full battery of tests for evaluation of oxygen compatibility: AK-225G as a baseline comparison, Solstice PF, L-14780, and Vertrel MCA. Baseline solvent AK-225G exhibited the lowest HOC and highest AIT of solvents tested. Nonetheless, Solstice PF, L-14780, and Vertrel MCA HOCs all fell well within the range of properties that are associated with proven oxygen system materials

  9. Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Nagy, A. F.; Kim, J.; Cravens, T. E.

    1990-04-01

    Optical observations of hot atoms in the atmospheres of Venus and Mars are briefly reviewed. A summary of hot hydrogen and oxygen production and loss processes is given. Results of some recent model calculations as well as a number of new results of the hot hydrogen and oxygen populations are presented and their implication in terms of solar wind interaction processes is discussed.

  10. The surface properties of fluorinated polyimides exposed to VUV and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1995-01-01

    The effect of atomic oxygen flux and VUV radiation alone and in combination on the surface of fluorinated polyimide films was studied using XPS spectroscopy. Exposure of fluorinated polyimides to VUV radiation alone caused no observable damage to the polymer surface, while an atomic oxygen flux resulted in substantial oxidation of the surface. On the other hand, exposure to VUV radiation and atomic oxygen in combination caused extensive oxidation of the polymer surface after only 2 minutes of exposure. The amount of oxidized carbon on the polymer surface indicated that there is aromatic ring opening oxidation. The changes in the O1s/C1s, N1s/C1s, and F1s/C1s ratios suggested that an ablative degradation process is highly favorable. A synergistic effect of VUV radiation in the presence of atomic oxygen is clearly evidenced from the XPS study. The atomic oxygen could be considered as the main factor in the degradation process of fluorinated polyimide films exposed to a low earth orbit environment.

  11. Efficiency of autothermal thermophilic aerobic digestion under two different oxygen flow rates.

    PubMed

    Aynur, Sebnem Koyunluoglu; Riffat, Rumana; Murthy, Sudhir

    2014-01-01

    The objective of this research was to understand the influence of oxygenation at two different oxygen flow rates (0.105 and 0.210 L/L/h) on autothermal thermophilic aerobic digestion (ATAD), and on the overall performance of Dual Digestion (DD). Profile experiments on an ATAD reactor showed that a significant portion of volatile fatty acids and ammonia were produced in the first 12 h period, and both followed first order kinetics. Ammonia concentrations of ATAD effluent were 1015 mg/L and 1450 mg/L, respectively, at the two oxygenation rates. Ammonia production was not complete in the ATAD reactor at the lower oxygenation rate. However, it was sufficient to maximize volatile solids reduction in the DD process. The biological heat of oxidations were 14,300 J/g Volatile Solids (VS) removed and 15,900 J/g VS removed for the two oxygen flow rates, respectively. The ATAD step provided enhanced digestion for the DD process with higher volatile solids removal and methane yield when compared to conventional digestion.

  12. The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen.

    PubMed

    Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret

    2016-01-01

    The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.

  13. Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation

    NASA Astrophysics Data System (ADS)

    Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.

    2017-06-01

    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.

  14. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  15. Pulverized fuel-oxygen burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less

  16. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in “mixed” samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant.

  17. Medical Oxygen Safety

    MedlinePlus

    ... to the air a patient uses to breathe. Fire needs oxygen to burn. If a fire should start in an oxygen-enriched area, the ... Homes where medical oxygen is used need specific fire safety rules to keep people safe from fire ...

  18. Effects of oxygen toxicity on cuprolinic blue-stained proteoglycans in alveolar basement membranes.

    PubMed

    Ferrara, T B; Fox, R B

    1992-02-01

    Effects of oxygen toxicity on distribution and density of proteoglycans in basement membranes of newborn rat lungs were assessed by electron microscopic analysis of tissues processed with cuprolinic blue, a cationic label that characteristically labels these anionically charged macromolecules. Newborn rats placed in greater than 95% oxygen at birth were killed at weekly intervals for 4 wk, and lung tissues fixed in 2.5% glutaraldehyde with 0.2% cuprolinic blue were processed for electron microscopy. Alveolar basement membranes from oxygen-treated and control animals were compared for differences in thickness and proteoglycan concentration and distribution. Results showed progressive thickening of alveolar basement membranes with increased duration of oxygen exposure. The normal distribution of proteoglycans, which is predominantly in the lamina rara externa of alveolar basement membranes, was frequently lost in thickened membranes found in oxygen-treated animals. Density of proteoglycans in these membranes decreased to 56% of normal by 2 wk of age and remained low with continued oxygen administration. Proteoglycan concentration in basement membranes on the interstitial side of alveolar capillaries in both control and oxygen-treated animals was low compared with proteoglycan concentration in basement membranes that opposed the alveolar air space, and administration of oxygen diminished these differences. These results demonstrate a direct alteration of proteoglycan distribution and density in the developing lung as a result of oxygen toxicity. This could result in decreased cell adhesion, influence the cellular response to lung injury, and contribute to the increased permeability seen with this disorder.

  19. Intermittent hypoxia activates peptidylglycine α-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing

    PubMed Central

    Sharma, Suresh D.; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R.; Kumar, Ganesh K.

    2009-01-01

    Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the α-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O2-sensitive peptidylglycine α-hydroxylating monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O2 for 15 s followed by 21% O2 for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of α-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM (∼1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases Vmax but has no effect on Km. IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem

  20. Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing.

    PubMed

    Sharma, Suresh D; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R; Kumar, Ganesh K

    2009-01-01

    Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the alpha-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O(2)-sensitive peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O(2) for 15 s followed by 21% O(2) for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of alpha-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM ( approximately 1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases V(max) but has no effect on K(m). IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic

  1. The newborn oxygram: automated processing of transcutaneous oxygen data.

    PubMed

    Horbar, J D; Clark, J T; Lucey, J F

    1980-12-01

    Hypoxemic and hyperoxemic episodes are common in newborns with respiratory disorders. We have developed a microprocessor-based data system for use with transcutaneous oxygen (TcPO2) monitors in an attempt to quantitate these episodes. The amount of time spent by an infant in each of ten preset TcPO2 ranges can be automatically recorded. These data are referred to as the oxygram. Fourteen newborn infants were monitored for a total of 552 hours using this system. They spent a mean of 2.96% of the time with a TcPO2 less than or equal to 40 torr and 0.26% of the time with a TcPO2 greater than 100 torr. Representative oxygrams are presented. Clinical and research applications of the data system are discussed.

  2. An Assessment of the Influence of the Industry Distribution Chain on the Oxygen Levels in Commercial Modified Atmosphere Packaged Cheddar Cheese Using Non-Destructive Oxygen Sensor Technology.

    PubMed

    O' Callaghan, Karen A M; Papkovsky, Dmitri B; Kerry, Joseph P

    2016-06-20

    The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.

  3. An Assessment of the Influence of the Industry Distribution Chain on the Oxygen Levels in Commercial Modified Atmosphere Packaged Cheddar Cheese Using Non-Destructive Oxygen Sensor Technology

    PubMed Central

    O’ Callaghan, Karen A.M.; Papkovsky, Dmitri B.; Kerry, Joseph P.

    2016-01-01

    The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure. PMID:27331815

  4. Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.

    2018-03-01

    Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).

  5. A new method to measure and model dynamic oxygen microdistributions in moving biofilms.

    PubMed

    Wang, Jian-Hui; Chen, You-Peng; Dong, Yang; Wang, Xi-Xi; Guo, Jin-Song; Shen, Yu; Yan, Peng; Ma, Teng-Fei; Sun, Xiu-Qian; Fang, Fang; Wang, Jing

    2017-10-01

    Biofilms in natural environments offer a superior solution to mitigate water pollution. Artificially intensified biofilm reactors represented by rotating biological contactors (RBCs) are widely applied and studied. Understanding the oxygen transfer process in biofilms is an important aspect of these studies, and describing this process in moving biofilms (such as biofilms in RBCs) is a particular challenge. Oxygen transfer in RBCs behaves differently than in other biological reactors due to the special oxygen supply mode that results from alternate exposure of the biofilm to wastewater and air. The study of oxygen transfer in biofilms is indispensable for understanding biodegradation in RBCs. However, the mechanisms are still not well known due to a lack of effective tools to dynamically analyze oxygen diffusion, reaction, and microdistribution in biofilms. A new experimental device, the Oxygen Transfer Modeling Device (OTMD), was designed and manufactured for this purpose, and a mathematical model was developed to model oxygen transfer in biofilm produced by an RBC. This device allowed the simulation of the local environment around the biofilm during normal RBC operation, and oxygen concentrations varying with time and depth in biofilm were measured using an oxygen microelectrode. The experimental data conformed well to the model description, indicating that the OTMD and the model were stable and reliable. Moreover, the OTMD offered a flexible approach to study the impact of a single-factor on oxygen transfer in moving biofilms. In situ environment of biofilm in an RBC was simulated, and dynamic oxygen microdistributions in the biofilm were measured and well fitted to the built model description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Realizing controllable graphene nucleation by regulating the competition of hydrogen and oxygen during chemical vapor deposition heating.

    PubMed

    Zhang, Haoran; Zhang, Yaqian; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Deng, Rongxuan; Yu, Guanghui; Jin, Zhi; Liu, Xinyu

    2016-08-24

    Oxygen can passivate Cu surface active sites when graphene nucleates. Thus, the nucleation density is decreased. The CuO/Cu substrate was chosen for graphene domain synthesis in our study. The results indicate that the CuO/Cu substrate is beneficial for large-scale, single-crystal graphene domain synthesis. Graphene grown on the CuO/Cu substrate exhibits fewer nucleation sites than on Cu foils, suggesting that graphene follows an oxygen-dominating growth. Hydrogen treatment via a heating process could weaken the surface oxygen's role in limiting graphene nucleation under the competition of hydrogen and oxygen and could transfer the synthesis of graphene into a hydrogen-dominating growth. However, the competition only exists during the chemical vapor deposition heating process. For non-hydrogen heated samples, oxygen-dominating growth is experienced even though the samples are annealed in hydrogen for a long time after the heating process. With the temperature increases, the role of hydrogen gradually decreases. The balance of hydrogen and oxygen is adjusted by introducing hydrogen gas at a different heating temperatures. The oxygen concentration on the substrate surface is believed to determine the reactions mechanisms based on the secondary ion mass spectrometry test results. This study provides a new method for the controllable synthesis of graphene nucleation during a heating process.

  7. BENTHIC-PELAGIC PROCESSES IN PENSACOLA BAY, FL: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Eutrophication caused by excess nutrients can exacerbate hypoxia by increasing bottom water and sediment respiration. However, in shallow sub-tropical estuaries, the euphotic zone often extends below the pycnocline allowing oxygen fluxes in Pensacola Bay, FL, USA. Measurements we...

  8. Optimizing radiotherapy protocols using computer automata to model tumour cell death as a function of oxygen diffusion processes.

    PubMed

    Paul-Gilloteaux, Perrine; Potiron, Vincent; Delpon, Grégory; Supiot, Stéphane; Chiavassa, Sophie; Paris, François; Costes, Sylvain V

    2017-05-23

    The concept of hypofractionation is gaining momentum in radiation oncology centres, enabled by recent advances in radiotherapy apparatus. The gain of efficacy of this innovative treatment must be defined. We present a computer model based on translational murine data for in silico testing and optimization of various radiotherapy protocols with respect to tumour resistance and the microenvironment heterogeneity. This model combines automata approaches with image processing algorithms to simulate the cellular response of tumours exposed to ionizing radiation, modelling the alteration of oxygen permeabilization in blood vessels against repeated doses, and introducing mitotic catastrophe (as opposed to arbitrary delayed cell-death) as a means of modelling radiation-induced cell death. Published data describing cell death in vitro as well as tumour oxygenation in vivo are used to inform parameters. Our model is validated by comparing simulations to in vivo data obtained from the radiation treatment of mice transplanted with human prostate tumours. We then predict the efficacy of untested hypofractionation protocols, hypothesizing that tumour control can be optimized by adjusting daily radiation dosage as a function of the degree of hypoxia in the tumour environment. Further biological refinement of this tool will permit the rapid development of more sophisticated strategies for radiotherapy.

  9. Indicators: Dissolved Oxygen

    EPA Pesticide Factsheets

    Dissolved oxygen (DO) is the amount of oxygen that is present in water. It is an important measure of water quality as it indicates a water body's ability to support aquatic life. Water bodies receive oxygen from the atmosphere and from aquatic plants.

  10. Home Oxygen Therapy

    MedlinePlus

    ... acts like a large thermos. When released, the liquid oxygen immediately converts to a gas and you breathe it in, just like the compressed oxygen in the older steel cylinders. An important advantage of liquid oxygen is you can transfer some of the ...

  11. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  12. Carbon supported MnO2-CoFe2O4 with enhanced electrocatalytic activity for oxygen reduction and oxygen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Qing; Hu, Tianjun; Zhang, Limin; Deng, Youquan

    2017-05-01

    The catalyst MnO2-CoFe2O4/C was firstly synthesized via a two-step process and applied as a bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The composite exhibits better bifunctional activity than CoFe2O4/C and MnO2/C. Moreover, superior durability and high methanol tolerance in alkaline media outperforms the commercial Pt/C electrocatalyst, which signifying its excellent potential for applications in metal-air batteries and alkaline fuel cells.

  13. Oxygen Therapy

    MedlinePlus

    ... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...

  14. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  15. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  16. Supplemental Oxygen and Carbon Dioxide Each Increase Subcutaneous and Intestinal Intramural Oxygenation

    PubMed Central

    Ratnaraj, Jebadurai; Kabon, Barbara; Talcott, Michael R.; Sessler, Daniel I.

    2005-01-01

    Oxidative killing by neutrophils, a primary defense against surgical pathogens, is directly related to tissue oxygenation. We tested the hypothesis that supplemental inspired oxygen or mild hypercapnia (end-tidal PCO2 of 50 mmHg) improves intestinal oxygenation. Pigs (25±2.5 kg) were used in two studies in random order: 1) Oxygen Study — 30% vs. 100% inspired oxygen concentration at an end-tidal PCO2 of 40 mmHg, and 2) Carbon Dioxide Study — end-tidal PCO2 of 30 mmHg vs. 50 mmHg with 30% oxygen. Within each study, treatment order was randomized. Treatments were maintained for 1.5 hours; measurements were averaged over the final hour. A tonometer inserted in the subcutaneous tissue of the left upper foreleg measured subcutaneous oxygen tension. Tonometers inserted into the intestinal wall measured intestinal intramural oxygen tension from the small and large intestines. 100% oxygen administration doubled subcutaneous oxygen partial pressure (PO2) (57±10 to 107±48 mmHg, P=0.006) and large intestine intramural PO2 (53±14 to 118±72 mmHg, P=0.014); intramural PO2increased 40% in the small intestine (37±10 to 52±25 mmHg, P=0.004). An end-tidal PCO2 of 50 mmHg increased large intestinal PO2 approximately 16% (49±10 to 57±12 mmHg, P=0.039), while intramural PO2 increased by 45% in the small intestine (31±12 to 44±16 mmHg, P=0.002). Supplemental oxygen and mild hypercapnia each increased subcutaneous and intramural tissue PO2, with supplemental oxygen being most effective. PMID:15281531

  17. Photo-oxygenation for nitritation and the effect of dissolved oxygen concentrations on anaerobic ammonium oxidation.

    PubMed

    Mukarunyana, Brigitte; van de Vossenberg, Jack; van Lier, Jules B; van der Steen, Peter

    2018-04-10

    Removal of nitrogen from wastewater without using electricity consuming aerators was previously observed in photo-bioreactors with a mixed algal-bacterial biomass. Algammox is the particular process based on algae, ammonium oxidizing organisms and anammox bacteria. In this research the activity of anammox bacteria in such an oxygen-producing environment was tested, as well as the effect of short-duration increase in dissolved oxygen (DO) to values potentially inhibiting anammox activity. Sequencing batch photo-bioreactors were fed with settled domestic wastewater enriched with ammonium (200mgNH 4 + -N/L) and exposed to light within the photosynthetic active range with intensity of about 500μmol/m 2 ·s. Each cycle consisted of 12h illumination and 12h darkness. A well-settling biomass (10days solids retention time) developed that carried out nitritation, nitrification and anammox. Ammonium removal rate during the light period was 4.5mgN-NH 4 + /L·h, equal to 858mgN-NH 4 + /m 2 ·h or 477mgN-NH 4 + /(mol photons). When the reactors were aerated for 3h to temporarily increase the DO, anammox was inhibited at bulk DO values larger than 0.4-1.0mg/L. For almost oxygen saturated conditions, recovery time was about 9days. Algammox photo-bioreactors are therefore able to overcome short periods of oxygen stress, provided they occur only occasionally. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Preservation of tumour oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging

    PubMed Central

    Kinoshita, Y; Kohshi, K; Kunugita, N; Tosaki, T; Yokota, A

    1999-01-01

    Hyperbaric oxygen (HBO) has been proposed to reduce tumour hypoxia by increasing the dissolved molecular oxygen in tissue. Using a non-invasive magnetic resonance imaging (MRI) technique, we monitored the changes in MRI signal intensity after HBO exposure because dissolved paramagnetic molecular oxygen itself shortens the T1 relation time. SCCVII tumour cells transplanted in mice were used. The molecular oxygen-enhanced MR images were acquired using an inversion recovery-preparation fast low angle shot (IR-FLASH) sequence sensitizing the paramagnetic effects of molecular oxygen using a 4.7 tesla MR system. MR signal of muscles decreased rapidly and returned to the control level within 40 min after decompression, whereas that of tumours decreased gradually and remained at a high level 60 min after HBO exposure. In contrast, the signal from the tumours in the normobaric oxygen group showed no significant change. Our data suggested that MR signal changes of tumours and muscles represent an alternation of extravascular oxygenation. The preserving tumour oxygen concentration after HBO exposure may be important regarding adjuvant therapy for cancer patients. © 2000 Cancer Research Campaign PMID:10638972

  19. Hyperbaric oxygen therapy for carbon monoxide poisoning.

    PubMed

    Weaver, Lindell K

    2014-01-01

    Despite established exposure limits and safety standards, and the availability of carbon monoxide (CO) alarms, each year 50,000 people in the United States visit emergency departments for CO poisoning. Carbon monoxide poisoning can occur from brief exposures to high levels of CO, or from longer exposures to lower levels. Common symptoms include headaches, nausea and vomiting, dizziness, general malaise, and altered mental status. Some patients may have chest pain, shortness of breath and myocardial ischemia, and may require mechanical ventilation and treatment of shock. Individuals poisoned by CO often go on to develop neurological problems, including cognitive sequelae, anxiety and depression, persistent headaches, dizziness, sleep problems, motor weakness, vestibular and balance problems, gaze abnormalities, peripheral neuropathies, hearing loss, tinnitus and Parkinsonian-like syndrome. While breathing oxygen hastens the removal of carboxyhemoglobin (COHb), hyperbaric oxygen (HBO2) hastens COHb elimination and favorably modulates inflammatory processes instigated by CO poisoning, an effect not observed with breathing normobaric oxygen. Hyperbaric oxygen improves mitochondrial function, inhibits lipid peroxidation transiently, impairs leukocyte adhesion to injured microvasculature, and reduces brain inflammation caused by the CO-induced adduct formation of myelin basic protein. Based upon three supportive randomized clinical trials in humans and considerable evidence from animal studies, HBO2 should be considered for all cases of acute symptomatic CO poisoning. Hyperbaric oxygen is indicated for CO poisoning complicated by cyanide poisoning, often concomitantly with smoke inhalation.

  20. A model for oxygen conservation associated with titration during pediatric oxygen therapy

    PubMed Central

    Wu, Grace; Wollen, Alec; Himley, Stephen; Austin, Glenn; Delarosa, Jaclyn; Izadnegahdar, Rasa; Ginsburg, Amy Sarah; Zehrung, Darin

    2017-01-01

    Background Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration. Aim To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia. Methods Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration. Results Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3), respectively. For every 100 patients, 44 or 30 kiloliters would be saved—equivalent to 733 or 500 hours at 1 liter per minute. Conclusions Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems. PMID:28234903

  1. A model for oxygen conservation associated with titration during pediatric oxygen therapy.

    PubMed

    Wu, Grace; Wollen, Alec; Himley, Stephen; Austin, Glenn; Delarosa, Jaclyn; Izadnegahdar, Rasa; Ginsburg, Amy Sarah; Zehrung, Darin

    2017-01-01

    Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration. To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia. Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration. Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3), respectively. For every 100 patients, 44 or 30 kiloliters would be saved-equivalent to 733 or 500 hours at 1 liter per minute. Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems.

  2. Wound Healing Essentials: Let There Be Oxygen

    PubMed Central

    Sen, Chandan K.

    2009-01-01

    The state of wound oxygenation is a key determinant of healing outcomes. From a diagnostic standpoint, measurements of wound oxygenation are commonly used to guide treatment planning such as amputation decision. In preventive applications, optimizing wound perfusion and providing supplemental O2 in the peri-operative period reduces the incidence of post-operative infections. Correction of wound pO2 may, by itself, trigger some healing responses. Importantly, approaches to correct wound pO2 favorably influence outcomes of other therapies such as responsiveness to growth factors and acceptance of grafts. Chronic ischemic wounds are essentially hypoxic. Primarily based on the tumor literature, hypoxia is generally viewed as being angiogenic. This is true with the condition that hypoxia be acute and mild to modest in magnitude. Extreme near-anoxic hypoxia, as commonly noted in problem wounds, is not compatible with tissue repair. Adequate wound tissue oxygenation is required but may not be sufficient to favorably influence healing outcomes. Success in wound care may be improved by a personalized health care approach. The key lies in our ability to specifically identify the key limitations of a given wound and in developing a multifaceted strategy to specifically address those limitations. In considering approaches to oxygenate the wound tissue it is important to recognize that both too little as well as too much may impede the healing process. Oxygen dosing based on the specific need of a wound therefore seems prudent. Therapeutic approaches targeting the oxygen sensing and redox signaling pathways are promising. PMID:19152646

  3. Fungal oxygen exchange between denitrification intermediates and water.

    PubMed

    Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Anette; Wrage-Mönnig, Nicole; Well, Reinhard

    2014-02-28

    Fungi can contribute greatly to N2O production from denitrification. Therefore, it is important to quantify the isotopic signature of fungal N2O. The isotopic composition of N2O can be used to identify and analyze the processes of N2O production and N2O reduction. In contrast to bacteria, information about the oxygen exchange between denitrification intermediates and water during fungal denitrification is lacking, impeding the explanatory power of stable isotope methods. Six fungal species were anaerobically incubated with the electron acceptors nitrate or nitrite and (18)O-labeled water to determine the oxygen exchange between denitrification intermediates and water. After seven days of incubation, gas samples were analyzed for N2O isotopologues by isotope ratio mass spectrometry. All the fungal species produced N2O. N2O production was greater when nitrite was the sole electron acceptor (129 to 6558 nmol N2O g dw(-1)  h(-1)) than when nitrate was the electron acceptor (6 to 47 nmol N2O g dw(-1)  h(-1)). Oxygen exchange was complete with nitrate as electron acceptor in one of five fungi and with nitrite in two of six fungi. Oxygen exchange of the other fungi varied (41 to 89% with nitrite and 11 to 61% with nitrate). This is the first report on oxygen exchange with water during fungal denitrification. The exchange appears to be within the range previously reported for bacterial denitrification. This adds to the difficulty of differentiating N2O producing processes based on the origin of N2O-O. However, the large oxygen exchange repeatedly observed for bacteria and now also fungi could lead to less variability in the δ(18)O values of N2O from soils, which could facilitate the assessment of the extent of N2O reduction. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Impact of oxygen plasma postoxidation process on Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Lechaux, Y.; Fadjie-Djomkam, A. B.; Bollaert, S.; Wichmann, N.

    2016-09-01

    Capacitance-voltage (C-V) measurements and x-ray photoelectron spectroscopy (XPS) analysis were performed in order to investigate the effect of a oxygen (O2) plasma after oxide deposition on the Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor structure passivated with ammonia NH4OH solution. From C-V measurements, an improvement of charge control is observed using the O2 plasma postoxidation process on In0.53Ga0.47As, while the minimum of interface trap density remains at a good value lower than 1 × 1012 cm-2 eV-1. From XPS measurements, we found that NH4OH passivation removes drastically the Ga and As native oxides on the In0.53Ga0.47As surface and the O2 plasma postoxidation process enables the reduction of interface re-oxidation after post deposition annealing (PDA) of the oxide. The advanced hypothesis is the formation of interfacial barrier between Al2O3 and In0.53Ga0.47As which prevents the diffusion of oxygen species into the semiconductor surface during PDA.

  5. Oxygen concentrators for the delivery of supplemental oxygen in remote high-altitude areas.

    PubMed

    Litch, J A; Bishop, R A

    2000-01-01

    Oxygen concentrators are a relatively new technology for the delivery of supplemental oxygen. Readily available for domicile use in modern countries, these machines have proved reliable. The application of oxygen concentrators for the supply of medical oxygen in remote high-altitude settings has important cost-saving and supply implications. In our experience at a remote hospital at 3,900 m in the Nepal Himalayas, oxygen concentrators constitute an effective and affordable means to supply medical oxygen. Using an air compressor and 2 zeolite chambers, the machine traps nitrogen from room air compressed to 4 atm, thus concentrating oxygen in the expressed gas. At delivery flow rates of 2 to 5 liters per minute, oxygen concentrations greater than 80% can be maintained. An electric power requirement of less than 400 W can be provided from a variety of sources, including a small gasoline generator, a solar or wind power system with battery store, or a domestic or commercial power source. At our facility, a cost savings of 75% for supplemental oxygen was found in favor of the oxygen concentrator over cylinders (0.17 US cents per liter vs 0.79 US cents per liter).

  6. Monitoring Intracellular Oxygen Concentration: Implications for Hypoxia Studies and Real-Time Oxygen Monitoring.

    PubMed

    Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J

    2016-01-01

    The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.

  7. Influence of lightweight ambulatory oxygen on oxygen use and activity patterns of COPD patients receiving long-term oxygen therapy.

    PubMed

    Casaburi, Richard; Porszasz, Janos; Hecht, Ariel; Tiep, Brian; Albert, Richard K; Anthonisen, Nicholas R; Bailey, William C; Connett, John E; Cooper, J Allen; Criner, Gerard J; Curtis, Jeffrey; Dransfield, Mark; Lazarus, Stephen C; Make, Barry; Martinez, Fernando J; McEvoy, Charlene; Niewoehner, Dennis E; Reilly, John J; Scanlon, Paul; Scharf, Steven M; Sciurba, Frank C; Woodruff, Prescott

    2012-02-01

    Lightweight ambulatory oxygen devices are provided on the assumptions that they enhance compliance and increase activity, but data to support these assumptions are lacking. We studied 22 patients with severe chronic obstructive pulmonary disease receiving long-term oxygen therapy (14 men, average age = 66.9 y, FEV(1) = 33.6%pred, PaO(2) at rest = 51.7 torr) who were using E-cylinders as their portable oxygen. Subjects were recruited at 5 sites and studied over a 2-week baseline period and for 6 months after randomizing them to either continuing to use 22-lb E-cylinders towed on a cart or to carrying 3.6-lb aluminum cylinders. Utilizing novel electronic devices, ambulatory and stationary oxygen use was monitored continuously over the 2 weeks prior to and the 6 months following randomization. Subjects wore tri-axial accelerometers to monitor physical activity during waking hours for 2-3 weeks prior to, and at 3 and 6 months after, randomization. Seventeen subjects completed the study. At baseline, subjects used 17.2 hours of stationary and 2.5 hours of ambulatory oxygen daily. At 6 months, ambulatory oxygen use was 1.4 ± 1.0 hrs in those randomized to E-cylinders and 1.9 ± 2.4 hrs in those using lightweight oxygen (P = NS). Activity monitoring revealed low activity levels prior to randomization and no significant increase over time in either group. In this group of severe chronic obstructive pulmonary disease patients, providing lightweight ambulatory oxygen did not increase either oxygen use or activity. Future efforts might focus on strategies to encourage oxygen use and enhance activity in this patient group. This trial is registered at ClinicalTrials.gov (NCT003257540).

  8. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  9. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  10. Characterization of Oxygen Storage and Structural Properties of Oxygen-Loaded Hexagonal R MnO 3+δ ( R = Ho, Er, and Y)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abughayada, C.; Dabrowski, B.; Kolesnik, S.

    2015-09-22

    Single-phase polycrystalline samples of stoichiometric RMnO3+delta (R = Er, Y, and Ho) were achieved in the hexagonal P6(3)cm structure through solid state reaction at, similar to 1300 degrees C. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger Ho and Y show rapid and reversible incorporation of large amounts of excess oxygen (0.3 > delta> 0) at an unusually low temperature range of similar to 190-325 degrees C, indicating the industrial usefulness of RMnO3+delta materials for lower cost thermal swing adsorption processes for oxygen separation from air. Further increase of the excess oxygen intake to delta similar tomore » 0.38 was achieved for all the investigated materials when annealed under high pressures of oxygen. The formation of three oxygen stable phases with 6 = 0, 0.28, and 0.38 was confirmed by thermogravimetric measurements, synchrotron X-rays, and neutron diffraction. In situ synchrotron diffraction proved the thermal stability of these single phases and the regions of their creation and coexistence, and demonstrated that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. Structural modeling using neutron powder diffraction for oxygen excess phases describes the formation and details of a large R3c superstructure observed for HoMnO3.28 by tripling the c-axis of the original parent unit cell. Modeling of the RMnO3.38 (R = Y and Er) oxygen-loaded phase converged on a structural model consistent with the symmetry of Pca2(1).« less

  11. Net community production from autonomous oxygen observations in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Feen, M.; Estapa, M. L.

    2016-02-01

    Optical sensors on autonomous floats provide high-resolution profiles of oxygen concentration over time. Improved spatiotemporal resolution in our measurements of oxygen will allow for better estimates of net community production and a greater understanding of the biological pump. Two autonomous profiling floats (NAVIS BGCi, Sea-Bird) equipped with SBE-63 optodes to measure dissolved oxygen were deployed in the Sargasso Sea on a series of five Bermuda Atlantic Time-series Study (BATS) cruises from July 2013 to April 2014. In situ calibration of the oxygen sensors to Winkler titration bottle samples at BATS did not show systematic drift in the oxygen sensors over time. Calibrations were applied to determine oxygen concentrations in profiles collected in the Sargasso Sea at 1.5 to 2.5 day intervals over a year. Oxygen concentrations were used to quantify sub-mixed layer net community production. Changes in production rates from this study were compared with upper water column biology and particle flux measurements obtained independently from optical sensors on the profiling floats, allowing us to examine processes controlling carbon export into the deep ocean.

  12. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins

    PubMed Central

    2017-01-01

    As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal–oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal–oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron–oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we

  13. Oxygen Sensing and Homeostasis

    PubMed Central

    Semenza, Gregg L.

    2015-01-01

    The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology. PMID:26328879

  14. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  15. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility insert the liquid oxygen feedline for the 17-inch disconnect in the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility insert the liquid oxygen feedline for the 17-inch disconnect in the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers raise the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers raise the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  17. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers lift the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers lift the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers move the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers move the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  19. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  20. Cobalt porphyrin-mediated oxygen transport in a polymer membrane. Effect of the cobalt porphyrin structure on the oxygen-binding reaction, oxygen-diffusion constants, and oxygen-transport efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishide, Hiroyuki; Suzuki, Takayuki; Kawakami, Hiroyoshi

    1994-05-12

    New derivatives of (meso-[alpha],[alpha],[alpha],[alpha]-tetrakis(o-pivalamidophenyl)porphinato)cobalt (CoPs) were characterized by oxygen-binding equilibrium and rate constants of the cobalt centered in the porphyrins. They depended on the structure of the porphyrin; for example, the rate constants of oxygen binding and dissociation (k[sub on] and k[sub off]) for [alpha][sup 3][beta]-CoP[sub 4]P were 3 and 20 times as large as those for [alpha][sup 4]-CoB[sub 4]P, respectively. Oxygen transport through the polymer membranes containing CoPs as the fixed oxygen carriers was facilitated and was affected by the oxygen-binding character or the structure of CoPs. The logarithmically linear correlation of the oxygen-dissociation rate constant of CoPs (k[submore » off] = (3-66) x 10[sup 3] S[sup [minus]1]) with the diffusion constant of oxygen via CoPs fixed in the membranes (D[sub cc] = (3-140) x 10[sup [minus]9] cm[sup 2] s[sup [minus]1]) was given for those six CoP derivatives. 26 refs., 5 figs., 2 tabs.« less

  1. Current status of ceramic-based membranes for oxygen separation from air.

    PubMed

    Hashim, Salwa Meredith; Mohamed, Abdul Rahman; Bhatia, Subhash

    2010-10-15

    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Interplay between intercalated oxygen superstructures and monolayer h -BN on Cu(100)

    DOE PAGES

    Ma, Chuanxu; Park, Jewook; Liu, Lei; ...

    2016-08-18

    The confinement effect of intercalated atoms in van der Waals heterostructures can lead to interesting interactions between the confined atoms or molecules and the overlaying two-dimensional (2D) materials. In this paper, we report the formation of ordered Cu(100) p(2×2) oxygen superstructures by oxygen intercalation under the monolayer hexagonal boron nitride (h-BN) on Cu after annealing. By using scanning tunneling microscopy and x-ray photoelectron spectroscopy, we identify the superstructure and reveal its roles in passivating the exposed Cu surfaces, decoupling h-BN and Cu, and disintegrating h-BN monolayers. The oxygen superstructure appears as a 2D pattern on the exposed Cu surface ormore » quasi-1D stripes of paired oxygen intercalated in the interface of h-BN and Cu predominantly oriented along the moiré modulations. The oxygen superstructure is shown to etch the overlaying h-BN monolayer in a thermal annealing process. After extended annealing, the h-BN monolayer disintegrates into nanoislands with zigzag edges. Finally, we discuss the implications of these findings on the stability and oxidation resistance of h-BN and relate them to challenges in process integration and 2D heterostructures.« less

  3. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  4. Does photodissociation of molecular oxygen from myoglobin and hemoglobin yield singlet oxygen?

    PubMed

    Lepeshkevich, Sergei V; Stasheuski, Alexander S; Parkhats, Marina V; Galievsky, Victor A; Dzhagarov, Boris M

    2013-03-05

    Time-resolved luminescence measurements in the near-infrared region indicate that photodissociation of molecular oxygen from myoglobin and hemoglobin does not produce detectable quantities of singlet oxygen. A simple and highly sensitive method of luminescence quantification is developed and used to determine the upper limit for the quantum yield of singlet oxygen production. The proposed method was preliminarily evaluated using model data sets and confirmed with experimental data for aqueous solutions of 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin. A general procedure for error estimation is suggested. The method is shown to provide a determination of the integral luminescence intensity in a wide range of values even for kinetics with extremely low signal-to-noise ratio. The present experimental data do not deny the possibility of singlet oxygen generation during the photodissociation of molecular oxygen from myoglobin and hemoglobin. However, the photodissociation is not efficient to yield singlet oxygen escaped from the proteins into the surrounding medium. The upper limits for the quantum yields of singlet oxygen production in the surrounding medium after the photodissociation for oxyhemoglobin and oxymyoglobin do not exceed 3.4×10(-3) and 2.3×10(-3), respectively. On the average, no more than one molecule of singlet oxygen from every hundred photodissociated oxygen molecules can succeed in escaping from the protein matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  6. A study of alternative methods for reclaiming oxygen from carbon dioxide and water by a solid-electrolyte process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.

  7. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review

    PubMed Central

    Truscott, T. George

    2018-01-01

    We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252

  8. Implementation of an oxygen therapy clinic to manage users of long-term oxygen therapy.

    PubMed

    Chaney, John C; Jones, Kevin; Grathwohl, Kurt; Olivier, Kenneth N

    2002-11-01

    To evaluate the initial benefits of establishing an oxygen therapy clinic (OTC) to manage users of long-term oxygen therapy (LTOT). Cross-sectional observational study. Military-affiliated, tertiary care hospital. Current users of LTOT at our institution and patients with new oxygen prescriptions between June 2000 and May 2001. The OTC evaluation consisted of a focused medical interview and physical examination by a respiratory therapist. Demographic data, indications for supplemental oxygen, oxygen-related diagnoses, cardiopulmonary review of systems, pertinent physical examination findings, pulmonary function testing, and oximetry data were recorded. Patients prescribed oxygen during hospitalization were followed up for recertification within 90 days based on the recommendations of the Fifth Oxygen Consensus Conference. Also, patients with existing oxygen prescriptions and new oxygen prescriptions during the study period were evaluated in the OTC. Data are provided for the initial evaluation in this clinic. A total of 283 patients were evaluated in the OTC during the study period. Ninety-seven patients with a new oxygen prescription during hospitalization were evaluated, with a mean +/- SE time from discharge to evaluation of 2.6 +/- 0.4 months. At follow-up, 50.5% of these patients no longer met Medicare guidelines for LTOT. A significant change in oxygen prescription was required in 27.9% of these patients. A total of 95 outpatients with existing oxygen prescriptions were contacted for recertification in the OTC. Of these patients, 31.6% no longer met Medicare criteria for LTOT and 26% required a significant change to their oxygen prescription. Oxygen therapy was discontinued in 22% of the 91 patients who were referred from other outpatient clinics, and the oxygen prescription was changed in another 29.7%. Results of this initial evaluation suggest that the institution of a respiratory therapist-managed OTC to manage home oxygen patients can significantly

  9. Smart oxygen cuvette for optical monitoring of dissolved oxygen in biological blood samples

    NASA Astrophysics Data System (ADS)

    Dabhi, Harish; Alla, Suresh Kumar; Shahriari, Mahmoud R.

    2010-02-01

    A smart Oxygen Cuvette is developed by coating the inner surface of a cuvette with oxygen sensitive thin film material. The coating is glass like sol-gel based sensor that has an embedded ruthenium compound in the glass film. The fluorescence of the ruthenium is quenched depending on the oxygen level. Ocean Optics phase fluorometer, NeoFox is used to measure this rate of fluorescence quenching and computes it for the amount of oxygen present. Multimode optical fibers are used for transportation of light from an LED source to cuvette and from cuvette to phase fluorometer. This new oxygen sensing system yields an inexpensive solution for monitoring the dissolved oxygen in samples for biological and medical applications. In addition to desktop fluorometers, smart oxygen cuvettes can be used with the Ocean Optics handheld Fluorometers, NeoFox Sport. The Smart Oxygen Cuvettes provide a resolution of 4PPB units, an accuracy of less than 5% of the reading, and 90% response in less than 10 seconds.

  10. Oxygen chemical diffusion in hypo-stoichiometric MOX

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Morimoto, Kyoichi; Tamura, Tetsuya; Sunaoshi, Takeo; Konashi, Kenji; Aono, Shigenori; Kashimura, Motoaki

    2009-06-01

    Kinetics of the oxygen-to-metal ratio change in (U 0.8Pu 0.2)O 2-x and (U 0.7Pu 0.3)O 2-x was evaluated in the temperature range of 1523-1623 K using a thermo-gravimetric technique. The oxygen chemical diffusion coefficients were decided as a function of temperature from the kinetics of the reduction process under a hypo-stoichiometric composition. The diffusion coefficient of (U 0.7Pu 0.3)O 2-x was smaller than that of (U 0.8Pu 0.2)O 2-x. No strong dependence was observed for the diffusion coefficient on the O/M variation of samples.

  11. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations.

    PubMed

    Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen

    2017-02-01

    In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Uncovering the Roles of Oxygen in Cr(III) Photoredox Catalysis.

    PubMed

    Higgins, Robert F; Fatur, Steven M; Shepard, Samuel G; Stevenson, Susan M; Boston, David J; Ferreira, Eric M; Damrauer, Niels H; Rappé, Anthony K; Shores, Matthew P

    2016-04-27

    A combined experimental and theoretical investigation aims to elucidate the necessary roles of oxygen in photoredox catalysis of radical cation based Diels-Alder cycloadditions mediated by the first-row transition metal complex [Cr(Ph2phen)3](3+), where Ph2phen = bathophenanthroline. We employ a diverse array of techniques, including catalysis screening, electrochemistry, time-resolved spectroscopy, and computational analyses of reaction thermodynamics. Our key finding is that oxygen acts as a renewable energy and electron shuttle following photoexcitation of the Cr(III) catalyst. First, oxygen quenches the excited Cr(3+)* complex; this energy transfer process protects the catalyst from decomposition while preserving a synthetically useful 13 μs excited state and produces singlet oxygen. Second, singlet oxygen returns the reduced catalyst to the Cr(III) ground state, forming superoxide. Third, the superoxide species reduces the Diels-Alder cycloadduct radical cation to the final product and reforms oxygen. We compare the results of these studies with those from cycloadditions mediated by related Ru(II)-containing complexes and find that the distinct reaction pathways are likely part of a unified mechanistic framework where the photophysical and photochemical properties of the catalyst species lead to oxygen-mediated photocatalysis for the Cr-containing complex but radical chain initiation for the Ru congener. These results provide insight into how oxygen can participate as a sustainable reagent in photocatalysis.

  13. Intraportal islet oxygenation.

    PubMed

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2014-05-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.

  14. Intraportal Islet Oxygenation

    PubMed Central

    Suszynski, Thomas M.; Avgoustiniatos, Efstathios S.

    2014-01-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO2), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. PMID:24876622

  15. Engineering of Pyranose Dehydrogenase for Increased Oxygen Reactivity

    PubMed Central

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  16. Cost analysis of oxygen recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    Report is made of the cost analysis of four leading oxygen recovery subsystems which include two carbon dioxide reduction subsystems and two water electrolysis subsystems, namely, the solid polymer electrolyte and the circulating KOH electrolyte. The four oxygen recovery systems were quantitatively evaluated. System characteristics, including process flows, performance, and physical characteristics were also analyzed. Additionally, the status of development of each of the systems considered and the required advance technology efforts required to bring conceptual and/or pre-prototype hardware to an operational prototype status were defined. Intimate knowledge of the operations, development status, and capabilities of the systems to meet space mission requirements were found to be essential in establishing the cost estimating relationships for advanced life support systems.

  17. [Correlation between the inspired fraction of oxygen, maternal partial oxygen pressure, and fetal partial oxygen pressure during cesarean section of normal pregnancies].

    PubMed

    Castro, Carlos Henrique Viana de; Cruvinel, Marcos Guilherme Cunha; Carneiro, Fabiano Soares; Silva, Yerkes Pereira; Cabral, Antônio Carlos Vieira; Bessa, Roberto Cardoso

    2009-01-01

    Despite changes in pulmonary function, maternal oxygenation is maintained during obstetric regional blocks. But in those situations, the administration of supplementary oxygen to parturients is a common practice. Good fetal oxygenation is the main justification; however, this has not been proven. The objective of this randomized, prospective study was to test the hypothesis of whether maternal hyperoxia is correlated with an increase in fetal gasometric parameters in elective cesarean sections. Arterial blood gases of 20 parturients undergoing spinal block with different inspired fractions of oxygen were evaluated and correlated with fetal arterial blood gases. An increase in maternal inspired fraction of oxygen did not show any correlation with an increase of fetal partial oxygen pressure. Induction of maternal hyperoxia by the administration of supplementary oxygen did not increase fetal partial oxygen pressure. Fetal gasometric parameters did not change even when maternal parameters changed, induced by hyperoxia, during cesarean section under spinal block.

  18. System and method for temperature control in an oxygen transport membrane based reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean M.

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  19. Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases.

    PubMed

    Zhang, Kuan; Zhu, Lingling; Fan, Ming

    2011-01-01

    Oxygen is vital to maintain the normal functions of almost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases, or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.076-7.6 mmHg) and in adult brain (11.4-53.2 mmHg), decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs) in vitro cultures at different oxygen concentration (15.2-152 mmHg) and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (22.8-76 mmHg) can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, Bone morphogenetic protein and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  20. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  1. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation

    PubMed Central

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2015-01-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28 ± 0.08 μL min−1 (p < 0.001), and 0.20 ± 0.04 μL min−1 (p < 0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation. Results from an oxygen diffusion model based on previous oxygen electrode measurements corroborated our in vivo observations. We believe that vis-OCT has the potential to reveal the fundamental role of oxygen metabolism in various retinal diseases. PMID:26658555

  2. [Study on Oxygen Consumption, Oxygen Consumption Rate and Asphyxiation Point of Poecilobdella manillensis].

    PubMed

    Zhou, Wei-guan; Lv, Wei-ping; Qiu, Yi; Zhou, Wei-hai

    2014-12-01

    To investigate the oxygen consumption, oxygen consumption rate and asphyxiation point of Poecilobdella ma- nillensis. Oxygen consumption, oxygen consumption rate and asphyxiation point on juvenile (the average weight of 0. 29 g) and adult leech (the average weight of 2.89 g) of Poecilobdella manillensis were measured at water temperature conditions of 20. 2 and 30. 4 °C respectively using an airtight container with flowing water. Oxygen consumptions of Poecilobdella manillensis were increased with the increase of temperature and body weight respectively; However, their oxygen consumption rates circadian variation and the aver- age oxygen consumption rate at daytime were higher than those at night. In addition, their asphyxiation point was declined accordingly with the increase of temperature and body weight respectively. Oxygen consumption and oxygen consumption rate of Poeci- lobdella manillensis were closely associated with their activities and influenced by circadian variation, the preferable feeding time were the period of 6:00-10:00 in the morning or 17:00-19:00 in the afternoon; Meanwhile, Poecilobdella manillensis had a higher ability of the hypoxia tolerance for high density or factory farming, the long time living preservation and the long distance transport.

  3. The development of a non-cryogenic nitrogen/oxygen supply system

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.

    1972-01-01

    Development of the hydrazine/water electrolysis process in a manned spacecraft to provide metabolic oxygen and both oxygen and nitrogen for cabin leakage makeup was studied. Electrode development efforts were directed to stability, achieved with catalyst additives and improved processing techniques, and a higher hydrazine conversion efficiency, achieved by reducing catalyst loading on the cathodes. Extensive testing of the one-man breadboard N2/02 system provided complete characterization of cabin atmosphere control aspects. A detailed design of a prototype modular N2/02 unit was conducted. The contact heat exchanger which is an integral component of this design was fabricated and sucessfully design-verification tested.

  4. Lunar oxygen production by pyrolysis of regolith

    NASA Technical Reports Server (NTRS)

    Senior, Constance L.

    1991-01-01

    Oxygen represents one of the most desirable products of lunar mining and manufacturing. Among the many processes which have been proposed for oxygen production, pyrolysis stands out as one which is uncomplicated and easy to bootstrap. Pyrolysis or vapor-phase reduction involves heating regolith to temperatures sufficient to allow partial decomposition and vaporization. Some metal oxides give up oxygen upon heating, either in the gas phase to form reduced gaseous species or in the condensed phase to form a metallic phase. Based on preliminary experiments and equilibrium calculations, the temperatures needed for pyrolysis are expected to be in the range of 2000 to 2200 K, giving total gas pressures of 0.001 to 0.1 torr. Bulk regolith can be used as a feedstock without beneficiation with concentrated solar radiation supplying most of energy needed. Further, selective condensation of metal-containing species from the gas phase may yield metallic iron and silicon as byproducts.

  5. Anomalous optical emission in hot dense oxygen

    NASA Astrophysics Data System (ADS)

    Santoro, Mario; Gregoryanz, Eugene; Mao, Ho-kwang; Hemley, Russell J.

    2007-11-01

    We report the observation of unusually strong, broad-band optical emission peaked between 590 and 650 nm when solid and fluid oxygen are heated by a near infrared laser at pressures from 3 to 46 GPa. In situ Raman spectra of oxygen were collected and corresponding temperatures were measured from the Stokes/anti-Stokes intensity ratios of vibrational transitions. The intense optical emission overwhelmed the Raman spectrum at temperatures exceeding 750 K. The spectrum was found to be much narrower than Planck-type thermal emission, and the intensity increase with input power was much steeper than expected for the thermal emission. The result places an important general caveat on calculating temperatures based on optical emission spectra in high-pressure laser-heating experiments. The intense emission in oxygen is photo-induced rather than being purely thermal, through multiphoton or multi-step single photon absorption processes related to the interaction with infrared radiation. The results suggest that short lived ionic species are induced by this laser-matter interaction.

  6. Biogeochemical Modeling of the Second Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.

    2014-03-01

    cycles). To determine how fluxes of sulfur, carbon, and oxygen define oxygen levels before, during, and after the NOE, we add a sulfur cycle to the biogeochemical model of Claire et al. (2006). Understanding processes that impact the evolution of atmospheric oxygen on Earth is key to diagnosing the habitability of other planets because it is possible that other planets undergo a similar evolution. If a sulfidic deep ocean was instrumental in driving oxygen levels to modern values, then it would be valuable to remotely detect a sulfide-rich ocean on another planet. One such remotely-detectable signature could be the color of a sulfide-rich ocean. For example, Gallardo and Espinoza (2008) have hypothesized that a sulfidic ocean may be have been blacker in color. Even if a sulfidic ocean is not key to oxygenation, detecting a planet in transition--that is, a planet with intermediate levels of oxygen co-existing with higher levels of reduced gases - would be important for diagnosing habitability.

  7. Modelling Ecosystem Dynamics of the Oxygen Minimum Zones in the Angola Gyre and the Northern Benguela Upwelling System.

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Eggert, A.

    2016-02-01

    The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by

  8. Single Cell Responses to Spatially-Controlled Photosensitized Production of Extracellular Singlet Oxygen

    PubMed Central

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas; Schack, Nickolass B.; Vinogradov, Sergei A.; Ogilby, Peter R.

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach of using extracellularly-generated singlet oxygen to induce cell death can provide a solution to a problem that often limits mechanistic studies of intracellularly photosensitized cell death: it can be difficult to quantify the effective light dose, and hence singlet oxygen concentration, when using an intracellular photosensitizer. PMID:21668871

  9. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    PubMed

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. [Sauna effect on blood oxygen transport function and proxidant/antioxidant balance in youths].

    PubMed

    Zinchuk, V V; Zhad'ko, D D

    2012-01-01

    There was investigated sauna effect on blood oxygen transport function and proxidant/antioxidant balance in 18 to 22 years old males. Subjects being tested underwent thermal exposure once per week over a period of 5 months (20 procedures). There were two exposure over the course of sauna bathing (temperature 85-90 degrees C, humidity 10-15%): the first exposure lasted for 5 minutes and the second one for 10 minutes. Dry air sauna in youth's leads to respiratory alkalosis, increases pO2, decreases haemoglobin binding capacity to venous blood oxygen thus facilitating oxygen transport into body tissues. Single sauna visit results in oxidative stress (augmentation of free radical processes and deterioration of antioxidant defence mechanisms), while its manifestations being diminished after multiple thermal exposures. Increase in nitrogen monoxide formation being observed might matter for the modification of the oxygen dependent processes of the human body.

  11. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption.

    PubMed

    Santos, Carla Santana; Kowaltowski, Alicia J; Bertotti, Mauro

    2017-09-12

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in oxygen consumption characteristics. Our results uncover heterogeneous oxygen consumption characteristics between cells and within the same cell´s microenvironments. Single Cell Oxygen Mapping (SCOM) is thus capable of reliably studying mitochondrial oxygen consumption characteristics and heterogeneity at a single-cell level.

  13. Selecting an oxygen plant for a copper smelter modernization

    NASA Astrophysics Data System (ADS)

    Larson, Kenneth H.; Hutchison, Robert L.

    1994-10-01

    The selection of an oxygen plant for the Cyprus Miami smelter modernization project began with a good definition of the use requirements and the smelter process variables that can affect oxygen demand. To achieve a reliable supply of oxygen with a reasonable amount of capital, critical equipment items were reviewed and reliability was added through the use of installed spares, purchase of insurance spare parts or the installation of equipment design for 50 percent of the production design such that the plant could operate with one unit while the other unit is being maintained. The operating range of the plant was selected to cover variability in smelter oxygen demand, and it was recognized that the broader operating range sacrificed about two to three percent in plant power consumption. Careful consideration of the plant "design point" was important to both the capital and operating costs of the plant, and a design point was specified that allowed a broad range of operation for maximum flexibility.

  14. Comparative quantification of oxygen release by wetland plants: electrode technique and oxygen consumption model.

    PubMed

    Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli

    2014-01-01

    Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.

  15. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    DTIC Science & Technology

    2008-04-01

    28. Alagoz, T., R. Buller, B. Anderson, K. Terrell , R...and oxygenation Ann . New Acad. Sci. 838 29–45 Chapman J D, Stobbe C C, Arnfield M R, Santus R, Lee J and McPhee M S 1991 Oxygen dependency of tumor

  16. Oxygen-storage behavior and local structure in Ti-substituted YMnO3

    NASA Astrophysics Data System (ADS)

    Levin, I.; Krayzman, V.; Vanderah, T. A.; Tomczyk, M.; Wu, H.; Tucker, M. G.; Playford, H. Y.; Woicik, J. C.; Dennis, C. L.; Vilarinho, P. M.

    2017-02-01

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with

  17. Oxygen-Releasing Antioxidant Cryogel Scaffolds with Sustained Oxygen Delivery for Tissue Engineering Applications.

    PubMed

    Shiekh, Parvaiz A; Singh, Anamika; Kumar, Ashok

    2018-06-06

    With the advancement in biomaterial sciences, tissue-engineered scaffolds are developing as a promising strategy for the regeneration of damaged tissues. However, only a few of these scaffolds have been translated into clinical applications. One of the primary drawbacks of the existing scaffolds is the lack of adequate oxygen supply within the scaffolds. Oxygen-producing biomaterials have been developed as an alternate strategy but are faced with two major concerns. One is the control of the rate of oxygen generation, and the other is the production of reactive oxygen species (ROS). To address these concerns, here, we report the development of an oxygen-releasing antioxidant polymeric cryogel scaffold (PUAO-CPO) for sustained oxygen delivery. PUAO-CPO scaffold was fabricated using the cryogelation technique by the incorporation of calcium peroxide (CPO) in the antioxidant polyurethane (PUAO) scaffolds. The PUAO-CPO cryogels attenuated the ROS and showed a sustained release of oxygen over a period of 10 days. An in vitro analysis of the PUAO-CPO cryogels showed their ability to sustain H9C2 cardiomyoblast cells under hypoxic conditions, with cell viability being significantly better than the normal polyurethane (PU) scaffolds. Furthermore, in vivo studies using an ischemic flap model showed the ability of the oxygen-releasing cryogel scaffolds to prevent tissue necrosis upto 9 days. Histological examination indicated the maintenance of tissue architecture and collagen content, whereas immunostaining for proliferating cell nuclear antigen confirmed the viability of the ischemic tissue with oxygen delivery. Our study demonstrated an advanced approach for the development of oxygen-releasing biomaterials with sustained oxygen delivery as well as attenuated production of residual ROS and free radicals because of ischemia or oxygen generation. Hence, the oxygen-releasing PUAO-CPO cryogel scaffolds may be used with cell-based therapeutic approaches for the regeneration of

  18. Isothermal crystallization of gamma irradiated LDPE in the presence of oxygen

    NASA Astrophysics Data System (ADS)

    Lanfranconi, M. R.; Alvarez, V. A.; Perez, C. J.

    2015-06-01

    This work is focused on the study of the effect of oxygen on the isothermal crystallization process of gamma irradiated low density polyethylene (LDPE). The induction time increased with the dose indicating a retarding effect. On other hand, at the same dose, this parameter decreased with the augment in the oxygen content. The classical Avrami equation was used to analyze the crystallization kinetic of these materials. n values suggested that both, the dose and the oxygen content, did not affect the mechanism of crystals growth. An Arrhenius type equation was used for the rate constant (k). Used models correctly reproduced the experimental data. TTT diagrams of studied materials were constructed and also reflected the effects of the doses and the oxygen content.

  19. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  20. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  1. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  2. Theoretical Investigation of the Process of Steam-Oxygen Gasification of Coke-Ash Particles in a Fluidized Bed Under Pressure

    NASA Astrophysics Data System (ADS)

    Rokhman, B. B.

    2015-03-01

    The problem on the evolution of the state of an ensemble of reacting coke-ash particles in a fluidized-bed gas generator is considered. A kinetic equation for the distribution function of particles within small ranges of carbon concentration variation for the stages of surface and bulk reaction has been constructed and integrated. Boundary conditions ("matching" conditions) at the boundaries between these ranges are formulated. The influence of the granulometric composition of the starting coal, height, porosity, and of the bed temperature on the process of steam-oxygen gasification of coke-ash particles of individual sorts of fuel and of a binary coal mixture has been investigated.

  3. Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate

    NASA Astrophysics Data System (ADS)

    Good, Brian

    2015-03-01

    Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the diffusion of oxygen and water vapor through these coatings is undesirable if high temperature corrosion is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated oxygen diffusion in Ytterbium Disilicate. Oxygen vacancy site energies and diffusion barrier energies are computed using Density Functional Theory. We find that many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small in the pure material, with the result that the material is unlikely to exhibit significant oxygen permeability.

  4. Effects of excess oxygen on the 4.5-6.3 eV absorption spectra of oxygen-rich high purity silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Robinson, S. J.

    2016-05-01

    Type III silica samples were implanted with O using a multi-energy process that produced a layer of constant concentration to within ±5% beginning ∼80 nm from the surface and extending to ∼640 nm below the surfaces of the samples. The concentrations of excess oxygen in the layer ranged from 0.035 to ∼2.1at.%. In these samples we show that E‧ centers and NBOHCs, as well as the normal cadre of ODC (II) centers, were suppressed, and the optical absorption from 4.7 to 6.4 eV was primarily due to oxygen excess defects. Using Gaussian fitting techniques to examine the optical difference spectra, we have been able to identify four defect centers that are related to excess oxygen defect bands at 4.76 eV, 5.42 eV, 5.75 eV and 6.25 eV.

  5. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE PAGES

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    2016-11-17

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  6. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  7. Dynamic Modeling of the Main Blow in Basic Oxygen Steelmaking Using Measured Step Responses

    NASA Astrophysics Data System (ADS)

    Kattenbelt, Carolien; Roffel, B.

    2008-10-01

    In the control and optimization of basic oxygen steelmaking, it is important to have an understanding of the influence of control variables on the process. However, important process variables such as the composition of the steel and slag cannot be measured continuously. The decarburization rate and the accumulation rate of oxygen, which can be derived from the generally measured waste gas flow and composition, are an indication of changes in steel and slag composition. The influence of the control variables on the decarburization rate and the accumulation rate of oxygen can best be determined in the main blow period. In this article, the measured step responses of the decarburization rate and the accumulation rate of oxygen to step changes in the oxygen blowing rate, lance height, and the addition rate of iron ore during the main blow are presented. These measured step responses are subsequently used to develop a dynamic model for the main blow. The model consists of an iron oxide and a carbon balance and an additional equation describing the influence of the lance height and the oxygen blowing rate on the decarburization rate. With this simple dynamic model, the measured step responses can be explained satisfactorily.

  8. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  9. Oxygen Extraction from Regolith Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Curreri, Peter A.; Karr, Laurel J.

    2011-01-01

    An important concern with long-duration manned space travel is the need to furnish enough materials to the vehicle, as well as the crew, for the duration of the mission. By extracting oxygen from the oxides present in regolith, propellant and life support could be supplied to the vehicle and the crew while in space, thereby limiting the amount of supplies needed prior to lift-off. Using a class of compounds known as ionic liquids, we have been able to lower the electrolysis operating temperature from 1600 C (molten oxide electrolysis) to less than 200 C, making this process much more feasible in terms of energy consumption and materials handling. To make this process ready for deployment into space, we have investigated what steps of the process would be affected by the low-gravity environment in space. In the lab, the solubilization of lunar regolith simulant in ionic liquid produces water vapor that is normally distilled out of solution and subsequently electrolyzed for oxygen production. This distillation is not possible in space, so we have tested a method known as pervaporation and have suggested a way this technique could be incorporated into a reactor design.

  10. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.

    2000-01-01

    An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.

  11. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    PubMed

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  12. Dynamics of the Indian-Ocean oxygen minimum zones

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Yu, Zuojun; Hood, Raleigh R.; Vinaychandran, P. N.; Furue, Ryo; Ishida, Akio; Richards, Kelvin J.

    2013-05-01

    In the Indian Ocean, mid-depth oxygen minimum zones (OMZs) occur in the Arabian Sea and the Bay of Bengal. The lower part of the Arabian-Sea OMZ (ASOMZ; below 400 m) intensifies northward across the basin; in contrast, its upper part (above 400 m) is located in the central/eastern basin, well east of the most productive regions along the western boundary. The Bay-of-Bengal OMZ (BBOMZ), although strong, is weaker than the ASOMZ. To investigate the processes that maintain the Indian-Ocean OMZs, we obtain a suite of solutions to a coupled biological/physical model. Its physical component is a variable-density, 61/2 >-layer model, in which each layer corresponds to a distinct dynamical regime or water-mass type. Its biological component has six compartments: nutrients, phytoplankton, zooplankton, two size classes of detritus, and oxygen. Because the model grid is non-eddy resolving (0.5°), the biological model also includes a parameterization of enhanced mixing based on the eddy kinetic energy derived from satellite observations. To explore further the impact of local processes on OMZs, we also obtain analytic solutions to a one-dimensional, simplified version of the biological model. Our control run is able to simulate basic features of the oxygen, nutrient, and phytoplankton fields throughout the Indian Ocean. The model OMZs result from a balance, or lack thereof, between a sink of oxygen by remineralization and subsurface oxygen sources due primarily to northward spreading of oxygenated water from the Southern Hemisphere, with a contribution from Persian-Gulf water in the northern Arabian Sea. The northward intensification of the lower ASOMZ results mostly from horizontal mixing since advection is weak in its depth range. The eastward shift of the upper ASOMZ is due primarily to enhanced advection and vertical eddy mixing in the western Arabian Sea, which spread oxygenated waters both horizontally and vertically. Advection carries small detritus from the western

  13. Isotopic evidence for oxygenated Mesoarchaean shallow oceans

    NASA Astrophysics Data System (ADS)

    Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny

    2018-02-01

    Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8-3.2 billion years ago (Ga)) and Neoarchaean (2.8-2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2-2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of 30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (-1.31 to -0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases 3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

  14. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  15. Singlet delta oxygen generation for Chemical Oxygen-Iodine Lasers

    NASA Astrophysics Data System (ADS)

    Georges, E.; Mouthon, A.; Barraud, R.

    1991-10-01

    The development of Chemical Oxygen-Iodine Lasers is based on the generation of singlet delta oxygen. To improve the overall efficiency of these lasers, it is necessary to increase the generator production and yield of singlet delta oxygen at low and high pressure, respectively, for subsonic and supersonic lasers. Furthermore, the water vapor content must be as low as possible. A generator model, based on gas-liquid reaction and liquid-vapor equilibrium theories associated with thermophysical evaluations is presented. From model predictions, operating conditions have been drawn to attain the following experimental results in a bubble-column: by increasing the superficial gas velocity, the production of singlet delta oxygen is largely improved at low pressure; by mixing chlorine with an inert gas before injection in the reactor, this yield is maintained constant up to higher pressure. A theoretical analysis of these experimental results and their consequences for both subsonic and supersonic lasers are presented.

  16. Process for photosynthetically splitting water

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    The invention is an improved process for producing gaseous hydrogen and oxygen from water. The process is conducted in a photolytic reactor which contains a water-suspension of a photoactive material containing a hydrogen-liberating catalyst. The reactor also includes a volume for receiving gaseous hydrogen and oxygen evolved from the liquid phase. To avoid oxygen-inactivation of the catalyst, the reactor is evacuated continuously by an external pump which circulates the evolved gases through means for selectively recovering hydrogen therefrom. The pump also cools the reactor by evaporating water from the liquid phase. Preferably, product recovery is effected by selectively diffusing the hydrogen through a heated semipermeable membrane, while maintaining across the membrane a magnetic field gradient which biases the oxygen away from the heated membrane. This promotes separation, minimizes the back-reaction of hydrogen and oxygen, and protects the membrane.

  17. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects.

    PubMed

    Li, Di; Li, Xinyu; Gong, Jinlong

    2016-10-12

    This Review describes recent advances in the design, synthesis, reactivity, selectivity, structural, and electronic properties of the catalysts for reforming of a variety of oxygenates (e.g., from simple monoalcohols to higher polyols, then to sugars, phenols, and finally complicated mixtures like bio-oil). A comprehensive exploration of the structure-activity relationship in catalytic reforming of oxygenates is carried out, assisted by state-of-the-art characterization techniques and computational tools. Critical emphasis has been given on the mechanisms of these heterogeneous-catalyzed reactions and especially on the nature of the active catalytic sites and reaction pathways. Similarities and differences (reaction mechanisms, design and synthesis of catalysts, as well as catalytic systems) in the reforming process of these oxygenates will also be discussed. A critical overview is then provided regarding the challenges and opportunities for research in this area with a focus on the roles that systems of heterogeneous catalysis, reaction engineering, and materials science can play in the near future. This Review aims to present insights into the intrinsic mechanism involved in catalytic reforming and provides guidance to the development of novel catalysts and processes for the efficient utilization of oxygenates for energy and environmental purposes.

  18. Reduction of oxygen concentration by heater design during Czochralski Si growth

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Chen, Wenliang; Li, Zhihui; Yue, Ruicun; Liu, Guowei; Huang, Xinming

    2018-02-01

    Oxygen is one of the highest-concentration impurities in single crystals grown by the Czochralski (CZ) process, and seriously impairs the quality of the Si wafer. In this study, computer simulations were applied to design a new CZ system. A more appropriate thermal field was acquired by optimization of the heater structure. The simulation results showed that, compared with the conventional system, the oxygen concentration in the newly designed CZ system was reduced significantly throughout the entire CZ process because of the lower crucible wall temperature and optimized convection. To verify the simulation results, experiments were conducted on an industrial single-crystal furnace. The experimental results showed that the oxygen concentration was reduced significantly, especially at the top of the CZ-Si ingot. Specifically, the oxygen concentration was 6.19 × 1017 atom/cm3 at the top of the CZ-Si ingot with the newly designed CZ system, compared with 9.22 × 1017 atom/cm3 with the conventional system. Corresponding light-induced degradation of solar cells based on the top of crystals from the newly designed CZ system was 1.62%, a reduction of 0.64% compared with crystals from the conventional system (2.26%).

  19. Oxygen Gradients in the Microcirculation

    PubMed Central

    Pittman, Roland N.

    2010-01-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO2 gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453

  20. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  1. Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases

    PubMed Central

    Zhang, Kuan; Zhu, Lingling; Fan, Ming

    2011-01-01

    Oxygen is vital to maintain the normal functions of almost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases, or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.076–7.6 mmHg) and in adult brain (11.4–53.2 mmHg), decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs) in vitro cultures at different oxygen concentration (15.2–152 mmHg) and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (22.8–76 mmHg) can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, Bone morphogenetic protein and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given. PMID:21503147

  2. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters

    PubMed Central

    Bristow, Laura A.; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B.; Bertagnolli, Anthony D.; Wright, Jody J.; Hallam, Steven J.; Ulloa, Osvaldo; Canfield, Donald E.; Revsbech, Niels Peter; Thamdrup, Bo

    2016-01-01

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (<10 nmol⋅L−1) is therefore essential for understanding and modeling nitrogen loss in OMZs. We determined rates of ammonium and nitrite oxidation in the seasonal OMZ off Concepcion, Chile at manipulated O2 levels between 5 nmol⋅L−1 and 20 μmol⋅L−1. Rates of both processes were detectable in the low nanomolar range (5–33 nmol⋅L−1 O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L−1 O2 for ammonium oxidation and 778 ± 168 nmol⋅L−1 O2 for nitrite oxidation assuming one-component Michaelis–Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis–Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss. PMID:27601665

  3. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  4. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

    PubMed

    Liu, Xiaopeng; Xiao, Huajun; Shi, Weiru; Wen, Dongqing; Yu, Lihua; Chen, Jianzhang

    2015-01-01

    Positive pressure breathing (PPB) can cause circulatory dysfunction due to peripheral pooling of blood. This study explored a better way at ground level to simulate pure oxygen PPB at 59,055 ft (18,000 m) by comparing the physiological changes during PPB with pure oxygen and low oxygen at ground level. Six subjects were exposed to 3 min of 69-mmHg PPB and 3 min of 59-mmHg PPB with pure oxygen and low oxygen while wearing the thoracic counterpressure jerkin inflated to 1× breathing pressure and G-suit inflated to 3 and 4× breathing pressure. Stroke volume (SV), cardiac output (CO), heart rate (HR), and peripheral oxygen saturation (Spo2) were measured. Subjects completed a simulating flying task (SFT) during 3-min PPB and scores were recorded. HR and SV responses differed significantly between breathing pure oxygen and low oxygen. CO response was not significantly different for pure oxygen and low oxygen, the two levels of PPB, and the two levels of G-suit pressure. Spo2 declined as a linear function of time during low-oxygen PPB and there was a significant difference in Spo2 response for the two levels of PPB. The average score of SFT during pure oxygen PPB was 3970.5 ± 1050.4, which was significantly higher than 2708.0 ± 702.7 with low oxygen PPB. Hypoxia and PPB have a synergistic negative effect on both the cardiovascular system and SFT performance. PPB with low oxygen was more appropriate at ground level to investigate physiological responses during PPB and evaluate the protective performance of garments. Liu X, Xiao H, Shi W, Wen D, Yu L, Chen J. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

  5. Strain effects on oxygen vacancy energetics in KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen

    Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less

  6. Strain effects on oxygen vacancy energetics in KTaO 3

    DOE PAGES

    Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen; ...

    2017-02-07

    Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less

  7. Estimating the effect of burrowing shrimp on deep-sea sediment community oxygen consumption.

    PubMed

    Leduc, Daniel; Pilditch, Conrad A

    2017-01-01

    Sediment community oxygen consumption (SCOC) is a proxy for organic matter processing and thus provides a useful proxy of benthic ecosystem function. Oxygen uptake in deep-sea sediments is mainly driven by bacteria, and the direct contribution of benthic macro- and mega-infauna respiration is thought to be relatively modest. However, the main contribution of infaunal organisms to benthic respiration, particularly large burrowing organisms, is likely to be indirect and mainly driven by processes such as feeding and bioturbation that stimulate bacterial metabolism and promote the chemical oxidation of reduced solutes. Here, we estimate the direct and indirect contributions of burrowing shrimp ( Eucalastacus cf. torbeni ) to sediment community oxygen consumption based on incubations of sediment cores from 490 m depth on the continental slope of New Zealand. Results indicate that the presence of one shrimp in the sediment is responsible for an oxygen uptake rate of about 40 µmol d -1 , only 1% of which is estimated to be due to shrimp respiration. We estimate that the presence of ten burrowing shrimp m -2 of seabed would lead to an oxygen uptake comparable to current estimates of macro-infaunal community respiration on Chatham Rise based on allometric equations, and would increase total sediment community oxygen uptake by 14% compared to sediment without shrimp. Our findings suggest that oxygen consumption mediated by burrowing shrimp may be substantial in continental slope ecosystems.

  8. Fires and the rise and regulation of atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Lenton, T. M.

    2012-04-01

    they show a strongly non-linear sensitivity to oxygen variations around the present concentration. Fires in turn suppress vegetation and phosphorus weathering and transfer phosphorus to the ocean. Both processes reduce the long-term oxygen source from organic carbon burial, producing negative feedback. Here we explore their relative importance using the COPSE model, and revise our predictions of atmospheric oxygen variation over Phanerozoic time.

  9. Contaminant Removal from Oxygen Production Systems for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Santiago-Maldonado, Edgardo; Captain, James G.; Pawate, Ashtamurthy S.; Kenis, Paul J. A.

    2012-01-01

    The In Situ Resource Utilization (ISRU) project has been developing technologies to produce oxygen from lunar regolith to provide consumables to a lunar outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloic and hydrofluoric acids are byproducts of the reduction processes, as halide minerals are also reduced at oxide reduction conditions. Because of the stringent water quality requirements for electrolysis, there is a need for a contaminant removal process. The Contaminant Removal from Oxygen Production Systems (CROPS) team has been developing a separation process to remove these contaminants in the gas and liquid phase that eliminates the need for consumables. CROPS has been using Nafion, a highly water selective polymeric proton exchange membrane, to recover pure water from the contaminated solution. Membrane thickness, product stream flow rate, and acid solution temperature and concentration were varied with the goal of maximizing water permeation and acid rejection. The results show that water permeation increases with increasing solution temperature and product stream flow rate, while acid rejection increases with decreasing solution temperature and concentration. Thinner membranes allowed for higher water flux and acid rejection than thicker ones. These results were used in the development of the hardware built for the most recent Mars ISRU demonstration project.

  10. Effects of peptides on generation of reactive oxygen species in subcellular fractions of Drosophila melanogaster.

    PubMed

    Khavinson, V K; Myl'nikov, S V; Oparina, T I; Arutyunyan, A V

    2001-07-01

    We studied the effects of Epithalon (Ala-Glu-Asp-Gly) and Vilon (Lys-Glu) on free radical processes in highly inbred HA(+)line of Drosophila melanogaster. Vilon inhibited generation of reactive oxygen species in mitochondria, but stimulated this process in the cytosol. We found sex- and age-related differences in the generation of reactive oxygen species and cytosol antioxidant activity.

  11. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility oversee installation of the liquid oxygen feedline for the 17-inch disconnect on the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility oversee installation of the liquid oxygen feedline for the 17-inch disconnect on the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  12. Trace detection of oxygen--ionic liquids in gas sensor design.

    PubMed

    Baltes, N; Beyle, F; Freiner, S; Geier, F; Joos, M; Pinkwart, K; Rabenecker, P

    2013-11-15

    This paper presents a novel electrochemical membrane sensor on basis of ionic liquids for trace analysis of oxygen in gaseous atmospheres. The faradaic response currents for the reduction of oxygen which were obtained by multiple-potential-step-chronoamperometry could be used for real time detection of oxygen down to concentrations of 30 ppm. The theoretical limit of detection was 5 ppm. The simple, non-expensive sensors varied in electrolyte composition and demonstrated a high sensitivity, a rapid response time and an excellent reproducibility at room temperature. Some of them were continuously used for at least one week and first results promise good long term stability. Voltammetric, impedance and oxygen detection studies at temperatures up to 200 °C (in the presence and absence of humidity and CO2) revealed also the limitations of certain ionic liquids for some electrochemical high temperature applications. Application areas of the developed sensors are control and analysis processes of non oxidative and oxygen free atmospheres. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A Theoretical Basis for the Transition to Denitrification at Nanomolar Oxygen Concentrations

    NASA Astrophysics Data System (ADS)

    Zakem, E.; Follows, M. J.

    2016-02-01

    Current climate change is likely to expand the size and intensity of marine oxygen minimum zones. How will this affect denitrification rates? Current global biogeochemical models typically prescribe a critical oxygen concentration below which anaerobic activity occurs, rather than resolve the underlying microbial processes. Here, we explore the dynamics of an idealized, simulated anoxic zone in which multiple prokaryotic metabolisms are resolved mechanistically, defined by redox chemistry and biophysical constraints. We first ask, what controls the critical oxygen concentration governing the favorability of aerobic or anaerobic respiration? The predicted threshold oxygen concentration varies as a function of the environment as well as of cell physiology, and lies within the nanomolar range. The model thus provides a theoretical underpinning for the recent observations of nanomolar oxygen concentrations in oxygen minimum zones. In the context of an idealized, two-dimensional intensified upwelling simulation, we also predict denitrification at oxygen concentrations orders of magnitude higher due to physical mixing, reconciling observations of denitrification over a similar range and demonstrating a decoupling of denitrification from the local oxygen concentration. In a sensitivity study with the idealized ocean model, we comment upon the relationship between the volume of anoxic waters and total denitrification.

  14. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products

    PubMed Central

    Bernatchez, Stéphanie F.; Tucker, Joseph; Chiffoleau, Gwenael

    2017-01-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed. PMID:29098113

  15. Quantitative Oxygenation Venography from MRI Phase

    PubMed Central

    Fan, Audrey P.; Bilgic, Berkin; Gagnon, Louis; Witzel, Thomas; Bhat, Himanshu; Rosen, Bruce R.; Adalsteinsson, Elfar

    2014-01-01

    Purpose To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2) along cerebral venous vasculature. Methods Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. Results Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by 15O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. Conclusion The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging. PMID:24006229

  16. Oxygen gradients in the microcirculation.

    PubMed

    Pittman, R N

    2011-07-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.

  17. An oxygen slow-releasing material and its application in water remediation as oxygen supplier.

    PubMed

    Zhou, Yanbo; Fang, Xingbin; Zhang, Zhiqing; Hu, Yonghua; Lu, Jun

    2017-11-01

    In this study, an oxygen slow-releasing material (OSRM) consisting of calcium peroxide (CaO 2 ), stearic acid (SA) and quartz sand was used to improve oxygen supply during bioremediation. The oxygen-releasing rates of CaO 2 powder and OSRM with different SA contents were investigated. The efficacy of OSRM as an oxygen supplier was assessed by water remediation experiments using activated sludge. Results showed that CaO 2 powder was effectively embedded by SA under anhydrous conditions. The oxygen-releasing rate decreased with increasing SA contents. Moreover, the OSRM exhibited higher oxygen-releasing capacity, and more effective pH control ability than CaO 2 powder. The water remediation experiments showed better removal of COD and [Formula: see text] with OSRM as the oxygen supplier. These results provided detailed information when CaO 2 was applied as the oxygen supplier in water remediation, which can serve as references for field application of bioremediation.

  18. Equilibrating metal-oxide cluster ensembles for oxidation reactions using oxygen in water

    Treesearch

    Ira A. Weinstock; Elena M. G. Barbuzzi; Michael W. Wemple; Jennifer J. Cowan; Richard S. Reiner; Dan M. Sonnen; Robert A. Heintz; James S. Bond; Craig L. Hill

    2001-01-01

    Although many enzymes can readily and selectively use oxygen in water--the most familiar and attractive of all oxidants and solvents, respectively–-the design of synthetic catalysts for selective water-based oxidation processes utilizing molecular oxygen remains a daunting task. Particularly problematic is the fact that oxidation of substrates by O2 involves radical...

  19. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    PubMed

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2018-02-01

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O 2 min -1 m -2 cm Hg -1 with pure water and 1.71 ± 1.03 mL O 2 min -1 m -2 cm Hg -1 with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Redesigning a home oxygen assessment and review service.

    PubMed

    Wrench, Christine; Darwin, Ruth; Lawson, Rod

    2015-03-01

    The Sheffield home oxygen assessment and review service was developed as a nurse-led, protocol-driven service, offering high standards of care to a limited number of patients. In line with national changes to oxygen provision in 2011, the service team was approached to address inconsistencies and inequalities in the existing care pathway, with a view to becoming a fully commissioned service. This required a complete redesign of the service, using a collaborative approach to include relevant interested parties in planning and decision making. Additional support was gained through participation in the NHS Improvement lung national improvement project. This article outlines the process of service redesign, including some of the major challenges as well as the main learning points. It has led to the provision of an equitable and efficient service for all oxygen patients across the city, offering more community clinics and robust cost controls, while maintaining quality of care.