DOE Office of Scientific and Technical Information (OSTI.GOV)
Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.
2014-10-02
molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate.more » The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.« less
Isomolybdate conversion coatings
NASA Technical Reports Server (NTRS)
Minevski, Zoran (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)
2002-01-01
A conversion coating solution and process forms a stable and corrosion-resistant layer on metal substrates or layers or, more preferably, on a boehmite layer or other base conversion coating. The conversion coating process involves contacting the substrate, layer or coating with an aqueous alkali metal isomolybdate solution in order to convert the surface of the substrate, layer or coating to a stable conversion coating. The aqueous alkali metal molybdates are selected from sodium molybdate (Na.sub.2 MoO.sub.4), lithium molybdate (Li.sub.2 MoO.sub.4), potassium molybdate (K.sub.2 MoO.sub.4), or combinations thereof, with the most preferred alkali metal molybdate being sodium molybdate. The concentration of alkali metal molybdates in the solution is preferably less than 5% by weight. In addition to the alkali metal molybdates, the conversion coating solution may include alkaline metal passivators selected from lithium nitrate (LiNO.sub.3), sodium nitrate (NaNO.sub.3), ammonia nitrate (NH.sub.4 NO.sub.3), and combinations thereof; lithium chloride, potassium hexafluorozirconate (K.sub.2 ZrF.sub.6) or potassium hexafluorotitanate (K.sub.2 TiF.sub.6).
Bevers, Loes E.; Hagedoorn, Peter-Leon; Krijger, Gerard C.; Hagen, Wilfred R.
2006-01-01
A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [KD] of 17 ± 7 pM) and molybdate (KD of 11 ± 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low KD values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein. PMID:16952940
Exploring dynamics of molybdate in living animal cells by a genetically encoded FRET nanosensor.
Nakanishi, Yoichi; Iida, Syuntaro; Ueoka-Nakanishi, Hanayo; Niimi, Tomoaki; Tomioka, Rie; Maeshima, Masayoshi
2013-01-01
Molybdenum (Mo) is an essential trace element for almost all living organisms including animals. Mo is used as a catalytic center of molybdo-enzymes for oxidation/reduction reactions of carbon, nitrogen, and sulfur metabolism. Whilst living cells are known to import inorganic molybdate oxyanion from the surrounding environment, the in vivo dynamics of cytosolic molybdate remain poorly understood as no appropriate indicator is available for this trace anion. We here describe a genetically encoded Förester-resonance-energy-transfer (FRET)-based nanosensor composed of CFP, YFP and the bacterial molybdate-sensor protein ModE. The nanosensor MolyProbe containing an optimized peptide-linker responded to nanomolar-range molybdate selectively, and increased YFP:CFP fluorescence intensity ratio by up to 109%. By introduction of the nanosensor, we have been able to successfully demonstrate the real-time dynamics of molybdate in living animal cells. Furthermore, time course analyses of the dynamics suggest that novel oxalate-sensitive- and sulfate-resistant- transporter(s) uptake molybdate in a model culture cell.
Thermodynamics of Molybdate Binding to Humic Acid
NASA Astrophysics Data System (ADS)
Thalhammer, K.; Gilbert, B.
2016-12-01
Molybdenum is an essential nutrient for diazotrophic bacteria that use nitrogenase I to fix atmospheric nitrogen in soils into bioavailable forms such as ammonia. This metalloid is released during rock weathering processes and at neutral pH it exists primarily as the soluble oxyanion molybdate, MoO42-. It has been established that molybdate mobility and bioavailability in soils is influenced by sorption to mineral surfaces and complexation by natural organic matter (NOM). The molybdate ion is readily bound by ortho dihydroxybenzene molecules such as catechol and catechol groups in siderophores. Humic acids (HA) found in NOM contain abundant phenolic groups and extended X-ray absorption fine structure (EXAFS) spectroscopy demonstrated that molybdate is bound by catechol-containing molecules in soil organic matter1. However, to our knowledge no quantitative determination of the affinity of molybdate to HA has been reported. We studied the interactions of molybdate with Suwannee River HA using ultraviolet-visible (UV-vis) absorption spectroscopy and isothermal titration calorimetry (ITC) to determine the conditional equilibrium constant for complexation at neutral pH. We further used ITC to investigate the thermodynamic contributions to complexation and the interaction kinetics. Addition of molybdate to HA caused the formation of complexes with UV-vis absorption spectra in good agreement with molybdate-catechol species indicating catechol groups to be the primary ligands in HA. ITC data revealed that binding enthalpies and kinetics were strongly influenced by ionic strength, suggesting a role for macromolecular reorganization driven by metalloid addition. 1. Wichard et al., Nature Geoscience 2, 625 - 629 (2009).
Molybdate Coatings for Protecting Aluminum Against Corrosion
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; MacDowell, Louis G.
2005-01-01
Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).
Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel
Hames, Amber L.; Tkac, Peter; Paulenova, Alena; ...
2017-01-17
Here, an investigation of molybdate melts containing sodium molybdate (Na 2MoO 4) and molybdenum trioxide (MoO 3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate themore » feasibility of UO 2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO 3-50 wt% Na 2MoO 4-30 wt% UO 2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO 2 product from the melt, and washed once with Na 2MoO 4 displays optimum conditions for separation of the UO 2 from the fission products.« less
Andreesen, Jan R.; Ljungdahl, Lars G.
1973-01-01
The formation of the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase in Clostridium thermoaceticum is stimulated by the presence of molybdate and selenite in the growth medium. The highest formate dehydrogenase activity was obtained with 2.5 × 10−4 M Na2MoO4 and 5 × 10−5 Na2SeO3. Tungstate but not vanadate could replace molybdate and stimulate the formation of formate dehydrogenase. Tungstate stimulated activity more than molybdate, and in combination with molybdate the stimulation of formation of formate dehydrogenase was additive. Formate dehydrogenase was isolated from cells grown in the presence of Na275SeO2, and a correlation was observed between bound 75Se and enzyme activity. PMID:4147651
Imai, K; Kumasaka, F; Kobayashi, M; Takahashi, Y; Takahashi, E; Yamanaka, H
1985-08-20
The effect of sodium molybdate on the specific binding protein (SBP) of synthetic progestin 17 alpha-methyl-[3H]-promegestone (R5020) in the cytosol of the human prostate was studied. In a sucrose density gradient analysis, two R5020 SBP components at 4S and 7-8S were observed. It was apparent that the 4S component was reduced and the 7-8S component increased with the addition of 10mM sodium molybdate into the cytosol. Therefore, the molybdate enhancement degree on total SBP amount (4S plus 7-8S) was decided by the relationship between the decreasing rate at 4S and the increasing one at 7-8S. It was shown that the molybdate effect was time-dependent and was not related to the SBP state, whether it was bounded with steroid or not. Moreover, it was estimated that the molybdate effect was not related to phosphatase inhibition since R5020 SBP in SDG was not enhanced by the addition of sodium fluoride which was a phosphatase inhibitor. In this report, the possibility of the existence of the 7-8S forming factor in the human prostate and the relationship between it and sodium molybdate was also discussed through an experiment on a Sephadex G-25.
Production of high specific activity silicon-32
Phillips, Dennis R.; Brzezinski, Mark A.
1994-01-01
A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
High specific activity silicon-32
Phillips, Dennis R.; Brzezinski, Mark A.
1996-01-01
A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
High specific activity silicon-32
Phillips, D.R.; Brzezinski, M.A.
1996-06-11
A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
Glaser, J. H.; DeMoss, J. A.
1971-01-01
ChlD mutants of Escherichia coli are pleiotropic, lacking formate-nitrate reductase activity as well as formate-hydrogenlyase activity. Whole-chain formate-nitrate reductase activity, assayed with formate as the electron donor and measuring the amount of nitrite produced, was restored to wild-type levels in the mutants by addition of 10−4m molybdate to the growth medium. Under these conditions, the activity of each of the components of the membrane-bound nitrate reductase chain increased after molybdate supplementation. In the absence of nitrate, the activities of the formate-hydrogenlyase system were also restored by molybdate. Strains deleted for the chlD gene responded in a similar way to molybdate supplementation. The concentration of molybdenum in the chlD mutant cells did not differ significantly from that in the wild-type cells at either low or high concentrations of molybdate in the medium. However, the distribution of molybdenum between the soluble protein and membrane fractions differed significantly from wild type. We conclude that the chlD gene product cannot be a structural component of the formate-hydrogenlyase pathway or the formate-nitrate reductase pathway, but that it must have an indirect role in processing molybdate to a form necessary for both electron transport systems. PMID:4942767
Stollenwerk, Kenneth G.
1998-01-01
A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.
Dang, Duc Huy; Evans, R Douglas
2018-03-01
High resolution electrospray ionization mass spectrometry (ESI-HRMS) was used to study the speciation of molybdate in interaction with halides (Cl, F, Br). Desolvation during electrospray ionization induced alteration of aqueous species but method optimization successfully suppressed artefact compounds. At low Mo concentrations, chloro(oxo)molybdate and fluoro(oxo)molybdate species were found and in natural samples, MoO 3 Cl was detected for the first time, to the best of our knowledge. Apparent equilibrium constants for Cl substitution on molybdate were calculated for a range of pH values from 4.5 to 8.5. A minor alteration in speciation during the gas phase (conversion of doubly charged MoO 4 2- to HMoO 4 - ) did not allow investigation of the molybdate acid-base properties; however this could be determined by speciation modeling. This study provides further evidence that ESI-HRMS is a fast and suitable tool to Deceasedassess the speciation of inorganic compounds such as Mo. Copyright © 2017 Elsevier B.V. All rights reserved.
Molybdate adsorption from steel slag eluates by subsoils.
Matern, K; Rennert, T; Mansfeldt, T
2013-11-01
Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.
Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A
2009-01-01
The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W
2014-05-23
Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction
NASA Astrophysics Data System (ADS)
Wu, Tian; Zhang, Lieyu
2015-12-01
Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.
Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem.
Lim, H K; Syed, M A; Shukor, M Y
2012-06-01
A novel molybdate-reducing bacterium, tentatively identified as Klebsiella sp. strain hkeem and based on partial 16s rDNA gene sequencing and phylogenetic analysis, has been isolated. Strain hkeem produced 3 times more molybdenum blue than Serratia sp. strain Dr.Y8; the most potent Mo-reducing bacterium isolated to date. Molybdate was optimally reduced to molybdenum blue using 4.5 mM phosphate, 80 mM molybdate and using 1% (w/v) fructose as a carbon source. Molybdate reduction was optimum at 30 °C and at pH 7.3. The molybdenum blue produced from cellular reduction exhibited absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide, and potassium cyanide did not inhibit the molybdenum-reducing enzyme. Mercury, silver, and copper at 1 ppm inhibited molybdenum blue formation in whole cells of strain hkeem. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi
2010-04-01
The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bensabra, Hakim; Franczak, Agnieszka; Aaboubi, Omar; Azzouz, Noureddine; Chopart, Jean-Paul
2017-01-01
Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2-]/[Cl-] that is equal to 0.5.
Bis[4,4′-(propane-1,3-diyl)dipiperidinium] β-octamolybdate(VI)
Driss, Mohamed; Ksiksi, Rekaya; Ben Amor, Fatma; Zid, Mohamed Faouzi
2010-01-01
The title compound, bis[4,4′-(propane-1,3-diyl)dipiperidinium] β-octamolybdate(VI), (C13H28N2)2[Mo8O26], was produced by hydrothermal reaction of an acidified aqueous solution of Na2MoO4·2H2O and 4,4′-trimethylenedipiperidine (L). The structure of the title compound consists of β-octamolybdate(VI) anion clusters and protonated [H2 L]2+ cations. The octamolybdate anion is located around an inversion center. N—H⋯O hydrogen bonds between the cations and anions ensure the cohesion of the structure and result in a three-dimensional network. PMID:21579027
Optical filtering and luminescence property of some molybdates prepared by combustion synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, P. J., E-mail: yadav.pooja75@yahoo.in; Joshi, C. P.; Moharil, S. V., E-mail: svmoharil@yahoo.com
2014-10-15
As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6},more » Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.« less
MtMOT1.2 is responsible for molybdate supply to Medicago truncatula nodules.
Gil-Díez, Patricia; Tejada-Jiménez, Manuel; León-Mediavilla, Javier; Wen, Jiangqi; Mysore, Kirankumar S; Imperial, Juan; González-Guerrero, Manuel
2018-06-25
Symbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron-molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. MtMOT1.2 is a Medicago truncatula MOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. Loss-of-function mot1.2-1 mutant showed reduced growth compared to wild-type plants when nitrogen fixation was required, but not when nitrogen was provided as nitrate. While no effect on molybdenum-dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen-fixing nodules, since genetic complementation with a wild-type MtMOT1.2 gene or molybdate-fortification of the nutrient solution, both restored wild-type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules. This article is protected by copyright. All rights reserved.
Comparative study of the synthesis of layered transition metal molybdates
NASA Astrophysics Data System (ADS)
Mitchell, S.; Gómez-Avilés, A.; Gardner, C.; Jones, W.
2010-01-01
Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs ( T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT2(OH)(MoO 4) 2·H 2O, where A=NH 4+, Na + or K +. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products.
New promising antifouling agent based on polymeric biocide polyhexamethylene guanidine molybdate.
Protasov, Alexander; Bardeau, Jean-Francois; Morozovskaya, Irina; Boretska, Mariia; Cherniavska, Tetiana; Petrus, Lyudmyla; Tarasyuk, Oksana; Metelytsia, Larisa; Kopernyk, Iryna; Kalashnikova, Larisa; Dzhuzha, Oleg; Rogalsky, Sergiy
2017-09-01
A new polymeric biocide polyhexamethylene guanidine (PHMG) molybdate has been synthesized. The obtained cationic polymer has limited water solubility of 0.015 g/100 mL and is insoluble in paint solvents. The results of acute toxicity studies indicate moderate toxicity of PHMG molybdate, which has a median lethal dose at 48 h of 0.7 mg/L for Daphnia magna and at 96 h of 17 mg/L for Danio rerio (zebrafish) freshwater model organisms. Commercial ship paint was then modified by the addition of a low concentration of polymeric biocide 5% (w/w). The painted steel panels were kept in Dnipro River water for the evaluation of the dynamics of fouling biomass. After 129-d exposure, Bryozoa dominated in biofouling of tested substrates, forming 86% (649 g/m 2 ) of the total biomass on control panel surfaces. However, considerably lower Bryozoa fouling biomass (15 g/m 2 ) was detected for coatings containing PHMG molybdate. Dreissenidae mollusks were found to form 88% (2182 g/m 2 ) of the fouling biomass on the control substrates after 228 d of exposure, whereas coatings containing PHMG molybdate showed a much lower biomass value of 23.6 g/m 2 . The leaching rate of PHMG molybdate in water was found to be similar to rates for conventional booster biocides ranging from 5.7 μg/cm 2 /d at the initial stage to 2.2 μg/cm 2 /d at steady state. Environ Toxicol Chem 2017;36:2543-2551. © 2017 SETAC. © 2017 SETAC.
Miller, J B; Amy, N K
1983-01-01
We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate. PMID:6307982
NASA Astrophysics Data System (ADS)
Sinha, Shriya; Mahata, Manoj Kumar; Kumar, Kaushal
2018-02-01
The molybdate compounds as luminescent medium have received great attention of recent research due to their excellent intrinsic optical properties. Therefore, the investigation on the optical thermometry and nanoheating effect in Er3+-Yb3+ doped molybdates of yttrium (EYYMO), gadolinium (EYGMO) and lanthanum (EYLMO) nanophosphors is reported herein. The temperature dependent fluorescence intensity ratio of green (525 and 548 nm) emission bands of Er3+ ions were analyzed within 300-500 K temperature range to determine the thermal behavior. The comparative temperature sensitivity of the materials has been found to depend on the phonon energy of their own. The thermal sensitivity is higher in the materials with low phonon energy. The intensity ratio of the green emission bands has been found to alter with the laser excitation density, which can be used to estimate the induced temperature in the materials. Furthermore, the photothermal conversion efficiency is calculated in the water dispersed samples and the maximum photothermal conversion efficiency of 49.6% is achieved for EYGMO nanophosphor. Comparative experimental results explore unequal thermal sensing and induced optical heating in the three rare earth molybdates. The optical properties of the green emitting molybdates are interesting for temperature sensing and optical heating applications.
Inert Reassessment Document for Sodium Molybdate - CAS No. 7631-95-0
Sodium molybdate is a soluble sodium salt form of molybdenum, a naturallyoccurringelement that is present in the earth's crust and in soils at background concentrations of1-2 mgkg. Molybdenum is an essential trace element for virtually all life forms.
Identifying the Unique Properties of α-Bi 2Mo 3O 12 for the Activation of Propene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, Rachel B.; Getsoian, Andrew; Bell, Alexis T.
In order to understand the remarkable activity of α-Bi 2Mo 3O 12 for selective oxidation and ammoxidation of propene, the propene activation ability of four molybdenum-based mixed metal oxides - Bi 2Mo 3O 12, PbMoO 4, Bi 2Pb 5Mo 8O 32, and MoO 3 - was investigated using density functional theory. Propene activation is considered to occur via abstraction of a hydrogen atom from the methyl group of physisorbed propene by lattice oxygen. For each material, the apparent activation energy was estimated by summing the heat of adsorption of propene, the C-H bond dissociation energy, and the hydrogen attachment energymore » (HAE) for hydrogen addition to lattice oxygen; this sum provides a lower bound for the apparent activation energy. It was found that two structural features of oxide surfaces are essential to achieve low activation barriers: under-coordinated surface cation sites enable strong propene adsorption, and suitable 5- or 6-coordinate geometries at molybdenum result in favorable HAEs. The impact of molybdenum coordination on HAE was elucidated by carrying out a molecular orbital analysis using a cluster model of the molybdate unit. This effort revealed that, in 5- and 6-coordinate molybdates, oxygen donor atoms trans to molybdenyl oxo atoms destabilize the molybdate prior to H addition but stabilize the molybdate after H addition, thereby providing an HAE ~15 kcal/mol more favorable than that on 4-coordinate molybdate oxo atoms. Bi 3+ cations in Bi 2Mo 3O 12 thus promote catalytic activity by providing both strong adsorption sites for propene and forcing molybdate into 5-coordinate geometries that lead to particularly favorable values of the HAE. (Graph Presented).« less
Identifying the Unique Properties of α-Bi 2Mo 3O 12 for the Activation of Propene
Licht, Rachel B.; Getsoian, Andrew; Bell, Alexis T.
2016-12-30
In order to understand the remarkable activity of α-Bi 2Mo 3O 12 for selective oxidation and ammoxidation of propene, the propene activation ability of four molybdenum-based mixed metal oxides - Bi 2Mo 3O 12, PbMoO 4, Bi 2Pb 5Mo 8O 32, and MoO 3 - was investigated using density functional theory. Propene activation is considered to occur via abstraction of a hydrogen atom from the methyl group of physisorbed propene by lattice oxygen. For each material, the apparent activation energy was estimated by summing the heat of adsorption of propene, the C-H bond dissociation energy, and the hydrogen attachment energymore » (HAE) for hydrogen addition to lattice oxygen; this sum provides a lower bound for the apparent activation energy. It was found that two structural features of oxide surfaces are essential to achieve low activation barriers: under-coordinated surface cation sites enable strong propene adsorption, and suitable 5- or 6-coordinate geometries at molybdenum result in favorable HAEs. The impact of molybdenum coordination on HAE was elucidated by carrying out a molecular orbital analysis using a cluster model of the molybdate unit. This effort revealed that, in 5- and 6-coordinate molybdates, oxygen donor atoms trans to molybdenyl oxo atoms destabilize the molybdate prior to H addition but stabilize the molybdate after H addition, thereby providing an HAE ~15 kcal/mol more favorable than that on 4-coordinate molybdate oxo atoms. Bi 3+ cations in Bi 2Mo 3O 12 thus promote catalytic activity by providing both strong adsorption sites for propene and forcing molybdate into 5-coordinate geometries that lead to particularly favorable values of the HAE. (Graph Presented).« less
Type-II domains in ferroelectric gadolinium molybdate (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohm, J.; Kuersten, H.D.
Etching (001)-faces of gadolinium molybdate (GMO) reveals new kinds of domains. They are created by a translation, that leaves the spontaneous polarization and the transition parameter invariant. The translation vector is a part of a lattice vector, similar to stacking faults. (auth)
NASA Astrophysics Data System (ADS)
Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong
2017-09-01
A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.
THE GRAVIMETRIC DETERMINATION OF MOLYBDENUM IN URANIUM-MOLYBDENUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1959-03-01
The sample is dissolved in nitric and hydrochloric acids. After heating the solution with sulfuric acid, molybodenum is precipitated as the benzoin-oxime complex which is ignited to molybdic oxide. This is dissolved in ammonia, and the molybdenum is precipitated and weighed as lead molybdate. (auth)
Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila
2015-09-01
A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of CRM 545, Cr(VI) in welding dust loaded on a filter. Good agreement between determined and reported certified values was obtained. For molybdate, tungstate and vanadate the assessment of accuracy was performed by spiking welding fume filters. Good recoveries for all investigated species (98-101%) confirmed the accuracy of the analytical procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
Mezzetti, Francesco; Fay, Justin C.; Giudici, Paolo
2017-01-01
Glutathione (GSH) production during wine fermentation is a desirable trait as it can limit must and wine oxidation and protect various aromatic compounds. UMCC 2581 is a Saccharomyces cerevisiae wine strain with enhanced GSH content at the end of wine fermentation. This strain was previously derived by selection for molybdate resistance following a sexual cycle of UMCC 855 using an evolution-based strategy. In this study, we examined genetic and gene expression changes associated with the derivation of UMCC 2581. For genetic analysis we sporulated the diploid UMCC 855 parental strain and found four phenotype classes of segregants related to molybdate resistance, demonstrating the presence of segregating variation from the parental strain. Using bulk segregant analysis we mapped molybdate traits to two loci. By sequencing both the parental and evolved strain genomes we identified candidate mutations within the two regions as well as an extra copy of chromosome 1 in UMCC 2581. Combining the mapped loci with gene expression profiles of the evolved and parental strains we identified a number of candidate genes with genetic and/or gene expression changes that could underlie molybdate resistance and increased GSH levels. Our results provide insight into the genetic basis of GSH production relevant to winemaking and highlight the value of enhancing wine strains using existing variation present in wine strains. PMID:28683117
NASA Astrophysics Data System (ADS)
Pezzato, Luca; Brunelli, Katya; Napolitani, Enrico; Magrini, Maurizio; Dabalà, Manuele
2015-12-01
Plasma electrolytic oxidation (PEO) process is a recently developed electrochemical method used to produce on the surface of various metals oxide ceramic coatings that improve corrosion and wear properties of the substrate. In this work, PEO process was applied on AZ91 magnesium alloy using low current densities (0.05 A/cm2) and an alkaline solution of silicates with different concentrations of sodium molybdate (0.3-3 g/l). The effect of the low current densities of process and of molybdate salts on the corrosion resistance of the coatings was studied with potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) in chloride and sulfate environment. The morphology, the phases and the chemical composition of the coatings were examined using a scanning electron microscope equipped with EDS, X-ray diffraction, secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The corrosion properties of the PEO coated samples were remarkably improved if compared with the uncoated samples. The addition of sodium molybdate, in determinate conditions, had a positive effect on the characteristics of the coatings in terms of corrosion resistance.
NASA Astrophysics Data System (ADS)
Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.
2010-05-01
A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.
Vanadate, molybdate and tungstate for orthomolecular medicine.
Matsumoto, J
1994-09-01
Recent studies indicate that oxyanions, such as vanadate (V) or vanadyl (IV), cause insulin-like effects on rats by stimulating the insulin receptor tyrosine kinase. Tungstate (VI) and molybdate (VI) show the same effects on rat adipocytes and hepatocytes. Results of uncontrolled trials on volunteers accumulated in Japan also suggest that tungstate effectively regulates diabetes mellitus without detectable side effects. Since these oxyanions naturally exist in organisms, oxyanion therapy, the oral administration of vanadate, vanadyl, molybdate, or tungstate, can be considered to be orthomolecular medicine. Therefore, these oxyanions may provide a viable alternative to chemotherapy. Many diseases in addition to diabetes mellitus might also be treated since the implication of these results is that tyrosine kinases are involved in a variety of diseases.
Eduok, Ubong; Szpunar, Jerzy
2018-06-01
Zinc molybdate (ZM) is a safer anticorrosive additive for cooling systems when compared with chromates and lead salts, due to its insolubility in aqueous media. For most molybdate pigments, their molybdate anion (MoO 4 -2 ) acts as an anionic inhibitor and its passivation capacity is comparable with chromate anion (CrO 4 -2 ). To alleviate the environmental concerns involving chromates-based industrial protective coatings, we have proposed new alternative in this work. We have synthesized ZM nanocrystals via ultrasound-assisted process and encapsulated them within an epoxy/PDMS coating towards corrosion protection. The surface morphology and mechanical properties of these ZM doped epoxy/PDMS nanocomposite coatings is exhaustively discussed to show the effect of ZM content on protective properties. The presence of ZM nanocrystals significantly contributed to the corrosion barrier performance of the coating while the amount of ZM nanocrystals needed to prepare an epoxy coating with optimum barrier performance was established. Beyond 2 wt% ZM concentration, the siloxane-structured epoxy coating network became saturated with ZM pigments. This further broadened inherent pores channels, leading to the percolation of corrosion chloride ions through the coating. SEM evidence has revealed proof of surface delamination on ZM3 coating. A model mechanism of corrosion resistance has been proposed for ZM doped epoxy/PDMS nanocomposite coatings from exhaustive surface morphological investigations and evidence. This coating matrix may have emerging applications in cooling systems as anticorrosive surface paints as well as create an avenue for environmental corrosion remediation. Copyright © 2018 Elsevier B.V. All rights reserved.
Gas-Phase Chemistry of Arylimido-Functionalized Hexamolybdates [Mo6O19]2-
NASA Astrophysics Data System (ADS)
Cao, Jie; Wang, QianQian; Liu, Chang; An, ShuQi
2018-04-01
The gas-phase fragmentations of a series of arylimido derivatives of hexamolybdate [Mo6O18(NC6H5-n R n )]2- (2-10, where R = CH3, i-C3H7, OCH3, NO2; n = 1 or 2) versus the parent species [Mo6O19]2- (1) were systematically studied using electrospray tandem mass spectrometry (ESI). Fragmentation of 1 generates two molybdate fragments only, [Mo3O10]2- and [Mo4O13]2-, whereas decomposition of 2-10 went through two dissociation pathways in which path A generates a variety of molybdate fragments via breaking the Mo-N bond followed by the cleavages of the multiple Mo-O bonds, whereas path B produces a range of molybdate fragments with arylimido group via breaking the multiple Mo-O bonds on POM framework. Moreover, the presences of mixed-oxidation-state molybdate fragments are characteristic for the fragmentation. The gas-phase stability order obtained by energy-variable collision-induced dissociation (CID) experiment reveals that 2-10 are generally less stable than 1 and substitution on the benzene ring exerts a considerable effect on the stabilization of the hybrid clusters. [Figure not available: see fulltext.
Bismuth molybdate thick films as ethanol sensor
NASA Astrophysics Data System (ADS)
Jain, Kiran; Kumar, Vipin; Gupta, H. P.; Rastogi, A. C.
2003-10-01
Ethanol sensitivity of bismuth molybdate thick films and sintered pellets were investigated. Sintered pellets were prepared by traditional ceramic processing. Thick films were prepared by metallorganic decomposition process. Ethanol gas sensitivity was measured at various temperatures and concentrations. Thick films of alpha phase bismuth molybdate prepared by spray pyrolysis showed a very fast response to ethanol detection. The response time for the bulk samples is about 40 sec which decreased to about 6 sec for thick films at an operating temperature of 300°C. An extremely low level approximately 10 ppm detection and fast response makes this technique ideal for sensor element fabrication for detection and estimation of alcohol in breath-analyzer. Unlike SnO2, the resistance of these sensors is not affected by humidity at the operating temperature.
Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field
NASA Astrophysics Data System (ADS)
Yakushkin, E. D.
2017-10-01
A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.
NASA Astrophysics Data System (ADS)
Kamińska, Izabela; Elbaum, Danek; Sikora, Bożena; Kowalik, Przemysław; Mikulski, Jakub; Felcyn, Zofia; Samol, Piotr; Wojciechowski, Tomasz; Minikayev, Roman; Paszkowicz, Wojciech; Zaleszczyk, Wojciech; Szewczyk, Maciej; Konopka, Anna; Gruzeł, Grzegorz; Pawlyta, Mirosława; Donten, Mikołaj; Ciszak, Kamil; Zajdel, Karolina; Frontczak-Baniewicz, Małgorzata; Stępień, Piotr; Łapiński, Mariusz; Wilczyński, Grzegorz; Fronc, Krzysztof
2018-01-01
Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd2O3 doped rare earth ions (erbium, Er3+ and ytterbium, Yb3+) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core-shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ—gadolinium molybdates and ξ—molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb3+-{{{{MoO}}}4}2- (∣2F7/2, 3T2〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd2O3:Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core-shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.
Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.
1958-12-23
A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.
Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa
Zhou, Jiqiong; Deng, Bo; Zhang, Yingjun; Cobb, Adam B.; Zhang, Zhao
2017-01-01
Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield. PMID:28099471
Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa.
Zhou, Jiqiong; Deng, Bo; Zhang, Yingjun; Cobb, Adam B; Zhang, Zhao
2017-01-01
Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield.
High Gloss Corrosion-Resistant Coatings
1991-08-27
removal and parts by weight of a zinc salt of a substituted benioic certainly saves on manpower that would generally be acid , and 4 to 27 pans by...system consisting essentially of zinc molybdate, zinc salt of benzoic acids , and zinc phosphate in specific ratio’s. The coating exhibits good...polymeric binder and 18 to 70 percent by weight of a pigment system consisting essen- tially of zinc molybdate. zinc salt of benzoic acids , and zinc
Polanams, Jup; Ray, Alisha D; Watt, Richard K
2005-05-02
Nanoparticles of iron phosphate, iron arsenate, iron molybdate, and iron vanadate were synthesized within the 8 nm interior of ferritin. The synthesis involved reacting Fe(II) with ferritin in a buffered solution at pH 7.4 in the presence of phosphate, arsenate, vanadate, or molybdate. O2 was used as the oxidant to deposit the Fe(III) mineral inside ferritin. The rate of iron incorporation into ferritin was stimulated when oxo-anions were present. The simultaneous deposition of both iron and the oxo-anion was confirmed by elemental analysis and energy-dispersive X-ray analysis. The ferritin samples containing iron and one of the oxo-anions possessed different UV/vis spectra depending on the anion used during mineral formation. TEM analysis showed mineral cores with approximately 8 nm mineral particles consistent with the formation of mineral phases inside ferritin.
Flux of Nutrients Between the Middle and Southern Adriatic Sea (Gargano-Split section)
2013-04-28
silico molybdate in acid solution to mo- lybdenum blue by ascorbic acid . Oxalic acid is introduced to the sam- ple to minimize interferences from...sensitivity of this method. Nitrite is measured by reacting the sample under acidic conditions with sulfanilamide to form a diazo compound that then...colorimetric method in which a blue compound is formed by the reaction of phosphate, molybdate and antimony followed by reduction with ascorbic acid . The reduced
Adewusi, S R; Alofe, F V; Odeyemi, O; Afolabi, O A; Oke, O L
1993-03-01
The biological value of 5 mushrooms Chlorophyllum molybditis, Psathyrella atroumbonata, Termitomyces robustus, Termitomyces striatus and Volvariella esculenta from our collection of wild edible mushrooms were determined using weanling rats. C. molybditis supported rapid growth with PER (2.63) higher than the casein control (2.50). P. atroumbonata was average in biological performance (PER 1.50) while T. robustus and V. esculenta did not support growth at all. Rats on T. striatus dried at 60 degrees C for 48 h lost weight rapidly and showed pathological signs of toxicity by the second day. All rats on this diet died by the fourth day of the experiment. When the diet of T. striatus dried at 90 degrees C for about 8 h was fed, the rats gained weight marginally but all survived. Prolonged storage of T. striatus at 60 degrees C for 5-8 weeks also seemed to detoxify the poisonous component such that PER and NPR values were 0.8 and 2.0 respectively. 2 pairs each of adult rats fed C. molybditis and Tricholoma lobayensis diets for 10 days were mated. Rats of C. molybditis diet gave 5 and 6 litters each and only one of these litters seemed to have retarded growth. Rats on T. lobayensis diet did not produce any litters for 14 weeks but the female produced off-spring when mated with control male rats.
Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi.
Othman, A R; Bakar, N A; Halmi, M I E; Johari, W L W; Ahmad, S A; Jirangon, H; Syed, M A; Shukor, M Y
2013-01-01
Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.
NASA Astrophysics Data System (ADS)
Sabet Bokati, Kazem; Dehghanian, Changiz; Babaei, Mahdi
2018-02-01
The effects of near-surface severe plastic deformation (NS-SPD) on the inhibition performance of sodium molybdate (SM) and 1H-benzotriazole (BTA) for mild steel were investigated using weight loss, polarization and electrochemical impedance spectroscopy measurements. The crystal grain size of NS-SPD-processed surface was analyzed by x-ray diffractometry and field emission scanning electron microscopy. A deformed layer with thickness of 20 ± 5 µm was produced on mild steel surface after NS-SPD process due to accumulated strains. The NS-SPD process caused more effective adsorption of corrosion inhibitors due to the fabrication of a surface with a high density of preferential adsorption sites. However, the stability of protective layer was predominantly influenced by the effect of NS-SPD process on inhibition efficiency. The fairly good persistence of protective layer formed on the surface by SM-containing solution and also positive effect of NS-SPD process on adsorption of molybdate ions caused higher inhibition performance for sodium molybdate. However, NS-SPD process encouraged deterioration of protective layer formed on steel surface in the presence of BTA inhibitor. It was ascribed to partial coverage of surface, low stability of adsorbed layer and thus more adsorption of aggressive ions on unprotected area which was uncovered during immersion time.
Cabello-Díaz, Juan Miguel; Quiles, Francisco Antonio; Lambert, Rocío; Pineda, Manuel; Piedras, Pedro
2012-04-01
Common bean (Phaseolus vulgaris) seedlings accumulate ureides derived from purines after germination. The first step in the conversion of purines to ureides is the removal of the 5'-phosphate group by a phosphatase that has not been established yet. Two main phosphatase activities were detected in the embryonic axes of common bean using inosine monophosphate as substrate in an in-gel assay. Both activities differed in their sensitive to the common phosphatase inhibitor molybdate, with the molybdate-resistant as the first enzyme induced after radicle protrusion. The molybdate-resistant phosphatase has been purified to electrophoretic homogeneity and this is the first enzyme which shows this resistance purified and characterized from plant tissues. The native enzyme was a monomer of 55 kDa and it showed highest activity with nucleotides as substrates, with the K(m) values in the micromolar range. Among nucleotides, the highest specific constant (V(max)/K(m)) was observed for adenosine monophosphate. Furthermore, the enzyme was inhibited by nucleosides, the products of the enzymatic reaction, with maximum effect for adenosine. Common bean seedlings imbibed in the presence of adenosine monophosphate in vivo showed the highest molybdate-resistant phosphatase activity in the axes in addition to increased ureide content. The data presented suggests that purified phosphatase is involved in nucleotide metabolism in embryonic axes from common bean. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Iuchi, S; Lin, E C
1987-01-01
In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812
Light deflection in gadolinium molybdate ferroelastic crystals
NASA Astrophysics Data System (ADS)
Staniorowski, Piotr; Bornarel, Jean
2000-02-01
The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.
Effect of sulfidogenic and methanogenic inhibitors on reductive dehalogenation of 2-chlorophenol.
Basu, S K; Oleszkiewicz, J A; Sparling, R
2005-12-01
The potential for reductive dehalogenation of 2-CP in anaerobic batch cultures of fresh-water digested sludge under sulfidogenic and methanogenic conditions was investigated in the presence or absence of respective inhibitors: molybdate and BESA at various concentrations (0 to 10 mM). Triplicate cultures (50% vol/vol) were set-up under an atmosphere of 20% CO2 and 80% N2 in 160 ml serum bottles using anaerobic digester sludge and a mineral medium containing 0.1% yeast extract. The dehalogenation of 2-CP, as well as methanogenesis, occurred at the same rate in the presence or absence of sulphate. Sulphate reduction did not inhibit 2-CP degrading populations. The presence of BESA--a known inhibitor of methane producers partially inhibited methanogenesis and slowed 2-CP dehalogenation at even 1 mM concentration with phenol and acetate accumulation in the cultures. The accumulation was proportional to the increase in concentration of BESA in the system. Molybdate on the other hand completely inhibited both sulphate reduction and 2-CP dehalogenation at a concentration of 10 mM. The dehalogenation of 2-CP continued in the presence of 1 mM molybdate even after the cessation of sulphate reduction indicating that sulphate-reducing bacteria were not directly involved in the dehalogenation of 2-CP in this study. Inhibition of 2-CP dehalogenation and sulphate reduction along with accumulation of propionate at 10 mM molybdate in the cultures strongly suggests that the dehalogenation of 2-CP was more directly linked to syntrophic activity of the mixed culture compared to sulphate reduction.
Lohmayer, Regina; Reithmaier, Gloria Maria Susanne; Bura-Nakić, Elvira; Planer-Friedrich, Britta
2015-03-17
Molybdenum precipitates preferentially under reducing conditions; therefore, its occurrence in sediment records is used as an indicator of paleoredox conditions. Although thiomolybdates (MoO4-xSx(2-) with x = 1-4) supposedly are necessary intermediates in the process of molybdenum precipitation under anoxic conditions, there is no information about their abundance in natural environments, because of a lack of element-specific methods with sufficiently low detection limits. Here, we optimized ion-pair chromatographic separation for coupling to an inductively coupled plasma-mass spectrometry detector (IPC-ICP-MS). 2-Propanol (10%-25% gradient) replaced the previously used acetonitrile (25%-75%) as the solvent, to reduce the carbon load into the plasma. In synthetic solutions, formation of thiomolybdates was found to occur spontaneously in the presence of excess sulfide and the degree of thiolation was highest at pH 7. Excess hydroxyl led to a transformation of thiomolybdates to molybdate. Under acidic to neutral conditions, precipitation of molybdenum and hydrolysis of tetrathiomolybdate were observed. Flash-freezing was found to be suitable to stabilize tetrathiomolybdate, with <4% transformation over more than two months. High ionic strengths matrices (>2 mM) negatively affected the detection of molybdate, which eluted mainly in the dead volume, but had no negative effect on higher thiolated molybdates. Detection limits were ∼10 nM. With the newly developed IPC-ICP-MS method, thiomolybdates were found to form spontaneously in euxinic marine waters after adding a molybdate spike and occur naturally in sulfidic geothermal waters.
Bai, Guo-Yi; Lan, Xing-Wang; Chen, Guo-Feng; Liu, Xiao-Fang; Li, Tian-Yu; Shi, Ling-Juan
2014-03-01
The reaction of aldehydes and o-phenylenediamine for the preparation of 2-benzimidazoles has been studied using hydrogen peroxide as an oxidant under ultrasound irradiation at room temperature in this paper. The combination of substoichiometric sodium iodide and ammonium molybdate as co-catalysts, together with using small amounts of hydrogen peroxide, makes this transformation very efficient and attractive under ultrasound. Thus, a mild, green and efficient method is established to carry out this reaction in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryal, Baikuntha P.; Brugarolas, Pedro; He, Chuan
2012-05-25
Radiolabeled biomolecules are routinely used for clinical diagnostics. {sup 99m}Tc is the most commonly used radioactive tracer in radiopharmaceuticals. {sup 188}Re and {sup 186}Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO{sub 4}{sup -}) ion as a new way to label proteins. We found that a molybdate (MoO{sub 4}{sup 2-})-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetrymore » measurements, we determined the dissociation constant of ModA for ReO{sub 4}{sup -} to be 541 nM and we solved a crystal structure of ModA with a bound ReO{sub 4}{sup -}. On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K{sub d} = 104 nM). High-resolution crystal structures of ModA (1.7 {angstrom}) and A11C/R153C mutant (2.0 {angstrom}) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.« less
Structural properties of molybdenum-lead-borate glasses.
Rada, M; Rada, S; Pascuta, P; Culea, E
2010-11-01
Glasses and glass ceramics in the system xMoO₃·(100 - x)[3B₂O₃·PbO] with 0 ≤ x ≤ 30 mol% have been prepared from melt quenching method and characterized by means of X-ray diffraction, FTIR, UV-VIS and EPR spectroscopy. We have examined and analyzed the effects of systematic molybdenum ions intercalation on lead-borate glasses and glass ceramics with interesting results. The observations present in these mechanisms show the lead ions bonded ionic have a strong affinity towards [BO₃] units containing non-bridging oxygens and [MoO₄]²⁻ molybdate units. The pronounced affinity towards molybdate anions yields the formation of the PbMoO₄ crystalline phase. Then, the excess of oxygen can be supported into the glass network by the formation of [MoO₆] and [Mo₂O₇] structural units. Pb²(+) ions with 6s² configuration show strong absorption in the ultraviolet due to parity allowed s²-sp transition and yield an absorption band centered at about 310 nm. The changes in the features of the absorption bands centered at about 310 nm can be explained as a consequence of the appearance of additional absorption shoulder due to photoinduced color centers in the glass such as the formation of borate-molybdate and lead-molybdate paramagnetic defect centers in the glasses. The concentration of molybdenum ions influences the shape and width of the EPR signals located at g ∼ 1.86, 1.91 and 5.19. The microenvironment of molybdenum ions in glasses is expected to have mainly sixfold coordination. However, there is a possibility of reduction of a part of molybdenum ions from the Mo⁶(+) to the Mo⁵(+) and Mo⁴(+) to the Mo³(+) states. Copyright © 2010 Elsevier B.V. All rights reserved.
Investigation of terbium in the ferroelectric crystal, gadolinium molybdate, as a potential laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouch, J.E.
A preliminary non-stimulated study of the laser host combination Gd(2 - x)Tb(x)(MoO4)3 is made. The host material, gadolinium molybdate (GMO), is a ferroelectric/ferroelastic crystal. An investigation of temperature and external electric field affects on the absorption and fluorescence of the crystal did not produce any unusual results. The terbium ion, Tb(3+), peak cross section in GMO for the 5D sub 4 to 7F sub 5 transition is 10 x 10 to the minus twenty first power sq. cm. at 300K. The wavelength of this four level laser transition is 543 nm. (GRA)
Hanasaki, N; Watanabe, K; Ohtsuka, T; Kézsmárki, I; Iguchi, S; Miyasaka, S; Tokura, Y
2007-08-24
The metal-insulator transition has been investigated for pyrochlore molybdates R(2)Mo(2)O(7) with nonmagnetic rare-earth ions R. The dynamical scaling analysis of ac susceptibility reveals that the geometrical frustration causes the atomic spin-glass state. The reentrant spin-glass phase exists below the ferromagnetic transition. The electronic specific heat is enhanced as compared to the band calculation result, perhaps due to the orbital fluctuation in the half-metallic ferromagnetic state. The large specific heat is rather reduced upon the transition, likely because the short-range antiferromagnetic fluctuation shrinks the Fermi surface.
NASA Astrophysics Data System (ADS)
Bhargava, V. S.; Singh, Gajendar; Sharma, Manu
2018-05-01
A polymeric semiconductor (g-C3N4), based nanocomposites have been achieved much attention due to its excellent thermal, chemical stability and suitable band positions for water splitting. g-C3N4 based nanocomposites show good performance in the field of photocatalysis, sensors, Li-ion batteries, supercapacitors and water purification technology. In this work, a series of novel g-C3N4/CeM nano composites were synthesized using a facile one-step ultra-sonication method. X-ray diffraction (XRD) pattern confirms the formation of g-C3N4 and cerium molybdate. The photocatalytic activity of nanocomposites indicated the substantial degradation of Methylene Blue (MB) dye up to 97% over the surface of g-C3N4/CeM under visible light illumination. All the g-C3N4/CeM composites possess higher photocatalytic activity than pure cerium molybdate. The proposed mechanism demonstrated that the different weight ratios of photocatalyst were most likely attributed to a synergistic effect between g-C3N4 and CeM. This approach is very simple, cost effective, and free from any surfactant that makes it valuable catalyst for various future applications.
Synthesis of graphene oxide-copper molybdate (GO-CuM) nanocomposites for photocatalytic application
NASA Astrophysics Data System (ADS)
Singh, Gajendar; Bhargava, V. Sai; Sharma, Manu
2018-05-01
Transition metal molybdates (TMBs) MMoO4 (M=Ni, Cu, Fe, Zn, Co, etc.) based nanocomposites have been considered as remarkable materials in the field of electronics, optics, catalysis, supercapicitors and energy storage devices. Nanocomposites of TMBs with graphene oxide have also been chosen as an effective material in photocatalytic application. GO-CuM nanocomposites were synthesized by ultra-sonication method at RT, followed by reflux route for preparation of CuM and GO by modified Hemmer's method. As prepared nanocomposites were characterized using analytical techniques such as PXRD, SEM, FT-IR and UV-Visible spectroscopy. The enhanced photocatalytic activity of Methylene blue (MB) dye was observed by GO-CuM nanocomposites as compared to pure copper molybdate. GO-CuM nanocomposites show high photodegradation rate (0.094 min-1) whereas CuM was degraded only 30 % with the rate of 0.0029 min-1. The high photocatalytic efficiency is due to the presence of graphene oxide that helps to delay the charge recombination in photocatalytic reaction The effect of the different amount of graphene oxide on the photocatalytic activity of as prepared photocatalyst has also been investigated.
Zhu, Yan; Cammers-Goodwin, Arthur; Zhao, Bin; Dozier, Alan; Dickey, Elizabeth C
2004-05-17
This study aimed to elucidate the structural nature of the polydisperse, nanoscopic components in the solution and the solid states of partially reduced polyoxomolybdate derived from the [Mo132] keplerate, [(Mo)Mo5]12-[Mo2 acetate]30. Designer tripodal hexamine-tris-crown ethers and nanoscopic molybdate coprecipitated from aqueous solution. These microcrystalline solids distributed particle radii between 2-30 nm as assayed by transmission electron microscopy (TEM). The solid materials and their particle size distributions were snap shots of the solution phase. The mother liquor of the preparation of the [Mo132] keplerate after three days revealed large species (r=20-30 nm) in the coprecipitate, whereas [Mo132] keplerate redissolved in water revealed small species (3-7 nm) in the coprecipitate. Nanoparticles of coprecipitate were more stable than solids derived solely from partially reduced molybdate. The TEM features of all material analyzed lacked facets on the nanometer length scale; however, the structures diffracted electrons and appeared to be defect-free as evidenced by Moiré patterns in the TEM images. Moiré patterns and size-invariant optical densities of the features in the micrographs suggested that the molybdate nanoparticles were vesicular.
Kneipp, Lucimar F; Magalhães, Andressa S; Abi-Chacra, Erika A; Souza, Lucieri O P; Alviano, Celuta S; Santos, André L S; Meyer-Fernandes, José R
2012-08-01
Rhinocladiella aquaspersa is an etiologic agent of chromoblastomycosis, a subcutaneous chronic infectious disease. In the present work, we found that the three morphological forms of this fungus (conidia, mycelia and sclerotic bodies) expressed different levels of ecto-phosphatase activity. Our results demonstrated that surface conidial enzyme is an acid phosphatase, inhibited by sodium salts of molybdate, orthovanadate and fluoride and that the inhibition caused by orthovanadate and molybdate was irreversible. The conidial ecto-phosphatase efficiently released phosphate groups from different phosphorylated substrates, causing a higher rate of phosphate removal when p-nitrophenylphosphate was used as substrate. This ecto-enzyme of R. aquaspersa is modulated by Co(2 +) ions and inorganic phosphate (Pi). Accordingly, removal of Pi from the culture medium resulted in a marked (121-fold) increase of ecto-phosphatase activity. Surface phosphatase activity is apparently involved in fungal adhesive properties, since the attachment of R. aquaspersa to epithelial cells was reversed by the pre-treatment of the conidia with orthovanadate, molybdate and anti-phosphatase antibody. Corroborating this finding, conidia with greater ecto-phosphatase activity (grown in Pi-depleted medium) showed higher adherence to epithelial cells than fungi cultivated in the presence of Pi.
Cui, Xianjin; Yu, Shu-Hong; Li, Lingling; Biao, Liu; Li, Huabin; Mo, Maosong; Liu, Xian-Ming
2004-01-05
Selective synthesis of uniform single crystalline silver molybdate/tungstate nanorods/nanowires in large scale can be easily realized by a facile hydrothermal recrystallization technique. The synthesis is strongly dependent on the pH conditions, temperature, and reaction time. The phase transformation was examined in details. Pure Ag(2)MoO(4) and Ag(6)Mo(10)O(33) can be easily obtained under neutral condition and pH 2, respectively, whereas other mixed phases of Mo(17)O(47), Ag(2)Mo(2)O(7,) Ag(6)Mo(10)O(33) were observed under different pH conditions. Ag(6)Mo(10)O(33) nanowires with uniform diameter 50-60 nm and length up to several hundred micrometers were synthesized in large scale for the first time at 140 degrees C. The melting point of Ag(6)Mo(10)O(33) nanowires were found to be about 238 degrees C. Similarly, Ag(2)WO(4), and Ag(2)W(2)O(7) nanorods/nanowires can be selectively synthesized by controlling pH value. The results demonstrated that this route could be a potential mild way to selectively synthesize various molybdate nanowires with various phases in large scale.
NASA Astrophysics Data System (ADS)
Wang, Liyong; Guo, Xiaoqing; Cai, Xiaomeng; Song, Qingwei; Han, Yuanyuan; Jia, Guang
2018-02-01
Red phosphors of Eu3+-doped bismuth molybdate (BMO) are prepared by a low temperature hydrothermal method assisting with Phenol Formaldehyde resin (PFr), and characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared-spectroscopy (FT-IR), thermogravimetric analyzer (TGA), differential thermal analyzer (DTA), and photoluminescence (PL) spectroscopy. PL properties influence factors including molar ratio of Bi3+ and Mo3+ ions, PFr dosage and dopants concentration are discussed in detail. The results show that BMO can act as a useful host for Eu3+ ions doping, and energy transferring from Bi3+ to Eu3+ achieved efficiently, the BMO phosphors displayed intense red color emission under ultraviolet light excitation.
Synthesis and Photoluminescence Characteristics of Eu(3+)-Doped Molybdates Nanocrystals.
Li, Fuhai; Yu, Lixin; Wei, Shuilin; Sun, Jiaju; Chen, Weiqing; Sun, Wei
2015-12-01
In this paper, the Eu(3+)-doped molybdate (CaMoO4, ZnMoO4 and BaMoO4) phosphors have been prepared by a hydrothermal method through modulating the pH value of the precursor solution (pH = 8, 10, and 12, respectively). The crystalline phase, morphology, photoluminescent properties of the prepared samples were systematically characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectra. The results indicate that the photoluminescence and morphology can be affected by the precursor solution. And the growth of the ZnMoO4 crystals also can be affected by the pH value of the precursor solution.
Teucrium polium complex with molybdate enhance cultured islets secretory function.
Mohseni Salehi Monfared, Seyed Sajad; Pournourmohammadi, Shirin
2010-02-01
Islet transplantation has become a promising treatment in the therapy of type 1 diabetes. Its function improvement, after isolation and before transplantation, is crucial because of their loss both in number and function of islets after isolation procedures. Trace elements sodium orthovanadate (SOV) and sodium molybdate (SM), as well as medicinal plant Teucrium polium L. (TP), showed and possessed high beneficial antioxidative potential and even hypoglycemic properties via their effect on islets. We evaluated the effect of these components in combination on cultured islet function in order to improve pancreatic islet transplantation. Rat pancreatic islets were cultured for 24 h then incubated with different concentrations of TP (0.01 and 0.1 mg/mL) alone and in combination with SOV (1 mM) or SM (1 mM). Insulin concentration in buffer media was measured as islet secretory function. Administration of TP (0.01 mg/mL), SM, and SOV alone or in combination with each other significantly increased insulin secretion at high glucose concentration (16.7 mM); insulin secretion was significantly greater in the group containing both TP and SM than other treated groups (p < 0.05). The combination of the mentioned trace elements especially molybdate with TP could improve islet cells function before transplantation.
NASA Astrophysics Data System (ADS)
Minakshi, M.; Watcharatharapong, T.; Chakraborty, S.; Ahuja, R.
2018-04-01
Sustainable energy sources require an efficient energy storage system possessing excellent electrochemical properties. The better understanding of possible crystal configurations and the development of a new ternary metal oxide in molybdate composite as an electrode for hybrid capacitors can lead to an efficient energy storage system. Here, we reported a new ternary metal oxide in molybdate composite [(Mn1/3Co1/3Ni1/3)MoO4] prepared by simple combustion synthesis with an extended voltage window (1.8 V vs. Carbon) resulting in excellent specific capacity 35 C g-1 (58 F g-1) and energy density (50 Wh kg-1 at 500 W kg-1) for a two electrode system in an aqueous NaOH electrolyte. The binding energies measured for Mn, Co, and Ni 2p are consistent with the literature, and with the metal ions being present as M(II), implying that the oxidation states of the transition metals are unchanged. The experimental findings are correlated well through density functional theory based electronic structure calculations. Our reported work on the ternary metal oxide studies (Mn1/3Co1/3Ni1/3)MoO4 suggests that will be an added value to the materials for energy storage.
Solodovnikov, Sergey F; Atuchin, Victor V; Solodovnikova, Zoya A; Khyzhun, Oleg Y; Danylenko, Mykola I; Pishchur, Denis P; Plyusnin, Pavel E; Pugachev, Alexey M; Gavrilova, Tatiana A; Yelisseyev, Alexander P; Reshak, Ali H; Alahmed, Zeyad A; Habubi, Nadir F
2017-03-20
Cs 2 Pb(MoO 4 ) 2 crystals were prepared by crystallization from their own melt, and the crystal structure has been studied in detail. At 296 K, the molybdate crystallizes in the low-temperature α-form and has a monoclinic palmierite-related superstructure (space group C2/m, a = 2.13755(13) nm, b = 1.23123(8) nm, c = 1.68024(10) nm, β = 115.037(2)°, Z = 16) possessing the largest unit cell volume, 4.0066(4) nm 3 , among lead-containing palmierites. The compound undergoes a distortive phase transition at 635 K and incongruently melts at 943 K. The electronic structure of α-Cs 2 Pb(MoO 4 ) 2 was explored by using X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy methods. For α-Cs 2 Pb(MoO 4 ) 2 , the photoelectron core-level and valence-band spectra and the XES band representing the energy distribution of Mo 4d and O 2p states were recorded. Our results allow one to conclude that the Mo 4d and O 2p states contribute mainly to the central part and at the top of the valence band, respectively, with also significant contributions throughout the whole valence-band region of the molybdate under consideration.
Thermal expansion of silver iodide-silver molybdate glasses at low temperatures
NASA Astrophysics Data System (ADS)
Mandanici, A.; Raimondo, A.; Cutroni, M.; Ramos, M. A.; Rodrigo, J. G.; Vieira, S.; Armellini, C.; Rocca, F.
2009-05-01
Ionic glasses obtained combining silver iodide and silver molybdate are characterized by quite low values of the glass transition temperature Tg around 320-350 K, by high values of the dc ionic conductivity even at room temperature and by a peculiar behavior of the mechanical response at ultrasonic frequencies. In fact, at temperatures well below their glass transition temperature, these glasses exhibit an intense peak of acoustic attenuation well described by two different and almost overlapping relaxational contributions. Considering also that negative thermal expansion has been reported for some molybdate crystalline compounds, we have investigated in this work the thermal expansion of two silver iodomolybdate glasses (AgI)1-x(Ag2MoO4)x for x =0.25 and x =0.33 in a wide temperature range (4.2-300 K) from cryogenic temperatures up to some 20 K below Tg using a precision capacitance dilatometer aiming to understand whether the expansivity shows some possible fingerprint corresponding to the above-mentioned mechanical response. Two different measuring methods, a quasiadiabatic and a continuous one, have been used for the thermal expansion measurements. The results are discussed in comparison with the information obtained from previous investigations based on the extended x-ray absorption fine structure (EXAFS) technique and with the behavior of other ionic glasses.
D’haeseleer, Patrik; Lee, Jackson Z.; Prufert-Bebout, Leslie; ...
2017-11-15
Cyanobacterial mats are laminated microbial ecosystems which occur in highly diverse environments and which may provide a possible model for early life on Earth. Their ability to produce hydrogen also makes them of interest from a biotechnological and bioenergy perspective. Samples of an intertidal microbial mat from the Elkhorn Slough estuary in Monterey Bay, California, were transplanted to a greenhouse at NASA Ames Research Center to study a 24-h diel cycle, in the presence or absence of molybdate (which inhibits biohydrogen consumption by sulfate reducers). Here, we present metagenomic analyses of four samples that will be used as references formore » future metatranscriptomic analyses of this diel time series.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’haeseleer, Patrik; Lee, Jackson Z.; Prufert-Bebout, Leslie
Cyanobacterial mats are laminated microbial ecosystems which occur in highly diverse environments and which may provide a possible model for early life on Earth. Their ability to produce hydrogen also makes them of interest from a biotechnological and bioenergy perspective. Samples of an intertidal microbial mat from the Elkhorn Slough estuary in Monterey Bay, California, were transplanted to a greenhouse at NASA Ames Research Center to study a 24-h diel cycle, in the presence or absence of molybdate (which inhibits biohydrogen consumption by sulfate reducers). Here, we present metagenomic analyses of four samples that will be used as references formore » future metatranscriptomic analyses of this diel time series.« less
NASA Astrophysics Data System (ADS)
Suponitskiy, Yu. L.; Zolotova, E. S.; Dyunin, A. G.; Liashenko, S. E.
2018-03-01
The phase transition temperatures of chromates and molybdates of certain alkali metals, and the melting temperature and enthalpy of polymorphic transformations for tungstates, are determined by means of thermal analysis. Enthalpies of dissolution of rubidium and cesium chromates in water and enthalpies of dissolution of alkali metal tungstates in a melt at 923 K are measured via calorimetry. Standard enthalpies of formation of sought chromates are calculated. The linear correlations between the enthalpies of formation of sulfates, selenates, chromates, tungstates, and molybdates are established, and a linear correlation within - (Δ G o ox)-1-(Δ MV)ox)-1 coordinates is found for isopolymolybdates.
Mekala, Raju; Supriya, Sabbani; Das, Samar K
2013-09-03
When the giant icosahedral {Mo72Fe30} cluster containing compound [Mo72Fe30O252(CH3COO)12{Mo2O7(H2O)}2{H2Mo2O8(H2O)}(H2O)91]·150H2O (1) is refluxed in water for 36 h, it results in the formation of nanoiron molybdate, Fe2(MoO4)3, in the form of a yellow precipitate; this simple approach not only generates nanoferric molybdate at a moderate temperature but also helps to understand the stability of {Mo72Fe30} in terms of the linker-pentagon complementary relationship.
Negative Stains Containing Trehalose: Application to Tubular and Filamentous Structures
NASA Astrophysics Data System (ADS)
Harris, J. Robin; Gerber, Max; Gebauer, Wolfgang; Wernicke, Wolfgang; Markl, Jürgen
1996-02-01
Several examples are presented that show the successful application of uranyl acetate and ammonium molybdate negative staining in the presence of trehalose for TEM studies of filamentous and tubular structures. The principal benefit to be gained from the inclusion of trehalose stems from the considerably reduced flattening of the large tubular structures and the greater orientational freedom of single molecules due to an increased depth of the negative stain in the presence of trehalose. Trehalose is likely to provide considerable protection to protein molecules and their assemblies during the drying of negatively stained specimens. Some reduction in the excessive density imparted by uranyl acetate around large assemblies is also achieved. Nevertheless, in the presence of 1% (w/v) trehalose, it is desirable to increase the concentration of negative stain to 5% (w/v) for ammonium molybdate and to 4% for uranyl acetate to produce satisfactory image contrast. In general, the ammonium molybdate-trehalose negative stain is more satisfactory than the uranyl acetate-trehalose combination, because of the greater electron beam sensitivity of the uranyl negative stain. Reassembled taxol-stabilized pig brain microtubules, together with collagen fibrils, sperm tails, helical filaments, and reassociated hemocyanin (KLH2), all from the giant keyhole limpet Megathura crenulata, have been studied by negative staining in the presence of trehalose. In all cases satisfactory TEM imaging conditions were readily obtained on the specimens, as long as regions of excessively deep stain were avoided.
Halmi, M. I. E.; Zuhainis, S. W.; Yusof, M. T.; Shaharuddin, N. A.; Helmi, W.; Shukor, Y.; Syed, M. A.; Ahmad, S. A.
2013-01-01
Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052
de Jesus, E B; de Andrade Lima, L R P
2016-08-01
Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity.
Hasona, Adnan; Ray, Ramesh M.; Shanmugam, K. T.
1998-01-01
A unique class of chlorate-resistant mutants of Escherichia coli which produced formate hydrogenlyase and nitrate reductase activities only when grown in medium with limiting amounts of sulfur compounds was isolated. These mutants failed to produce the two molybdoenzyme activities when cultured in rich medium or glucose-minimal medium. The mutations in these mutants were localized in the moeA gene. Mutant strains with polar mutations in moeA which are also moeB did not produce active molybdoenzymes in any of the media tested. moeA mutants with a second mutation in either cysDNCJI or cysH gene lost the ability to produce active molybdoenzyme even when grown in medium limiting in sulfur compounds. The CysDNCJIH proteins along with CysG catalyze the conversion of sulfate to sulfide. Addition of sulfide to the growth medium of moeA cys double mutants suppressed the MoeA− phenotype. These results suggest that in the absence of MoeA protein, the sulfide produced by the sulfate activation/reduction pathway combines with molybdate in the production of activated molybdenum. Since hydrogen sulfide is known to interact with molybdate in the production of thiomolybdate, it is possible that the MoeA-catalyzed activated molybdenum is a form of thiomolybdenum species which is used in the synthesis of molybdenum cofactor from Mo-free molybdopterin. PMID:9515915
THE DIFFERENTIAL THERMAL ANALYSIS OF CYANO-TRANSITION METAL COMPLEXES
COMPOUNDS, CHROMATES, COBALT COMPOUNDS, CYANIDES, CYANOGEN, DYES, FERRATES , GASES, HEAT, HYDROXIDES, LITHIUM COMPOUNDS, MOLYBDATES, NICKELATES, NITRATES...OXIDATION REDUCTION REACTIONS, POTASSIUM COMPOUNDS, SILVER COMPOUNDS, SODIUM COMPOUNDS, VANADATES
Li, Zhao; Chen, Min; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio
2017-02-01
This work describes the mechanochemical transformations of molybdenum and vanadium sulfides into corresponding molybdate and vanadate, to serve as a new environment-friendly approach for processing hazardous spent hydrodesulphurization (HDS) catalysts solid waste to achieve an easy recovery of not only molybdenum and vanadium but also nickel and cobalt. Co-grinding the molybdenum and vanadium sulfides with oxidants and sodium carbonate stimulates solid-state reactions without any heating aid to form metal molybdates and vanadates. The reactions proceed with an increase in grinding time and were enhanced by using more sodium carbonate and stronger oxidant. The necessary conditions for the successful transformation can be explained on the basis of thermodynamic analyses, namely a negative change in Gibbs free energy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigation of novel zinc molybdate-graphene nanocomposite for supercapacitor applications
NASA Astrophysics Data System (ADS)
Reddy, B. Joji; Vickraman, P.; Justin, A. Simon
2018-06-01
Novel zinc molybdate-graphene nanocomposite is prepared for the first time in a fast, facile and eco-friendly microwave synthesis route as an electrode material for electrochemical supercapacitors. The as-prepared sample is investigated by X-ray diffraction, FTIR, Raman, scanning electron microscope and transmission electron microscope techniques. The studies have confirmed the formation of ZnMoO4 and its composite with graphene. The synthesized materials are subjected to electrochemical characterization studies in 2M KOH electrolyte solution which prove that ZnMoO4-graphene as an effective electrode material for supercapacitor applications. ZnMoO4 in its composite behavior has exhibited a specific capacitance of 272.93 F g- 1 at 0.5 A g- 1 with good cyclic stability for 1000 cycles.
Polymerization and photochromism of ammonium molybdate in porous glass
NASA Astrophysics Data System (ADS)
Pak, V. N.; Borisov, A. N.
2016-08-01
Modification of porous glass (PG) plates is carried out by impregnation with aqueous solutions of ammonium molybdate (NH4)2MoO4 with subsequent removal of water at 120°C. A long-wavelength shift of absorption spectra upon accumulation of the salt in PG indicates polymerization of MoO 4 2- anions at low concentrations of the encapsulated salt. Photochromism manifests itself as the anionic forms in PG become larger. UV irradiation of the modified plates causes enhancement of continuous absorption in the visible range. The proposed mechanism of photoreduction of the polianions in PG involves the removal of oxygen atoms from the bridging-Mo-O-Mo-bonds and stabilization of the colored forms by means of conjugation of the electrons released from the 4 d-levels of pentavalent molybdenum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotova, Irina Yu.; Buryat State University, Smolin St. 24a, Ulan-Ude 670000, Buryat Republic; Solodovnikov, Sergey F.
Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized and single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown. In their structures, the MoO{sub 4} tetrahedra, pairs and trimers of edge-shared (Mg, R)O{sub 6} octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag{sup +} cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O{sub 6} octahedra and MoO{sub 4} tetrahedra in the framework form quadrangular windows penetrable for Ag{sup +} at elevated temperatures.more » Above 653–673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4–0.6 eV. At 773 K, AgMg{sub 3}Al(MoO{sub 4}){sub 5} shows electric conductivity 2.5·10{sup −2} S/cm and E{sub a}=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type. - Graphical abstract: Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized, AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were structurally characterized, ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} were measured. Display Omitted - Highlights: • Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized. • Single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown and their crystal structures were determined. • Disordering Ag{sup +} ions and penetrable framework structures of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) suggest 2D-character of silver-ion mobility. • Measured ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} are compatible with characteristics of the best ionic conductors of the NASICON type.« less
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
Shugurov, S M; Panin, A I; Lopatin, S I
2018-06-21
CeO 2 -WO 3 and CeO 2 -MoO 3 catalysts have shown excellent performance in the selective reduction of NO x by ammonia (NH 3 -selective catalytic reduction) over a wide temperature range. Strong interaction between CeO 2 and WO 3 or MoO 3 might be the dominant reason for the high activity of these mixed oxides. Studies of ceria-containing gaseous salts involve considerable experimental difficulties, since the transition of such salts to vapor requires high temperatures. To predict the possibility of the existence of gaseous associates formed by cerium and molybdenum (tungsten) oxides it is important to know their thermodynamic characteristics. Until the present investigation, gaseous cerium oxyacid salts were unknown. Knudsen effusion mass spectrometry was used to determine the partial pressures of vapor species and the equilibrium constants of gas-phase reactions, as well as the formation and atomization enthalpies of gaseous cerium molybdates and tungstates. CeO 2 was evaporated from molybdenum and tungsten effusion cells containing gold metal as a pressure standard. A theoretical study of gaseous cerium gaseous molybdates and tungstates was performed by several quantum chemical methods. In the temperature range 2050-2400 K, CeO, CeO 2 , XO 2 , XO 3 , CeWO 3 , CeXO 4 , CeXO 5 (X = Mo, W) and CeMo 2 O 7 were found to be the main vapor species over the CeO 2 - Mo (W) systems. On the basis of the equilibrium constants of the gaseous reactions, the standard formation enthalpies of gaseous CeWO 3 , CeXO 4 , CeXO 5 (X = Mo, W) and CeMo 2 O 7 at 298 K were determined. Energetically favorable structures of gaseous cerium salts were found and vibrational frequencies were evaluated in the harmonic approximation. The thermal stability of gaseous cerium oxyacid salts was confirmed by high-temperature mass spectrometry. Reaction enthalpies of the gaseous cerium molybdates and tungstates from gaseous cerium, molybdenum and tungsten oxides were evaluated theoretically and the obtained values are in reasonable agreement with the experimental one. This article is protected by copyright. All rights reserved.
Srivastava, Pramod Kumar; Anand, Asha
2015-01-01
Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.
Spray pyrolytic deposition of α-MoO3 film and its use in dye-sensitized solar cell
NASA Astrophysics Data System (ADS)
Tamboli, Parvin S.; Jagtap, Chaitali V.; Kadam, Vishal S.; Ingle, Ravi V.; Vhatkar, Rajiv S.; Mahajan, Smita S.; Pathan, Habib M.
2018-04-01
Thermal decomposition of ammonium para molybdate tetrahydrate precursor has been studied to determine degradation temperatures in air atmosphere. Current work explores the synthesis of α-MoO3 films by an economical spray pyrolysis technique using ammonium para molybdate tetrahydrate precursor in the presence of compressed air. A variety of characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-visible spectroscopy, Fourier transform infrared, and Raman spectroscopy were carried out, and the studies have confirmed that orthorhombic phase formation of MoO3 takes place with spongy mesh-type structure. The study of electro-catalytic activity of α-MoO3 in titania-based dye-sensitized solar cell is also carried out by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curves to evaluate its performance as a counter electrode.
NASA Astrophysics Data System (ADS)
Armengaud, E.; Augier, C.; Barabash, A. S.; Beeman, J. W.; Bekker, T. B.; Bellini, F.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; Boiko, R. S.; Broniatowski, A.; Brudanin, V.; Camus, P.; Capelli, S.; Cardani, L.; Casali, N.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; de Combarieu, M.; Coron, N.; Danevich, F. A.; Dafinei, I.; Jesus, M. De; Devoyon, L.; Domizio, S. Di; Dumoulin, L.; Eitel, K.; Enss, C.; Ferroni, F.; Fleischmann, A.; Foerster, N.; Gascon, J.; Gastaldo, L.; Gironi, L.; Giuliani, A.; Grigorieva, V. D.; Gros, M.; Hehn, L.; Hervé, S.; Humbert, V.; Ivannikova, N. V.; Ivanov, I. M.; Jin, Y.; Juillard, A.; Kleifges, M.; Kobychev, V. V.; Konovalov, S. I.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Laubenstein, M.; Sueur, H. Le; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Nagorny, S.; Navick, X.-F.; Nikolaichuk, M. O.; Nones, C.; Novati, V.; Olivieri, E.; Pagnanini, L.; Pari, P.; Pattavina, L.; Pavan, M.; Paul, B.; Penichot, Y.; Pessina, G.; Piperno, G.; Pirro, S.; Plantevin, O.; Poda, D. V.; Queguiner, E.; Redon, T.; Rodrigues, M.; Rozov, S.; Rusconi, C.; Sanglard, V.; Schäffner, K.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tomei, C.; Tretyak, V. I.; Umatov, V. I.; Vagneron, L.; Vasiliev, Ya. V.; Velázquez, M.; Vignati, M.; Weber, M.; Yakushev, E.; Zolotarova, A. S.
2017-11-01
This paper reports on the development of a technology involving ^{100}Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (˜ 1 kg), high optical quality, radiopure ^{100}Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of ^{100}Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8σ . Less than 10 μ Bq/kg activity of ^{232}Th (^{228}Th) and ^{226}Ra in the crystals is ensured by boule recrystallization. The potential of ^{100}Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg× d exposure: the two neutrino double-beta decay half-life of ^{100}Mo has been measured with the up-to-date highest accuracy as T_{1/2} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10^{18} years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of ^{100}Mo.
Molybdenum Incorporation in Tungsten Aldehyde Oxidoreductase Enzymes from Pyrococcus furiosus▿ †
Sevcenco, Ana-Maria; Bevers, Loes E.; Pinkse, Martijn W. H.; Krijger, Gerard C.; Wolterbeek, Hubert T.; Verhaert, Peter D. E. M.; Hagen, Wilfred R.; Hagedoorn, Peter-Leon
2010-01-01
The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope 99Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs. PMID:20562313
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh
2006-05-15
Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.
NASA Astrophysics Data System (ADS)
Graczyk, Piotr; Trzaskowska, Aleksandra; Załȩski, Karol; Mróz, Bogusław
2016-07-01
Full ferroelastic and simultaneously ferroelectric materials are interesting candidates for applications in devices based on multiferroic heterostructures. They should allow for non-volatile and low-power writing of data bits in magnetoelectric random access memories. Moreover, ferroelasticity, in contrast to piezoelectric material, make magnetic information in ferromagnetic film resistant to external fields. As an example for such a system, we have studied the magnetoelastic interaction between a thin ferromagnetic layer of {{Ni}}85{{Fe}}15 with a full ferroelastic-ferroelectric gadolinium molybdate {{Gd}}2{({{MoO}}4)}3 crystal. We have investigated the influence of {{Gd}}2{({{MoO}}4)}3 spontaneous strain onto magnetic properties of thin ferromagnetic film. Particularly, we have shown by Brillouin spectroscopy, that it is possible to modulate surface spin wave frequency of {{Ni}}85{{Fe}}15 by spontaneous strain of gadolinium molybdate substrate.
Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO 4· nH 2O
NASA Astrophysics Data System (ADS)
Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley
2010-06-01
The synthesis and crystal structure of NiMoO 4· nH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO 4·1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.
NASA Astrophysics Data System (ADS)
Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang
2017-04-01
In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.
Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; ...
2015-05-06
A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄• nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts weremore » highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and C nH₂ n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and C nH₂ n₊₂ (n > 2) hydrocarbons (Co case).« less
Buekers, Jurgen; Mertens, Jelle; Smolders, Erik
2010-06-01
Previous studies have shown that toxicity of cationic trace metals in soil is partially confounded by effects of the accompanying anions. A similar assessment is reported here for toxicity of an oxyanion, i.e., molybdate (MoO(4) (2-)), the soil toxicity of which is relatively unexplored. Solubility and toxicity were compared between the soluble sodium molybdate (Na(2)MoO(4)) and the sparingly soluble molybdenum trioxide (MoO(3)). Confounding effects of salinity were excluded by referencing the Na(2)MoO(4) effect to that of sodium chloride (NaCl). The pH decrease from the acid MoO(3) amendment was equally referenced to a hydrochloric (HCl) treatment or a lime-controlled MoO(3) treatment. The concentrations of molybdenum (Mo) in soil solution or calcium chloride (CaCl(2)) 0.01 M extracts were only marginally affected by either MoO(3) or Na(2)MoO(4) as an Mo source after 10 to 13 days of equilibration. Effects of Mo on soil nitrification were fully confounded by associated changes in salinity or pH. Effects of Mo on growth of wheat seedlings (Triticum aestivum L) were more pronounced than those on nitrification, and toxicity thresholds were unaffected by the form of added Mo. The Mo thresholds for wheat growth were not confounded by pH or salinity at incipient toxicity. It is concluded that oxyanion toxicity might be confounded in relatively insensitive tests for which reference treatments should be included. Copyright 2010 SETAC.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2000-01-01
Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion inhibiting properties of newly developed proprietary molybdate conversion coatings on aluminum alloy 2024-T3 under immersion in aerated 5% (w/w) NaCl. Corrosion potential and EIS measurements were gathered for six formulations of the coating at several immersion times for two weeks. Nyquist as well as Bode plots of the data were obtained. The conversion-coated alloy panels showed an increase in the corrosion potential during the first 24 hours of immersion that later subsided and approached a steady value. Corrosion potential measurements indicated that formulations A, D, and F exhibit a protective effect on aluminum 2024-T3. The EIS spectra of the conversion-coated alloy were characterized by an impedance that is higher than the impedance of the bare alloy at all the immersion times. The low frequency impedance, Z(sub lf) (determined from the value at 0.05 Hz) for the conversion-coated alloy was higher at all the immersion times than that of the bare panel. This indicates improvement of corrosion resistance with addition of the molybdate conversion coating. Scanning electron microscopy (SEM) revealed the presence of cracks in the coating and the presence of cubic crystals believed to be calcium carbonate. Energy dispersive spectroscopy (EDS) of the test panels revealed the presence of high levels of aluminum, oxygen, and calcium but did not detect the presence of molybdenum on the test panels. X-ray photoelectron spectroscopy (XPS) indicated the presence of less than 0.01 atomic percent molybdenum on the surface of the coating.
Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan
2017-07-05
A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO 2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO 2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.
Scott, R H; DeMoss, J A
1976-01-01
When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells. Apparently, inactive forms of both formate dehydrogenase and nitrate reductase accumulate during growth on tungstate which are electrophoretically distinct from the active enzymes. Activation by molybdate results in molecular changes which include the reassociation of cytochrome b1 with formate dehydrogenase and restoration of both enzymes to their original electrophoretic mobilities. Images PMID:770433
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfide leachate. BAT Limitations for the Primary Molybdenum and Rhenium Subcategory Pollutant or...] [Reserved] Ammonia (as N) 223.800 98.390 Fluoride 58.770 33.410 (c) Molybdic oxide leachate. BAT Limitations...
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfide leachate. BAT Limitations for the Primary Molybdenum and Rhenium Subcategory Pollutant or...] [Reserved] Ammonia (as N) 223.800 98.390 Fluoride 58.770 33.410 (c) Molybdic oxide leachate. BAT Limitations...
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfide leachate. BAT Limitations for the Primary Molybdenum and Rhenium Subcategory Pollutant or...] [Reserved] Ammonia (as N) 223.800 98.390 Fluoride 58.770 33.410 (c) Molybdic oxide leachate. BAT Limitations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfide leachate. BAT Limitations for the Primary Molybdenum and Rhenium Subcategory Pollutant or...] [Reserved] Ammonia (as N) 223.800 98.390 Fluoride 58.770 33.410 (c) Molybdic oxide leachate. BAT Limitations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... sulfide leachate. BAT Limitations for the Primary Molybdenum and Rhenium Subcategory Pollutant or...] [Reserved] Ammonia (as N) 223.800 98.390 Fluoride 58.770 33.410 (c) Molybdic oxide leachate. BAT Limitations...
NASA Astrophysics Data System (ADS)
Martin, Elizabeth J.
Although the electrochemical behavior of metals used in orthopedic implants has been studied extensively, the material interactions with proteins during corrosion processes remains poorly understood. Some studies suggest that metal-protein interactions accelerate corrosion, while others suggest that proteins protect the material from degradation. Corrosion of implant materials is a major concern due to the metal ion release that can sometimes cause adverse local tissue reactions and ultimately, failure of the implant. The initial purpose of this research was therefore to study the corrosion behavior of CoCrMo, an alloy commonly used in hip replacements, with a quartz crystal microbalance (QCM) in physiologically relevant media. The QCM enables in situ characterization of surface changes accompanying corrosion and is sensitive to viscoelastic effects at its surface. Results of QCM studies in proteinaceous media showed film deposition on the alloy surface under electrochemical conditions that otherwise produced mass loss if proteins were not present in the electrolyte. Additional studies on pure Co, Cr, and Mo demonstrated that the protein films also form on Mo surfaces after a release of molybdate ions, suggesting that these ions are essential for film formation. The electrochemically generated protein films are reminiscent of carbonaceous films that form on implant surfaces in vivo, therefore a second goal of the research was to delineate mechanisms that cause the films to form. In the second stage of this research, electrochemical QCM tests were conducted on models of the CoCrMo system consisting of Cr electrodes in proteinaceous or polymeric media containing dissolved molybdate ions. Studies indicated that films can be generated through electrochemical processes so long as both amine functional groups and molybdate ions are present in the electrolyte solution. These results suggest that the films form due to an ionic cross-linking reaction between the positively charged amine groups in the proteins and the negatively charged molybdate ions. Results also indicated that film generation is controlled by the potential at the electrode surface. Numerical analysis on the model systems suggest that a drop in the local pH at the corroding electrode surface may influence film generation, but a critical concentration of molybdate-amine cross-links must be exceeded for gels to form. A final goal of this research was to develop a technique to characterize the viscoelastic properties of polymer films in liquid media using the QCM as a high-frequency rheometer. The work showed that by measuring frequency and dissipation shifts at multiple harmonics of the QCM resonant frequency, the viscoelastic phase angle, density-modulus product, and areal mass of a film submersed in liquid can be quantified in situ. The method was successfully applied to characterize the electrochemically generated protein films. Results implied that the films are composed of a weakly cross-linked network with properties similar to concentrated albumin solutions containing 40 wt% protein. The analysis technique can be extended to characterize any polymer film in a liquid environment, with applications including adsorption, self-assembly, or cell-substrate interactions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Achá, Darío; Hintelmann, Holger; Yee, Janet
2011-02-01
Sulfate reducing bacteria (SRB) are important mercury methylators in sediments, but information on mercury methylators in other compartments is ambiguous. To investigate SRB involvement in methylation in Amazonian periphyton, the relationship between Hg methylation potential and SRB (Desulfobacteraceae, Desulfobulbaceae and Desulfovibrionaceae) abundance in Eichhornia crassipes and Polygonum densiflorum root associated periphyton was examined. Periphyton subsamples of each macrophyte were amended with electron donors (lactate, acetate and propionate) or inhibitors (molybdate) of sulfate reduction to create differences in SRB subgroup abundance, which was measured by quantitative real-time PCR with primers specific for the 16S rRNA gene. Mercury methylation and demethylation potentials were determined by a stable isotope tracer technique using 200HgCl and CH3(202)HgCl, respectively. Relative abundance of Desulfobacteraceae (<0.01-12.5%) and Desulfovibrionaceae (0.01-6.8%) were both highly variable among samples and subsamples, but a significant linear relationship (p<0.05) was found between Desulfobacteraceae abundance and net methylmercury formation among treatments of the same macrophyte periphyton and among all P. densiflorum samples, suggesting that Desulfobacteraceae bacteria are the most important mercury methylators among SRB families. Yet, molybdate only partially inhibited mercury methylation potentials, suggesting the involvement of other microorganisms as well. The response of net methylmercury production to the different electron donors and molybdate was highly variable (3-1104 pg g(-1) in 12 h) among samples, as was the net formation in control samples (17-164 pg g(-1) in 12 h). This demonstrates the importance of community variability and complexity of microbial interactions for the overall methylmercury production in periphyton and their response to external stimulus. Copyright © 2010 Elsevier Ltd. All rights reserved.
Diel Metagenomics and Metatranscriptomics of Elkhorn Slough Hypersaline Microbial Mat
NASA Astrophysics Data System (ADS)
Lee, J.; Detweiler, A. M.; Everroad, R. C.; Bebout, L. E.; Weber, P. K.; Pett-Ridge, J.; Bebout, B.
2014-12-01
To understand the variation in gene expression associated with the daytime oxygenic phototrophic and nighttime fermentation regimes seen in hypersaline microbial mats, a contiguous mat piece was subjected to sampling at regular intervals over a 24-hour diel period. Additionally, to understand the impact of sulfate reduction on biohydrogen consumption, molybdate was added to a parallel experiment in the same run. 4 metagenome and 12 metatranscriptome Illumina HiSeq lanes were completed over day / night, and control / molybdate experiments. Preliminary comparative examination of noon and midnight metatranscriptomic samples mapped using bowtie2 to reference genomes has revealed several notable results about the dominant mat-building cyanobacterium Microcoleus chthonoplastes PCC 7420. Dominant cyanobacterium M. chthonoplastes PCC 7420 shows expression in several pathways for nitrogen scavenging, including nitrogen fixation. Reads mapped to M. chthonoplastes PCC 7420 shows expression of two starch storage and utilization pathways, one as a starch-trehalose-maltose-glucose pathway, another through UDP-glucose-cellulose-β-1,4 glucan-glucose pathway. The overall trend of gene expression was primarily light driven up-regulation followed by down-regulation in dark, while much of the remaining expression profile appears to be constitutive. Co-assembly of quality-controlled reads from 4 metagenomes was performed using Ray Meta with progressively smaller K-mer sizes, with bins identified and filtered using principal component analysis of coverages from all libraries and a %GC filter, followed by reassembly of the remaining co-assembly reads and binned reads. Despite having relatively similar abundance profiles in each metagenome, this binning approach was able to distinctly resolve bins from dominant taxa, but also sulfate reducing bacteria that are desired for understanding molybdate inhibition. Bins generated from this iterative assembly process will be used for downstream mapping of transcriptomic reads as well as isolation efforts for Cyanobacteria-associated bacteria.
A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.
Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont
2009-01-30
A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) < or = 4 min), 1:10 for HD (t(1/2) < 2 min with molybdate), and 1:10 for GD (t(1/2) < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.
Modeling the effects of variable groundwater chemistry on adsorption of molybdate
Stollenwerk, Kenneth G.
1995-01-01
Laboratory experiments were used to identify and quantify processes having a significant effect on molybdate (MoO42−) adsorption in a shallow alluvial aquifer on Cape Cod, assachusetts. Aqueous chemistry in the aquifer changes as a result of treated sewage effluent mixing with groundwater. Molybdate adsorption decreased as pH, ionic strength, and the concentration of competing anions increased. A diffuse-layer surface complexation model was used to simulate adsorption of MoO42−, phosphate (PO43−), and sulfate (SO42−) on aquifer sediment. Equilibrium constants for the model were calculated by calibration to data from batch experiments. The model was then used in a one-dimensional solute transport program to successfully simulate initial breakthrough of MoO42− from column experiments. A shortcoming of the solute transport program was the inability to account for kinetics of physical and chemical processes. This resulted in a failure of the model to predict the slow rate of desorption of MoO42− from the columns. The mobility of MoO42− ncreased with ionic strength and with the formation of aqueous complexes with calcium, magnesium, and sodium. Failure to account for MoO42− speciation and ionic strength in the model resulted in overpredicting MoO42− adsorption. Qualitatively, the laboratory data predicted the observed behavior of MoO42− in the aquifer, where retardation of MoO42− was greatest in uncontaminated roundwater having low pH, low ionic strength, and low concentrations of PO43− and SO42−.
MOLYBDENUM ENRICHMENT AS AN INDICATOR OF HYPOXIC WATER CONDITION
Most programs examining the extent of low dissolved oxygen (DO) conditions in marine systems require in-situ sensors to be deployed during periods of low DO. This limits the ability to monitor hypoxia over larger spatial and/or temporal scales. Determination of authigenic molybde...
NASA Astrophysics Data System (ADS)
Kushkhov, Kh. B.; Kardanov, A. L.; Adamokova, M. N.
2013-02-01
Nanopowders of binary tungsten-molybdenum carbide are fabricated by high-temperature electrochemical synthesis. The optimum concentration relations between electrolyte components, the current density, and the quantity of electricity are determined to synthesize binary tungsten-molybdenum carbides.
NASA Astrophysics Data System (ADS)
Kotelnikova, Alexandra A.; Karengin, Alexander G.; Mendoza, Orlando
2018-03-01
The article represents possibility to apply oxidative and reducing plasma for plasma-chemical synthesis of metal-oxide compounds «Mo‒UO2» from water-salt mixtures «molybdic acid‒uranyl nitrate» and «molybdic acid‒ uranyl acetate». The composition of water-salt mixture was calculated and the conditions ensuring plasma-chemical synthesis of «Mo‒UO2» compounds were determined. Calculations were carried out at atmospheric pressure over a wide range of temperatures (300-4000 K), with the use of various plasma coolants (air, hydrogen). The heat conductivity coefficients of metal-oxide compounds «Mo‒UO2» consisting of continuous component (molybdenum matrix) are calculated. Inclusions from ceramics in the form of uranium dioxide were ordered in the matrix. Particular attention is paid to methods for calculating the coefficients of thermal conductivity of these compounds with the use of different models. Calculated results were compared with the experimental data.
Molybdenum Involvement in Aerobic Degradation of 2-Furoic Acid by Pseudomonas putida Fu1
Koenig, Kerstin; Andreesen, Jan Remmer
1989-01-01
An organism identified as Pseudomonas putida was isolated from an enrichment culture with 2-furoic acid as its sole source of carbon and energy. The organism contained a 2-furoyl-coenzyme A (CoA) synthetase to form 2-furoyl-CoA and a 2-furoyl-CoA dehydrogenase to form 5-hydroxy-2-furoyl-CoA as the first two enzymes involved in the degradation. Tungstate, the specific antagonist of molybdate, decreased growth rate and consumption of 2-furoic acid but had no influence on growth with succinate. Correspondingly, the 2-furoyl-CoA dehydrogenase activity decreased when the organism was grown on 2-furoic acid in the presence of increasing amounts of tungstate. The addition of molybdate reversed the negative effect on 2-furoyl-CoA dehydrogenase activity, which points to the involvement of a molybdoenzyme in this reaction. Both enzymes studied were inducible. No plasmid was detected in this organism. PMID:16347977
Effect of thiomolybdate and ammonium molybdate in pregnant guinea pigs and their offspring.
Howell, J M; Shunxiang, Y; Gawthorne, J M
1993-09-01
Groups of eight guinea pigs and their offspring were given drinking water containing molybdenum as ammonium molybdate (AM) or thiomolybdate (TM) throughout and subsequent to pregnancy. All adult females had oestrous cycles and conception rates were unaffected. Fetal death was common in groups given the high dose of TM. The concentration of copper in liver was reduced in all groups at all ages except for pups killed at birth from animals given AM. The concentration of molybdenum was elevated in liver and kidney of all groups and was statistically significant in the majority. The concentration in plasma of copper, molybdenum and copper insoluble in trichloroacetic acid was elevated in all groups. Superoxide dismutase activity was significantly reduced in dams and six-week-old pups in which TM administration commenced before mating. Histological damage occurred in the pancreas of animals given AM or TM. The effects on the fetus and pancreas were considered to result from copper deficiency rather than molybdenum toxicity.
Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation.
Larsen, Daniel B; Petersen, Allan R; Dethlefsen, Johannes R; Teshome, Ayele; Fristrup, Peter
2016-11-07
The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the transfer HDO of five para-substituted benzylic alcohols was carried out. Density-functional theory (DFT) calculations suggest a transition state with significant loss of aromaticity contributes to the lack of linearity observed in the Hammett study. The transfer HDO could also be carried out in neat PhCH 2 OH at 175 °C. Under these conditions, PhCH 2 OH underwent disproportionation to yield benzaldehyde, toluene, and significant amounts of bibenzyl. Isotopic-labelling experiments (using PhCH 2 OD and PhCD 2 OH) showed that incorporation of deuterium into the resultant toluene originated from the α position of benzyl alcohol, which is in line with the mechanism suggested by the DFT study. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kusum; Raina, R; Verma, P K; Pankaj, N K; Kant, V; Kumar, J; Srivastava, A K
2010-07-01
Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils.
NASA Astrophysics Data System (ADS)
Mabood, Fazal; Hussain, Z.; Haq, H.; Arian, M. B.; Boqué, R.; Khan, K. M.; Hussain, K.; Jabeen, F.; Hussain, J.; Ahmed, M.; Alharasi, A.; Naureen, Z.; Hussain, H.; Khan, A.; Perveen, S.
2016-01-01
A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80 s, the optimal reaction temperature is 160 °C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength.
Kusum; Raina, R.; Verma, P. K.; Pankaj, N. K.; Kant, V.; Kumar, J.; Srivastava, A. K.
2010-01-01
Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils. PMID:21170251
Biomass transition metal hydrogen-evolution electrocatalysts and electrodes
Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko
2017-02-28
A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.
40 CFR 261.32 - Hazardous wastes from specific sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
.../or pigments production is defined to include manufacture of the following product classes: dyes... pentachlorophenol (T) Inorganic pigments: K002 Wastewater treatment sludge from the production of chrome yellow and orange pigments (T) K003 Wastewater treatment sludge from the production of molybdate orange pigments (T...
Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide
Balistrieri, L.S.; Chao, T.T.
1990-01-01
This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.
Effect of ferroelastic domain pattern changes on the EPR spectra in TDM
NASA Astrophysics Data System (ADS)
Zapart, W.; Zapart, M. B.
2011-09-01
This article presents polarized light microscopy studies of the ferroelastic domain structure and the analysis of electron paramagnetic resonance spectra of Cr3+ admixture ions in trigonal double molybdates. The correlation has been found between abnormal EPR lineshape and domain structure in ferroelastic phases of these crystals.
LeBlanc, Denis R.; Garabedian, Stephen P.; Hess, Kathryn M.; Gelhar, Lynn W.; Quadri, Richard D.; Stollenwerk, Kenneth G.; Wood, Warren W.
1991-01-01
A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions as they moved as far as 280 m down-gradient through an array of multilevel samplers. The bromide cloud moved horizontally at a rate of 0.42 m per day. It also moved downward about 4 m because of density-induced sinking early in the test and accretion of areal recharge from precipitation. After 200 m of transport, the bromide cloud had spread more than 80 m in the direction of flow, but was only 14 m wide and 4–6 m thick. The lithium and molybdate clouds followed the same path as the bromide cloud, but their rates of movement were retarded about 50% relative to bromide movement because of sorption onto the sediments.
Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6
Noar, Jesse; Loveless, Telisa; Navarro-Herrero, José Luis; Olson, Jonathan W.
2015-01-01
The diazotroph Azotobacter vinelandii possesses three distinct nitrogenase isoenzymes, all of which produce molecular hydrogen as a by-product. In batch cultures, A. vinelandii strain CA6, a mutant of strain CA, displays multiple phenotypes distinct from its parent: tolerance to tungstate, impaired growth and molybdate transport, and increased hydrogen evolution. Determining and comparing the genomic sequences of strains CA and CA6 revealed a large deletion in CA6's genome, encompassing genes related to molybdate and iron transport and hydrogen reoxidation. A series of iron uptake analyses and chemostat culture experiments confirmed iron transport impairment and showed that the addition of fixed nitrogen (ammonia) resulted in cessation of hydrogen production. Additional chemostat experiments compared the hydrogen-producing parameters of different strains: in iron-sufficient, tungstate-free conditions, strain CA6's yields were identical to those of a strain lacking only a single hydrogenase gene. However, in the presence of tungstate, CA6 produced several times more hydrogen. A. vinelandii may hold promise for developing a novel strategy for production of hydrogen as an energy compound. PMID:25911479
Phosphate determination in seawater: toward an autonomous electrochemical method.
Jońca, Justyna; León Fernández, Violeta; Thouron, Danièle; Paulmier, Aurélien; Graco, Michelle; Garçon, Véronique
2011-12-15
Initial steps to create an autonomous in situ electrochemical sensor for orthophosphate determination in seawater are presented. First, the optimal conditions to form the molybdophosphate complex in artificial seawater medium were determined by addition of sulphuric acid and sodium molybdate to the solution containing orthophosphate. Secondly, the anodic oxidation of molybdenum to form molybdate ions and protons was used to create the molybdophosphate complex without addition of any liquid reagents. The molybdophosphate complex is detectable by amperometry with an average precision of 2.2% for the concentration range found in the open ocean and the detection limit is 0.12 μM. Three solutions are proposed to address the silicate interferences issue and one of these methods is used for the natural samples collected in the coastal waters offshore Peru during the Pelagico 1011-12-BIC OLAYA cruise in November-December 2010. Results showed a good precision with an average of 2.5% and a reasonable deviation of the amperometric analysis as compared with colorimetric measurements (4.9%). Copyright © 2011 Elsevier B.V. All rights reserved.
Improper ferroelectricity: A theoretical and experimental investigation
NASA Astrophysics Data System (ADS)
Hardy, J. R.; Ullman, F. G.
1984-02-01
A combined theoretical and experimental study has been made of the origins and properties of the improper ferroelectricity associated with structural modulations of non-zero wavelengths. Two classes of materials have been studied: rare earth molybdates (specifically, gadolinium molybdate: GMO), and potassium selenate and its isomorphs. In the former, the modulation is produced by a zone boundary phonon instability, and in the latter by the instability of a phonon of wave vector approximately two-thirds of the way to the zone-boundary. In the second case the initial result is a modulated structure whose repeat distance is not a rational multiple of the basic lattice repeat distance. This result is a modulated polarization which, when the basic modulation locks in to a rational multiple of the lattice spacing, becomes uniform, and improper ferroelectricity results. The origins of these effects have been elucidated by theoretical studies, initially semi-empirical, but subsequently from first-principles. These complemented the experimental work, which primarily used inelastic light scattering, uniaxial stress, and hydrostatic pressure, to probe the balance between the interionic forces through the effects on the phonons and dielectric properties.
Barros, M P; Hollnagel, H C; Glavina, A B; Soares, C O; Ganini, D; Dagenais-Bellefeuille, S; Morse, D; Colepicolo, P
2013-10-15
Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO4(2-)), although MoO4(2-) uptake is thought to compete with uptake of the much more abundant sulfate anion (SO4(2-), approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO4(2-) and SO4(2-) concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO4(2-) concentrations (from 0 to 200 μM) and three different SO4(2-) concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of the three major antioxidant enzymes (superoxide dismutase, catalase, and ascorbate peroxidase), indexes of oxidative modifications in proteins (carbonyl content) and lipids (thiobarbituric acid-reactive substances, TBARS), the activities of the molybdenum-dependent enzymes xanthine oxidase and nitrate reductase, expression of key protein components of dinoflagellate photosynthesis (peridinin-chlorophyll a protein and ribulose-1,5-biphosphate carboxylase/oxidase) and growth curves. We find evidence for Mo toxicity at relatively high [MoO4(2-)]:[SO4(2-)] ratios. We also find evidence for extensive redox adaptations at Mo levels well below lethal levels. Copyright © 2013 Elsevier B.V. All rights reserved.
Energy transfer driven tunable emission of Tb/Eu co-doped lanthanum molybdate nanophosphors
NASA Astrophysics Data System (ADS)
Thomas, Kukku; Alexander, Dinu; Sisira, S.; Gopi, Subash; Biju, P. R.; Unnikrishnan, N. V.; Joseph, Cyriac
2018-06-01
Tb3+/Eu3+ co-doped lanthanum molybdate nanophosphors were synthesized by conventional co-precipitation method. The Powder X-ray diffractogram revealed the formation of highly crystalline tetragonal nanocrystals with space group I41/a and the detailed analysis of the small variation of lattice parameters with Tb/Eu co-doping on the host lattice were carried out based on the ionic radii of the dopants. The FTIR spectra is employed to identify the fundamental vibrational modes in La2-x-y (MoO4)3:xTb, yEu nanocrystals. The formation of nanocrystals by oriented attachment was recognized from the HR TEM images and the d-spacing calculated was in accordance with that corresponding to highest intensity diffraction peak in the XRD patterns. The constituent elements present in the samples were identified with the aid of EDAX and elemental mapping analysis. The broad Mo6+- O2- CTB and the sharp excitation peaks of Tb and Eu identified from the UV-Vis absorption spectra facilitates the suitability of exciting the phosphors effectively over NUV and visible region of the spectra. The possibility of energy transfer from host to Tb3+/Eu3+ ions and from Tb3+ to Eu3+ ions were confirmed from the PL excitation spectra monitoring 5D0→7F2 transition of Eu3+ ions around 615 nm. The correlated analysis of PL emission spectra, life time measurements and CIE diagram, upon different excitation channels elucidate the excellent luminescent properties of La2-x-y (MoO4)3:xTb, yEu nanophosphors with tunable emission colours in a wide range varying from yellow green region to reddish orange region and the efficient energy transfer from Tb3+ to Eu3+ ions in lanthanum molybdate host lattice. The Tb→Eu energy transfer efficiency and probability were calculated from the decay measurements and the values were found to be satisfactory for exploiting the prepared nanophosphors for the development of multifunctional luminescent nanophosphors.
DeTar, Rachael Ann; Alford, Élan R; Pilon-Smits, Elizabeth A H
2015-07-01
Some species hyperaccumulate selenium (Se) upwards of 0.1% of dry weight. This study addressed whether Se hyperaccumulators also accumulate and tolerate more molybdenum (Mo). A field survey revealed on average 2-fold higher Mo levels in three hyperaccumulator Astragali compared to three nonaccumulator Astragali, which were not significantly different. Next, a controlled study was performed where hyperaccumulators Astragalus racemosus and Astragalus bisulcatus were compared with nonaccumulators Astragalus drummondii and Astragalus convallarius for Mo accumulation and tolerance, alone or in the presence of Se. When grown on agar media with 0, 12, 24 or 48 mg L(-1) molybdate and/or 0, 1.6 or 3.2 mg L(-1) selenate, all species decreased in biomass with increasing Mo supply. Selenium did not impact biomass at the supplied levels. All Astragali accumulated Mo upwards of 0.1% of dry weight. Selenium levels were up to 0.08% in Astragalus racemosus and 0.04% Se in the other species. Overall, there was no correlation between Se hyperaccumulation and Mo accumulation capacity. However, the hyperaccumulators and nonaccumulators differed in some respects. While none of the species had a higher tissue Mo to sulfur (S) ratio than the growth medium, nonaccumulators had a higher Mo/S ratio than hyperaccumulators. Also, while molybdate and selenate reduced S accumulation in nonaccumulators, it did not in hyperaccumulators. Furthermore, A. racemosus had a higher Se/S ratio than its medium, while the other species did not. Additionally, Mo and Se treatment affected S levels in nonaccumulators, but not in hyperaccumulators. In conclusion, there is no evidence of a link between Se and Mo accumulation and tolerance in Astragalus. Sulfate transporters in hyperaccumulating Astragali appear to have higher sulfate specificity over other oxyanions, compared to nonaccumulators, and A. racemosus may have a transporter with enhanced selenate specificity relative to sulfate or molybdate. Copyright © 2015 Elsevier GmbH. All rights reserved.
Characterization of R5020 and RU486 binding to progesterone receptor from calf uterus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, C.; Moudgil, V.K.
1988-05-17
The authors have examined and compared the binding characteristics of the progesterone agonist R5020 (promegestrone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione) and the progesterone antagonist RU486 (mifepristone, 17..beta..-hydroxy-11..beta..-(4-(dimethylamino)phenyl)-17..cap alpha..-(prop-1-ynyl)-estra-4,9-dien-3-one) in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting K/sub d/ values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4/sup 0/C, showing saturation of binding sites at 1-2 h for (/sup 3/H)progesterone and 2-4 h for both (/sup 3/H)R5020 and (/sup 3/H)RU486. Addition of molybdate and glycerol to cytosol increased the extent of (/sup 3/H)R5020 binding. Themore » extent of (/sup 3/H)RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the (/sup 3/H)R5020- and (/sup 3/H)RU486-receptor complexes at 37/sup 0/C. Competitive steroid binding analysis revealed that (/sup 3/H)progesterone, (/sup 3/H)R5020, and (/sup 3/H)RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S (/sup 3/H)R5020 and (/sup 3/H)RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020. The results of this study suggest that, although there are some differences in the nature of their interaction with the PR, both R5020 and RU486 bind to the same 8S receptor in calf uterine cytosol.« less
Manganese oxide shuttling in pre-GOE oceans - evidence from molybdenum and iron isotopes
NASA Astrophysics Data System (ADS)
Kurzweil, Florian; Wille, Martin; Gantert, Niklas; Beukes, Nicolas J.; Schoenberg, Ronny
2016-10-01
The local occurrence of oxygen-rich shallow marine water environments has been suggested to significantly predate atmospheric oxygenation, which occurred during the Great Oxidation Event (GOE) ca. 2.4 billion years ago. However, the potential influence of such 'oxygen oases' on the mobility, distribution and isotopic composition of redox sensitive elements remains poorly understood. Here, we provide new molybdenum and iron isotopic data from shallow marine carbonate and silicate iron formations of the Koegas Subgroup, South Africa, that confirm local ocean redox stratification prior to the GOE. Mn concentrations correlate negatively with both δ98 Mo and δ56 Fe values, which highlights the substantial role of particulate manganese for the cycling of Mo and Fe in the Paleoproterozoic oceans. Based on these trends we propose that pore water molybdate was recharged (1) by the diffusional transport of seawater molybdate with high δ98 Mo and (2) by the re-liberation of adsorbed molybdate with low δ98 Mo during Mn oxide dissolution within the sediment. The relative contribution of isotopically light Mo is highest close to a Mn chemocline, where the flux of Mn oxides is largest, causing the negative correlation of Mn concentrations and δ98 Mo values in the Koegas sediments. The negative correlation between δ56 Fe values and Mn concentrations is likely related to Fe isotope fractionation during Fe(II) oxidation by Mn oxides, resulting in lower δ56 Fe values in the uppermost water column close to a Mn chemocline. We argue that the preservation of these signals within Paleoproterozoic sediments implies the existence of vertically extended chemoclines with a smoother gradient, probably as a result of low atmospheric oxygen concentrations. Furthermore, we suggest that abiotic oxidation of Fe(II) by a Mn oxide particle shuttle might have promoted the deposition of the Koegas iron formations.
Batch tests were performed to evaluate the effects of inorganic anion competition on the kinetics of arsenate (As(V)) and arsenite (As(III)) removal by zerovalent iron (Peerless Fe0) in aqueous solution. The oxyanions underwent either sorption-dominated reactions (phosphate, sil...
A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse i...
Corrosion-Resistant Alkyd Coatings
1992-02-18
molecule. Examples of such acid compounds include the aliphatic saturated dibasic acids such as succinic acid , adipic acid , azelaic acid , sebacic...of a benzoic acid . 15. SUBJECT TERMS corrosion control, single topcoat, one coat 16. SECURITY CLASSIFICATION OF: unclassified a. REPORT...consisting essentially of critical amounts of at least one zinc phos- phate, zinc molybdate and at least one zinc salt of a benzoic acid . 15
1987-02-10
4, Jul-Aug 86) CATALYSIS Reaction of Active Component of Vanadium-Sulfur Catalysts With Water Vapor (V. N. Krasilnikov, A. A. Ivakin, et al...Vyunov, et al.; ZHURNAL PRIKLADNOY KHIMII, No 7, Jul 86) 7 Preparation and Catalytic Activity of Metal Molybdates in Oxidative Dehydrogenation of...Exhaust Gases From Plants (Yu. Sh. Matros, V. A. Chumachenko; KHIMICHESKAYA TECHNOLOGIYA, No 4, Jul-Aug 86). 23 COMBUSTION Metallurgy and Optics
USDA-ARS?s Scientific Manuscript database
Prolonged feeding of sericea lespedeza (SL; Lespedeza cuneata) previously led to reduced serum concentrations of molybdenum (Mo), a co-factor in an enzyme complex that may be involved in weight gain. The objective of this study was to determine the effect of Mo supplementation on changes in serum, f...
Caron, Laurent; Nardello, Véronique; Mugge, José; Hoving, Erik; Alsters, Paul L; Aubry, Jean-Marie
2005-02-15
Chemically generated singlet oxygen (1O2, 1Deltag) is able to oxidize a great deal of hydrophobic substrates from molybdate-catalyzed hydrogen peroxide decomposition, provided a suitable reaction medium such as a microemulsion system is used. However, high substrate concentrations or poorly reactive organics require large amounts of H2O2 that generate high amounts of water and thus destabilize the system. We report results obtained on combining dark singlet oxygenation of hydrophobic substrates in microemulsions with a pervaporation membrane process. To avoid composition alterations after addition of H2O2 during the peroxidation, the reaction mixture circulates through a ceramic membrane module that enables a partial and selective dewatering of the microemulsion. Optimization phase diagrams of sodium molybdate/water/alcohol/anionic surfactant/organic solvent have been elaborated to maximize the catalyst concentration and therefore the reaction rate. The membrane selectivity towards the mixture constituents has been investigated showing that a high retention is observed for the catalyst, for organic solvents and hydrophobic substrates, but not for n-propanol (cosurfactant) and water. The efficiency of such a process is illustrated with the peroxidation of a poorly reactive substrate, viz., beta-pinene.
Ratova, Marina; Kelly, Peter J.; West, Glen T.; Xia, Xiaohong; Gao, Yun
2016-01-01
Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating. PMID:28787867
Blanchard, Peter E R; Hayes, John R; Grosvenor, Andrew P; Rowson, John; Hughes, Kebbi; Brown, Caitlin
2015-06-02
The geochemical model for Mo mineralization in the JEB Tailings Management Facility (JEB TMF), operated by AREVA Resources Canada at McClean Lake, Saskatchewan, was investigated using X-ray Absorption Near-Edge Spectroscopy (XANES), an elemental-specific technique that is sensitive to low elemental concentrations. Twenty five samples collected during the 2013 sampling campaign from various locations and depths in the TMF were analyzed by XANES. Mo K-edge XANES analysis indicated that the tailings consisted primarily of Mo(6+) species: powellite (CaMoO4), ferrimolybdite (Fe2(MoO4)3·8H2O), and molybdate adsorbed on ferrihydrite (Fe(OH)3 - MoO4). A minor concentration of a Mo(4+) species in the form of molybdenite (MoS2) was also present. Changes in the Mo mineralization over time were inferred by comparing the relative amounts of the Mo species in the tailings to the independently measured aqueous Mo pore water concentration. It was found that ferrimolybdite and molybdate adsorbed on ferrihydrite initially dissolves in the TMF and precipitates as powellite.
NASA Astrophysics Data System (ADS)
Jeseentharani, V.; Dayalan, A.; Nagaraja, K. S.
2018-04-01
In this study, nanocrystalline transition metal nickel-cobalt molybdate (Ni1-xCoxMoO4, NiCM; x = 0, 0.3, 0.5, 0.7, 1) composites were prepared using a simple co-precipitation method. The composites were characterized by thermogravimetric/differential thermal analysis, Fourier transform-infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The NiCM composites were studied to determine their possible use as humidity sensors, and photoluminescence (PL) measurements were obtained. The sensing study was performed in environments with different relative humidity levels (5-98%). The maximum sensitivity of 18624 ± 168 was observed with the Ni0.7Co0.3MoO4 composite where the humidity could be calculated according to the relationship: Sf = R5%/R98%, where R5% and R98% are the dc resistances at 5 and 98% RH, respectively. The photoluminescence measurements acquired at room temperature for the NiCMs included green and red emission peaks when excited at a wavelength (λex) of 520 nm.
Critchley, M; Bentham, R
2009-03-01
In vitro experiments were undertaken to evaluate biocide formulations commonly used in cooling water systems against protozoa previously isolated from cooling towers. The investigations evaluated the efficacy of these formulations against amoebic cysts and trophozoites. Laboratory challenges against protozoa isolated from cooling towers using chlorine, bromine and isothiazolinone biocides showed that all were effective after 4 h. The presence of molybdate and organic phosphates resulted in longer kill times for bromine and isothiazolinones. All treatments resulted in no detectable viable protozoa after 4 h of exposure. The chemical disinfection of planktonic protozoa in cooling water systems is strongly influenced by the residence time of the formulation and less so by its active constituent. Bromine and isothiazolinone formulations may require higher dosage of concentrations than currently practiced if used in conjunction with molybdate- and phosphate-based scale/corrosion inhibitors. Cooling water systems are complex microbial ecosystems in which predator-prey relationships play a key role in the dissemination of Legionella. This study demonstrated that at recommended dosing concentrations, biocides had species-specific effects on environmental isolates of amoebae that may act as reservoirs for Legionella multiplication in cooling water systems.
Ceramic Piezoelectric Transducers
1979-06-01
s material and device symmetries and to the mode of phase inte"connection ( con - nectivity), elastic a’td electric "fluxes" could be distributed so...microstructure of the composite can be more closely con - trolled. A second important advance has been the development of a new family of electrostrictive...Cross, I.S.T. Tsong. Characterization of the Films Deposited by Chemical Reaction on Ferroelectric- Ferroelastic Gadolinium Molybdate ( GMO
Lemna paucicostata Hegelm. 6746
Datko, Anne H.; Mudd, S. Harvey; Giovanelli, John
1980-01-01
Photoautotrophic and mixotrophic growth of Lemna paucicostata Hegelm. 6746 (formerly Lemna perpusilla Torr. 6746) was investigated to establish standardized conditions for biochemical studies. Optimal temperature for growth was 29 to 30 C. The medium used previously (Datko AH, Mudd SH, Giovanelli J 1977 J Biol Chem 252: 3436-3445) was modified by inclusion of NH4Cl, decreasing macronutrient and ethylenediamine tetraacetate concentration, increasing micronutrient concentration, and inclusion of bicarbonate (for photoautotrophic growth) or 2-(N-morpholino)ethanesulfonic acid (for mixotrophic growth) buffers. Varying the sulfate concentration between 14 and 1 millimolar had no effect on growth. For photoautotrophic growth in the new medium (medium 4), the effects of CO2 concentration, light intensity, and pH were measured. Under the optimal conditions, a multiplication rate (MR) of 300 to 315, equivalent to a doubling time of 23 to 24 hours was obtained. Addition of glutamine or asparagine did not increase this MR. For mixotrophic growth in low light, the effects of sucrose concentration and pH were determined. Under optimal conditions, MR was 210. A concentration of sucrose less than maximal for growth was chosen for the medium for experiments which will include 14C-labeling of intermediates. MR under these conditions was 184. Growth was equally good in medium 4 and in half-strength Hutner's medium when sulfate was high (0.4 to 1 millimolar), but better in medium 4 when sulfate was low (20 micromolar). Growth rates could be restored to normal in half-strength Hutner's with low sulfate by decreasing the molybdate concentration. By modifying medium 4 to contain very low amounts of sulfate, and by preconditioning medium and plants, it was shown that there was an increment in plant protein of approximately 2.5 micrograms per nanomole of added MgSO4. Colonies undergoing sulfur limitation exhibited a slow growth rate and a high frond to colony ratio. Molybdate and selenate produced growth inhibition reversible by sulfate. Conditions were developed in which the plants could be maintained indefinitely in the presence of either molybdate or selenate in altered metabolic steady-states with lowered growth rates and protein per frond. Images PMID:16661306
Present State of CBRN Decontamination Methodologies (Stand van Zaken CBRN- Ontsmettingsmethodieken)
2007-03-01
activity and effectiveness . The oxidation of HD requires the presence of activators such as carbonate (CO 3 2-, bicarbonate (HC0 3") or molybdate (MOO 4 2...gasses), nucleophilic substitution (alkaline hydrolysis and oximes) and alternative chemical approaches. Some chemical decontaminants are effective ...are commercially available. Most enzymes are only effective against GB and GD, however, some enzymatic approaches towards destruction of VX, HD and
Polyurethane Self-Priming Topcoats
1992-08-25
QUAIUIY? IPECTED 3 25 aircraft, are exposed to seawater spray in addition to various acid -forming gases such as sulfur dioxide, carbon dioxide, etc...apply particularly since there is a drying time between each application. Further, the removal of a two-coat system can be difficult and time...alkaline earth metal phosphate, e.g., zinc-barium phosphate, (2) zinc salts of benzoic acid or substituted benzoic acid , and (3) molybdate-modified zinc
NASA Astrophysics Data System (ADS)
Suzuki, Ikuo; Ishibashi, Yoshihiro
1987-02-01
The electric field induced phase transitions are discussed in the improper ferroelectrics and ferroelastics, where the high symmetry phase is assumed to be piezoelectric as in the gadolinium molybdate (GMO). The dependence on the electric field of the polarization is discussed, and the D-E hysteresis loops are compared with the one experimentally observed in GMO.
Two-photon interband absorption coefficients in tungstate and molybdate crystals
NASA Astrophysics Data System (ADS)
Lukanin, V. I.; Karasik, A. Ya.
2015-02-01
Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.
Jay Murray, F; Tyl, Rochelle W; Sullivan, Frank M; Tiwary, Asheesh K; Carey, Sandra
2014-11-01
Molybdenum is an essential nutrient for humans and animals and is a constituent of several important oxidase enzymes. It is normally absorbed from the diet and to a lesser extent from drinking water and the typical human intake is around 2μg/kg bodyweight per day. No developmental toxicity studies to contemporary standards have been published and regulatory decisions have been based primarily on older studies where the nature of the test material, or the actual dose levels consumed is uncertain. In the current study the developmental toxicity of sodium molybdate dihydrate as a representative of a broad class of soluble molybdenum(VI) compounds, was given in the diet to Sprague Dawley rats in accordance with OECD Test Guideline 414. Dose levels of 0, 3, 10, 20 and 40mgMo/kgbw/day were administered from GD6 to GD20. No adverse effects were observed at any dose level on the dams, or on embryofetal survival, fetal bodyweight, or development, with no increase in malformations or variations. Significant increases in serum and tissue copper levels were observed but no toxicity related to these was observed. The NOAEL observed in this study was 40mgMo/kgbw/day, the highest dose tested. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; El-Rasheedy, El-Gazy A.
2012-03-01
Two simple, sensitive, cheep and reliable spectrophotometric methods are suggested for micro-determination of pseudoephedrine in its pure form and in pharmaceutical preparation (Sinofree Tablets). The first one depends on the drug reaction with inorganic sensitive reagent like molybdate anion in aqueous media via formation of ion-pair mechanism. The second one depends on the drug reaction with π-acceptor reagent like DDQ in non-aqueous media via formation of charge transfer complex. These reactions were studied under various conditions and the optimum parameters were selected. Under proper conditions the suggested procedures were successfully applied for micro-determination of pseudoephedrine in pure and in Sinofree Tablets without interference from excepients. The values of SD, RSD, recovery %, LOD, LOQ and Sandell sensitivity refer to the high accuracy and precession of the applied procedures. The results obtained were compared with the data obtained by an official method, referring to confidence and agreement with DDQ procedure results; but it referred to the more accuracy of the molybdate data. Therefore, the suggested procedures are now successfully being applied in routine analysis of this drug in its pharmaceutical formulation (Sinofree) in Saudi Arabian Pharmaceutical Company (SPIMACO) in Boridah El-Qaseem, Saudi Arabia instead of imported kits had been previously used.
The AMoRE: Search for Neutrinoless Double Beta Decay in 100Mo
NASA Astrophysics Data System (ADS)
Park, HyangKyu; AMoRE Collaboration
2016-04-01
The AMoRE (Advanced Mo-based Rare process Experiment) collaboration is going to use calcium molybdate, 40Ca100MoO4 (CMO), crystal scintillators enriched in 100Mo and depleted in 48Ca to search for neutrinoless double-beta (0 νββ) decay of 100Mo using a technique of cryogenic scintillating bolometers at the underground laboratory in Korea. The collaboration is going to utilize metallic magnetic calorimeters (MMC) as temperature sensors both in heat and light channels of CMO detectors operated at milli-Kelvin temperature. Application of relatively fast MMC sensors provides excellent energy resolution, powerful discrimination of internal alpha particles, effective pulse-shape discrimination of randomly coinciding events of two-neutrino double-beta decay of 100Mo. In its first phase, the AMoRE-10 will use about 10 kg of CMO crystals. As a next step, the AMoRE-200 is going to build about 200 kg detector to reach a half-life sensitivity on the level of 1026 years with an aim to explore inverted hierarchy region of the effective Majorana neutrino mass 0.02 - 0.05 eV. Recent progress on the calcium molybdate detectors developments at room and milli-Kelvin temperatures as well as background study based on Monte Carlo simulations will be presented.
New double molybdate Na9Fe(MoO4)6: Synthesis, structure, properties
NASA Astrophysics Data System (ADS)
Savina, Aleksandra A.; Solodovnikov, Sergey F.; Basovich, Olga M.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Pokholok, Konstantin V.; Gudkova, Irina A.; Stefanovich, Sergey Yu.; Lazoryak, Bogdan I.; Khaikina, Elena G.
2013-09-01
A new double molybdate Na9Fe(MoO4)6 was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, X-ray fluorescence analysis, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na9Fe(MoO4)6 were obtained and its structure was solved (the space group R3¯, a=14.8264(2), c=19.2402(3) Å, V=3662.79(9) Å3, Z=6, R=0.0132). The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)3. The basic structure units are polyhedral clusters composed of central FeО6 octahedron sharing edges with three Na(1)О6 octahedra. The clusters share common vertices with bridging МоО4 tetrahedra to form an open 3D framework where the cavities are occupied by Na(2) and Na(3) atoms. The compound melts incongruently at 904.7±0.2 K. Arrhenius type temperature dependence of electric conductivity σ has been registered in solid state (σ=6.8×10-2 S сm-1 at 800 K), thus allowing considering Na9Fe(MoO4)6 as a new sodium ion conductor.
Anion binding in biological systems
NASA Astrophysics Data System (ADS)
Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.
2009-11-01
We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.
Cao, Shifeng; Yuan, Yongjun; Hu, Zhichao; Zheng, Yonghua
2010-07-15
The potential enhancement of Pichia membranifaciens by ammonium molybdate (NH(4)Mo) to control blue mould caused by Penicillium expansum on peach fruit was investigated. Combining P. membranifaciens at 1x10(8) cell/ml with 1 mM NH(4)Mo provided a more effective control of blue mould rot than applying the yeast or NH(4)Mo alone. Addition of 1 mM NH(4)Mo significantly increased the growth of P. membranifaciens in peach wounds, but did not affect the population in nutrient yeast dextrose broth medium. The in vitro experiment showed that the combined treatment inhibited spore germination and germ tube elongation of P. expansum in comparison with the treatment of P. membranifaciens or NH(4)Mo alone. Moreover, P. membranifaciens, NH(4)Mo, and the combination of them did not impair the quality parameters including fruit firmness and content of total soluble solids, titratable acidity and vitamin C of peach fruit after 6 days of storage at 20 degrees C. These results suggested that the use of NH(4)Mo is a useful approach to improve the efficacy of P. membranifaciens for postharvest disease control in peach fruit. 2010 Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Bing; Liu, Bingkun; Zhang, Jie; Li, Pengju; Shi, Hengzhen
2017-07-01
A class of red-emitting Eu3+ ion-activated metal molybdate A2MoO6:Eu3+ (A = La, Y, Gd and Bi) phosphors were synthesized by a conventional high-temperature solid-state reaction method. The x-ray diffraction patterns, scanning electron microscope images, Fourier transform infrared spectra, ultraviolet-visible diffuse reflection spectra as well as photoluminescence properties were measured to characterize the as-prepared samples. The photoluminescence properties including excitation/emission spectra, decay curves, Commission Internationale de L'Eclairage chromaticity coordinates and quantum efficiency were comparatively investigated in detail. The Judd-Ofelt theory was also applied to understand the radiative properties of f-f transitions of Eu3+ ions in this system for the first time. The as-prepared phosphors can be effectively excited with near-ultraviolet and/or blue light, and exhibit red emission belonging to the prevailing 5D0 → 7F2 transitions of Eu3+ with short decay time (millisecond level). The results demonstrated that A2MoO6:Eu3+ (A = La, Y, Gd and Bi) phosphors could have potential application as red-emitting phosphors in white light-emitting diodes based on near-ultraviolet and/or blue light-emitting diode chips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, HyangKyu
The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of {sup 100}Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders.
Inhibiting Corrosion Cracking: Crack Tip Chemistry and Physics.
1986-03-14
suggests that a surface film is formed by adsorption of nitrite on the C- metal surface, followed by a reaction to form oxide and ammonia. The same A... adsorption -reaction mechanism was proposed for other oxidizing inhibitors, e.g., chrmnate and molybdate. Although nonoxidizing inhibitors, require the...properties are attributed either to a capacity to "repair" the oxide film formed on the metal in an electrolyte, or to adsorption of the oxyanicn
The Nitrogenase in a Methanogenic Archaebacterium and Its Regulation.
1987-08-31
strain 227. Initial studies centered on the growth physiology of M. barker! u’nder diazotrophic conditions. We have also demonstrated that crude...of a few minor control experiments. Among the highlights are that molybdate at levels as low as 10 nM stimulated diazotrophic growth while tungstate... diazotrophs . We showed that activity was only found in dinitrogen-grown cells, and that addition of ammonia or glutamine caused a switchoff of the
Synthesis and Characterization of A2Mo3O 12 Materials
NASA Astrophysics Data System (ADS)
Young, Lindsay Kay
Negative thermal expansion (NTE) materials have attracted considerable research interest in recent decades. These unique materials shrink when heated, offering a potential means to control the overall thermal expansion of composites. Several families of materials display this behavior, the largest of which is the A2Mo3O12 family (also called the scandium tungstate family), in which A is a trivalent cation and M is molybdenum or tungsten. These materials show NTE in an orthorhombic structure, but many members transform to a monoclinic structure with positive expansion at low temperatures. Many properties of these materials are dependent on their elemental composition, especially the identity of the A3+ cation. This includes the magnitude of NTE, as well as the phase transition behavior as a function of temperature and pressure. It is also possible to create "mixed site" cation A2Mo3O12 materials, in which the A site is occupied by two different cations. These are described as AxA'2-xM3O12 materials, as the composition A:A' can vary. Creating these new compositions may result in different phase transition properties or the ability to tune the NTE properties of these materials. In this work, the focus was on synthesis and characterization of indium gallium molybdate (InxGa2-xM3O12). The non-hydrolytic sol-gel (NHSG) method was used to synthesize indium gallium molybdate while exploring a variety of reaction parameters. While the goal was to create stoichiometric, homogenous materials, it was found that this could not be accomplished using easily accessible parameters during NHSG reactions. However, it was discovered that certain conditions allowed unusually low temperature (230 °C) crystallization of these materials. Similar conditions were explored for single cation A2Mo3O12 materials, and it was determined that crystallization of indium molybdate, iron molybdate, and scandium molybdate was possible at temperatures of 230 or 300 °C. This extremely low temperature crystallization may provide the opportunity for exploring the in situ synthesis of polymer composites containing these materials, as the crystallization temperatures are compatible with many polymer systems. In the second part of this thesis, the high pressure behavior of a number of A2Mo3O12 and AA'Mo3O12 materials was studied. The open frameworks of NTE compounds are generally prone to pressure induced phase transitions. NTE materials may have to withstand high pressures during production or regular use of composites, thus understanding the high pressure behavior of these materials is necessary for effective application. Irreversible transitions to new phases or amorphization at high pressures could lead to failure of composites, as these phases are not expected to exhibit any NTE properties. Studies were carried out at the Advanced Photon Source at Argonne National Laboratory at pressures up to 5-7 GPa using a diamond anvil cell. The materials investigated could be divided into three groups based on distinct types of high pressure behavior. The room temperature monoclinic Group1 compounds (A2 = Al2, Fe2, FeAl, AlGa) underwent a similar sequence of reversible subtle phase transitions before undergoing a major structural transition to a common high pressure structure. The unit cell of this high pressure phase was successfully indexed, and the transition was found to be reversible upon decompression. Phase transition pressures increased with decreasing A-site cation radius. In contrast, Group2 materials (A = Cr, Y) retained their low temperature monoclinic structures up to the highest pressures investigated. The remaining materials (A2 = In2, InGa) underwent a different sequence of subtle transitions followed by an irreversible transition at higher pressures. The patterns belonging to these high pressure phases are unlike those of the first group. No patterns similar to InGaMo3O12 were found in the literature, while In2Mo3O12 may transform to the same high pressure polymorph as In2W3O12. The classification of A2Mo3O12 materials into several groups with distinct high pressure behavior adds pertinent knowledge to the field that may help elucidate the structures of previously studied materials, and ultimately may help predict the behavior of compositions that have not yet been explored.
A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.
NASA Astrophysics Data System (ADS)
Chen, Guocun
The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0.1 M HCl provided a certain protection so that the pitting potential of the SRB-exposed Mo coupons was not considerably decreased. The interaction of the sulfur-containing proteins with Mo also provided mechanistic information about the adhesion of biofilm to Mo-bearing steels. Additionally, the interactions of SRB with other alloying elements, Cr and Ni, were investigated.
Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Panchao; Wu, Bin; Li, Tao
A 2.9 nm molybdenum oxide cluster {Mo 132} (Formula: [Mo VI 72Mo V 60O 372(CH 3COO) 30(H 2O) 72] 42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH 3COOH/CH 3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo 132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordinationmore » effect of the acetate groups. Once the concentration of {Mo V 2(acetate)} reaches a critical value, it triggers the assembly of Mo V and Mo VI species into {Mo 132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo 132} (formula: [Mo VI 72Mo V 60O 372(CH 3COO) 30(H 2O) 72] 42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {Mo V 2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a critical value, it triggers the co-assembly of Mo V and Mo VI species into the giant clusters.« less
Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters
Yin, Panchao; Wu, Bin; Li, Tao; ...
2016-07-26
A 2.9 nm molybdenum oxide cluster {Mo 132} (Formula: [Mo VI 72Mo V 60O 372(CH 3COO) 30(H 2O) 72] 42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH 3COOH/CH 3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo 132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordinationmore » effect of the acetate groups. Once the concentration of {Mo V 2(acetate)} reaches a critical value, it triggers the assembly of Mo V and Mo VI species into {Mo 132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo 132} (formula: [Mo VI 72Mo V 60O 372(CH 3COO) 30(H 2O) 72] 42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {Mo V 2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a critical value, it triggers the co-assembly of Mo V and Mo VI species into the giant clusters.« less
Schäffer, Christian; Todea, Ana Maria; Gouzerh, Pierre; Müller, Achim
2012-01-11
The addition of dinuclear {Mo(2)} units to a dynamic library containing molybdates results in the spontaneous self-assembly of a giant spherical metal-oxide species of the type {(Mo)Mo(5)}(12){Mo(2)}(30) while the required pentagonal {(Mo)Mo(5)} building blocks are "immediately" formed. This journal is © The Royal Society of Chemistry 2012
Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe.
Ma, Bin; Fernandez-Martinez, Alejandro; Grangeon, Sylvain; Tournassat, Christophe; Findling, Nathaniel; Claret, Francis; Koishi, Ayumi; Marty, Nicolas C M; Tisserand, Delphine; Bureau, Sarah; Salas-Colera, Eduardo; Elkaïm, Erik; Marini, Carlo; Charlet, Laurent
2017-05-16
Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO 4 2- ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO 4 precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms-edge sorption, interfacial dissolution-reprecipitation-are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.
Schwarz, Günter; Schulze, Jutta; Bittner, Florian; Eilers, Thomas; Kuper, Jochen; Bollmann, Gabriele; Nerlich, Andrea; Brinkmann, Henner; Mendel, Ralf R.
2000-01-01
Molybdenum (Mo) plays an essential role in the active site of all eukaryotic Mo-containing enzymes. In plants, Mo enzymes are important for nitrate assimilation, phytohormone synthesis, and purine catabolism. Mo is bound to a unique metal binding pterin (molybdopterin [MPT]), thereby forming the active Mo cofactor (Moco), which is highly conserved in eukaryotes, eubacteria, and archaebacteria. Here, we describe the function of the two-domain protein Cnx1 from Arabidopsis in the final step of Moco biosynthesis. Cnx1 is constitutively expressed in all organs and in plants grown on different nitrogen sources. Mo-repairable cnxA mutants from Nicotiana plumbaginifolia accumulate MPT and show altered Cnx1 expression. Transformation of cnxA mutants and the corresponding Arabidopsis chl-6 mutant with cnx1 cDNA resulted in functional reconstitution of their Moco deficiency. We also identified a point mutation in the Cnx1 E domain of Arabidopsis chl-6 that causes the molybdate-repairable phenotype. Recombinant Cnx1 protein is capable of synthesizing Moco. The G domain binds and activates MPT, whereas the E domain is essential for activating Mo. In addition, Cnx1 binds to the cytoskeleton in the same way that its mammalian homolog gephyrin does in neuronal cells, which suggests a hypothetical model for anchoring the Moco-synthetic machinery by Cnx1 in plant cells. PMID:11148290
Sun, Weifu; Chen, Zihan; Zhang, Qin; Zhou, Junli; Li, Feng; Jin, Xiao; Li, Dongyu; Li, Qinghua
2016-11-09
In this work, thulium and ytterbium codoped gadolinium molybdate (Gd 2 (MoO 4 ) 3 :Yb/Tm) nanophosphors (NPs) have been synthesized, followed by being incorporated into a photo-catalytic titania (TiO 2 ) nanoparticle layer. In detail, morphology and phase identification of the prepared NPs are first characterized and then the up-conversion of the Gd 2 (MoO 4 ) 3 :Yb/Tm NPs is studied. Electron transfer dynamics after interfacing with bare or NP-doped electron donor TiO 2 and the corresponding photovoltaic performance of solar cells are explored. The results show that Gd 2 (MoO 4 ) 3 :Yb/Tm NPs excited at 976 nm exhibit intense blue (460-498 nm) and weak red (627-669 nm) emissions. The lifetime of electron transfer is shortened from 817 to 316 ps after incorporating NPs and correspondingly the electron transfer rate outstrips by 3 times that of the bare TiO 2 . Consequently, a notable power conversion efficiency of 4.15% is achieved as compared to 3.17% of pure TiO 2 /PTB7. This work demonstrates that the co-doping of robust rare earth ions with different unique functions can widen the harvesting range of the solar spectrum, boost electron transfer rate and eventually strengthen device performance, without complicated interfacial and structural engineering.
Zayed, M A; El-Rasheedy, El-Gazy A
2012-03-01
Two simple, sensitive, cheep and reliable spectrophotometric methods are suggested for micro-determination of pseudoephedrine in its pure form and in pharmaceutical preparation (Sinofree Tablets). The first one depends on the drug reaction with inorganic sensitive reagent like molybdate anion in aqueous media via formation of ion-pair mechanism. The second one depends on the drug reaction with π-acceptor reagent like DDQ in non-aqueous media via formation of charge transfer complex. These reactions were studied under various conditions and the optimum parameters were selected. Under proper conditions the suggested procedures were successfully applied for micro-determination of pseudoephedrine in pure and in Sinofree Tablets without interference from excepients. The values of SD, RSD, recovery %, LOD, LOQ and Sandell sensitivity refer to the high accuracy and precession of the applied procedures. The results obtained were compared with the data obtained by an official method, referring to confidence and agreement with DDQ procedure results; but it referred to the more accuracy of the molybdate data. Therefore, the suggested procedures are now successfully being applied in routine analysis of this drug in its pharmaceutical formulation (Sinofree) in Saudi Arabian Pharmaceutical Company (SPIMACO) in Boridah El-Qaseem, Saudi Arabia instead of imported kits had been previously used. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiang-Hong, He; Zhao-Lian, Ye; Ming-Yun, Guan; Ning, Lian; Jian-Hua, Sun
2016-02-01
Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs). Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103).
Lattice dynamics of a rigid-ion model for gadolinium molybdate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, L.L.; Hardy, J.R.
Calculations are presented which support the view that the ferroelectric phase tnnnsition in gadolinium molybdate (GMO) arises from the softening and ultimate instability of a doubly degenerate zone-edge mode of the high- temperature paraelectric phase. A rigid-ion model was used in which the short- range force constants are obtained from a detailed knowledge of the crystal structure together wiih the conditions imposed by the requirement that the crystal must be in static equilibrium under the combined influence of both Coulomb and short-range forces. Results show that this type of approach is very useful when one is dealing with complex structuresmore » such as GMO, which has thirty- four ions per unit cell in the paraelectric phase. In view of the simplicity of the model, a surprisingly good correlation with experimental results was obtained. In particular, the calculated zone-center frequencies reproduce the basic features of the observed Raman spectruna. Dispersion curves are presented which show a pronounced softening of two phonon branches which become doubly degenerate at the M point, in agreement with inelastic neutron scattering. The displacements associated wiih the soft M-point modes correlate with the difference in the structures of the high- and low-temperature phases determined by x-ray diffraction. This provides further evidence that the ferroelectric domains in GMO are to be interpreted as frozen-in'' soft zoneboundary modes of the paraelectric phase. (auth)« less
Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M
2016-09-21
The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO 2 ) 57.5 -(B 2 O 3 ) 10 -(Na 2 O) 15 -(CaO) 15 -(MoO 3 ) 2.5 and (SiO 2 ) 57.3 -(B 2 O 3 ) 20 -(Na 2 O) 6.8 -(Li 2 O) 13.4 -(MoO 3 ) 2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na 2 MoO 4 and CaMoO 4 ). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.
A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection.
Yan, Jun-Chao; Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling
2018-03-08
Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection.
A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection
Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling
2018-01-01
Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection. PMID:29518059
Molybdenum sulfide/carbide catalysts
Alonso, Gabriel [Chihuahua, MX; Chianelli, Russell R [El Paso, TX; Fuentes, Sergio [Ensenada, MX; Torres, Brenda [El Paso, TX
2007-05-29
The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.
Collaborative University Research on Corrosion OSD Education Initiative
2012-11-30
Al alloys . Here, the effects of an ionic inhibitor (molybdate) on the corrosion fatigue properties of an Al - Cu -Li alloy are reported (1.10...Diffraction characterization of microstructure scale fatigue crack growth in modern Al -Zn-Mg- Cu alloy , Int J Fatigue, in review (2011). 77 1.6...crystallography as a function of water vapor exposure for the lot of Al - Cu -Li alloy used in the present study 299 xx •r^T" 1.1 Front Matter
Korenev, Vladimir S; Boulay, Antoine G; Dolbecq, Anne; Sokolov, Maxim N; Hijazi, Akram; Floquet, Sébastien; Fedin, Vladimir P; Cadot, Emmanuel
2010-11-01
A rare isomer of the {Mo(8)O(28)}(8-) anion has been trapped from an acidified aqueous solution of molybdate by using the {Mo(2)O(2)S(2)}(2+) oxothio cation as the linker and isolated as a part of a unique macrocyclic anion, which consists of four isopolyoxomolybdate fragments {Mo(8)O(28)} bridged by four {Mo(2)O(2)S(2)} units.
Kiba, N; Takeuchi, T
1973-09-01
A new twin-cell thermometric titrator has been devised and used for thermometric titration of solutions of sodium molybdate, sodium tungstate, sodium orthovanadate, ammonium metavanadate, and potassium chromate with perchloric acid. The thermometric titration curves were compared with corresponding pH-titration curves for elucidation of the reactions occurring in the titrations. Thermometric titrimetric methods have been developed for the determination of tungsten, vanadium and chromium.
Nanocomposite scintillator, detector, and method
Cooke, D Wayne [Santa Fe, NM; McKigney, Edward A [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Bennett, Bryan L [Los Alamos, NM
2009-04-28
A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.
Glucose-6-phosphate Reduces Calcium Accumulation in Rat Brain Endoplasmic Reticulum
2012-04-01
Ekman and Jager, 1993) adapted from the ammonium molybdate/ malachite green method quan- tified Pi production by SERCA activity. Colorimetric reagent was...prepared by mixing one volume of 10% (w/v) (NH4)6Mo7O24– 4 H2O in 4M HCl with three volumes of 0.2% (w/v) malachite green in 4M HCl, followed by...seryl and threonyl residues in phosphoproteins using alkaline hydrolysis and malachite green. Anal. Biochem. 214, 138. Fulceri, R., Romani, A
[{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: a molecular quantum spin icosidodecahedron.
Botar, Bogdan; Kögerler, Paul; Hill, Craig L
2005-07-07
Self-assembly of aqueous solutions of molybdate and vanadate under reducing, mildly acidic conditions results in a polyoxomolybdate-based {Mo72V30} cluster compound Na8K16(VO)(H2O)5[K10 subset{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20].150H2O, 1, a quantum spin-based Keplerate structure.
Leclerc-Laronze, Nathalie; Marrot, Jérôme; Thouvenot, René; Cadot, Emmanuel
2009-01-01
Linked to the Pentagon: The addition of molybdate to [HBW(11)O(39)](8-) ions leads to the formation of mixed pentagonal units {W(Mo(5))} and {W(WMo(4))} trapped as linkers in the resulting modular assemblies, thus establishing the first link between the conventional Keggin ion derivatives and the giant molybdenum oxide and keplerate ions.
NASA Astrophysics Data System (ADS)
Sun, C. X.; Chen, Y. M.; Xu, H. W.; Zhang, M.; Chen, M.; Xue, M.; Wu, J. Y.; Huang, C. S.
2015-07-01
The electrochemical corrosion behavior of A3 in compound sodium molybdate and organic inhibitor solution was tested by the electrochemical workstation method. The concentration of the compound inhibitor set to range 250 mg/L to 3000 mg/L. The polarization curve results of A3 in different concentration inhibitor solutions show that the inhibitor markedly represses the anodic processes. The EIS has two time constant. The extreme concentration is 1500 mg/L.
NASA Astrophysics Data System (ADS)
Graves, Christopher Ronald
Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co-electrolysis of CO2 and H2O to produce syngas (CO/H2 mixture) is identified as a promising method. High temperature electrolysis makes very efficient use of electricity and heat (near-100% electricity-to-syngas efficiency), provides high reaction rates, and the syngas produced can be catalytically converted to hydrocarbons in well-known fuel synthesis reactors (e.g. Fischer-Tropsch). The experimental studies of high temperature electrolysis are made at different scales -- at the cell level, electrode level, and in materials and microstructure development. The results include cell performance and durability, insight into electrode reaction mechanisms, and new high-performance electrode materials. The experimental studies make extensive use of electrochemical impedance spectroscopy and systematic variation of test conditions to examine the electrochemical phenomena. Variation of the material composition itself within families of related materials was an additional parameter used in the electrode level and materials studies that revealed more information than studying a single material would have. Using full cells, the performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O was investigated. High initial performance was observed but the long-term durability needs to be improved. Based on these results, an analysis of the energy balance and economics of an electrolysis-based synthetic fuel production process, including CO2 air capture and Fischer-Tropsch fuel synthesis, determined that the system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis) and that the price of electricity needed to produce competitive synthetic gasoline (at USD2/gal, or 0.53/L, wholesale) is 2-3 U.S. cents per kWh. For 3/gal (0.78/L) gasoline, 4-5 cents per kWh is needed. Fuel production may already be economical in some regions that have inexpensive renewable electricity, such as Iceland. The dominant costs of the process are the electricity cost and the capital cost of the electrolyzer, and this capital cost is significantly increased when operating intermittently (on renewable power sources such as solar and wind). Low cell internal resistance, low degradation, and low manufacturing cost each contribute to a low electrolyzer capital cost, and can be traded off. One straightforward path to affordability is by improving the durability of the high current density cell operation (≥1 A/cm2) that is already possible with these cells. The negative-electrode, a composite of nickel and yttria-stabilized zirconia (YSZ), is often the major site of cell degradation, including in the co-electrolysis results presented here. To better understand the reaction mechanisms at the negative-electrode that limit performance and durability, different metal electrodes including nickel were studied using a simplified point-contact electrode geometry with a well-defined three-phase boundary (TPB; the electrode/electrolyte/gas interface where the electrochemical reactions take place). The simple geometry is useful for isolating the electrochemical properties without the effects of the complex microstructure of technological porous electrodes. Widely different impedance responses of the different metals to the same changes in test conditions (gas composition, temperature, and polarization) were observed, indicating that the same reaction mechanisms are not shared by the different metals, contrary to some recent studies. Evidence was also found that supports the explanation that impurities segregated to the TPB play a major role and are largely responsible for inconsistencies in the electrode kinetics literature. The significance of microstructure at the TPB was also revealed -- the electrode polarization resistance was reduced by an order of magnitude when subjected to extreme conditions of oxidation-reduction and strong cathodic polarization, which induced the formation of a micro/nanostructured TPB. Possible reaction mechanisms for H2O/CO2 reduction and H2/CO oxidation are discussed. Novel ceramic materials based on molybdates with varying Mo valence were synthesized as possible alternative negative-electrode materials. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O/CO2 reduction and H2/CO oxidation was studied using simplified geometry electrodes, similar to the metals study. Unique phenomena were observed for some of the molybdate materials -- they decomposed into multiple phases and formed a nanostructured surface upon exposure to operating conditions (in certain reducing atmospheres). The new phases and surface features enhanced the electronic conductivity and electrocatalytic activity. Preparing an electrode by performing controlled decomposition to form multiple desirable phases and a desirable microstructure (which can take place in situ) using these materials is a novel way to produce potentially high-performance electrodes for solid oxide cells. By modifying the composition, it was possible to prevent decomposition. Other members of the molybdate family exhibited similarly high electronic conductivity and electrocatalytic activity but did not decompose. The high activity was the result of a different mechanism, probably related to the defect chemistry of the material. The polarization resistances of the best molybdate materials were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited higher performance for cathodic (electrolysis) polarization than anodic (fuel cell) polarization, which makes them especially interesting for use in electrolysis electrodes. Whereas nearly all of the molybdates showed higher performance for H2O electrolysis than CO2 electrolysis, one with vanadium showed nearly equal performance, and a non-molybdate which exhibits some complementary properties to the best molybdates, Gd-doped ceria in nanoparticle form, was found to be an excellent electrocatalyst for CO2 electrolysis and CO oxidation (moreso than for H2O/H2 for which it is known to be good).
A Novel and Facile Route to Synthesize Atomic-Layered MoS2 Film for Large-Area Electronics.
Boandoh, Stephen; Choi, Soo Ho; Park, Ji-Hoon; Park, So Young; Bang, Seungho; Jeong, Mun Seok; Lee, Joo Song; Kim, Hyeong Jin; Yang, Woochul; Choi, Jae-Young; Kim, Soo Min; Kim, Ki Kang
2017-10-01
High-quality and large-area molybdenum disulfide (MoS 2 ) thin film is highly desirable for applications in large-area electronics. However, there remains a challenge in attaining MoS 2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few-layered MoS 2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO) 6 ) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS 2 film is readily achievable in 20 min. Large-area MoS 2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm 2 V -1 s -1 , which is the highest reported for bottom-gated MoS 2 -FETs fabricated via photolithography with an on/off ratio of ≈10 5 at room temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.
1989-01-01
Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.
Khongpet, Wanpen; Pencharee, Somkid; Puangpila, Chanida; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai; Jakmunee, Jaroon
2018-01-15
A microfluidic hydrodynamic sequential injection (μHSI) spectrophotometric system was designed and fabricated. The system was built by laser engraving a manifold pattern on an acrylic block and sealing with another flat acrylic plate to form a microfluidic channel platform. The platform was incorporated with small solenoid valves to obtain a portable setup for programmable control of the liquid flow into the channel according to the HSI principle. The system was demonstrated for the determination of phosphate using a molybdenum blue method. An ascorbic acid, standard or sample, and acidic molybdate solutions were sequentially aspirated to fill the channel forming a stack zone before flowing to the detector. Under the optimum condition, a linear calibration graph in the range of 0.1-6mg P L -1 was obtained. The detection limit was 0.1mgL -1 . The system is compact (5.0mm thick, 80mm wide × 140mm long), durable, portable, cost-effective, and consumes little amount of chemicals (83μL each of molybdate and ascorbic acid, 133μL of the sample solution and 1.7mL of water carrier/run). It was applied for the determination of phosphate content in extracted soil samples. The percent recoveries of the analysis were obtained in the range of 91.2-107.3. The results obtained agreed well with those of the batch spectrophotometric method. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deburgomaster, Paul
The vast structural complexity of inorganic oxides with structure directing organocations, nitrogen containing ligands and organophosphonate ligands was explored. The hydrothermal reaction conditions utilized herein include the variables of temperature, pH, fill volume and stoichiometry. The systems studied included: (1) the complex materials rendered from reactions of organoamine cations on the structure of vanadium oxides, oxyfluorides and fluorides. As with other systems, the influence of the mineralizer HF was not limited to pH as fluorine incorporation was not uncommon. In specific cases this coincided with reduction of vanadium sites. (2) The copper-organonitrogen ligand/vanadium oxide/aromatic phosphonate system has been studied. The rigid aromatic di- and tri-phosphonate tethers have provided a series of materials which are structurally distinct from the previously investigated aliphatic series. The inclusion of copper-coordinated nitrogen bi- and tri-dentate ligands also provided structural diversity. Product composition was highly influenced by the HF/V ratio. A similar study was conducted with the ligand 1,4-carboxy-phenylphosphonic acid. (3) The preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class was further evidence of the utility of thermodynamically driven hydrothermal synthesis. (4) While decomposition of the spherical Keplerate molybdenum clusters is encountered under hydrothermal conditions, this highly soluble form of molybdate was investigated for the development of hybrid organic-inorganic room temperature solution synthesis.
[Tartrate-sensitive and tartrate-resistant acid phosphatases in Amoeba proteus].
Sopina, V A; Beliaeva, T N
2000-01-01
In free-living Amoeba proteus (strain B), acid phosphatase (AcP) was examined by disc-electrophoresis in polyacrylamide gel. The tartrate-sensitive amebian AcP was greatly inhibited by dithiothreitol and Cu2+, and only partly inhibited by sodium orthovanadate, ammonium molybdate, EDTA, disodium salt and Mg2+, Ca2+, Zn2+ and Mn2+. On the contrary, it appeared to be resistant to sulfhydryl reagents--4(hydroxymercury) benzoic acid, sodium salt and N-ethylmaleimide. Unlike the tartrate-sensitive enzyme, the tartrate-resistant AcP was greatly inhibited by EDTA and partly inhibited by dithiothreitol, Mg2+ and Cu2+ (Mn2+ > Cu2+), being activated by orthovanadate, molybdate, sulfhydryl reagents, Mg2+, Ca2+ and Zn2+. Both tartrate-sensitive and tartrate-resistant AcPs lack apparently free SH-groups necessary for their catalytic activities. Using 2-naphthyl phosphate as a substrate at pH 4.5, six AcP electromorphs were revealed in cytosol and sediment, four of these being most frequently localized in the former, and two in the latter. Two other AcP electromorphs were confined to the sediment only. Depending on the quantity of sedimented amoebae making a homogenate (0.5 or 2.0 cm3), that was added to Percoll solution, the lysosomal AcP fraction in polyacrylamide gel was represented by one or two tartrate-sensitive electromorphs. Therefore, tartrate-resistant AcP in A. proteus may be a lysosomal enzyme, while tartrate-resistant AcP may correspond to serine/threonine protein phosphatase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saraswathy, P.; Dey, A.C.; Sarkar, S.K.
The Indian pursuit of gel generator technology for {sup 99m}Tc was driven mainly by three considerations, namely, (i) well-established and ease of reliable production of (n, gamma)-based {sup 99}Mo in several tens of GBq quantities in the research reactors in Trombay/Mumbai, India, (ii) need for relatively low-cost alternate technology to replace the solvent (MEK) extraction generator system in use in India since 1970s and (iii) minimize dependency on weekly import of fission-produced {sup 99}Mo raw material required for alumina column generator. Extensive investigations on process standardisation for zirconium molybdate gel (ZMG) led to a steady progress, achieved both in termsmore » of process technology and final performance of {sup 99m}Tc gel generators. The {sup 99m}Tc final product purity from the Indian gel system was comparable to that obtained from the gold-standard alumina column generators. Based on the feasibility established for reliable small-scale production, as well as satisfactory clinical experience with a number of gel generators used in collaborating hospital radiopharmacies, full-fledged mechanised processing facilities for handling up to 150 g of ZMG were set up. The indigenous design and development included setting up of shielded plant facilities with pneumatic-driven as well as manual controls and special gadgets such as, microwave heating of the zirconium molybdate cake, dispenser for gel granules, loading of gel columns into pre-assembled generator housing etc. Formal review of the safety features was carried out by the regulatory body and stage-wise clearance for processing low and medium level {sup 99}Mo activity was granted. Starting from around 70 GBq {sup 99}Mo handling, the processing facilities have since been successfully operated at a level of 740 GBq {sup 99}Mo, twice a month. In all 18 batches of gel have been processed and 156 generators produced. The individual generator capacity was 15 to 30 GBq with an elution yield of nearly 75%. 129 generators were supplied to 11 user hospitals and the estimated number of clinical studies done is well over 5000. The salient aspects of the Indian experience have been reported in many a forum and shared with the IAEA through the on-going CRP. The detailed process know-how is available for technology transfer from BRIT, India. (author)« less
Temper Brittleness and Its Relation to the Heat Treatment of Ordnance Materiel
1945-06-20
obtained in such bainitic steels only when they are tempered A to relatively lor hardnesees (approximately 200 VM or 85,000 psi yield stren-X.th). g...iiuzn, and! nickel inCtease the tVenC-ency f or temp er brittle- ness to occur as well as its severity w-hen it does occuir. Steels of equal...these. elements also lower the impact pro-perties of the uneirnbrittleO. ste’el. in low and. medlwa alloy steels molybd~entiu is so effective in
Structural and optical properties of electrospun MoO3 nanowires
NASA Astrophysics Data System (ADS)
Das, Arnab Kumar; Modak, Rajkumar; Srinivasan, Ananthakrishnan
2018-05-01
Nanofibers of polyvinyl alcohol (PVA) containing ammonium molybdate were prepared by a combination of sol-gel and electrospinning techniques. Heat treatment of the as-spun composite nanofibers at 500 °C yielded MoO3 nanowires with a diameter of ˜180 nm. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. XRD and Raman spectra of the heat nanowires clearly show the formation of orthorhombic single phase MoO3 structure without any impurity phases.
Sarkar, S K; Saraswathy, P; Arjun, G; Ramamoorthy, N
2004-06-01
Newer applications of radiopharmaceuticals in nuclear medicine require pertechnetate of moderate to high radioactive concentration. Hence there is a need to develop simple procedures for the concentration of pertechnetate, and such a procedure is given in this paper. Ten to 20 ml of sodium [Tc]pertechnetate eluted in de-ionized water from a zirconium [Mo]molybdate (ZrMo) gel column generator was passed through 2 g of an acidic alumina bed (35 x 8 mm) in order to remove the co-eluted traces of Mo and to retain the pertechnetate. The retained pertechnetate was then re-eluted, quantitatively, in 3 ml of normal saline, from the alumina column. About a 4-fold increase in radioactive concentration of Tc was obtained (cf. approximately 10-12 ml normal saline is required for the elution of Tc from the gel column). Generators containing up to 22.2 GBq (600 mCi) Mo in 6-7 g ZrMo gel column (35 x 13 mm) were prepared and a radioactive concentration of Tc up to 4 GBq x ml (110 mCi x ml) was obtained on the first day of use. The overall recovery of Tc was >90%, Mo breakthrough was 10 to 10% and the duration of concentration was 3-5 min. The chemical impurity in terms of Al, Mo and Zr was <10 ppm each. The same procedure for the concentration of pertechnetate was applied to generators with 12-15 g ZrMo gel beds to obtain a higher capacity Tc gel generator, with similar findings.
LaPointe, M C; Chang, C H; Vedeckis, W V
1986-04-22
Gel-exclusion high-performance liquid chromatography (HPLC) has been used to separate the untransformed from the transformed glucocorticoid receptor (GC-R) extracted from mouse AtT-20 cells. With 200 mM potassium phosphate as the eluent, an efficient separation of the forms of the GC-R is attained in 15-20 min. The untransformed cytosolic GC-R elutes from the column with a Stokes radius (Rs) of 8.2-8.6 nm, as do the molybdate-stabilized GC-R, the purified untransformed GC-R, and the cross-linked cytosolic GC-R. GC-R transformed in vitro by either ammonium sulfate precipitation, KCl treatment, or G-25 chromatography elutes with an Rs of 5.7-6 nm. Also, GC-R extracted from the nucleus with either 0.3 M KCl or 2 mM sodium tungstate, or purified by two cycles of DNA-cellulose chromatography, has an Rs of 5.5-6.3 nm. The data are identical either in the presence or in the absence of 20 mM Na2MoO4, suggesting that molybdate is not causing aggregation to produce a larger Rs value than that of the native receptor. Vertical tube rotor sucrose gradient ultracentrifugation of cytosol produces three forms of the GC-R: 9.1 S, 5.2 S, and 3.8 S. Sequential analysis of the GC-R forms by HPLC and vertical tube rotor ultracentrifugation and vice versa allows for the hydrodynamic determination of molecular weight within a very short time period (2-3 h total).(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Kumar, J. Vinoth; Karthik, R.; Chen, Shen-Ming; Muthuraj, V.; Karuppiah, Chelladurai
2016-09-01
In the present work, potato-like silver molybdate (Ag2MoO4) microstructures were synthesized through a simple hydrothermal method. The microstructures of Ag2MoO4 were characterized by various analytical and spectroscopic techniques such as XRD, FTIR, Raman, SEM, EDX and XPS. Interestingly, the as-prepared Ag2MoO4 showed excellent photocatalytic and electrocatalytic activity for the degradation of ciprofloxacin (CIP) and electrochemical detection of hydrogen peroxide (H2O2), respectively. The ultraviolet-visible (UV-Vis) spectroscopy results revealed that the potato-like Ag2MoO4 microstructures could offer a high photocatalytic activity towards the degradation of CIP under UV-light illumination, leads to rapid degradation within 40 min with a degradation rate of above 98%. In addition, the cyclic voltammetry (CV) and amperometry studies were realized that the electrochemical performance of Ag2MoO4 modified electrode toward H2O2 detection. Our H2O2 sensor shows a wide linear range and lower detection limit of 0.04-240 μM and 0.03 μM, respectively. The Ag2MoO4 modified electrode exhibits a high selectivity towards the detection of H2O2 in the presence of different biological interferences. These results suggested that the development of potato-like Ag2MoO4 microstructure could be an efficient photocatalyst as well as electrocatalyst in the potential application of environmental, biomedical and pharmaceutical samples.
Otaki, Hiroyo; Everroad, R. Craig; Matsuura, Katsumi; Haruta, Shin
2012-01-01
Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons). PMID:22446313
Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings
NASA Astrophysics Data System (ADS)
Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.
2016-04-01
Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagoubi, S.; Groupe de Radiochimie, Institut de Physique Nucleaire d'Orsay, Universite Paris-Sud XI, 91406 Orsay Cedex; Obbade, S., E-mail: said.obbade@phelma.grenoble-inp.f
2011-05-15
A new caesium uranyl molybdate belonging to the M{sub 6}U{sub 2}Mo{sub 4}O{sub 21} family has been synthesized by solid-state reaction and its structure determined from single-crystal X-ray diffraction data. Contrary to the other alkali uranyl molybdates of this family (A=Na, K, Rb) where molybdenum atoms adopt only tetrahedral coordination and which can be formulated A{sub 6}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}], the caesium compound Cs{sub 6}U{sub 2}Mo{sub 4}O{sub 21} should be written Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] with molybdenum atoms in tetrahedral and square pyramidal environments. Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] crystallizes in the triclinic symmetry withmore » space group P1-bar and a=10.4275(14) A, b=15.075(2) A, c=17.806(2) A, {alpha}=70.72(1){sup o}, {beta}=80.38(1){sup o} and {gamma}=86.39(1){sup o}, V=2604.7(6) A{sup 3}, Z=4, {rho}{sub mes}=5.02(2) g/cm{sup 3} and {rho}{sub cal}=5.08(3) g/cm{sup 3}. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R{sub 1}=0.0464 and wR{sub 2}=0.0950 for 596 parameters with 6964 independent reflections with I{>=}2{sigma}(I) collected on a BRUKER AXS diffractometer with Mo(K{alpha}) radiation and a CCD detector. The crystal structure of Cs compound is characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} parallels chains built from U{sub 2}O{sub 13} dimeric units, MoO{sub 4} tetrahedra and MoO{sub 5} square pyramids, whereas, Na, K and Rb compounds are characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}]{sup 6-} parallel chains formulated simply of U{sub 2}O{sub 13} units and MoO{sub 4} tetrahedra. Infrared spectroscopy measurements using powdered samples synthesized by solid-state reaction, confirm the structural results. The thermal stability and the electrical conductivity are also studied. The four compounds decompose at low temperature (between 540 and 610 {sup o}C). -- Graphical abstract: The staking of {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} infinite uranyl molybdate ribbons in the Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] structure. Display Omitted Highlights: {yields} Cs{sub 6}U{sub 2}Mo{sub 4}O{sub 2} a new compound with bidimensional crystal structure, characterized by infinite uranyl molybdate chains. {yields} Crystal structure similar to these of the compounds containing Na, K, Rb. {yields} Molybdenum atoms surrounded by five oxygen atoms to form an original and strongly distorted MoO{sub 5} environment. {yields} The chains arrangement illustrates the key role of the alkaline ionic radius, in the crystal structure distortion for Cs compound.« less
Agrawal, A; Pandey, V C; Kumar, S; Sagar, P
1989-01-01
Entamoeba histolytica (NIH-200) secreted large amounts of acid phosphatase in its external environment when grown axenically in modified TPS-II medium. Fractionation by DEAE-cellulose chromatography of the precipitate obtained from the cell-free medium at 60% ammonium sulfate saturation yielded 3 distinct peaks of enzyme activity. The enzyme in all the peaks showed resistance to tartrate but was inhibited by fluoride, cupric chloride, ethylene diamine-tetra acetic acid, ammonium molybdate and cysteine; however, enzyme associated with different peaks differed in its polyacrylamide gel electrophoretic profiles and behavior towards concanavalin A.
[Flotation and extraction spectrophotometric determination of trace silicate in water].
Di, J; Liu, Q; Li, W
2000-12-01
In HCl solution, silicate reacted with molybdate ammonium to produce silicomolibdic, then a yellow compound which was produced from the oxidation of TMB was simultaneously isolated to benzene phase by flotation and then isolated to dimethylsulfoxideformic acid by extraction. The compound gives a high absorption at 458 nm. The apparent molar absorptivity is 1.26 x 10(5) L.mol-1.cm-1. In the range of 0.02-1 mg.L-1 Si obeys Beer's law. The proposed method which combines with enrichment and measurement is simple, rapid, selective and convenient to determine silicate in water with satisfied results.
Cariani, L; Thomas, L; Brito, J; del Castillo, J R
2004-01-01
This paper describes a rapid and sensitive method to determine inorganic phosphate, even in the presence of labile organic phosphate compounds and large quantities of proteins. The method eliminates the use of sodium arsenite, a highly toxic compound, substituting bismuth citrate for it to stabilize the phosphomolybdic acid complex formed during the interaction of inorganic phosphate and molybdate reduced by ascorbic acid. This method has also been adapted to microplates and has been used to determine the activities of Na/K ATPase and alkaline phosphatase of intestinal basolateral and luminal plasma membranes.
Miras, Haralampos N; Ochoa, M Nieves Corella; Long, De-Liang; Cronin, Leroy
2010-11-21
The reaction of molybdate with vanadium(V) in the presence of sulfite anions is explored showing how, via cation control, stepwise assembly through the {Mo(11)V(7)} cluster yields a {M(25)} cluster-based compound, [Mo(VI)(11)V(V)(5)V(IV)(2)O(52)(μ(9)-SO(3))(Mo(VI)(6)V(V)O(22))](10-) (1a), which was first discovered using cryospray mass spectrometry, whereas switching the cation away from ammonium allows the direct formation of the spherical 'Keplerate' {Mo(72)V(30)} cluster.
Etienne, Philippe; Diquélou, Sylvain; Koprivova, Anna; Kopriva, Stanislav; Arkoun, Mustapha; Gallardo, Karine; Turner, Marie; Cruz, Florence; Yvin, Jean-Claude
2016-01-01
Under sulfur (S) deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo). This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake. Leaf contents of S and Mo were also quantified in a field-grown S deficient oilseed rape crop with different S and N fertilization applications to evaluate the [Mo]:[S] ratio, as an indicator of S nutrition. To test genericity of this indicator, the [Mo]:[S] ratio was also assessed with other cultivated species under different controlled conditions. During S deprivation, Mo uptake was strongly increased in B. napus. This accumulation was not a result of the induction of the molybdate transporters, Mot1 and Asy, but could be a direct consequence of Sultr1.1 and Sultr1.2 inductions. However, analysis of single mutants of these transporters in Arabidopsis thaliana suggested that other sulfate deficiency responsive transporters may be involved. Under field conditions, Mo content was also increased in leaves by a reduction in S fertilization. The [Mo]:[S] ratio significantly discriminated between the plots with different rates of S fertilization. Threshold values were estimated for the hierarchical clustering of commercial crops according to S status. The use of the [Mo]:[S] ratio was also reliable to detect S deficiency for other cultivated species under controlled conditions. The analysis of the leaf [Mo]:[S] ratio seems to be a practical indicator to detect early S deficiency under field conditions and thus improve S fertilization management. PMID:27870884
Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; Everroad, R. Craig; Kubo, Mike D.; Spormann, Alfred M.; Weber, Peter K.; Pett-Ridge, Jennifer; Bebout, Brad M.; Hoehler, Tori M.
2013-01-01
Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico—permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)—were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi. PMID:24616716
Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli
2016-08-10
Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu(3+) nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu(3+) are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb(3+)/Er(3+), Yb(3+)/Tm(3+) nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb(3+)/Er(3+) nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K(-1) at 285 K.
Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli
2016-01-01
Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu3+ nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb3+/Er3+ and Yb3+/Tm3+ nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu3+ are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb3+/Er3+, Yb3+/Tm3+ nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb3+/Er3+ nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K−1 at 285 K. PMID:27506629
Friedebold, J; Bowien, B
1993-01-01
Organoautotrophic growth of Alcaligenes eutrophus on formate was dependent on the presence of molybdate in the medium. Supplementation of the medium with tungstate lead to growth cessation. Corresponding effects of these anions were observed for the activity of the soluble, NAD(+)-linked formate dehydrogenase (S-FDH; EC 1.2.1.2) of the organism. Lack of molybdate or presence of tungstate resulted in an almost complete loss of S-FDH activity. S-FDH was purified to near homogeneity in the presence of nitrate as a stabilizing agent. The native enzyme exhibited an M(r) of 197,000 and a heterotetrameric quaternary structure with nonidentical subunits of M(r) 110,000 (alpha), 57,000 (beta), 19,400 (gamma), and 11,600 (delta). It contained 0.64 g-atom of molybdenum, 25 g-atom of nonheme iron, 20 g-atom of acid-labile sulfur, and 0.9 mol of flavin mononucleotide per mol. The fluorescence spectrum of iodine-oxidized S-FDH was nearly identical to the form A spectrum of milk xanthine oxidase, proving the presence of a pterin cofactor. The molybdenum-complexing cofactor was identified as molybdopterin guanine dinucleotide in an amount of 0.71 mol/mol of S-FDH. Apparent Km values of 3.3 mM for formate and 0.09 mM for NAD+ were determined. The enzyme coupled the oxidation of formate to a number of artificial electron acceptors and was strongly inactivated by formate in the absence of NAD+. It was inhibited by cyanide, azide, nitrate, and Hg2+ ions. Thus, the enzyme belongs to a new group of complex molybdo-flavo Fe-S FDH that so far has been detected in only one other aerobic bacterium. Images PMID:8335630
Jakmunee, Jaroon; Junsomboon, Jaroon
2009-09-15
A new extraction procedure based on an off-line extraction column was proposed for extracting of available phosphorus from soils. The column was fabricated from a plastic syringe fitted at the bottom with a cotton wool and a piece of filter paper to support a soil sample. An aliquot (50 mL) of extracting solution (0.05 M HCl+0.0125 M H(2)SO(4)) was used to extract the sample under gravity flow and the eluate was collected in a polyethylene bottle. The extract was then analyzed for phosphorus contents by a simple flow injection amperometric system, employing a set of three-way solenoid valves as an injection valve. The method is based on the electrochemical reduction of 12-molybdophosphate which is produced on-line by the reaction of orthophosphate with acidic molybdate and the electrical current produced was directly proportional to the concentration of phosphate in range of 0.1-10.0 mg L(-1) PO(4)-P, with a detection limit of 0.02 mg L(-1). Relative standard for 11 replicate injections of 5 mg L(-1) PO(4)-P was 0.5%. A sample through put of 35 h(-1) was achieved, with consumption of 14 mg KCl, 10mg ammonium molybdate and 0.05 mL H(2)SO(4) per analysis. The detection system does not suffer from the interferences that are encountered in the photometric method such as colored substances, colloids, metal ions, silicate and refractive index effect (Schlieren effect). The results obtained by the column extraction procedure were well correlated with those obtained by the steady-state extraction procedure, but showed slightly higher extraction efficiency.
Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; ...
2014-01-01
Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico$-$ permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)$-$were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H 2 production occurred under dark anoxic conditions with simultaneous production of a suitemore » of organic acids. H 2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO 2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H 2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.« less
Darwish, Ibrahim A; Khedr, Alaa S; Askal, Hassan F; Mohamed, Ramadan M
2006-01-01
Eight spectrophotometric methods for determination of ribavirin have been developed and validated. These methods were based on the oxidation of the drug by different inorganic oxidants: ceric ammonium sulfate, potassium permanganate, ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate. The oxidation reactions were performed in perchloric acid medium for ceric ammonium sulfate and in sulfuric acid medium for the other reagents. With ceric ammonium sulfate and potassium permanganate, the concentration of ribavirin in its samples was determined by measuring the decrease in the absorption intensity of the colored reagents at 315 and 525 nm, respectively. With the other reagents, the concentration of ribavirin was determined by measuring the intensity of the developed colored reaction products at the wavelengths of maximum absorbance: 675, 780, 595, 595, 475, and 475 nm for reactions with ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate, respectively. Different variables affecting the reaction conditions were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9984-0.9998) were found between the absorbance readings and the concentrations of ribavirin in the range of 4-1400 microg/mL. The molar absorptivities were correlated with the oxidation potential of the oxidants used. The precision of the methods were satisfactory; the values of relative standard deviation did not exceed 1.64%. The proposed methods were successfully applied to the analysis of ribavirin in pure drug material and capsules with good accuracy and precision; the recovery values were 99.2-101.2 +/- 0.48-1.30%. The results obtained using the proposed spectrophotometric methods were comparable with those obtained with the official method stated in the United States Pharmacopeia.
NASA Astrophysics Data System (ADS)
Li, Quanyi; Yang, Qi; Zhao, Yanhong; Wan, Bin
2017-10-01
Copper-supported MoO2-C composite as an integrated anode with excellent battery performance was synthesized by a facile knife coating technique followed by heat treatment in a vacuum. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal analysis, nitrogen adsorption and desorption analysis, field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM). The results show the MoO2-C composite coating is comprised of a porous carbon matrix with a pore size of 1-3 nm and ultrafine MoO2 nanoparticles with a size of 5-10 nm encapsulated inside, the coating is tightly attached on the surface of copper foil, and the interface between them is free of cracks. Stable PAN-DMF-H2O system containing ammonium molybdate suitable for knife coating technique and the MoO2-C composite with ultrafine MoO2 nanoparticles encapsulated in the carbon matrix can be prepared through controlling amount of added ammonium molybdate solution. The copper-supported MoO2-C composite coating can be directly utilized as the integrated anode for lithium-ion batteries (LIBs). It delivers a capacity of 814 mA h g-1 at a current density of 100 mA g-1 after 100 cycles without apparent capacity fading. Furthermore, with increase of current densities to 200, 500, 1000, 2000, and 5000 mA g-1, it exhibits average capacities of 809, 697, 568, 383, and 188 mA h g-1. Its outstanding electrochemical performance is attributed to combined merits of integrated anode and structure with ultrafine MoO2 nanoparticles embedded in the porous carbon matrix.
Wang, Guo-Cang; Sung, Herman H Y; Dai, Feng-Rong; Chiu, Wai-Hang; Wong, Wai-Yeung; Williams, Ian D; Leung, Wa-Hung
2013-03-04
Heterometallic cerium(IV) perrhenate, permanganate, and molybdate complexes containing the imidodiphosphinate ligand [N(i-Pr2PO)2](-) have been synthesized, and their reactivity was investigated. Treatment of Ce[N(i-Pr2PO)2]3Cl (1) with AgMO4 (M = Re, Mn) afforded Ce[N(i-Pr2PO)2]3(ReO4) (2) or Ce2[N(i-Pr2PO)2]6(MnO4)2 (3). In the solid state, 3 is composed of a [Ce2{N(i-Pr2PO)2}6(MnO4)](+) moiety featuring a weak Ce-OMn interaction [Ce-OMn distance = 2.528(8) Å] and a noncoordinating MnO4(-) counteranion. While 3 is stable in the solid state and acetonitrile solution, it decomposes readily in other organic solvents, such as CH2Cl2. 3 can oxidize ethylbenzene to acetophenone at room temperature. Treatment of 1 with AgBF4, followed by reaction with [n-Bu4N]2[MoO4], afforded [Ce{N(i-Pr2PO)2}3]2(μ-MoO4) (4). Reaction of trans-Ce[N(i-Pr2PO)2]2(NO3)2 (5), which was prepared from (NH4)2Ce(NO3)6 and K[N(i-Pr2PO)2], with 2 equiv of [n-Bu4N][Cp*MoO3] yielded trans-Ce[N(i-Pr2PO)2]2(Cp*MoO3)2 (6). 4 can catalyze the oxidation of methyl phenyl sulfide with tert-butyl hydroperoxide with high selectivity. The crystal structures of complexes 3-6 have been determined.
Peredo, H A; Andrade, V; Donoso, A S; Lee, H J; Puyó, A M
2013-10-01
(1) Fructose (F) overload produces elevated blood pressure (BP), hyperglycaemia, hypertriglyceridemia and insulin resistance, resembling human metabolic syndrome. Previously, we found altered vascular prostanoid (PR) production in this model. (2) Sodium molybdate (Mo), as well as sodium tungstate, causes insulin-like effects and normalizes plasma glucose levels in streptozotocin-treated diabetic rats. We studied the effects of Mo on BP, metabolic parameters and release of PR from the mesenteric vascular bed (MVB) in F-overloaded rats. (3) Four groups of male Sprague-Dawley rats were analysed: Control, tap water to drink; F, F solution 10% W/V to drink; CMo, Mo 100 mg kg day(-1) and FMo, both treatments. After 9 weeks, the animals were killed and MVBs removed and the released PRs measured. (4) F increased BP, glycemia, triglyceridemia and insulinemia. Mo treatment prevented the increases in BP and glycemia, but did not modify triglyceridemia or insulinemia. In addition, Mo decreased BP in controls. (5) Prostaglandins (PG) F2 alpha and E2, PG 6-ketoF1 alpha and thromboxane (TX) B2 , as well as inactive metabolites of prostacyclin (PGI2 ) and TXA2 were detected. F decreased the production of vasodilator PRs PGI2 and PGE2 in MVB. Mo prevented these alterations and increased PGE2 in controls. Vasoconstrict or PRs PGF2 alpha and TXA2 release was not modified. (6) Mo treatment, beyond its known lowering effect on glycemia, prevents the reduction in the vascular release of vasodilator PR observed in this model. This could be one of the mechanisms by which Mo avoids the increase in BP caused by F overload in the rat. © 2013 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Loughlin, E. J.; Gorski, C. A.; Scherer, M. M.
Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust; however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (i) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ii) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (iii) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearingmore » secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. 'Fast' Fe(II) production kinetics [19-24 mM Fe(II) d-1] were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having 'low' cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with 'high' cell numbers exhibited comparatively slow Fe(II) production kinetics [1.8-4.0 mM Fe(II) d-1] and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction.« less
Enzymatic iron and uranium reduction by sulfate-reducing bacteria
Lovley, D.R.; Roden, E.E.; Phillips, E.J.P.; Woodward, J.C.
1993-01-01
The potential for sulfate-reducing bacteria (SRB) to enzymatically reduce Fe(III) and U(VI) was investigated. Five species of Desulfovibrio as well as Desulfobacterium autotrophicum and Desulfobulbus propionicus reduced Fe(III) chelated with nitrilotriacetic acid as well as insoluble Fe(III) oxide. Fe(III) oxide reduction resulted in the accumulation of magnetite and siderite. Desulfobacter postgatei reduced the chelated Fe(III) but not Fe(III) oxide. Desulfobacter curvatus, Desulfomonile tiedjei, and Desulfotomaculum acetoxidans did not reduce Fe(III). Only Desulfovibrio species reduced U(VI). U(VI) reduction resulted in the precipitation of uraninite. None of the SRB that reduced Fe(III) or U(VI) appeared to conserve enough energy to support growth from this reaction. However, Desulfovibrio desulfuricans metabolized H2 down to lower concentrations with Fe(III) or U(VI) as the electron acceptor than with sulfate, suggesting that these metals may be preferred electron acceptors at the low H2 concentrations present in most marine sediments. Molybdate did not inhibit Fe(III) reduction by D. desulfuricans. This indicates that the inability of molybdate to inhibit Fe(III) reduction in marine sediments does not rule out the possibility that SRB are important catalysts for Fe(III) reduction. The results demonstrate that although SRB were previously considered to reduce Fe(III) and U(VI) indirectly through the production of sulfide, they may also directly reduce Fe(III) and U(VI) through enzymatic mechanisms. These findings, as well as our recent discovery that the So-reducing microorganism Desulfuromonas acetoxidans can reduce Fe(III), demonstrate that there are close links between the microbial sulfur, iron, and uranium cycles in anaerobic marine sediments. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, H.M.; Torres, J., E-mail: njtorress@unal.edu.co; Lopez Carreno, L.D.
2013-01-15
Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperaturemore » rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.« less
Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Degoda, V. Ya.; Dulger, L. L.; Dumoulin, L.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Pavlyuk, A. A.; Poda, D. V.; Trifonov, V. A.; Yushina, I. V.; Zolotarova, A. S.
2018-05-01
Lithium magnesium molybdate (Li2Mg2(MoO4)3) crystals were grown by the low-thermal-gradient Czochralski method. Luminescence properties of the material (emission spectra, thermally stimulated luminescence, dependence of intensity on temperature, phosphorescence) have been studied under X-ray excitation in the temperature interval from 8 to 400 K, while at the same being operated as a scintillating bolometer at 20 mK for the first time. We demonstrated that Li2Mg2(MoO4)3 crystals are a potentially promising detector material to search for neutrinoless double beta decay of 100Mo.
Kersen, Ulo; Keiski, Riitta
2005-10-01
A lanthanum molybdate aerogel, La2Mo2O9, with a mean particle size in the range from 100 to 150 nm, was synthesized by the sol-gel method and high-temperature supercritical drying. In this communication it is shown that control over the crystallinity of product aerogels can be exercised by changing the amount of water used for hydrolysis and the temperature for subsequent heat treatment. Methoxy species are formed on the surface during synthesis. The new aerogel may prove useful as a catalyst for the oxidation of hydrocarbons to oxygenated organic compounds.
SEPARATION OF Cs$sup 137$ FROM HIGH-ACTIVITY RADIOACTIVE WASTE (in Dutch)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-01-01
A process was developed on a laboratory scale to separate Cs/sup 137/ from waste fuels of atomic reactors. The recovery of this powerful and industrially important gamma emitter of 30 years half life is said to be so simple as to make it possible on an industrial scale. It is based on the preferential absorption of Cs by ammonium phosphor-molybdate from the nitric acid solution of the waste material and the subsequent extraction of Cs from its absorber. This method is more practical than other processes which are based upon precipitation and recrystallization of cesium salts. It was successfully testedmore » on waste solutions of very different compositions. (OID)« less
Gupta, Vinod Kumar
2014-12-01
Sunlight exposed sterilised aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, biological minerals and formaldehyde showed photochemical formation of self-sustaining biomimetic protocell-like supramolecular assemblies "Jeewanu" (Bahadur and Ranganayaki J Brit Interplanet Soc 23:813-829 1970). The structural and functional characteristics of Jeewanu suggests that in possible prebiotic atmosphere photosy nergistic collaboration of non-linear processes at mesoscopic level established autocatalytic pathways on mineral surfaces by selforganisation and self recognition and led to emergence of similar earliest energy transducing supramolecular assemblies which might have given rise to common universal ancestor on the earth or elsewhere.
Catalyst for producing lower alcohols
Rathke, Jerome W.; Klingler, Robert J.; Heiberger, John J.
1987-01-01
A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.
Ali, Muhammad; Oshiki, Mamoru; Okabe, Satoshi
2014-06-15
It is still the biggest challenge to secure enough seeding biomass for rapid start-up of full-scale (anaerobic ammonium oxidation) anammox processes due to slow growth. Preservation of active anammox biomass could be one of the solutions. In this study, biomass of anammox bacterium, "Candidatus Brocadia sinica", immersed in various nutrient media were preserved at -80 °C, 4 °C and room temperature. After 45, 90 and 150 days of preservation, specific anammox activity (SAA) of the preserved anammox biomass was determined by measuring (29)N2 production rate and transcription levels of hzsA gene encoding hydrazine synthase alpha subunit. Storage in nutrient medium containing 3 mM of molybdate at room temperature with periodical (every 45 days) supply of NH4(+) and NO2(-) was proved to be the most effective storage technique for "Ca. Brocadia sinica" biomass. Using this preservation condition, 96, 92 and 65% of the initial SAA was sustained after 45, 90 and 150 days of storage, respectively. Transcription levels of hzsA gene in biomass correlated with the SAA (R(2) = 0.83), indicating it can be used as a genetic marker to evaluate the anammox activity of preserved biomass. Furthermore, the 90-day-stored biomass was successfully reactivated by immobilizing in polyvinyl alcohol (6%, w/v) and sodium alginate (2%, w/v) gel and then inoculated to up-flow column reactors. Total nitrogen removal rates rapidly increased to 7 kg-N m(-3) d(-1) within 35 days of operation. Based on these results, the room temperature preservation with molybdate addition is simple, cost-effective and feasible at a practical scale, which will accelerate the practical use of anammox process for wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Heijerick, D G; Regoli, L; Carey, S
2012-10-01
The REACH Molybdenum Consortium initiated an extensive research program in order to generate robust PNECs, based on the SSD approach, for both the freshwater and marine environments. This activity was part of the REACH dossier preparation and to form the basis for scientific dialogues with other national and international regulatory authorities. Chronic ecotoxicity data sets for the freshwater and marine environments served as starting point for the derivation of PNECs for both compartments, in accordance with the recommended derivation procedures established by the European Chemicals Agency (ECHA). The HC(5,50%)s that were derived from the generated Species Sensitivity Distributions were 38.2 mg Mo/L and 5.75 mg Mo/L for the freshwater and marine water compartment, respectively. Uncertainty analysis on both data sets and available data on bioaccumulation at high exposure levels justified an assessment factor of 3 on both HC(5,50%) leading to a PNEC(freshwater) of 12.7 mg Mo/L and a PNEC(marine) of 1.92 mg Mo/L. As there are currently insufficient ecotoxicological data available for the derivation of PNECs in the sediment compartment, the equilibrium partitioning method was applied; typical K(D)-values for both the freshwater and marine compartments were identified and combined with the respective PNEC, leading to a PNEC(sediment) of 22,600 mg/kg dry weight and 1980 mg/kg dry weight for freshwater and marine sediments, respectively. The chronic data sets were also used for the derivation of final chronic values using the procedures that are outlined by the US Environmental Protection Agency for deriving such water benchmarks. Comparing PNECs with FCVs showed that both methodologies result in comparable protective concentration levels for molybdenum in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.
Electrocatalysis using transition metal carbide and oxide nanocrystals
NASA Astrophysics Data System (ADS)
Regmi, Yagya N.
Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel molybdate showing the highest OER activities.
Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium).
Roland, Fleur A E; Darchambeau, François; Morana, Cédric; Bouillon, Steven; Borges, Alberto V
2017-02-01
We sampled the water column of the Dendre stone pit lake (Belgium) in spring, summer, autumn and winter. Depth profiles of several physico-chemical variables, nutrients, dissolved gases (CO 2 , CH 4 , N 2 O), sulfate, sulfide, iron and manganese concentrations and δ 13 C-CH4 were determined. We performed incubation experiments to quantify CH 4 oxidation rates, with a focus on anaerobic CH 4 oxidation (AOM), without and with an inhibitor of sulfate reduction (molybdate). The evolution of nitrate and sulfate concentrations during the incubations was monitored. The water column was anoxic below 20 m throughout the year, and was thermally stratified in summer and autumn. High partial pressure of CO 2 and CH 4 and high concentrations of ammonium and phosphate were observed in anoxic waters. Important nitrous oxide and nitrate concentration maxima were also observed (up to 440 nmol L -1 and 80 μmol L -1 , respectively). Vertical profiles of δ 13 C-CH 4 unambiguously showed the occurrence of AOM. Important AOM rates (up to 14 μmol L -1 d -1 ) were observed and often co-occurred with nitrate consumption peaks, suggesting the occurrence of AOM coupled with nitrate reduction. AOM coupled with sulfate reduction also occurred, since AOM rates tended to be lower when molybdate was added. CH 4 oxidation was mostly aerobic (∼80% of total oxidation) in spring and winter, and almost exclusively anaerobic in summer and autumn. Despite important CH 4 oxidation rates, the estimated CH 4 fluxes from the water surface to the atmosphere were high (mean of 732 μmol m -2 d -1 in spring, summer and autumn, and up to 12,482 μmol m -2 d -1 in winter). Copyright © 2016 Elsevier Ltd. All rights reserved.
Continuous analysis of phosphate in a Greenland shallow ice core
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe
2010-05-01
Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.
Jin, Xiao; Li, Haiyang; Li, Dongyu; Zhang, Qin; Li, Feng; Sun, Weifu; Chen, Zihan; Li, Qinghua
2016-09-05
Insufficient harvest of solar light energy is one of the obstacles for current photovoltaic devices to achieve high performance. Especially, conventional organic/inorganic hybrid solar cells (HSCs) based on PTB7 as p-type semiconductor can only utilize 400-800 nm solar spectrum. One effective strategy to overcome this obstacle is the introduction of up-conversion nanophosphors (NPs), in the virtue of utilizing the near infrared region (NIR) of solar radiation. Up-conversion can convert low-energy photons to high-energy ones through multi-photon processes, by which the solar spectrum is tailored to well match the absorptive domain of the absorber. Herein we incorporate erbium-ytterbium co-doped gadolinium molybdate (Gd2(MoO4)3, GMO), denoted as GMO:Yb/Er, into TiO2 acceptor film in HSCs to enhance the light harvest. Here Er3+ acts as activator while Yb-MoO4 2- is the joint sensitizer. Facts proved that the GMO:Yb/Er single crystal NPs are capable of turning NIR photons to visible photons that can be easily captured by PTB7. Studies on time-resolved photoluminescence demonstrate that electron transfer rate at the interface increases sharply from 0.65 to 1.42 × 109 s-1. As a result, the photoelectric conversion efficiency of the GMO:Yb/Er doped TiO2/PTB7 HSCs reach 3.67%, which is increased by around 25% compared to their neat PTB7/TiO2 counterparts (2.94%). This work may open a hopeful way to take the advantage of those conversional rare-earth ion doped oxides that function in tailoring solar light spectrum for optoelectronic applications.
Bozzo, Gale G; Raghothama, Kashchandra G; Plaxton, William C
2004-01-01
An intracellular acid phosphatase (IAP) from P(i)-starved (-P(i)) tomato ( Lycopersicon esculentum ) suspension cells has been purified to homogeneity. IAP is a purple acid phosphatase (PAP), as the purified protein was violet in colour (lambda(max)=546 nm) and was insensitive to L-tartrate. PAGE, periodic acid-Schiff staining and peptide mapping demonstrated that the enzyme exists as a 142 kDa heterodimer composed of an equivalent ratio of glycosylated and structurally dissimilar 63 (alpha-subunit) and 57 kDa (beta-subunit) polypeptides. However, the nine N-terminal amino acids of the alpha- and beta-subunits were identical, exhibiting similarity to the deduced N-terminal portions of several putative plant PAPs. Quantification of immunoblots probed with rabbit anti-(tomato acid phosphatase) immune serum revealed that the 4-fold increase in IAP activity due to P(i)-deprivation was correlated with similar increases in the amount of antigenic IAP alpha- and beta-subunits. IAP displayed optimal activity at pH 5.1, was activated 150% by 10 mM Mg(2+), but was potently inhibited by Zn(2+), Cu(2+), Fe(3+), molybdate, vanadate, fluoride and P(i). Although IAP demonstrated broad substrate selectivity, its specificity constant ( V (max)/ K (m)) with phosphoenolpyruvate was >250% greater than that obtained with any other substrate. IAP exhibited significant peroxidase activity, which was optimal at pH 9.0 and insensitive to Mg(2+) or molybdate. This IAP is proposed to scavenge P(i) from intracellular phosphate esters in -P(i) tomato. A possible secondary IAP role in the metabolism of reactive oxygen species is discussed. IAP properties are compared with those of two extracellular PAP isoenzymes that are secreted into the medium of -P(i) tomato cells [Bozzo, Raghothama and Plaxton (2002) Eur. J. Biochem. 269, 6278-6286]. PMID:14521509
NASA Astrophysics Data System (ADS)
Zhang, Ning; Yi, Haibo; Zeng, Dewen; Zhao, Zhongwei; Wang, Wenlei; Costanzo, Francesca
2018-03-01
In this work, we apply static density functional theory (DFT) calculations, as well as classical and first-principles molecular dynamics (FPMD) simulations, using the free-energy perturbation method to study the protonation ability, active site and structures of W(VI) and Mo(VI) in acidic aqueous solution. Using FPMD simulations, utilizing the pKa's calculation technique, we concluded that the octahedral WO2(OH)2(H2O)2 is the true formula for tungstic acid (H2WO4), and the hydroxyl ligands are the acidic site. This aqueous structure of H2WO4 is analogous to the previously reported structure of molybdic acid (H2MoO4). The FPMD trajectories of the tungstic acid deprotonation show that the mono-protonated monotungstate ion (HWO4-) may partially exist as a five-coordinated WO3(OH)(H2O)- species except for the four-coordinated WO3(OH)- species. This result is supported by DFT calculations, with an isoenergetic point (ΔE = 1.9 kcal·mol-1) for the WO3(OH)(H2O)- and WO3(OH)- species, when explicit solvent molecules are taken into account. In contrast, for the H2MoO4 acid, FPMD trajectories during the deprotonation process show that two H2O ligands immediately escape from the first coordinated sphere of Mo(VI) to form the four-coordinated MoO3(OH)- species. This difference indicates that structural expansion of W(VI) began in the first protonated step, while that of Mo(VI) only occurs in the second step. In addition, our calculated first and second acid constants for tungstic acid are higher than previously reported values for molybdic acid. This result suggests that WO42- is more easily protonated than the MoO42- anion in the same acidic solution, which is further confirmed by DFT calculations of hydrated oxoanions and its protonated species, based upon the hydration energy.
Reduced molybenum-oxide-based core-shell hybrids: "blue" electrons are delocalized on the shell.
Todea, Ana Maria; Szakács, Julia; Konar, Sanjit; Bögge, Hartmut; Crans, Debbie C; Glaser, Thorsten; Rousselière, Hélène; Thouvenot, René; Gouzerh, Pierre; Müller, Achim
2011-06-06
The present study refers to a variety of reduced metal-oxide core-shell hybrids, which are unique with regard to their electronic structure, their geometry, and their formation. They contain spherical {Mo72Fe30} Keplerate-type shells encapsulating Keggin-type polyoxomolybdates based on very weak interactions. Studies on the encapsulation of molybdosilicate as well as on the earlier reported molybdophosphate, coupled with the use of several physical methods for the characterization led to unprecedented results (see title). Upon standing in air at room temperature, acidified aqueous solutions obtained by dissolving sodium molybdate, iron(II) chloride, acetic acid, and molybdosilicic acid led to the precipitation of monoclinic greenish crystals (1). A rhombohedral variant (2) has also been observed. Upon drying at room temperature, compound 3 with a layer structure was obtained from 1 in a solid-state reaction based on cross-linking of the shells. The compounds 1, 2, and 3 have been characterized by a combination of methods including single-crystal X-ray crystallography, magnetic studies, as well as IR, Mössbauer, (resonance) Raman, and electronic absorption spectroscopy. In connection with detailed studies of the guest-free two-electron-reduced {Mo72Fe30}-type Keplerate (4) and of the previously reported molybdophosphate-based hybrids (including 31P NMR spectroscopy results), it is unambiguously proved that 1, 2, and 3 contain non-reduced Keggin ion cores and reduced {Mo72Fe30}-type shells. The results are discussed in terms of redox considerations (the shell as well as the core can be reduced) including those related to the reduction of "molybdates" by FeII being of interdisciplinary including catalytic interest (the MoVI/MoV and FeIII/FeII couples have very close redox potentials!), while also referring to the special formation of the hybrids based on chemical Darwinism.
Senchyk, Ganna A; Lysenko, Andrey B; Domasevitch, Konstantin V; Erhart, Oliver; Henfling, Stefan; Krautscheid, Harald; Rusanov, Eduard B; Krämer, Karl W; Decurtins, Silvio; Liu, Shi-Xia
2017-11-06
We investigated the coordination ability of the bis(1,2,4-triazolyl) module, tr 2 pr = 1,3-bis(1,2,4-triazol-4-yl)propane, toward the engineering of solid-state structures of copper polyoxomolybdates utilizing a composition space diagram approach. Different binding modes of the ligand including [N-N]-bridging and N-terminal coordination and the existence of favorable conformation forms (anti/anti, gauche/anti, and gauche/gauche) resulted in varieties of mixed metal Cu I /Mo VI and Cu II /Mo VI coordination polymers prepared under hydrothermal conditions. The composition space analysis employed was aimed at both the development of new coordination solids and their crystallization fields through systematic changes of the reagent ratios [copper(II) and molybdenum(VI) oxide precursors and the tr 2 pr ligand]. Nine coordination compounds were synthesized and structurally characterized. The diverse coordination architectures of the compounds are composed of cationic fragments such as [Cu II 3 (μ 2 -OH) 2 (μ 2 -tr) 2 ] 4+ , [Cu II 3 (μ 2 -tr) 6 ] 6+ , [Cu II 2 (μ 2 -tr) 3 ] 4+ , etc., connected to polymeric arrays by anionic species (molybdate MoO 4 2- , isomeric α-, δ-, and β-octamolybdates {Mo 8 O 26 } 4- or {Mo 8 O 28 H 2 } 6- ). The inorganic copper(I,II)/molybdenum(VI) oxide matrix itself forms discrete or low-dimensional subtopological motifs (0D, 1D, or 2D), while the organic spacers interconnect them into higher-dimensional networks. The 3D coordination hybrids show moderate thermal stability up to 230-250 °C, while for the 2D compounds, the stability of the framework is distinctly lower (∼190 °C). The magnetic properties of the most representative samples were investigated. The magnetic interactions were rationalized in terms of analyzing the planes of the magnetic orbitals.
Andersson, J D; Wilson, J S; Romaniuk, J A; McEwan, A J B; Abrams, D N; McQuarrie, S A; Gagnon, K
2016-04-01
Hydrophobic adsorbents such as C18 and C30 were coated with PEG and subsequently used for the separation of Mo/Tc. The most effective resin for adsorbing PEG was the C18-U resin, which demonstrated a coating capacity of 97.6±2.8mg PEG per g of resin. The ability to adsorb pertechnetate was proportional to the amount of PEG coated on the hydrophobic resin. The [(99m)Tc]pertechnetate recovery during the separation of cyclotron produced (99m)Tc from (100)Mo was 91.8±0.3% (n=2). The resultant product met relevant USP monograph specifications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrochemical preparation of single-crystalline Cr 2O 3 from molten salts
NASA Astrophysics Data System (ADS)
Abe, Hideki; Nishida, Kenji; Imai, Motoharu; Kitazawa, Hideaki
2004-06-01
Single crystals of Cr 2O 3 have been grown by means of electrolysis on a 1:100 stoichiometric mixture of CrO 3 and cesium molybdate, Cs 2MoO 4, fused at 1000°C in an ambient atmosphere. Potentiometric measurements on the molten salts have shown the existence of a critical voltage of -320 mV below which hexagonal platelets-shaped single-crystalline Cr 2O 3 is grown on the surface of the working electrode. Coulometry measurements have revealed that the Cr ions are at their highest oxidation state of Cr +6 in the molten electrolyte, which suggests that the electric reduction of Cr +6 to Cr +3 drives the single-crystal growth of Cr 2O 3.
Thermodynamic Properties of the Gaseous Gallium Molybdates and Tungstates
NASA Astrophysics Data System (ADS)
Lopatin, S. I.; Shugurov, S. M.; Gunina, A. O.
2009-10-01
A number of gaseous oxyacid salts have been identified by Knudsen effusion mass spectrometry by vaporizing Ga2O3 from molybdenum and tungsten cells. The stability of gaseous molecules Ga2MoO4, Ga2WO4, Ga2Mo2O7, and Ga2W2O7 was deduced from the measurements. The structures and molecular parameters of all salts investigated were obtained using quantum chemical calculations. On the basis of equilibrium constants measured for gas-phase reactions, the standard formation enthalpies were determined to be -827 ± 26, -843 ± 26, -1578 ± 32, and -1525 ± 34 kJ·mol-1 for Ga2MoO4, Ga2WO4, Ga2Mo2O7, and Ga2W2O7, respectively.
Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis
NASA Astrophysics Data System (ADS)
Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.
2006-09-01
Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.
Thermodynamic properties of the gaseous gallium molybdates and tungstates.
Lopatin, S I; Shugurov, S M; Gunina, A O
2009-12-03
A number of gaseous oxyacid salts have been identified by Knudsen effusion mass spectrometry by vaporizing Ga(2)O(3) from molybdenum and tungsten cells. The stability of gaseous molecules Ga(2)MoO(4), Ga(2)WO(4), Ga(2)Mo(2)O(7), and Ga(2)W(2)O(7) was deduced from the measurements. The structures and molecular parameters of all salts investigated were obtained using quantum chemical calculations. On the basis of equilibrium constants measured for gas-phase reactions, the standard formation enthalpies were determined to be -827 +/- 26, -843 +/- 26, -1578 +/- 32, and -1525 +/- 34 kJ.mol(-1) for Ga(2)MoO(4), Ga(2)WO(4), Ga(2)Mo(2)O(7), and Ga(2)W(2)O(7), respectively.
Catalytic production of metal carbonyls from metal oxides
Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.
1984-01-01
This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.
Catalytic production of metal carbonyls from metal oxides
Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.
1984-01-06
This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.
Diffractometric measurement of the temperature dependence of piezoelectric tensor in GMO monocrystal
NASA Astrophysics Data System (ADS)
Breczko, Teodor; Lempaszek, Andrzej
2007-04-01
Functional materials, of which an example is ferroelectric, ferroelastic monocrystal of molybdate (III) gadolinium (VI), are often used in the micro-motor operators (micro-servo motors) working in changeable environment conditions. Most frequently this change refers to temperature. That is why the important practical problem is the precise measurement of the value of piezoelectric tensor elements in dependence on the temperature of a particular monocrystal. In the presented article for this kind of measurements, the use of X-ray diffractometer has been shown. The advantage of the method presented is that, apart from precise dependence measurement between the temperature of a monocrystal and the value of piezoelectric tensor elements, it enables synchronous measurement of the value of thermal expansion tensor elements for a monocrystal.
Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian
2017-02-06
Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO 4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO 3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO 4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO 4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO 4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO 4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo 6+ to Mo 5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion-based processes initiated by added energy from β-impingement and second-order structural modifications induced by defect accumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Eryong, E-mail: ley401@163.com; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
Silver vanadate (AgVO{sub 3}) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO{sub 3} composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 °C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al{sub 2}O{sub 3}, Mo{sub 2}C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO{sub 3} during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over amore » wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO{sub 3} were significantly lower than the composites containing only metallic Mo or AgVO{sub 3} lubricant when the temperature is above 300 °C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO{sub 3} lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag{sub 3}VO{sub 4} and Fe{sub 3}O{sub 4} lubricants were responsible for the improvement of tribological properties at 500 °C, AgVO{sub 3}, Ag{sub 3}VO{sub 4} and molybdate for 700 °C, and AgVO{sub 3} and molybdate for 900 °C of NiAl-based composites with the addition of metallic Mo and AgVO{sub 3}. - Highlights: • NiAl/Mo-AgVO{sub 3} nanocomposites were prepared by mechanical alloying and sintering. • AgVO{sub 3} decomposed to metallic Ag and vanadium oxide during the sintering process. • NiAl/Mo-AgVO{sub 3} exhibited superior tribological properties at a board temperature range. • Phase composition on the worn surface was varied with temperatures. • Self-adjusted action was responsible for the improvement of tribological properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-01
The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO2)57.5 – (B2O3)10 – (Na2O)15 – (CaO)15 – (MoO3)2.5 and (SiO2)57.3 – (B2O3)20 – (Na2O)6.8 – (Li2O)13.4 – (MoO3)2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na2MoO4 and CaMoO4). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shellmore » reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations. K.K. was supported through the Impact Studentship scheme at UCL co-funded by the IHI Corporation and UCL. P.V.S. thanks the Royal Society, which supported preliminary work on this project, and the Laboratory Directed Research and Development program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. Via our membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).« less
Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy
Mansfeld, Florian B.; Wang, You; Lin, Simon H.
1997-06-03
A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.
Bendini, Alessandra; Bonoli, Matteo; Cerretani, Lorenzo; Biguzzi, Barbara; Lercker, Giovanni; Toschi, Tullia Gallina
2003-01-24
The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.
Electrochemical studies of corrosion inhibitors
NASA Technical Reports Server (NTRS)
Danford, M. D.
1990-01-01
The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.
Tetrahydrothiophene 1-oxide as an electron acceptor for Escherichia coli.
Meganathan, R; Schrementi, J
1987-01-01
Escherichia coli used tetrahydrothiophene 1-oxide (THTO) as an electron acceptor for anaerobic growth with glycerol as a carbon source; the THTO was reduced to tetrahydrothiophene. Cell extracts also reduced THTO to tetrahydrothiophene in the presence of a variety of electron donors. Chlorate-resistant (chl) mutants (chlA, chlB, chlD, and chlE) were unable to grow with THTO as the electron acceptor. However, growth and THTO reduction by the chlD mutant were restored by high concentrations of molybdate. Similarly, mutants of E. coli that are blocked in the menaquinone (vitamin K2) biosynthetic pathway, i.e., menB, menC, and menD mutants, did not grow with THTO as an electron acceptor. Growth and THTO reduction were restored in these mutants by the presence of appropriate intermediates of the vitamin K biosynthetic pathway. PMID:3294808
Measuring phosphate with an inexpensive, easy to build photometer
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; Weijs, Steven; Parlange, Marc
2013-04-01
In the context of a course for first year students to get hands-on experience with measuring in the environment, a photometric system for measuring phosphate concentration was developed. The system makes use of a single LED as a light source, a Si photodiode-based light to frequency conversion IC and an Arduino electronic card as acquisition system. The instrument is designed as an easy to assemble system and assembling and alignment is part of the exercise. The phosphate measurement is based on the formation of phosphor-molybdate complex which is eventually reduced to a blue component. The absorbance at 710 nm of a phosphate-containing fluid with added indicator is then measured and calibrated with a known solution. The initial test has demonstrated the ability of the instrument to detect phosphates in tap water. Other components as nitrates or chlorophyll could be easily measured with the instrument using LED emitting at the respective wavelengths.
Recio, Eliseo; Alvarez-Rodríguez, María Luisa; Rumbero, Angel; Garzón, Enrique; Coque, Juan José R
2011-12-14
A chemical method for the efficient destruction of 2,4,6-trichloroanisole (TCA) and pentachloroanisole (PCA) in aqueous solutions by using hydrogen peroxide as an oxidant catalyzed by molybdate ions in alkaline conditions was developed. Under optimal conditions, more than 80.0% TCA and 75.8% PCA were degraded within the first 60 min of reaction. Chloroanisoles destruction was followed by a concomitant release of up to 2.9 chloride ions per TCA molecule and 4.6 chloride ions per PCA molecule, indicating an almost complete dehalogenation of chloroanisoles. This method was modified to be adapted to chloroanisoles removal from the surface of cork materials including natural cork stoppers (86.0% decrease in releasable TCA content), agglomerated corks (78.2%), and granulated cork (51.3%). This method has proved to be efficient and inexpensive with practical application in the cork industry to lower TCA levels in cork materials.
Rapid analysis of fertilizers by the direct-reading thermometric method.
Sajó, I; Sipos, B
1972-05-01
The authors have developed rapid methods for the determination of the main components of fertilizers, namely phosphate, potassium and nitrogen fixed in various forms. In the absence of magnesium ions phosphate is precipitated with magnesia mixture; in the presence of magnesium ions ammonium phosphomolybdate is precipitated and the excess of molybdate is reacted with hydrogen peroxide. Potassium is determined by precipitation with silico-fluoride. For nitrogen fixed as ammonium salts the ammonium ions are condensed in a basic solution with formalin to hexamethylenetetramine; for nitrogen fixed as carbamide the latter is decomposed with sodium nitrite; for nitrogen fixed as nitrate the latter is reduced with titanium(III). In each case the temperature change of the test solution is measured. Practically all essential components of fertilizers may be determined by direct-reading thermometry; with this method and special apparatus the time of analysis is reduced to at most about 15 min for any determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyette, R.P.; Cutter, B.E.; Henderson, G.S.
Molybdenum and S concentrations were determined in growth increments of 13 eastern redcedar (Juniperus virginana L.) trees from the Ozark region of Missouri. Chonologies were constructed, which dated from 1280 to 1960 for Mo, and from 1580 to 1960 for S.A 45% increase in Mo concentrations occurred between 1720 and 1860 when compared with the previous 440 yr. A decline in heartwood Mo concentration, beginning in 1860, is hypothesized to be due to increasing soil sulfate from the atmospheric deposition of S compounds. There was a 65% reduction in Mo concentration concomitant with a 44% increase in S concentrations inmore » redcedar heartwood formed after 1860. Sulfur and Mo concentrations were found to be negatively correlated in serial heartwood increments. Competition between sulfate and molybdate ions in soil solutions are thought to have decreased Mo in recent heartwood growth increments.« less
NASA Astrophysics Data System (ADS)
Jo, H. S.; Choi, S.; Danevich, F. A.; Fleischmann, A.; Jeon, J. A.; Kang, C. S.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. L.; Kim, I.; Kim, S. K.; Kim, S. R.; Kim, Y. H.; Kim, Y. D.; Kornoukhov, V.; Kwon, D. H.; Lee, C.; Lee, H. J.; Lee, M. K.; Lee, S. H.; Oh, S. Y.; So, J. H.; Yoon, Y. S.
2018-05-01
The goal of the Advanced Mo-based Rare process Experiment (AMoRE) is to search for the neutrinoless double beta decay of ^{100} Mo using low-temperature detectors consisting of Mo-based scintillating crystals read out via metallic magnetic calorimeters. Heat and light signals are measured simultaneously at millikelvin temperatures, which are reached using a cryogen-free dilution refrigerator. The AMoRE-Pilot experiment, using six ^{100} Mo-enriched, ^{48} Ca-depleted calcium molybdate crystals with a total mass of about 1.9 kg, has been running in the 700-m-deep Yangyang underground laboratory as the pilot phase of the AMoRE project. Several setup improvements through different runs allowed us to achieve a high energy resolution and an efficient particle discrimination. This article briefly presents the status of the AMoRE-Pilot experiment, as well as the plans for the next, larger-scale, experimental stages.
Mapping the formation areas of giant molybdenum blue clusters: a spectroscopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botar, Bogdan; Ellern, Arkady; Kogerler, Paul
2012-05-18
The self-assembly of soluble molybdenum blue species from simple molybdate solutions has primarily been associated with giant mixed-valent wheel-shaped cluster anions, derived from the {MoV/VI154/176} archetypes, and a {MoV/VI368} lemon-shaped cluster. The combined use of Raman spectroscopy and kinetic precipitation as self-assembly monitoring techniques and single-crystal X-ray diffraction is key to mapping the realm of molybdenum blue species by establishing spherical {MoV/VI102}-type Keplerates as an important giant molybdenum blue-type species. We additionally rationalize the empirical effect of reducing agent concentration on the formation of all three relevant skeletal types: wheel, lemon and spheres. Whereas both wheels and the lemon-shaped {MoV/VI368}more » cluster are obtained from weakly reduced molybdenum blue solutions, considerably higher reduced solutions lead to {MoV/VI102}-type Keplerates.« less
Value recovery from spent alumina-base catalyst
Hyatt, David E.
1987-01-01
A process for the recovery of aluminum and at least one other metal selected from the group consisting of molybdenum, nickel and cobalt from a spent hydrogenation catalyst comprising (1) adding about 1 to 3 parts H.sub.2 SO.sub.4 to each part of spent catalyst in a reaction zone of about 20.degree. to 200.degree. C. under sulfide gas pressure between about 1 and about 35 atmospheres, (2) separating the resultant Al.sub.2 (SO.sub.4).sub.3 solution from the sulfide precipitate in the mixture, (3) oxidizing the remaining sulfide precipitate as an aqueous slurry at about 20.degree. to 200.degree. C. in an oxygen-containing atmosphere at a pressure between about 1 and about 35 atmospheres, (4) separating the slurry to obtain solid molybdic acid and a sulfate liquor containing said at least one metal, and (5) recovering said at least one metal from the sulfate liquor in marketable form.
Polysilicate binding for silicate paints
NASA Astrophysics Data System (ADS)
Ivanovna, Loganina Valentina; Nikolaevna, Kislitsyna Svetlana; Bisengalievich, Mazhitov Yerkebulan
2018-06-01
It was suggested, that the polysilicate solutions obtained by mixing liquid glass and silicic acid sol as a binder in the manufacture of silicate paints. Information is provided on the structure and a property of the sodium polysilicate binder is presented. It has been found that the addition of silica powder to a liquid glass causes gelling in the course of time. It has been established that the introduction of the sol (increasing the silicate module) contributes to an increase in the fraction of high-polymer fractions of silicic anion, with the increase in the sol content of the polymer form of silica increasing. The research results the structure of sols and polysilicate solutions by the method of violation of total internal reflection. By the method of IR spectroscopy, the molybdate method established the presence of silica in the polysilicate binder polymeric varieties, which provides an increase in the stability of silicate coatings.
Chaudhary, Ashun; Choudhary, Sonika; Sharma, Upendra; Vig, Adarsh Pal; Singh, Bikram; Arora, Saroj
2018-05-01
Natural foods are used in many folks and household treatments and have immense potential to treat a serious complication and health benefits, in addition to the basic nutritional values. These food products improve health, delay the aging process, increase life expectancy, and possibly prevent chronic diseases. Purple head Brassica oleracea L. var. italica Plenck is one of such foods and in current studies was explored for chemical compounds at different development stages by gas chromatography-mass spectrometry. Antioxidant potential was explored employing different assays like molybdate ion reduction, DPPH, superoxide anion radical scavenging and plasmid nicking assay. Inspired by antioxidant activity results, we further explored these extracts for antiproliferative potential by morphological changes, cell cycle analysis, measurement of intracellular peroxides and mitochondrial membrane potential changes. Current study provides the scientific basis for the use of broccoli as easily affordable potent functional food.
NASA Astrophysics Data System (ADS)
Kurzweil, Florian; Wille, Martin; Schoenberg, Ronny; Taubald, Heinrich; Van Kranendonk, Martin J.
2015-09-01
We present Mo-, C- and O-isotope data from black shales, carbonate- and oxide facies iron formations from the Hamersley Group, Western Australia, that range in age from 2.6 to 2.5 billion years. The data show a continuous increase from near crustal δ98Mo values of around 0.50‰ for the oldest Marra Mamba and Wittenoom formations towards higher values of up to 1.51‰ for the youngest sample of the Brockman Iron Formation. Thereby, the trend in increasing δ98Mo values is portrayed by both carbonate facies iron formations and black shales. Considering the positive correlation between Mo concentration and total organic carbon, we argue that this uniformity is best explained by molybdate adsorption onto organic matter in carbonate iron formations and scavenging of thiomolybdate onto sulfurized organic matter in black shales. A temporal increase in the seawater δ98Mo over the period 2.6-2.5 Ga is observed assuming an overall low Mo isotope fractionation during both Mo removal processes. Oxide facies iron formations show lowest Mo concentrations, lowest total organic carbon and slightly lower δ98Mo compared to nearly contemporaneous black shales. This may indicate that in iron formation settings with very low organic matter burial rates, the preferential adsorption of light Mo isotopes onto Fe-(oxyhydr)oxides becomes more relevant. A similar Mo-isotope pattern was previously found in contemporaneous black shales and carbonates of the Griqualand West Basin, South Africa. The consistent and concomitant increase in δ98Mo after 2.54 billion years ago suggests a more homogenous distribution of seawater molybdate with uniform isotopic composition in various depositional settings within the Hamersley Basin and the Griqualand West Basin. The modeling of the oceanic Mo inventory in relation to the Mo in- and outflux suggests that the long-term build-up of an isotopically heavy seawater Mo reservoir requires a sedimentary sink for isotopically light Mo. The search for this sink (i.e. adsorption onto Mn-oxides in well oxygenated surface oceans and/or subaerial environments or incomplete thiomolybdate formation in weakly sulfidic settings) remains debated, but its relevance becomes more important closer to the Great Oxidation Event and is probably related to already weakly oxidizing conditions even prior to the 2.5 Ga "whiff of oxygen".
A histochemical study of rat salivary gland acid phosphatase.
Isacsson, G
1986-01-01
Male Sprague-Dawley rats received 4 mg pilocarpine/100 g body wt intraperitoneally or physiological saline as control and were killed at various intervals. Acid phosphatase was reacted on frozen sections from soft palate, parotid and submandibular glands using sodium-alpha-naphthyl acid phosphate as substrate. Various inhibitors were added to the incubation medium. The strongest acid phosphatase activity was in the parotid gland acinar and proximal secretory duct cells; the mucous minor glands of the palate were completely negative. Activity was found in the acinar cells, proximal secretory duct cells, granular and striated duct and excretory duct cells. Pilocarpine injection slightly reduced the activity up to 6 h after injection. Cupric chloride added to the incubation medium lowered the overall activity. Fluoride and molybdate inhibited the acid phosphatase reaction in all structures. Tartrate inhibited the reaction in all structures except the submandibular striated duct cells. The tartrate-resistant activity may be a Na+K+-dependent ATPase involved in re-absorbing water and electrolytes from the primary saliva.
Yang, Yongqi; Guan, Lin; Gao, Guanghui
2018-04-25
Traditional optoelectronic devices without stretchable performance could be limited for substrates with irregular shape. Therefore, it is urgent to explore a new generation of flexible, stretchable, and low-cost intelligent vehicles as visual display and storage devices, such as hydrogels. In the investigation, a novel photochromic hydrogel was developed by introducing the negatively charged ammonium molybdate as a photochromic unit into polyacrylamide via ionic and covalent cross-linking. The hydrogel exhibited excellent properties of low cost, easy preparation, stretchable deformation, fatigue resistance, high transparency, and second-order response to external signals. Moreover, the photochromic and fading process of hydrogels could be precisely controlled and repeated under the irradiation of UV light and exposure of oxygen at different time and temperature. The photochromic hydrogel could be considered applied for artificial intelligence system, wearable healthcare device, and flexible memory device. Therefore, the strategy for designing a soft photochromic material would open a new direction to manufacture flexible and stretchable devices.
Romaidi; Ueki, Tatsuya
2016-06-01
Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.
Determination of Mo- and Ca-isotope ratios in Ca100MoO4 crystal for AMoRE-I experiment
NASA Astrophysics Data System (ADS)
Karki, S.; Aryal, P.; Kim, H. J.; Kim, Y. D.; Park, H. K.
2018-01-01
The first phase of the AMoRE (Advanced Mo-based Rare process Experiment) is to search for neutrinoless double-beta decay of 100Mo with calcium molybdate (Ca100MoO4) crystals enriched in 100Mo and depleted in 48Ca using a cryogenic technique at Yangyang underground laboratory in Korea. It is important to know 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal to estimate half-life of 100Mo decays and to 2 νββ background from 48Ca. We employed the ICP-MS (Inductive Coupled Plasma Mass Spectrometer) to measure 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal. The measured results for 100Mo- and 48Ca-isotope ratios in the crystal are (94 . 6 ± 2 . 8) % and (0 . 00211 ± 0 . 00006) %, respectively, where errors are included both statistical and systematic uncertainties.
Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy.
Szumera, Magdalena
2015-02-25
Glasses have been synthesized in the system P2O5-SiO2-K2O-MgO-CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]-O-P and/or Mo[MoO4/MoO6]-O-Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations. Copyright © 2014 Elsevier B.V. All rights reserved.
Manganese molybdate nanoflakes on silicon microchannel plates as novel nano energetic material
Zhang, Chi; Wu, Dajun; Shi, Liming; Zhu, Yiping; Xiong, Dayuan; Xu, Shaohui; Huang, Rong; Qi, Ruijuan; Zhang, Wenchao; Chu, Paul K.
2017-01-01
Nano energetic materials have attracted great attention recently owing to their potential applications for both civilian and military purposes. By introducing silicon microchannel plates (Si-MCPs) three-dimensional (3D)-ordered structures, monocrystalline MnMoO4 with a size of tens of micrometres and polycrystalline MnMoO4 nanoflakes are produced on the surface and sidewall of nickel-coated Si-MCP, respectively. The MnMoO4 crystals ripen controllably forming polycrystalline nanoflakes with lattice fringes of 0.542 nm corresponding to the (1¯11) plane on the sidewall. And these MnMoO4 nanoflakes show apparent thermite performance which is rarely reported and represents MnMoO4 becoming a new category of energetic materials after nanocrystallization. Additionally, the nanocrystallization mechanism is interpreted by ionic diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising substrate for nanocrystallization of energetic materials such as MnMoO4. PMID:29308255
Manganese molybdate nanoflakes on silicon microchannel plates as novel nano energetic material.
Zhang, Chi; Wu, Dajun; Shi, Liming; Zhu, Yiping; Xiong, Dayuan; Xu, Shaohui; Huang, Rong; Qi, Ruijuan; Zhang, Wenchao; Wang, Lianwei; Chu, Paul K
2017-12-01
Nano energetic materials have attracted great attention recently owing to their potential applications for both civilian and military purposes. By introducing silicon microchannel plates (Si-MCPs) three-dimensional (3D)-ordered structures, monocrystalline MnMoO 4 with a size of tens of micrometres and polycrystalline MnMoO 4 nanoflakes are produced on the surface and sidewall of nickel-coated Si-MCP, respectively. The MnMoO 4 crystals ripen controllably forming polycrystalline nanoflakes with lattice fringes of 0.542 nm corresponding to the [Formula: see text] plane on the sidewall. And these MnMoO 4 nanoflakes show apparent thermite performance which is rarely reported and represents MnMoO 4 becoming a new category of energetic materials after nanocrystallization. Additionally, the nanocrystallization mechanism is interpreted by ionic diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising substrate for nanocrystallization of energetic materials such as MnMoO 4 .
Experimental study of magnetocaloric effect in the two-level quantum system KTm(MoO4)2
NASA Astrophysics Data System (ADS)
Tarasenko, R.; Tkáč, V.; Orendáčová, A.; Orendáč, M.; Valenta, J.; Sechovský, V.; Feher, A.
2018-05-01
KTm(MoO4)2 belongs to the family of binary alkaline rare-earth molybdates. This compound can be considered to be an almost ideal quantum two-level system at low temperatures. Magnetocaloric properties of KTm(MoO4)2 single crystals were investigated using specific heat and magnetization measurement in the magnetic field applied along the easy axis. Large conventional magnetocaloric effect (-ΔSM ≈ 10.3 J/(kg K)) was observed in the magnetic field of 5 T in a relatively wide temperature interval. The isothermal magnetic entropy change of about 8 J/(kgK) has been achieved already for the magnetic field of 2 T. Temperature dependence of the isothermal entropy change under different magnetic fields is in good agreement with theoretical predictions for a quantum two-level system with Δ ≈ 2.82 cm-1. Investigation of magnetocaloric properties of KTm(MoO4)2 suggests that the studied system can be considered as a good material for magnetic cooling at low temperatures.
The Interferometric Measurement of Phase Mismatch in Potential Second Harmonic Generators.
NASA Astrophysics Data System (ADS)
Sinofsky, Edward Lawrence
This dissertation combines aspects of lasers, nonlinear optics and interferometry to measure the linear optical properties involved in phase matched second harmonic generation, (SHG). A new measuring technique has been developed to rapidly analyze the phase matching performance of potential SHGs. The data taken is in the form of interferograms produced by the self referencing nonlinear Fizeau interferometer (NLF), and correctly predicts when phase matched SHG will occur in the sample wedge. Data extracted from the interferograms produced by the NLF, allows us to predict both phase matching temperatures for noncritically phase matchable crystals and crystal orientation for angle tuned crystals. Phase matching measurements can be made for both Type I and Type II configurations. Phase mismatch measurements were made at the fundamental wavelength of 1.32 (mu)m, for: calcite, lithium niobate, and gadolinium molybdate (GMO). Similar measurements were made at 1.06 (mu)m. for calcite. Phase matched SHG was demonstrated in calcite, lithium niobate and KTP, while phase matching by temperature tuning is ruled out for GMO.
Lin, Jian; Bao, Hongliang; Qie, Meiying; Silver, Mark A; Yue, Zenghui; Li, Xiaoyun; Zhu, Lin; Wang, Xiaomei; Zhang, Linjuan; Wang, Jian-Qiang
2018-06-05
Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO 4 )(H 2 O) 4 Cl]Cl·H 2 O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO 4 )(H 2 O) 4 Cl] + with Cl - as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th 4+ center in TMC are vulnerable to competition with F - , due to the formation of more favorable Th-F bonds compared to Th-OH 2 . This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.
Experimental examination of frequency locking effect in acousto-optic system
NASA Astrophysics Data System (ADS)
Mantsevich, S. N.; Balakshy, V. I.
2018-04-01
The optoelectronic system containing collinear acousto-optic cell fabricated on the base of calcium molybdate crystal and positive electronic feedback circuit was examined. The feedback signal is formed due to the optical heterodyning effect that occurs on the cell output and takes place in the special regime of collinear acousto-optic diffraction. It was discovered that three operation modes that may exist in this system. The boundaries between the modes were determined. The positions of the boundaries depend on the main parameters of the system—the incident light intensity and the feedback gain value. The new for acousto-optics phenomenon of acousto-optic system self-oscillations frequency locking by the RF generator signal was discovered and examined experimentally. Such an effect has never been observed before in the acousto-optic systems. It was experimentally shown that frequency locking effect may be used to select one of the multimode semiconductor laser longitudinal modes to improve laser radiation spectral composition.
Copper poisoning in a dairy herd fed a mineral supplement
Bradley, Charles H.
1993-01-01
Copper poisoning in a dairy herd resulted in the death of 9 of 63 (14%) adult Holstein cows. Clinical signs were acute anorexia, weakness, mental dullness, poor pupillary light reflexes, and scant nasal discharge. These were followed by recumbency, chocolate-colored blood, jaundice, and death. Four animals exhibited signs of hyperesthesia and/or rumen stasis prior to death. At necropsy there was generalized icterus of body tissues, with the liver appearing orange and the kidneys dark blue. Histologically, there was accumulation of hemosiderin in Kupffer cells, and severe to moderate hepatocellular necrosis in all cases. Ammonium molybdate added to the ration, combined with the cessation of mineral supplementation, arrested the outbreak. These cases illustrate significant mortality, due to copper poisoning, in adult cattle fed a low-dose mineral dietary supplement for over two years. Dietary copper intake of the herd (on a dry matter basis) was 37.5 mg/kg for lactating cows and 22.6 mg/kg for dry cows. PMID:17424221
Purification and characterization of two wheat-embryo protein phosphatases.
Polya, G M; Haritou, M
1988-04-15
Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.
Wang, Xiao-juan; Jiang, Lin
2014-12-01
To explore the spectrum-effect relationship between the HPLC fingerprint of Arctium lappa root methanol extract and the total antioxidant activity. The experiment was carried out with Gemini C18 110A (250 mm x 4.6 mm, 5 µm) column using methanol-0.04% phosphoric acid as gradient mobile phase at the flow rate of 1.0 mL/min, detection wavelength of 320 nm. The total antioxidant activity was determined by measuring the absorbance of each sample after being reacted with ammonium molybdate reagent. The spectrum-effect relationship was investigated using canonical correlation analysis (CCA). The spectrum-effect relationship between the HPLC fingerprint of Arctium lappa root methanol extract and the total antioxidant activity were established, the similarity of fingerprint of all samples was above 0.9. Peaks 1, 6, 9, 12 and 14 were principle components of Arctium lappa root for the total antioxidant activity. This method contributes to the fast comprehensive evaluation of quality of Arctium lappa root.
Acharya, M; Burke, J M; Coffey, K P; Kegley, E B; Miller, J E; Huff, G R; Smyth, E; Terrill, T H; Mosjidis, J A; Rosenkrans, C
2015-04-01
Sericea lespedeza (SL; Lespedeza cuneata) is a legume rich in condensed tannins that can be grazed or fed to small ruminants for parasite control. Condensed tannins, a secondary plant compound in SL, may lead to unintended consequences such as changes in production. In our preliminary research, there was consistently a reduction in serum and liver concentrations of Mo. The objective of this study was to determine the effect of SL with or without Mo supplementation on changes in BW, hematology, and serum biochemistry in lambs. Thirty ram lambs weaned in May (84 ± 1.5 d of age; 27 ± 1.1 kg) were blocked by BW, breed type (full or three-fourths Katahdin), and EBV of parasite resistance and randomly assigned to be fed 900 g of alfalfa-based supplement (CON; n = 10) or SL-based supplement (n = 20) for 103 d. Supplements were formulated to be isonitrogenous and isocaloric and to meet trace mineral requirements. Within the SL diet, half of the lambs received 490 mg sodium molybdate weekly (SLMO). Body condition scores and BW were determined every 14 d and blood and feces collected to determine hematological and serum biochemical profiles and fecal egg counts (FEC). Data were analyzed using a mixed model with repeated measures and orthogonal contrasts. The white blood cell counts tended to be reduced in SL- and SLMO-fed lambs compared with CON-fed lambs (P < 0.06), which was associated with a reduction in neutrophils (P < 0.001). Red blood cell counts were also reduced in SL but not SLMO lambs compared with CON lambs (P < 0.04). There was a reduction in blood packed cell volume (P < 0.04) and serum concentrations of albumin (P < 0.001) and creatinine (P < 0.02) in both SL and SLMO lambs compared with CON lambs. Similarly, concentrations of blood urea nitrogen were reduced in both SL and SLMO lambs, but differences among dietary treatments disappeared after 42 d of feeding (treatment × day, P < 0.004). Serum concentrations of total proteins were reduced only in SLMO lambs compared with other lambs (P < 0.001). Body weight and FEC were similar among dietary treatments. Means of all measurements were within a normal range, even though there were subtle but significant differences between dietary groups. Feeding a diet high in condensed tannin-rich SL did not lead to serious effects on hematology or serum biochemistry in lambs.
Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus.
Siemann, Stefan; Schneider, Klaus; Oley, Mareke; Müller, Achim
2003-04-08
In the phototrophic non-sulfur bacterium Rhodobacter capsulatus, the biosynthesis of the conventional Mo-nitrogenase is strictly Mo-regulated. Significant amounts of both dinitrogenase and dinitrogenase reductase were only formed when the growth medium was supplemented with molybdate (1 microM). During cell growth under Mo-deficient conditions, tungstate, at high concentrations (1 mM), was capable of partially (approximately 25%) substituting for molybdate in the induction of nitrogenase synthesis. On the basis of such conditions, a tungsten-substituted nitrogenase was isolated from R. capsulatus with the aid of anfA (Fe-only nitrogenase defective) mutant cells and partially purified by Q-sepharose chromatography. Metal analyses revealed the protein to contain an average of 1 W-, 16 Fe-, and less than 0.01 Mo atoms per alpha(2)beta(2)-tetramer. The tungsten-substituted (WFe) protein was inactive in reducing N(2) and marginally active in acetylene reduction, but it was found to show considerable activity with respect to the generation of H(2) from protons. The EPR spectrum of the WFe protein, recorded at 4 K, exhibited three distinct signals: (i) an S = 3/2 signal, which dominates the low-field region of the spectrum (g = 4.19, 3.93) and is indicative of a tungsten-substituted cofactor (termed FeWco), (ii) a marginal S = 3/2 signal (g = 4.29, 3.67) that can be attributed to residual amounts of FeMoco present in the protein, and (iii) a broad S = 1/2 signal (g = 2.09, 1.95, 1.86) arising from at least two paramagnetic species. Redox titrational analysis of the WFe protein revealed the midpoint potential of the FeWco (E(m) < -200 mV) to be shifted to distinctly lower potentials as compared to that of the FeMoco (E(m) approximately -50 mV) present in the native enzyme. The P clusters of both the WFe and the MoFe protein appear indistinguishable with respect to their midpoint potentials. EPR spectra recorded with the WFe protein under turnover conditions exhibited a 20% decrease in the intensity of the FeWco signal, indicating that the cofactor can be enzymatically reduced only to a small extent. The data presented in the current study demonstrate the pivotal role of molybdenum in optimal N(2) fixation and provides direct evidence that the inability of a tungsten-substituted nitrogenase to reduce N(2) is due to the difficulty to effectively reduce the FeW cofactor beyond its semi-reduced state.
Reactions of metal ions at surfaces of hydrous iron oxide
Hem, J.D.
1977-01-01
Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.
Poly[bis{3,3′-[(biphenyl-4,4′-diyl)dimethylene]diimidazol-1-ium} γ-octamolybdate(VI)
Liu, Hongsheng; Su, Lianjiang; Wang, Limin; Li, Weihong
2010-01-01
In the title compound, {(C20H20N4)2[Mo8O26]}n, the asymmetric unit contains half of an [Mo8O26]4− anion and one 3,3′-[(biphenyl-4,4′-diyl)dimethylene]diimidazol-1-ium dication. In the anion, four distorted [MoO6] octahedra are connected via edge-sharing, forming an [Mo4O13]2− building block, composed of Mo—O(t), Mo—O(μ2), Mo—O(μ3) and Mo—O(μ4) units, with Mo—O distances ranging from 1.6858 (15) to 2.4785 (13) Å. The γ-type [Mo8O26]4− anion is completed by crystallographic inversion symmetry and is linked into an infinite chain along [100] by corner-sharing. The anionic chains and the cations are joined by N—H⋯O hydrogen bonds, generating layers extending parallel to (001). PMID:21580534
Isoprenoid Alcohols are Susceptible to Oxidation with Singlet Oxygen and Hydroxyl Radicals.
Komaszylo Née Siedlecka, Joanna; Kania, Magdalena; Masnyk, Marek; Cmoch, Piotr; Lozinska, Iwona; Czarnocki, Zbigniew; Skorupinska-Tudek, Karolina; Danikiewicz, Witold; Swiezewska, Ewa
2016-02-01
Isoprenoids, as common constituents of all living cells, are exposed to oxidative agents--reactive oxygen species, for example, singlet oxygen or hydroxyl radicals. Despite this fact, products of oxidation of polyisoprenoids have never been characterized. In this study, chemical oxidation of isoprenoid alcohols (Prenol-2 and -10) was performed using singlet oxygen (generated in the presence of hydrogen peroxide/molybdate or upon photochemical reaction in the presence of porphyrin), oxygen (formed upon hydrogen peroxide dismutation) or hydroxyl radical (generated by the hydrogen peroxide/sonication, UV/titanium dioxide or UV/hydrogen peroxide) systems. The structure of the obtained products, hydroxy-, peroxy- and heterocyclic derivatives, was studied with the aid of mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. Furthermore, mass spectrometry with electrospray ionization appeared to be a useful analytical tool to detect the products of oxidation of isoprenoids (ESI-MS analysis), as well as to establish their structure on the basis of the fragmentation spectra of selected ions (ESI-MS/MS analysis). Taken together, susceptibility of polyisoprenoid alcohols to various oxidizing agents was shown for the first time.
Steroid receptors analysis in human mammary tumors by isoelectric focusing in agarose.
Bailleul, S; Gauduchon, P; Malas, J P; Lechevrel, C; Roussel, G; Goussard, J
1988-08-01
A high resolution and quantitative method for isoelectric focusing has been developed to separate the isoforms of estrogen and progesterone receptors in human mammary tumor cytosols stabilized by sodium molybdate. Agarose gels (0.5%) were used. Six samples can be analyzed on one gel in about 2 h, and 35-microliters samples are sufficient to determine the estrogen receptor isoform pattern. The constant yields and the reproducibility of data allow a quantitative analysis of these receptors. Four estrogen receptor isoforms have been observed (pI 4.7, 5.5, 6, and 6.5), isoforms with pI 4.7 and 6.5 being present in all tumors. After incubation at 28 degrees C in high ionic strength, the comparison of isoelectric focusing and high-performance size exclusion chromatography patterns of estrogen receptor confirms the oligomeric structure of the pI 4.7 isoform and suggests a monomeric structure for the pI 6.5 isoform. Under the same conditions of analysis, only one progesterone receptor isoform has been detected with pI 4.7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelis, A.; Brown, M. A.; Wiedmeyer, S.
2014-02-18
Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO 4 2- from the fission products, since most of the interfering anions (e.g., CO 3 2-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retainmore » and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.« less
Device physics of Cu(In,Ga)Se2 solar cells for long-term operation
NASA Astrophysics Data System (ADS)
Nishinaga, J.; Shibata, H.
2017-02-01
The degradation mechanism of Cu(In,Ga)Se2 (CIGS) solar cells on exposure to air has been investigated. Exposure to air at room temperature slightly reduces the conversion efficiency of CIGS solar cells, and the conversion efficiency decreases significantly under damp heat testing at 85 °C and 85% relative humidity due to low shunt resistance. On the other hand, shunt resistance increases after dry nitrogen heating. Therefore, oxygen and humidity should degenerate the solar cell performance. The low shunt resistance and conversion efficiency are completely recovered after removing the side edges of the CIGS solar cells by mechanical scribing. These results suggest that low-resistive layers are formed on the sidewalls of the solar cells during damp heat testing. The low-resistive layers on the sidewalls are identified to be molybdenum oxides and sodium molybdate by Auger electron spectroscopy. After etching the oxides on the sidewalls by alkaline solution, the saturation current density and ideality factor are confirmed to be improved. These results suggest that metal oxides on the sidewalls of CIGS solar cells may act as recombination centers.
Forbes, Scott; Kong, Tai; Cava, Robert J
2018-04-02
The previously unreported RE 3 Mo 14 O 30 and RE 2 Mo 9 O 19 phases were synthesized in vacuo from rare-earth oxides, molybdenum oxide, and molybdenum metal using halide fluxes at 875-1000 °C. Both phases adopt structures in the triclinic P1̅ space group albeit with several notable differences. The structures display an ordering of layers along the a direction of the unit cell, forming distinct honeycomb-related lattice arrangements composed of MoO 6 octahedra and vacancies. Mo-Mo bonding and clusters are present; the RE 3 Mo 14 O 30 structure contains Mo dimers and rhomboid tetramers, while the RE 2 Mo 9 O 19 structure contains rhomboid tetramers and an unusual arrangement of planar tetramers, pentamers, and hexamers. The magnetic measurements found the RE 2 Mo 9 O 19 phases to be simple paramagnets, while La 3 Mo 14 O 30 was observed to order antiferromagnetically at 18 K. Electrical resistivity measurements confirmed all of the samples to behave as nondegenerate semiconductors.
Strawberries from integrated and organic production: mineral contents and antioxidant activity.
Kristl, Janja; Krajnc, Andreja Urbanek; Kramberger, Branko; Mlakar, Silva Grobelnik
2013-01-01
As the nutritional quality of food is becoming increasingly more important for consumers, significant attention needs to be devoted to agricultural practices and their influences on the nutrient contents in food. The presented investigation studied the mineral contents and antioxidant activities in the fruits of four organically-grown strawberry cultivars 'St. Pierre', 'Elsanta', 'Sugar Lia' and 'Thuchampion' when compared to those of integrated-grown plants. The strawberries were digested and analyzed for K, Mg, Fe, Zn, Cu, and Mn using an atomic absorption spectrometer, whilst P was analyzed using a vanadate-molybdate method. In addition, antioxidant activity was estimated by using the ABTS assay. The results showed that the mineral contents and antioxidant activities in strawberries depends on the cultivar, and its production system. Organically-grown fruits showed higher antioxidant activities and Cu content than the integrated fruits, whilst the integrated fruits were superior in their contents of P, K, Mg, Fe and Mn. All the cultivars showed similar Zn content, probably reflecting the fact that the Zn content in strawberries does not depend on the cultivar.
Network structure of Mo-oxide glasses
NASA Astrophysics Data System (ADS)
Fabian, M.; Svab, E.; Milanova, M.; Krezhov, K.
2017-01-01
The structure of molybdate glasses have been investigated by neutron and high-energy X-ray diffraction coupled with Reverse Monte Carlo (RMC) simulation technique. From the modelling the partial atomic correlation functions g ij(r), the coordination number distributions CN ij and bond angle distributions have been revealed. For binary 90MoO3-10Nd2O3 glass composition the fraction of MoO4/MoO6 was 0.55/0.25. Three type of ternary system have been studied, where the most important structural units was authenticated. For MoO3-Nd2O3-B2O3 sample mixed MoO4-BO4 and MoO4-BO3 linkages form pronounced intermediate-range order. In case of MoO3-ZnO-B2O3 series the BO3 and BO4 units are linked to MoO4 and/or ZnO4, forming mixed MoO4-BO4(BO3), MoO4-ZnO4 and ZnO4-BO4(BO3) bond-linkages.
Thorup, Casper; Schramm, Andreas
2017-01-01
ABSTRACT This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. PMID:28720728
Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter
2012-01-01
Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Copyright © 2011 Elsevier B.V. All rights reserved.
Sharma, Sonia; Vig, Adarsh Pal
2013-01-01
In the present study, methanol and aqueous extracts of Parkinsonia aculeata L. leaves were prepared and analyzed for phytochemical analysis and antioxidant potential in different in vitro assays. Antioxidant activity was studied using DPPH, CUPRAC, reducing power assay, deoxyribose degradation (site and nonsite specific), ferric reducing antioxidant potential (FRAP), ferric thiocyanate (FTC), thiobarbituric acid (TBA), and molybdate ion reduction, respectively. The total phenolic contents of the methanol and aqueous leaf extract were 39 mg GAE/g and 38 mg GAE/g, whereas flavonoid contents of these extracts were found to be 0.013 mg RE/g and 0.006 mg RE/g, respectively. From the two extracts, the methanol extract shows maximum inhibition (%) of 57.82%, 71.23%, 48.26%, 69.85%, and 52.78% in DPPH, nonsite- and site-specific, FTC, and TBA assays and absorbance of 0.669 and 0.241 in reducing power and CUPRAC assays at the highest concentration tested. UPLC analysis was done to determine the presence of various types of polyphenols present in plant extracts.
Vig, Adarsh Pal
2013-01-01
In the present study, methanol and aqueous extracts of Parkinsonia aculeata L. leaves were prepared and analyzed for phytochemical analysis and antioxidant potential in different in vitro assays. Antioxidant activity was studied using DPPH, CUPRAC, reducing power assay, deoxyribose degradation (site and nonsite specific), ferric reducing antioxidant potential (FRAP), ferric thiocyanate (FTC), thiobarbituric acid (TBA), and molybdate ion reduction, respectively. The total phenolic contents of the methanol and aqueous leaf extract were 39 mg GAE/g and 38 mg GAE/g, whereas flavonoid contents of these extracts were found to be 0.013 mg RE/g and 0.006 mg RE/g, respectively. From the two extracts, the methanol extract shows maximum inhibition (%) of 57.82%, 71.23%, 48.26%, 69.85%, and 52.78% in DPPH, nonsite- and site-specific, FTC, and TBA assays and absorbance of 0.669 and 0.241 in reducing power and CUPRAC assays at the highest concentration tested. UPLC analysis was done to determine the presence of various types of polyphenols present in plant extracts. PMID:24348173
Samadi-Maybodi, Abdolraouf; Atashbozorg, Ebrahim
2006-11-15
Silicon is an essential trace element and is found in vegetables, fruits, cereals, water, pasta and rice (Oryza sativa). In this work, the silica content of different types of rice grains were measured. Here, we used the heteropoly blue photometric method with a double beam UV-vis spectrophotometer to determine the amount of silicon in rice samples (n=7) that were collected in the north of Iran. The samples were digested with wet-ashing method by microwave-assisted heating and then treated with ammonium molybdate to produce a yellow color compound in acidic solution (ca. pH 1.2) and then reduced to give a heteropoly compound with a blue color. Analyses were performed using standard addition method and absorbance values were measured with double beam UV-vis spectrophotometer at lambda(max)=815nm. Results indicated that the silica content was 307-451mg/kg for the samples. X-ray diffraction patterns and infra-red spectra were obtained from rice samples without any sample treatment.
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.
2015-10-01
The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Boiko, R. S.; Chernyak, D. M.
The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the regionmore » of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.« less
Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko
2011-01-01
Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.
NASA Astrophysics Data System (ADS)
Stelian, Carmen; Velázquez, Matias; Veber, Philippe; Ahmine, Abdelmounaim; Sand, Jean-Baptiste; Buşe, Gabriel; Cabane, Hugues; Duffar, Thierry
2018-06-01
Lithium molybdate Li2MoO4 (LMO) crystals of mass ranging between 350 and 500 g are excellent candidates to build heat-scintillation cryogenic bolometers likely to be used for the detection of rare events in astroparticle physics. In this work, numerical modeling is applied in order to investigate the Czochralski growth of Li2MoO4 crystals in an inductive furnace. The numerical model was validated by comparing the numerical predictions of the crystal-melt interface shape to experimental visualization of the growth interface. Modeling was performed for two different Czochralski furnaces that use inductive heating. The simulation of the first furnace, which was used to grow Li2MoO4 crystals of 3-4 cm in diameter, reveals non-optimal heat transfer conditions for obtaining good quality crystals. The second furnace, which will be used to grow crystals of 5 cm in diameter, was numerically optimized in order to reduce the temperature gradients in the crystal and to avoid fast crystallization of the bath at the later stages of the growth process.
The mechanism and kinetics of propene ammoxidation over α-bismuth molybdate
Licht, Rachel B.; Vogt, Diana; Bell, Alexis T.
2016-05-17
Propene ammoxidation over Bi 2Mo 3O 12 was investigated to elucidate product (acrylonitrile, acetonitrile, HCN, acrolein, N 2, etc.) formation pathways. Propene consumption rate is first order in propene and zero order in ammonia (for NH 3/C 3H 6 = 0-2) and oxygen (for O 2 /C 3 H 6 ≥ 1.5) partial pressures, with an activation energy (E a = 22 kcal/mol) comparable to that for propene oxidation, suggesting the same rate-limiting step for both reactions. We propose two N-containing species are relevant at ammoxidation conditions: adsorbed NH 3 on surface Bi 3+ ions that reacts with a propenemore » derivative to form products with C-N bonds, and a few metastable M-NH x (M = Mo, Bi; x = 1, 2) groups that are very sensitive to destruction by water, but that are responsible for NH 3 oxidation to N 2. A proposed reaction mechanism and model that captures the experimental trends in product distribution as a function of partial pressures and temperature are presented.« less
NASA Astrophysics Data System (ADS)
Sampath, S.; Wayne, S. F.
1994-09-01
Thermally sprayed molybdenum coatings are used in a variety of industrial applications, such as auto-motive piston rings, aeroturbine engines, and paper and plastics processing machinery. Molybdenum ex-hibits excellent scuffing resistance under sliding contact conditions. However, plasma-sprayed molybde-num coatings are relatively soft and require dispersion strengthening (e.g., Mo2C) or addition of a second phase (e.g., NiCrBSi) to improve hardness, wear resistance, and thus coating performance. In this study, Mo-Mo2C composite powders were plasma sprayed onto mild steel substrates. Considerable decarburi-zation was observed during air plasma spraying—a beneficial condition because carbon acts as a sacrifi-cial getter for the oxygen, thereby reducing the oxide content in the coating. Finer powders showed a greater degree of decarburization due to the increased surface area; however, the starting carbide con-tent in the powder exerted very little influence on the extent of decarburization. The friction properties of Mo-Mo2C coatings were significantly improved compared to those of pure molybdenum under con-tinuous sliding contact conditions. It also was found that the abrasion resistance of the coatings improved with increasing carbide addition.
Potentiometric sensors for the selective determination of sulbutiamine.
Ahmed, M A; Elbeshlawy, M M
1999-11-01
Five novel polyvinyl chloride (PVC) matrix membrane sensors for the selective determination of sulbutiamine (SBA) cation are described. These sensors are based on molybdate, tetraphenylborate, reineckate, phosphotun gestate and phosphomolybdate, as possible ion-pairing agents. These sensors display rapid near-Nernstian stable response over a relatively wide concentration range 1x10(-2)-1x10(-6) M of sulbutiamine, with calibration slopes 28 32.6 mV decade(-1) over a reasonable pH range 2-6. The proposed sensors proved to have a good selectivity for SBA over some inorganic and organic cations. The five potentiometric sensors were applied successfully in the determination of SBA in a pharmaceutical preparation (arcalion-200) using both direct potentiometry and potentiometric titration. Direct potentiometric determination of microgram quantities of SBA gave average recoveries of 99.4 and 99.3 with mean standard deviation of 0.7 and 0.3 for pure SBA and arcalion-200 formulation respectively. Potentiometric titration of milligram quantities of SBA gave average recoveries of 99.3 and 98.7% with mean standard deviation of 0.7 and 1.2 for pure SBA and arcalion-200 formulation, respectively.
THE DETERMINATION OF THE MAJOR CONSTITUENTS OTHER THAN URANIUM IN BELGIAN CONGO ORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, A.B.; Wright, J.S.; Bradfield, E.G.
1953-12-22
Methods for determining the major constituents of Belgian Congo ore other than uranium are reviewed. A method is given for the determination of cobalt by precipitation with potassium ethyl xanthate from a nitric acid solution of the ore. After wet oxidation of the precipitate, it is titrated potentiometrically in ammoniacal citrate solution with potassium ferricyanide. A method for the determination of silicon is given in which the silica is dehydrated by fuming with perchloric acid. After filtration and ignition, it is volatized as the fluoride, and the silica is deternfined from weight loss. Nickel is determined from a solution ofmore » the ore in nitric acid by double precipitation with dimethyl glyoxime after addition of citrate ion, hydroxylamine, and ammonia. Molybdenum is determined by precipitation as lead molybdate after preliminary separation with benzoin oxime. Aluminum is determined by precipitation as the benzoate, thioglycolic acid being used to complex the iron. The aluminum is then estimated gravimetrically with oxime. A composite method is presented for the deterndnation of lead, iron, alununum, calciuna, and magnesium. (C.J.G.)« less
Photometric Determination of Ammonium and Phosphate in Seawater Medium Using a Microplate Reader.
Ruppersberg, Hanna S; Goebel, Maren R; Kleinert, Svea I; Wünsch, Daniel; Trautwein, Kathleen; Rabus, Ralf
2017-01-01
To more efficiently process the large sample numbers for quantitative determination of ammonium (NH4+) and phosphate (orthophosphate, PO43-) generated during comprehensive growth experiments with the marine Roseobacter group member Phaeobacter inhibens DSM 17395, specific colorimetric assays employing a microplate reader (MPR) were established. The NH4+ assay is based on the reaction of NH4+ with hypochlorite and salicylate, yielding a limit of detection of 14 µM, a limit of quantitation of 36 µM, and a linear range for quantitative determination up to 200 µM. The PO43-assay is based on the complex formation of PO43- with ammonium molybdate in the presence of ascorbate and zinc acetate, yielding a limit of detection of 13 µM, a limit of quantitation of 50 µM, and a linear range for quantitative determination up to 1 mM. Both MPR-based assays allowed for fast (significantly lower than 1 h) analysis of 21 samples plus standards for calibration (all measured in triplicates) and showed only low variation across a large collection of biological samples. © 2017 S. Karger AG, Basel.
Oremland, Ronald S.; Zehr, Jon P.
1986-01-01
Anaerobic San Francisco Bay salt marsh sediments rapidly metabolized [14C]dimethylselenide (DMSe) to 14CH4 and 14CO2. Addition of selective inhibitors (2-bromoethanesulfonic acid or molybdate) to these sediments indicated that both methanogenic and sulfate-respiring bacteria could degrade DMSe to gaseous products. However, sediments taken from the selenium-contaminated Kesterson Wildlife Refuge produced only 14CO2 from [14C]DMSe, implying that methanogens were not important in the Kesterson samples. A pure culture of a dimethylsulfide (DMS)-grown methylotrophic methanogen converted [14C]DMSe to 14CH4 and14CO2. However, the organism could not grow on DMSe. Addition of DMS to either sediments or the pure culture retarded the metabolism of DMSe. This effect appeared to be caused by competitive inhibition, thereby indicating a common enzyme system for DMS and DMSe metabolism. DMSe appears to be degraded as part of the DMS pool present in anoxic environments. These results suggest that methylotrophic methanogens may demethylate methylated forms of other metals and metalloids found in nature.
Han, Jinkyu; McBean, Coray; Wang, Lei; ...
2015-02-10
As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋ xMo xO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋ xMo xO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output uponmore » nanowire chemical composition with our 1D CaW₁₋ xMo xO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋ xMo xO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that the PL quenching can be attributed to a photo-induced electron transfer process from CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) to both CdSe and CdS QDs, an assertion supported by complementary NEXAFS measurements.« less
Acharya, M; Burke, J M; Coffey, K P; Kegley, E B; Miller, J E; Smyth, E; Welborn, M G; Terrill, T H; Mosjidis, J A; Rosenkrans, C
2016-04-01
Prolonged feeding of sericea lespedeza (SL) previously led to reduced serum concentrations of Mo, a cofactor in an enzyme complex that may be involved in weight gain. The current objective was to determine the effect of Mo supplementation on changes in serum, fecal, urine, and liver concentrations of trace minerals in lambs fed SL leaf meal pellets. Thirty ram lambs weaned in May (84 ± 1.5 d of age and 27 ± 1.1 kg; D 0) were blocked by BW, breed type (full or three-fourths Katahdin), and EBV of parasite resistance and randomly assigned to be fed 900 g/d of an alfalfa-based supplement (CON; = 10) or a SL-based supplement ( = 20) for 103 d. Supplements were formulated to be isonitrogenous and isocaloric and to meet trace mineral requirements. Within the SL group, individual lambs were administered either 5 mL water or 5 mL of water with 163.3 mg of sodium molybdate (SLMO). Serum was collected on d 28, 56, and 104; a liver sample was collected by biopsy on d 104 to determine concentrations of trace minerals. Data were analyzed using a mixed model and orthogonal contrasts. Serum concentrations of Mo increased in response to the drench and were greatest in SLMO lambs and then CON lambs and lowest in SL lambs ( < 0.001). Concentrations of Mo in the liver ( < 0.001) were similar between CON and SLMO lambs and were lower in SL lambs than other groups. Serum ( < 0.001) and liver ( = 0.013) concentrations of zinc (Zn) were reduced in both SL and SLMO lambs compared with CON lambs. Serum concentrations of cobalt (Co) increased in CON lambs compared with SL and SLMO lambs between d 0 and 56 but were similar on d 104 (diet × day, < 0.005) as with concentrations in the liver. Serum and liver concentrations of copper (Cu) were greatest ( < 0.001 and < 0.001, respectively) in CON lambs followed by SL lambs and then SLMO lambs. Serum concentrations of selenium (Se) tended ( = 0.10) to be reduced in SL lambs compared with CON and SLMO lambs, but concentrations in the liver were reduced in SL lambs compared with CON lambs and even more so in SLMO lambs ( < 0.003). Although the dietary Mo did increase stores of Mo in the animal and reduced copper, trace minerals associated with metalloproteins-Mo, copper, selenium, and zinc-were reduced in the liver of SL- and/or SLMO-fed lambs. These reductions could be associated with the lower weight gains previously observed after prolonged feeding of SL.
Mooney, R A; Bordwell, K L
1992-07-15
A permeabilized rat adipocyte model was developed which permitted an examination of: 1) insulin receptor autophosphorylation, 2) phosphorylation of a putative insulin receptor substrate of 160 kDa, pp160, and 3) the dephosphorylation reactions associated with each of these phosphoproteins. Rat adipocytes, preincubated with [32P]orthophosphate for 2 h, were exposed to insulin (10(-7) M) at the time of digitonin permeabilization. Phosphorylation of pp160 and autophosphorylation of the insulin receptor increased as a function of Mn2+ concentration in the media with near maximum responses at 10 mM. Maximum response was at least as large as the intact cell response to 10(-7) M insulin. In contrast, magnesium did not increase phosphorylation of pp160 although an increase in receptor autophosphorylation was observed. Autophosphorylation was preserved at digitonin concentrations of 20-100 micrograms/ml, but pp160 phosphorylation was negligible beyond 40 micrograms/ml. Our previous work demonstrated that the insulin receptor was associated with a phosphotyrosine phosphatase activity in permeabilized adipocytes (Mooney, R., and Anderson, D. (1989) J. Biol. Chem. 264, 6850-6857). The current permeabilized adipocyte model made possible an examination of the effects of phosphotyrosine phosphatase inhibitors, including several divalent metal cations (Zn2+, Co2+, and Ni2+), vanadate, and molybdate on both net phosphorylation of pp160 and autophosphorylation of the insulin receptor. Zn2+ at 100 microM, Ni2+ at 1 mM, and Co2+ at 1 or 5 mM increased insulin-dependent phosphorylation of pp160 at least 5-fold and autophosphorylation 2-fold. At higher concentrations of Zn2+ (1 mM) and Ni2+ (5 mM), however, no increase in phosphorylation of pp160 was observed and autophosphorylation was inhibited. Vanadate (1 mM) and molybdate (100 microM) increased insulin-dependent phosphorylation of pp160 by 3-fold when tested separately and 7-fold in combination. Insulin receptor autophosphorylation was increased 50% by each and 3-fold when the agents were combined. Dephosphorylation of pp160 and the insulin receptor was analyzed directly by permeabilizing prelabeled insulin-treated adipocytes in the presence of EDTA (10 mM). Dephosphorylation of pp160 was especially rapid with a t1/2 of approximately 10 s. The t1/2 for the insulin receptor was 37 s. Zn2+ at 1 mM (a concentration that inhibited the insulin receptor kinase) was a strong inhibitor of dephosphorylation, prolonging the rate of pp160 dephosphorylation more than 12-fold and insulin receptor dephosphorylation 3-fold.(ABSTRACT TRUNCATED AT 400 WORDS)
The Underground Laboratory in South Korea : facilities and experiments
NASA Astrophysics Data System (ADS)
Kim, Yeongduk
2017-01-01
We have developed underground physics programs for last 15 years in South Korea. The scientific and technical motivation for this initiative was the lack of local facility of a large accelerator in Korea. Thanks to the large underground electric power generator in Yangyang area, we could construct a deep underground laboratory (Yangyang Laboratory, Y2L) and has performed some pioneering experiments for dark matter search and double beta decay experiments. Since year of 2013, a new research center in the Institute for Basic Science (IBS), Center for Underground Physics (CUP), is approved by the government and Y2L laboratory is managed by CUP. Due to the limited space in Y2L, we are proposing to construct a new deep underground laboratory where we can host larger scale experiments of next generation. The site is in an active iron mine, and will be made in 1100 meter underground with a space of about 2000 m2 by the end of 2019. I will describe the status and future plan for this underground laboratory. CUP has two main experimental programs. (1) Identification of dark matter : The annual modulation signal of DAMA/LIBRA experiment has been contradictory to many other experiments such as XENON100, LUX, and Super CDMS. Yale University and CUP (COSINE-100) experimentalists agreed to do an experiment together at the Y2L and recently commissioned a 100kg scale low background NaI(Tl) crystal experiment. In future, we will develop NaI(Tl) crystals with lower internal backgrounds and try to run identical detectors at both north and south hemisphere. Low mass WIMP search is also planned with a development of low temperature sensors coupled with highly scintillating crystals. (2) Neutrinoless double beta decay search : The mass of the lightest neutrino and the Majorana nature of the neutrinos are not determined yet. Neutrinoless double beta decay experiment can answer both of the questions directly, and ultra-low backgrounds and excellent energy resolution are critical to discover this ultra rare phenomena. AMoRE (Advanced Mo-based Rare phenomena Experiment) is a state-of-art experiment based on low temperature MMC sensor and ultra pure molybdate crystals containing highly enriched isotopes. With 200 kg of molybdate crystals running 3 years, It's sensitivity goal is reaching 1027 years of half-life and down to 15-30 meV neutrino mass. AMoRE-pilot experiment with 1.5 kg of enriched Mo-100 crystals is running at Y2L now. In addition to the two main physics program, CUP is doing NEOS short baseline neutrino experiment and also develops new experiments for new parameter search for dark photons, WIMPs, and double beta decay experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Paramananda; Gupta, Santosh K., E-mail: santufrnd@gmail.com; Natarajan, V.
2015-04-15
Nanocrystalline Scheelite type Dy doped AMoO{sub 4} [where A = Ba, Sr and Ca] samples were prepared by acrylamide assisted sol–gel process and characterized by XRD, FT-Raman, FTIR, SEM and photoluminescence (PL). PL of undoped sample shows blue/green emission in CaMoO{sub 4} and SrMoO{sub 4} but multicolour visible emission leading to near white light in BaMoO{sub 4} nanoparticles; the origin of which is explained. It was observed that on doping 0.5 mol% of Dy{sup 3+} in molybdate samples complete energy transfer takes place in case of SrMoO{sub 4} and BaMoO{sub 4}, but host contributed substantially in Dy doped BaMoO{sub 4}more » sample, resulting in biexponential decay. It was also observed that symmetry around Dy{sup 3+} decreases as the size of alkaline earth ion increases. Due to combined blue, yellow and red colour emission in dysprosium doped sample; all samples showed near white light emission under UV and near UV excitation.« less
SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications
NASA Astrophysics Data System (ADS)
Soni, Abhishek Kumar; Rai, Vineet Kumar
2016-08-01
The Er3+-Yb3+ codoped strontium molybdate (SrMoO4) phosphors have been synthesized via chemical co-precipitation method by adding ammonium hydroxide as a base reagent. The phase, crystal structure and formation of spindle-like particles present in the prepared phosphors have been recognized by using the X-ray powder diffraction (XRPD) and Field emission scanning electron microscopy (FE-SEM) techniques. The Fourier transform infrared (FTIR) spectroscopy of the developed phosphors has been analyzed to mark the different functional groups present in synthesized phosphors. The multicolour upconversion emissions observed upon excitation with 980 nm and 808 nm laser diode have been explained on the basis of dopants ions concentration, pump power dependence, energy level structure and decay curve analysis. The colour co-ordinate study confirmed that the codoped phosphor emits non-tunable green colour when excited with the 980 nm laser diode, whereas it shows the colour tunability from yellow to green region upon excitation with the 808 nm laser diode. The applicability of non-tunable green colour emission has been demonstrated in the security ink and latent finger print detection. This shows the utility of the developed phosphors in the photonic and forensic applications.
Nardello, Véronique; Caron, Laurent; Aubry, Jean-Marie; Bouttemy, Sabine; Wirth, Thomas; Saha-Möller Chantu, R; Adam, Waldemar
2004-09-01
The chiral allylic alcohols 1a-d and their acetate (1e) and silyl ether (1f) derivatives have been oxidized by the H2O2/MoO4(2)- system, a convenient and efficient chemical source of singlet oxygen. This chemical peroxidation (formation of the allylic hydroperoxides 2) has been conducted in various media, which include aqueous solutions, organic solvents, and microemulsions. The reactivity, chemoselectivity, and diastereoselectivity of this chemical oxidation are compared to those of the sensitized photooxygenation, with the emphasis on preparative applications in microemulsion media. While a similar threo diastereoselectivity is observed for both modes of peroxidation, the chemoselectivity differs significantly, since in the chemical oxidation with the H2O2/MoO4(2)- system the undesirable epoxidation by the intermediary peroxomolybdate competes efficiently with the desirable peroxidation by the in situ generated singlet oxygen. A proper choice of the type of microemulsion and the reaction conditions furnishes a high chemoselectivity (up to 97%) in favor of threo-diastereoselective (up to 92%) peroxidation. Copyright 2004 American Chemical Society
Lowry, David B.; Sheng, Calvin C.; Zhu, Zhirui; Juenger, Thomas E.; Lahner, Brett; Salt, David E.; Willis, John H.
2012-01-01
Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake. PMID:22292026
High-Affinity Vanadate Transport System in the Cyanobacterium Anabaena variabilis ATCC 29413
Pratte, Brenda S.; Thiel, Teresa
2006-01-01
High-affinity vanadate transport systems have not heretofore been identified in any organism. Anabaena variabilis, which can fix nitrogen by using an alternative V-dependent nitrogenase, transported vanadate well. The concentration of vanadate giving half-maximum V-nitrogenase activity when added to V-starved cells was about 3 × 10−9 M. The genes for an ABC-type vanadate transport system, vupABC, were found in A. variabilis about 5 kb from the major cluster of genes encoding the V-nitrogenase, and like those genes, the vupABC genes were repressed by molybdate; however, unlike the V-nitrogenase genes the vanadate transport genes were expressed in vegetative cells. A vupB mutant failed to grow by using V-nitrogenase unless high levels of vanadate were provided, suggesting that there was also a low-affinity vanadate transport system that functioned in the vupB mutant. The vupABC genes belong to a family of putative metal transport genes that include only one other characterized transport system, the tungstate transport genes of Eubacterium acidaminophilum. Similar genes are not present in the complete genomes of other bacterial strains that have a V-nitrogenase, including Azotobacter vinelandii, Rhodopseudomonas palustris, and Methanosarcina barkeri. PMID:16385036
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, K.S.; Chang, F.; Levy, M.
1993-07-01
Pitting corrosion of molybdenum-ion-implanted, depleted uranium -0 75 Ti (DU -0 75 Ti) has been studied electrochemically in acidic, neutral, and alkaline solutions containing sodium chloride, and the results have been compared to those of the unimplanted DU -0 75 Ti. The data show that Mo implantation shifts the pitting potential of DU -0 75 Ti in the noble direction in acidic and alkaline solutions. In neutral 50 ppm Cl- solution, however, there is no beneficial effect of Mo implantation. Auger analysis studies show that before exposure to the solutions, all the molybdenum is in the oxide, which is approximatelymore » l000 A thick. After electrochemical scans in the acidic and alkaline chloride solutions, most of the Mo disappears from the oxide. However, no decrease in Mo concentration is found after exposure in neutral chloride solution. It is proposed that the implanted molybdenum dissolves in the acidic and alkaline solutions and forms simple or complex molybdates that inhibit pitting corrosion. The implanted molybdenum does not dissolve in the neutral chloride solution and inhibition does not occur.« less
Determination of phosphate in natural waters by activation analysis of tungstophosphoric acid
Allen, Herbert E.; Hahn, Richard B.
1969-01-01
Activation analysis may be used to determine quantitatively traces of phosphate in natural waters. Methods based on the reaction 31P(n,γ)32P are subject to interference by sulfur and chlorine which give rise to 32P through n,p and n,α reactions. If the ratio of phosphorus to sulfur or chlorine is small, as it is in most natural waters, accurate analyses by these methods are difficult to achieve. In the activation analysis method, molybdate and tungstate ions are added to samples containing phosphate ion to form tungstomolybdophosphoric acid. The complex is extracted with 2,6-dimethyl-4-heptanone. After activation of an aliquot of the organic phase for 1 hour at a flux of 1013 neutrons per cm2, per second, the gamma spectrum is essentially that of tungsten-187. The induced activity is proportional to the concentration of phosphate in the sample. A test of the method showed it to give accurate results at concentrations of 4 to at least 200 p.p.b. of phosphorus when an aliquot of 100 μl. was activated. By suitable reagent purification, counting for longer times, and activation of larger aliquots, the detection limit could be lowered several hundredfold.
Methods for collection and analysis of geopressured geothermal and oil field waters
Lico, Michael S.; Kharaka, Yousif K.; Carothers, William W.; Wright, Victoria A.
1982-01-01
Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, .and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C2 through C5) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.
Wang, Shuizhong; Gao, Wa; Li, Helong; Xiao, Ling-Ping; Sun, Run-Cang; Song, Guoyong
2018-04-16
Lignin is the largest renewable resource of bio-aromatics, and catalytic fragmentation of lignin into phenolic monomers is increasingly recognized as an important starting point for lignin valorization. Herein, we reported zinc molybdate (ZnMoO4) supported on MCM-41 can catalyze fragmentation of biorefinery technical lignin, enzymatic mild acidolysis lignin and native lignin derived from corncob, to give lignin oily products containing 15 to 37.8 wt% phenolic monomers, in which the high selectivities towards methyl coumarate 1 and methyl ferulate 2 were obtained (up to 78%). The effects of some key parameters such as the influences of solvent, reaction temperature, time, H2 pressure and catalyst dosage were examined in view of activity and selectivity. The loss of zinc atom in catalyst is appointed as a primary cause of deactivation, and catalytic activity and selectivity can be well-preserved for at least six times by thermal calcination. The high selectivity to compounds 1 and 2 make them easily separated and purified from lignin oily product, thus providing sustainable monomers for preparation of functional polyetheresters and polyesters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki
2018-01-10
Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.
Petz, M; Solly, R; Lymburn, M; Clear, M H
1987-01-01
A method is described for determination of 4 macrolide antibiotics in livestock products. Erythromycin, tylosin, oleandomycin, and spiramycin were extracted from animal tissues, milk, and egg with acetonitrile at pH 8.5. Cleanup was done by adding sodium chloride and dichloromethane, evaporating the organic layer, and subsequent acid/base partitioning. After the antibiotics were separated by thin-layer chromatography (TLC), they were reacted with xanthydrol and could be detected as purple spots down to 0.02 mg/kg without interference by other commonly used therapeutic drugs (23 were tested). Anisaldehyde-sulfuric acid, cerium sulfate-molybdic acid, phosphomolybdic acid, and Dragendorff's reagent proved to be less sensitive as visualizing agents. For quantitation, TLC plates were scanned at 525 nm. Recoveries were between 71 and 96% for erythromycin and tylosin in liver, muscle, and egg at the 0.1-0.5 mg/kg level and 51% for erythromycin in milk at the 0.02 mg/kg level (coefficient of variation = 10-18%). Bioautography with Bacillus subtilis was used to confirm results, in addition to TLC analysis of derivatized antibiotics and liquid chromatography with electrochemical detection. Various derivatization procedures for erythromycin were investigated for improved ultra-violet or fluorescence detection in liquid chromatography.
NASA Astrophysics Data System (ADS)
Madhusudan, Puttaswamy; Zhang, Jinfeng; Yu, Jiaguo; Cheng, Bei; Xu, Difa; Zhang, Jun
2016-11-01
The optical and catalytic performances of materials strongly depend on their size, morphology, dimensionality and structure. Herein, we demonstrate a facile one-pot template free synthesis of hierarchical CdMoO4 porous microspheres via a simple low temperature oil bath method. The photoactivity of the as-prepared samples was evaluated by photocatalytic decolorization of Methyl Orange (MO) and Methylene Blue (MB) mixed dye aqueous solutions at ambient temperature under full solar spectrum. The results indicated that the concentration of ammonium molybdate and reaction time greatly influence the diameter, average crystallite size, specific surface area, pore structure and photocatalytic activity of the prepared samples. Especially, under the suitable conditions the prepared hierarchical CdMoO porous microspheres exhibited enhanced photocatalytic activity and high stability. Furthermore, it is found that the photocatalytic activity and formation rate of hydroxyl radicals greatly depend on the particle sizes and morphology of as-prepared samples. This work not only demonstrates a simple way to fabricate the hierarchical CdMoO4 porous microspheres but also shows a possibility for utilization of CdMoO4 porous microspheres for the photocatalytic treatment of waste water pollutants.
Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe
2015-07-07
An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.
NASA Astrophysics Data System (ADS)
Elkamel, K.; Elidrissi, M.; Yacoubi, A.; Nadiri, A.; Abouarnadasse, S.
1998-11-01
Hydrodenitrogenation of pyridine has been realised, under atmospheric pressure, in the presence of oxynitride catalysts of molybdenum, nickel and their solid solutions as well as on mixed catalysts MoNi, MoPNi, AlNi and AlPNi. In all cases, the main reaction products are n-pentane and N-pentylpiperidine, at any conversion. Kinetic results suggest that the conversion of pyridine, on nickel oxynitride, proceeds through successive steps with hydrogenation as rate-limiting. Molybdenum oxynitride and Mo-Ni-N solid solutions tested in the temperature range 500 circC-450 circC, showed a good structural and catalytic stability, but a low catalytic activity. On the other hand, nickel oxynitride catalyst yielded higher activity at much lower temperatures (190 circC-250 circC). X-rays analysis indicates that the used catalyst was entirely reduced to metallic nickel, which is the active phase. Under the same experimental conditions, mixed catalysts are relatively less active but more selective than nickel oxynitride into n-pentane formation. La réaction d'hydrodésazotation de la pyridine a été réalisée, sous pression atmosphérique, en présence de catalyseurs oxynitrures de molybdène, de nickel et leurs solutions solides ainsi que sur les catalyseurs mixtes MoNi, MoPNi, AlNi et AlPNi. Dans tous les cas, les principaux produits de réaction observés sont le n-pentane et la N- pentylpipéridine, quel que soit le taux de conversion. Les résultats cinétiques obtenus en régime intégral, en présence de l'oxynitrure de nickel, suggèrent un schéma réactionnel successif où l'hydrogénation de la pyridine serait l'étape limitante. L'oxynitrure de molybdène et les solutions solides Mo-Ni-N, testés à des températures supérieures ou égales à 500 circC, ont montré une bonne stabilité catalytique et structurale mais une faible activité catalytique. En revanche, l'oxynitrure de nickel présente une activité catalytique plus importante à des températures de réaction beaucoup plus basses (190 circC 250 circC). Cependant, l'analyse aux rayons X du catalyseur usagé, indique qu'il est entièrement réduit à l'état métallique; ceci laisse supposer que le nickel métallique est la phase active. Dans les mêmes conditions expérimentales, les catalyseurs mixtes sont relativement moins actifs que l'oxynitrure de nickel, mais plus sélectifs vis-à-vis de la formation du n-pentane.
Extraction Methods in Soil Phosphorus Characterisation
NASA Astrophysics Data System (ADS)
Soinne, Helena
2010-05-01
Extraction methods are widely used to assess the bioavailability of P and to characterise soil P reserves. Even though new and more sophisticated methods to characterise soil P are constantly developed the use of extraction methods is not likely to be replaced because of the relatively simple analytical equipment needed for the analysis. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is important to know the role of extracted P in the soil P cycle. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. In this study, the effect of sample pre-treatment and properties of the used extractant on extractable molybdate-reactive phosphorus (MRP) and molybdate-unreactive phosphorus (MUP) was studied. Furthermore, the effect of sample preparation procedures prior the analysis on measured MRP and MUP was studied. Two widely used sequential extraction procedures were compared on their ability to show management induced differences on soil P. These results revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable MUP, thought to represent organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. In addition to the effects of sample pre-treatment, the results showed that extractable organic P was sensitive to the chemical nature of the used extractant and to the sample preparation procedures employed prior to P analysis, including centrifugation and filtering of soil suspensions. Filtering may remove a major proportion of extractable MUP; therefore filtering cannot be recommended in the characterisation of solubilised MUP. However, extractants having high ionic strength may cause the organic molecules to collapse during centrifugation and thus affect the recovered concentration of MUP. These findings highlight the importance of characterising the nature of the MUP extracted with different extractants and acknowledging the sensitivity of MUP to analytical procedures when comparing published results. Widely used sequential fractionation procedures proved to be able to detect land-use -derived differences in the distribution of P among fractions of different solubilities. The results of this study demonstrate that, although the extraction methods do not reveal the biogeochemical function of a given P pool in soil, the extraction methods can be used to detect changes in soil P pools with different solubilities. To obtain the most benefit from extraction methods, we need a better understanding of the biological availability of P and the role of extracted P fraction in the P cycle in soils from different environments (climatic and weather) and land-uses.
Field turbidity method for the determination of lead in acid extracts of dried paint.
Studabaker, William B; McCombs, Michelle; Sorrell, Kristen; Salmons, Cynthia; Brown, G Gordon; Binstock, David; Gutknecht, William F; Harper, Sharon L
2010-07-08
Lead, which can be found in old paint, soil, and dust, has been clearly shown to have adverse health effects on the neurological systems of both children and adults. As part of an ongoing effort to reduce childhood lead poisoning, the US Environmental Protection Agency promulgated the Lead Renovation, Repair, and Painting Program (RRP) rule requiring that paint in target housing built prior to 1978 be tested for lead before any renovation, repair, or painting activities are initiated. This rule has led to a need for a rapid, relatively easy, and an inexpensive method for measuring lead in paint. This paper presents a new method for measuring lead extracted from paint that is based on turbidimetry. This method is applicable to paint that has been collected from a surface and extracted into 25% (v/v) of nitric acid. An aliquot of the filtered extract is mixed with an aliquot of solid potassium molybdate in 1 M ammonium acetate to form a turbid suspension of lead molybdate. The lead concentration is determined using a portable turbidity meter. This turbidimetric method has a response of approximately 0.9 NTU per microg lead per mL extract, with a range of 1-1000 Nephelometric Turbidity Units (NTUs). Precision at a concentration corresponding to the EPA-mandated decision point of 1 mg of lead per cm(2) is <2%. This method is insensitive to the presence of other metals common to paint, including Ba(2+), Ca(2+), Mg(2+), Fe(3+), Co(2+), Cu(2+), and Cd(2+), at concentrations of 10 mg mL(-1) or to Zn(2+) at 50 mg mL(-1). Analysis of 14 samples from six reference materials with lead concentrations near 1 mg cm(-2) yielded a correlation to inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of 0.97, with an average bias of 2.8%. Twenty-four sets of either 6 or 10 paint samples each were collected from different locations in old houses, a hospital, tobacco factory, and power station. Half of each set was analyzed using rotor/stator-25% (v/v) nitric acid extraction with measurement using the new turbidimetric method, and the other half was analyzed using microwave extraction and measurement by ICP-AES. The average relative percent difference between the turbidimetric method and the ICP-AES method for the 24 sets measured as milligrams of lead per cm(2) is -0.63 +/- 32.5%; the mean difference is -2.1 +/- 7.0 mg lead per cm(2). Non-parametric and parametric statistical tests on these data showed no difference in the results for the two procedures. At the federal regulated level of 1 mg of lead per cm(2) paint, this turbidimetric method meets the performance requirements for EPA's National Lead Laboratory Accreditation Program (NLLAP) of accuracy within +/-20% and has the potential to meet the performance specifications of EPA's RRP rule.
Ruiz, Juan M; Rivero, Rosa M; Romero, Luis
2007-04-01
Here, we study the effect caused by three trace elements--Al, Se, and Mo--applied at the same concentration (100 microM) and in their oxyanionic forms--NaAl(OH)(4), Na(2)SeO(4), and Na(2)MoO(4)--on NO(3)(-) assimilation (NO(3)(-), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) activities, and concentrations of amino acids and proteins) in sunflower (Helianthus annuus L. var. Kasol) plants. The most harmful element for sunflower plants proved to be selenate, followed by aluminate. On the contrary, the application of molybdate had no negative effect on the growth of this plant, suggesting the possibility of using sunflower for the phytoremediation of this metal, mainly in agricultural zones used for grazing where the excess of this element can provoke problems of molybdenosis in ruminants (particularly in cattle). In addition, we found that the alteration of NO(3)(-) assimilation by SeO(4)(2-) and Al(OH)(4)(-) directly influences the growth and development of plants, foliar inhibition of NR activity by SeO(4)(2-) being more harmful than the decrease in foliar availability of NO(3)(-) provoked by Al(OH)(4)(-).
Sarkar, Sishir Kumar; Kothalkar, Chetan; Naskar, Prabhakar; Joshi, Sangeeta; Saraswathy, Padmanabhan; Dey, Arun Chandra; Vispute, Gunvant Leeladhar; Murhekar, Vishwas Vinayak; Pilkhwal, Neelam
2013-01-01
Purpose of the Study: The indigenous design and technology development for processing large scale zirconium molybdate-Mo-99 (ZrMo-99) Geltech generator was successfully commissioned in Board of Radiation and Isotope Technology (BRIT), India, in 2006. The generator production facility comprises of four shielded plant facilities equipped with tongs and special process gadgets amenable for remote operations for radiochemical processing of ZrMo-99 gel. Results: Over 2800 Geltech generators have been processed and supplied to user hospitals during the period 2006-2013. Geltech generator supplied by BRIT was initially not sterile. Simple elution of Tc-99m is performed by a sterile evacuated vial with sterile and pyrogen free 0.9% NaCl solution to obtain sodium (Tc-99m) pertechnetate solution. A special type online 0.22 μm membrane filter has been identified and adapted in Geltech generator. Conclusions: The online filtration of Tc-99m from Geltech generator; thus, provided sterile Tc-99m sodium pertechnetate solution. Generators assembled with modified filter assembly were supplied to local hospital in Mumbai Radiation Medicine Centre (RMC) and S.G.S. Medical College and KEM Hospital) and excellent performances were reported by users. PMID:24163509
Determination of arsenic species in rice samples using CPE and ETAAS.
Costa, Bruno Elias Dos Santos; Coelho, Nívia Maria Melo; Coelho, Luciana Melo
2015-07-01
A highly sensitive and selective procedure for the determination of arsenate and total arsenic in food by electrothermal atomic absorption spectrometry after cloud point extraction (ETAAS/CPE) was developed. The procedure is based on the formation of a complex of As(V) ions with molybdate in the presence of 50.0 mmol L(-1) sulfuric acid. The complex was extracted into the surfactant-rich phase of 0.06% (w/v) Triton X-114. The variables affecting the complex formation, extraction and phase separation were optimized using factorial designs. Under the optimal conditions, the calibration graph was linear in the range of 0.05-10.0 μg L(-1). The detection and quantification limits were 10 and 33 ng L(-1), respectively and the corresponding value for the relative standard deviation for 10 replicates was below 5%. Recovery values of between 90.8% and 113.1% were obtained for spiked samples. The accuracy of the method was evaluated by comparison with the results obtained for the analysis of a rice flour sample (certified material IRMM-804) and no significant difference at the 95% confidence level was observed. The method was successfully applied to the determination of As(V) and total arsenic in rice samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of reduction time on the structure and properties of porous graphene
NASA Astrophysics Data System (ADS)
Li, Guoping; Zhang, Chenhui; Zhang, Tianfu; Xia, Min; Luo, Yunjun
2017-07-01
Porous graphene with nanoscaled pores on the sheets was prepared by a carbon thermal reduction method, in which the molybdenum oxide nanoparticles generated from the thermal decomposition of molybdate were used as the etching reagent, and the pores were formed on the surface of the reduced graphene oxide under the conditions of 650 °C and a nitrogen atmosphere. The morphology of pores on the graphene sheets may affect their potential applications in various fields, especially in the enhancement of mass transfer. Previous studies have shown that the reduction temperature and the amount of metal oxide are the key factors affecting the morphology of porous graphene, but in fact the reduction time is a more important affecting factor according to the present study. The results of SEM/TEM showed that a disordered large sheet-like structure with wrinkles was obtained at 120 min in the carbon-thermal reaction. The structural integrity of the PG was further destroyed after the reaction time of 140 min, in which the edge exhibited slightly crush and significant fold. The PG exhibited a hollow rod-like structure at the reaction time of 180 min. FTIR, Raman, XRD, and XPS studies were performed to characterize the morphology of porous graphene prepared at different reduction times.
NASA Astrophysics Data System (ADS)
Ciszewski, Mateusz; Benke, Grzegorz; Leszczyńska-Sejda, Katarzyna; Kopyto, Dorota
2017-11-01
A new energy storage material based on molybdate active species has been presented. Molybdenum seems to be a perspective material in supercapacitors because of numerous possible metal oxidation states, electrolyte storage by means of various chemical reactions and availability in comparison to other refractory metals. Material synthesized within this research was composed of reduced graphene oxide matrix and peroxomolybdate(VI)-citrate active dimers. It was showed that peroxomolybdate(VI)-citrate structure enhanced electrochemical activity of symmetric supercapacitor. Simple methodology was used to synthesize a composite with pH adjustment as the key step. The specific capacity calculated from galvanostatic charge/discharge curves was as high as 250 F/g. Material was distinguished by good cyclability with 5% capacity loss after 1000 cycles. The increase in charge transfer resistance, induced by metal-oxygen compound within the carbon matrix was relatively low, compared to parent reduced graphene oxide. Amorphous structure of peroxomolybdate(VI)-modified material was observed with slight increase in the interlayer distance in comparison to parent reduced graphene oxide. The height and lateral size of crystallites were also determined. Significant decrease in the specific surface area of peroxomolybdate(VI)-modified composite was observed, in comparison to the parent reduced graphene oxide.
NASA Astrophysics Data System (ADS)
Park, Jin-Sung; Cho, Jung Sang; Kang, Yun Chan
2018-03-01
Closely in line with advances in next-generation energy storage materials, anode materials for lithium-ion batteries (LIBs) with high capacity and long cycle life have been widely explored. As part of the current effort, nickel molybdate (NiMoO4) microspheres with empty nanovoids are synthesized via spray drying process and subsequent one-step calcination in air. Dextrin in the atomized droplet is phase segregated during the spray drying process and calcined in air atmosphere, resulting in numerous empty nanovoids well-distributed within a microsphere. The empty nanovoids alleviate volume expansion during cycling, shorten lithium-ion diffusion length, and facilitate contact between electrode and electrolyte materials. Along with the high discharge capacity of NiMoO4 material, as high as 1240 mA h g-1 for the 2nd cycle at a high current density of 1 A g-1, uniquity of the structure enables longer cycle life and higher quality performances. The discharge capacity corresponding to the 500th cycle is 1020 mA h g-1 and the capacity retention calculated from the 2nd cycle is 82%. In addition, a discharge capacity of 413 mA g-1 is obtained at an extremely high current density of 10 A g-1.
Ricketts, Chelsea D.; Bates, William R.; Reid, Scott D.
2015-01-01
To determine if molybdenum (Mo) is a chemical stressor, fingerling and juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne sodium molybdate (0, 2, 20, or 1,000 mg l-1 of Mo) and components of the physiological (plasma cortisol, blood glucose, and hematocrit) and cellular (heat shock protein [hsp] 72, hsp73, and hsp90 in the liver, gills, heart, and erythrocytes and metallothionein [MT] in the liver and gills) stress responses were measured prior to initiation of exposure and at 8, 24, and 96 h. During the acute exposure, plasma cortisol, blood glucose, and hematocrit levels remained unchanged in all treatments. Heat shock protein 72 was not induced as a result of exposure and there were no detectable changes in total hsp70 (72 and 73), hsp90, and MT levels in any of the tissues relative to controls. Both fingerling and juvenile fish responded with similar lack of apparent sensitivity to Mo exposure. These experiments demonstrate that exposure to waterborne Mo of up to 1,000 mg l-1 did not activate a physiological or cellular stress response in fish. Information from this study suggests that Mo water quality guidelines for the protection of aquatic life are highly protective of freshwater fish, namely rainbow trout. PMID:25629693
An automated leaching method for the determination of opal in sediments and particulate matter
NASA Astrophysics Data System (ADS)
Müller, Peter J.; Schneider, Ralph
1993-03-01
An automated leaching method for the analysis of biogenic silica (opal) in sediments and particulate matter is described. The opaline material is extracted with 1 M NaOH at 85°C in a stainless steel vessel under constant stirring, and the increase in dissolved silica is continuously monitored. For this purpose, a minor portion of the leaching solution is cycled to an autoanalyzer and analyzed for dissolved silicon by molybdate-blue spectrophotometry. The resulting absorbance versus time plot is then evaluated according to the extrapolation procedure of DEMASTER (1981). The method has been tested on sponge spicules, radiolarian tests. Recent and Pliocene diatomaceous ooze samples, clay minerals and quartz, artificial sediment mixtures, and on various plankton, sediment trap and sediment samples. The results show that the relevant forms of biogenic opal in Quaternary sediments are quantitatively recovered. The time required for an analysis is dependent on the sample type, ranging from 10 to 20 min for plankton and sediment trap material and up to 40-60 min for Quaternary sediments. The silica co-extracted from silicate minerals is largely compensated for by the applied extrapolation technique. The remaining degree of uncertainty is on the order of 0.4 wt% SiO 2 or less, depending on the clay mineral composition and content.
Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus
2017-01-01
A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation.
Sapna; Singh, Bijender
2017-10-01
An extracellular phytase of Aspergillus oryzae SBS50 was purified to homogeneity using ammonium sulphate precipitation, ion-exchange and gel filtration chromatography. Purified phytase has a monomeric molecular mass of ∼80kDa exhibiting its optimal activity at pH 5.0 and 50°C with a T 1/2 of 300min at 50°C. Phytase of A. oryzae displayed broad substrate specificity with V max and K m values of 58.82μmol/ml/min and 1.14mM, respectively, for calcium phytate. Purity and homogeneity of the phytase was confirmed by high performance liquid chromatography and MALDI-TOF analysis revealed the identification of a peptide showing homology with acid phosphatase of Aspergillus oryzae RIB40. Among the inhibitors, 2,3-butanedione and sodium molybdate significantly inhibited the enzyme activity. Phytase of A. oryzae showed protease-resistance and was more stable during storage at 4°C and -20°C as compared to room temperature. Among all the feed samples, mustard oil cake was dephytinized more efficiently than other feed samples. These unique properties suggested that the phytase has the potential to be useful as an animal feed supplement. Copyright © 2017 Elsevier B.V. All rights reserved.
J1-J2 square lattice antiferromagnetism in the orbitally quenched insulator MoOPO4
NASA Astrophysics Data System (ADS)
Yang, L.; Jeong, M.; Babkevich, P.; Katukuri, V. M.; Náfrádi, B.; Shaik, N. E.; Magrez, A.; Berger, H.; Schefer, J.; Ressouche, E.; Kriener, M.; Živković, I.; Yazyev, O. V.; Forró, L.; Rønnow, H. M.
2017-07-01
We report magnetic and thermodynamic properties of a 4 d1 (Mo5 +) magnetic insulator MoOPO4 single crystal, which realizes a J1-J2 Heisenberg spin-1 /2 model on a stacked square lattice. The specific-heat measurements show a magnetic transition at 16 K which is also confirmed by magnetic susceptibility, ESR, and neutron diffraction measurements. Magnetic entropy deduced from the specific heat corresponds to a two-level degree of freedom per Mo5 + ion, and the effective moment from the susceptibility corresponds to the spin-only value. Using ab initio quantum chemistry calculations, we demonstrate that the Mo5 + ion hosts a purely spin-1 /2 magnetic moment, indicating negligible effects of spin-orbit interaction. The quenched orbital moments originate from the large displacement of Mo ions inside the MoO6 octahedra along the apical direction. The ground state is shown by neutron diffraction to support a collinear Néel-type magnetic order, and a spin-flop transition is observed around an applied magnetic field of 3.5 T. The magnetic phase diagram is reproduced by a mean-field calculation assuming a small easy-axis anisotropy in the exchange interactions. Our results suggest 4 d molybdates as an alternative playground to search for model quantum magnets.
General effect of endotoxin on glucocorticoid receptors in mammalian tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stith, R.D.; McCallum, R.E.
Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. /sup 3/H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the numbermore » of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse.« less
Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus
2017-01-01
A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation. PMID:28228917
Domain wall motion in ferroelectrics: Barkhausen noise
NASA Astrophysics Data System (ADS)
Shur, V.; Rumyantsev, E.; Kozhevnikov, V.; Nikolaeva, E.; Shishkin, E.
2002-03-01
The switching current noise has been recorded during polarization reversal in single-crystalline gadolinium molybdate (GMO) and lithium tantalate (LT). Analysis of Barkhausen noise (BN) data allows to classify the noise types by determination of the critical indexes and fractal dimensions. BN is manifested as the short pulses during the polarization reversal. We have analyzed the BN data recorded in GMO and LT with various types of controlled domain structure. The data treatment in terms of probability distribution of duration, area and energy of individual pulses reveals the critical behavior typical for the fractal records in time. We used the Fourier transform and Hurst's rescaled range analysis for obtaining the Hurst factor, fractal dimension and classifying the noise types. We investigated by computer simulation the mechanism of sideways motion of 180O domain wall by nucleation at the wall taking into account the nuclei-nuclei interaction. It was shown that the moving domain walls display the fractal shape and their motion is accompanied by Flicker noise, which is in accord with experimental data. The research was made possible in part by Programs "Basic Research in Russian Universities" and "Priority Research in High School. Electronics", by Grant No. 01-02-17443 of RFBR, by Award No.REC-005 of CRDF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu Zhiqiang; Fang Yan
2008-06-03
The influence of temperature on synthesizing single-walled carbon nanotubes (SWCNTs) by catalytic chemical vapor deposition of methane over Mo-Co-MgO catalyst was studied by Transmission Electron Microscope (TEM) and Raman scattering. The Mo-Co-MgO bimetallic catalyst was prepared by decomposing the mixture of magnesium nitrate, ammonium molybdate, citric acid, and cobalt nitrate. The results show that Mo-Co-MgO bimetallic catalyst is effective to synthesize SWCNTs. By using Mo-Co-MgO bimetallic catalyst, generation of SWCNTs even at 940 K was demonstrated. The optimum temperature of synthesizing SWCNTs over Mo-Co-MgO bimetallic catalyst may be about 1123 K. At 1123 K, the diameters of SWCNTs are inmore » the range of 0.75-1.65 nm. The content of SWCNTs is increased with the increase of temperature below 1123 K and the carbon yield rate is also increased with the increase of synthesis temperature. Therefore, the amount of SWCNTs increases with the increase of temperature below 1123 K. However, above 1123 K, the content of SWCNTs is decreased with the increase of temperature; therefore, it is not effective to increase the amount of SWCNTs through increasing synthesis temperature above 1123 K.« less
A design of spectrophotometric microfluidic chip sensor for analyzing silicate in seawater
NASA Astrophysics Data System (ADS)
Cao, X.; Zhang, S. W.; Chu, D. Z.; Wu, N.; Ma, H. K.; Liu, Y.
2017-08-01
High quality and continuous in situ silicate data are required to investigate the mechanism of the biogeochemical cycles and the formation of red tide. There is an urgently growing need for autonomous in situ silicate instruments that perform determination on various platforms. However, due to the high reagents and power consumption, as well as high system complexity leading to low reliability and robustness, the performance of the commercially available silicate sensors is not satisfactory. With these problems, here we present a new generation of microfluidic continuous flow analysis silicate sensor with sufficient analytical performance and robustness, for in situ determination of soluble silicate in seawater. The reaction mechanism of this sensor is based on the reaction of silicate with ammonium molybdate to form a yellow silicomolybdate complex and further reduction to silicomoIybdenum blue by ascorbic acid. The minimum limit of detection was 45.1 nmol L-1, and the linear determination range of the sensor is 0-400 μmol L-1. The recovery rate of the actual water is between 98.1%-104.0%, and the analyzing cycle of the sensor is about 5 minutes. This sensor has the advantages of high accuracy, high integration, low water consumption, and strong anti-interference ability. It has been successfully applied to measuring the silicate in seawater in Jiaozhou Bay.
Identification and characterization of a gene encoding for a nucleotidase from Phaseolus vulgaris.
Cabello-Díaz, Juan Miguel; Gálvez-Valdivieso, Gregorio; Caballo, Cristina; Lambert, Rocío; Quiles, Francisco Antonio; Pineda, Manuel; Piedras, Pedro
2015-08-01
Nucleotidases are phosphatases that catalyze the removal of phosphate from nucleotides, compounds with an important role in plant metabolism. A phosphatase enzyme, with high affinity for nucleotides monophosphate previously identified and purified in embryonic axes from French bean, has been analyzed by MALDI TOF/TOF and two internal peptides have been obtained. The information of these peptide sequences has been used to search in the genome database and only a candidate gene that encodes for the phosphatase was identified (PvNTD1). The putative protein contains the conserved domains (motif I-IV) for haloacid dehalogenase-like hydrolases superfamily. The residues involved in the catalytic activity are also conserved. A recombinant protein overexpressed in Escherichia coli has shown molybdate resistant phosphatase activity with nucleosides monophosphate as substrate, confirming that the identified gene encodes for the phosphatase with high affinity for nucleotides purified in French bean embryonic axes. The activity of the purified protein was inhibited by adenosine. The expression of PvNTD1 gene was induced at the specific moment of radicle protrusion in embryonic axes. The gene was also highly expressed in young leaves whereas the level of expression in mature tissues was minimal. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aklujkar, Muktak; Krushkal, Julia; DiBartolo, Genevieve
Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recentlymore » in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.« less
NASA Astrophysics Data System (ADS)
Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine
2017-04-01
Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal-P exhaustion was tightly associated with DOC, Fe and Al exhaustions. Colloids were larger in size at the beginning than at the end of all cycles. Peak at the beginning of each wet cycles remained quite constant even after two drying/leaching cycles, evidencing the existence of mechanisms able to rebuild a pool of leachable P during drying process. Thus, there was clearly a control of soil characteristics on the released P forms in leachates. Colloidal P carriers appeared to consist of Fe and/or Al oxyhydroxide nano/microparticles associated with organic matter. Most importantly, a survey of colloidal size distribution during leaching indicated that the rapidly exhausted MUP pool consisted of larger size MUP and colloidal P phases, which probably originated from soil macropores, while the relatively infinite MRP pool consisted of smaller size colloidal P and true dissolved MRP phases, which was mobilized from soil micropores. These results further demonstrate the ability of rewetting after drying to lead to pulses of dissolved and colloidal P in riparian soils, thereby evidencing the risks that P-enriched soil particles accumulated in RVBS could constitute a long-term threat for surface water.
Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki
2009-09-15
Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less
Bertoni, Fernando A; Medeot, Anabela C; González, Juan C; Sala, Luis F; Bellú, Sebastián E
2015-05-15
Spongomorpha pacifica biomass was evaluated as a new sorbent for Mo(VI) removal from aqueous solution. The maximum sorption capacity was found to be 1.28×10(6)±1×10(4) mg kg(-1) at 20°C and pH 2.0. Sorption kinetics and equilibrium studies followed pseudo-first order and Langmuir adsorption isotherm models, respectively. FTIR analysis revealed that carboxyl and hydroxyl groups were mainly responsible for the sorption of Mo(VI). SEM images show that morphological changes occur at the biomass surface after Mo(VI) sorption. Activation parameters and mean free energies obtained with Dubinin-Radushkevich isotherm model demonstrate that the mechanism of sorption process was chemical sorption. Thermodynamic parameters demonstrate that the sorption process was spontaneous, endothermic and the driven force was entropic. The isosteric heat of sorption decreases with surface loading, indicating that S. pacifica has an energetically non-homogeneous surface. Experimental breakthrough curves were simulated by Thomas and modified dose-response models. The bed depth service time (BDST) model was employed to scale-up the continuous sorption experiments. The critical bed depth, Z0 was determined to be 1.7 cm. S.pacifica biomass showed to be a good sorbent for Mo(VI) and it can be used in continuous treatment of effluent polluted with molybdate ions. Copyright © 2015 Elsevier Inc. All rights reserved.
Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments
Dowdle, P.R.; Laverman, A.M.; Oremland, R.S.
1996-01-01
Incubation of anoxic salt marsh sediment slurries with 10 mM As(V) resulted in the disappearance over time of the As(V) in conjunction with its recovery as As(III). No As(V) reduction to As(III) occurred in heat- sterilized or formalin-killed controls or in live sediments incubated in air. The rate of As(V) reduction in slurries was enhanced by addition of the electron donor lactate, H2, or glucose, whereas the respiratory inhibitor/uncoupler dinitrophenol, rotenone, or 2-heptyl-4-hydroxyquinoline N-oxide blocked As(V) reduction. As(V) reduction was also inhibited by tungstate but not by molybdate, sulfate, or phosphate. Nitrate inhibited As(V) reduction by its action as a preferred respiratory electron acceptor rather than as a structural analog of As(V). Nitrate-respiring sediments could reduce As(V) to As(III) once all the nitrate was removed. Chloramphenicol blocked the reduction of As(V) to As(III) in nitrate- respiring sediments, suggesting that nitrate and arsenate were reduced by separate enzyme systems. Oxidation of [2-14C]acetate to 14CO2 by salt marsh and freshwater sediments was coupled to As(V). Collectively, these results show that reduction of As(V) in sediments proceeds by a dissimilatory process. Bacterial sulfate reduction was completely inhibited by As(V) as well as by As(III).
Schneemeyer, L. F.; Siegrist, T.; Besara, T.; ...
2015-04-06
The family of rare earth molybdenum bronzes, reduced ternary molybdates of composition LnMo 16O 44, was synthesized and a detailed structural study carried out. Bond valence sum (BVS) calculations clearly show that the molybdenum ions in tetrahedral coordination are hexavalent while the electron count in the primitive unit cell is odd. Yet, measurements show that the phases are semiconductors. The temperature dependence of the magnetic susceptibility of samples containing several different rare earth elements was measured. These measurements verified the presence of a 6.5 K magnetic phase transition not arising from the rare earth constituent, but likely associated with themore » unique isolated ReO 3-type Mo 8O 36 structural subunits in this phase. To better understand the behavior of these materials, electronic structure calculations were performed within density functional theory. Results suggest a magnetic state in which these structural moieties have an internal ferromagnetic arrangement, with small ~1/8 μ B moments on each Mo. We suggest that the Mo 8O 36 units behave like pseudoatoms with spin ½ derived from a single hole distributed over the eight Mo atoms that are strongly hybridized with the O atoms of the subunit. As a result, while the compound is antiferromagnetic, our calculations suggest that a field-stabilized ferromagnetic state, if achievable, will be a narrow band half-metal.« less
The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4
Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.
2013-01-01
The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524
Brawley, V; Bhatia, J; Karp, W B
1998-06-15
The effect of sodium metabisulfite (MBS) on hydrogen peroxide (HP) production in model and commercial amino acid solutions exposed to phototherapy light was studied. Model and commercial pediatric amino acid solutions were prepared such that the amino acid concentration was 1%. MBS concentration, riboflavin concentration, and duration of exposure to phototherapy light were varied to determine the effect on HP production. Control solutions were kept in the dark. HP production was assayed in the model amino acid solutions by using potassium iodide in the presence of ammonium molybdate. In all experiments, HP production was measured at 360 nm in the presence and absence of catalase. In light-exposed solutions, HP production increased linearly for several hours and reached a plateau by eight hours. A mean maximum of 940 microM was produced (data pooled for all solutions). No detectable HP was generated in the solutions kept in the dark. After two hours of light exposure, it was necessary to add at least 10 times more MBS than is typically found in commercial total parenteral nutrient solutions to scavenge all the HP produced. An average of up to 940 microM of HP was produced in model and commercial pediatric parenteral 1% amino acid solutions in the presence of phototherapy light and clinically relevant concentrations of riboflavin and MBS. Light exposure decreased the antioxidant effect of MBS.
Mu, Xuemei; Du, Jingwei; Zhang, Yaxiong; Liang, Zhilin; Wang, Huan; Huang, Baoyu; Zhou, Jinyuan; Pan, Xiaojun; Zhang, Zhenxing; Xie, Erqing
2017-10-18
Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on three-dimensional nickel foam-supported carbon nanotube structures. Under the optimal graphene oxide concentration, the obtained carbon nanotubes/reduced graphene oxide/MnMoO 4 composites (CNT/rGO/MnMoO 4 ) as binder-free supercapacitor cathodes perform with a high specific capacitance of 2374.9 F g -1 at the scan rate of 2 mV s -1 and good long-term stability (97.1% of the initial specific capacitance can be maintained after 3000 charge/discharge cycles). The asymmetric device with CNT/rGO/MnMoO 4 as the cathode electrode and the carbon nanotubes/activated carbon on nickel foam (CNT-AC) as the anode electrode can deliver an energy density of 59.4 Wh kg -1 at the power density of 1367.9 W kg -1 . These superior performances can be attributed to the synergistic effects from each component of the composite electrodes: highly pseudocapacitive MnMoO 4 nanosheets and three-dimensional conductive Ni foam/CNTs/rGO networks. These results suggest that the fabricated asymmetric supercapacitor can be a promising candidate for energy storage devices.
Moonrungsee, Nuntaporn; Pencharee, Somkid; Jakmunee, Jaroon
2015-05-01
A field deployable colorimetric analyzer based on an "Android mobile phone" was developed for the determination of available phosphorus content in soil. An inexpensive mobile phone embedded with digital camera was used for taking photograph of the chemical solution under test. The method involved a reaction of the phosphorus (orthophosphate form), ammonium molybdate and potassium antimonyl tartrate to form phosphomolybdic acid which was reduced by ascorbic acid to produce the intense colored molybdenum blue. The software program was developed to use with the phone for recording and analyzing RGB color of the picture. A light tight box with LED light to control illumination was fabricated to improve precision and accuracy of the measurement. Under the optimum conditions, the calibration graph was created by measuring blue color intensity of a series of standard phosphorus solution (0.0-1.0mgPL(-1)), then, the calibration equation obtained was retained by the program for the analysis of sample solution. The results obtained from the proposed method agreed well with the spectrophotometric method, with a detection limit of 0.01mgPL(-1) and a sample throughput about 40h(-1) was achieved. The developed system provided good accuracy (RE<5%) and precision (RSD<2%, intra- and inter-day), fast and cheap analysis, and especially convenient to use in crop field for soil analysis of phosphorus nutrient. Copyright © 2015 Elsevier B.V. All rights reserved.
Geochemistry of molybdenum in some stream sediments and waters
NASA Astrophysics Data System (ADS)
Kaback, Dawn S.; Runnells, Donald D.
1980-03-01
Elevated concentrations of Mo are present in both the waters and sediments of Tenmile Creek, downstream from the large Mo deposit at Climax. Colorado. Concentrations of Mo reach a maximum of 10mg/1 in the water and 384μ/g in the (-) 80 mesh fraction of the sediment. The Mo anomaly extends for more than 80 km downstream from Climax, and results from the mining and milling at Climax. Background Mo concentrations in the nearby mountainous area are < 10μg/l (water) and < 5μg/g (sediment). Immediately below three small unmined Mo-rich orebodies elsewhere in Colorado < 3μg/l Mo are present in the waters and 20-30μg/g Mo in the fine fraction of the sediments. The Mo in the sediment of Tenmile Creek is chiefly adsorbed on coatings of amorphous Fe oxyhydroxide. and is similar to its form below two small, unmined Mo deposits. Mining has not changed the character of the chemical processes responsible for Mo dispersion from the Climax site. A modified version of the WATEQF computer program ( PLUMMERet al., 1976) predicts that Tenmile Creek is undersaturated with respect to ferrimolybdite. molybdenite, powellite, and ilsemannite. The Mo in the stream water occurs as the molybdate ion which can be adsorbed on amorphous Fe oxyhydroxides. These predictions are supported by the absence of Mo minerals in the sediment of Tenmile Creek.
Zhang, Junjun; Li, Ruiqing; Liu, Lu; Li, Linlin; Zou, Lianchun; Gan, Shucai; Ji, Guijuan
2014-09-01
Three-dimensional (3D) well-defined SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures of obvious sphere-like shape have been successfully synthesized using a large-scale and facile sonochemical route without using any catalysts or templates. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of SrMoO4 and external factor, namely the ultrasonic time and the pH value, are responsible for the ultimate shape evolutions of the product. The possible formation mechanism for the product is presented. Additionally, the PL properties of SrMoO4 and SrMoO4:Ln(3+) (Ln=Eu, Sm, Tb, Dy) hierarchical structures were investigated in detail. The Ln(3+) ions doped SrMoO4 samples exhibit respective bright red-orange, yellow, green and white light of Eu(3+), Sm(3+), Tb(3+) and Dy(3+) under ultraviolet excitation, and have potential application in the field of color display. Simultaneously, this novel and efficient pathway could open new opportunities for further investigating about the properties of molybdate materials. Copyright © 2014 Elsevier B.V. All rights reserved.
Church, S.E.; Mosier, E.L.; Motooka, J.M.
1987-01-01
We have applied partial digestion procedures, primarily oxalic acid and aqua regia leaches, to several regional geochemical reconnaissance studies carried out using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) analytical methods. We have chosen to use these two acids because the oxalic acid primarily attacks those compounds formed during secondary geochemical processes, whereas aqua regia will digest the primary sulfide phases as well as secondary phases. Application of the partial digestion technique has proven superior to total digestion because the concentration of metals in hydromorphic compounds and the sulfides is enhanced relative to the metals bound in the unattacked silicate phases. The aqua regia digestion attacks and leaches metals from the mafic chain silicates and the phyllosilicates (coordination number of VI or more), yielding a characteristic geochemical signature, but does not leach appreciable metal from many other silicates. In order to interpret the results from these leach studies, we have initiated an investigation of a large suite of hand-picked mineral separates. The study includes analyses of about two hundred minerals representing the common rock-forming minerals as well as end-member compositions of various silicates, oxides, sulfides, carbonates, sulfates, and some vanadates, molybdates, tungstates, and phosphates. The objective of this study is to evaluate the effect of leaching by acids of particular lattice sites in specific mineral structures. ?? 1987.
NASA Astrophysics Data System (ADS)
Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.
2015-08-01
A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.
A DFT Investigation of the Mechanism of Propene Ammoxidation over α-Bismuth Molybdate
Licht, Rachel B.; Bell, Alexis T.
2016-11-17
We investigated the mechanisms and energetics for the propene oxidation and ammoxidation occurring on the (010) surface of Bi 2 Mo 3 O 12 using density functional theory (DFT). An energetically feasible sequence of elementary steps for propene oxidation to acrolein, propene ammoxidation to acrylonitrile, and acrolein ammoxidation to acrylonitrile is proposed. Consistent with experimental findings, the rate-limiting step for both propene oxidation and ammoxidation is the initial hydrogen abstraction from the methyl group of propene, which is calculated to have an apparent activation energy of 27.3 kcal/mol. The allyl species produced in this reaction is stabilized as an allylmore » alkoxide, which can then undergo hydrogen abstraction to form acrolein or react with ammonia adsorbed on under-coordinated surface Bi 3+ cations to form allylamine. Dehydrogenation of allylamine is shown to produce acrylonitrile, whereas reaction with additional adsorbed ammonia leads to the formation of acetonitrile and hydrogen cyanide. The dehydrogenation of allyalkoxide species is found to have a significantly higher activation barrier than reaction with adsorbed ammonia, consistent with the observation that very little acrolein is produced when ammonia is present. Finally, we found that rapid reoxidation of the catalyst surface to release wate the driving force for all reactions involving the cleavage of C-H or N-H bonds, because practically all of these steps are endothermic. (Chemical Equation Presented).« less
NASA Astrophysics Data System (ADS)
Bakovets, V. V.; Zolotova, E. S.; Antonova, O. V.; Korol'kov, I. V.; Yushina, I. V.
2016-12-01
The specific features of the photoluminescence of [ nCaWO4-(1- n)CaMoO4]:Eu3+ solid solutions with the scheelite structure are examined using X-ray phase analysis and photoluminescence, Raman scattering, and diffuse reflectance spectroscopy. The studied features are associated with a change in the long- and short-range orders of the crystal lattice upon variations in the composition of solutions in the range n = 0-1.0 (with a pitch of 0.2) at a concentration of red photoluminescence activator Eu3+ of 2 mol %. The mechanism of the modification of photoluminescence of solid solutions upon variations in their composition has been discussed. Anomalies in the variations in parameters of the crystal lattice, its short-range order, and luminescence spectra have been observed in the transition from pure compounds CaMoO4:Eu3+ and CaWO4:Eu3+ to solutions; the concentration of Eu3+ ions in the centrosymmetric localization increases (decreases) in the transition from the molybdate (tungstate). It has been demonstrated that the spectral radiant emittance of solid solution [0.4CaWO4-0.6CaMoO4]:Eu3+ (2 mol %) is the closest to that of an incandescent lamp.
The molecular structure of the isopoly complex ion, decavanadate (V10O286-)
Evans, H.T.
1966-01-01
The structure of the decavanadate ion V10O286- has been found by a determination of the crystal structure of K2Zn2V10O28?? 16H2O. The soluble, orange crystals are triclinic with space group P1 and have a unit cell with a = 10.778 A, b = 11.146 A, c = 8.774 A, ?? = 104?? 57???, ?? = 109?? 3???', and ?? = 65?? 0??? (Z = 1). The structure was solved from a three-dimensional Patterson map based on 5143 Weissenberg-film data. The full-matrix, least-squares refinement gave R = 0.094 and ?? for V-O bond lengths of 0.008 A. The unit cell contains one V10O286- unit, two Zn(H2O)62+ groups, two K+ ions, and four additional water molecules. The decavanadate ion is an isolated group of ten condensed VO6 octahedra, six in a rectangular 2 x 3 array sharing edges, and four more, two fitted in above and two below by sharing sloping edges. The structure, which is based on a sodium-chloride-like arrangement of V and O atoms, has a close relationship to other isopoly complex molybdates, niobates, and tantalates. Strong distortions in the VO6 octahedra are analogous to square-pyramid and other special coordination features known in other vanadate structures.
Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus.
Klein, Mariana Nadjara; da Silva, Aline Caroline; Kupper, Katia Cristina
2016-12-01
Postbloom fruit drop (PFD) caused by Colletotrichum acutatum affects flowers and causes early fruit drop in all commercial varieties of citrus. Biological control with the isolate ACB-69 of Bacillus subtilis has been considered as a potential method for controlling this disease. This study aimed to develop and optimize a B. subtilis based-formulation with a potential for large-scale applications and evaluate its effect on C. acutatum in vitro and in vivo. Bacillus subtilis based-formulations were developed using different carrier materials, and their ability to control PFD was evaluated. The results of the assays led to the selection of the B. subtilis based-formulation with talc + urea (0.02 %) and talc + ammonium molybdate (1 mM), which inhibited mycelial growth and germination of C. acutatum. Studies with detached citrus flowers showed that the formulations were effective in controlling the pathogen. In field conditions, talc + urea (0.02 %) provided 73 % asymptomatic citrus flowers and 56 % of the average number of effective fruit (ANEF), equating with fungicide treatment. On the contrary, non-treated trees had 8.8 % of asymptomatic citrus flowers and 0.83 % ANEF. The results suggest that B. subtilis based-formulations with talc as the carrier supplemented with a nitrogen source had a high potential for PFD control.
Single crystal substrates for surface acoustic wave devices
NASA Astrophysics Data System (ADS)
Barsch, G. R.; Spear, K. E.
1981-01-01
In order to search for new temperature compensated materials for surface acoustic wave (SAW) devices with low ultrasonic attenuation and high electromechanical coupling, the following experimental and theoretical investigations were carried out: (1) Crystal growth research centered around: designing, constructing, and writing the software for a computer controlled constant-diameter attachment for our Czochralski crystal pullers; a major experimental effort on the growth of lead potassium niobate (PKN); Pb2KNb5O15, and lead bismuth niobate (PBN) PbBi2Nb2O9, and a minor experimental effort on the growth of lithium metasilicate, Li2SiO3; and bismuth molybdate, Bi2MoO6. (2) The dielectric constants and the associated loss tangents of alpha-berlinite were measured at eleven frequencies from 100 to 10,000 Hz between -150 and 200 C. The temperature dependence of the dielectric constants and the relaxation behavior are similar to the results obtained earlier, but the absolute values are 20 to 30 percent smaller than reported previously. (3) The temperature dependence of the two shear modes propagating in (001) has been measured from 10 to 315K for Bi4Ti3O12. A monotonical decrease of the associated shear moduli has been found. (4) Considerable effort was devoted to specimen preparation of lead bismuth niobate which was hampered by the easy cleavage of this material perpendicular to 001 .
Addition of a Second Metal (Co) to Molybdenum Carbide: Effect of the Doping Route.
Araujo, C P B; Frota, A V V M; Souza, C P de; Souto, M V M; Barbosa, C M
2018-03-01
Molybdenum carbide is an interesting and versatile material, which has important applications in the metal matrix industry as a reinforcement material, as well as in the catalytic field. Though many papers suggest different methodologies for adding cobalt to the carbide structure aiming either to increase catalytic activity or enhancing mechanical proprieties such as ductility, etc. no straightforward evaluation is available. In the present paper two doping methodologies were studied: via solid state mixture of powders and via wet impregnation. Ammonium molybdate [(NH4)2MoO4] and cobalt nitrate [Co(NO3)2·6H2O] were used as starting materials and the doping process was carried out before carburization reaction. Those materials were characterized by FT-IR, SEM, XRF and XRD. The carbo-reduction products' were evaluated on XRD and XRF basis. Doped precursors' evaluation showed that the wet impregnated doped materials presented smaller particle sizes, were more homogeneous and retained more cobalt than the solid state doped ones. However, final products' assessment indicated that the solid state methodology was able to retain a greater dopant percentage according to XRF evaluation, and XRD data indicated a more intrinsic addition of the dopant to the carbide structure. In addition, no significant changes on particle size could be attributed to any of the methodologies, both producing Mo2C of approximately 30 nm.
Sahoo, Harekrushna; Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M
2007-12-26
The collision-induced fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) by hydrogen atom abstraction from the tyrosine residue in peptide substrates was introduced as a single-labeling strategy to assay the activity of tyrosine kinases and phosphatases. The assays were tested for 12 different combinations of Dbo-labeled substrates and with the enzymes p60c-Src Src kinase, EGFR kinase, YOP protein tyrosine phosphatase, as well as acid and alkaline phosphatases, thereby demonstrating a broad application potential. The steady-state fluorescence changed by a factor of up to 7 in the course of the enzymatic reaction, which allowed for a sufficient sensitivity of continuous monitoring in steady-state experiments. The fluorescence lifetimes (and intensities) were found to be rather constant for the phosphotyrosine peptides (ca. 300 ns in aerated water), while those of the unphosphorylated peptides were as short as 40 ns (at pH 7) and 7 ns (at pH 13) as a result of intramolecular quenching. Owing to the exceptionally long fluorescence lifetime of Dbo, the assays were alternatively performed by using nanosecond time-resolved fluorescence (Nano-TRF) detection, which leads to an improved discrimination of background fluorescence and an increased sensitivity. The potential for inhibitor screening was demonstrated through the inhibition of acid and alkaline phosphatases by molybdate.
Nishihara, Arisa; Haruta, Shin; McGlynn, Shawn E.; Thiel, Vera; Matsuura, Katsumi
2018-01-01
The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72–75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth. PMID:29367473
Dental caries and salivary alterations in Type I Diabetes.
Rai, K; Hegde, A M; Kamath, A; Shetty, S
2011-01-01
Insulin dependent diabetes mellitus is a severe disease that raises blood glucose levels because of hyperglycemia and insulinopenia. Fluctuations in water and electrolyte levels may result in xerostomia and other changes in the salivary composition. Since diabetes has an influence on oral health, it is important for the dentist to be aware of newer advances in the field of diabetes and to recognize specific oral problems related to diabetes. Thus, the dentist becomes an important part of the health care team for the patients with diabetes. The present study correlated salivary flow rate, salivary pH and total salivary antioxidant levels and dental caries in type I diabetic patients. A total of 200 children that included 100 known diabetic children (study group) and 100 healthy children (controls) of both the sexes and from similar socioeconomic backgrounds formed the part of this study. Dental caries was assessed using DMFT index. The salivary total anti-oxidant level was estimated using phospho molybdic acid using spectrophotometric method. The salivary flow rate was recorded using the Zunt method and the salivary pH using the pH indicating paper. The results were statistically analyzed using t-test. The analyzed parameters showed increase in salivary anti-oxidant levels, reduced salivary flow rate, increase incidence of dental caries, salivary pH was decreased when compared to the control group.
Nutrient Acquisition and Metabolism by Campylobacter jejuni
Stahl, Martin; Butcher, James; Stintzi, Alain
2012-01-01
The gastrointestinal pathogen Campylobacter jejuni is able to colonize numerous different hosts and compete against the gut microbiota. To do this, it must be able to efficiently acquire sufficient nutrients from its environment to support its survival and rapid growth in the intestine. However, despite almost 50 years of research, many aspects as to how C. jejuni accomplishes this feat remain poorly understood. C. jejuni lacks many of the common metabolic pathways necessary for the use of glucose, galactose, or other carbohydrates upon which most other microbes thrive. It does however make efficient use of citric acid cycle intermediates and various amino acids. C. jejuni readily uses the amino acids aspartate, glutamate, serine, and proline, with certain strains also possessing additional pathways allowing for the use of glutamine and asparagine. More recent work has revealed that some C. jejuni strains can metabolize the sugar l-fucose. This finding has upset years of dogma that C. jejuni is an asaccharolytic organism. C. jejuni also possesses diverse mechanisms for the acquisition of various transition metals that are required for metabolic activities. In particular, iron acquisition is critical for the formation of iron–sulfur complexes. C. jejuni is also unique in possessing both molybdate and tungsten cofactored proteins and thus has an unusual regulatory scheme for these metals. Together these various metabolic and acquisition pathways help C. jejuni to compete and thrive in wide variety of hosts and environments. PMID:22919597
Kaewkhao, J; Limkitjaroenporn, P; Chaiphaksa, W; Kim, H J
2016-09-01
In this study, the CCT technique and nuclear instrument module (NIM) setup for the measurements of coincidence electron energy spectra of calcium molybdate (CaMoO4) and cerium doped gadolinium aluminium gallium garnet (Gd3Al2Ga3O12:Ce or GAGG:Ce) scintillation crystals were carried out. The (137)Cs irradiated gamma rays with an energy (Eγ) of 662keV was used as a radioactive source. The coincidence electron energy spectra were recorded at seven scattering angles of 30°-120°. It was found that seven corresponding electron energies were in the range of 100.5-435.4keV. The results show that, for all electron energies, the electron energy peaks of CaMoO4 crystal yielded higher number of counts than those of GAGG:Ce crystal. The electron energy resolution, the light yield and non-proportionality were also determined. It was found that the energy resolutions are inverse proportional to the square root of electron energy for both crystals. Furthermore, the results show that the light yield of GAGG:Ce crystal is much higher than that of CaMoO4 crystal. It was also found that both CaMoO4 and GAGG:Ce crystals demonstrated good proportional property in the electron energy range of 260-435.4keV. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Wen-Chao; Wang, Xi; Li, Xiao-Yan
2014-06-01
The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water.The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01654h
Drinčić, Ana; Nikolić, Irena; Zuliani, Tea; Milačič, Radmila; Ščančar, Janez
2017-01-01
The NEN 7375 test has been proposed for evaluating the long-term environmental impacts caused by the release of contaminants from monolithic building and waste materials. Over a period of 64days, at specific points in time, the leaching solution (demineralised water) is replenished. By applying the NEN 7375 test, leaching of contaminants that is based mainly on diffusion is followed. In the present work, the results from modified leaching protocols were evaluated against those obtained by NEN 7375 test. In modified protocols, synthetic sea, surface and MilliQ water were used for the leaching of selected elements and chromate, molybdate and vanadate from compact and ground building composites (98% mixture of fly ash (80%) and cement (20%), and 2% of electric arc furnace (EAF) dust) over 6months. The leaching solutions were not replenished, imitating both the diffusion and the dissolution of contaminants. The data revealed larger extent of leaching when the leaching solution was not replenished. More extensive was also leaching from ground composites, which simulated the disintegration of the material over time. The composition of the leaching solution influenced the release of the matrix constituents from the composites and, consequently, the amount of elements and their chemical species. Synthetic sea and surface water used as leaching solutions, without replenishing, were found to be suitable to simulate the conditions when the building material is immersed in stagnant environmental waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structure and thermodynamic stability of UTa 3 O 10 , a U( v )-bearing compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaofeng; Lipp, Christian; Tiferet, Eitan
Heating a mixture of uranyl(VI) nitrate and tantalum(V) oxide in the molar ratio of 2 : 3 to 1400 °C resulted in the formation of a new compound, UTa 3O 10. The honey colored to yellow brown crystals of UTa 3O 10 crystallize in an orthorhombic structure with the space group Fddd (no. 70), lattice parameters a = 7.3947(1), b = 12.7599(2), c = 15.8156(2) Å, and Z = 8. Vertex sharing [TaO 6] 7- octahedra of two crystallographically distinct Ta cations form a three dimensional tantalate framework. Within this framework, six membered rings of [TaO 6] 7- octahedra aremore » formed within the (001) plane. The center of these rings is occupied by the uranyl cations [UO 2] +, with an oxidation state of +5 for uranium. The pentavalence of U and Ta was confirmed by X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy. The enthalpy of formation of UTa 3O 10 from Ta 2O 5, β-U 3O 7, and U 3O 8 has been determined to be 13.1 ± 18.1 kJ mol -1 using high temperature oxide melt solution calorimetry with sodium molybdate as the solvent at 700 °C. The close to zero enthalpy of formation of UTa 3O 10 can be explained by closely balanced structural stabilizing and destabilizing factors, which may also apply to other UM 3O 10 compounds.« less
Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants.
Berker, Kadriye Isil; Ozdemir Olgun, F Ayca; Ozyurt, Dilek; Demirata, Birsen; Apak, Resat
2013-05-22
The Folin-Ciocalteu (FC) method of performing a total phenolics assay, originally developed for protein determination, has recently evolved as a total antioxidant capacity assay but was found to be incapable of measuring lipophilic antioxidants due to the high affinity of the FC chromophore, that is, multivalent-charged phospho-tungsto-molybdate(V), toward water. Thus, the FC method was modified and standardized so as to enable simultaneous measurement of lipophilic and hydrophilic antioxidants in NaOH-added isobutanol-water medium. Optimal conditions were as follows: dilution ratio of aqueous FC reagent with iso-BuOH (1:2, v/v), final NaOH concentration of 3.5 × 10(-2) M, reaction time of 20 min, and maximum absorption wavelength of 665 nm. The modified procedure was successfully applied to the total antioxidant capacity assay of trolox, quercetin, ascorbic acid, gallic acid, catechin, caffeic acid, ferulic acid, rosmarinic acid, glutathione, and cysteine, as well as of lipophilic antioxidants such as α-tocopherol (vitamin E), butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, lauryl gallate, and β-carotene. The modified FC method reliably quantified ascorbic acid, whereas the conventional method could not. The modified method was reproducible and additive in terms of total antioxidant capacity values of constituents of complex mixtures such as olive oil extract and herbal tea infusion. The trolox equivalent antioxidant capacities of the tested antioxidant compounds correlated well with those found by the Cupric Reducing Antioxidant Capacity reference method.
NASA Astrophysics Data System (ADS)
Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae
2016-02-01
Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.
Catalytic Degradation of Dichlorvos Using Biosynthesized Zero Valent Iron Nanoparticles.
Mehrotra, Neha; Tripathi, Ravi Mani; Zafar, Fahmina; Singh, Manoj Pratap
2017-06-01
The removal of dichlorvos contamination from water is a challenging task because of the presence of direct carbon to phosphorous covalent bond, which makes them resistant to chemical and thermal degradation. Although there have been reports in the literature for degradation of dichlorvos using nanomaterials, those are based on photocatalysis. In this paper, we report a simple and rapid method for catalytic degradation of dichlorvos using protein-capped zero valent iron nanoparticles (FeNPs). We have developed an unprecedented reliable, clean, nontoxic, eco-friendly, and cost-effective biological method for the synthesis of uniformly distributed FeNPs. Yeast extract was used as reducing and capping agent in the synthesis of FeNPs, and synthesized particles were characterized by the UV-visible spectroscopy, X -ray diffraction, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). TEM micrographs reveal that the nanoparticles size is distributed in the range of 2-10 nm. Selected area electron diffraction pattern shows the polycrystalline rings of FeNPs. The mean size was found to be 5.006 nm from ImageJ. FTIR spectra depicted the presence of biomolecules, which participated in the synthesis and stabilization of nanoparticles. As synthesized, FeNPs were used for the catalytic degradation of dichlorvos in aqueous medium. The degradation activity of the FeNPs has been investigated by the means of incubation time effect, oxidant effect, and nanoparticle concentration effect. The ammonium molybdate test was used to confirm the release of phosphate ions during the interaction of dichlorvos with FeNPs.
Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2
NASA Astrophysics Data System (ADS)
Zhang, Lei; Dzik, Ewa A.; Sigmon, Ginger E.; Szymanowski, Jennifer E. S.; Navrotsky, Alexandra; Burns, Peter C.
2018-04-01
Neptunium (Np) compounds are important in the nuclear fuel cycle because of the buildup and long half-life (2.14 Ma) of Np-237 in nuclear waste, especially during long-term disposal in a geological repository. Neptunium in environmental conditions exists mainly in two oxidation states (+5 and + 4) and can substitute for uranium and/or rare earths in solid phases. Yet thermochemical data for solid neptunium compounds are scarce, despite being critical for evaluating the environmental transport of this radioactive and toxic element. Although high temperature oxide melt solution calorimetry has proven very useful in obtaining thermodynamic data for the formation of uranium and thorium oxide materials, it has not yet been applied to transuranium compounds. Continuing a program at Notre Dame to study the thermodynamics of transuranium compounds, we report the first determination of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 K. The enthalpy of the decomposition reaction, Np2O5(cr) = 2NpO2(cr) + 1/2O2(g) at 298 K, is determined to be 7.70 ± 5.86 kJ/mol, and this direct measurement is consistent with existing thermodynamic data. The calorimetric methodology is straightforward and produces reliable data using milligram quantities of radioactive materials, and can be applied to many other transuranium compounds.
Determining Roles of Accessory Genes in Denitrification by Mutant Fitness Analyses
Vaccaro, Brian J.; Thorgersen, Michael P.; Lancaster, W. Andrew; Price, Morgan N.; Wetmore, Kelly M.; Poole, Farris L.; Deutschbauer, Adam; Arkin, Adam P.
2015-01-01
Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library from Pseudomonas stutzeri strain RCH2 was grown under denitrifying conditions, using nitrate or nitrite as an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. The dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation. PMID:26452555
NASA Astrophysics Data System (ADS)
Kartsonakis, I. A.; Koumoulos, E. P.; Charitidis, C. A.; Kordas, G.
2013-08-01
This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic-inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 ± 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge-transfer resistance as the immersion time elapsed.
Cheng, Fangrui; Xia, Zhiguo; Molokeev, Maxim S; Jing, Xiping
2015-11-07
Double molybdate scheelite-type solid-solution phosphors Li1-xAgxLu1-y(MoO4)2:yEu(3+) were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors, the difference in the luminescence properties of Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1-xLu(MoO4)2 matrices and the activator Eu(3+), another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O(2-)-Mo(6+) and the 4f → 4f emissive transitions of Eu(3+). The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaofeng; Xu, Hongwu
Polyhalite is an important coexisting mineral with halite in salt repositories for nuclear waste disposal, such as Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The thermal stability of this mineral is a key knowledge in evaluating the integrity of a salt repository in the long term, as water may release due to thermal decomposition of polyhalite. Previous studies on structural evolution of polyhalite at elevated temperatures laid the basis for detailed calorimetric measurements. Using high-temperature oxide-melt drop-solution calorimetry at 975 K with sodium molybdate as the solvent, we have determined the standard enthalpies of formation from constituent sulfatesmore » (ΔH° f,sul), oxides (ΔH° f,ox) and elements (ΔH° f,ele) of a polyhalite sample with the composition of K 2Ca 2Mg(SO 4) 4·1.95H 2O from the Salado formation at the WIPP site. The obtained results are: ΔH° f,sul = -152.5 ± 5.3 kJ/mol, ΔH° f,ox = -1926.1 ± 10.5 kJ/mol, and ΔH° f,ele = -6301.2 ± 9.9 kJ/mol. Furthermore, based on the estimated formation entropies of polyhalite, its standard Gibbs free energy of formation has been derived to be in the range of -5715.3 ± 9.9 kJ/mol to -5739.3 ± 9.9 kJ/mol. In conclusion, these determined thermodynamic properties provide fundamental parameters for modeling the stability behavior of polyhalite in salt repositories.« less
Hydrogen peroxide generation in a model paediatric parenteral amino acid solution.
Brawley, V; Bhatia, J; Karp, W B
1993-12-01
1. Parenteral amino acid solutions undergo photooxidation, which may be an important factor in total parenteral nutrition-associated hepatic dysfunction. Light-exposed parenteral solutions containing amino acids, in addition to vitamins and trace minerals, generate free radicals, which, in turn, may contribute to this type of injury. This study examined the characteristics of H2O2 production in a parenteral amino acid solution modelled on a commercially available paediatric parenteral amino acid solution. 2. The solution was exposed to light in the presence of riboflavin-5'-monophosphate (riboflavin), and peroxide formation in the presence and absence of catalase (H2O2 formation) was assayed using potassium iodide/molybdate. 3. Peak H2O2 production occurred at a light intensity of 8 microW cm-2 nm-1 in the 425-475 nm waveband and was linear to 2 h of light exposure. H2O2 production reached 500 mumol/l at 24 h. 4. H2O2 was directly related to a riboflavin concentration of up to 20 mumol/l and was maximal at 30 mumol/l. 5. H2O2 production was greatest in the amino acid/riboflavin solution at a pH of between 5 and 6. 6. Under the conditions of light exposure intensity, light exposure time, riboflavin concentration and pH found during the administration of parenteral nutrition in neonatal intensive care units, net H2O2 production occurs in solutions modelled on a paediatric parenteral amino acid preparation.
Anomaly diffuse and dielectric relaxation in strontium doped lanthanum molybdate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao; Fan, Huiqing, E-mail: hqfan3@163.com; Shi, Jing
2011-12-15
Highlights: Black-Right-Pointing-Pointer The anomaly diffuse and dielectric relaxation behaviors are fitted by the Cole-Cole approach. Black-Right-Pointing-Pointer The peak in the LSMO is corresponding to different oxygen ion diffusion process. Black-Right-Pointing-Pointer We first give better explanation about the strange conductivity change caused by doping. Black-Right-Pointing-Pointer The oxygen ion diffusion is due to a combination of the dipolar relaxation and the motion of ions. -- Abstract: The dielectric properties of the La{sub 2-x}Sr{sub x}Mo{sub 2}O{sub 9-{delta}} (x = 0-0.2) ceramics were investigated in the temperature range of 300-800 K. Dielectric measurement reveals that two dielectric anomalies, associated with the oxygen ion diffusion,more » exist in frequency spectrum with x = 0.5. The broad dielectric peaks in tan {delta}({omega}) can be well fitted by a modified Cole-Cole approach. When x = 0.1, only one dielectric relaxation peak is observed, corresponding to different oxygen ion diffusion processes, as distinct from the only relaxation peak in the pure La{sub 2}Mo{sub 2}O{sub 9}. The relaxation parameters {tau}{sub 0}, the dielectric relaxation strength {Delta}, and the activation energy E{sub a} were obtained. The result of this work shows that, the conductivity change caused by doping between the two phases is due to the combination of the dipolar effects and motion of ions.« less
Moreno-Vivian, C; Hennecke, S; Pühler, A; Klipp, W
1989-01-01
DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the distance between these two motifs was unusual for low-molecular-weight ferredoxins. The R. capsulatus nifQ gene product shared a high degree of homology with Klebsiella pneumoniae and Azotobacter vinelandii NifQ, including a typical cysteine motif located in the C-terminal part. nifQ insertion mutants and also an ORF5-nifQ double deletion mutant showed normal diazotrophic growth only in the presence of high concentrations of molybdate. This demonstrated that the gene encoding the ferredoxinlike protein is not essential for nitrogen fixation. No NifA-activated consensus promoter could be found in the intergenic region between nifENX-ORF4 and ORF5-nifQ. Analyses of a nifQ-lacZYA fusion revealed that transcription of nifQ was initiated at a promoter in front of nifE. In contrast to other nitrogen-fixing organisms, R. capsulatus nifE, nifN, nifX, ORF4, ORF5, and nifQ were organized in one transcriptional unit. PMID:2708314
Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar
2010-12-01
Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Rajesh; Gyawali, Gobinda; Cho, Sung Hun
2014-01-15
In this paper, we report the microwave hydrothermal synthesis of Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst. Crystal structure, morphology, elemental composition, optical properties and BET surface area were analyzed in detail. Infrared to visible upconversion luminescence at 532 nm and 546 nm of the co-doped samples was investigated under excitation at 980 nm. The results revealed that the co-doping of Er{sup 3+}/Yb{sup 3+} into Bi{sub 2}MoO{sub 6} exhibited enhanced photocatalytic activity for the decomposition of rhodamine B under simulated solar light irradiation. Enhanced photocatalytic activity can be attributed to the energy transfer between Er{sup 3+}/Yb{sup 3+} andmore » Bi{sub 2}MoO{sub 6} via infrared to visible upconversion from Er{sup 3+}/Yb{sup 3+} ion and higher surface area of the Bi{sub 2}MoO{sub 6} nanosheets. Therefore, this synthetic approach may exhibit a better alternative to fabricate upconversion photocatalyst for integral solar light absorption. - Graphical abstract: Schematic illustration of the upconversion photocatalysis. Display Omitted - Highlights: • Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst is successfully synthesized. • We obtained the nanosheets having high surface area. • Upconversion of IR to visible light was confirmed. • Upconversion phenomena can be utilized for effective photocatalysis.« less
Molybdenum and Phosphorus Interact to Constrain Asymbiotic Nitrogen Fixation in Tropical Forests
Wurzburger, Nina; Bellenger, Jean Philippe; Kraepiel, Anne M. L.; Hedin, Lars O.
2012-01-01
Biological di-nitrogen fixation (N2) is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P) is thought to limit N2 fixation in many tropical soils, yet both molybdenum (Mo) and P are crucial for the nitrogenase reaction (which catalyzes N2 conversion to ammonia) and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N2 fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N2 fixation. Fixation is uniformly favored in surface organic soil horizons - a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N2 fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought. PMID:22470462
Structural and optical investigation in Er3+ doped Y2MoO6 phosphors
NASA Astrophysics Data System (ADS)
Mondal, Manisha; Rai, Vineet Kumar
2018-05-01
The Er3+ doped Y2MoO6 phosphors have been structurally and optically characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis absorption spectroscopy and frequency upconversion (UC) emission studies. The crystal and the particles size are found to be ˜ 85 nm and ˜ 200 nm from XRD and FESEM analysis. The intense peak at ˜ 206 nm in the UV-Vis absorption spectroscopy is attributed due to the charge transfer transition between the Mo6+ and the O2- ions in the MoO4 group in the host molybdate. The frequency UC emission studies of the prepared phosphors under 980 nm diode laser excitation shows the intense UC emission in the 0.3 mol% concentrations for the Er3+ ions. In the UC emission spectra, the emission peaks at green (˜ 525 nm and ˜ 546 nm) and red (˜ 656 nm) bands are corresponding to the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions. The mechanisms involved in the UC process have been explored with the help of energy level diagram. Moreover, the CIE point (0.31, 0.60) lie in the green colour region which indicates that the developed phosphor have suitable applications in NIR to visible upconverter and in making green light display devices.
Wu, Qingzhong; Sowers, Kevin R.; May, Harold D.
2000-01-01
Estuarine sediment from Charleston Harbor, South Carolina, was used as inoculum for the development of an anaerobic enrichment culture that specifically dechlorinates doubly flanked chlorines (i.e., chlorines bound to carbon that are flanked on both sides by other chlorine-carbon bonds) of polychlorinated biphenyls (PCBs). Dechlorination was restricted to the para chlorine in cultures enriched with 10 mM fumarate, 50 ppm (173 μM) 2,3,4,5-tetrachlorobiphenyl, and no sediment. Initially the rate of dechlorination decreased upon the removal of sediment from the medium. However, the dechlorinating activity was sustainable, and following sequential transfer in a defined, sediment-free estuarine medium, the activity increased to levels near that observed with sediment. The culture was nonmethanogenic, and molybdate, ampicillin, chloramphenicol, neomycin, and streptomycin inhibited dechlorination activity; bromoethanesulfonate and vancomycin did not. Addition of 17 PCB congeners indicated that the culture specifically removes double flanked chlorines, preferably in the para position, and does not attack ortho chlorines. This is the first microbial consortium shown to para or meta dechlorinate a PCB congener in a defined sediment-free medium. It is the second PCB-dechlorinating enrichment culture to be sustained in the absence of sediment, but its dechlorinating capabilities are entirely different from those of the other sediment-free PCB-dechlorinating culture, an ortho-dechlorinating consortium, and do not match any previously published Aroclor-dechlorinating patterns. PMID:10618202
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaccaro, Brian J.; Thorgersen, Michael P.; Lancaster, W. Andrew
Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library fromPseudomonas stutzeristrain RCH2 was grown under denitrifying conditions, using nitrate or nitrite asmore » an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. Finally, the dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.« less
Benzene oxidation coupled to sulfate reduction
Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.
1995-01-01
Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.
Microanalysis of extended-test xenon hollow cathodes
NASA Technical Reports Server (NTRS)
Verhey, Timothy R.; Patterson, Michael J.
1991-01-01
Four hollow cathode electron sources were analyzed via boroscopy, scanning electron microscopy, energy dispersive x ray analysis, and x ray diffraction analysis. These techniques were used to develop a preliminary understanding of the chemistry of the devices that arise from contamination due to inadequate feed-system integrity and improper insert activation. Two hollow cathodes were operated in an ion thruster simulator at an emission current of 23.0 A for approximately 500 hrs. The two tests differed in propellant-feed systems, discharge power supplies, and activation procedures. Tungsten deposition and barium tungstate formation on the internal cathode surfaces occurred during the first test, which were believed to result from oxygen contamination of the propellant feed-system. Consequently, the test facility was upgraded to reduce contamination, and the test was repeated. The second hollow cathode was found to have experienced significantly less tungsten deposition. A second pair of cathodes examined were the discharge and the neutralizer hollow cathodes used in a life-test of a 30-cm ring-cusp ion thruster at a 5.5 kW power level. The cathodes' test history was documented and the post-test microanalyses are described. The most significant change resulting from the life-test was substantial tungsten deposition on the internal cathode surfaces, as well as removal of material from the insert surface. In addition, barium tungstate and molybdate were found on insert surfaces. As a result of the cathode examinations, procedures and approaches were proposed for improved discharge ignition and cathode longevity.
NASA Tech Briefs, January 2005
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Fiber-Optic Sensor Would Monitor Growth of Polymer Film; Sensors for Pointing Moving Instruments Toward Each Other; Pd/CeO2/SiC Chemical Sensors; Microparticle Flow Sensor; Scattering-Type Surface-Plasmon-Resonance Biosensors; Diode-Laser-Based Spectrometer for Sensing Gases; Improved Cathode Structure for a Direct Methanol Fuel Cell; X-Band, 17-Watt Solid-State Power Amplifier; Improved Anode for a Direct Methanol Fuel Cell; Tools for Designing and Analyzing Structures; Interactive Display of Scenes with Annotations; Solving Common Mathematical Problems; Tools for Basic Statistical Analysis; Program Calculates Forces in Bolted Structural Joints; Integrated Structural Analysis and Test Program; Molybdate Coatings for Protecting Aluminum Against Corrosion; Synthesizing Diamond from Liquid Feedstock; Modifying Silicates for Better Dispersion in Nanocomposites; Powder-Collection System for Ultrasonic/Sonic Drill/Corer; Semiautomated, Reproducible Batch Processing of Soy; Hydrogen Peroxide Enhances Removal of NOx from Flue Gases; Subsurface Ice Probe; Real-Time Simulation of Aeroheating of the Hyper-X Airplane; Using Laser-Induced Incandescence To Measure Soot in Exhaust; Method of Real-Time Principal-Component Analysis; Insect-Inspired Flight Control for Unmanned Aerial Vehicles; Domain Compilation for Embedded Real-Time Planning; Semantic Metrics for Analysis of Software; Simulation of Laser Cooling and Trapping in Engineering Applications; Large Fluvial Fans and Exploration for Hydrocarbons; Doping-Induced Interband Gain in InAs/AlSb Quantum Wells; Development of Software for a Lidar-Altimeter Processor; Upgrading the Space Shuttle Caution and Warning System; and Fractal Reference Signals in Pulse-Width Modulation.
Bravo, Andrea G; Bouchet, Sylvain; Guédron, Stéphane; Amouroux, David; Dominik, Janusz; Zopfi, Jakob
2015-09-01
Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg) production. The highest in-situ Hg methylation was found close to the discharge pipe in subsurface sediments enriched with Hg, organic matter, and iron. There, ferruginous conditions were prevailing with high concentrations of dissolved Fe(2+) and virtually no free sulfide in the porewater. Sediment incubations demonstrated that the high MMHg production close to the discharge was controlled by low demethylation yields. Inhibition of dissimilatory sulfate reduction with molybdate led to increased iron reduction rates and Hg-methylation, suggesting that sulfate-reducing bacteria (SRB) may not have been the main Hg methylators under these conditions. However, Hg methylation in sediments amended with amorphous Fe(III)-oxides was only slightly higher than control conditions. Thus, in addition to iron-reducing bacteria, other non-SRB most likely contributed to Hg methylation. Overall, this study highlights that sediments impacted by STP discharges can become local hot-spots for Hg methylation due to the combined inputs of i) Hg, ii) organic matter, which fuels bacterial activities and iii) iron, which keeps porewater sulfide concentration low and hence Hg bioavailable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, X; Young, L Y
1997-01-01
The anaerobic biodegradation of naphthalene (NAP) and phenanthrene (PHE) was investigated by using sediment collected from the Arthur Kill in New York/New Jersey harbor. The initial cultures were composed of 10% sediment and 90% mineral medium containing 20 mM sulfate. Complete loss of NAP and PHE (150 to 200 muM) was observed after 150 days of incubation. Upon refeeding, NAP and PHE were utilized within 14 days. The utilization of both compounds was inhibited in the presence of 20 mM molybdate. [14C]NAP and [14C]PHE were mineralized to 14CO2. The activities could be maintained and propagated by subculturing in mineral medium. In the presence of halogenated analogs, 2-naphthoate was detected in NAP-utilizing enrichments. The mass spectrum of the derivatized 2-napththoate from the enrichment supplemented with both [13C]bicarbonate and NAP indicates the incorporation of 13CO2 into NAP. In the PHE-utilizing enrichment, a metabolite was detected by both high-pressure liquid chromatography and gas chromatography-mass spectrometry analyses. The molecular ion and fragmentation pattern of its mass spectrum indicate that it was phenanthrenecarboxylic acid. The results obtained with [13C] bicarbonate indicate that 13CO2 was incorporated into PHE. It appears, therefore, that carboxylation is an initial key reaction for the anaerobic metabolism and NAP and PHE. To our knowledge, this is the first report providing evidence for intermediates of PAH degradation under anaerobic conditions. PMID:9471963
Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors.
Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel
2011-07-15
Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H(2)S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H(2)S production in landfills results from biological activity, the concept of inhibiting H(2)S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na(2)MoO(4)), ferric chloride (FeCl(3)), and hydrated lime (Ca(OH)(2)) - were evaluated using flask and column experiments. All three agents inhibited H(2)S generation, with Na(2)MoO(4) reducing H(2)S generation by interrupting the biological sulfate reduction process and Ca(OH)(2) providing an unfavorable pH for biological growth. Although FeCl(3) was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H(2)S production in the column experiment was a reduction in pH. Application of both Na(2)MoO(4) and FeCl(3) inhibited H(2)S generation over a long period (over 180 days), but the impact of Ca(OH)(2) decreased with time as the alkalinity it contributed was neutralized by the generated H(2)S. Practical application and potential environmental implications need additional exploration. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eivaz Mohammadloo, H.; Sarabi, A. A.
2016-11-01
There have been an increasing interest in finding a replacement for the chromating process due to environmental and health concerns. Hence, in this study Chrome-free chemical conversion coatings were deposited on the surface of cold-rolled steel (CRS) on the basis of Titanium (TiCC), Titanium-Nickel (TiNiCC) and titanium-molybdate (TiMoCC) based conversion coating solutions. The surface characterization was performed by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measuring device. Also, the corrosion behavior was assessed by the means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. FESEM and AFM study show that the TiNiCC is denser and more uniform than that TiCC and TiMoCC since, TiMoCC conversion coating presents network feature, and there were abundant micro-cracks on the surface of the coating. XPS results confirmed the precipitation of Ti and Ni oxide/hydroxide, Mn dioxide/trioxide on the surface of different Ti-based conversion coatings. Electrochemical results revealed that all Ti-based conversion coatings have better anti-corrosion properties than bare CRS. Moreover, TiNiCC treatment inhibited the corrosion of CRS to a significant degree (polarization resistance (Rp) = 5510 Ω cm2) in comparison with TiCC (Rp = 2705 Ω cm2) and TiMoCC (Rp = 805 Ω cm2).
[Affinity of the elements in group VI of the periodic table to tumors and organs].
Ando, A; Hisada, K; Ando, I
1976-10-01
In order to investigate the tumor affinity radioisotopes, chromium (51Cr), molybdenum (99Mo), tungsten (181W), selenium (75Se) and tellurium (127mTe)--the elements of group VI in the periodic table--were examined, using the rats which were subcutaneously transplanted with Yoshida sarcoma. Seven preprarations, sodium chromate (Na251CrO4), chromium chloride (51CrCl3), normal ammonium molybdate ((NH4)299MoO7), sodium tungstate (Na2181WO4), sodium selenate (Na275SeO4), sodium selenite (Na275SeO3) and tellurous acid (H2127mTeO3) were injected intravenously to each group of tumor bearing rats. These rats were sacrificed at various periods after injection of each preparation: 3 hours, 24 hours and 48 hours in all preparations. The radioactivities of the tumor, blood, muscle, liver, kidney and spleen were measured by a well-type scintillation counter, and retention values (in every tissue including the tumor) were calculated in percent of administered dose per g-tissue weight. All of seven preparations did not have any affinity for malignant tumor. Na251CrO4 and H2127mTeO3 had some affinity for the kidneys, and Na275SeO3 had some affinity for the liver. Na2181WO4 and (NH4)299MoO4 disappeared very rapidly from the blood and soft tissue, and about seventy-five percent of radioactivity was excreted in urine within first 3 hours.
Zhang, Yu; Cao, Qianda; Wang, Mingshu; Jia, Renyong; Chen, Shun; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Zhao, Xinxin; Chen, Xiaoyue; Cheng, Anchun
2017-12-01
To explore the RNA-dependent RNA polymerase (RdRP) function of the 3D protein of duck hepatitis A virus type 1 (DHAV-1), the gene was cloned into the pET-32a(+) vector for prokaryotic expression. The 3' untranslated region (3' UTR) of DHAV-1 together with a T7 promoter was cloned into the pMD19-T vector for in vitro transcription of 3' UTR RNA, which was further used as a template in RNA-dependent RNA polymerization. In this study, three methods were applied to analyze the RdRP function of the 3D protein: (1) ammonium molybdate spectrophotometry to detect pyrophosphate produced during polymerization; (2) quantitative reverse transcription PCR (RT-qPCR) to investigate the changes in RNA quantity during polymerization; and (3) electrophoresis mobility shift assay to examine the interaction between the 3D protein and 3' UTR. The results showed the 3D protein was successfully expressed in bacteria culture supernatant in a soluble form, which could be purified by affinity chromatography. In 3D enzymatic activity assays, pyrophosphate and RNA were produced, the amounts of which increased based on approximative kinetics, and binding of the 3D protein to the 3' UTR was observed. These results indicate that prokaryotically expressed soluble DHAV-13D protein can bind to a viral genomic 3' UTR and exhibit RdRP activity.
NASA Astrophysics Data System (ADS)
Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D. V.; Redon, T.; Sand, J.-B.; Veber, P.; Velázquez, M.; Zolotarova, A. S.
2018-05-01
A new R&D on lithium molybdate scintillators has begun within a project CLYMENE (Czochralski growth of Li2MoO4 crYstals for the scintillating boloMeters used in the rare EveNts sEarches). One of the main goals of the CLYMENE is a realization of a Li2MoO4 crystal growth line to be complementary to the one recently developed by LUMINEU in view of a mass production capacity for CUPID, a next-generation tonne-scale bolometric experiment to search for neutrinoless double-beta decay. In the present paper we report the investigation of performance and radiopurity of 158-g and 13.5-g scintillating bolometers based on a first large-mass (230 g) Li2MoO4 crystal scintillator developed within the CLYMENE project. In particular, a good energy resolution (2-7 keV FWHM in the energy range of 0.2-5 MeV), one of the highest light yield (0.97 keV/MeV) amongst Li2MoO4 scintillating bolometers, an efficient alpha particles discrimination (10 σ) and potentially low internal radioactive contamination (below 0.2-0.3 mBq/kg of U/Th, but 1.4 mBq/kg of 210Po) demonstrate prospects of the CLYMENE in the development of high quality and radiopure Li2MoO4 scintillators for CUPID.
NASA Astrophysics Data System (ADS)
Yu, Haolin; Zeng, Jianyun; Hao, Wen; Zhou, Peng; Wen, Xiaogang
2018-05-01
Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres (MVHPMs) were prepared via a simple hydrothermal approach using ammonium metavanadate and ammonium molybdate as precursors followed by a thermal annealing process. The samples were characterized by XRD, SEM, TEM, EDS, and XPS carefully; it confirmed that porous microspheres with uniform Mo doping in the V2O5 matrix were obtained, and it contains an inner core self-assembled with 1D nanorods and outer shell consisting of nanoparticles. A plausible growth mechanism of Mo-doped V2O5 (Mo-V2O5) porous microspheres is suggested. The unique microstructure made the Mo-V2O5 hierarchical microspheres a good cathode material for Li-ion battery. The results indicate the synthesized Mo-V2O5 hierarchical microspheres exhibit well-improved electrochemical performance compared to the undoped samples. It delivers a high initial reversible capacity of 282 mAh g-1 at 0.2 C, 208 mAh g-1 at 2 C, and 111 mAh g-1 at 10 C, and it also exhibits good cycling stabilities; a capacity of 144 mAh g-1 is obtained after 200 cycles at 6 C with a capacity retention of > 82%, which is much high than that of pure V2O5 (95 mAh g-1 with a capacity retention of 72%). [Figure not available: see fulltext.
Structure and thermodynamic stability of UTa 3O 10, aU(v)-bearing compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaofeng; Lipp, Christian; Tiferet, Eitan
Heating a mixture of uranyl (VI) nitrate and tantalum (V) oxide in the molar ratio of 2 : 3 to 1400 °C resulted in the formation of a new compound, UTa 3O 10. The honey colored to yellow brown crystals of UTa 3O 10 crystallize in an orthorhombic structure with the space group Fddd (no. 70), lattice parameters a = 7.3947(1), b = 12.7599(2), c = 15.8156(2) Å, and Z = 8. Vertex sharing [TaO 6] 7– octahedra of two crystallographically distinct Ta cations form a three dimensional tantalate framework. Within this framework, six membered rings of [TaO 6] 7–more » octahedra are formed within the (001) plane. The center of these rings is occupied by the uranyl cations [UO 2]+, with an oxidation state of +5 for uranium. The pentavalence of U and Ta was confirmed by X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy. The enthalpy of formation of UTa 3O 10 from Ta 2O 5, β-U 3O 7, and U3O8 has been determined to be 13.1 ± 18.1 kJ mol–1 using high temperature oxide melt solution calorimetry with sodium molybdate as the solvent at 700 °C. As a result, the close to zero enthalpy of formation of UTa 3O 10 can be explained by closely balanced structural stabilizing and destabilizing factors, which may also apply to other UM 3O 10 compounds.« less
Planetary Organic Chemistry and the Origins of Biomolecules
Benner, Steven A.; Kim, Hyo-Joong; Kim, Myung-Jung; Ricardo, Alonso
2010-01-01
Organic chemistry on a planetary scale is likely to have transformed carbon dioxide and reduced carbon species delivered to an accreting Earth. According to various models for the origin of life on Earth, biological molecules that jump-started Darwinian evolution arose via this planetary chemistry. The grandest of these models assumes that ribonucleic acid (RNA) arose prebiotically, together with components for compartments that held it and a primitive metabolism that nourished it. Unfortunately, it has been challenging to identify possible prebiotic chemistry that might have created RNA. Organic molecules, given energy, have a well-known propensity to form multiple products, sometimes referred to collectively as “tar” or “tholin.” These mixtures appear to be unsuited to support Darwinian processes, and certainly have never been observed to spontaneously yield a homochiral genetic polymer. To date, proposed solutions to this challenge either involve too much direct human intervention to satisfy many in the community, or generate molecules that are unreactive “dead ends” under standard conditions of temperature and pressure. Carbohydrates, organic species having carbon, hydrogen, and oxygen atoms in a ratio of 1:2:1 and an aldehyde or ketone group, conspicuously embody this challenge. They are components of RNA and their reactivity can support both interesting spontaneous chemistry as part of a “carbohydrate world,” but they also easily form mixtures, polymers and tars. We describe here the latest thoughts on how on this challenge, focusing on how it might be resolved using minerals containing borate, silicate, and molybdate, inter alia. PMID:20504964
Rosner, B M; Schink, B
1995-10-01
Acetylene hydratase of the mesophilic fermenting bacterium Pelobacter acetylenicus catalyzes the hydration of acetylene to acetaldehyde. Growth of P. acetylenicus with acetylene and specific acetylene hydratase activity depended on tungstate or, to a lower degree, molybdate supply in the medium. The specific enzyme activity in cell extract was highest after growth in the presence of tungstate. Enzyme activity was stable even after prolonged storage of the cell extract or of the purified protein under air. However, enzyme activity could be measured only in the presence of a strong reducing agent such as titanium(III) citrate or dithionite. The enzyme was purified 240-fold by ammonium sulfate precipitation, anion-exchange chromatography, size exclusion chromatography, and a second anion-exchange chromatography step, with a yield of 36%. The protein was a monomer with an apparent molecular mass of 73 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was at pH 4.2. Per mol of enzyme, 4.8 mol of iron, 3.9 mol of acid-labile sulfur, and 0.4 mol of tungsten, but no molybdenum, were detected. The Km for acetylene as assayed in a coupled photometric test with yeast alcohol dehydrogenase and NADH was 14 microM, and the Vmax was 69 mumol.min-1.mg of protein-1. The optimum temperature for activity was 50 degrees C, and the apparent pH optimum was 6.0 to 6.5. The N-terminal amino acid sequence gave no indication of resemblance to any enzyme protein described so far.
Rosner, B M; Schink, B
1995-01-01
Acetylene hydratase of the mesophilic fermenting bacterium Pelobacter acetylenicus catalyzes the hydration of acetylene to acetaldehyde. Growth of P. acetylenicus with acetylene and specific acetylene hydratase activity depended on tungstate or, to a lower degree, molybdate supply in the medium. The specific enzyme activity in cell extract was highest after growth in the presence of tungstate. Enzyme activity was stable even after prolonged storage of the cell extract or of the purified protein under air. However, enzyme activity could be measured only in the presence of a strong reducing agent such as titanium(III) citrate or dithionite. The enzyme was purified 240-fold by ammonium sulfate precipitation, anion-exchange chromatography, size exclusion chromatography, and a second anion-exchange chromatography step, with a yield of 36%. The protein was a monomer with an apparent molecular mass of 73 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was at pH 4.2. Per mol of enzyme, 4.8 mol of iron, 3.9 mol of acid-labile sulfur, and 0.4 mol of tungsten, but no molybdenum, were detected. The Km for acetylene as assayed in a coupled photometric test with yeast alcohol dehydrogenase and NADH was 14 microM, and the Vmax was 69 mumol.min-1.mg of protein-1. The optimum temperature for activity was 50 degrees C, and the apparent pH optimum was 6.0 to 6.5. The N-terminal amino acid sequence gave no indication of resemblance to any enzyme protein described so far. PMID:7592321
Biochemical analyses of lipids deposited on silicone hydrogel lenses
Hatou, Shin; Fukui, Masaki; Yatsui, Keiichi; Mochizuki, Hiroshi; Akune, Yoko; Yamada, Masakazu
2010-01-01
Purpose This study was performed to determine the levels of lipids deposited on in vivo worn silicone hydrogel lenses. Methods Three silicone hydrogel materials, galyfilcon A, senofilcon A, and asmofilcon A, were worn for 2 weeks by 35 normal subjects. Total lipid deposition was determined by the sulfo-phospho-vanillin reaction. Cholesterol was estimated by a colorimetric probe through enzymatic oxidation. Phospholipid level was estimated by determining phosphorus with ammonium molybdate through enzymatic digestion. Results The total lipid content recovered from galyfilcon A, senofilcon A, and asmofilcon A was 32.9 ± 33.8, 42.1 ± 14.0, and 36.6 ± 31.9 μg/lens, respectively. The cholesterol content recovered from galyfilcon A, senofilcon A, and asmofilcon A was 26.2 ± 26.9, 28.6 ± 19.4, and 31.1 ± 21.1 μg/lens, respectively. There were no statistically significant differences in total lipids and cholesterol among the contact lens types. However, the quantity of phospholipid recovered from the asmofilcon A (7.0 ± 5.5 μg/lens) lenses was significantly higher than from galyfilcon A (1.1 ± 0.8 μg/lens) and senofilcon A (2.4 ± 0.8 mg/lens) lenses (p < 0.05, Mann-Whitney test). Conclusions The quantity of total lipid and cholesterol deposited on the 3 silicone hydrogel lenses tested did not differ. However, there were significant differences in the amounts of phospholipid deposited among the 3 silicone hydrogel lenses, of which clinical significance should be explored in the future study.
Lari, Giacomo M; Gröninger, Olivier G; Li, Qiang; Mondelli, Cecilia; López, Núria; Pérez-Ramírez, Javier
2016-12-20
Sugar alcohols are applied in the food, pharmaceutical, polymer, and fuel industries and are commonly obtained by reduction of the corresponding saccharides. In view of the rarity of some sugar substrates, epimerization of a readily available monosaccharide has been proposed as a solution, but an efficient catalytic system has not yet been identified. Herein, a molybdenum heteropolyacid-based catalyst is developed to transform glucose, arabinose, and xylose into less-abundant mannose, ribose, and lyxose, respectively. Adsorption of molybdic acid onto activated carbon followed by ion exchange to the cesium form limits leaching of the active phase, which greatly improves the catalyst stability over 24 h on stream. The hydrogenation of mixtures of epimers is studied over ruthenium catalysts, and it is found that the precursor to the desired polyol is advantageously converted with faster kinetics. This is explained by density functional theory on the basis of its more favorable adsorption on the metal surface and the lower energy barrier for the addition of a hydrogen atom to the primary carbon atom. Finally, different designs for a continuous process for the conversion of glucose into mannitol are studied, and it is uncovered that two reactors in series with one containing the epimerization catalyst and the other containing a mixture of the epimerization and hydrogenation catalysts increases the mannitol/sorbitol ratio to 1.5 from 1 for a single mixed-bed reactor. This opens a prospective route to the efficient valorization of renewables to added-value chemicals. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2009-01-01
Background The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae. PMID:19473543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Han; Yan, Xiaohong, E-mail: xhyan@nuaa.edu.cn; College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046
Double alkaline rare-earth molybdates NaY(MoO{sub 4}){sub 2} with multilayered flower-like architectures have been successfully synthesized via hydrothermal method in polyvinylpyrrolidone (PVP)-modified processes. The crystal structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that reaction time and the amount of PVP have crucial influences on the morphology of the resulting novel microstructures. Under 450 nm excitation, Ho{sup 3+}/Yb{sup 3+} co-doped NaY(MoO{sub 4}){sub 2} samples exhibit 539 nm green emission and 960–1200 nm broadband near-infrared emission, corresponding to the characteristic lines of Ho{sup 3+} and Yb{supmore » 3+}, respectively. Moreover, increasing Yb{sup 3+} doping enhances the energy transfer efficiency from Ho{sup 3+} to Yb{sup 3+}. - Graphical abstract: Low and high-magnification SEM images demonstrate the perfect flower-like NaY(MoO{sub 4}){sub 2} prepared in the presence of PVP; Detailed TEM and HRTEM images further manifest the single-crystalline feature. Highlights: • NaY(MoO{sub 4}){sub 2} flower-like microstructures were synthesized by hydrothermal method using polyvinylpyrrolidone. • Polyvinylpyrrolidone induces the growth of the NaY(MoO{sub 4}){sub 2} to form multilayered architectures. • Flowerlike NaY(MoO{sub 4}){sub 2}: Ho{sup 3+}, Yb{sup 3+} phosphors were investigated as a downconversion layer candidate.« less
Determining Roles of Accessory Genes in Denitrification by Mutant Fitness Analyses
Vaccaro, Brian J.; Thorgersen, Michael P.; Lancaster, W. Andrew; ...
2015-10-09
Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library fromPseudomonas stutzeristrain RCH2 was grown under denitrifying conditions, using nitrate or nitrite asmore » an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. Finally, the dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, Pravas Kumar, E-mail: pravas.iit@gmail.com; Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in
Graphical abstract: Nanotubes and fullerene-like nanostructures of MoS{sub 2} were synthesized via a microwave-assisted route in solution phase. Highlights: Black-Right-Pointing-Pointer Microwave-assisted route for synthesis of nanotube and fullerene-like nanostructures of MoS{sub 2}. Black-Right-Pointing-Pointer Morphological analysis of the synthesized products. Black-Right-Pointing-Pointer Solvent plays important role in the modification of morphology of MoS{sub 2}. -- Abstract: The paper described the synthesis of nanotubes and fullerene-like nanostructures of MoS{sub 2} through a technically simple, rapid, and energy-efficient microwave-assisted synthesis technique, which involved the use of elemental sulfur dissolved in a mixture of monoethanolamine and hydrazine hydrate as the sulfide source. The microwave inducedmore » reaction between the molybdate with sulfide ions, in the presence of hydrazine hydrate in the reaction medium, resulted in the formation of gray colored powders of amorphous MoS{sub 2}. The as-obtained powders were calcined at 600 Degree-Sign C for 2 h and characterized by different techniques. HRTEM analysis of the calcined samples indicated the formation of fullerene-like MoS{sub 2} structures when the starting solution mixture was irradiated with microwave for a period of 200 s, while on 600 s of irradiation of the same revealed the formation of folded sheets like MoS{sub 2} nanotubes. BET surface areas of the calcined samples have been measured and a plausible reaction mechanism for the formation of nanotubes and fullerene-like nanostructures of MoS{sub 2} has been proposed.« less
NASA Astrophysics Data System (ADS)
Dupas, Rémi; Gu, Sen; Gruau, Gérard; Gascuel-Odoux, Chantal
2015-04-01
Because of its high sorption affinity on soils solid phase, mitigation options to reduce diffuse P transfer usually focus on trapping particulate P forms delivered via surface flowpaths. Therefore, vegetated buffer zones placed between croplands and watercourses have been promoted worldwide, sometimes in wetland areas. To investigate the risk of such P trapping riparian wetlands (RWs) releasing dissolved P to rivers, we monitored molybdate reactive P (MRP) in the free soil solution of two RWs in an intensively farmed catchment. Two main mechanisms causing MRP release were identified in light of the geochemical and hydrological conditions in the RWs, controlled by groundwater dynamics. First, soil rewetting after the dry summer was associated with the presence of a pool of mobile P, limited in size. Its mobilization started under conditions of water saturation caused by groundwater uprise in RW organo-mineral soil horizons. Second, the establishment of anoxic conditions in the end of the winter caused reductive solubilization of Fe oxide-hydroxide, along with release of P. Comparison between sites revealed that the first MRP release occurred only in a RW with P enriched soils, whereas the second was recorded even in a RW with a low soil P status. Seasonal variations in MRP concentrations in the stream were synchronized with those in RW soils. Hence, enriched and/or periodically anoxic RWs can act as a key component of the P transfer continuum in agricultural landscapes by converting particulate P from croplands into MRP released to rivers.
Senthilkumar, S T; Selvan, R Kalai; Melo, J S; Sanjeeviraja, C
2013-11-13
The activated carbon was derived from tamarind fruit shell and utilized as electrodes in a solid state electrochemical double layer capacitor (SSEDLC). The fabricated SSEDLC with PVA (polyvinyl alcohol)/H2SO4 gel electrolyte delivered high specific capacitance and energy density of 412 F g(-1) and 9.166 W h kg(-1), respectively, at 1.56 A g(-1). Subsequently, Na2MoO4 (sodium molybdate) added PVA/H2SO4 gel electrolyte was also prepared and applied for SSEDLC, to improve the performance. Surprisingly, 57.2% of specific capacitance (648 F g(-1)) and of energy density (14.4 Wh kg(-1)) was increased while introducing Na2MoO4 as the redox mediator in PVA/H2SO4 gel electrolyte. This improved performance is owed to the redox reaction between Mo(VI)/Mo(V) and Mo(VI)/Mo(IV) redox couples in Na2MoO4/PVA/H2SO4 gel electrolyte. Similarly, the fabricated device shows the excellent capacitance retention of 93% for over 3000 cycles. The present work suggests that the Na2MoO4 added PVA/H2SO4 gel is a potential electrolyte to improve the performance instead of pristine PVA/H2SO4 gel electrolyte. Based on the overall performance, it is strongly believed that the combination of tamarind fruit shell derived activated carbon and Na2MoO4/PVA/H2SO4 gel electrolyte is more attractive in the near future for high performance SSEDLCs.
Structure and thermodynamic stability of UTa 3O 10, aU(v)-bearing compound
Guo, Xiaofeng; Lipp, Christian; Tiferet, Eitan; ...
2016-09-09
Heating a mixture of uranyl (VI) nitrate and tantalum (V) oxide in the molar ratio of 2 : 3 to 1400 °C resulted in the formation of a new compound, UTa 3O 10. The honey colored to yellow brown crystals of UTa 3O 10 crystallize in an orthorhombic structure with the space group Fddd (no. 70), lattice parameters a = 7.3947(1), b = 12.7599(2), c = 15.8156(2) Å, and Z = 8. Vertex sharing [TaO 6] 7– octahedra of two crystallographically distinct Ta cations form a three dimensional tantalate framework. Within this framework, six membered rings of [TaO 6] 7–more » octahedra are formed within the (001) plane. The center of these rings is occupied by the uranyl cations [UO 2]+, with an oxidation state of +5 for uranium. The pentavalence of U and Ta was confirmed by X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy. The enthalpy of formation of UTa 3O 10 from Ta 2O 5, β-U 3O 7, and U3O8 has been determined to be 13.1 ± 18.1 kJ mol–1 using high temperature oxide melt solution calorimetry with sodium molybdate as the solvent at 700 °C. As a result, the close to zero enthalpy of formation of UTa 3O 10 can be explained by closely balanced structural stabilizing and destabilizing factors, which may also apply to other UM 3O 10 compounds.« less
Optical properties of a new Bi38Mo7O78 semiconductor with fluorite-type δ-Bi2O3 structure
NASA Astrophysics Data System (ADS)
Wang, Zuoshan; Bi, Shala; Wan, Yingpeng; Huang, Pengjie; Zheng, Min
2017-03-01
Bi3+-containing inorganic materials usually show rich optical and electronic properties due to the hybridization between 6s and 6p electronic components together with the lone pair in Bi3+ ions. In this work, a new semiconductor of bismuth molybdate Bi38Mo7O78 (19Bi2O3·7MoO3) was synthesized by the sol-gel film coating and the following heat process. The samples developed into nanoparticles with average size of 40 nm. The phase formation was verified via the XRD Rietveld structural refinement. Orthorhombic Bi38Mo7O78 can be regarded to be derived from the cubic δ-phase Bi2O3 structure. The microstructure was investigated by SEM, EDX, TEM, BET and XPS measurements. The UV-vis absorption spectra showed that the band gap of Bi38Mo7O78 (2.38 eV) was greatly narrowed in comparison with Bi2O3 (2.6 eV). This enhances the efficient absorption of visible light. Meanwhile, the conduction band of is wider and shows more dispersion, which greatly benefits the mobility of the light-induced charges taking part in the photocatalytic reactions. Bi38Mo7O78 nanoparticles possess efficient activities on the photodegradation of methylene blue (MB) solutions under the excitation of visible-light. The photocatalysis activities and mechanisms were discussed on the crystal structure characteristics and the measurements such as photoluminescence, exciton lifetime and XPS results.
Enthalpies of formation of polyhalite: A mineral relevant to salt repository
Guo, Xiaofeng; Xu, Hongwu
2017-06-02
Polyhalite is an important coexisting mineral with halite in salt repositories for nuclear waste disposal, such as Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The thermal stability of this mineral is a key knowledge in evaluating the integrity of a salt repository in the long term, as water may release due to thermal decomposition of polyhalite. Previous studies on structural evolution of polyhalite at elevated temperatures laid the basis for detailed calorimetric measurements. Using high-temperature oxide-melt drop-solution calorimetry at 975 K with sodium molybdate as the solvent, we have determined the standard enthalpies of formation from constituent sulfatesmore » (ΔH° f,sul), oxides (ΔH° f,ox) and elements (ΔH° f,ele) of a polyhalite sample with the composition of K 2Ca 2Mg(SO 4) 4·1.95H 2O from the Salado formation at the WIPP site. The obtained results are: ΔH° f,sul = -152.5 ± 5.3 kJ/mol, ΔH° f,ox = -1926.1 ± 10.5 kJ/mol, and ΔH° f,ele = -6301.2 ± 9.9 kJ/mol. Furthermore, based on the estimated formation entropies of polyhalite, its standard Gibbs free energy of formation has been derived to be in the range of -5715.3 ± 9.9 kJ/mol to -5739.3 ± 9.9 kJ/mol. In conclusion, these determined thermodynamic properties provide fundamental parameters for modeling the stability behavior of polyhalite in salt repositories.« less
Jayawardane, B Manori; Wongwilai, W; Grudpan, K; Kolev, S D; Heaven, M W; Nash, D M; McKelvie, I D
2014-05-01
The evaluation and validation of a new low-cost microfluidic paper-based analytical device (μPAD) for the determination of reactive phosphate in soil solution is described. This device allows up to 15 replicate measurements of reactive phosphate on one credit card-sized device and requires only a desktop or hand scanner for signal detection and quantification. The proposed method showed a linear response between 0.1 and 1.0 mg L and between 1.0 and 10.0 mg L P with a limit of detection of 0.05 mg L P. When applied to the analysis of soil solution, there was excellent agreement between results obtained using the μPAD and those obtained by a reference spectrophotometric method, as indicated by the following regression equation: [P] = (0.997 ± 0.005)[P] - (0.020 ± 0.008) ( = 0.997; = 110). It was found that the ambient temperature storage stability of the μPAD could be extended to 15 d by incorporating a removable polymeric interleaving sheet between the adjacent paper layers of the device. The observed sensitivity of the μPADs to sunlight, which was manifested by photoreduction of the chromogenic molybdate reagent used in the assay, was overcome by preparing the μPADs with an ultraviolet-filtering laminating material. The proposed method is rapid, with a reaction time of only 10 min, is easy to perform, and is suitable for application in the field. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Toomsoo, Avo; Jürgens, Meit; Kõlli, Raimo; Künnapas, Allan; Albre, Imbi; Tõnutare, Tõnu; Rodima, Ako
2017-04-01
Only small percentage of soil total phosphorus is easily exchangeable between solid and solution phase. Plants are able to assimilate P from environment only in the form of orthophosphate ions (H2PO4- and HPO42-) from soil solution. Deficit of P in soil solution prevents plant normal growth and decreases yield quantity and quality. The excess of P in soil solution causes the pollution of environment and eutrophication of water bodies. Therefore it is important to give to the plant producers the correct fertilization recommendations. Lot of analytical methods are developed for the determination of plant available P in soils. In the Baltic Sea region seven different soils' P analysis methods in use. Each method has its own gradation and often there is more than one gradation for the same method depending from agroecological conditions. For agricultural soils in Estonia there are soil P status gradations according to Mehlich 3, DL and AL methods. Phosphate content in soil can be determined by molybdate method Vis-spectrometrically. Very often for analysis of soils' P content also ICP-OES, ICP-MS and also MP-AES instrumental methods are used The aim of our work was to investigate the possibility of using MP-AES for determination of plant available P in soil by DL method and also to compare how the analysed soils are distributed to M3, AL and DL fertilizer requirement groups according to the P content.
Pu, Li-Ping; Chen, He-Ping; Cao, Mei-Ai; Zhang, Xiu-Li; Gao, Qing-Xiang; Yuan, Cheng-Shan; Wang, Chun-Ming
2013-11-13
Kushecarpin D (KD) is a novel flavonoid isolated from the traditional Chinese herbal medicine Kushen (the dried root of Sophora flavescens Ait). As part of our continuous effort to explore Chinese traditional medicinal herbs and to identify novel natural anticancer products, the antiangiogenic properties of KD were examined in vitro using a human umbilical vein endothelial cell line (ECV304). The SRB and Trypan Blue exclusion assays were used to evaluate the effect of KD on cell proliferation. The antiangiogenic activities of KD were evaluated through studies of cell migration, cell adhesion, and tube formation. DCFH-DA and DHE fluorescent assays were used to detect the reactive oxygen species (ROS) levels. Catalase activity was detected using the colorimetric ammonium molybdate method. Cell cycle and apoptosis were measured using flow cytometry and the Hoechst 33258 staining assay. The results indicated that KD showed antiangiogenic activity via inhibitory effects on cell proliferation, cell migration, cell adhesion, and tube formation. ROS levels were down-regulated and catalase activity was up-regulated after treatment with KD. The cell cycle was arrested at the G2/M phase, while no apoptosis was observed using the Hoechst 33258 staining assay or following the flow cytometric analysis of the sub-G1 proportion. The antiangiogenic properties of KD, in combination with its anti-proliferative effect and ability to induce cell cycle arrest without inducing apoptosis, make it a good candidate for development as antitumor agent. However, further studies are essential to elucidate its mechanism of action. © 2013.
Domínguez-Henao, Laura; Turolla, Andrea; Monticelli, Damiano; Antonelli, Manuela
2018-06-01
The recent growing interest in peracetic acid (PAA) as disinfectant for wastewater treatment demands reliable and readily-available methods for its measurement. In detail, the monitoring of PAA in wastewater treatment plants requires a simple, accurate, rapid and inexpensive measurement procedure. In the present work, a method for analyzing low concentrations of PAA, adapted from the US EPA colorimetric method for total chlorine, is assessed. This method employs N,N-diethyl-p-phenylelnediamine (DPD) in the presence of an excess of iodide in a phosphate buffer system. Pink colored species are produced proportionally to the concentration of PAA in the sample. Considering that PAA is available commercially as an equilibrium solution of PAA and hydrogen peroxide (H 2 O 2 ), a measurement method for H 2 O 2 is also investigated. This method, as the one for the determination of PAA, is also based on the oxidation of iodide to iodine, with the difference that ammonium molybdate Mo(VI) is added to catalyze the oxidation reaction between H 2 O 2 and iodide, quantifying the total peroxides (PAA+ H 2 O 2 ). The two methods are suitable for concentration ranges from about 0.1-1.65 mg L -1 and from about 0.3-3.3 mg L -1 , respectively for PAA and H 2 O 2 . Moreover, the work elucidates some relevant aspects related to the operational conditions, kinetics and the possible interference of H 2 O 2 on PAA measurement. Copyright © 2018 Elsevier B.V. All rights reserved.
Purification and characterization of a phosphotyrosyl-protein phosphatase from wheat seedlings.
Cheng, H F; Tao, M
1989-10-19
A neutral phosphatase which catalyzes the hydrolysis of p-nitrophenylphosphate has been purified to homogeneity from wheat seedlings. The enzyme is a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 260 nm, and sedimentation coefficient of 3.2 S. That the enzyme is a glycoprotein is surmised from its chromatographic property on Concanavalin A-Sepharose column. An examination of the substrate specificity indicates that the enzyme exhibits a preference for phosphotyrosine over a number of phosphocompounds, including p-nitrophenylphosphate and several glycolytic intermediates. Both phosphoserine and phosphothreonine are not hydrolyzed by the enzyme. The phosphatase activity is not affected by high concentrations of chelating agents and does not require metal ions. Molybdate, orthovanadate, Zn2+, and Hg2+ are all potent inhibitors of the phosphatase activity. The ability of the phosphatase to dephosphorylate protein phosphotyrosine has been investigated. [32P-Tyr]poly(Glu,Tyr)n, [32P-Tyr]alkylated bovine serum albumin, [32P-Tyr]angiotensin-I, and [32P-Tyr]band 3 (from human erythrocyte) are all substrates of the phosphatase. On the other hand, the enzyme has no activity toward protein phosphoserine and phosphothreonine. Our result further indicates that the neutral phosphatase is distinct from the wheat germ acid phosphatase. The latter enzyme is found to dephosphorylate phosphotyrosyl as well as phosphoseryl and phosphothreonyl groups in proteins. In light of the many similarities in properties to phosphotyrosyl protein phosphatases isolated from several sources, it is suggested that the wheat seedling phosphatase may participate in cellular regulation involving protein tyrosine phosphorylation.
Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond.
Stasik, Sebastian; Wendt-Potthoff, Katrin
2016-12-01
Oil sands tailings ponds are primary storage basins for tailings produced during oil sands processing in Alberta (Canada). Due to microbial metabolism, methane production contributes to greenhouse gas emissions, but positively affects tailings densification, which is relevant for operational water re-use. Depending on the age and depth of tailings, the activity of sulfate-reducing bacteria (SRB) may control methanogenesis due to the competition for substrates. To assess the depth-related impact of sulfate reduction on CH 4 emissions, original tailings of two vicinal pond profiles were incubated in anoxic microcosms with/without molybdate as selective inhibitor of microbial sulfate reduction. Integrating methane production rates, considerable volumes of CH 4 emissions (∼5.37 million L d -1 ) may be effectively prevented by the activity of SRB in sulfidic tailings between 3.5 and 7.5 m. To infer metabolic potentials controlling methanogenic pathways, a set of relevant organic acids (acetate, formate, propionate, butyrate, lactate) was added to part of the microcosms. Generally, organic acid transformation shifted with depth, with highest rates (305-446 μmol L -1 d -1 ) measured in fresh tailings at 5.5-7.5 m. In all depths, a transient accumulation of acetate revealed its importance as key intermediate during organic matter decomposition. SRB dominated the transformation of acetate, butyrate and propionate, but were not essential for lactate and formate turnover. Acetate as methanogenic substrate was important only at 13.5 m. At 1-7.5 m, methanogenesis significantly increased in presence of organic acids, most likely due to the syntrophic oxidation of acetate to CO 2 by SRB and subsequent conversion to CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.
Oremland, R.S.; Miller, L.G.; Dowdle, P.; Connell, T.; Barkay, T.
1995-01-01
Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [14C]MeHg was detected at all sites as indicated by the formation of 14CO2 and 14CH4. Oxidative demethylation was indicated by the formation of 14CO2 and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., 14CO2/14CH4 ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of 14CO2 was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and 14CO2 accounted for 98% of the product formed from [14C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of 14CO2 from [14C]MeHg, while 2-bromoethanesulfonic acid blocked production of 14CH4. These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments.
Nardello, Véronique; Barbillat, Jacques; Marko, Jean; Witte, Peter T; Alsters, Paul L; Aubry, Jean-Marie
2003-01-20
The decomposition of hydrogen peroxide into singlet molecular oxygen-(1)O(2) ((1)Delta(g))-in the presence of lanthanum(iii) salts was studied by monitoring its characteristic IR luminescence at 1270 nm. The process was found to be heterogeneously catalyzed by La(III), provided that the heterogeneous catalyst is generated in situ. The yield of (1)O(2) generation was assessed as 45+/-5 % both in water and in methanol. The pH-dependence on the rate of (1)O(2) generation corresponds to a bell-shaped curve from pH 4.5 to 13 with a maximum around pH 8. The study of the influence of H(2)O(2) showed that the formation of (1)O(2) begins as soon as one equivalent of H(2)O(2) is introduced. It then increases drastically up to two equivalents and more smoothly above. Unlike all other metal salt catalyst systems known to date for H(2)O(2) disproportionation, this chemical source of (1)O(2) is able to generate (1)O(2) not only in basic media, but also under neutral and slightly acidic conditions. In addition, this La-based catalyst system has a very low tendency to induce unwanted oxygenating side reactions, such as epoxidation of alkenes. These two characteristics of the heterogeneous lanthanum catalyst system allow non-photochemical (i.e., "dark") singlet oxygenation of substrate classes that cannot be peroxidized successfully with conventional molybdate catalysts, such as allylic alcohols and alkenyl amines.
Kim, W; Whitman, W B
1999-01-01
To learn more about autotrophic growth of methanococci, we isolated nine conditional mutants of Methanococcus maripaludis after transformation of the wild type with a random library in pMEB.2, a suicide plasmid bearing the puromycin-resistance cassette pac. These mutants grew poorly in mineral medium and required acetate or complex organic supplements such as yeast extract for normal growth. One mutant, JJ104, was a leaky acetate auxotroph. A plasmid, pWDK104, was recovered from this mutant by electroporation of a plasmid preparation into Escherichia coli. Transformation of wild-type M. maripaludis with pWDK104 produced JJ104-1, a mutant with the same phenotype as JJ104, thus establishing that insertion of pWDK104 into the genome was responsible for the phenotype. pWDK104 contained portions of the methanococcal genes encoding an ABC transporter closely related to MJ1367-MJ1368 of M. jannaschii. Because high levels of molybdate, tungstate, and selenite restored growth to wild-type levels, this transporter may be specific for these oxyanions. A second acetate auxotroph, JJ117, had an absolute growth requirement for either acetate or cobalamin, and wild-type growth was observed only in the presence of both. Cobinamide, 5', 6'-dimethylbenzimidazole, and 2-aminopropanol did not replace cobalamin. This phenotype was correlated with tandem insertions in the genome but not single insertions and appeared to have resulted from an indirect effect on cobamide metabolism. Plasmids rescued from other mutants contained portions of ORFs denoted in M. jannaschii as endoglucanase (MJ0555), transketolase (MJ0681), thiamine biosynthetic protein thiI (MJ0931), and several hypothetical proteins (MJ1031, MJ0835, and MJ0835.1). PMID:10430573
Deposition of lipid, protein, and secretory phospholipase A2 on hydrophilic contact lenses.
Mochizuki, Hiroshi; Yamada, Masakazu; Hatou, Shin; Kawashima, Motoko; Hata, Seiichiro
2008-01-01
Recent studies have shown that low tear phospholipid levels are associated with tear film instability in hydrophilic contact lens wearers. The concentration of secretory phospholipase A2 (sPLA2), the enzyme that hydrolyzes phospholipids, in tears is known to exceed the levels found in serum by four orders of magnitude. This study was performed to determine the levels of sPLA2 from the deposition on two different frequent-replacement contact lens materials. Polymacon and etafilcon A contact lenses worn for 2 weeks by 16 experienced contact lens wearers were used for the analysis. Total lipids were determined by the sulfo-phospho-vanillin reaction. Phospholipids in lipid extracts were estimated by phosphorus determination with ammonium molybdate through enzymatic digestion. Total protein was measured by bicinchoninic acid analysis. Double-antibody sandwich enzyme-linked immunosorbent assay was used to determine sPLA2 concentrations. Total lipid deposition was found to be greater in the polymacon group (66.3+/-16.3 microg/lens) than in the etafilcon A group, although phospholipids were not detected in either group. The etafilcon A group had greater deposition of protein (3.7+/-0.7 mg/lens) than the polymacon group had. The etafilcon A group deposited statistically significantly more group IIa sPLA2 (1.1+/-0.3 microg/lens) than the polymacon group (0.07+/-0.04 microg/lens) did (P<0.001). There was a significant difference in the lipid and protein deposition profiles in the two lenses tested. A significant amount of sPLA2 in the deposition on contact lenses may play a role in tear film instability in hydrophilic contact lens wearers.
Phospholipids and their degrading enzyme in the tears of soft contact lens wearers.
Yamada, Masakazu; Mochizuki, Hiroshi; Kawashima, Motoko; Hata, Seiichiro
2006-12-01
Low tear phospholipids levels are associated with tear film instability in soft contact lens wearers. We assayed levels of phospholipids and their degrading enzyme secretory phospholipase A2 (sPLA2) both in tears and deposited on contact lenses composed of 2 hydrophilic materials after 1 day of routine use. Polymacon (Medalist; FDA group 1, low water/nonionic) and Etafilcon A (One Day Acuvue; group 4, high water/ionic) contact lenses were worn for 12 hours by 16 experienced contact lens wearers. Phospholipids in tear fluids and deposited on contact lenses were estimated by phosphorus determination with ammonium molybdate through enzymatic digestion. Double-antibody sandwich ELISA was used to determine group IIa sPLA2 concentrations, and sPLA2 activity was assayed using 1,2-diheptanoyl thio-phosphatidylcholine as substrate. Phospholipids concentrations in tears with Polymacon and Etafilcon A were 186 +/- 39 and 162 +/- 33 microg/mL, respectively. The latter concentration was significantly lower than that observed in the same subjects when not wearing contact lenses (P = 0.0023). In tears, both group IIa sPLA2 concentrations and enzymatic activity remained unchanged, regardless of lens wearing. However, Etafilcon A (0.57 +/- 0.09 microg/lens) showed more group IIa sPLA2 deposition than Polymacon (0.01 +/- 0.01 microg/lens; P < 0.001). Furthermore, group IIa sPLA2 deposited on Etafilcon A but not on Polymacon lenses retained its enzymatic activity. Significant differences of group IIa sPLA2 deposition were found in the 2 lenses tested. Such deposition might induce phospholipid hydrolysis in tears and thereby promote tear film instability in hydrophilic contact lens wearers.
The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor
Luo, Li; Huang, Baoyu; He, Jingqi; Zhang, Wei; Zhao, Weiren; Wang, Jianqing
2018-01-01
Novel LiLa1−x−y(MoO4)2:xSm3+,yEu3+ (in short: LL1−x−yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1−x(MoO4)2:xSm3+ (LL1−xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole—electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95−yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330) continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1−x−yM:xSm3+,yEu3+ is a promising WLED red phosphor. PMID:29443910
The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor.
Wang, Jiaxi; Luo, Li; Huang, Baoyu; He, Jingqi; Zhang, Wei; Zhao, Weiren; Wang, Jianqing
2018-02-14
Novel LiLa1-x-y(MoO4)2:xSm3+,yEu3+ (in short: LL1-x-yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1-x(MoO4)2:xSm3+ (LL1-xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole-electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95-yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330) continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1-x-yM:xSm3+,yEu3+ is a promising WLED red phosphor.
Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar
2015-03-01
Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication. Copyright © 2014 Elsevier B.V. All rights reserved.
Different effects of H2O2 treatment on cervical squamous carcinoma cells and adenocarcinoma cells
Zhang, Peihai; Yin, Haiqin; Wang, Sie; Wei, Yuping; Peng, Nan
2015-01-01
Introduction This study aims to compare the antioxidant abilities of cervical squamous carcinoma cells and cervical adenocarcinoma cells and to study the related mechanisms. Material and methods Cervical squamous carcinoma and adenocarcinoma cells were treated with H2O2. Cell proliferation was determined with the MTT assay. The reactive oxygen species (ROS) level was detected by the 2’,7’-dichlorofluorescein-diacetate (DCFH-DA) method. The 5,5’-dithiobis-2-nitrobenzoic acid (DTNB) method was performed to measure intracellular concentrations of reduced glutathione (GSH) and oxidized glutathione (GSSG). The nitrite formation method, the molybdate colorimetric method, and the DTNB colorimetric method were used to determine activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), respectively. Results Compared with untreated control cells, cell proliferation of cervical squamous carcinoma cells and cervical adenocarcinoma cells was significantly inhibited by H2O2 treatment (p < 0.05). Reactive oxygen species levels and GSSG levels were significantly increased (p < 0.01), whereas GSH levels were significantly decreased (p < 0.05 or 0.01) in both cells after H2O2 treatment. Thus the ratio of GSH/GSSG was significantly decreased by H2O2 treatment in both cells (p < 0.01). In addition, H2O2 treatment significantly increased activities of SOD, CAT, and GPx in both cells (p < 0.05 or 0.01). Furthermore, the above-mentioned changes induced by H2O2 treatment were more dramatic in cervical squamous carcinoma cells. Conclusions The antioxidant ability of cervical squamous carcinoma cells is lower than that of cervical adenocarcinoma cells, which may be related to the increased ROS levels in cervical squamous carcinoma cells induced by H2O2 treatments. PMID:26788095
Kiene, R.P.; Oremland, Ronald S.; Catena, Anthony; Miller, Laurence G.; Capone, D.G.
1986-01-01
Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at ∼2-μM levels as [14C]DMS, metabolism by sediments resulted in a 14CH4/14CO2 ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14CO2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a “noncompetitive” substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [14C]-DMS to yield a 14CH4/14CO2 ratio of ∼2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats.
Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia
Jereb, Gregor; Poljšak, Borut; Eržen, Ivan
2017-01-01
The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents’ awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption. PMID:28984825
Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.
Jereb, Gregor; Poljšak, Borut; Eržen, Ivan
2017-10-06
The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill W. Bogan; Brigid M. Lamb; Gemma Husmillo
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Various chemicals that inhibit the growth and/or the metabolism of corrosion-associated microbes such as sulfate reducing bacteria, denitrifying bacteria, and methanogenic bacteria were evaluated to determine their ability to inhibit corrosion in experiments utilizing puremore » and mixed bacterial cultures, and planktonic cultures as well as mature biofilms. Planktonic cultures are easier to inhibit than mature biofilms but several compounds were shown to be effective in decreasing the amount of metal corrosion. Of the compounds tested hexane extracts of Capsicum pepper plants and molybdate were the most effective inhibitors of sulfate reducing bacteria, bismuth nitrate was the most effective inhibitor of nitrate reducing bacteria, and 4-((pyridine-2-yl)methylamino)benzoic acid (PMBA) was the most effective inhibitor of methanogenic bacteria. All of these compounds were demonstrated to minimize corrosion due to MIC, at least in some circumstances. The results obtained in this project are consistent with the hypothesis that any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion. This approach of controlling MIC by controlling the metabolism of biofilms is more environmentally benign than the current approach involving the use of potent biocides, and warrants further investigation.« less
NASA Astrophysics Data System (ADS)
Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.
2013-10-01
Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Hoeft, S.E.; Lucas, F.; Hollibaugh, J.T.; Oremland, R.S.
2002-01-01
Dissimilatory reduction of arsenate (DAsR) occurs in the arsenic-rich, anoxic water column of Mono Lake, California, yet the microorganisms responsible for this observed in situ activity have not been identified. To gain insight as to which microorganisms mediate this phenomenon, as well as to some of the biogeochemical constraints on this activity, we conducted incubations of arsenate-enriched bottom water coupled with inhibition/amendment studies and Denaturing Gradient Gel Electrophoresis (DGGE) characterization techniques. DAsR was totally inhibited by filter-sterilization and by nitrate, partially inhibited (~50%) by selenate, but only slightly (~25%) inhibited by oxyanions that block sulfate-reduction (molybdate and tungstate). The apparent inhibition by nitrate, however, was not due to action as a preferred electron acceptor to arsenate. Rather, nitrate addition caused a rapid, microbial re-oxidation of arsenite to arsenate, which gave the overall appearance of no arsenate loss. A similar microbial oxidation of As(III) was also found with Fe(III), a fact that has implications for the recycling of As(V) in Mono Lake's anoxic bottom waters. DAsR could be slightly (10%) stimulated by substrate amendments of lactate, succinate, malate, or glucose, but not by acetate, suggesting that the DAsR microflora is not electron donor limited. DGGE analysis of amplified 16S rDNA gene fragments from incubated arsenate-enriched bottom waters revealed the presence of two bands that were not present in controls without added arsenate. The resolved sequences of these excised bands indicated the presence of members of the epsilon (Sulfurospirillum) and delta (Desulfovibrio) subgroups of the Proteobacteria, both of which have representative species that are capable of anaerobic growth using arsenate as their electron acceptor.
Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures
Orazov, Marat; Davis, Mark E.
2015-09-08
Retro-aldol reactions have been implicated as the limiting steps in catalytic routes to convert biomass-derived hexoses and pentoses into valuable C2, C3, and C4 products such as glycolic acid, lactic acid, 2-hydroxy-3-butenoic acid, 2,4-dihydroxybutanoic acid, and alkyl esters thereof. Due to a lack of efficient retro-aldol catalysts, most previous investigations of catalytic pathways involving these reactions were conducted at high temperatures (≥160 °C). Here, we report moderate-temperature (around 100 °C) retro-aldol reactions of various hexoses in aqueous and alcoholic media with catalysts traditionally known for their capacity to catalyze 1,2-intramolecular carbon shift (1,2-CS) reactions of aldoses, i.e., various molybdenum oxidemore » and molybdate species, nickel(II) diamine complexes, alkali-exchanged stannosilicate molecular sieves, and amorphous TiO2–SiO2 coprecipitates. Solid Lewis acid cocatalysts that are known to catalyze 1,2-intramolecular hydride shift (1,2-HS) reactions that enable the formation of α-hydroxy carboxylic acids from tetroses, trioses, and glycolaldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderate temperatures, are shown to be compatible with the aforementioned retro-aldol catalysts. The combination of a distinct retro-aldol catalyst with a 1,2-HS catalyst enables lactic acid and alkyl lactate formation from ketohexoses at moderate temperatures (around 100 °C), with yields comparable to best-reported chemocatalytic examples at high temperature conditions (≥160 °C). The use of moderate temperatures enables numerous desirable features such as lower pressure and significantly less catalyst deactivation.« less
Pei, Jie; Geng, Hongbo; Ang, Huixiang; Zhang, Lingling; Wei, Huaixin; Cao, Xueqin; Zheng, Junwei; Gu, Hongwei
2018-07-20
In this manuscript, we synthesize a porous three-dimensional anode material consisting of molybdenum dioxide nanodots anchored on nitrogen (N)/sulfur (S) co-doped reduced graphene oxide (GO) (3D MoO 2 /NP-NSG) through hydrothermal, lyophilization and thermal treatment. First, the NP-NSG is formed via hydrothermal treatment using graphene oxide, hydrogen peroxide (H 2 O 2 ), and thiourea as the co-dopant for N and S, followed by calcination of the N/S co-doped GO in the presence of ammonium molybdate tetrahydrate to obtain the 3D MoO 2 /NP-NSG product. This novel material exhibits a series of out-bound electrochemical performances, such as superior conductivity, high specific capacity, and excellent stability. As an anode for lithium-ion batteries (LIBs), the MoO 2 /NP-NSG electrode has a high initial specific capacity (1376 mAh g -1 ), good cycling performance (1250 mAh g -1 after 100 cycles at a current density of 0.2 A g -1 ), and outstanding Coulombic efficiency (99% after 450 cycles at a current density of 1 A g -1 ). Remarkably, the MoO 2 /NP-NSG battery exhibits exceedingly good rate capacities of 1021, 965, 891, 760, 649, 500 and 425 mAh g -1 at different current densities of 200, 500, 1000, 2000, 3000, 4000 and 5000 mA g -1 , respectively. The superb electrochemical performance is owed to the high porosity of the 3D architecture, the synergistic effect contribution from N and S co-doped in the reduced graphene oxide (rGO), and the uniform distribution of MoO 2 nanodots on the rGO surface.
Checkai, Ron; Van Genderen, Eric; Sousa, José Paulo; Stephenson, Gladys; Smolders, Erik
2014-01-01
Soil contaminant concentration limits for the protection of terrestrial plants and soil invertebrates are commonly based on thresholds derived using data from laboratory ecotoxicity tests. A comprehensive assessment has been made for the derivation of ecological soil screening levels (Eco-SSL) in the United States; however, these limits are conservative because of their focus on high bioavailability scenarios. Here, we explain and evaluate approaches to soil limit derivation taken by 4 jurisdictions, 2 of which allow for correction of data for factors affecting bioavailability among soils, and between spiked and field-contaminated soils (Registration Evaluation Authorisation and Restriction of Chemicals [REACH] Regulation, European Union [EU], and the National Environment Protection Council [NEPC], Australia). Scientifically advanced features from these methods have been integrated into a newly developed method for deriving soil clean-up values (SCVs) within the context of site-specific baseline ecological risk assessment. Resulting site-specific SCVs that account for bioavailability may permit a greater residual concentration in soil when compared to generic screening limit concentrations (e.g., Eco-SSL), while still affording acceptable protection. Two choices for selecting the level of protection are compared (i.e., allowing higher effect levels per species, or allowing a higher percentile of species that are potentially unprotected). Implementation of this new method is presented for the jurisdiction of the United States, with a focus on metal and metalloid contaminants; however, the new method can be used in any jurisdiction. A case study for molybdate shows the large effect of bioavailability corrections and smaller effects of protection level choices when deriving SCVs. Integr Environ Assess Manag 2014;10:346–357. PMID:24470189
Stress corrosion cracking of Zircaloys in unirradiated and irradiated CsI
NASA Astrophysics Data System (ADS)
Cox, B.; Surette, B. A.; Wood, J. C.
1986-03-01
Unirradiated split-ring specimens of Zircaloy fuel cladding, coated with CsI, cracked when stressed at elevated temperatures. The specimens have been reexamined fractographically and metallographically in order to confirm that the cause of cracking was stress corrosion (SCC) and not delayed hydride cracking (DHC). Further specimens have been cracked at 350°C by a solution of CsI in a fused mixture of nitrates of rubidium, cesium, strontium and barium, by a similar mechanism. CsI dissolved in a fused molybdate melt was not stable at 400°C, and rapidly evolved iodine, leaving a melt that was incapable of causing SCC. Irradiation of stressed split-ring specimens of Zircaloy fuel cladding in a γ-irradiator of 10 6 R/h and in the U-5 loop in the NRU reactor at an estimated 10 9 R/h caused SCC when the specimens were packed in dry CsI powder. Care had to be taken to dry the CsI, otherwise cracking occurred by a DHC mechanism from hydrogen absorbed from residual moisture in the CsI. Fractography showed that the crack surfaces obtained with dry CsI were typical of iodine-induced SCC rather than cesium-induced metal vapour embrittlement. Thus, if a transport process is provided for the iodide to obtain access to the zirconium surface, CsI is capable of causing SCC of Zircaloy. This transport process might be ionic diffusion in a fission product oxide melt in the fuel-clad gap, however, radiolysis of CsI to form a volatile iodine species in a radiation field is the more probable explanation of PCI failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemoto, Takayuki; Ohara-Nemoto, Yuko; Denis, M.
1990-02-20
High-salt treatment of cytosolic glucocorticoid receptor (GR) preparations reduces the steroid-binding ability of the receptor and induces the conversion of the receptor from a nontransformed (non-DNA-binding) 9S form to a transformed (DNA-binding) 4S entity. Therefore, the authors decided to investigate the possible relationship between these two phenomena. The binding of ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) to the 9S form was almost saturated at a concentration of 20 nM, whereas ({sup 3}H)TA was hardly bound to the 4S form at this concentration. The 4S form was efficiently labeled at 200 nM. Scatchard analysis of the GR showed the presence of twomore » types of binding sites. In the absence of molybdate, the ratio of the lower affinity site was increased, but the total number of binding sites was not modified. The GR with the low ({sup 3}H)TA-binding affinity bound to DNA-cellulose even in its unliganded state, whereas the form with the high affinity did not. These results indicate that the transformed GR has a reduced ({sup 3}H)TA-binding affinity as compared to the nontransformed GR. The steroid-binding domain (amino acids 477-777) and the DNA- and steroid-binding domains (amino acids 415-777) of the human GR were expressed in Escherichia coli as protein A fused proteins. Taken together, these results suggest that the component(s) associating with the nontransformed GR, possibly the heat shock protein hsp 90, play(s) an important role in stabilizing the GR in a high-affinity state for steroids.« less
Takagi, M; Tsuchiya, T; Ishimoto, M
1981-01-01
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system. PMID:7031034
NASA Astrophysics Data System (ADS)
Pei, Jie; Geng, Hongbo; Ang, Huixiang; Zhang, Lingling; Wei, Huaixin; Cao, Xueqin; Zheng, Junwei; Gu, Hongwei
2018-07-01
In this manuscript, we synthesize a porous three-dimensional anode material consisting of molybdenum dioxide nanodots anchored on nitrogen (N)/sulfur (S) co-doped reduced graphene oxide (GO) (3D MoO2/NP-NSG) through hydrothermal, lyophilization and thermal treatment. First, the NP-NSG is formed via hydrothermal treatment using graphene oxide, hydrogen peroxide (H2O2), and thiourea as the co-dopant for N and S, followed by calcination of the N/S co-doped GO in the presence of ammonium molybdate tetrahydrate to obtain the 3D MoO2/NP-NSG product. This novel material exhibits a series of out-bound electrochemical performances, such as superior conductivity, high specific capacity, and excellent stability. As an anode for lithium-ion batteries (LIBs), the MoO2/NP-NSG electrode has a high initial specific capacity (1376 mAh g‑1), good cycling performance (1250 mAh g‑1 after 100 cycles at a current density of 0.2 A g‑1), and outstanding Coulombic efficiency (99% after 450 cycles at a current density of 1 A g‑1). Remarkably, the MoO2/NP-NSG battery exhibits exceedingly good rate capacities of 1021, 965, 891, 760, 649, 500 and 425 mAh g‑1 at different current densities of 200, 500, 1000, 2000, 3000, 4000 and 5000 mA g‑1, respectively. The superb electrochemical performance is owed to the high porosity of the 3D architecture, the synergistic effect contribution from N and S co-doped in the reduced graphene oxide (rGO), and the uniform distribution of MoO2 nanodots on the rGO surface.
[Phosphatase activity in Amoeba proteus at low pH].
Sopina, V A
2009-01-01
In free-living Amoeba proteus (strain B), three forms of tartrate-sensitive phosphatase were revealed using PAGE of the supernatant of ameba homogenates obtained with 1% Triton X-100 or distilled water and subsequent staining of gels with 2-naphthyl phosphate as substrate (pH 4.0). The form with the highest mobility in the ameba supernatant was sensitive to all tested phosphatase activity modulators. Two other forms with the lower mobilities were completely or significantly inactivated not only by sodium L-(+)-tartrate, but also by L-(+)-tartaric acid, sodium orthovanadate, ammonium molybdate, EDTA, EGTA, o-phospho-L-tyrosine, DL-dithiotreitol, H2O2, 2-mercaptoethanol, and ions of heavy metals - Fe2+, Fe3+, and Cu2+. Based on results of inhibitory analysis, lysosome location in the ameba cell, and wide substrate specificity of these two forms, it has been concluded that they belong to nonspecific acid phosphomonoesterases (AcP, EC 3.1.3.2). This AcP is suggested to have both phosphomonoesterase and phosphotyrosyl-protein phosphatase activitis. Two ecto-phosphatases were revealed in the culture medium, in which amebas were cultivated. One of them was inhibited by the same reagents as the ameba tartrate-sensitive AcP and seems to be the AcP released into the culture medium in the process of exocytosis of the content of food vacuoles. In the culture medium, apart from this AcP, another phosphatase was revealed, which was not inhibited by any tested inhibitors of AcP and alkaline phosphatase. It cannot be ruled out that this phosphatase belong to the ecto-ATPases found in many protists; however, its ability to hydrolyze ATP has not yet been proven.
The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria
Yokoyama, Kenichi; Leimkühler, Silke
2016-01-01
Molybdenum is the only second row transition metal essential for biological systems, which is biologically available as molybdate ion. In eukarya, bacteria and archaea, molybdenum is bound to either to a tricyclic pyranopterin, thereby forming the molybdenum cofactor (Moco), or in some bacteria to the FeS cluster based iron-molybdenum cofactor (FeMoco), which forms the active site of nitrogenase. To date more than 50 Moco-containing enzymes have been purified and biochemically or structurally characterized. The physiological role of molybdenum in these enzymes is fundamental to organisms, since the reactions include the catalysis of key steps in carbon, nitrogen and sulfur metabolism. The catalyzed reactions are in most cases oxo-transfer reactions or the hydroxylation of carbon centers. The biosynthesis of Moco has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the biosynthesis and maturation of molybdoenzymes and the biosynthesis and distribution of FeS clusters has been identified in the last years: 1) The synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) The sulfurtransferase for the dithiolene group in Moco is common also for the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the modification of the active site with a sulfur atom additionally involves a sulfurtransferase, 4) most molybdoenzymes in bacteria require FeS clusters as additional redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. PMID:25268953
Hydrogen production by the decomposition of water
Hollabaugh, C.M.; Bowman, M.G.
A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)
Bi, Wenxiang; Wang, Yuxia; Sun, Gaoying; Zhang, Xiaojin; Wei, Yongqing; Li, Lu; Wang, Xiaoyuan
2014-07-01
This study is to establish a paclitaxel (PTX)-resistant human cervical carcinoma HeLa cell line (HeLa/PTX) and to investigate its redox characteristics and the expression of taxol resistance gene 1 (Txr1). HeLa cells were treated with PTX and effects of PTX on cell proliferation were detected through cell counting and the MTT assay. Levels of cellular reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG) as well as the ratio of GSH to GSSG were measured by the 2,7-difluorescein diacetate (DCFH-DA) method and the 5,5'dithiobis(2-nitrobenzoic acid) (DTNB) method. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined by the nitrite formation method, the molybdate colorimetric method, and the DTNB colorimetric method, respectively. The level of Txr1 mRNA was determined by real-time PCR. Compared with the regular HeLa cells, HeLa/PTX cells were larger in size and had more cytoplasmic granules. The population doubling time for HeLa/PTX cells was 1.32 times of that of HeLa cells (P<0.01). HeLa/PTX cells showed stronger resistance to PTX than HeLa cells with a resistance index of 122.69. HeLa/PTX cells had higher levels of ROS (P<0.01) and Txr1 mRNA (P<0.01), lower level of GSH (P < 0.05), and lower activities of SOD (P<0.01) and GPx (P < 0.05) than HeLa cells. HeLa/PTX cells, with higher levels of ROS and Txr1 mRNA expression, are more resistant to PTX than HeLa cells.
Bondici, V F; Lawrence, J R; Khan, N H; Hill, J E; Yergeau, E; Wolfaardt, G M; Warner, J; Korber, D R
2013-06-01
To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings. © 2013 The Society for Applied Microbiology.
Shape-selective synthesis of Sn(MoO4)2 nanomaterials for catalysis and supercapacitor applications.
Sakthikumar, K; Ede, Sivasankara Rao; Mishra, Soumyaranjan; Kundu, Subrata
2016-06-07
Size and shape-selective Sn(MoO4)2 nanomaterials have been synthesized for the first time using a simple hydrothermal route by the reaction of Sn(ii) chloride salt with sodium molybdate in CTAB micellar media under stirring at 60 °C temperature for about three hours. Needle-like and flake-like Sn(MoO4)2 nanomaterials were synthesized by optimizing the CTAB to metal salt molar ratio and by controlling other reaction parameters. The eventual diameter and length of the nanoneedles are ∼100 ± 10 nm and ∼850 ± 100 nm respectively. The average diameter of the flakes is ∼250 ± 50 nm. The synthesized Sn(MoO4)2 nanomaterials can be used in two potential applications, namely, catalytic reduction of nitroarenes and as an anodic material in electrochemical supercapacitors. From the catalysis study, it was observed that the Sn(MoO4)2 nanomaterials could act as a potential catalyst for the successful photochemical reduction of nitroarenes into their respective aminoarenes within a short reaction time. From the supercapacitor study, it was observed that the Sn(MoO4)2 nanomaterials of different shapes show different specific capacitance (Cs) values and the highest Cs value was observed for Sn(MoO4)2 nanomaterials having a flake-like morphology. The highest Cs value observed was 109 F g(-1) at a scan rate of 5 mV s(-1) for the flake-like Sn(MoO4)2 nanomaterials. The capacitor shows an excellent long cycle life along with 70% retention of the Cs value, even after 4000 consecutive cycles at a current density of 8 mA cm(-2). Other than the applications in catalysis and supercapacitors, the synthesized nanomaterials can find further applications in photoluminescence, sensor and other energy-related devices.
Developing the Molybdenum Isotopic Proxy in Marine Barite
NASA Astrophysics Data System (ADS)
Erhardt, A. M.; Paytan, A.; Aggarwal, J.
2006-12-01
Molybdenum isotope ratios in seawater fluctuate in response to changing redox conditions and can provide clues into the degree of global ocean anoxia. The isotopic ratio of molybdenum has been shown to be sensitive to the relative proportion of oxic, suboxic, and euxinic environments. Deposition in oxic environments is isotopically light (~ -1.6‰ for δ^{97/95}Mo) relative to an average crustal source (0‰). Conversely, euxinic environments have been shown to be consistently heavier (~1.3‰) than the oxic sink through time, with suboxic sediments falling between these two signals. Shifts in the relative proportion of each sink, relative to a constant source, would alter the isotopic ratio of seawater over long time scales. Previously, this seawater value, and hence the degree of global anoxia, could only be inferred through mass balance calculations. We seek to quantify the isotopic signature of seawater though time using a phase that directly records this ratio. Marine barite precipitates inorganically in the water column directly from seawater, potentially providing a direct record of seawater characteristics. Molybdenum is a trace constituent of barite, with the molybdate ion substituting for sulfate at concentrations of about 1 ppm. To accurately determine the molybdenum isotopic ratio at these low concentrations (<15 ng per sample), modifications to existing measurement techniques are required. We will present the variations made to existing separation and mass-spectrometry techniques and the calibration of these new methods. The modifications were undertaken to reduce molybdenum blank to below 1 ng per analysis, to quantitatively remove interfering zirconium and to measure precise and reproducible isotope values. Preliminary data will be presented to illustrate potential applications for this new paleoredox proxy. This technique will allow for the measurement of molybdenum isotopic ratios at low concentrations, expanding the breath of compounds and signals that potentially record changes in planetary materials.
Evaluation of quick tests for phosphorus determination in dairy manures.
Lugo-Ospina, A; Dao, Thanh H; Van Kessel, J A; Reeves, J B
2005-05-01
Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.
Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.
Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo
2015-10-27
Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.
Growth and physical investigations of sprayed ZnMoO4 thin films along with wettability tests
NASA Astrophysics Data System (ADS)
Askri, Besma; Mhamdi, Ammar; Mahdhi, Noureddine; Amlouk, Mosbah
2018-06-01
Ternary oxides based on zinc and molybdenum elements have known as semiconductor oxides with large band gap energies. With the focus mainly on their synthesis by cost-effective process as thin films, the aspect of their stability and reactivity as transparent layers against both UV radiation and oxidation under wet medium due to their oxygen deficiency has so far not been investigated. This work covers the synthesis as well as the structural, electrical and the wettability properties of ZnMoO4 thin films which have been prepared by the spray pyrolysis method on glass substrates at 460 °C. First, X-ray diffraction analysis shows that this oxide crystallizes in triclinic structure with the space group P-1. The thickness value of ZnMoO4 thin film of about 1.5 μm was estimated by spectroscopic ellipsometry (SE). Moreover, a special emphasis has been focused on the photoluminescence properties of such films to reach possible presence of defaults and oxygen vacancy. Second, the electrical conductivity, conduction mechanism, relaxation model of these films were indeed studied using impedance spectroscopy technique in the frequency range 10-1-106 Hz at various temperatures (25-300 °C). At high temperature, σAC conductivity obeys to the power law established by Jonscher. Besides, the variation of σDC with the inverse of the temperature follows Arrhenius law. This evolution suggests that the conduction process is thermally activated and the activation energy of this process is equal to 0.97 eV. Finally, the wettability tests reveal that zinc molybdates loses its hydrophobic character during aging under UV radiation to become completely hydrophilic. All these physical investigations demonstrated that such ternary oxide contains oxygen deficiency which may be of interest for photocatalytic purposes and pave the way for various sensitivity applications like gas and bio-sensors.
New taxa, including three new genera show uniqueness of Neotropical Nepticulidae (Lepidoptera)
van Nieukerken, Erik J.; Doorenweerd, Camiel; Nishida, Kenji; Snyers, Chris
2016-01-01
Abstract After finding distinct clades in a molecular phylogeny for Nepticulidae that could not be placed in any known genera and discovering clear apomorphic characters that define these clades, as well as a number of Neotropical species that could be placed in known genera but were undescribed, three new genera and nine new species are here described from the Neotropics: Stigmella gallicola van Nieukerken & Nishida, sp. n. reared from galls on Hampea appendiculata (Malvaceae) in Costa Rica, representing the first example of a gall making Stigmella; Stigmella schinivora van Nieukerken, sp. n. reared from leafmines on Schinus terebinthifolia (Anacardiaceae) in Argentina, Misiones; Stigmella costaricensis van Nieukerken & Nishida, sp. n. and Stigmella intronia van Nieukerken & Nishida, sp. n. each from a single specimen collected the same night in Costa Rica, Parque Nacional Chirripó; Stigmella molinensis van Nieukerken & Snyers, sp. n. reared from leafmines on Salix humboldtiana, Peru, Lima, the first Neotropical species of the Stigmella salicis group sensu stricto; Ozadelpha van Nieukerken, gen. n. with type species Ozadelpha conostegiae van Nieukerken & Nishida, sp. n., reared from leafmines on Conostegia oerstediana (Melastomataceae) from Costa Rica; Neotrifurcula van Nieukerken, gen. n. with type species Neotrifurcula gielisorum van Nieukerken, sp. n. from Chile; Hesperolyra van Nieukerken, gen. n.. with type species Fomoria diskusi Puplesis & Robinson, 2000; Hesperolyra saopaulensis van Nieukerken, sp. n., reared from an unidentified Myrtaceae, Sao Paulo, Brasil; and Acalyptris janzeni van Nieukerken & Nishida, sp. n. from Costa Rica, Guanacaste. Five new combinations are made: Ozadelpha ovata (Puplesis & Robinson, 2000), comb. n. and Ozadelpha guajavae (Puplesis & Diškus, 2002), comb. n., Hesperolyra diskusi (Puplesis & Robinson, 2000), comb. n., Hesperolyra molybditis (Zeller, 1877), comb. n. and Hesperolyra repanda (Puplesis & Diškus, 2002), comb. n. Three specimens are briefly described, but left unnamed: Ozadelpha specimen EvN4680, Neotrifurcula specimen EvN4504 and Neotrifurcula specimen RH2. PMID:27917037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Rajesh; Choi, Jinhyuk; Narro-García, R.
2014-08-15
In this paper we report the infrared to visible upconversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals synthesized via microwave assisted sol–gel processing route. Structural, morphological and upconversion luminescence properties were investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and Upconversion Photoluminescence spectra analysis. Results revealed that the oval shaped BaMoO{sub 4} nanocrystals ranging in size from 40 to 60 nm having tetragonal scheelite crystal structure were obtained by sol–gel route. The infrared to visible upconversion luminescence has been investigated in Er{sup 3+}/Yb{sup 3+} co-doped in BaMoO{sub 4}with different Yb{supmore » 3+} concentrations. Intense green upconversion emissions around 528, 550 nm, and red emission at 657 nm corresponding to the {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}, and {sup 4}F{sub 9/2} transitions, respectively to the {sup 4}I{sub 15/2} ground state were observed when excited by CW laser radiation at 980 nm. The green emissions were greatly enhanced after the addition of sensitizer (Yb{sup 3+} ions). The effect of Yb{sup 3+} on the upconversion luminescence intensity was analyzed and explained in terms of the energy transfer process based. The reported work establishes the understanding of molybdates as an alternative host material for upconversion luminescence. - Graphical abstract: Infrared to visible upconversion luminescence of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals. - Highlights: • Nanocrystals were synthesized by microwave assisted sol–gel processing route. • Strong green emissions were observed in Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals. • Provides an insight on Upconversion luminescence properties of oxides host materials.« less
Xia, Bing; Chen, Hua; Hu, Guoliang; Wang, Liqi; Cao, Huabin; Zhang, Caiying
2016-02-01
To investigate the chronic toxicity of molybdenum (Mo) and cadmium (Cd) on the trace elements and the mRNA expression levels of ceruloplasmin (CP) and metallothionein (MT) in duck testicles, 120 healthy 11-day-old male ducks were randomly divided into six groups with 20 ducks in each group. Ducks were treated with the diet containing different dosages of Mo or Cd. The source of Mo and Cd was hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) and cadmium sulfate (3CdSO4·8H2O), respectively, in this study. After being treated for 60 and 120 days, ten male birds in each group were randomly selected and euthanized and then testicles were aseptically collected for determining the mRNA expression levels of MT and CP, antioxidant indexes, and contents of trace elements in the testicle. In addition, testicle tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that co-exposure to Mo and Cd resulted in an increase in malondialdehyde (MDA) level while decrease in xanthine oxidase (XOD) and catalase (CAT) activities. The mRNA expression level of MT gene was upregulated while CP was decreased in combination groups. Contents of Mo, copper (Cu), iron (Fe), and zinc (Zn) decreased in combined groups while Cd increased in Cd and combined groups at 120 days. Furthermore, severe congestion, low sperm count, and malformation were observed in low dietary of Mo combined with Cd group and high dietary of Mo combined with Cd group. Our results suggested that Mo and Cd might aggravate testicular degeneration synergistically through altering the mRNA expression levels of MT and CP, increasing lipid peroxidation through inhibiting related enzyme activities and disturbing homeostasis of trace elements in testicles. Interaction of Mo and Cd may have a synergistic effect on the testicular toxicity.
Oxygen miscibility gap and spin glass formation in the pyrochlore Lu{sub 2}Mo{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, L.; Ritter, C.; Harrison, A.
2013-07-15
Rare earth (R) molybdate pyrochlores, R{sub 2}Mo{sub 2}O{sub 7}, are of interest as frustrated magnets. Polycrystalline samples of Lu{sub 2}Mo{sub 2}O{sub 7−x} prepared at 1600 °C display a coexistence of cubic pyrochlore phases. Rietveld fits to powder neutron diffraction data and chemical analyses show that the miscibility gap is between a stoichiometric x=0 and an oxygen-deficient x≈0.4 phase. Lu{sub 2}Mo{sub 2}O{sub 7} behaves as a spin glass material, with a divergence of field cooled and zero field cooled DC magnetic susceptibilities at a spin freezing temperature T{sub f}=16 K, that varies with frequency in AC measurements following a Vogel–Fulcher law.more » Lu{sub 2}Mo{sub 2}O{sub 6.6} is more highly frustrated spin glass and has T{sub f}=20 K. - Graphical abstract: The cubic Lu{sub 2}Mo{sub 2}O{sub 7−x} system exhibits a miscibility gap between coexisting pyrochlore phases at 1600 °C. Neutron powder diffraction refinement and chemical analysis shows that the gap separates stoichiometric x=0 and oxygen-deficient x≈0.4 phases. Lu{sub 2}Mo{sub 2}O{sub 7−x} has a frustrated spin glass ground state that is sensitive to the oxygen content. - Highlights: • The cubic Lu{sub 2}Mo{sub 2}O{sub 7−x} system has a miscibility gap between coexisting pyrochlore phases at 1600 °C. • Neutron powder diffraction shows that the gap separates x=0 and oxygen-deficient x≈0.4 phases. • Lu{sub 2}Mo{sub 2}O{sub 7−x} has a frustrated spin glass ground state that is sensitive to the oxygen content.« less
Gu, Sen; Gruau, Gérard; Dupas, Rémi; Rumpel, Cornélia; Crème, Alexandra; Fovet, Ophélie; Gascuel-Odoux, Chantal; Jeanneau, Laurent; Humbert, Guillaume; Petitjean, Patrice
2017-11-15
In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from <0.10 to 0.40mgl -1 ; percentage of MRDP in TDP from 25-70%). These differences propagated to stream water, suggesting that the two RWs investigated were the main sources of dissolved P to streams. RWs can be critical areas due to their ability to biogeochemically transform the accumulated P in these zones into highly mobile and highly bioavailable dissolved P forms. Hydroclimate variability, local topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Sihui; Zhang, Caiying; Xiao, Qingyang; Zhuang, Yu; Gu, Xiaolong; Yang, Fan; Xing, Chenghong; Hu, Guoliang; Cao, Huabin
2016-11-01
Molybdenum (Mo) is an essential trace element for animals and human beings. However, the negative effects on rumen function and distribution of trace elements in tissues induced by excessive Mo have not been well understood. Therefore, the purpose of present study was to investigate the impact of Mo on rumen microbiota, distribution of trace elements in various organs, and hematological parameters of goats. A total of 36 goats were randomly distributed into three groups with equal number and low-Mo and high-Mo groups were orally administered ammonium molybdate at 15 and 45 mg · Mo · kg -1 · BW respectively, while the control group received corresponding quantitative deionized water. The results showed that the total number of ciliate and protozoa protein concentration decreased significantly (P < 0.01) on days 25 and 50. Concentrations of ammonia nitrogen and bacterial protein were significantly higher (P < 0.05) in low-Mo group, while they were lower (P < 0.05) in high-Mo group than the control group on days 25 and 50. In addition, Mo accumulated in serum and all detected tissues. Copper (Cu) and zinc (Zn) contents significantly decreased (P < 0.05) in hair and serum on days 25 and 50, while Cu contents increased (P < 0.05) and the change of Zn contents were not obvious (P > 0.05) in other tissues on days 25 and 50. Besides, there was no obvious variation in iron (Fe) contents during whole experiment period (P > 0.05). Furthermore, excessive Mo content had no significant effect on red blood cell (RBC) counts and hemoglobin (HGB) concentration (P > 0.05) on days 25 and 50, while white blood cell (WBC) counts increased significantly (P < 0.05) on day 50. These results indicated that excessive Mo content could impact the balance of ruminal microorganisms and interfere with the absorption and distribution of Mo and Cu mainly.
Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa
2018-01-25
A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2 = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars
2017-07-18
This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an exciting model organism in which to study the physiology of this process. Copyright © 2017 Thorup et al.
[Alkaline phosphatase in Amoeba proteus].
Sopina, V A
2005-01-01
In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.
Delk, Nikkí A.; Johnson, Keith A.; Chowdhury, Naweed I.; Braam, Janet
2005-01-01
Changes in intracellular calcium (Ca2+) levels serve to signal responses to diverse stimuli. Ca2+ signals are likely perceived through proteins that bind Ca2+, undergo conformation changes following Ca2+ binding, and interact with target proteins. The 50-member calmodulin-like (CML) Arabidopsis (Arabidopsis thaliana) family encodes proteins containing the predicted Ca2+-binding EF-hand motif. The functions of virtually all these proteins are unknown. CML24, also known as TCH2, shares over 40% amino acid sequence identity with calmodulin, has four EF hands, and undergoes Ca2+-dependent changes in hydrophobic interaction chromatography and migration rate through denaturing gel electrophoresis, indicating that CML24 binds Ca2+ and, as a consequence, undergoes conformational changes. CML24 expression occurs in all major organs, and transcript levels are increased from 2- to 15-fold in plants subjected to touch, darkness, heat, cold, hydrogen peroxide, abscisic acid (ABA), and indole-3-acetic acid. However, CML24 protein accumulation changes were not detectable. The putative CML24 regulatory region confers reporter expression at sites of predicted mechanical stress; in regions undergoing growth; in vascular tissues and various floral organs; and in stomata, trichomes, and hydathodes. CML24-underexpressing transgenics are resistant to ABA inhibition of germination and seedling growth, are defective in long-day induction of flowering, and have enhanced tolerance to CoCl2, molybdic acid, ZnSO4, and MgCl2. MgCl2 tolerance is not due to reduced uptake or to elevated Ca2+ accumulation. Together, these data present evidence that CML24, a gene expressed in diverse organs and responsive to diverse stimuli, encodes a potential Ca2+ sensor that may function to enable responses to ABA, daylength, and presence of various salts. PMID:16113225
Quijorna, N; de Pedro, M; Romero, M; Andrés, A
2014-01-01
Waelz slag is an industrial by-product from the recovery of electric arc furnace (EAF) dust which is mainly sent to landfills. Despite the different chemical and mineralogical compositions of Waelz slag compared to traditional clays, previous experiments have demonstrated its potential use as a clay substitute in ceramic processes. Indeed, clayey products containing Waelz slag could improve mechanical and environmental performance, fixing most of the metallic species and moreover decreasing the release of some potential pollutants during firing. However, a deeper understanding of the complex phase transformations during its thermal treatment and the connection of this behaviour with the end properties is desirable in order to explain the role that is played by the Waelz slag and its potential contribution to the ceramic process. For this purpose, in the present study, the chemical, mineralogical, thermal and environmental behaviour of both (i) unfired powdered samples, and (ii) pressed specimen of Waelz slag fired up to different temperatures within the typical range of clay based ceramic production, has been studied. The effect of the heating temperature on the end properties of the fired samples has been assessed. In general, an increase of the firing temperature promotes sintering and densification of the products and decreases the open porosity and water absorption which also contributes to the fixation of heavy metals. On the contrary, an increase in the leaching of Pb, Cr and Mo from the fired specimens is observed. This can be attributed to the creation of Fe and Ca molybdates and chromates that are weakly retained in the alkali matrix. On the other side, at temperature above 950 °C a weight gain related to the emission of evolved gases is observed. In conclusion, the firing temperature of the ceramic process is a key parameter that affects not only the technical properties but also strongly affects the leaching behaviour and the process emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Boer, E.; Boon, K.; Wever, R.
An electron paramagnetic resonance (EPR) study was carried out to examine structural aspects of vanadium-containing bromoperoxidase from the brown seaweed Ascophyllum nodosum. At high pH, the reduced form of bromoperoxidase showed an apparently axially symmetric EPR signal with 16 hyperfine lines. When the pH was lowered, a new EPR spectrum was formed. When EPR spectra of the reduced enzyme were recorded in the pH range from 4.2 to 8.4, it appeared that these changes were linked to a functional group with an apparent pK/sub a/ of about 5.4. In D/sub 2/O this value for the pK/sub a/ was 5.3. Itmore » is suggested that these effects arise from protonation of histidine or aspartate/glutamate residues near the metal ion. The values for the isotropic hyperfine coupling constant of the reduced enzyme at both high and low pH are also consistent with a ligand field containing nitrogen and/or oxygen donor atoms. When reduced bromoperoxidase was dissolved in D/sub 2/O or H/sub 2//sup 17/O instead of H/sub 2//sup 16/O, vanadium (IV) hyperfine line widths were markedly affected, demonstrating that water is a ligand of the metal ion. Together with previous work these findings suggest that vanadium (IV) is not involved in catalytic turnover and confirm the model in which the vanadium (V) ion of the native enzyme only serves to bind both hydrogen peroxide and bromide. After excess vanadate was added to a homogeneous preparation of purified bromoperoxidase, the extent of vanadium bound to the protein increased from 0.5 to 1.1, with a concomitant enhancement of enzymic activity. Finally, it is demonstrated that both vanadate (VO/sub 4//sup 3 -/) and molybdate (MoO/sub 4//sup 2 -/) compete for the same site on apobromoperoxidase.« less
Shore, M; Jordan, P; Mellander, P-E; Kelly-Quinn, M; Wall, D P; Murphy, P N C; Melland, A R
2014-08-15
Using data collected from six basins located across two hydrologically contrasting agricultural catchments, this study investigated whether transport metrics alone provide better estimates of storm phosphorus (P) loss from basins than critical source area (CSA) metrics which combine source factors as well. Concentrations and loads of P in quickflow (QF) were measured at basin outlets during four storm events and were compared with dynamic (QF magnitude) and static (extent of highly-connected, poorly-drained soils) transport metrics and a CSA metric (extent of highly-connected, poorly-drained soils with excess plant-available P). Pairwise comparisons between basins with similar CSA risks but contrasting QF magnitudes showed that QF flow-weighted mean TRP (total molybdate-reactive P) concentrations and loads were frequently (at least 11 of 14 comparisons) more than 40% higher in basins with the highest QF magnitudes. Furthermore, static transport metrics reliably discerned relative QF magnitudes between these basins. However, particulate P (PP) concentrations were often (6 of 14 comparisons) higher in basins with the lowest QF magnitudes, most likely due to soil-management activities (e.g. ploughing), in these predominantly arable basins at these times. Pairwise comparisons between basins with contrasting CSA risks and similar QF magnitudes showed that TRP and PP concentrations and loads did not reflect trends in CSA risk or QF magnitude. Static transport metrics did not discern relative QF magnitudes between these basins. In basins with contrasting transport risks, storm TRP concentrations and loads were well differentiated by dynamic or static transport metrics alone, regardless of differences in soil P. In basins with similar transport risks, dynamic transport metrics and P source information additional to soil P may be required to predict relative storm TRP concentrations and loads. Regardless of differences in transport risk, information on land use and management, may be required to predict relative differences in storm PP concentrations between these agricultural basins. Copyright © 2014 Elsevier B.V. All rights reserved.
An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.
Greene, S; Taylor, D; McElarney, Y R; Foy, R H; Jordan, P
2011-05-01
Functional relationships between phosphorus (P) discharge and concentration mechanisms were explored using a load apportionment model (LAM) developed for use in a freshwater catchment in Ireland with fourteen years of data (1995-2008). The aim of model conceptualisation was to infer changes in point and diffuse sources from catchment P loading during P mitigation, based upon a dataset comprising geospatial and water quality data from a 256km(2) lake catchment in an intensively farmed drumlin region of the midlands of Ireland. The model was calibrated using river total P (TP), molybdate reactive P (MRP) and runoff data from seven subcatchments. Temporal and spatial heterogeneity of P sources existed within and between subcatchments; these were attributed to differences in agricultural intensity, soil type and anthropogenically-sourced effluent P loading. Catchment rivers were sensitive to flow regime, which can result in eutrophication of rivers during summer and lake enrichment from frequent flood events. For one sewage impacted river, the LAM estimated that point sourced P contributed up to of 90% of annual MRP load delivered during a hydrological year and in this river point P sources dominated flows up to 92% of days. In the other rivers, despite diffuse P forming a majority of the annual P exports, point sources of P dominated flows for up to 64% of a hydrological year. The calibrated model demonstrated that lower P export rates followed specific P mitigation measures. The LAM estimated up to 80% decreases in point MRP load after enhanced P removal at waste water treatments plants in urban subcatchments and the implementation of septic tank and agricultural bye-laws in rural subcatchments. The LAM approach provides a way to assess the long-term effectiveness of further measures to reduce P loadings in EU (International) River Basin Districts and subcatchments. Copyright © 2011 Elsevier B.V. All rights reserved.
Robertson, W J; Franzmann, P D; Mee, B J
2000-02-01
Previous studies on the geochemistry of a shallow unconfined aquifer contaminated with hydrocarbons suggested that the degradation of some hydrocarbons was linked to bacterial sulphate reduction. There was attenuation of naphthalene, 1,3,5-trimethylbenzene (TMB), toluene, p-xylene and ethylbenzene in the groundwater with concomitant loss of sulphate. Here, the recovery of eight strains of sulphate-reducing bacteria (SRB) from the contaminated site is reported. All were straight or curved rod-shaped cells which formed endospores. Amplification and sequencing of the 16S rDNA indicated that the strains were all sulphate reducers of the Gram-positive line of descent, and were most closely related to Desulfosporosinus (previously Desulfotomaculum) orientis DSM 8344 (97-98.9% sequence similarity). The strains clustered in three phylogenetic groups based on 16S rRNA sequences. Whole cell fatty acid compositions were similar to those of D. orientis DSM 8344, and were consistent with previous studies of fatty acids in soil and groundwater from the site. Microcosms containing groundwater from this aquifer indicated a role for sulphate reduction in the degradation of [ring-UL-14C]toluene, but not for the degradation of [UL-14C]benzene which could also be degraded by the microcosms. Adding one of the strains that was isolated from the groundwater (strain T2) to sulphate-enriched microcosms increased the rate of toluene degradation four- to 10-fold but had no effect on the rate of benzene degradation. The addition of molybdate, an inhibitor of sulphate reduction, to the groundwater samples decreased the rate of toluene mineralization. There was no evidence to support the mineralization of [UL-14C]benzene, [ring-UL-14C]toluene or unlabelled m-xylene, p-xylene, ethylbenzene, TMB or naphthalene by any of the strains in pure culture. Growth of all the strains was completely inhibited by 100 micromol l-1 TMB.
Riond, B; Steffen, F; Schmied, O; Hofmann-Lehmann, R; Lutz, H
2014-03-01
In veterinary clinical laboratories, qualitative tests for total protein measurement in canine cerebrospinal fluid (CSF) have been replaced by quantitative methods, which can be divided into dye-binding assays and turbidimetric methods. There is a lack of validation data and reference intervals (RIs) for these assays. The aim of the present study was to assess agreement between the turbidimetric benzethonium chloride method and 2 dye-binding methods (Pyrogallol Red-Molybdate method [PRM], Coomassie Brilliant Blue [CBB] technique) for measurement of total protein concentration in canine CSF. Furthermore, RIs were determined for all 3 methods using an indirect a posteriori method. For assay comparison, a total of 118 canine CSF specimens were analyzed. For RIs calculation, clinical records of 401 canine patients with normal CSF analysis were studied and classified according to their final diagnosis in pathologic and nonpathologic values. The turbidimetric assay showed excellent agreement with the PRM assay (mean bias 0.003 g/L [-0.26-0.27]). The CBB method generally showed higher total protein values than the turbidimetric assay and the PRM assay (mean bias -0.14 g/L for turbidimetric and PRM assay). From 90 of 401 canine patients, nonparametric reference intervals (2.5%, 97.5% quantile) were calculated (turbidimetric assay and PRM method: 0.08-0.35 g/L (90% CI: 0.07-0.08/0.33-0.39); CBB method: 0.17-0.55 g/L (90% CI: 0.16-0.18/0.52-0.61). Total protein concentration in canine CSF specimens remained stable for up to 6 months of storage at -80°C. Due to variations among methods, RIs for total protein concentration in canine CSF have to be calculated for each method. The a posteriori method of RIs calculation described here should encourage other veterinary laboratories to establish RIs that are laboratory-specific. ©2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.
NASA Astrophysics Data System (ADS)
Batista, F.; Cutter, G. A.; Cutter, L. S.; Johannesson, K. H.
2001-12-01
Arsenic concentrations and speciation were measured in surface water samples collected from the Great Dismal Swamp in southeastern Virginia, USA using, selective hydride generation and atomic adsorption spectroscopy. Phosphate concentrations were also determined in these surface waters using the molybdate blue spectrophotometric method. Great Dismal Swamp waters are characterized as blackwaters, having high dissolved organic carbon (DOC) concentrations that range from 445 iM to 6304 iM, with a mean (n = 12) of 3282+/-2165 iM. pH ranged from 4.30 to 6.42, with a mean (n = 12) of 5.14+/-1.04. The inflow waters (Cypress and Pocosin Swamps) have higher pH's (mean of 6.32+/- 0.10 for n = 5) than waters from Lake Drummond and its immediate inflow and outflow ditches, where the mean pH (n = 7) is 4.30+/-0.04. Total arsenic concentrations in Great Dismal Swamp waters range from 2.18 nM up to 21.42 nM. Phosphate concentrations range from 0.18 iM to 1.42 iM, but are not correlated with arsenate concentrations (r 2 = 0.004). Arsenate typically predominates in oxic, surface waters. However, As(III) was detected at higher concentrations (1 - 17.72 nM, mean value of 8.00+/-5.80 nM for all samples, n = 10) in half of the samples from the lower part of the watershed (i.e., mainly in Lake Drummond and its outflow, the Feeder Ditch; mean of 12.89+/-2.89 nM, n = 5). No methylated species were detected in the selected samples analyzed for organoarsenical forms (monomethyl and dimethyl arsenicals) A strong correlation exists between dissolved As(III) concentrations and dissolved organic carbon concentrations (r2 = 0.88), and this correlation is significant at greater than the 99% confidence level. The high abundance of As(III) in comparison to both thermodynamic predictions, and other surface waters, suggests that either there is a strong anoxic source of this form, or that the high DOC concentrations stabilize it via complexation and slower rate of oxidation.
Dos-Santos, André L A; Dick, Claudia F; Alves-Bezerra, Michele; Silveira, Thaís S; Paes, Lisvane Silva; Gondim, Katia C; Meyer-Fernandes, José R
2012-08-01
Trypanosoma rangeli is the trypanosomatid that colonizes the salivary gland of its insect vector, with a profound impact on the feeding capacity of the insect. In this study we investigated the role of the phosphotyrosine (P-Tyr) ecto-phosphatase activity of T. rangeli in its interaction with Rhodnius prolixus salivary glands. Long but not short epimastigotes adhered to the gland cells and the strength of interaction correlated with the enzyme activity levels in different strains. Differential interference contrast microscopy demonstrated that clusters of parasites are formed in most cases, suggesting cooperative interaction in the adhesion process. The tightness of the correlation was evidenced by modulating the P-Tyr ecto-phosphatase activity with various concentrations of inhibitors. Sodium orthovanadate, ammonium molybdate and zinc chloride decreased the interaction between T. rangeli and R. prolixus salivary glands in parallel. Levamisole, an inhibitor of alkaline phosphatases, affected neither process. EDTA strongly inhibited adhesion and P-Tyr ecto-phosphatase activity to the same extent, an effect that was no longer seen if the parasites were pre-incubated with the chelator and then washed. When the P-Tyr ecto-phosphatase of living T. rangeli epimastigotes was irreversibly inactivated with sodium orthovanadate and the parasite cells were then injected into the insect thorax, colonization of the salivary glands was greatly depressed for several days after blood feeding. Addition of P-Tyr ecto-phosphatase substrates such as p-nitrophenyl phosphate (pNPP) and P-Tyr inhibited the adhesion of T. rangeli to salivary glands, but P-Ser, P-Thr and β-glycerophosphate were completely ineffective. Immunoassays using anti-P-Tyr-residues revealed a large number of P-Tyr-proteins in extracts of R. prolixus salivary glands, which could be potentially targeted by T. rangeli during adhesion. These results indicate that dephosphorylation of structural P-Tyr residues on the gland cell surfaces, mediated by a P-Tyr ecto-phosphatase of the parasite, is a key event in the interaction between T. rangeli and R. prolixus salivary glands. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
In Situ Mo Isotope Fractionation in the Water Columns of Euxinic Basins
NASA Astrophysics Data System (ADS)
Neubert, N.; Nägler, T. F.; Böttcher, M. E.
2007-12-01
The present study investigates for the first time the overall process of molybdenum (Mo) scavenging in modern euxinic systems using Mo concentration and stable isotope measurements. We analyzed samples from three different sites: The Black Sea, the largest permanently euxinic basin, and two anoxic basins of the Baltic Sea, the Gotland Deep and the Landsort Deep which have maximum water depths of 247 m and 459 m, respectively. Water column profiles, as well as surface sediment samples, were recovered from different water depths. Mo is a redox-sensitive trace metal which is soluble as the molybdate oxyanion in oxic seawater with a residence time of about 800 ka. The isotope signature of Mo is a relatively new proxy used to reconstruct the paleo-redox conditions of the Earth's atmosphere and the oceanic system. The Mo isotope composition in seawater is homogeneous (Siebert et al. 2003). Scavenging of Mo under euxinic conditions is related to the amount of free sulfide in the water column. Near total removal of Mo from the water column is reached at aquatic sulfide concentration of c. 11 μM (Erickson and Helz 2000). In the Black Sea this corresponds to a water depth of about 400 m. Sediment samples of the Black Sea from more then 400 m water depth show seawater isotopic composition, in line with the assumption of bulk Mo removal. However, shallower sediments deposited under lower aquatic sulfide concentrations show significant Mo isotope fractionation. The Baltic Sea oceanographic conditions, including temporary bottom water oxygenation due to sporadic North Sea water inflows, are more complex than in the Black Sea. The aquatic sulfide concentration in the water column is less than 5 μM in the two anoxic troughs. As expected from this lower sulfidity, the surface sediments show Mo fractionation similar to the oxic to slightly euxinic sediments of the Black Sea. Our new results on the Mo isotopic composition in euxinic water columns clearly indicate in situ fractionation of Mo isotopes. All euxinic water samples from the three settings are shifted towards heavier Mo isotope signatures, thus complementing the lighter values in the surface sediments (Nagler et al. 2005).
Molybdenum Cycling in Upwelling Sediments: An Example from Namibian Margin Sediments
NASA Astrophysics Data System (ADS)
Arnold, G. L.; Goldhammer, T.; Formolo, M.; Brunner, B.; Ferdelman, T.
2008-12-01
The paleo-redox application of molybdenum (Mo) isotopes is strongly tied to our knowledge of the modern marine Mo cycle. Elemental mass balance indicates that ~47% of the Mo supplied to the oceans is removed to deep sea sediments, leaving the remaining Mo to "near-shore" reducing sediments (1). The Black Sea is likely the best studied reducing environment with regards to Mo isotopes, yet accounts for only a small fraction of the Mo mass balance. The accumulation of Mo in continental margin sediments has been recently re-assessed and may account for a larger fraction of the marine Mo reservoir than previously thought (2). In the presence of sulfide, the molybdate anion is transformed, by the replacement of oxygen with sulfur, to particle reactive oxy-thiomolybdates (3). This is often cited as the mechanism by which Mo removal proceeds in the Black Sea where sulfide concentrations in the water are high. In contrast, in continental margin settings, the removal mechanism is poorly understood, and the extent to which sulfur cycling plays a role remains un-quantified. To better understand removal/cycling processes in a continental margin setting, where sulfide may only be present in the pore waters and not in the water column, Mo was studied in an array of marine settings off the Namibian coast. Surface sediments were collected across a transect from near-shore/high productivity to deep water/low productivity sediments. These sediments were incubated in bag experiments to study the relationship between sulfur and Mo cycling. Molybdenum concentrations in the Namibian sediments range from detrital values at the lowest productivity site to 25 ppm in surface sediments with high productivity. Preliminary results allude to a correlation between sulfate reduction rates and Mo accumulation in these sediments. Detailed studies of Mo, Mo isotopes, other trace metals, and sulfur investigations from both sediment cores and bag experiments will be presented. (1)Bertine and Turekian (1973), Geochim. Cosmochim. Acta 87, 1415. (2)McManus et al. (2006), Geochim. Cosmochim. Acta 70, 4643. (3)Erickson and Helz (2000) Geochim. Cosmochim. Acta 64, 1149.
Stafford, Jennifer M; Lambert, Charles E; Zyskowski, Justin A; Engfehr, Cheryl L; Fletcher, Oscar J; Clark, Shanna L; Tiwary, Asheesh; Gulde, Cynthia M; Sample, Bradley E
2016-03-01
Limited data are available on the effects of molybdenum (Mo) on avian wildlife, which impairs evaluation of ecological exposure and risk. While Mo is an essential trace nutrient in birds, little is known of its toxicity to birds exposed to molybdenum disulfide (MoS2), the predominant form found in molybdenite ore. The chemical form and bioavailability of Mo is important in determining its toxicity. Avian toxicity tests typically involve a soluble form of Mo, such as sodium molybdate dihydrate (SMD, Na2MoO4·2H2O); however MoS2 is generally insoluble, with low bioaccessibility under most environmental conditions. The current study monitored survival and general health (body weight and food consumption) of 9-day old northern bobwhite exposed to soluble Mo (SMD) and ore-related Mo (MoS2) in their diet for 30 days. Toxicity and bioavailability (e.g. tissue distribution) of the two Mo forms were compared. Histopathology evaluations and serum, kidney, liver, and bone tissue sample analyses were conducted. Copper, a nutrient integrally associated with Mo toxicity, was also measured in the diet and tissue. No treatment-related mortality occurred and no treatment-related lesions were recorded for either Mo form. Tissue analyses detected increased Mo concentrations in serum, kidney, liver, and bone tissues following exposure to SMD, with decreasing concentrations following a post-exposure period. For the soluble form, a No-Observed-Adverse-Effect Concentration (NOAEC) of 1200 mg Mo as SMD/kg feed (134 mg SMD/kg body weight/day) was identified based on body weight and food consumption. No adverse effects were observed in birds exposed to MoS2 at the maximum dose of 5000 mg MoS2/kg feed (545 mg MoS2/kg body weight/day). These results show that effects associated with MoS2, the more environmentally prevalent and less bioavailable Mo form, are much less than those observed for SMD. These data should support more realistic representations of exposure and risks to avian receptors from environmental Mo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Huajuan; Zhao, Ze; Wang, Jing
2015-08-15
A series of novel Y{sub 2}Mo{sub 4}O{sub 15}:xSm{sup 3+} ( (0.01 ≤ x ≤ 0.20) phosphors for white light-emitting (W-LEDs) were successfully prepared by the solid state reaction technology at 973 K for 12 h. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of the as-synthesized phosphors. The emission spectra of the Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphors consisted of some sharp emission peaks of Sm{sup 3+} ions centered at 565 nm, 605 nm, 650 nm, and 712 nm. The strongest one is located at 605 nm due to {sup 4}G{sub 5/2}–{sup 6}H{sub 7/2}more » transition of Sm{sup 3+}, generating bright orange–red light. The optimum dopant concentration of Sm{sup 3+} ions in Y{sub 2}Mo{sub 4}O{sub 15}:xSm{sup 3+} is around 5 mol% and the critical transfer distance of Sm{sup 3+} is calculated as 23.32 Å. The CIE chromaticity coordinates of the Y{sub 2}Mo{sub 4}O{sub 15}:0.05Sm{sup 3+} phosphors were located in the orange reddish region. The Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphors may be potentially used as red phosphors for white light-emitting diodes. - Graphical abstract: The excitation spectrum of Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} is composed of a broad band and some sharp f–f transitions. Under 407 nm excitation, the phosphor presents some sharp emission peaks of Sm{sup 3+} ions. - Highlights: • An orange–red emitting Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphor has been firstly synthesized. • Their structures, luminescent properties have also been investigated. • The optical absorption edge for the molybdate lies around 325 nm. • The CIE chromaticity coordinates were located in the orange reddish region.« less
Qin, G Z; Tian, S P; Xu, Y; Chan, Z L; Li, B Q
2006-03-01
To evaluate beneficial effect of two food additives, ammonium molybdate (NH4-Mo) and sodium bicarbonate (NaBi), on antagonistic yeasts for control of brown rot caused by Monilinia fructicola in sweet cherry fruit under various storage conditions. The mechanisms of action by which food additives enhance the efficacy of antagonistic yeasts were also evaluated. Biocontrol activity of Pichia membranefaciens and Cryptococcus laurentii against brown rot in sweet cherry fruit was improved by addition of 5 mmol l(-1) NH4-Mo or 2% NaBi when stored in air at 20 and 0 degrees C, and in controlled atmosphere (CA) storage with 10% O2 + 10% CO2 at 0 degrees C. Population dynamics of P. membranefaciens in the wounds of fruit were inhibited by NH4-Mo at 20 degrees C after 1 day of incubation and growth of C. laurentii was inhibited by NH4-Mo at 0 degrees C in CA storage after 60 days. In contrast, NaBi did not significantly influence growth of the two yeasts in fruit wounds under various storage conditions except that the growth of P. membranefaciens was stimulated after storage for 45 days at 0 degrees C in CA storage. When used alone, the two additives showed effective control of brown rot in sweet cherry fruit and the efficacy was closely correlated with the concentrations used. The result of in vitro indicated that growth of M. fructicola was significantly inhibited by NH4-Mo and NaBi. Application of additives improved biocontrol of brown rot on sweet cherry fruit under various storage conditions. It is postulated that the enhancement of disease control is directly because of the inhibitory effects of additives on pathogen growth, and indirectly because of the relatively little influence of additives on the growth of antagonistic yeasts. The results obtained in this study suggest that an integration of NH4-Mo or NaBi with biocontrol agents has great potential in commercial management of postharvest diseases of fruit.
Laurencin, Danielle; Garcia Fidalgo, Eva; Villanneau, Richard; Villain, Françoise; Herson, Patrick; Pacifico, Jessica; Stoeckli-Evans, Helen; Bénard, Marc; Rohmer, Marie-Madeleine; Süss-Fink, Georg; Proust, Anna
2004-01-05
Reactions of the molybdates Na(2)MoO4.2 H2O and (nBu(4)N)2[Mo2O7] with [[Ru(arene)Cl(2)](2)] (arene=C(6)H5CH3, 1,3,5-C6H3(CH3)(3), 1,2,4,5-C6H2(CH3)4) in water or organic solvents led to formation of the triple-cubane organometallic oxides [[Ru(eta(6)-arene)](4)Mo4O16], whose crystal and molecular structures were determined. Refluxing triple cubane [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] in methanol caused partial isomerization to the windmill form. The two isomers of [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] were characterized by Raman and Mo K-edge X-ray absorption spectroscopy (XAS), both in the solid-state and in solution. This triple-cubane isomer was also used as a spectroscopic model to account for isomerization of the p-cymene windmill [[Ru(eta(6)-1,4-CH3C6H4CH(CH3)2)](4)Mo4O16] in solution. Using both Raman and XAS techniques, we were then able to determine the ratio between the windmill and triple-cubane isomers in dichloromethane and in chloroform. Density functional calculations on [[Ru(eta(6)-arene)](4)Mo4O16] (arene=C6H6, C6H5CH3, 1,3,5-C6H3(CH3)3, 1,4-CH3C6H4CH(CH3)2, C6(CH3)6) suggest that the windmill form is intrinsically more stable, provided the complexes are assumed to be isolated. Intramolecular electrostatic interactions and steric bulk induced by substituted arenes were found to modulate but not to reverse the energy difference between the isomers. The stability of the triple-cubane isomers should therefore be accounted for by effects of the surroundings that induce a shift in the energy balance between both forms.
Optimization of the dissolution of molybdenum disks. FY-16 results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkac, Peter; Rotsch, David A.; Chemerisov, Sergey D.
2016-09-01
Argonne National Laboratory is providing technical development assistance to NorthStar Medical Technologies LLC in its pursuit of two pathways for production of molybdenum-99: the 98Mo(n,γ) 99Mo reaction and the photonuclear reaction, 100Mo(γ,n) 99Mo. Processing of irradiated targets, from either production mode, requires dissolution of the target material in H 2O 2 followed by a concentration step, addition of ferric ion to precipitate impurities, and conversion of the final solution to 5M potassium hydroxide solution of potassium molybdate. Currently, NorthStar is using pressed and sintered Mo disks as targets. Several options are being considered for the design of Mo targets formore » the production of 99Mo using the (γ,n) reaction. In the current design, the target holder contains a series of sintered Mo disks lined up perpendicular to two incident electron beams, one entering from each side of the target stack. In this configuration, the front-most disks absorb most of the heat from the electron beam and need to be thinner to allow for better cooling, while the middle of the target can be thicker. Distribution of the total mass of Mo allows for larger masses of Mo material and thus larger production batches of 99Mo. A limitation of the sintering approach is the production of very thin disks. Recent advances in 3D printing allow for much thinner target components can be achieved than when the traditional press-and-sinter approach is used. We have demonstrated that several factors can play important roles in dissolution behavior: particle size of Mo metal used for production of targets, sintering conditions, degree of open porosity, and thickness of the sintered Mo targets. Here we report experimental results from studies of small-scale dissolution of sintered Mo disks fabricated from various recycled and commercial Mo materials, and dissolution of 3D-printed Mo disks that were fabricated by Oak Ridge National Laboratory (ORNL). We also report on large-scale dissolution studies with 600 g batches of sintered Mo disks.« less
NASA Astrophysics Data System (ADS)
Yamase, T.; Prokop, P.; Arai, Y.
2003-08-01
The chemically induced dynamic electron-spin-polarization technique is employed in order to investigate the primary steps of the photoredox reaction between polyoxomolybdates and alkylammonium cations as both proton and electron-donors in solutions. An observation of emissive electron-spin-polarization signals of alkylamino radical cations for the photoredox reaction between polyoxomolybdates and alkylammonium cations in solutions reveals that the O→Mo ligand-to-metal charge-transfer triplet states are involved in the transfers of both proton and electron from alkylammonium cation to polyoxomolybdate anions. Prolonged photolysis of aqueous solutions containing [Mo36O112(H2O)16]8-, [iPrNH3]+, and LaCl3 at pH 1.0 leads to formation of two kinds of {Mo154} molybdenum-blues, [Mo28VMo126VIO462H28(H2O)70]·156.5H2O (1) and [iPrNH3]8 [Mo28VMo126VIO458H12(H2O)66]·127H2O (2), which were X-ray crystallographically characterized. The former exhibits the intact car-tire-shaped {Mo154} ring structure (with thickness of about 1.1 nm and with outer- and inner-rings of approximately 3.5- and 2.3-nm diameters, respectively) derived formally from the dehydrated cyclic heptamerization of four-electron reduced building blocks of {Mo22} (≡[Mo4VMo18VIO70H12(H2O)10]) with overall symmetry of D7d. The anion for the latter, [Mo28VMo126VIO458H12(H2O)66]8- (2a), exhibits a nanotube structure of {Mo154} rings, each inner ring of which contains a bis(μ-oxo)-linkaged [MoO2(μ-O)(μ-H2O)MoO2]2+ unit replacing one of seven [Mo(H2O)O2(μ-O)Mo(H2O)O2]2+linker units. The neighboring {Mo154} rings are connected by six Mo-O-Mo bridge between inner-rings consisting of 7 head- and 14 linkers-MoO6 octahedra for each.
Spectroscopy and lasing of Tm:SrMoO4 crystal near 1.5, 1.9, and 2.3-μm under 793-nm excitation
NASA Astrophysics Data System (ADS)
Šulc, Jan; Švejkar, Richard; Němec, Michal; Doroshenko, Maxim E.; Jelínková, Helena; Ivleva, Liudmila I.; Dunaeva, Elizaveta E.
2018-02-01
The spectroscopy properties and lasing of diode pumped Tm-doped strontium molybdate SrMoO4 single crystal were investigated at room temperature. The Tm:SrMoO4 crystal was grown by modified Stepanov method (2 wt.% of TmNbO4 in the melt). The tested Tm:SrMoO4 sample was cut from the grown crystal boule perpendicularly to growth direction 100. For spectroscopy and laser experiments 4.2mm thick plane-parallel face-polished plate (without AR coatings) was used. A fiber-coupled laser diode operating at wavelength 793nm was used for longitudinal Tm:SrMoO4 pumping which corresponds to 3H4 level excitation. Fluorescence spectra measurement showed strong emission in vicinity of 1.8 μm (3F4 -> 3H6 transition), and also significant emission close to wavelengths 1.45 μm (3H4 -> 3F4 transition) and 2.3 μm (3H4 -> 3H5 transition). The lasing was successfully reached for all these three transitions and output characteristics were measured. The pumping laser diode was operating in the pulsed regime with a low duty cycle. The 145mm long semi-hemispherical laser resonator consisted of flat pumping mirror (HT @ 0.79 μm) and curved (r = 150mm) output coupler. For each lasing transition the particular set of resonator mirrors was used to reach high reflexivity of pumping mirror and output coupler transmission 0.5% at laser operation wavelength. The obtained laser emission wavelengths were 1.95 μm, 1.45 & 1.49 μm, and 2.30 μm. In spite of low laser slope efficiency in respect to absorbed pumping power (0.45% for 3H4 -> 3F4 transition, 0.50% for 3F4 -> 3H6 transition and 0.83% for 3H4 -> 3H5 transition), results obtained are promising for further development of diode-pumped laser at 2.3 μm spectral region.
Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens
2015-02-01
The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT + pH), were compared with predicted log K(d + 1) values. Apart from selenate (R(2) = 0.43), the DRIFT + pH calibrations resulted in marginally better models to predict log K(d + 1) values (R(2) = 0.62-0.79), compared with those from PSLR-DRIFT (R(2) = 0.61-0.72) and MLR (R(2) = 0.54-0.79). The DRIFT + pH calibrations were applied to the prediction of log K(d + 1) values in the remaining 4313 soils. An example map of predicted log K(d + 1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT + pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d + 1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration. © 2014 SETAC.
NASA Astrophysics Data System (ADS)
Hines, Mark E.; Poitras, Erin N.; Covelli, Stefano; Faganeli, Jadran; Emili, Andrea; Žižek, Suzana; Horvat, Milena
2012-11-01
Mercury (Hg) transformation activities and sulfate (SO42-) reduction were studied in sediments of the Marano and Grado Lagoons in the Northern Adriatic Sea region as part of the "MIRACLE" project. The lagoons, which are sites of clam (Tapes philippinarum) farming, have been receiving excess Hg from the Isonzo River for centuries. Marano Lagoon is also contaminated from a chlor-alkali plant. Radiotracer methods were used to measure mercury methylation (230Hg, 197Hg), methylmercury (MeHg) demethylation (14C-MeHg) and SO42- reduction (35S) in sediment cores collected in autumn, winter and summer. Mercury methylation rate constants ranged from near zero to 0.054 day-1, generally decreased with depth, and were highest in summer. Demethylation rate constants were much higher than methylation reaching values of ˜0.6 day-1 in summer. Demethylation occurred via the oxidative pathway, except in winter when the reductive pathway increased in importance in surficial sediments. Sulfate reduction was also most active in summer (up to 1600 nmol mL-1 day-1) and depth profiles reflected seasonally changing redox conditions near the surface. Methylation and demethylation rate constants correlated positively with SO42- reduction and pore-water Hg concentrations, and inversely with Hg sediment-water partition coefficients indicating the importance of SO42- reduction and Hg dissolution on Hg cycling. Hg transformation rates were calculated using rate constants and concentrations of Hg species. In laboratory experiments, methylation was inhibited by amendments of the SO42--reduction inhibitor molybdate and by nitrate. Lagoon sediments displayed a dynamic seasonal cycle in which Hg dissolution in spring/summer stimulated Hg methylation, which was followed by a net loss of MeHg in autumn from demethylation. Sulfate-reducing bacteria (SRB) tended to be responsible for methylation of Hg and the oxidative demethylation of MeHg. However, during winter in surficial sediments, iron-reducing bacteria seemed to contribute to methylation and Hg-resistant bacteria increased in importance in the reductive demethylation of MeHg. The high rates of MeHg demethylation in lagoon sediments may diminish the accumulation of MeHg.
Optical and Acoustic Device Applications of Ferroelastic Crystals
NASA Astrophysics Data System (ADS)
Meeks, Steven Wayne
This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.
NASA Astrophysics Data System (ADS)
Smith, A. L.; Kauric, G.; van Eijck, L.; Goubitz, K.; Wallez, G.; Griveau, J.-C.; Colineau, E.; Clavier, N.; Konings, R. J. M.
2017-09-01
The structure of α-Cs2Mo2O7 (monoclinic in space group P21 / c), which can form during irradiation in fast breeder reactors in the space between nuclear fuel and cladding, has been refined in this work at room temperature from neutron diffraction data. Furthermore, the compounds' thermal expansion and polymorphism have been investigated using high temperature X-ray diffraction combined with high temperature Raman spectroscopy. A phase transition has been observed at Ttr(α → β)=(621.9±0.8) K using Differential Scanning Calorimetry, and the structure of the β-Cs2Mo2O7 phase, orthorhombic in space group Pbcm, has been solved ab initio from the high temperature X-ray diffraction data. Furthermore, the low temperature heat capacity of α-Cs2Mo2O7 has been measured in the temperature range T=(1.9-313.2) K using a Quantum Design PPMS (Physical Property Measurement System) calorimeter. The heat capacity and entropy values at T=298.15 K have been derived as Cp,mo (Cs2Mo2O7 , cr , 298.15 K) = (211.9 ± 2.1) J K-1mol-1 and Smo (Cs2Mo2O7 , cr , 298.15 K) = (317.4 ± 4.3) J K-1mol-1 . When combined with the enthalpy of formation reported in the literature, these data yield standard entropy and Gibbs energy of formation as Δf Smo (Cs2Mo2O7 , cr , 298.15 K) = - (628.2 ± 4.4) J K-1mol-1 and Δf Gmo (Cs2Mo2O7 , cr , 298.15 K) = - (2115.1 ± 2.5) kJmol-1 . Finally, the cesium partial pressure expected in the gap between fuel and cladding following the disproportionation reaction 2Cs2MoO4=Cs2Mo2O7+2Cs(g)+ 1/2 O2(g) has been calculated from the newly determined thermodynamic functions.
Pulliam Holoman, Tracey R.; Elberson, Margaret A.; Cutter, Leah A.; May, Harold D.; Sowers, Kevin R.
1998-01-01
Defined microbial communities were developed by combining selective enrichment with molecular monitoring of total community genes coding for 16S rRNAs (16S rDNAs) to identify potential polychlorinated biphenyl (PCB)-dechlorinating anaerobes that ortho dechlorinate 2,3,5,6-tetrachlorobiphenyl. In enrichment cultures that contained a defined estuarine medium, three fatty acids, and sterile sediment, a Clostridium sp. was predominant in the absence of added PCB, but undescribed species in the δ subgroup of the class Proteobacteria, the low-G+C gram-positive subgroup, the Thermotogales subgroup, and a single species with sequence similarity to the deeply branching species Dehalococcoides ethenogenes were more predominant during active dechlorination of the PCB. Species with high sequence similarities to Methanomicrobiales and Methanosarcinales archaeal subgroups were predominant in both dechlorinating and nondechlorinating enrichment cultures. Deletion of sediment from PCB-dechlorinating enrichment cultures reduced the rate of dechlorination and the diversity of the community. Substitution of sodium acetate for the mixture of three fatty acids increased the rate of dechlorination, further reduced the community diversity, and caused a shift in the predominant species that included restriction fragment length polymorphism patterns not previously detected. Although PCB-dechlorinating cultures were methanogenic, inhibition of methanogenesis and elimination of the archaeal community by addition of bromoethanesulfonic acid only slightly inhibited dechlorination, indicating that the archaea were not required for ortho dechlorination of the congener. Deletion of Clostridium spp. from the community profile by addition of vancomycin only slightly reduced dechlorination. However, addition of sodium molybdate, an inhibitor of sulfate reduction, inhibited dechlorination and deleted selected species from the community profiles of the class Bacteria. With the exception of one 16S rDNA sequence that had the highest sequence similarity to the obligate perchloroethylene-dechlorinating Dehalococcoides, the 16S rDNA sequences associated with PCB ortho dechlorination had high sequence similarities to the δ, low-G+C gram-positive, and Thermotogales subgroups, which all include sulfur-, sulfate-, and/or iron(III)-respiring bacterial species. PMID:9726883
Wu, Xuelian; Hart, Judy N; Wen, Xiaoming; Wang, Liang; Du, Yi; Dou, Shi Xue; Ng, Yun Hau; Amal, Rose; Scott, Jason
2018-03-21
It has been reported that photogenerated electrons and holes can be directed toward specific crystal facets of a semiconductor particle, which is believed to arise from the differences in their surface electronic structures, suggesting that different facets can act as either photoreduction or photo-oxidation sites. This study examines the propensity for this effect to occur in faceted, plate-like bismuth molybdate (Bi 2 MoO 6 ), which is a useful photocatalyst for water oxidation. Photoexcited electrons and holes are shown to be spatially separated toward the {100} and {001}/{010} facets of Bi 2 MoO 6 , respectively, by facet-dependent photodeposition of noble metals (Pt, Au, and Ag) and metal oxides (PbO 2 , MnO x , and CoO x ). Theoretical calculations revealed that differences in energy levels between the conduction bands and valence bands of the {100} and {001}/{010} facets can contribute to electrons and holes being drawn to different surfaces of the plate-like Bi 2 MoO 6 . Utilizing this knowledge, the photo-oxidative capability of Bi 2 MoO 6 was improved by adding an efficient water oxidation co-catalyst, CoO x , to the system, whereby the extent of enhancement was shown to be governed by the co-catalyst location. A greater oxygen evolution occurred when CoO x was selectively deposited on the hole-rich {001}/{010} facets of Bi 2 MoO 6 compared to when CoO x was randomly located across all of the facets. The elevated performance exhibited for the selectively loaded CoO x /Bi 2 MoO 6 was ascribed to the greater opportunity for hole trapping by the co-catalyst being accentuated over other potentially detrimental effects, such as the co-catalyst acting as a recombination medium and/or covering reactive sites. The results indicate that harnessing the synergy between the spatial charge separation and the co-catalyst location on the appropriate facets of plate-like Bi 2 MoO 6 can promote its photocatalytic activity.
Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park
NASA Astrophysics Data System (ADS)
Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.
2014-12-01
Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a detailed understanding of the vertical and longitudinal distribution of microbial taxa throughout CP. These studies will provide insight into the operation of the microbial Fe redox cycle, demonstrating how genomic properties relate to and control geochemical conditions with depth and distance in a Fe-rich, neutral pH geothermal environment.
Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition
NASA Astrophysics Data System (ADS)
Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus
2016-04-01
During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (<0.05 mg total dissolved P/L), soil solutions had to be concentrated by freeze-drying for the enzymatic characterization of DOP. In order to test the potential bioavailability, we used an enzyme assay distinguishing between phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater contribution to total dissolved P in winter than in summer. Concentrations of DOP decreased along the phosphorus availability gradient from less to the more developed forest ecosystems.
Application of electrochemical methods in corrosion and battery research
NASA Astrophysics Data System (ADS)
Sun, Zhaoli
Various electrochemical methods have been applied in the development of corrosion protection methods for ammonia/water absorption heat pumps and the evaluation of the stability of metallic materials in Li-ion battery electrolyte. Rare earth metal salts (REMSs) and organic inhibitors have been evaluated for corrosion protection of mild steel in the baseline solution of 5 wt% NH 3 + 0.2 wt% NaOH to replace the conventionally used toxic chromate salt inhibitors. Cerium nitrate provided at least comparable corrosion inhibition efficiency as dichromate in the baseline solution at 100°C. The cerium (IV) oxide formed on mild steel through the cerating process exhibited increasing corrosion protection for mild steel with prolonged exposure time in the hot baseline solution. The optimum cerating process was found to be first cerating in a solution of 2.3 g/L CeCl3 + 4.4 wt% H2O2 + appropriate additives for 20 minutes at pH 2.2 at room temperature with 30 minutes solution aging prior to use, then sealing in 10% sodium (meta) silicate or sodium molybdate at 50°C for 30 minutes. Yttrium salts provided less corrosion protection for mild steel in the baseline solution than cerium salts. Glycerophosphate was found to be a promising chromate-free organic inhibitor for mild steel; however, its thermostability in hot ammonia/water solutions has not been confirmed yet. The stability of six metallic materials used in Li-ion batteries has been evaluated in 1M lithium hexafluorophosphate (LiPF6) dissolved in a 1:1 volume mixture of ethylene carbonate and diethyl carbonate at 37°C in a dry-box. Aluminum is the most stable material, while Copper is active under anodic potentials and susceptible to localized corrosion and galvanic corrosion. The higher the concentration of the alloying elements Al and/or V in a titanium alloy, the higher was the stability of the titanium alloy in the battery electrolyte. 90Pt-10Ir can cause decomposition of the electrolyte resulting in a low stable potential window.
Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.
1994-07-01
The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants
1997-04-01
Molybdenum is an essential element for the function of nitrogenase in plants and as a cofactor for enzymes including xanthine oxidoreductase, aldehyde oxidase, and sulfide oxidase in animals. Molybdenum trioxide is used primarily as an additive to steel and corrosion-resistant alloys. It is also used as a chemical intermediate for molybdenum products; an industrial catalyst; a pigment; a crop nutrient; components of glass, ceramics, and enamels; a flame retardant for polyester and polyvinyl chloride resins; and a reagent in chemical analyses. Molybdenum trioxide was nominated by the NCI for toxicity and carcinogenicity studies as a representative inorganic molybdenum compound. The production of molybdenum trioxide is the largest of all the molybdenum compounds examined. Male and female F344/N rats and B6C3F1 mice were exposed to molybdenum trioxide (approximately 99% pure) by inhalation for 14 days, 13 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and cultured Chinese hamster ovary cells. 14-DAY STUDY IN RATS: Groups of five male and five female F344/N rats were exposed to 0, 3, 10, 30, 100, or 300 mg molybdenum trioxide/m(3). Rats were exposed for 6 hours per day, 5 days per week, for a total of 10 exposure days during a 14-day period. All rats survived to the end of the study. The final mean body weights of male rats exposed to 100 mg/m(3) and male and female rats exposed to 300 mg/m(3) were significantly lower than those of the control groups. Male rats exposed to 300 mg/m(3) lost weight during the study. There were no clinical findings related to exposure to molybdenum trioxide. No chemical-related lesions were observed. 14-DAY STUDY IN MICE: Groups of five male and five female B6C3F1 mice were exposed to 0, 3, 10, 30, 100, or 300 mg molybdenum trioxide/m(3). Mice were exposed 6 hours per day, 5 days per week, for a total of 10 exposure days during a 14-day period. All mice survived to the end of the study. Final mean body weights of male and female mice exposed to 300 mg/m(3) were significantly lower than those of the control groups. Male mice exposed to 300 mg/m(3) lost weight during the study. There were no clinical findings related to exposure to molybdenum trioxide. No chemical-related lesions were observed. 13-WEEK STUDY IN RATS: Groups of 10 male and 10 female F344/N rats were exposed to molybdenum trioxide by inhalation at concentrations of 0, 1, 3, 10, 30, or 100 mg/m(3) for 6.5 hours per day, 5 days per week, for 13 weeks. All rats survived to the end of the study. The final mean body weights of exposed rats were similar to those of the control groups. No clinical findings related to molybdenum trioxide exposure were observed. There were no significant chemical-related differences in absolute or relative organ weights, hematology or clinical chemistry parameters, sperm counts or motility, or liver copper concentrations between control and exposed rats. No chemical-related lesions were observed. 13-WEEK STUDY IN MICE: Groups of 10 male and 10 female B6C3F1 mice were exposed to molybdenum trioxide by inhalation at concentrations of 0, 1, 3, 10, 30, or 100 mg/m(3) for 6.5 hours per day, 5 days per week, for 13 weeks. All mice survived to the end of the study. The final mean body weights of exposed mice were similar to those of the control groups. There were no chemical-related clinical findings. There were no significant differences in absolute or relative organ weights or sperm counts or motility between control and exposed mice. There were significant increases in liver copper concentrations in female mice exposed to 30 mg/m(3) and in male and female mice exposed to 100 mg/m(3) compared to those of the control groups. No chemical-related lesions were observed. 2-YEAR STUDIES IN RATS: Groups of 50 male and 50 female F344/N rats were exposed to molybdenum trioxide by inhalation at concentrations of 0, 10, 30, or 100 mg/m(3). Rats were exposed for 6 hours per day, 5 days per week, for 106 weeks. Survival, Body Weights, and Special Studies: Survival rates of exposed maleed male and female rats were similar to those of the control groups. Mean body weights of exposed groups of male and female rats were similar to those of the control groups throughout the study. There was a significant exposure-dependent increase in blood molybdenum concentration in exposed rats. Blood concentrations of molybdenum in exposed male rats were greater than those in exposed female rats. There were no toxicologically significant differences in bone density or curvature between control and exposed rats. Pathology Findings: The incidences of alveolar/bronchiolar adenoma or carcinoma (combined) were increased in male rats with a marginally significant positive trend. No increase in the incidences of lung neoplasms occurred in female rats. Incidences of chronic alveolar inflammation in male and female rats exposed to 30 or 100 mg/m(3) were significantly greater than those in the control groups. No nasal or laryngeal neoplasms were attributed to exposure to molybdenum trioxide. Incidences of hyaline degeneration in the nasal respiratory epithelium in 30 and 100 mg/m(3) males and in all exposed groups of females were significantly greater than those in the control groups. The incidences of hyaline degeneration in the nasal olfactory epithelium of all exposed groups of females were significantly greater than that in the control group. In the larynx, incidences of squamous metaplasia of the epithelium lining the base of the epiglottis in all exposed groups of male and female rats were significantly greater than those in the control groups and increased with increasing exposure concentration. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female B6C3F1 mice were exposed to molybdenum trioxide by inhalation at concentrations of 0, 10, 30, or 100 mg/m(3). Mice were exposed for 6 hours per day, 5 days per week, for 105 weeks. Survival, Body Weights, and Special Studies: The survival rate of male mice exposed to 30 mg/m(3) was marginally lower than that of the control group; survival rates of 10 and 100 mg/m(3) males and of all exposed groups of females were similar to those of the control groups. Mean body weights of exposed male mice were generally similar to those of the control group throughout the study. Mean body weights of exposed female mice were generally greater than those of the control group from week 11 until the end of the study. There was a significant exposure-dependent increase in blood molybdenum concentration in exposed mice. There were no toxicologically significant differences in bone density or curvature between control and exposed mice. Pathology Findings: The incidences of alveolar/bronchiolar carcinoma in all exposed groups of males were significantly greater than that in the control group. Incidences of alveolar/bronchiolar adenoma in females in the 30 and 100 mg/m(3) groups were significantly greater than that in the control group. Incidences of alveolar/bronchiolar adenoma or carcinoma (combined) in 10 and 30 mg/m(3) males and in 100 mg/m(3) females were significantly greater than those in the control groups and exceeded the historical control ranges for 2-year NTP inhalation studies. Incidences of metaplasia of the alveolar epithelium of minimal severity in the centriacinar region of the lung were significantly increased in all exposed groups of mice. The incidences of histiocyte cellular infiltration in all exposed groups of males were significantly greater than that in the control group. Incidences of hyaline degeneration of the respiratory epithelium of the nasal cavity in 100 mg/m(3) males and females and hyaline degeneration of the olfactory epithelium of the nasal cavity in 100 mg/m(3) females were significantly greater than those in the control groups. The incidences of squamous metaplasia of the epithelium lining the base of the epiglottis were significantly increased in all exposed groups of males and females. In both male and female mice, the incidences of hyperplasia of the laryngeal epithelium in level II of the larynx increased with increasing exposure concentration. The increase was statistically significant only in mice exposed to 100 mg/m(3) with 82% of male and 70% of female mice affected. GENETIC TOXICOLOGY: Molybdenum trioxide was not mutagenic in any of five strains of Salmonella typhimurium, and it did not induce sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary cells in vitro. All tests were conducted with and without S9 metabolic activation enzymes. CONCLUSIONS: Under the conditions of these 2-year inhalation studies, there was equivocal evidence of carcinogenic activity of molybdenum trioxide in male F344/N rats based on a marginally significant positive trend of alveolar/bronchiolar adenoma or carcinoma (combined). There was no evidence of carcinogenic activity of molybdenum trioxide in female F344/N rats exposed to 10, 30, or 100 mg/m(3). There was some evidence of carcinogenic activity of molybdenum trioxide in male B6C3F1 mice based on increased incidences of alveolar/bronchiolar carcinoma and adenoma or carcinoma (combined). There was some evidence of carcinogenic activity of molybdenum trioxide in female B6C3F1 mice based on increased incidences of alveolar/bronchiolar adenoma and adenoma or carcinoma (combined). Exposure of male and female rats to molybdenum trioxide by inhalation resulted in increased incidences of chronic alveolar inflammation, hyaline degeneration of the respiratory epithelium, hyaline degeneration of the olfactory epithelium (females), and squamous metaplasia of the epiglottis. Exposure of male and female mice to molybdenum trioxide by inhalation resulted in increased incidences of metaplasia of the alveolar epithelium, histiocyte cellular infiltration (males), hyaline degeneration of the respiratory epithelium, hyaline degeneration of the olfactory epithelium (females), squamous metaplasia of the epiglottis, and hyperplasia of the larynx. Synonyms: Molybdic oxide; molybdic trioxide; molybdic anhydride; molybdenum (VI) oxide; molybdenum peroxide; molybdic acid anhydride; molybdenum anhydride; natural molybdite; molybdena
Ek-Rylander, B; Barkhem, T; Ljusberg, J; Ohman, L; Andersson, K K; Andersson, G
1997-01-01
The tartrate-resistant acid phosphatase (TRAP) of rat osteoclasts has been shown to exhibit high (85-94%) identity at the amino acid sequence level with the purple acid phosphatase (PAP) from bovine spleen and with pig uteroferrin. These iron-containing purple enzymes contain a binuclear iron centre, with a tyrosinate-to-Fe(III) charge-transfer transition responsible for the purple colour. In the present study, production of rat osteoclast TRAP could be achieved at a level of 4.3 mg/litre of medium using a baculovirus expression system. The enzyme was purified to apparent homogeneity using a combination of cation-exchange, hydrophobic-interaction, lectin-affinity and gel-permeation chromatography steps. The protein as isolated had a purple colour, a specific activity of 428 units/mg of protein and consisted of the single-chain form of molecular mass 34 kDa, with only trace amounts of proteolytically derived subunits. The recombinant enzyme had the ability to dephosphorylate bone matrix phosphoproteins, as previously shown for bone TRAP. Light absorption spectroscopy of the isolated purple enzyme showed a lambda max at 544 nm, which upon reduction with ascorbic acid changed to 515 nm, concomitant with the transition to a pink colour. EPR spectroscopic analysis of the reduced enzyme at 3.6 K revealed a typical mu-hydr(oxo)-bridged mixed-valent Fe(II)Fe(III) signal with g-values at 1.96, 1.74 and 1.60, proving that recombinant rat TRAP belongs to the family of PAPs. To validate the use of recombinant PAP in substituting for the rat bone counterpart in functional studies, various comparative studies were carried out. The enzyme isolated from bone exhibited a lower K(m) for p-nitrophenyl phosphate and was slightly more sensitive to PAP inhibitors such as molybdate, tungstate, arsenate and phosphate. In contrast with the recombinant enzyme, TRAP from bone was isolated predominantly as the proteolytically cleaved, two-subunit, form. Both the recombinant enzyme and rat bone TRAP were shown to be substituted with N-linked oligosaccharides. A slightly higher apparent molecular mass of the monomeric form and N-terminal chain of bone TRAP compared with the recombinant enzyme could not be accounted for by differential N-glycosylation. Despite differences in specific post-translational modifications, the recombinant PAP should be useful in future studies on the properties and regulation of the mammalian PAP enzyme. PMID:9020859
Recovery of Mo for Accelerator Production of Mo-99 Using (y,n) Reaction on Mo-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkac, Peter; Vandegrift, George F.; Nunn, Stephen D.
2013-09-30
Technetium-99m is a widely used radiopharmaceutical. Its parent, Mo-99, is produced worldwide to supply this important isotope. One means to produce Mo-99 is by bombarding a Mo-100 target with an electron beam from a linear accelerator; the γ/n reaction on Mo-100 produces Mo-99. After dissolving Mo-100 enriched disks in hydrogen peroxide, the solution is converted to potassium molybdate (0.2 g-Mo/mL) in 5 M KOH. After milking the Tc-99m in the TechneGen generator over a period of 7-10 days, the molybdenum solution needs to be treated to recover valuable Mo-100 for production of sintered Mo disks. However, during the production ofmore » Mo-99 by (γ, n) reaction on the Mo-100 target, several byproducts are formed. Therefore, recycling Mo will require the conversion of K 2MoO 4 in 5 M KOH solution to MoO 3 powder, and purification from other metals present in the Mo solution. The starting Mo-100 enriched material contains less than 20 mg of potassium in 1 kg of molybdenum (<20 ppm). However, after dissolving the irradiated Mo-100 target in hydrogen peroxide and converting it to K 2MoO 4 in 5 M KOH (0.2 g-Mo/mL), the solution contains about 1.8 kg of potassium per kilogram of molybdenum. The most challenging separation for this recovery step is purifying molybdenum from potassium. One requirement to facilitate the acceptance of the recycled material by the U.S. Food and Drug Administration (FDA) is that the impurities in the recycled material need to be at or below the levels present in the starting material. Therefore, the amount of potassium (K) in purified MoO 3 powder should be below 20 ppm; this will require a decontamination factor for removal of K to be ~1 × 10 5. Such a low K-contamination level will also prevent the production of large amounts of K-42 during irradiation of Mo-100. Based on economic concerns (due to the significant cost of enriched Mo-100) recycling Mo requires the conversion of K 2MoO 4 in a 5 M KOH solution to MoO 3 powder with high Mo recovery yields (>98%).« less
NASA Astrophysics Data System (ADS)
Zhuang, G.; Wegener, G.; Joye, S. B.
2017-12-01
The anaerobic oxidation of methane (AOM) is an important microbial metabolism in the global carbon cycle. In marine methane seeps sediment, this process is mediated by syntrophic consortium that includes anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Stoichiometrically in AOM methane oxidation should be coupled to sulfate reduction (SR) in a 1:1 ratio. However, weak coupling of AOM and SR in seep sediments was frequently observed from the ex situ rate measurements, and the metabolic dynamics of AOM and SR under in situ conditions remain poorly understood. Here we investigated the metabolic activity of AOM and SR with radiotracers by restoring in situ methane concentrations under pressure to constrain the in situ relationships between AOM and SR in the cold seep sediments of Gulf of Mexico as well as the sediment-free AOM enrichments cultivated from cold seep of Italian Island Elba or hydrothermal vent of Guaymas Basin5. Surprisingly, we found that AOM rates strongly exceeded those of SR when high pressures and methane concentrations were applied at seep sites of GC600 and GC767 in Gulf of Mexico. With the addition of molybdate, SR was inhibited but AOM was not affected, suggesting the potential coupling of AOM with other terminal processes. Amendments of nitrate, iron, manganese and AQDS to the SR-inhibited slurries did not stimulate or inhibit the AOM activity, indicating either those electron acceptors were not limiting for AOM in the sediments or AOM was coupled to other process (e.g., organic matter). In the ANME enrichments, higher AOM rates were also observed with the addition of high concentrations of methane (10mM and 50 mM). The tracer transfer of CO2 to methane, i.e., the back reaction of AOM, increased with increasing methane concentrations and accounted for 1%-5% of the AOM rates. AOM rates at 10 mM and 50 mM methane concentration were much higher than the SR rates, suggesting those two processes were not tightly coupled. Collectively, our results provided evidence for the possible decoupling of AOM and SR under in situconditions. This decoupling appears to be widespread in methane-rich marine sediment, motivating a wide variety of future research endeavors.
Chromium resistance characteristics of Cr(VI) resistance genes ChrA and ChrB in Serratia sp. S2.
He, Yuan; Dong, Lanlan; Zhou, Simin; Jia, Yan; Gu, Ruijia; Bai, Qunhua; Gao, Jieying; Li, Yingli; Xiao, Hong
2018-08-15
To find an efficient chromium (VI) resistance system, with a highly efficient, economical, safe, and environmentally friendly chromium-removing strain, ChrA, ChrB, and ChrAB fragments of the chromium (VI) resistance gene in Serratia sp. S2 were cloned, and their prokaryotic expression vectors were constructed and transformed into E. coli BL21. The anti-chromium (VI) capacity and characteristics of engineered bacteria, role of ChrA and ChrB genes in the anti-chromium (VI) processes, and the mechanism of chromium metabolism, were explored. The PCR technique was used to amplify ChrA, ChrB, and ChrAB genes from the Serratia sp. S2 genome. ChrA, ChrB, and ChrAB genes were connected to the prokaryotic expression vector pET-28a and transferred into E. coli BL21 for prokaryotic expression. Cr-absorption and Cr-efflux ability of the engineered strains were determined. The effects of respiratory inhibitors and oxygenated anions on Cr-efflux of ChrA and ChrB engineered strains were explored. ChrA, ChrB, and ChrAB engineered strains were constructed successfully; there was no significant difference between the control strain and the ChrB engineered strain for Cr-metabolism (P > 0.05). Cr-absorption and Cr-efflux of ChrA and ChrAB engineered strains were significantly stronger than the control strain (P < 0.05). Oxyanions (sulfate and molybdate) and inhibitors (valinomycin and CN - ) could significantly inhibit the Cr-efflux capacities of ChrA and ChrAB engineered strains (P < 0.05), while NADPH could significantly promote such capacities (P < 0.05). The Cr-transporter, encoded by ChrA gene, confer the ability to pump out intracellular Cr on ChrA and ChrAB engineered strains. The ChrB gene plays a positive regulatory role in ChrA gene regulation. The Cr-metabolism ability of the ChrAB engineered strain is stronger than the ChrA engineered strain. ChrA and ChrAB genes in the Cr-resistance system may involve a variety of mechanisms, such as sulfate ion channel and respiratory chain electron transfer. Copyright © 2018 Elsevier Inc. All rights reserved.
Field Testing of Downgradient Uranium Mobility at an In-Situ Recovery Uranium Mine
NASA Astrophysics Data System (ADS)
Reimus, P. W.; Clay, J. T.; Rearick, M.; Perkins, G.; Brown, S. T.; Basu, A.; Chamberlain, K.
2015-12-01
In-situ recovery (ISR) mining of uranium involves the injection of O2 and CO2 (or NaHCO3) into saturated roll-front deposits to oxidize and solubilize the uranium, which is then removed by ion exchange at the surface and processed into U3O8. While ISR is economical and environmentally-friendly relative to conventional mining, one of the challenges of extracting uranium by this process is that it leaves behind a geochemically-altered aquifer that is exceedingly difficult to restore to pre-mining geochemical conditions, a regulatory objective. In this research, we evaluated the ability of the aquifer downgradient of an ISR mining area to attenuate the transport of uranium and other problem constituents that are mobilized by the mining process. Such an evaluation can help inform both regulators and the mining industry as to how much restoration of the mined ore zone is necessary to achieve regulatory compliance at various distances downgradient of the mining zone even if complete restoration of the ore zone proves to be difficult or impossible. Three single-well push-pull tests and one cross-well test were conducted in which water from an unrestored, previously-mined ore zone was injected into an unmined ore zone that served as a geochemical proxy for the downgradient aquifer. In all tests, non-reactive tracers were injected with the previously-mined ore zone water to allow the transport of uranium and other constituents to be compared to that of the nonreactive species. In the single-well tests, it was shown that the recovery of uranium relative to the nonreactive tracers ranged from 12-25%, suggesting significant attenuation capacity of the aquifer. In the cross-well test, selenate, molybdate and metavanadate were injected with the unrestored water to provide information on the transport of these potentially-problematic anionic constituents. In addition to the species-specific transport information, this test provided valuable constraints on redox conditions within the system, as redox couples involving these species collectively bracket the predicted transition redox potential for the U(VI)/U(IV) couple. Reduction should provide much longer-lasting immobilization of constituents than adsorption, especially given the inherent reducing characteristics of roll-front systems.